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H I G H L I G H T  G R A P H I C A L  A B S T R A C T  

• Development of the new XGBoost- 
Boruta algorithm to evaluate feature 
importance of key BOP features in a 
PEMFC control system at different cur
rent densities. 

• Design of a self-adaptive feature selec
tion strategy for PEMFC system perfor
mance prediction. 

• Comparative analysis between the pro
posed XGBoost-Boruta algorithm with 
conventional feature dropout strategy. 

• Verification and validation evaluation 
based on real-time PEMFC bench and 
vehicle data.  
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A B S T R A C T   

Data-driven modelling methods are being developed in the quest to achieve more accurate performance pre
diction of protons exchange membrane fuel cell (PEMFC) systems in response to their complicated physico
chemical phenomena. However, there is little research in this field detailing the pre-processing and selection of 
balance of plants (BOP) features for the input layer of system performance prediction at different current den
sities. Furthermore, most of the previous research applies neural networks based on simulation data rather than 
real-time bench or vehicle operation datasets which leads to low robustness and unreliable practical results. This 
paper details the application of a novel algorithm denoted XGBoost-Boruta, which utilises the combination of an 
ensemble learning approach and a wrapping approach, to improve the robustness of feature selection and to 
increase the accuracy and robustness of PEMFC system performance prediction. By introduction of the Z score 
and shadow features to eliminate the randomness of conventional ensemble learning methods, seven key 
controllable BOP variables of the hydrogen anode, air cathode and cooling subsystems are selected as the original 
input variables to determine their dependency on the stack voltage. Two case studies are presented for verifi
cation and validation of the proposed algorithm based on the real-time dataset of bench experimental data and 
data obtained from heavy truck operation at current densities ranging from 100 to 1500 mA/cm2. The feature 
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selection strategy, based on the proposed XGBoost-Boruta algorithm, largely decreases the RMSE by 23.8% and 
14.1% and the R2 increases by 0.06 and 0.04 of both the bench experimental and the heavy truck validation 
datasets respectively.   

1. Introduction 

In line with global sustainability issues, allied to the lowering of 
greenhouse gas emissions [1], it is desired that the CO2 content of the 
atmosphere stabilises at no more than 450 parts per million in 2050 [2]. 
In 2019, the emissions from the transport sector accounted for about 
25% of global CO2 emissions [3]. The exploitation of the proton ex
change membrane fuel cell (PEMFC) as a promising power source that 
produces zero harmful emissions, is on the increase in the areas of 
passenger and commercial vehicles [4]. However, the complexity of the 
physicochemical phenomena and the need for correlation of balance of 
plants (BOP) in a PEMFC system leads to difficulty in controlling the 
system by conventional mechanistic modelling methods. 

Data-driven modelling methods are gradually being applied to the 
prediction of the PEMFC system performance to find the relationship 
between PEMFC system variables as input features and system perfor
mance parameters. Novel feature evaluation methods exist for PEMFC 
fault diagnosis and remaining useful life (RUL) prognosis. For example, a 
feature evaluation method was designed for the classification of three 
PEMFC states, including normal, flooding and dehydration to extend 
PEMFC lifetime [5]. Back propagation neural network (BPNN) and 
adapted neural fuzzy inference system (ANFIS) were applied for PEMFC 
prognosis under both static and non-static conditions [6]. However, 
there is very little research available that provides comprehensive rea
sons for the choice of features which further complicates the interpret
ability of neural networks and fails to guarantee robustness. Overall, 
previous data-driven research into data-driven PEMFC system control 
strategy bears five main research gaps as illustrated in Fig. 1 [7–13] and 
[14], the first two of which are data-related problems and the latter 
three deal with the performance of the prediction algorithm. 

From the aspect of the selection of datasets, as illustrated by the first 
two points in Fig. 1, most research tends to combine uncontrollable 
PEMFC stack design dependant variables and controllable system BOP 
features based on empirical or equivalent simulation models. For 
example, Ding et al. applied random forest (RF) techniques to rank 
PEMFC stack material features and BOP features, where PEMFC stack 
design dependant variables, including BET surface area, mesopore ratio 
and micropore ratio, are selected as top features [7]. Eight structural 
parameters were selected as input features for electric potential [8]. 
Although these stack material features are critical to the performance of 
both the PEMFC stack and system, it is not usual to monitor and detect 

these features during operation for bench test and vehicle running, 
therefore these research efforts have limited practical value for the 
real-time control for vehicle applications. Another dataset-related 
problem is the accuracy and practicality of the empirical and mathe
matical equivalent models. Most PEMFC system performance prediction 
neural networks are established based on simulation models which are 
derived with a significant number of assumptions that cannot be 
neglected in vehicle operation and therefore limited in practical values 
and robustness in the prediction models themselves. For example, in [9], 
the equivalent model of the dataset is generated by an embedded PEMFC 
model in MATLAB which assumes that the pressure drops across the flow 
channels are negligible and the cell resistance remains constant at all the 
conditions of operation. However, these assumptions do not accommo
date actual bench and vehicle operation which requires intensive cali
bration. Therefore, real-time bench and vehicle datasets are of greater 
importance for the training of the prediction models as compared with 
simulation datasets. 

The latter three research gaps illustrated in Fig. 1 are related to the 
methods of input feature selection for PEMFC performance prediction. 
In recent research, feature selection for a high-dimensional PEMFC 
system is gradually being recognised as an important data pre- 
processing step before deriving a data-driven neural network model 
for the prediction of a PEMFC system. First, most research apply the 
same sets of input system features in neural network prediction models, 
covering all the current densities from low to high. However, the per
formance of a typical PEMFC system is largely influenced by the acti
vation, ohmic and concentration losses at different current densities, 
which leads to different water transport mechanisms through the 
membranes with specific priorities of BOP features for real-time vehicle 
operation [15]. For example, Legala et al. selected current, temperature, 
cathode pressure, oxygen and hydrogen partial pressure and membrane 
hydration as input features for the prediction of voltage output [10]. 
Based on the relatively small semi-empirical model, including approxi
mately 1100 data points, a random dropout technique based on a spe
cific probability value is applied to improve the r-squared of prediction 
to over 0.99. However, such a neuron disconnection method, based on a 
fixed probability value over all the ranges of current density risks 
overfitting and randomness, especially lacks the analysis of prediction 
performance at different ranges of current density [10]. In addition, 
there are only two variables of the input layer for the prediction of stack 
voltage and current, which might lead to overfitting [11]. Furthermore, 

Fig. 1. Five main research gaps in the design of data-driven PEMFC system control.  
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the selection of current density, as one of the feature inputs, would 
reduce the influence of other features as voltage largely correlates to 
current for a semi-empirical PEMFC model [12]. Second, most research 
tries to adjust hyperparameters of neural networks to improve the per
formance of prediction, but few clarify the reason for feature choices. 
For example, Bicer et al. compared different numbers of hidden layers of 
a conventional neural network model for better prediction performance 
of the dynamic behaviour of a 6 kW PEMFC [9]. Kheirandish et al. 
evaluated the influence of difference combinations of the insensitivity 
function ε and parameters C and γ on the performance of voltage pre
diction [13]. However, emphasis on the choices of hyperparameters 
based on one specific simulation data set, rather than the auto-selection 
of feature inputs, might lead to low robustness, especially under real 
environmental conditions with changing temperature and pressure 
during vehicle operation. Third, conventional pre-processing methods, 
such as random forests, are vulnerable to hyperparameters and the re
sults bear randomness, but vehicle control requires predicable and 
self-adaptive methods. For example, as a typical bagging method, RF 
that trains base learners in parallel to minimise variance requires sig
nificant amounts of computational resources and the prediction is highly 
vulnerable to a small change in hyperparameters. Therefore, it is not 
applicable for a real-time PEMFC system dataset with a pre-defined set 
of hyperparameters and thereby lacks robustness and accuracy. In 
comparison, as an advanced boosting ensemble method, extreme 
gradient boosting (XGBoost) requires limited hyperparameters, 
including depth and number of trees to train a weak learner and adjust 
itself iteratively, but still exhibits randomness for each forest [14]. 

Based on the literature review on the research gaps in the design of 
data-driven PEMFC system control, the main contribution of this paper 
is to address the database-related and input feature pre-processing 
related research gaps for data-driven PEMFC system performance pre
diction. An innovative data pre-processing algorithm, named XGBoost- 
Boruta algorithm, is designed to determine the influence of system 
BOP control features on the performance of an anode self-humidification 
PEMFC system under different ranges of current density. Boruta is first 
applied as an ensemble learning method with XGBoost to investigate the 
influence of controllable BOP features on stack voltage in an anode self- 
humidification PEMFC system. A one-dimensional convolutional neural 

network (1DCNN) with fixed hyperparameters to connect the selected 
key BOP features and voltage output is then applied to verify and vali
date the accuracy and robustness of the proposed algorithm in an 
objective, steady and automatic manner based on the real-time data 
from a hardware-in-loop bench test and the operation of a heavy truck. 

This paper is organised as follows. The PEMFC system structure is 
presented in Section 2. In Section 3, the novel application of the 
XGBoost-Boruta algorithm for PEMFC system feature selection process is 
detailed. Section 4 provides key data for the case studies, including 
specifications of the PEMFC stack and system, bench tests and dataset 
pre-processing. In Section 5, the proposed algorithm is successfully 
verified and validated based on the hardware-in-loop (HIL) bench test 
platform and real-time vehicle data. The proposed XGBoost-Boruta al
gorithm is compared with the conventional feature dropout strategy, 
ranking the algorithm as it pertains to accuracy and robustness based on 
1DCNN with fixed hyperparameters, followed by the conclusions in 
Section 6. 

2. System illustration 

The proposed anode self-humidification PEMFC system is composed 
of four main parts: a high-power PEMFC stack, independently developed 
by Shanghai Hydrogen Propulsion Technology Co. Ltd., an air cathode 
subsystem, a cooling subsystem and a hydrogen anode subsystem, as 
illustrated in Fig. 2. BOPs are designed to regulate the temperature, 
pressure and mass flow rate of air, hydrogen and coolant to deliver high 
performance of the PEMFC stack. 

Based on the application of ultra-thin proton exchange membrane 
technology (8 μm) and the design of efficient hydrogen recirculation, the 
development of the anode self-humidification system eliminates the 
requirement for membrane humidifiers and simplifies the system ar
chitecture, increases the power density and reduces the total cost [16, 
17,18]. The mass flow rate, pressure, and temperature of the inlet air, 
represented by Nodes 1 to 3 respectively in Fig. 2, are controlled by the 
air compressor, an intercooler, a combination valve and a back pressure 
relief valve. Hydrogen passes through an injector to regulate the 
hydrogen inlet pressure before entering the PEMFC stack at Node 5. A 
hydrogen circulation pump (HCP), with a water-gas separator, is used to 

Fig. 2. Schematic diagram of the proposed anode self-humidification PEMFC system.  
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recirculate the wet exhaust, including unreacted hydrogen enriched 
with the inlet hydrogen, to maintain the relative humidity of the 
membrane. The key controllable feature of this recirculation process is 
the HCP rotation speed, monitored and controlled at Node 4. The 
cooling sub-system consists of a cooling pump, an electronic thermostat, 
de-ionizers and a heat exchanger module. As thermal energy of the 
PEMFC stack is generated from the electrochemical reactions, an elec
tronic thermostat, a heat exchange module and a radiator are used in 
conjunction to maintain the stack operating temperature [19]. The inlet 
and outlet temperatures of coolant are critical features in the cooling 
subsystem monitored at Nodes 6 and 7. Although there are more BOP 
features in the proposed PEMFC system, the seven features listed above 
have direct impact on the operation of the PEMFC stack. For example, 
the electronic thermostat, the coolant pump and the radiator of the 
coolant subsystem are controlled to attain the required temperature of 
the coolant and the air and then affect the voltage output indirectly. 

Restricted by the characteristics of the tightly coupled subsystems, 
conventional physical modelling methods are unable to reveal the 
relationship between the seven critical controllable features and the 
technical performance of the PEMFC system during the operation of the 
PEMFC system at different current densities. Therefore, a novel feature 
susceptibility approach is introduced in Section 3 for the proposed 
anode self-humidification PEMFC system and other PEMFC systems with 
similar characteristics of tightly coupled subsystems. 

3. XGBoost-Boruta algorithm 

In this section, the application of the XGBoost algorithm with Boruta 
is explained in detail. Generally, the aim of the proposed wrapping 
method is to evaluate the impact and importance of seven features on 
the PEMFC stack voltage and select the more relevant features for the 
PEMFC voltage prediction as presented in Fig. 2. 

3.1. Conventional feature selection methods 

Conventional ensemble learning methods train multiple weak 
feature selection learners to further enhance the performance of a single 
learner [20]. Random forest (RF) and extreme gradient boosting 
(XGBoost) are two typical bagging and boosting ensemble learning 
methods used to reduce variance and bias [21] and [22]. Compared with 
the XGBoost, the RF creates more trees in parallel and as a consequence 
requires more computational resource, which influences the real-time 
capability for a large PEMFC system dataset [23]. Besides, the perfor
mance of the RF is largely influenced by hyperparameters. However, due 
to the characteristics of PEMFC degradation, the hyperparameters 
defined for the training dataset are not applicable during the operation 
of the system. Furthermore, in a PEMFC system where the correlation 
between features is high, some key features tend to be removed as they 
may be deemed to be of low importance leading to errors of judgement. 
In comparison, the XGBoost algorithm requires a smaller number of 

Fig. 3. Flow chart of the application of the proposed XGBoost-Boruta for PEMFC system feature selection.  
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hyperparameters and has the capability to adjust itself as iteration 
progresses. Since the self-adapting iteration with different residuals 
leads to randomness for each forest, wrapping methods are innovatively 
combined with the ensemble learning method in ranking BOP features of 
a PEMFC system in this paper. Differing from recursive feature elimi
nation (RFE), which is largely dependant on the performance of 
XGBoost, Boruta is a fully correlated feature selection method which is 
able to go through all features that carry key information for prediction 
instead of focusing on a particular compact subset of features [24] and 
[25]. Therefore, XGBoost is combined with Boruta to determine the 
importance of the seven key controllable BOP features of the PEMFC 
system as illustrated in Fig. 3. 

3.2. Mechanism and application of the XGBoost-Boruta algorithm 

The XGBoost-Boruta algorithm on the PEMFC system is designed to 
determine feature importance with high interpretability. The proposed 
application of the algorithm can be divided into three parts, as presented 
in Fig. 3: building shadow features, training XGBoost models, and 
obtaining feature importance iteratively.  

1) Building shadow features. The original feature matrix R, is 
composed of N samples with the seven BOP features, is permuted 
randomly to form a shadow feature matrix S. By appending these two 
matrices, a new matrix Q (N× 14) is created as the input feature 
matrix for the XGBoost model.  

2) Training XGBoost models. The training process of the XGBoost 
model follows the principle of the gradient boosting method by 
minimising the loss and the objective functions [24]. 

Obj(K) =
∑N

i=1
L
(

yi, ŷ(K)

i

)
+ Ω(fK) (1)  

L
(

yi, ŷ(K)

i

)
=

(
yi − ŷ(K)

i

)2
(2)  

ŷ(K)

i =
∑K

k=1
fk(xi) (3)   

where K is the number of trees set as 50, Obj(K), L(yi, ŷ(K)
i ), ŷ(K)

i and 
Ω(fK)are the objective function, the loss function, the prediction value 
for the Kth tree respectively, fk(xi) are the penalty term and the predicted 
value for the Kth tree, N is the number of samples, yi is the real value from 
the original target Y, T is the number of leaf nodes, ωj is the weight of the 
jth leaf node. 

With the aim being to minimise the objective function, the XGBoost 
model uses the second-order Taylor expansion to expand Eq. (1) to Eq. 
(4) to evaluate the performance of the Kth tree. 

Obj(K) = −
1
2
∑T

j=1

G2
j

Hj + λ
+ γT (4)  

where Gj and Hj are the first and second derivative of the loss function 

L(yi, ŷ
(K− 1)
i ) for the jth leaf node, 

G2
j

Hj+λ is the gain value of the jth leaf node 
to determine the split of the tree, and γ is the hyperparameter defaulted 
to 0 in this paper. 

Feature importance is determined by the gains of the leaf nodes 
before and after the split as shown in Eq. (5). 

Gain =
1
2

[
G2

L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)
2

HL + HR + λ

]

− γ (5)  

where GL, HL, GR and HR represent gains of left and right nodes after 

each split.  

1) Obtaining feature importance iteratively. Boruta applies shadow 
features and a Z score to enhance the steadiness of a single XGBoost 
model, the latter of which is defined in Eq. (6), slightly different from 
the statistical definition [26]. 

Z(K) =
Gain
μGain

(6)   

where Gain and μGain are the average value and standard variance of the 
gains at the Kth tree. Original features with Z scores that are smaller than 
the maximum Z score of the shadow features Zs,max are removed. These 
three steps are repeated iteratively until the iteration reaches maximum 
mmax which has been set as 50, The pseudo code is given below. Algo
rithm. 1 

The features selected by the proposed XGBoost-Boruta algorithm are 
set as the input features for the prediction of the PEMFC voltage per
formance. As the novel contribution of this paper is the feature pre- 
processing approach, a neural network is required to evaluate the 
improvement in prediction accuracy. To ensure the repeatability of the 
results for verification and validation of the proposed XGBoost-Boruta 
algorithm, a simple one-dimensional convolutional neural network 
(1DCNN) with fixed hyperparameters is designed as presented in Fig. 4. 
The 1DCNN includes layers nominated Conv1D, MaxPooling, Flatten, 
Dense and Dropout. The 1DCNN is set with the number of four dimen
sion kernels to 30, the number of pooling layers to 2, two fully connected 
layers with 20 neurons and 1 neuron, the dropout rate to 0.5, the 
number of epochs to 100, the batch size to 32, and the activation 
function as RELU. The description of the conventional 1DCNN can be 
found in [27] but are not detailed here. 

4. Case study 

This section provides the setup information and input data for the 
verification and validation process for the proposed XGBoost-Boruta 
algorithm to be applied to the proposed PEMFC system detailed in 
Sections 2 and 3. The signal transmission for the bench and vehicle tests, 
as denoted by the blue and the red paths in Fig. 5, demonstrates the 
verification and the validation processes for the accuracy and robustness 
of the proposed XGBoost-Boruta algorithm for an anode self- 
humidification PEMFC system. 

The hardware-in-the-loop (HIL) bench test platform (shown by the 
blue path in Fig. 5) illustrates the signal transmission between the bench 
and the host server. The fuel cell unit (FCU) receives the system control 
features through CAN from the PEMFC system and sends them to the 
proposed algorithm as input feature datasets. The host server with the 
XGBoost-Boruta algorithm automatically ranks and selects key features 
for accurate system performance prediction at the different current 
densities. The results of feature ranking and system performance pre
diction are used to enhance the command of the influence of the 
complicated PEMFC system BOP components on the PEMFC system and 
to further provide the guidance for system calibration at different cur
rent densities. Similarly, the red path in Fig. 5 represents the real-time 
signal transmission for vehicle applications. The telematics-box (T- 
box) is applied to collect the vehicle dynamic data and upload them to 
the host server through CAN and ethernet. The hyperparameters of the 
XGBoost and the 1DCNN remain the same for both the verification and 
validation processes. The number of trees of the XGBoost is set to 50. The 
input dataset for the 1DCNN is split into two parts with a ratio of 0.7:0.3, 
of which the first 70% is used for training while the rest is used for 
validation. 

Sections 4.1 and 4.2 detail the required test information, including 
the constraints of the input features, the real-time input feature datasets, 
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the parameters required for the algorithm and the 1DCNN, and the setup 
information of the test platform for the HIL and vehicle operation 
separately. The bench datasets and dynamic vehicle running datasets for 
verification and validation in Section 4.1 and 4.2 are obtained during 
normal operation mode without the cold start process. The core strategy 
for the cold start is rapid ice breaking and heat management to reach the 
required stack temperature by correction between the desired setpoints 
and measured process values. Under the fixed control strategy of the 
cold start process, the proposed feature selection process is not 
applicable. 

4.1. Bench test setup for verification 

The PEMFC system is equipped with a high-power FC stack with a 
stack peak power output and power density of 198 kW and 5.1 kW /L. 

Each cell of the stack is composed of ultra-thin proton exchange mem
branes (8 μm), high-activity Platinum-Cobalt (Pt-Co) catalyst (mass ac
tivity > 150 mA/mg(Pt) at 0.9V), and ultra-thin metal bipolar plates 
(0.93 mm). Following the schematic diagram in Fig. 5, the hardware of 
the HIL test platform is set up as illustrated in Fig. 6(a). The real-time 
bench test dataset in Fig. 6(b) includes approximately 23,754 data 
points covering current densities from 104.0 to 1496.0 mA/cm2 and 
stack voltages from 275.5 to 382.8 V. As the ambient temperature and 
pressure are set as constant values in the bench test, these two features 
provide no information for the PEMFC system prediction and thus are 
not included in the input features for the algorithm. Therefore, the seven 
BOP features of the hydrogen, air and coolant subsystem, as described in 
Section 2, are regarded as input features, the constraints of which are 
given in Table 1. 

Algorithm 1 
XGBoost-Boruta feature ranking algorithm.  

Fig. 4. Visualized structure of the proposed XGBoost-Boruta algorithm and the 1DCNN.  
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4.2. Vehicle test setup for validation 

In addition to the verification test setup for the accuracy of the 
XGBoost-Boruta algorithm, this subsection provides the running infor
mation of a heavy truck that will be used for the validation of the 
robustness of the proposed approach. The heavy truck running in Inner 
Mongolia province at about 40.8◦N, 111.8◦E in China (shown in Fig. 7 
(a)) is equipped with a PEMFC system with rated stack power output and 
power density at 140 kW and 3.7 kW/L. The vehicle running dataset 
includes approximately 5720 data points, all of which are sent to the 
host server and sampled each sampling period of one second as illus
trated in Fig. 7(b). Considering the limited temporal and spatial influ
ence, the variations of these two features are small and are maintained 
constant for most data points and thus have low influence on the PEMFC 
performance prediction based on the proposed dataset. Therefore, the 
seven BOP features, the change of temperature and pressure are taken 
into consideration for the vehicle validation test. The vehicle validation 
test is conducted with an increase of current density from 1000.0 to 
1485.0 mA/cm2 and stack voltage from 205.3 to 264.6 V and stack 
voltage from 205. to 264.6 V. The constraints of inputs are given in 
Table 2. 

5. Results and discussion 

This section analyses the details of the verification and validation 
results based on the real-time bench and vehicle running data detailed in 
Section 4. Section 5.1 provides a comparative analysis, focusing on the 
difference of conventional random forest (RF), XGBoost and the pro
posed XGBoost-Boruta algorithm applied on the bench data. Based on 
the ranking and selection of key BOP features, another comparative 
analysis is conducted to demonstrate the accuracy of the system per
formance prediction with the features selected by the proposed algo
rithm. In Section 5.2, following the same feature pre-processing 
strategy, a similar comparative analysis is performed for the robust
ness of the system performance prediction based on the vehicle running 
data. 

5.1. Verification results and analysis on bench test dataset 

The importance heat map obtained for the seven BOP features is 
based on the RF and the XGBoost algorithm in Fig. 8(a) and (b) 
respectively. The importance values at current density values of between 
100 and 1500 mA/cm2 shows similar trends. For example, at low current 
density below 200 mA/cm2, the hydrogen inlet pressure PH2 ,in ranks 
highest mainly because of its significant influence on water distribution 
in the membrane and thus has a positive effect on the stack voltage 
output. The heat map indicates that between 200 and 1100 mA/cm2, the 
coolant outlet temperature Tcool,out, representing the stack operating 
temperature, is far more significant when compared with the other 
features. When the current density increases further, the air inlet mass 
flow rate ṁair, the air inlet pressure Pair,in, and the air inlet temperature 
Tair,in become the more significant features whilst the coolant outlet 
temperature is less significant, which is caused by there being relatively 
stable operating temperature at high current density. The importance 
values of the rotation speed of the HCP ωHCP are low at all the operating 
conditions, indicating little influence on the output voltage. This is 
mainly caused by the proposed anode self-humidification system 
structure. Without using a humidifier at the cathode, the HCP at the 
anode transports the moisture generated during the stack operation to 
ensure the desirable humidity of the membrane electrolyte assembly 
(MEA) [28]. In addition, the HCP affects the hydrogen stoichiometry, 
but the hydrogen excess coefficient has a smaller impact on the output 
voltage when compared with the cathode [29,30]. The impact is much 
smaller when the water uptake is maintained within a reasonable range 
for the anode self-humidification PEMFC system bench test with 
appropriate energy and heat management. 

However, compared with the ranking result based on the XGBoost 
approach in Fig. 8(b), the RF approach provides the same trends but 
different importance rankings in Fig. 8(a). For example, the importance 
values of coolant outlet temperature in Fig. 8(a) are overall higher than 
the values in Fig. 8(b) across all current densities, which exposes the 
common disadvantage of conventional feature selection methods offer
ing imbalanced preferences to related features and may lead to over
fitting of the data. In comparison, weightings are allocated from top 

Fig. 5. Schematic diagram of signal transmission of the proposed anode self-humidification PEMFC system with the proposed XGBoost-Boruta algorithm.  
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features to related features in an objective manner by the XGBoost 
approach. In addition to differing from the RF algorithm, which requires 
repeated attempts to obtain appropriate hyperparameters, the XGBoost 
algorithm only needs a small number of hyperparameters, which is 
preferable during dynamic PEMFC vehicle operation. Therefore, 
considering the difference amongst each PEMFC system and vehicle 
running conditions, the XGBoost algorithm is more appropriate where 

the requirement is for high robustness with less impact caused by human 
judgement. 

Furthermore, the large variation of Z scores of the seven features and 
the maximum Z score of shadow features at each iteration at the current 
density between 300 and 400 mA/cm2 in Fig. 9 illustrates that the 
conventional XGBoost algorithm delivers high randomness, low 
robustness and low accuracy, which is not acceptable for real-time 
vehicle control. As shown in Fig. 9, all the upper limits of the Z scores 
of the seven features are higher than the maximum Z score of the shadow 
features except HCP rotation speed ωHCP, which demonstrates that in 
this case, all the other features are marked as important for voltage 
prediction by the 1DCNN approach. 

The feature selection strategy is illustrated in Fig. 10 by comparing 
the Z scores of the seven real BOP features and the maximum value of the 
shadow features. The definition of Z score and shadow feature are 
introduced to minimise the influence of randomness of the conventional 
XGBoost and the difficulty in the selection of input features. In Fig. 10, 
all the Z scores in red are higher than the maximum value of the shadow 
features in blue except the HCP rotation speed. Therefore, the HCP 

Fig. 6. Photo of the bench setup and the real-time dataset for verification: (a) Photo of the bench setup (b) Bench test data for the seven selected features and the 
stack voltage. 

Table 1 
Details of the seven key features for PEMFC system control features.  

Node Feature Symbol Unit Range 

1 Air flow rate ṁair g/s [15.6, 133.8] 
2 Air inlet pressure Pair, in kPa [124.4, 267.1] 
3 Air inlet temperature Tair, in 

oC [55.3, 69.7] 
4 HCP rotation speed ωHCP rpm [954.0, 7009.0] 
5 Hydrogen inlet pressure PH2 , in kPa [131.8, 282.4] 
6 Coolant inlet temperature Tcool, in 

oC [51.9, 75.8] 
7 Coolant outlet temperature Tcool, out 

oC [66.8, 89.3]  
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rotation speed is automatically removed in accordance with the pro
posed XGBoost-Boruta pre-processing strategy. 

To verify the accuracy of the feature removal strategy, three cases are 
compared. These cases are as follows: keeping all the features, removing 
the most important feature manually and following the proposed 
XGBoost-Boruta algorithm at the current density between 300 and 400 
mA/cm2. A repeatability experiment of 1DCNN based on the proposed 
XGBoost-Boruta algorithm is conducted to ensure the fair comparison. 
The ten repeatability results illustrated in Fig. 11 demonstrate that the 
proposed 1DCNN provides reasonably consistent results and can be used 
for the comparative analysis of different strategies. The accuracy of the 
voltage prediction performance by the three strategies varies markedly 
as visualised in Fig. 12(a) to (c) successively. The difference between 
keeping all the features and removing the feature by the XGBoost-Boruta 
algorithm is illustrated in the black dotted rectangular region in Fig. 12 

(a) and (b). It is obvious that the degree of coincidence between pre
dicted and experimental datasets in the black dotted oval region in 
Fig. 12(c) is higher than that in Fig. 12(a). Specific evaluation values are 
detailed in Table 3. The RMSE of voltage predictions by the proposed 
XGBoost-Boruta algorithm (1.31), is decreased by 23.8% compared with 
the RMSE values of 1.72 obtained by keeping all the features. Although 
the R2 values of voltage predictions are the same at 0.94 for the training 
dataset between keeping all the features and removing the feature by the 
proposed algorithm, the R2 difference of the validation dataset is 
approximately 23.8% between 0.92 and 0.86. From Fig. 10, the 
weighting of the coolant outlet temperature Tcool,out is much higher than 
the values of the other features, so the second strategy is to remove the 
coolant outlet temperature from the input feature layer of the 1DCNN. It 
is obvious that the prediction voltage curve in blue is quite different 
from the experimental voltage data, especially in the black dotted region 
in Fig. 12(b). The values of RMSE and R2 get worse at 4.61 and even 0.02 
for the validation dataset. Following the proposed XGBoost-Boruta al
gorithm, the HCP rotation speed is automatically removed by the com
parison of the real features and shadow features. The PEMFC voltage 
prediction performance improves, especially for the validation data 
where the R2 increases from 0.86 to 0.92 without human judgement. 

5.2. Validation results and analysis on vehicle operation dataset 

Based on the verification of the proposed XGBoost-Boruta feature 
pre-processing strategy on the HIL bench test dataset, the algorithm is 

Fig. 7. Heavy truck running in Inner Mongolia Province, China: (a) Photo of the heavy truck; (b) Real-time data for the seven selected features and stack voltage.  

Table 2 
Details of the seven key features for PEMFC system control features.  

Node Feature Symbol Unit Range 

1 Air flow rate ṁair g/s [71.9, 102.5] 
2 Air inlet pressure Pair, in kPa [230.3, 255.7] 
3 Air inlet temperature Tair, in 

oC [51.1, 78.2] 
4 HCP rotation speed ωHCP rpm [4980.0, 6920.0] 
5 Hydrogen inlet pressure PH2 , in kPa [213.0, 256.4] 
6 Coolant inlet temperature Tcool, in 

oC [52.1, 77.1] 
7 Coolant outlet temperature Tcool, out 

oC [59.9, 90.5]  
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Fig. 8. Comparison of the importance values of the seven features based on XGBoost and RF algorithm: (a) RF algorithm; (b) XGBoost algorithm.  

Fig. 9. Box plot of the Z scores of seven features and the maximum Z score of shadow features at each iteration at the current density between 300 and 400 mA /cm2.  
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validated in this subsection utilising the real-time vehicle running 
dataset to demonstrate the robustness and practical value. Following the 
real-time signal transmission for PEMFC heavy trucks as illustrated in 

Fig. 5 in Section 4, the T-box transfers dynamic signals, including the 
seven BOP features from the FCU to the host server. The seven real BOP 
features are input into the XGBoost-Boruta algorithm, the Z scores of 

Fig. 10. Bar chart of the Z scores of the seven BOP real features and the maximum shadow feature based on the bench data at the current density between 300 and 
400 mA/cm2. 

Fig. 11. Ten repeatability results of 1DCNN based on the proposed XGBoost-Boruta algorithm.  

Fig. 12. Part of the validation data prediction visualisation by the XGBoost-Boruta and the 1DCNN algorithm based on the bench verification dataset at the current 
density between 300 and 400 mA/cm2: (a) Keep all the features; (b) Remove the most important feature; (c) Remove the features by XGBoost-Boruta. 
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which are compared with the maximum Z score of the shadow features 
as shown in Fig. 13. From Fig. 13, the Z scores of the HCP rotation speed 
and the air inlet temperature are lower than those of the other five 
features and the maximum value of the shadow features. These two 
features are removed by the algorithm as the input features of the 
1DCNN. In comparison, the air mass flow rate and air inlet pressure 
obtain more weighting at high current density between 1000 and 1485 
mA/cm2 than at low current density between 300 and 400 mA /cm2, as 
detailed in the verification case study due to relatively stable operating 
temperature at high current density. 

The predicted voltage data (in blue) and experimental voltage data 
(in red) are partly visualised in Fig. 14. Compared with the strategy of 
keeping all the features, illustrated in Fig. 14(a), the degree of coinci
dence between the predicted and experimental data following the pro
posed XGBoost-Boruta method in Fig. 14(c) is higher, especially when 
the voltage is over 250 V in the black dotted rectangular regions. As 

visualised in the black dotted oval regions in Fig. 14(b) and (c), the 
prediction accuracy obtained at voltages between 220 and 245 V by 
removing the most important feature further demonstrates that the 
proposed strategy performs better than the other two strategies at 
different voltages. From the specific evaluation values in Table 4, the 
RMSE value of the validation dataset, after removing the HCP rotation 
speed and air mass flow rate, is only 3.95, approximately 14.1% and 
37.7% lower by than the values obtained under the other two strategies. 
The R2 value of the validation dataset obtained by the proposed algo
rithm is 0.04 and 0.20 higher as well. Overall, the proposed XGBoost- 
Boruta algorithm performs well for both the relatively steady bench 
test dataset and the dynamic vehicle running dataset at different ranges 
of voltage. It demonstrates high accuracy and robustness of the proposed 
feature selection algorithm. 

6. Conclusions 

In this paper, a novel application of the combination of an ensemble 
learning method and a wrapping method named XGBoost-Boruta is 
proposed to evaluate feature importance of the seven key BOP features 
in a PEMFC control system, including the air mass flow rate, the air inlet 
pressure, the air inlet temperature, the HCP rotation speed, the 
hydrogen inlet pressure, and the coolant inlet and the outlet tempera
ture. First, the proposed algorithm provides stabilised feature ranking at 
different current densities with low randomness compared with con
ventional wrapping approaches. The introduction of the definition of the 
Z score eliminates the randomness of the conventional XGBoost model 

Table 3 
Comparative results amongst different feature removal strategy based on the HIL 
bench data at the current density between 300 and 400 mA /cm2.  

Category RMSE RMSE R2 R2 

(Train) (Validation) (Train) (Validation) 

Keep all the features 1.10 1.72 0.94 0.86 
Remove the most important 

feature 
2.36 4.61 0.71 0.02 

Remove the features by 
XGBoost-Boruta 

1.03 1.31 0.94 0.92  

Fig. 13. Z scores of seven BOP features and the maximum shadow feature based on the vehicle dataset at the current density between 1000 and 1485 mA /cm2.  

Fig. 14. Part of the validation data prediction visualisation by the XGBoost-Boruta and the 1DCNN algorithm based on the vehicle validation dataset at the current 
density between 1000 and 1485 mA/cm2: (a) Keep all the features; (b) Remove the most important feature; (c) Remove the feature by XGBoost-Boruta. 
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reducing the impact of human judgement error. At low current density 
below 200 mA/cm2, the hydrogen inlet pressure has a significant effect 
on stack voltage output. When the current density ranges between 200 
and 1100 mA/cm2, the coolant outlet temperature is much more sig
nificant. With further increase of current density, the inlet mass flow 
rate, pressure and temperature of the air are then the significant fea
tures. Furthermore, two case studies were conducted for verification and 
validation based on bench test data and vehicle running data to 
demonstrate the accuracy and robustness of the proposed XGBoost- 
Boruta algorithm. By the introduction of the Z score and shadow fea
tures to eliminate the randomness of conventional ensemble learning 
methods, the RMSE values of the voltage validation dataset are 1.31 and 
3.95 based on the bench test data and vehicle running data and 23.8% 
and 14.1% lower than the conventional feature selection approach. The 
R2 values also increase from 0.06 to 0.04 to 0.92 and 0.85. The results 
demonstrate that the proposed XGBoost-Boruta algorithm delivers high 
accuracy, high robustness and low randomness for both steady bench 
datasets and dynamic vehicle running datasets. In future work, the 
hyperparameters of the 1DCNN could be further determined to enhance 
the prediction performance of the PEMFC voltage output. 
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