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A B S T R A C T   

The task of learning from point cloud data is always challenging due to the often occurrence of noise and outliers 
in the data. Such data inaccuracies can significantly influence the performance of state-of-the-art deep learning 
networks and their ability to classify or segment objects. While there are some robust deep-learning approaches, 
they are computationally too expensive for real-time applications. This paper proposes a deep learning solution 
that includes novel robust pooling layers which greatly enhance network robustness and perform significantly 
faster than state-of-the-art approaches. The proposed pooling layers replace conventional pooling layers in 
networks with global pooling operations such as PointNet and DGCNN. The proposed pooling layers look for data 
mode/cluster using two methods, RANSAC, and histogram, as clusters are indicative of models. We tested the 
proposed pooling layers on several tasks such as classification, part segmentation, and points normal vector 
estimation. The results show excellent robustness to high levels of data corruption with less computational re
quirements as compared to robust state-of-the-art methods. our code can be found at https://github.com/Ay 
manMukh/ModePooling.   

1. Introduction 

The use of deep learning for several 3D task such as point cloud 
classification (Esteves et al., 2018; Klokov and Lempitsky, 2017; Qi 
et al., 2017a; Ramasinghe et al., 2019; Su et al., 2015; Wu et al., 2015a), 
retrieval (Ramasinghe et al., 2019; Wu et al., 2015a), and segmentation 
(Qi et al., 2017a; 2017b; Wang et al., 2019) has shown great success in 
recent years. However, the success has largely been confined to 3D 
CAD-based benchmarks such as ModelNet (Wu et al., 2015a), McGill 
(Siddiqi et al., 2008), and Shapenet (Chang et al., 2015b) with very 
clean data. Working with 3D point clouds of real scenes where data are 
inaccurate and may be corrupted by outliers remains a challenge, and 
real 3D training data for natural and man-made objects are still scarce. 
Testing recent deep networks on 3D CAD models perturbed with outliers 
and noise showed that the data perturbation has a huge influence on the 
classification performance (Mukhaimar et al., 2019a). One approach to 
resolve this issue is to train the network with outliers. However, noise 
and outliers, by definition, are not predictable and it would be difficult 
to train the network for all possible scenarios. Another approach is to 
build a robust framework that can diminish the influence of outliers 

compared to conventional deep networks (Gould et al., 2019). This 
approach has received significant interest in recent years (Gould et al., 
2019; Mukhaimar et al., 2019b; 2022). 

To demonstrate the effect of data perturbation on a deep neural 
network performance, we show the effect of the existence of outliers on 
PointNet (Qi et al., 2017a) in Fig. 1. PointNet consists of several layers of 
multilayer perceptrons (MLP), a max pooling layer, fully connected 
layers (FC), and a classification layer. We show in Fig. 1C the distribu
tion of one of the feature vectors (with a dimension of 1× N, where N =

2048) before the pooling operation when the network is trying to 
classify: (1) the point cloud of a chair, and (2) the same chair corrupted 
with 50% outliers. When the max pooling is used, the output of the 
pooling layer in the case of the clean chair is 2.98, while the output of 
the pooling layer when outliers exist is 6.46. This huge difference affects 
the classification accuracy as seen in Fig. 1D. Interestingly, the figure 
also shows that using the mean or the median of the data does not 
diminish the effect of outliers. As such, a better pooling operation is 
needed to diminish the effect of data inaccuracies on 3D data processing. 

The use of M-estimators in Deep Declarative Network (Gould et al., 
2019) implementation showed promising results for perturbed data. 
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Both Truncated quadratic (TQ) or WELSCH (W) when used in the 
pooling operation achieved significantly better robustness to outliers. 
M-estimators look for data mode which is robust to outliers as seen in 
Fig. 1C & D. However, M-estimators have several shortcomings such as 
the high computation requirements, and the solution is either 
non-convex, non-smooth or not very robust. Thus, inspired by the use of 
M-estimators, we investigate other alternatives that also look for data 
mode and achieve robust pooling. 

In this paper, we propose two robust pooling layers. The first one 
uses RANSAC (Fischler and Bolles, 1981) framework for finding the 
location of the mode, while the other one uses a histogram-based 
pooling method. Both RANSAC and histogram methods look for high 
cluster regions and should give similar results to M-estimators while 
being computationally cheaper. Moreover, unlike many M-estimators, 
both RANSAC and histogram provide unique solutions and despite 
RANSAC being an iterative solution, our results show that it can still be 

faster than using M-estimators. However, RANSAC computational re
quirements in still expensive and grows exponentially with the size of 
the data. On the other hand, our proposed histogram-based pooling 
layer is shown to be significantly faster than the above methods. 

The histogram pooling layer divides the feature data into uniform 
regions and selects regions with maximum densities. In theory, the 
histogram is similar to both RANSAC and M-estimators, where bin size is 
somewhat equivalent to the inlier/outlier threshold of RANSAC or 
tuning parameters of M-estimators. But unlike both approaches, using 
the histogram mode is significantly cheaper and enables the network to 
be used for real-time applications. The testing time was found to be 
around 150 times faster than both RANSAC or an M-estimator, and the 
computational complexity was found to be similar to conventional 
pooling methods such as max pooling. 

Unlike existing robust approaches that are limited to object classi
fication, e.g. Mukhaimar et al. (2019b), Riegler et al. (2017), Mukhai
mar et al. (2022), the proposed framework is able to also perform robust 
classification, segmentation, and points normal estimation. We con
ducted an extensive set of experiments on both clean and perturbed data 
for object classification, segmentation, and points normal estimation, 
showing that the proposed methods have high classification accuracy 
and compete in robustness with state-of-art methods. We summarize the 
contributions of this paper as follows: 

• Two novel pooling layers for point cloud classification, segmenta
tion, and normal’s estimation are presented. The pooling layers are 
robust against point cloud noise perturbations and other types of 
data corruptions such as outliers.  

• Compared to other robust methods, the proposed pooling layers are 
significantly cheaper in computation and enable the neural network- 
based methods to be used for real-time applications.  

• The proposed pooling layers can also be used in neural networks with 
a global pooling layer such as PointNet, and DGCNN (Wang et al., 
2019). 

The rest of this paper is structured as follows: We first discuss the 
latest deep learning classification networks. We then explain the intui
tion behind using data mode instead of maximum or average pooling as 
well as the inner working of the proposed RANSAC and histogram-based 
pooling frameworks. This is followed by the analysis of the performance 
of the proposed pooling layers under different data corruption in Sec
tion 4. Section 5 presents a sensitivity analysis of network parameters, 
followed by Section 7, which concludes the paper. 

2. Related work 

Recent deep learning frameworks for 3D point cloud classification 
can be categorized as Multi-view CNNs (MV-CNN) (Shi et al., 2015; Su 
et al., 2015), Voxel-based CNNs (Wu et al., 2015b; Xiang et al., 2019; 
Zhou and Tuzel, 2018), and point-based CNNs (Chen et al., 2019; Qi 
et al., 2017a; 2017b; Zhang et al., 2019b). The robustness of a number of 
these networks, from the different categories, was examined extensively 
(Mukhaimar et al., 2019a). The study compared PointNet, PointNet++

(Qi et al., 2017b), Kd-Net (Klokov and Lempitsky, 2017), Oct-Net 
(Riegler et al., 2017), and MV-CNN (Su et al., 2015) for data with out
liers, noise, and missing points. The study showed that the classification 
performance of MV-CNN and PointNet++ was heavily affected by the 
above data perturbations and corruption forms. As MV-CNN uses several 
2D images of a 3D model (i.e. 70 images captured from different loca
tions), outliers would appear in most images, and the overall number of 
outliers is magnified by the imaging process (70 times). PointNet 
showed good performance against noise and missing points but was 
heavily affected by outliers. Both PoinNet and PointNet++ use max 
pooling as part of their networks, which causes the networks to select 
outliers as maximum values during their pooling operations. The Kd-Net 
was heavily affected by outliers as the existence of outliers changes the 

Fig. 1. (A) PointNet vanilla classification architecture. We show two scenarios 
for object classification: (1) The classification of the point cloud of a chair, and 
(2) The classification of the point cloud of the same chair that is corrupted with 
50% outliers. (B) Histogram of one of the feature vectors before the pooling 
operation. The orange histogram shows the data distribution for the clean chair, 
while the blue histogram shows the distribution for the chair with the corrupted 
point cloud. (C) The output of the pooling layer in PointNet(shown as the blue 
triangle) in case we have average pooling, median pooling, max pooling, and 
Mode pooling. (D) The classification accuracy for the selected pooling layers. 
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structure of the Kd-tree graph that performs the classification. Oct-Net 
showed a good level of robustness to noise and outliers but was 
affected by missing points. We used the same testing framework and 
tested other methods that are based on PoinNet and PointNet++ such as 
PVCNN and RS-CNN and our results showed similar performance to the 
original PoinNet and PointNet++ methods for the corrupted data. 

In terms of robust methods that exist in the literature, Pl-Net3D 
(Mukhaimar et al., 2019b) is a feature-based method that combines a 
primitive fitting technique with PointNet to achieve robust classifica
tion. The method employs RANSAC to find instances of geometric 
primitives in 3D point clouds. The features of those primitives are then 
used to classify objects. R-SCNN (Mukhaimar et al., 2022) is a 
voxel-based method that uses spherical harmonics-based CNNs. The 
method was able to achieve state-of-art robustness but was limited to 
object classification. Deep declarative networks (Gould et al., 2019) 
proposes a framework for optimization methods to be implemented as 
part of deep learning networks. The proposed framework allows robust 
statistical approaches such as M-estimators (Leroy and Rousseeuw, 
1987) to be implemented in deep learning. Both Pl-Net3D and M-esti
mators involve significant computation and high processing time, 
limiting their ability for real-time usage. 

In this paper, we present a robust classification framework that 
competes with state-of-art methods in terms of accuracy, robustness, and 
computational load. The proposed approach is based on PointNet, thus 
object classification, segmentation, and other point-based manipula
tions, such as points normal estimation, are possible. The proposed 
approach can be also adapted to any PointNet-based methods such as 
DGCNN (Wang et al., 2019) or LDGCNN (Zhang et al., 2019a). 

3. Method 

Given a point cloud of an object that contains outliers, our objective 
is to build a robust classification deep learning network. To achieve 
robustness, we propose to use a robust pooling operation in our network. 
We introduced robust pooling to PointNet (Qi et al., 2017a) and DGCNN 
(Wang et al., 2019) architectures as both methods use global pooling 
operations. PointNet architecture is shown in Fig. 1A. The multi-layer 
perceptron (MLP) followed by the Pooling operation is commonly 
used in most of the point cloud deep learning networks. The architecture 
represents a symmetric operation on all points, which enables the 
network to work with unsorted inputs. DGCNN uses similar architecture 
except that the network accounts for neighboring points. The pooling 
operation is the main reason for such architecture to fail to classify 
objects as seen from Fig. 1, hence achieving robust pooling improves the 
overall robustness. 

3.1. Problem statement 

For the given block diagram shown in Fig. 1A, the feature mapping 
block (shown in orange color) provides N feature vectors in the R1024 

space. In the dataset used to benchmark the performance of the pro
posed solution in our paper, typically there are around N = 2048 points 
in the cloud that are mapped (through a MLP) into N = 1024 features. 

A major task embedded in the diagram shown in Fig. 1A is the pooling 
task (shown in cyan colour), where it aggregates the N vectors and obtain 
a single vector as the best representative of the information contents of 
those vectors. Let us denote the ith feature vector by 

xi =
(
xi,1, xi,2,…, xi,D

)

where D = 1024 and i = 1, 2,…,N. The N features are then treated as 
samples of a joint feature density p : RD→R. The information content of 
the point cloud is then represented by the entropy of the density that is 
given by: 

E
[

p
]

≜ −

∫

p
(

x
)

log
(

p
(

x
))

dx. (1)  

Given the samples, we approximate the density as the sum of Dirac delta 
terms centered at the samples and weighted by their point pdf values: 

p(x) ≈
∑N

i=1
p(xi)δ(x − xi) (2)  

Substituting the above approximation in Eq. (1) returns the following 
approximation for entropy: 

E[p] ≈ −
∑N

i=1
p(xi)log(p(xi)) (3)  

Among all the terms included in the summation, the largest one is 
associated with the maximum aposteriori (MAP) estimate of the feature, 
i.e. 

x̂MAP = argmax
x

p(x) (4)  

Therefore, we choose the MAP estimate as the most informative aggre
gate of all the N feature (the output of the pooling operation in Fig. 1A). 

The main problem is how to estimate the MAP. In practice, we are 
have around N = 2048 features in a space dimension of D = 1024. In 
terms of a mesh grid, this is equivalent to having m = ⌈logDN⌉ = 2 bins 
per dimension in a 1024-D histogram, which is not sufficient for the 
purpose finding the peak of the joint density. 

Our solution to this problem is to find an approximate for the peak of 
the very high-dimensional joint density by forming marginal densities 
(D instances of them, one for each dimension), and locate the peak of 
each marginal density, separately, then put the coordinates of those 
peak points together to form the approximate location of the peak of the 
joint density in the D-dimensional feature space. In other words, we find 
an estimate, named Marginal MAP (MMAP) estimate, given by 

x̂MMAP = (x̂1MAP ,⋯, x̂DMAP ),

where x̂iMAP , i = 1,…,D, is the MAP estimate for the marginal density in 
the ith dimension. 

In our application, assuming that the MLP and Feature Map networks 
in Fig. 1A are trained, we expect MMAP and MAP estimates to be 
reasonably close to each other in such a way that MMAP estimate can be 
still declared as the aggregate feature that holds a substantial amount of 
information encapsulated in the N feature samples produced by the 
Feature map block in Fig. 1A. 

To explain the intuition behind the above statement, first, note that 
the fully-connected network that inputs the aggregated (global) feature 
is indeed a mapping from the 1024-D space to 40 different classes of 
objects. As such, the outputs of the fully-connected network are ex
pected to be very close to one of the coordinate unit vectors ej =

[ 0⊤i− 1 1 0⊤40− i ]
⊤ where 0k means a k-dimensional vector of zeros. Thus, 

we intuitively expect that after the network is trained, the global feature 
input to the fully-connected network ends up in one of 40 different zones 
in the 1024-D space that are quite distinct. In fact, this is what is ex
pected for the N feature samples; they end up being located together 
within one of those 40 zones. Hence, with no outlier samples, we expect 
to see a single-peak distribution of the features (similar to a multivariate 
Gaussian), and for such a distribution, the peak location (MAP estimate) 
and the MMAP estimate are very close if not identical. 

An example is shown in Fig. 2, demonstrated in 2D for the purpose of 
visualization. Fig. 2(a) presents the density of data comprised of 80% 
outlier samples that are uniformly distributed and inliers being distrib
uted according to a joint Gaussian. We observe that the peak is at [0 0]⊤, 
while the peaks of the two marginal densities shown in Fig. 2(b) are both 
located at zero. 
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If the outliers are not uniformly distributed, as long as they do not 
themselves form a sharper peak in the density, we still expect the MMAP 
estimate to be close to the peak location. This is visualized in an example 
shown in Fig. 3 where 25% of data are the inliers distributed in a similar 
way to the previous case, and the rest of the data (outliers) are equally 
scattered around four points. Fig. 3(b) demonstrates that due to the 
outliers, the marginal density peaks have slightly deviated from the peak 
of the combined density. 

3.2. Histogram and RANSAC pooling 

Robust fitting techniques aim to find data clusters that represent 
instances of a given model. To apply RANSAC, a collection of m hy
potheses was examined to find the inliers within a threshold ϵ for all 
these m hypotheses. The hypothesis with the maximum number of in
liers is then chosen as the best model estimate. This translates to looking 
for: 

m̂ = arg maxm(
∑N

i=0
|xi − xm| ≤ ϵ) (5)  

where m̂ corresponds to the point with the maximum number of inliers 
(equivalent to x̂MAP) and the output of the pooling layer in the forward 
step. 

For one-dimensional data, a histogram can be viewed as a density 
estimator where data is partitioned into intervals (bins) and their den
sity is estimated by counting the number of data in a bin. We use a 
histogram as part of our proposed pooling operation, in which L̂ is the 
index of the mode bin L̂ = arg maxmp(Li), where L⊂Rm is a set of bin 
indices for m bins. In comparison to RANSAC for location estimation, the 
bin size is equivalent to the threshold ϵ and the histogram mode is 
equivalent to the model with the maximum number of inliers. 

4. Experiments 

In this section, we present a comparative analysis of the performance 
of the proposed pooling operations for different types of data pertur
bation and corruption. We perform experiments on different tasks, 
including classification, part-segmentation, and points normal vector 
estimation. We also outline the composition of the datasets as well as the 
network architectures. 

4.1. Datasets 

For classification, we use the ModelNet40 (Qi et al., 2017a; Wu et al., 
2015a), ShapeNet (Chang et al., 2015a), and ScanObjectNN (Uy et al., 
2019) datasets. ModelNet40 consists of 9,843 training and 2468 testing 

samples from 40 categories. Each sample consists of 2048 points 
normalized within the unit cube. We don’t introduce any augmentation 
to the training data except random rotations, but data perturbations and 
corruptions such as noise, random point dropout, and outliers, are 
introduced to the testing samples. Examples of those perturbations and 
corruptions are seen in Fig. 4. If a point normal is used, we calculate the 
normal by using twenty of its neighboring points. We use the Sca
nObjectNN dataset (Uy et al., 2019) to test the performance of our 
proposed pooling operations on real-scene data. The ScanObjectNN 
dataset contains 2902 scenes of objects categorized into 15 categories. 
Each scene carries the point cloud of an object in addition to the point 
cloud of background elements or parts of nearby objects as seen in Fig. 4. 
During training, we use the point cloud of objects only, while when 
testing, we include the point cloud of background and parts of nearby 
objects as real-scenarios outliers. 

For part segmentation, we use ShapeNet part dataset (Yi et al., 2016), 
which consists of 16,881 shapes from 16 categories, with 50 parts in 
total. All images are annotated with their parts labels. To examine the 
robustness, we corrupted the test set with random outliers, and when 
testing, we only used inlier points to calculate the average mIoU. 

For points normal estimation, we use the ModelNet40 dataset. Each 
object consists of 2048 points, and each point is labeled with its normal 
vector. We train methods without any data augmentations, while we 
perturb the testing dataset with different levels of noise. 

Fig. 2. (a) Density plot of a 2D Gaussian density N (⋅;μ1,Σ1) with μ1 = 0 and 

Σ1 =

[
1 0.5

0.5 1

]

mixed with 80% outlier samples that are distributed uni

formly in [ − 5 5] × [ − 5 5]. (b) Marginal densities of x1 and x2 for the joint 
density shown in part (a) of this figure. 

Fig. 3. (a) A Gaussian mixture density in 2D, comprised of four components 
N (⋅;μi,Σi), i = 1,…,4 with equal weight 0.25. The first component is same as 

shown in Fig. 2(a). The parameters of the other components are: μ2 =

[
5
4

]

, 

μ3 =

[
− 3
5

]

, μ3 =

[
− 4
7

]

, Σ2 = Σ3 = Σ4 =

[
5 0.5

0.5 5

]

(b) Marginal densities of 

x1 and x2 for the joint density shown in part (a) of this figure. 

Fig. 4. (a) The point cloud of a chair taken from the ModelNet40 dataset, (b) 
the same chair is corrupted with random point dropout, (c) the same chair is 
perturbed with Gaussian noise, (d) the same chair is corrupted with scattered 
outliers, and (e) the point cloud of a chair taken from ScanObjectNN dataset 
including background data (used as pseudo outliers). 

A. Mukhaimar et al.                                                                                                                                                                                                                            



Intelligent Systems with Applications 17 (2023) 200162

5

4.2. Selected architectures 

To analyze the performance of the proposed pooling operation, we 
used the PointNet architecture as its multi-layer perceptrons and global 
pooling are shared by many recent deep learning frameworks. For 
classification with PointNet, three layers of MLP were used with 
64,128,1024 filters respectively. The number of bins for histogram 
pooling was set to 70 and their centers were uniformly distributed be
tween -10 to 10. RANSAC was implemented with an equivalent 
threshold of 0.143 and with the number of hypotheses m ranging be
tween 30% to 50% of the total number of points. The learning rate was 
set to 0.0001 and the number of epochs was set to 100. For Sca
nObjectNN, two layers of MLP were used with 128 and 4048 filters 
respectively, and the number of bins for histogram pooling was set to 
200. We also investigate DGCNN in the sensitivity analysis section (see 
section  for detail). 

For part segmentation and normals estimation, we use the original 
PointNet segmentation architecture with the proposed histogram pool
ing. The number of bins in the histogram was set to 1200 for the interval 
between -5 to 5. The initial learning rate was set to 0.0001, and the 
number of epochs was set to 100. 

4.3. Classification performance on ModelNet40, ShapeNet, and 
ScanObjectNN datasets 

In this section, we present the classification accuracy of our proposed 
framework against ModelNet40, ShapeNet, and ScanObjectNN datasets. 
We calculated the classification accuracy for the PointNet model with 
different pooling operations including max, RANSAC (RN), histogram 
(HS), and Truncated Quadratic (TQ). The results of these experiments as 
well as the classification accuracy for state-of-the-art methods such as 
PointCNN (Li et al., 2018), CurveNet (Xiang et al., 2021), VoxNet 
(Maturana and Scherer, 2015), PointNet++ (Qi et al., 2017b), and 
PL-Net3D (Mukhaimar et al., 2019b) are shown in Table 1. The classi
fication accuracy on ModelNet40 when using “PointNet (vanilla)” with 
max pooling reaches 87%, while when using TQ, HS, and RN pooling 
operations, the classification accuracy reaches 83.7%, 83.7%, and 
81.6% respectively. When points normal are used, the classification 
accuracy for those pooling operations increases by 2-3%. The classifi
cation accuracy on ScanObjectNN for max, TQ, HS, and RN reaches 82%, 
74%, 79%, and 76% respectively. However using points normal in
creases the classification accuracy of TQ, HS, and RN to 83%, 82%, and 
81.2% respectively. When using the ShapeNet dataset and points 
normal, the classification accuracy for max, TQ, HS, and RN reaches 
82%, 80.3%, 79%, and 76% respectively. 

As can be seen from Table 1, the performance of the proposed 

pooling operations is comparable to state-of-art methods such as 
PointCNN, CurveNet, and PointNet++. The slightly lower accuracy on 
clean datasets is compensated by the robustness to different data cor
ruptions and perturbations as will be shown next. 

Table 2 shows the classification accuracy when training was per
formed on ModelNet40 and when testing was done on ScanObjectNN 
(OBJ) test set. The first set of results was taken from Uy et al. (2019), 
while the last four rows show the classification accuracy of PointNet 
vanilla with the different pooling operations. The results show that 
mode pooling (TQ, RN, and HS) has higher classification accuracy than 
max pooling. The results also show that when training on CAD models 
and testing on real-world data, mode pooling generalizes better than the 
other compared networks. 

Table 3 shows the testing and training times, and the used GPU 
memory for the PointNet with different pooling operations including 
max, RANSAC, histogram, and Truncated Quadratic (TQ). For compar
ison, the feature map (shown by an orange block in Fig. 1A) dimensions 
for all pooling operations were set to ‘10× 1024× 2048’ and ‘10×

512× 512’ for the sizes of the batch, number of points, and number of 
features, respectively. For RANSAC, the number of hypotheses m was set 
to 0.2 of the total number of points. With a such number of hypotheses, 
and for a ‘10× 512× 512’ tensor, 4Gb of GPU memory was used to train 
the network. The training time for one epoch was less than a minute, 
while its testing time was only 7 seconds. TQ requires only 0.7Gb of GPU 
memory and a much longer training time. For a tensor with a size of 
‘10× 1024× 2048’, looping was required to use RANSAC on a 12GB 
GPU, which affected both the training and testing times. Histogram only 
required 9 seconds for training one epoch and 3 seconds to finish testing, 
almost 100 times faster than TQ. The testing and training speeds are as 
fast as using max pooling. These results show that histogram pooling is 
significantly faster than the other robust approaches and can replace 
max pooling without sacrificing speed. 

4.4. Classification robustness to outliers 

In this section, we test the robustness of the proposed pooling op
erations against outliers. Visual data often contain outliers as there are 
imperfections in the scanning methods or processing pipelines such as 
the multi-view reconstruction of 3D models. An example of those out
liers is the background elements in the ScanObjectNN dataset. We 
examined the effect of outliers on the classification accuracy of different 
techniques, and in particular their remaining influence after applying 
different pooling operations. 

We considered two outliers scenarios, uniformly distributed outliers, 
and structured outliers (pseudo). In the first scenario, outliers were 
simulated by adding uniformly distributed points in the unit cube to the 
ModelNet40 test dataset, with ratios varying from 0 to 50% of the total 
number of object’s points. We present the results of our experiments 
with added outliers in Fig. 5. The tested models are Oct-net, Pl-Net3D, 
and PoinNet (vanilla) with several pooling operations including histo
gram, RANSAC, and Truncated quadratic. We test more methods in the 

Table 1 
The classification accuracy on ModelNet40, ScanObjectNN, and ShapeNet 
datasets.  

Method Input MN40 SC SHPNT 

PL-Net3D  86.6 70 78 
VoxNet  86 80.9 80 
PointNet  89.2 82 82.3 
DGCNN  92.2 81 82.3 
CurveNet  93.8 85 83.9 
PointNet+ Points 91.8 85 83.9 
PointCNN  92 88 83 
PointNet* + Max  87 82 81.5 
PointNet* + TQ  83.7 74 78.0 
PointNet*+HS (ours)  83.7 79 77.7 
PointNet*+RN (ours)  81.6 76 77.9 
PointNet* + Max Points 88.6 82 83.7 
PointNet*+TQ & 87.7 83 82.3 
PointNet*+HS (ours) normals 85.2 82 80.3 
PointNet*+RN (ours)  84.8 81.2 81.2 

* PointNet vanilla, + indicates the used pooling operation. 

Table 2 
The classification accuracy when training on 
ModelNet40 and testing on ScanObjectNN.  

Method OBJ 

3DmFV 30.9 
PointNet 42.3 
SpiderCNN 44.2 
PointNet+ 43.6 
DGCNN 49.6 
PointCNN 32.2 
HS (ours) 50.2 
MAX 47.1 
RN (ours) 48.6 
TQ 50.5  
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appendix. 
Fig. 5 shows that the classification accuracy of PointNet with the max 

pooling drops significantly as outlier ratio increases. Max pooling selects 
outliers instead of the original object points, as shown in Fig. 1, because 
outliers are the furthest points from the object center (maximum radius) 
and that causes PointNet to miss-classify. However, the proposed pool
ing operations look for data clusters/dense areas that represent the ob
ject points and as such, the proposed framework is not affected by 
outliers. This point is highlighted in Fig. 1C. 

TQ pooling scored a classification accuracy of 40% at 50% outliers 
ratio, while histogram pooling achieved significantly better results with 
70% classification accuracy at the same outliers ratio. The performance 
of histogram pooling in terms of robustness to outliers is similar to Pl- 
Net3D, with the advantage of being much faster. The inference time 
for Pl-Net3D is 2.7s, while it is 0.001s for our method (about 2000 times 
faster). The classification accuracy of using Oct-Net and RANSAC 
pooling at 50% outliers drops to around 60%. 

Other methods such as PointNet++, KPConv, and CurveNet showed 
similar behavior to PointNet where the classification accuracy drops to 
less than 10% at 50% outliers. We show the classification accuracy of 
PointNet++, KPConv, and CurveNet in the appendix. 

In the second outliers scenario, we test the robustness of our pro
posed pooling operations on pseudo (structure) outliers. For this 
experiment, we use the ScanObjectNN dataset. The ScanObjectNN 
dataset contains scenes that have the point cloud of an object in addition 
to the point cloud of background elements or parts of nearby objects. 
When training, we only use the point clouds of objects. When testing, we 
use the point cloud of objects and the point cloud of background and 
parts of nearby objects as outliers (Fig. 4e). The results are shown in 
Table 4. The total number of outlier points reported in the dataset 

reaches more than 80% of the original object points in some scenarios. 
We also augment all points with small jittering. The results show that the 
classification accuracy using the max, HS, TQ, and RN pooling opera
tions reaches 61%, 67%, 59%, and 62% respectively, while The classi
fication accuracy of state-of-art methods such as KPCONV, PointCNN, or 
Curvenet drops to around 50%. The results show that both RN and HS 
pooling operations achieve better performance than compared methods. 

Fig. E.1 in the appendix shows the confusion matrices for PointNet 
with the HS and max pooling operations. Comparing those figures show 
that the overall classification accuracy when using all outliers mainly 
drops because of the low classification accuracy of two objects, chairs, 
and tables. The two objects have a large number of outliers ratio (ranges 
between 50% to 70%) which could be the reason for the miss- 
classification, another reason is the high similarity between some ob
jects when outliers exist (i.e. table and desk). 

4.5. Classification robustness to noise 

In this section, we test the robustness of the proposed pooling op
erations against a noisy point cloud. We introduce Gaussian noise to the 
ModelNet40 test set and report the classification accuracy at different 
noise levels in Fig. 6. The added noise standard deviations range from 
2% to 10% as seen in the figure. TQ and histogram pooling methods 
outperformed all the other methods. All TQ, Octnet, HS, and PL-Net3D 
showed similar robustness for noise levels up to 0.06 with RN robust
ness being slightly less. However, TQ, followed by HS and RN, showed 
better robustness at later noise levels. TQ scored classification accu
racies of 81% and 76% at 0.06 and 0.1 noise levels respectively, while 
histogram pooling scored classification accuracies of 80% and 70% at 
0.06 and 0.1 noise levels respectively. Pl-Net3D scored 62% classifica
tion accuracy at 0.1 noise level, followed by Oct-Net with 59%. RANSAC 

Table 3 
Pooling operations versus GPU usage, testing and training times for two tensor 
sizes.  

Pooling GPU usage Tensor size Testing time Train time (one epoch) 

RN 4Gb  7 s 38 s 
TQ 0.7Gb 10× 1 m 7 m 
HS 0.5Gb 512× 512 1 s 5 s 
Max 0.5Gb  1 s 8 s 
RN 12Gb  2 m 9 m 
TQ 1.5Gb 10× 2 m 15 m 
HS 2Gb 1024× 2048 3 s 9 s 
Max 2Gb  3 s 9 s 

RN: RANSAC, TQ: truncated quadratic, HS: histogram. 

Fig. 5. Classification accuracy versus outlier ratio.  

Table 4 
Classification accuracy on ScanObjectNN (OBJ) 
for objects with pseudo outliers (BG).  

Method OBJ +BG 

PL-Net3D 48 
PointCNN 43 
CurveNet 49 
DGCNN 46 
PointNet+ 49 
HS 67 
MAX 61 
RN 62 
TQ 59  

Fig. 6. Classification accuracy versus noise.  
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performance against noise also outperforms Pl-Net3D and Oct-Net with 
a classification accuracy of 66% at 0.1 noise level. Other methods such 
as PointNet++, KPConv, and CurveNet showed deteriorated perfor
mance against noise where the classification accuracy dropped to less 
than 10% at 10% noise. 

4.6. Classification robustness to random point dropout 

In this section, we report the robustness of the proposed pooling 
operations against random point dropout. We performed random point 
dropout to the ModelNet40 testing set with values ranging from 50% to 
90%. The classification performance of different methods is shown in 
Fig. 7. PointNet with max pooling showed the highest robustness up to 
70% random point dropout, however using the TQ pooling showed the 
highest robustness at the higher percentages, followed by RANSAC and 
histogram pooling. Both TQ and histogram methods only drop by 1 1.5% 
at 50% points dropout, while Pl-Net3D drops by 2.5%. OctNet perfor
mance deteriorates rapidly after 50% dropout. The classification accu
racy of PointNet++, KPConv, and CurveNet was less than 40% at 90% 
missing points. 

4.7. Segmentation robustness to outliers 

In this section, we report the robustness of the proposed pooling 
operations against outliers for the segmentation task. We corrupted the 
testing part of the ShapeNet dataset with different ratios of outliers to 
test the performance of PointNet with different pooling operations. 
Table 5 shows the results of mean IoU (mIoU) and per-category scores 
(note that mIoU is calculated only for inliers) of PoinNet and some state- 
of-art methods. When there are no outliers, histogram pooling achieves 
78% mIoU, max pooling scores 83%, PointCNN, DGCNN, and KPCONV 
score 85%, CurveNet scores 86%, and finally, RANSAC and TQ score 
82%. However, when outliers are added, mIoU drops significantly for 
most methods. In contrast, HS, RN, and TQ mIoU almost remain constant 
for different outlier ratios. Comparing the results for TQ, HS, and RN 
show that RN only drops by 2% at 50% outliers, while TQ drops by 12% 
at the same outliers level. HS achieves better robustness than TQ at high 
outliers levels and only drops by 4% at 50% outliers. While TQ shows 
good robustness up to 30% outliers compared to HS. RN shows similar 
Robustness to TQ for outlier levels below 30% but overcomes both HS at 
TQ at higher outlier levels. 

The above results indicate that the global features generated by 
histogram pooling carried robust information about the shape of the 
object. Unlike max pooling, histogram, RANSAC, and TQ pooling 

operations enabled the decoder part of the network to segment the ob
jects correctly. Fig. 8 shows instances of segmented objects with outliers. 
As can be seen, segments with histogram pooling are almost similar to 
the original object segments, while with max pooling, many segments 
are misclassified. 

Table 6 shows the testing time for the different pooling operations. 
Comparing both Tables 5 and 6 show that both HS and RN are extremely 
faster than TQ and are able to achieve higher robustness at high outlier 
levels while having similar robustness to TQ at lower outliers levels. 

4.8. Normals estimation 

In this section, we report the robustness of the proposed pooling 
operations against noise for the points normal estimation task. We 
trained the segmentation networks of some state-of-art methods to 
predict the point’s normal vector (the last layer was modified to predict 
the normal vector for each point). We used the absolute value of cosine 
distance as the loss, and we used the ModelNet40 dataset to evaluate the 
methods. We perturb the point cloud with different noise levels, and we 
report the average cosine-distance error in Table 7. 

Noise has a big influence on any normal estimation process, thus it is 
essential to validate the robustness of any method on this type of data 
perturbation. Table 7 shows the robustness of DGCNN, CurveNet, and 
PoinNet with Max, TQ, RN, and HS pooling operations. PoinNet, in 
general, shows better robustness than other compared method, and the 
use of TQ, RN, and HS help achieve better results. HS shows better 
robustness at high noise levels, while RN, followed by TQ, shows better 
robustness at low noise levels. 

5. Sensitivity analysis 

In this section, we evaluate the performance of the proposed pooling 
layer as part of the PointNet and DGCNN methods. The study also in
cludes the sensitivity analysis of the histogram bin size on the classifi
cation accuracy. In these experiments, the data is corrupted by 10% 
additive noise and 50% outliers. 

The performance of the histogram pooling layer within different 
network structures is shown in Table 8. The first row shows the classi
fication accuracy of the PointNet when it uses the two transformation 
networks that are designed to estimate rotation and translation - 
referred to as PointNet(1). The last two rows show the classification 
accuracy of PointNet vanilla (PointNet without transformation net
works) when the histogram pooling layer is used - referred to PointNet 
(2). It is somewhat surprising to note that the classification accuracy of 
PointNet decreases by using transformation networks. The trans
formation networks appear to be overly sensitive to data perturbation 
and corruption. The last row shows that using points normal, in PointNet 
(2) achieves higher classification accuracy for clean data, while its 
robustness against outliers and noise is less than the case when it uses 
point coordinates. 

The second row shows the classification accuracy of the original 
DGCNN architecture, while the third row shows the classification ac
curacy when the histogram pooling layer is used - referred to as DGCNN 
(1). The method showed higher robustness to outliers compared to the 
original DGCNN. In the fourth row, we modified the convolution layers 
of the DGCNN(1) to include only neighboring points within a certain 
radius (0.25 for the first convolution layer, and 2 for the rest of the 
convolution layers). This is called DGCNN(2) and its robustness to data 
perturbation and corruption has enhanced, especially for noise. In the 
fifth row, we modified DGCNN to include only two convolution layers, 
which is called DGCNN(3). The results show that using only two 
convolution layers achieves the highest robustness to outlier corruption 
and noise perturbation. 

Fig. 9 shows the classification accuracy of the histogram pooling 
under several inlier thresholds (the threshold shown in the figure is half 
of the bin size). As can be seen from the figure, setting the threshold Fig. 7. Classification accuracy versus missing points.  
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Table 5 
Segmentation results on ShapeNet part dataset. We compare PointNet vanilla with max, RANSAC, TQ and histogram pooling. The results show the importance of using robust pooling over max.  

outl % Method mean Airo Bag Cap Car Chair Ear phone Guitar Knife Lamp Laptop Motor bike Mug Pistol Rocket Skate board Table*  

PointCNN 0.85 0.83 0.83 0.86 0.81 0.90 0.75 0.91 0.88 0.84 0.96 0.74 0.95 0.83 0.62 0.79 0.82 
0 DGCNN 0.85 0.83 0.85 0.76 0.90 0.91 0.75 0.91 0.87 0.82 0.96 0.64 0.95 0.81 0.59 0.75 0.82 

KPCONV 0.85 0.83 0.85 0.85 0.80 0.90 0.77 0.91 0.88 0.79 0.96 0.75 0.96 0.86 0.62 0.80 0.83 
CurveNet 0.86 0.84 0.82 0.90 0.80 0.91 0.79 0.91 0.88 0.84 0.96 0.63 0.95 0.80 0.57 0.76 0.83 
max 0.83 0.83 0.72 0.80 0.74 0.89 0.68 0.91 0.84 0.80 0.95 0.64 0.90 0.82 0.53 0.71 0.81  
HS 0.78 0.77 0.62 0.70 0.62 0.84 0.67 0.88 0.80 0.75 0.93 0.41 0.84 0.70 0.47 0.61 0.77  
RN 0.82 0.79 0.75 0.74 0.68 0.87 0.71 0.90 0.84 0.79 0.94 0.56 0.89 0.78 0.50 0.69 0.80  
TQ 0.82 0.81 0.73 0.72 0.71 0.88 0.67 0.90 0.82 0.78 0.95 0.60 0.92 0.79 0.49 0.70 0.81  
PointCNN 0.12 0.10 .04 .04 0.05 0.21 0 0.03 0.20 0.05 0.09 0.05 0.01 0 0 0.03 0.15 

5 DGCNN 0.53 0.50 0.55 0.68 0.40 0.56 0.32 0.47 0.41 0.51 0.89 0.23 0.86 0.42 0.24 0.30 0.55 
KPCONV 0.76 0.79 0.80 0.32 0.76 0.88 0.72 0.72 0.71 0.77 0.27 0.75 0.95 0.71 0.45 0.65 0.72 
CurveNet 0.25 0.11 0.00 0.00 0.07 0.42 0.13 0.00 0.00 0.47 0.00 0.08 0.10 0.01 0.00 0.16 0.26 
max 0.37 0.12 0.45 0.27 0.10 0.64 0.34 0.13 0.60 0.18 0.43 0.25 0.74 0.07 0.15 0.15 0.40  
HS 0.78 0.76 0.65 0.72 0.62 0.84 0.69 0.88 0.79 0.75 0.93 0.41 0.83 0.71 0.46 0.60 0.77  
RN 0.81 0.79 0.71 0.76 0.68 0.87 0.71 0.89 0.83 0.79 0.95 0.56 0.90 0.79 0.53 0.71 0.80  
TQ 0.82 0.80 0.72 0.75 0.70 0.88 0.67 0.90 0.83 0.78 0.95 0.57 0.92 0.81 0.50 0.69 0.80  
PointCNN 0.09 0.07 .04 .04 0.06 0.11 0 0.11 0.30 0.05 0 0.05 0.01 0 0 0.06 0.13 

20 DGCNN 0.44 0.40 0.52 0.65 0.33 0.44 0.32 0.45 0.44 0.51 0.75 0.17 0.75 0.37 0.26 0.28 0.42 
KPCONV 0.50 0.66 0.62 0.18 0.53 0.73 0.54 0.40 0.45 0.73 0.15 0.60 0.85 0.38 0.27 0.48 0.20 
CurveNet 0.18 0.1 0.00 0.00 0.06 0.24 0.12 0.00 0.00 0.49 0.00 0.06 0.02 0.01 0.00 0.16 0.17 
max 0.30 0.10 0.45 0.17 0.14 0.43 0.38 0.05 0.64 0.08 0.40 0.17 0.54 0.09 0.17 0.14 0.37  
HS 0.78 0.77 0.64 0.71 0.61 0.84 0.68 0.88 0.78 0.75 0.93 0.41 0.84 0.72 0.46 0.60 0.77  
RN 0.81 0.78 0.71 0.74 0.69 0.87 0.65 0.89 0.83 0.77 0.95 0.55 0.91 0.80 0.49 0.68 0.80  
TQ 0.81 0.79 0.75 0.81 0.70 0.88 0.76 0.89 0.81 0.80 0.94 0.56 0.91 0.80 0.49 0.67 0.80  
HS 0.77 0.74 0.62 0.69 0.59 0.84 0.67 0.87 0.77 0.75 0.92 0.40 0.83 0.72 0.46 0.58 0.77 

30 RN 0.81 0.79 0.71 0.75 0.67 0.87 0.67 0.88 0.83 0.79 0.94 0.54 0.89 0.79 0.54 0.70 0.80  
TQ 0.79 0.76 0.73 0.78 0.66 0.86 0.60 0.89 0.83 0.74 0.93 0.49 0.91 0.80 0.44 0.62 0.78  
HS 0.76 0.72 0.57 0.70 0.56 0.84 0.66 0.87 0.75 0.74 0.92 0.37 0.83 0.71 0.50 0.57 0.77 

40 RN 0.80 0.786 0.70 0.74 0.66 0.87 0.73 0.87 0.83 0.79 0.95 0.50 0.88 0.78 0.53 0.69 0.80  
TQ 0.76 0.70 0.72 0.73 0.62 0.84 0.56 0.88 0.83 0.71 0.92 0.47 0.90 0.78 0.42 0.55 0.73  
HS 0.74 0.67 0.57 0.66 0.53 0.83 0.68 0.86 0.70 0.74 0.91 0.38 0.82 0.68 0.49 0.55 0.75 

50 RN 0.79 0.76 0.70 0.74 0.64 0.86 0.66 0.84 0.82 0.77 0.93 0.49 0.87 0.77 0.56 0.65 0.77  
TQ 0.70 0.62 0.72 0.73 0.57 0.80 0.52 0.87 0.81 0.68 0.91 0.47 0.89 0.73 0.42 0.50 0.65  
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between 0.13-0.15 provides the highest robustness to outliers, while the 
classification accuracy of clean and noisy data remains constant. RN 
threshold values are shown in Table F.1 in the appendix. 

6. Limitation and future work 

The above results show that the robustness of PoinNet was 

Fig. 8. Four samples of ShapeNet part dataset showing the original objects, the same objects corrupted by outliers, PoinNet with max pooling segmentation results, 
and finally PoinNet with histogram pooling segmentation results (ours). 

Table 6 
Pooling operations versus GPU usage and testing time for part segmentation.  

Pooling GPU usage Tensor size Testing time (s)    
TQ  

3.1 Gb 16× 2048× 2048 2.34 

RN 8.9 Gb  0.039 
MAX 1.9 Gb  0.003 
HS 2.4 Gb  0.022  

Table 7 
Normal estimation error at different noise levels. Error is calculated based on the 
average cosine distance.  

Method Noise levels  

0.002 0.02 0.04 0.06 0.08 0.1 0.2 

CurveNet 0.492 0.735 0.827 0.863 0.883 0.897 0.926 
DGCNN 0.671 0.718 0.799 0.83 0.85 0.862 0.9 
Max 0.313 0.479 0.607 0.687 0.736 0.764 0.833 
TQ 0.36 0.461 0.559 0.628 0.678 0.718 0.818 
RN 0.36 0.458 0.557 0.629 0.685 0.724 0.808 
HS 0.459 0.504 0.567 0.62 0.663 0.697 0.794  

Table 8 
classification performance on ModelNet40 with histogram pooling, clean: clean 
objects, outl: objects with 50% outliers, noise: objects with 10% noise  

Method Input clean outl noise 
PointNet(1)  69 58 63 

DGCNN p 92 5 5 
DGCNN(1)  84 39 3 
DGCNN(2)  85 51 39 
DGCNN(3)  85 70 63 
PointNet(2)  84 69 70  

P+n 85 60 13  

Fig. 9. Classification accuracy versus histogram threshold/bin size.  

Table D.1 
The classification accuracy on the clean ModelNet40 (MN40), the ModelNet40 
perturbed with 0.1 Gaussian noise, the ModelNet40 corrupted with 50% out
liers, and 90% missing points, respectively.  

Method Input MN40 OUT Noise Dropout 

PL-Net3D  86.6 70 60 50 
PointNet  89 4 27 57 
DGCNN  92.2 5 5 18 
PointNet+ Points 91.8 2 2 30 
PointCNN  91 20 4 7 
KPConv  90 4 4 12 
CurveNet  93.8 4 5 26 
RSCNN  80.5 72 63 58 
Welsch  82.4 37 69 68 
Huber  81.8 4 71 71 
TQ  83.7 51 73 75 
HS (ours)  83.7 69 70 69 
RN (ours)  81.6 60 66 69  
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significantly improved by using RANSAC or histogram based pooling 
layers. PointNet with any of these pooling layers can tolerate a large 
number of outliers and noise levels compared to the network with the 
max pooling layer. The first shortcoming of the proposed robust pooling 
operations is the requirement of setting their thresholds. However, this 
paper already provides the threshold values for different tasks such as 
classification and segmentation. Another shortcoming of using RANSAC 
is that the memory requirement grows rapidly with data size, which 
could limit its usage in applications with large point cloud datasets. In 
addition to the above shortcomings, the proposed pooling layers are 
only suitable for PointNet-based architectures or architectures with 
global pooling operations. Despite those shortcomings, both methods 
showed promising results and can open a window for future improve
ment in this area. 

Future work includes using the proposed pooling operations in other 
tasks such as point cloud registration. Also, future work might address 
the above shortcomings by modifying the proposed pooling operations 
to be included in any network architecture, not only in PointNet-based 
architectures. 

7. Conclusion 

We presented two pooling operations that are robust to data cor
ruption. The proposed pooling layers use histogram and RANSAC al
gorithm to look for clusters in data as clusters are indicatives of models. 
We tested those pooling layers with frameworks such as Point-based and 

graph-based neural networks that have a global pooling layer such as 
PointNet and DGCNN. For the task of classification, our results showed 
that the robustness of the proposed frameworks is significantly higher 
compared to max pooling. When comparing our proposed pooling layers 
with robust state-of-the-art methods such as M-estimators, our histo
gram pooling was much faster and significantly more robust to outliers, 
with comparable robustness to noise and random point dropout. 
Compared to PL-Net3D, our histogram pooling was also significantly 
faster and more robust to noise and random point dropout, while we 
achieve similar robustness to outliers. For the tasks of part segmentation 
and normals estimation, both RN and HS showed comparable results to 
TQ with better performance in some cases, with the advantage of being 
much faster. 

CRediT authorship contribution statement 

Ayman Mukhaimar: Investigation, Methodology, Writing – review 
& editing, Conceptualization. Ruwan Tennakoon: Supervision, Writing 
– review & editing, Conceptualization. Reza Hoseinnezhad: Supervi
sion, Writing – review & editing, Conceptualization. Chow Yin Lai: 
Supervision, Writing – review & editing, Conceptualization. Alireza 
Bab-Hadiashar: Supervision, Writing – review & editing, Project 
administration, Conceptualization. 

Table F.1 
The Classification accuracy for different RN threshold values. We report the 
classification accuracy on the clean/original ModelNet40 (MN40), the Mod
elNet40 perturbed with 0.1 Gaussian noise (noise), and the ModelNet40 cor
rupted with 50% outliers (outl).  

Threshold MN40 outl noise 

0.05 80.5 64 63 
0.11 82.3 60 64 
0.13 80.9 59 64 
0.143 81.6 60 66 
0.148 81.2 58 62 
0.168 82.4 61 64 
0.2 82 61 68 
0.25 82 61 65 
0.6 81.5 47 71  

Fig. C.1. Difference in pooling output between features of the clean (x) and its 
outlier corrupted point clouds (x‘‘) of an object for mode, max, and median 
pooling operations. 

Fig. E.1. The confusion matrix of the ScanObjectNN dataset for PoinNet with 
(a) histogram pooling for clean objects, (b) histogram pooling for objects with 
background points, (c) max pooling for clean objects, and (d) max pooling for 
objects with background points. 

Table F.2 
The Classification accuracy for different TQ threshold values. We report the 
classification accuracy on the clean/original ModelNet40 (MN40), the Mod
elNet40 perturbed with 0.1 Gaussian noise (noise), and the ModelNet40 cor
rupted with 50% outliers (outl). We also show the time, in minutes, required to 
train one epoch.  

Threshold MN40 outl noise Time 

0.2 5 04 5 120 
0.5 5 04 5 120 
1 83.7 51 73 30 
1.5 83 27 77 20 
2 81.5 9 74 13  
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Appendix A. Density approximate and marginalization 

Consider a D-dimensional feature space X ⊆ RD where D is the number of features. Denoting the joint density of the features by p(x), let‘s assume it 
is approximated by a Gaussian mixture: 

p(x) =
∑M

m=1
wmN

(

x; μ( m) ,
∑( m)
)

(A.1)  

where wm‘s are normalized importance weights, i.e. 
∑M

m=1wm = 1, and μ( m) and 
∑( m) are the mean vector (Dx1) and covariance matrix (DxD) for the 

mth Gaussian component whose density is given by: 

N

(

x; μ( m) ,
∑( m)
)

=
exp
(
− 0.5

(
x − μ(m)

)T∑( m)
(
x − μ(m)

))

[ ̅̅̅̅̅
2π

√
∗ det

(∑( m)
)]D (A.2) 

Let’s denote the elements of the mean and covariance of the mth Gaussian component as : 

μ( m) =

⎡

⎢
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⎢
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D
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⎥
⎦

(A.3) 

It has been proven that the marginal distribution over a subset of the features is also Gaussian with its mean and covariance being the original from 
which only the rows (and the columns for 

∑
) corresponding to the feature subset are retained and the rest are removed.1 

Hence, for any i= 1,..., D, the uni-variate marginal density of the math component is N(xi; μ( m)

i , σ( m)

i ) and 

p(xi) ≈
∑M

m=1
wmN

(
xi; μ( m)

i , σ2(m)

i

)
(A.4)  

Appendix B. Maxima of joint and marginal densities 

Lets assume that the first component m = 1 of the Gaussian mixture in Eq. (A.1) is dominant; i.e. ∀m > 1 ; wm >> w1. 
We assume that such a dominance leads to the location of the peak of the first component being the location of the overall peak, i.e., the MAP 

estimate: 

x̂MAP = μ(1) =

⎡

⎢
⎢
⎣

μ1
1

...

μ1
D

⎤

⎥
⎥
⎦ (B.1)  

with the above assumption (dominance of the first Gaussian component), from Eq. (A.4), the peak of the point of the marginal density will be at the 
mean of the first Gaussian component too, i.e. at μ(1)

i . Thus, the MMAP estimate, constructed by stacking the μ(1)
i values will equal the MAP estimate. 

Appendix C. Robustness of mode pooling 

To compare the robustness of the max, mean, median, and mode in pooling operations, we first randomly selected 50 (out of 2048) feature vectors 
(of size 1024) of the feature map (shown in Fig. 1A by the orange box). The experiment was repeated for both a clean and an object corrupted with 50% 
outliers. The above-mentioned pooling operations were applied to both feature collections. Pooling outputs of the clean object were subtracted from 
the outputs of the corrupted object and the differences were plotted as shown in Fig. C.1. Average and median pooling were very similar and the 
median is only plotted. The figure shows that mode pooling has the lowest output difference between clean and corrupted data, indicating significant 
robustness to the presence of outliers. 

1 https://math.stackexchange.com/questions/3832119/prove-that-the-distribution-of-marginal-vectors-are-also-multivariate-normal/3832137#3832137 
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Appendix D. The classification accuracy on ModelNet40 with the presence of data perturbation and corruption 

We compare the robustness of several state-of-art methods to data corruptions in Table D.1. The table shows that several methods such as DGCNN, 
PointNet++, PoinctCNN, and CurveNet have low robustness to data corruption. The table also shows that Welsch and Huber Gould et al. (2019) have 
low robustness to outliers, while RSCNN Mukhaimar et al. (2022) and PL-Net3D show similar robustness to TQ, RN, and HS. Overall, HS shows the best 
performance in terms of robustness to outliers, noise, and missing points. 

Appendix E. The confusion matrix of the ScanObjectNN dataset 

We show the confusion matrix of the ScanObjectNN dataset for PoinNet with histogram and max pooling in Fig. E.1. Comparing both figures for 
objects with background data indicates that both methods misclassify tables to be desks due to the high similarity between both objects when 
background data exists. 

Appendix F. Classification accuracy versus pooling threshold 

Tables F.1 and  F.2 show the classification accuracy for the RANSAC and TQ pooling operations for several thresholds, respectively. The classi
fication accuracy was reported for the ModelNet40 dataset. As shown in Table F.1, the classification accuracy does not vary much by changing the RN 
threshold between 0.05-0.25. However, setting the threshold to higher values, such as 0.6, increases the robustness to noise, while reducing the 
robustness to outliers. Similar behavior is also observed when RANSAC is used for geometric fitting, where increasing the threshold values means that 
RANSAC can tolerate more noise levels and at the same time increases the number of outliers selected (wrongly). Table F.2 shows the classification 
accuracy and the time required to train one epoch for different TQ threshold values. Reducing the threshold values increases the training time. This is 
in contrast to RN training time, which is not dependant on its threshold value (the training time for one epoch using RN is around 15 minutes for the 
different threshold values). Additionally, the results show that using lower TQ threshold values causes the optimizer to stuck in local minima, and thus 
no solution was found (the classification accuracy is almost zero). 
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