
Intelligent Systems with Applications 17 (2023) 200162

Available online 1 December 2022
2667-3053/© 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Robust pooling through the data mode

Ayman Mukhaimar *,a, Ruwan Tennakoon b, Reza Hoseinnezhad a, Chow Yin Lai c, Alireza Bab-
Hadiashar a

a school of engineering, RMIT, 124 La Trobe St, Melbourne, 3000, VIC, Australia
b school of science, RMIT, 124 La Trobe St, Melbourne, 3000, VIC, Australia
c UCL, Gower Street, London, United Kingdom

A R T I C L E I N F O

Keywords:
Robust classification
Point cloud
Robust segmentation
Robust noise estimation

A B S T R A C T

The task of learning from point cloud data is always challenging due to the often occurrence of noise and outliers
in the data. Such data inaccuracies can significantly influence the performance of state-of-the-art deep learning
networks and their ability to classify or segment objects. While there are some robust deep-learning approaches,
they are computationally too expensive for real-time applications. This paper proposes a deep learning solution
that includes novel robust pooling layers which greatly enhance network robustness and perform significantly
faster than state-of-the-art approaches. The proposed pooling layers replace conventional pooling layers in
networks with global pooling operations such as PointNet and DGCNN. The proposed pooling layers look for data
mode/cluster using two methods, RANSAC, and histogram, as clusters are indicative of models. We tested the
proposed pooling layers on several tasks such as classification, part segmentation, and points normal vector
estimation. The results show excellent robustness to high levels of data corruption with less computational re
quirements as compared to robust state-of-the-art methods. our code can be found at https://github.com/Ay
manMukh/ModePooling.

1. Introduction

The use of deep learning for several 3D task such as point cloud
classification (Esteves et al., 2018; Klokov and Lempitsky, 2017; Qi
et al., 2017a; Ramasinghe et al., 2019; Su et al., 2015; Wu et al., 2015a),
retrieval (Ramasinghe et al., 2019; Wu et al., 2015a), and segmentation
(Qi et al., 2017a; 2017b; Wang et al., 2019) has shown great success in
recent years. However, the success has largely been confined to 3D
CAD-based benchmarks such as ModelNet (Wu et al., 2015a), McGill
(Siddiqi et al., 2008), and Shapenet (Chang et al., 2015b) with very
clean data. Working with 3D point clouds of real scenes where data are
inaccurate and may be corrupted by outliers remains a challenge, and
real 3D training data for natural and man-made objects are still scarce.
Testing recent deep networks on 3D CAD models perturbed with outliers
and noise showed that the data perturbation has a huge influence on the
classification performance (Mukhaimar et al., 2019a). One approach to
resolve this issue is to train the network with outliers. However, noise
and outliers, by definition, are not predictable and it would be difficult
to train the network for all possible scenarios. Another approach is to
build a robust framework that can diminish the influence of outliers

compared to conventional deep networks (Gould et al., 2019). This
approach has received significant interest in recent years (Gould et al.,
2019; Mukhaimar et al., 2019b; 2022).

To demonstrate the effect of data perturbation on a deep neural
network performance, we show the effect of the existence of outliers on
PointNet (Qi et al., 2017a) in Fig. 1. PointNet consists of several layers of
multilayer perceptrons (MLP), a max pooling layer, fully connected
layers (FC), and a classification layer. We show in Fig. 1C the distribu
tion of one of the feature vectors (with a dimension of 1× N, where N =

2048) before the pooling operation when the network is trying to
classify: (1) the point cloud of a chair, and (2) the same chair corrupted
with 50% outliers. When the max pooling is used, the output of the
pooling layer in the case of the clean chair is 2.98, while the output of
the pooling layer when outliers exist is 6.46. This huge difference affects
the classification accuracy as seen in Fig. 1D. Interestingly, the figure
also shows that using the mean or the median of the data does not
diminish the effect of outliers. As such, a better pooling operation is
needed to diminish the effect of data inaccuracies on 3D data processing.

The use of M-estimators in Deep Declarative Network (Gould et al.,
2019) implementation showed promising results for perturbed data.

* Corresponding author.
E-mail address: ruwan.tennakoon@rmit.edu.au (R. Tennakoon).

Contents lists available at ScienceDirect

Intelligent Systems with Applications

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications

https://doi.org/10.1016/j.iswa.2022.200162
Received 27 July 2022; Received in revised form 2 November 2022; Accepted 27 November 2022

https://github.com/AymanMukh/ModePooling
https://github.com/AymanMukh/ModePooling
mailto:ruwan.tennakoon@rmit.edu.au
www.sciencedirect.com/science/journal/26673053
https://www.journals.elsevier.com/intelligent-systems-with-applications
https://doi.org/10.1016/j.iswa.2022.200162
https://doi.org/10.1016/j.iswa.2022.200162
https://doi.org/10.1016/j.iswa.2022.200162
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iswa.2022.200162&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Intelligent Systems with Applications 17 (2023) 200162

2

Both Truncated quadratic (TQ) or WELSCH (W) when used in the
pooling operation achieved significantly better robustness to outliers.
M-estimators look for data mode which is robust to outliers as seen in
Fig. 1C & D. However, M-estimators have several shortcomings such as
the high computation requirements, and the solution is either
non-convex, non-smooth or not very robust. Thus, inspired by the use of
M-estimators, we investigate other alternatives that also look for data
mode and achieve robust pooling.

In this paper, we propose two robust pooling layers. The first one
uses RANSAC (Fischler and Bolles, 1981) framework for finding the
location of the mode, while the other one uses a histogram-based
pooling method. Both RANSAC and histogram methods look for high
cluster regions and should give similar results to M-estimators while
being computationally cheaper. Moreover, unlike many M-estimators,
both RANSAC and histogram provide unique solutions and despite
RANSAC being an iterative solution, our results show that it can still be

faster than using M-estimators. However, RANSAC computational re
quirements in still expensive and grows exponentially with the size of
the data. On the other hand, our proposed histogram-based pooling
layer is shown to be significantly faster than the above methods.

The histogram pooling layer divides the feature data into uniform
regions and selects regions with maximum densities. In theory, the
histogram is similar to both RANSAC and M-estimators, where bin size is
somewhat equivalent to the inlier/outlier threshold of RANSAC or
tuning parameters of M-estimators. But unlike both approaches, using
the histogram mode is significantly cheaper and enables the network to
be used for real-time applications. The testing time was found to be
around 150 times faster than both RANSAC or an M-estimator, and the
computational complexity was found to be similar to conventional
pooling methods such as max pooling.

Unlike existing robust approaches that are limited to object classi
fication, e.g. Mukhaimar et al. (2019b), Riegler et al. (2017), Mukhai
mar et al. (2022), the proposed framework is able to also perform robust
classification, segmentation, and points normal estimation. We con
ducted an extensive set of experiments on both clean and perturbed data
for object classification, segmentation, and points normal estimation,
showing that the proposed methods have high classification accuracy
and compete in robustness with state-of-art methods. We summarize the
contributions of this paper as follows:

• Two novel pooling layers for point cloud classification, segmenta
tion, and normal’s estimation are presented. The pooling layers are
robust against point cloud noise perturbations and other types of
data corruptions such as outliers.

• Compared to other robust methods, the proposed pooling layers are
significantly cheaper in computation and enable the neural network-
based methods to be used for real-time applications.

• The proposed pooling layers can also be used in neural networks with
a global pooling layer such as PointNet, and DGCNN (Wang et al.,
2019).

The rest of this paper is structured as follows: We first discuss the
latest deep learning classification networks. We then explain the intui
tion behind using data mode instead of maximum or average pooling as
well as the inner working of the proposed RANSAC and histogram-based
pooling frameworks. This is followed by the analysis of the performance
of the proposed pooling layers under different data corruption in Sec
tion 4. Section 5 presents a sensitivity analysis of network parameters,
followed by Section 7, which concludes the paper.

2. Related work

Recent deep learning frameworks for 3D point cloud classification
can be categorized as Multi-view CNNs (MV-CNN) (Shi et al., 2015; Su
et al., 2015), Voxel-based CNNs (Wu et al., 2015b; Xiang et al., 2019;
Zhou and Tuzel, 2018), and point-based CNNs (Chen et al., 2019; Qi
et al., 2017a; 2017b; Zhang et al., 2019b). The robustness of a number of
these networks, from the different categories, was examined extensively
(Mukhaimar et al., 2019a). The study compared PointNet, PointNet++

(Qi et al., 2017b), Kd-Net (Klokov and Lempitsky, 2017), Oct-Net
(Riegler et al., 2017), and MV-CNN (Su et al., 2015) for data with out
liers, noise, and missing points. The study showed that the classification
performance of MV-CNN and PointNet++ was heavily affected by the
above data perturbations and corruption forms. As MV-CNN uses several
2D images of a 3D model (i.e. 70 images captured from different loca
tions), outliers would appear in most images, and the overall number of
outliers is magnified by the imaging process (70 times). PointNet
showed good performance against noise and missing points but was
heavily affected by outliers. Both PoinNet and PointNet++ use max
pooling as part of their networks, which causes the networks to select
outliers as maximum values during their pooling operations. The Kd-Net
was heavily affected by outliers as the existence of outliers changes the

Fig. 1. (A) PointNet vanilla classification architecture. We show two scenarios
for object classification: (1) The classification of the point cloud of a chair, and
(2) The classification of the point cloud of the same chair that is corrupted with
50% outliers. (B) Histogram of one of the feature vectors before the pooling
operation. The orange histogram shows the data distribution for the clean chair,
while the blue histogram shows the distribution for the chair with the corrupted
point cloud. (C) The output of the pooling layer in PointNet(shown as the blue
triangle) in case we have average pooling, median pooling, max pooling, and
Mode pooling. (D) The classification accuracy for the selected pooling layers.

A. Mukhaimar et al.

Intelligent Systems with Applications 17 (2023) 200162

3

structure of the Kd-tree graph that performs the classification. Oct-Net
showed a good level of robustness to noise and outliers but was
affected by missing points. We used the same testing framework and
tested other methods that are based on PoinNet and PointNet++ such as
PVCNN and RS-CNN and our results showed similar performance to the
original PoinNet and PointNet++ methods for the corrupted data.

In terms of robust methods that exist in the literature, Pl-Net3D
(Mukhaimar et al., 2019b) is a feature-based method that combines a
primitive fitting technique with PointNet to achieve robust classifica
tion. The method employs RANSAC to find instances of geometric
primitives in 3D point clouds. The features of those primitives are then
used to classify objects. R-SCNN (Mukhaimar et al., 2022) is a
voxel-based method that uses spherical harmonics-based CNNs. The
method was able to achieve state-of-art robustness but was limited to
object classification. Deep declarative networks (Gould et al., 2019)
proposes a framework for optimization methods to be implemented as
part of deep learning networks. The proposed framework allows robust
statistical approaches such as M-estimators (Leroy and Rousseeuw,
1987) to be implemented in deep learning. Both Pl-Net3D and M-esti
mators involve significant computation and high processing time,
limiting their ability for real-time usage.

In this paper, we present a robust classification framework that
competes with state-of-art methods in terms of accuracy, robustness, and
computational load. The proposed approach is based on PointNet, thus
object classification, segmentation, and other point-based manipula
tions, such as points normal estimation, are possible. The proposed
approach can be also adapted to any PointNet-based methods such as
DGCNN (Wang et al., 2019) or LDGCNN (Zhang et al., 2019a).

3. Method

Given a point cloud of an object that contains outliers, our objective
is to build a robust classification deep learning network. To achieve
robustness, we propose to use a robust pooling operation in our network.
We introduced robust pooling to PointNet (Qi et al., 2017a) and DGCNN
(Wang et al., 2019) architectures as both methods use global pooling
operations. PointNet architecture is shown in Fig. 1A. The multi-layer
perceptron (MLP) followed by the Pooling operation is commonly
used in most of the point cloud deep learning networks. The architecture
represents a symmetric operation on all points, which enables the
network to work with unsorted inputs. DGCNN uses similar architecture
except that the network accounts for neighboring points. The pooling
operation is the main reason for such architecture to fail to classify
objects as seen from Fig. 1, hence achieving robust pooling improves the
overall robustness.

3.1. Problem statement

For the given block diagram shown in Fig. 1A, the feature mapping
block (shown in orange color) provides N feature vectors in the R1024

space. In the dataset used to benchmark the performance of the pro
posed solution in our paper, typically there are around N = 2048 points
in the cloud that are mapped (through a MLP) into N = 1024 features.

A major task embedded in the diagram shown in Fig. 1A is the pooling
task (shown in cyan colour), where it aggregates the N vectors and obtain
a single vector as the best representative of the information contents of
those vectors. Let us denote the ith feature vector by

xi =
(
xi,1, xi,2,…, xi,D

)

where D = 1024 and i = 1, 2,…,N. The N features are then treated as
samples of a joint feature density p : RD→R. The information content of
the point cloud is then represented by the entropy of the density that is
given by:

E
[

p
]

≜ −

∫

p
(

x
)

log
(

p
(

x
))

dx. (1)

Given the samples, we approximate the density as the sum of Dirac delta
terms centered at the samples and weighted by their point pdf values:

p(x) ≈
∑N

i=1
p(xi)δ(x − xi) (2)

Substituting the above approximation in Eq. (1) returns the following
approximation for entropy:

E[p] ≈ −
∑N

i=1
p(xi)log(p(xi)) (3)

Among all the terms included in the summation, the largest one is
associated with the maximum aposteriori (MAP) estimate of the feature,
i.e.

x̂MAP = argmax
x

p(x) (4)

Therefore, we choose the MAP estimate as the most informative aggre
gate of all the N feature (the output of the pooling operation in Fig. 1A).

The main problem is how to estimate the MAP. In practice, we are
have around N = 2048 features in a space dimension of D = 1024. In
terms of a mesh grid, this is equivalent to having m = ⌈logDN⌉ = 2 bins
per dimension in a 1024-D histogram, which is not sufficient for the
purpose finding the peak of the joint density.

Our solution to this problem is to find an approximate for the peak of
the very high-dimensional joint density by forming marginal densities
(D instances of them, one for each dimension), and locate the peak of
each marginal density, separately, then put the coordinates of those
peak points together to form the approximate location of the peak of the
joint density in the D-dimensional feature space. In other words, we find
an estimate, named Marginal MAP (MMAP) estimate, given by

x̂MMAP = (x̂1MAP ,⋯, x̂DMAP),

where x̂iMAP , i = 1,…,D, is the MAP estimate for the marginal density in
the ith dimension.

In our application, assuming that the MLP and Feature Map networks
in Fig. 1A are trained, we expect MMAP and MAP estimates to be
reasonably close to each other in such a way that MMAP estimate can be
still declared as the aggregate feature that holds a substantial amount of
information encapsulated in the N feature samples produced by the
Feature map block in Fig. 1A.

To explain the intuition behind the above statement, first, note that
the fully-connected network that inputs the aggregated (global) feature
is indeed a mapping from the 1024-D space to 40 different classes of
objects. As such, the outputs of the fully-connected network are ex
pected to be very close to one of the coordinate unit vectors ej =

[0⊤i− 1 1 0⊤40− i]
⊤ where 0k means a k-dimensional vector of zeros. Thus,

we intuitively expect that after the network is trained, the global feature
input to the fully-connected network ends up in one of 40 different zones
in the 1024-D space that are quite distinct. In fact, this is what is ex
pected for the N feature samples; they end up being located together
within one of those 40 zones. Hence, with no outlier samples, we expect
to see a single-peak distribution of the features (similar to a multivariate
Gaussian), and for such a distribution, the peak location (MAP estimate)
and the MMAP estimate are very close if not identical.

An example is shown in Fig. 2, demonstrated in 2D for the purpose of
visualization. Fig. 2(a) presents the density of data comprised of 80%
outlier samples that are uniformly distributed and inliers being distrib
uted according to a joint Gaussian. We observe that the peak is at [0 0]⊤,
while the peaks of the two marginal densities shown in Fig. 2(b) are both
located at zero.

A. Mukhaimar et al.

Intelligent Systems with Applications 17 (2023) 200162

4

If the outliers are not uniformly distributed, as long as they do not
themselves form a sharper peak in the density, we still expect the MMAP
estimate to be close to the peak location. This is visualized in an example
shown in Fig. 3 where 25% of data are the inliers distributed in a similar
way to the previous case, and the rest of the data (outliers) are equally
scattered around four points. Fig. 3(b) demonstrates that due to the
outliers, the marginal density peaks have slightly deviated from the peak
of the combined density.

3.2. Histogram and RANSAC pooling

Robust fitting techniques aim to find data clusters that represent
instances of a given model. To apply RANSAC, a collection of m hy
potheses was examined to find the inliers within a threshold ϵ for all
these m hypotheses. The hypothesis with the maximum number of in
liers is then chosen as the best model estimate. This translates to looking
for:

m̂ = arg maxm(
∑N

i=0
|xi − xm| ≤ ϵ) (5)

where m̂ corresponds to the point with the maximum number of inliers
(equivalent to x̂MAP) and the output of the pooling layer in the forward
step.

For one-dimensional data, a histogram can be viewed as a density
estimator where data is partitioned into intervals (bins) and their den
sity is estimated by counting the number of data in a bin. We use a
histogram as part of our proposed pooling operation, in which L̂ is the
index of the mode bin L̂ = arg maxmp(Li), where L⊂Rm is a set of bin
indices for m bins. In comparison to RANSAC for location estimation, the
bin size is equivalent to the threshold ϵ and the histogram mode is
equivalent to the model with the maximum number of inliers.

4. Experiments

In this section, we present a comparative analysis of the performance
of the proposed pooling operations for different types of data pertur
bation and corruption. We perform experiments on different tasks,
including classification, part-segmentation, and points normal vector
estimation. We also outline the composition of the datasets as well as the
network architectures.

4.1. Datasets

For classification, we use the ModelNet40 (Qi et al., 2017a; Wu et al.,
2015a), ShapeNet (Chang et al., 2015a), and ScanObjectNN (Uy et al.,
2019) datasets. ModelNet40 consists of 9,843 training and 2468 testing

samples from 40 categories. Each sample consists of 2048 points
normalized within the unit cube. We don’t introduce any augmentation
to the training data except random rotations, but data perturbations and
corruptions such as noise, random point dropout, and outliers, are
introduced to the testing samples. Examples of those perturbations and
corruptions are seen in Fig. 4. If a point normal is used, we calculate the
normal by using twenty of its neighboring points. We use the Sca
nObjectNN dataset (Uy et al., 2019) to test the performance of our
proposed pooling operations on real-scene data. The ScanObjectNN
dataset contains 2902 scenes of objects categorized into 15 categories.
Each scene carries the point cloud of an object in addition to the point
cloud of background elements or parts of nearby objects as seen in Fig. 4.
During training, we use the point cloud of objects only, while when
testing, we include the point cloud of background and parts of nearby
objects as real-scenarios outliers.

For part segmentation, we use ShapeNet part dataset (Yi et al., 2016),
which consists of 16,881 shapes from 16 categories, with 50 parts in
total. All images are annotated with their parts labels. To examine the
robustness, we corrupted the test set with random outliers, and when
testing, we only used inlier points to calculate the average mIoU.

For points normal estimation, we use the ModelNet40 dataset. Each
object consists of 2048 points, and each point is labeled with its normal
vector. We train methods without any data augmentations, while we
perturb the testing dataset with different levels of noise.

Fig. 2. (a) Density plot of a 2D Gaussian density N (⋅;μ1,Σ1) with μ1 = 0 and

Σ1 =

[
1 0.5

0.5 1

]

mixed with 80% outlier samples that are distributed uni

formly in [− 5 5] × [− 5 5]. (b) Marginal densities of x1 and x2 for the joint
density shown in part (a) of this figure.

Fig. 3. (a) A Gaussian mixture density in 2D, comprised of four components
N (⋅;μi,Σi), i = 1,…,4 with equal weight 0.25. The first component is same as

shown in Fig. 2(a). The parameters of the other components are: μ2 =

[
5
4

]

,

μ3 =

[
− 3
5

]

, μ3 =

[
− 4
7

]

, Σ2 = Σ3 = Σ4 =

[
5 0.5

0.5 5

]

(b) Marginal densities of

x1 and x2 for the joint density shown in part (a) of this figure.

Fig. 4. (a) The point cloud of a chair taken from the ModelNet40 dataset, (b)
the same chair is corrupted with random point dropout, (c) the same chair is
perturbed with Gaussian noise, (d) the same chair is corrupted with scattered
outliers, and (e) the point cloud of a chair taken from ScanObjectNN dataset
including background data (used as pseudo outliers).

A. Mukhaimar et al.

Intelligent Systems with Applications 17 (2023) 200162

5

4.2. Selected architectures

To analyze the performance of the proposed pooling operation, we
used the PointNet architecture as its multi-layer perceptrons and global
pooling are shared by many recent deep learning frameworks. For
classification with PointNet, three layers of MLP were used with
64,128,1024 filters respectively. The number of bins for histogram
pooling was set to 70 and their centers were uniformly distributed be
tween -10 to 10. RANSAC was implemented with an equivalent
threshold of 0.143 and with the number of hypotheses m ranging be
tween 30% to 50% of the total number of points. The learning rate was
set to 0.0001 and the number of epochs was set to 100. For Sca
nObjectNN, two layers of MLP were used with 128 and 4048 filters
respectively, and the number of bins for histogram pooling was set to
200. We also investigate DGCNN in the sensitivity analysis section (see
section for detail).

For part segmentation and normals estimation, we use the original
PointNet segmentation architecture with the proposed histogram pool
ing. The number of bins in the histogram was set to 1200 for the interval
between -5 to 5. The initial learning rate was set to 0.0001, and the
number of epochs was set to 100.

4.3. Classification performance on ModelNet40, ShapeNet, and
ScanObjectNN datasets

In this section, we present the classification accuracy of our proposed
framework against ModelNet40, ShapeNet, and ScanObjectNN datasets.
We calculated the classification accuracy for the PointNet model with
different pooling operations including max, RANSAC (RN), histogram
(HS), and Truncated Quadratic (TQ). The results of these experiments as
well as the classification accuracy for state-of-the-art methods such as
PointCNN (Li et al., 2018), CurveNet (Xiang et al., 2021), VoxNet
(Maturana and Scherer, 2015), PointNet++ (Qi et al., 2017b), and
PL-Net3D (Mukhaimar et al., 2019b) are shown in Table 1. The classi
fication accuracy on ModelNet40 when using “PointNet (vanilla)” with
max pooling reaches 87%, while when using TQ, HS, and RN pooling
operations, the classification accuracy reaches 83.7%, 83.7%, and
81.6% respectively. When points normal are used, the classification
accuracy for those pooling operations increases by 2-3%. The classifi
cation accuracy on ScanObjectNN for max, TQ, HS, and RN reaches 82%,
74%, 79%, and 76% respectively. However using points normal in
creases the classification accuracy of TQ, HS, and RN to 83%, 82%, and
81.2% respectively. When using the ShapeNet dataset and points
normal, the classification accuracy for max, TQ, HS, and RN reaches
82%, 80.3%, 79%, and 76% respectively.

As can be seen from Table 1, the performance of the proposed

pooling operations is comparable to state-of-art methods such as
PointCNN, CurveNet, and PointNet++. The slightly lower accuracy on
clean datasets is compensated by the robustness to different data cor
ruptions and perturbations as will be shown next.

Table 2 shows the classification accuracy when training was per
formed on ModelNet40 and when testing was done on ScanObjectNN
(OBJ) test set. The first set of results was taken from Uy et al. (2019),
while the last four rows show the classification accuracy of PointNet
vanilla with the different pooling operations. The results show that
mode pooling (TQ, RN, and HS) has higher classification accuracy than
max pooling. The results also show that when training on CAD models
and testing on real-world data, mode pooling generalizes better than the
other compared networks.

Table 3 shows the testing and training times, and the used GPU
memory for the PointNet with different pooling operations including
max, RANSAC, histogram, and Truncated Quadratic (TQ). For compar
ison, the feature map (shown by an orange block in Fig. 1A) dimensions
for all pooling operations were set to ‘10× 1024× 2048’ and ‘10×

512× 512’ for the sizes of the batch, number of points, and number of
features, respectively. For RANSAC, the number of hypotheses m was set
to 0.2 of the total number of points. With a such number of hypotheses,
and for a ‘10× 512× 512’ tensor, 4Gb of GPU memory was used to train
the network. The training time for one epoch was less than a minute,
while its testing time was only 7 seconds. TQ requires only 0.7Gb of GPU
memory and a much longer training time. For a tensor with a size of
‘10× 1024× 2048’, looping was required to use RANSAC on a 12GB
GPU, which affected both the training and testing times. Histogram only
required 9 seconds for training one epoch and 3 seconds to finish testing,
almost 100 times faster than TQ. The testing and training speeds are as
fast as using max pooling. These results show that histogram pooling is
significantly faster than the other robust approaches and can replace
max pooling without sacrificing speed.

4.4. Classification robustness to outliers

In this section, we test the robustness of the proposed pooling op
erations against outliers. Visual data often contain outliers as there are
imperfections in the scanning methods or processing pipelines such as
the multi-view reconstruction of 3D models. An example of those out
liers is the background elements in the ScanObjectNN dataset. We
examined the effect of outliers on the classification accuracy of different
techniques, and in particular their remaining influence after applying
different pooling operations.

We considered two outliers scenarios, uniformly distributed outliers,
and structured outliers (pseudo). In the first scenario, outliers were
simulated by adding uniformly distributed points in the unit cube to the
ModelNet40 test dataset, with ratios varying from 0 to 50% of the total
number of object’s points. We present the results of our experiments
with added outliers in Fig. 5. The tested models are Oct-net, Pl-Net3D,
and PoinNet (vanilla) with several pooling operations including histo
gram, RANSAC, and Truncated quadratic. We test more methods in the

Table 1
The classification accuracy on ModelNet40, ScanObjectNN, and ShapeNet
datasets.

Method Input MN40 SC SHPNT

PL-Net3D 86.6 70 78
VoxNet 86 80.9 80
PointNet 89.2 82 82.3
DGCNN 92.2 81 82.3
CurveNet 93.8 85 83.9
PointNet+ Points 91.8 85 83.9
PointCNN 92 88 83
PointNet* + Max 87 82 81.5
PointNet* + TQ 83.7 74 78.0
PointNet*+HS (ours) 83.7 79 77.7
PointNet*+RN (ours) 81.6 76 77.9
PointNet* + Max Points 88.6 82 83.7
PointNet*+TQ & 87.7 83 82.3
PointNet*+HS (ours) normals 85.2 82 80.3
PointNet*+RN (ours) 84.8 81.2 81.2

* PointNet vanilla, + indicates the used pooling operation.

Table 2
The classification accuracy when training on
ModelNet40 and testing on ScanObjectNN.

Method OBJ

3DmFV 30.9
PointNet 42.3
SpiderCNN 44.2
PointNet+ 43.6
DGCNN 49.6
PointCNN 32.2
HS (ours) 50.2
MAX 47.1
RN (ours) 48.6
TQ 50.5

A. Mukhaimar et al.

Intelligent Systems with Applications 17 (2023) 200162

6

appendix.
Fig. 5 shows that the classification accuracy of PointNet with the max

pooling drops significantly as outlier ratio increases. Max pooling selects
outliers instead of the original object points, as shown in Fig. 1, because
outliers are the furthest points from the object center (maximum radius)
and that causes PointNet to miss-classify. However, the proposed pool
ing operations look for data clusters/dense areas that represent the ob
ject points and as such, the proposed framework is not affected by
outliers. This point is highlighted in Fig. 1C.

TQ pooling scored a classification accuracy of 40% at 50% outliers
ratio, while histogram pooling achieved significantly better results with
70% classification accuracy at the same outliers ratio. The performance
of histogram pooling in terms of robustness to outliers is similar to Pl-
Net3D, with the advantage of being much faster. The inference time
for Pl-Net3D is 2.7s, while it is 0.001s for our method (about 2000 times
faster). The classification accuracy of using Oct-Net and RANSAC
pooling at 50% outliers drops to around 60%.

Other methods such as PointNet++, KPConv, and CurveNet showed
similar behavior to PointNet where the classification accuracy drops to
less than 10% at 50% outliers. We show the classification accuracy of
PointNet++, KPConv, and CurveNet in the appendix.

In the second outliers scenario, we test the robustness of our pro
posed pooling operations on pseudo (structure) outliers. For this
experiment, we use the ScanObjectNN dataset. The ScanObjectNN
dataset contains scenes that have the point cloud of an object in addition
to the point cloud of background elements or parts of nearby objects.
When training, we only use the point clouds of objects. When testing, we
use the point cloud of objects and the point cloud of background and
parts of nearby objects as outliers (Fig. 4e). The results are shown in
Table 4. The total number of outlier points reported in the dataset

reaches more than 80% of the original object points in some scenarios.
We also augment all points with small jittering. The results show that the
classification accuracy using the max, HS, TQ, and RN pooling opera
tions reaches 61%, 67%, 59%, and 62% respectively, while The classi
fication accuracy of state-of-art methods such as KPCONV, PointCNN, or
Curvenet drops to around 50%. The results show that both RN and HS
pooling operations achieve better performance than compared methods.

Fig. E.1 in the appendix shows the confusion matrices for PointNet
with the HS and max pooling operations. Comparing those figures show
that the overall classification accuracy when using all outliers mainly
drops because of the low classification accuracy of two objects, chairs,
and tables. The two objects have a large number of outliers ratio (ranges
between 50% to 70%) which could be the reason for the miss-
classification, another reason is the high similarity between some ob
jects when outliers exist (i.e. table and desk).

4.5. Classification robustness to noise

In this section, we test the robustness of the proposed pooling op
erations against a noisy point cloud. We introduce Gaussian noise to the
ModelNet40 test set and report the classification accuracy at different
noise levels in Fig. 6. The added noise standard deviations range from
2% to 10% as seen in the figure. TQ and histogram pooling methods
outperformed all the other methods. All TQ, Octnet, HS, and PL-Net3D
showed similar robustness for noise levels up to 0.06 with RN robust
ness being slightly less. However, TQ, followed by HS and RN, showed
better robustness at later noise levels. TQ scored classification accu
racies of 81% and 76% at 0.06 and 0.1 noise levels respectively, while
histogram pooling scored classification accuracies of 80% and 70% at
0.06 and 0.1 noise levels respectively. Pl-Net3D scored 62% classifica
tion accuracy at 0.1 noise level, followed by Oct-Net with 59%. RANSAC

Table 3
Pooling operations versus GPU usage, testing and training times for two tensor
sizes.

Pooling GPU usage Tensor size Testing time Train time (one epoch)

RN 4Gb 7 s 38 s
TQ 0.7Gb 10× 1 m 7 m
HS 0.5Gb 512× 512 1 s 5 s
Max 0.5Gb 1 s 8 s
RN 12Gb 2 m 9 m
TQ 1.5Gb 10× 2 m 15 m
HS 2Gb 1024× 2048 3 s 9 s
Max 2Gb 3 s 9 s

RN: RANSAC, TQ: truncated quadratic, HS: histogram.

Fig. 5. Classification accuracy versus outlier ratio.

Table 4
Classification accuracy on ScanObjectNN (OBJ)
for objects with pseudo outliers (BG).

Method OBJ +BG

PL-Net3D 48
PointCNN 43
CurveNet 49
DGCNN 46
PointNet+ 49
HS 67
MAX 61
RN 62
TQ 59

Fig. 6. Classification accuracy versus noise.

A. Mukhaimar et al.

Intelligent Systems with Applications 17 (2023) 200162

7

performance against noise also outperforms Pl-Net3D and Oct-Net with
a classification accuracy of 66% at 0.1 noise level. Other methods such
as PointNet++, KPConv, and CurveNet showed deteriorated perfor
mance against noise where the classification accuracy dropped to less
than 10% at 10% noise.

4.6. Classification robustness to random point dropout

In this section, we report the robustness of the proposed pooling
operations against random point dropout. We performed random point
dropout to the ModelNet40 testing set with values ranging from 50% to
90%. The classification performance of different methods is shown in
Fig. 7. PointNet with max pooling showed the highest robustness up to
70% random point dropout, however using the TQ pooling showed the
highest robustness at the higher percentages, followed by RANSAC and
histogram pooling. Both TQ and histogram methods only drop by 1 1.5%
at 50% points dropout, while Pl-Net3D drops by 2.5%. OctNet perfor
mance deteriorates rapidly after 50% dropout. The classification accu
racy of PointNet++, KPConv, and CurveNet was less than 40% at 90%
missing points.

4.7. Segmentation robustness to outliers

In this section, we report the robustness of the proposed pooling
operations against outliers for the segmentation task. We corrupted the
testing part of the ShapeNet dataset with different ratios of outliers to
test the performance of PointNet with different pooling operations.
Table 5 shows the results of mean IoU (mIoU) and per-category scores
(note that mIoU is calculated only for inliers) of PoinNet and some state-
of-art methods. When there are no outliers, histogram pooling achieves
78% mIoU, max pooling scores 83%, PointCNN, DGCNN, and KPCONV
score 85%, CurveNet scores 86%, and finally, RANSAC and TQ score
82%. However, when outliers are added, mIoU drops significantly for
most methods. In contrast, HS, RN, and TQ mIoU almost remain constant
for different outlier ratios. Comparing the results for TQ, HS, and RN
show that RN only drops by 2% at 50% outliers, while TQ drops by 12%
at the same outliers level. HS achieves better robustness than TQ at high
outliers levels and only drops by 4% at 50% outliers. While TQ shows
good robustness up to 30% outliers compared to HS. RN shows similar
Robustness to TQ for outlier levels below 30% but overcomes both HS at
TQ at higher outlier levels.

The above results indicate that the global features generated by
histogram pooling carried robust information about the shape of the
object. Unlike max pooling, histogram, RANSAC, and TQ pooling

operations enabled the decoder part of the network to segment the ob
jects correctly. Fig. 8 shows instances of segmented objects with outliers.
As can be seen, segments with histogram pooling are almost similar to
the original object segments, while with max pooling, many segments
are misclassified.

Table 6 shows the testing time for the different pooling operations.
Comparing both Tables 5 and 6 show that both HS and RN are extremely
faster than TQ and are able to achieve higher robustness at high outlier
levels while having similar robustness to TQ at lower outliers levels.

4.8. Normals estimation

In this section, we report the robustness of the proposed pooling
operations against noise for the points normal estimation task. We
trained the segmentation networks of some state-of-art methods to
predict the point’s normal vector (the last layer was modified to predict
the normal vector for each point). We used the absolute value of cosine
distance as the loss, and we used the ModelNet40 dataset to evaluate the
methods. We perturb the point cloud with different noise levels, and we
report the average cosine-distance error in Table 7.

Noise has a big influence on any normal estimation process, thus it is
essential to validate the robustness of any method on this type of data
perturbation. Table 7 shows the robustness of DGCNN, CurveNet, and
PoinNet with Max, TQ, RN, and HS pooling operations. PoinNet, in
general, shows better robustness than other compared method, and the
use of TQ, RN, and HS help achieve better results. HS shows better
robustness at high noise levels, while RN, followed by TQ, shows better
robustness at low noise levels.

5. Sensitivity analysis

In this section, we evaluate the performance of the proposed pooling
layer as part of the PointNet and DGCNN methods. The study also in
cludes the sensitivity analysis of the histogram bin size on the classifi
cation accuracy. In these experiments, the data is corrupted by 10%
additive noise and 50% outliers.

The performance of the histogram pooling layer within different
network structures is shown in Table 8. The first row shows the classi
fication accuracy of the PointNet when it uses the two transformation
networks that are designed to estimate rotation and translation -
referred to as PointNet(1). The last two rows show the classification
accuracy of PointNet vanilla (PointNet without transformation net
works) when the histogram pooling layer is used - referred to PointNet
(2). It is somewhat surprising to note that the classification accuracy of
PointNet decreases by using transformation networks. The trans
formation networks appear to be overly sensitive to data perturbation
and corruption. The last row shows that using points normal, in PointNet
(2) achieves higher classification accuracy for clean data, while its
robustness against outliers and noise is less than the case when it uses
point coordinates.

The second row shows the classification accuracy of the original
DGCNN architecture, while the third row shows the classification ac
curacy when the histogram pooling layer is used - referred to as DGCNN
(1). The method showed higher robustness to outliers compared to the
original DGCNN. In the fourth row, we modified the convolution layers
of the DGCNN(1) to include only neighboring points within a certain
radius (0.25 for the first convolution layer, and 2 for the rest of the
convolution layers). This is called DGCNN(2) and its robustness to data
perturbation and corruption has enhanced, especially for noise. In the
fifth row, we modified DGCNN to include only two convolution layers,
which is called DGCNN(3). The results show that using only two
convolution layers achieves the highest robustness to outlier corruption
and noise perturbation.

Fig. 9 shows the classification accuracy of the histogram pooling
under several inlier thresholds (the threshold shown in the figure is half
of the bin size). As can be seen from the figure, setting the threshold Fig. 7. Classification accuracy versus missing points.

A. Mukhaimar et al.

IntelligentSystemswithApplications17(2023)200162

8

Table 5
Segmentation results on ShapeNet part dataset. We compare PointNet vanilla with max, RANSAC, TQ and histogram pooling. The results show the importance of using robust pooling over max.

outl % Method mean Airo Bag Cap Car Chair Ear phone Guitar Knife Lamp Laptop Motor bike Mug Pistol Rocket Skate board Table*

PointCNN 0.85 0.83 0.83 0.86 0.81 0.90 0.75 0.91 0.88 0.84 0.96 0.74 0.95 0.83 0.62 0.79 0.82
0 DGCNN 0.85 0.83 0.85 0.76 0.90 0.91 0.75 0.91 0.87 0.82 0.96 0.64 0.95 0.81 0.59 0.75 0.82

KPCONV 0.85 0.83 0.85 0.85 0.80 0.90 0.77 0.91 0.88 0.79 0.96 0.75 0.96 0.86 0.62 0.80 0.83
CurveNet 0.86 0.84 0.82 0.90 0.80 0.91 0.79 0.91 0.88 0.84 0.96 0.63 0.95 0.80 0.57 0.76 0.83
max 0.83 0.83 0.72 0.80 0.74 0.89 0.68 0.91 0.84 0.80 0.95 0.64 0.90 0.82 0.53 0.71 0.81
HS 0.78 0.77 0.62 0.70 0.62 0.84 0.67 0.88 0.80 0.75 0.93 0.41 0.84 0.70 0.47 0.61 0.77
RN 0.82 0.79 0.75 0.74 0.68 0.87 0.71 0.90 0.84 0.79 0.94 0.56 0.89 0.78 0.50 0.69 0.80
TQ 0.82 0.81 0.73 0.72 0.71 0.88 0.67 0.90 0.82 0.78 0.95 0.60 0.92 0.79 0.49 0.70 0.81
PointCNN 0.12 0.10 .04 .04 0.05 0.21 0 0.03 0.20 0.05 0.09 0.05 0.01 0 0 0.03 0.15

5 DGCNN 0.53 0.50 0.55 0.68 0.40 0.56 0.32 0.47 0.41 0.51 0.89 0.23 0.86 0.42 0.24 0.30 0.55
KPCONV 0.76 0.79 0.80 0.32 0.76 0.88 0.72 0.72 0.71 0.77 0.27 0.75 0.95 0.71 0.45 0.65 0.72
CurveNet 0.25 0.11 0.00 0.00 0.07 0.42 0.13 0.00 0.00 0.47 0.00 0.08 0.10 0.01 0.00 0.16 0.26
max 0.37 0.12 0.45 0.27 0.10 0.64 0.34 0.13 0.60 0.18 0.43 0.25 0.74 0.07 0.15 0.15 0.40
HS 0.78 0.76 0.65 0.72 0.62 0.84 0.69 0.88 0.79 0.75 0.93 0.41 0.83 0.71 0.46 0.60 0.77
RN 0.81 0.79 0.71 0.76 0.68 0.87 0.71 0.89 0.83 0.79 0.95 0.56 0.90 0.79 0.53 0.71 0.80
TQ 0.82 0.80 0.72 0.75 0.70 0.88 0.67 0.90 0.83 0.78 0.95 0.57 0.92 0.81 0.50 0.69 0.80
PointCNN 0.09 0.07 .04 .04 0.06 0.11 0 0.11 0.30 0.05 0 0.05 0.01 0 0 0.06 0.13

20 DGCNN 0.44 0.40 0.52 0.65 0.33 0.44 0.32 0.45 0.44 0.51 0.75 0.17 0.75 0.37 0.26 0.28 0.42
KPCONV 0.50 0.66 0.62 0.18 0.53 0.73 0.54 0.40 0.45 0.73 0.15 0.60 0.85 0.38 0.27 0.48 0.20
CurveNet 0.18 0.1 0.00 0.00 0.06 0.24 0.12 0.00 0.00 0.49 0.00 0.06 0.02 0.01 0.00 0.16 0.17
max 0.30 0.10 0.45 0.17 0.14 0.43 0.38 0.05 0.64 0.08 0.40 0.17 0.54 0.09 0.17 0.14 0.37
HS 0.78 0.77 0.64 0.71 0.61 0.84 0.68 0.88 0.78 0.75 0.93 0.41 0.84 0.72 0.46 0.60 0.77
RN 0.81 0.78 0.71 0.74 0.69 0.87 0.65 0.89 0.83 0.77 0.95 0.55 0.91 0.80 0.49 0.68 0.80
TQ 0.81 0.79 0.75 0.81 0.70 0.88 0.76 0.89 0.81 0.80 0.94 0.56 0.91 0.80 0.49 0.67 0.80
HS 0.77 0.74 0.62 0.69 0.59 0.84 0.67 0.87 0.77 0.75 0.92 0.40 0.83 0.72 0.46 0.58 0.77

30 RN 0.81 0.79 0.71 0.75 0.67 0.87 0.67 0.88 0.83 0.79 0.94 0.54 0.89 0.79 0.54 0.70 0.80
TQ 0.79 0.76 0.73 0.78 0.66 0.86 0.60 0.89 0.83 0.74 0.93 0.49 0.91 0.80 0.44 0.62 0.78
HS 0.76 0.72 0.57 0.70 0.56 0.84 0.66 0.87 0.75 0.74 0.92 0.37 0.83 0.71 0.50 0.57 0.77

40 RN 0.80 0.786 0.70 0.74 0.66 0.87 0.73 0.87 0.83 0.79 0.95 0.50 0.88 0.78 0.53 0.69 0.80
TQ 0.76 0.70 0.72 0.73 0.62 0.84 0.56 0.88 0.83 0.71 0.92 0.47 0.90 0.78 0.42 0.55 0.73
HS 0.74 0.67 0.57 0.66 0.53 0.83 0.68 0.86 0.70 0.74 0.91 0.38 0.82 0.68 0.49 0.55 0.75

50 RN 0.79 0.76 0.70 0.74 0.64 0.86 0.66 0.84 0.82 0.77 0.93 0.49 0.87 0.77 0.56 0.65 0.77
TQ 0.70 0.62 0.72 0.73 0.57 0.80 0.52 0.87 0.81 0.68 0.91 0.47 0.89 0.73 0.42 0.50 0.65

A
. M

ukhaim
ar et al.

Intelligent Systems with Applications 17 (2023) 200162

9

between 0.13-0.15 provides the highest robustness to outliers, while the
classification accuracy of clean and noisy data remains constant. RN
threshold values are shown in Table F.1 in the appendix.

6. Limitation and future work

The above results show that the robustness of PoinNet was

Fig. 8. Four samples of ShapeNet part dataset showing the original objects, the same objects corrupted by outliers, PoinNet with max pooling segmentation results,
and finally PoinNet with histogram pooling segmentation results (ours).

Table 6
Pooling operations versus GPU usage and testing time for part segmentation.

Pooling GPU usage Tensor size Testing time (s)
TQ

3.1 Gb 16× 2048× 2048 2.34

RN 8.9 Gb 0.039
MAX 1.9 Gb 0.003
HS 2.4 Gb 0.022

Table 7
Normal estimation error at different noise levels. Error is calculated based on the
average cosine distance.

Method Noise levels

0.002 0.02 0.04 0.06 0.08 0.1 0.2

CurveNet 0.492 0.735 0.827 0.863 0.883 0.897 0.926
DGCNN 0.671 0.718 0.799 0.83 0.85 0.862 0.9
Max 0.313 0.479 0.607 0.687 0.736 0.764 0.833
TQ 0.36 0.461 0.559 0.628 0.678 0.718 0.818
RN 0.36 0.458 0.557 0.629 0.685 0.724 0.808
HS 0.459 0.504 0.567 0.62 0.663 0.697 0.794

Table 8
classification performance on ModelNet40 with histogram pooling, clean: clean
objects, outl: objects with 50% outliers, noise: objects with 10% noise

Method Input clean outl noise
PointNet(1) 69 58 63

DGCNN p 92 5 5
DGCNN(1) 84 39 3
DGCNN(2) 85 51 39
DGCNN(3) 85 70 63
PointNet(2) 84 69 70

P+n 85 60 13

Fig. 9. Classification accuracy versus histogram threshold/bin size.

Table D.1
The classification accuracy on the clean ModelNet40 (MN40), the ModelNet40
perturbed with 0.1 Gaussian noise, the ModelNet40 corrupted with 50% out
liers, and 90% missing points, respectively.

Method Input MN40 OUT Noise Dropout

PL-Net3D 86.6 70 60 50
PointNet 89 4 27 57
DGCNN 92.2 5 5 18
PointNet+ Points 91.8 2 2 30
PointCNN 91 20 4 7
KPConv 90 4 4 12
CurveNet 93.8 4 5 26
RSCNN 80.5 72 63 58
Welsch 82.4 37 69 68
Huber 81.8 4 71 71
TQ 83.7 51 73 75
HS (ours) 83.7 69 70 69
RN (ours) 81.6 60 66 69

A. Mukhaimar et al.

Intelligent Systems with Applications 17 (2023) 200162

10

significantly improved by using RANSAC or histogram based pooling
layers. PointNet with any of these pooling layers can tolerate a large
number of outliers and noise levels compared to the network with the
max pooling layer. The first shortcoming of the proposed robust pooling
operations is the requirement of setting their thresholds. However, this
paper already provides the threshold values for different tasks such as
classification and segmentation. Another shortcoming of using RANSAC
is that the memory requirement grows rapidly with data size, which
could limit its usage in applications with large point cloud datasets. In
addition to the above shortcomings, the proposed pooling layers are
only suitable for PointNet-based architectures or architectures with
global pooling operations. Despite those shortcomings, both methods
showed promising results and can open a window for future improve
ment in this area.

Future work includes using the proposed pooling operations in other
tasks such as point cloud registration. Also, future work might address
the above shortcomings by modifying the proposed pooling operations
to be included in any network architecture, not only in PointNet-based
architectures.

7. Conclusion

We presented two pooling operations that are robust to data cor
ruption. The proposed pooling layers use histogram and RANSAC al
gorithm to look for clusters in data as clusters are indicatives of models.
We tested those pooling layers with frameworks such as Point-based and

graph-based neural networks that have a global pooling layer such as
PointNet and DGCNN. For the task of classification, our results showed
that the robustness of the proposed frameworks is significantly higher
compared to max pooling. When comparing our proposed pooling layers
with robust state-of-the-art methods such as M-estimators, our histo
gram pooling was much faster and significantly more robust to outliers,
with comparable robustness to noise and random point dropout.
Compared to PL-Net3D, our histogram pooling was also significantly
faster and more robust to noise and random point dropout, while we
achieve similar robustness to outliers. For the tasks of part segmentation
and normals estimation, both RN and HS showed comparable results to
TQ with better performance in some cases, with the advantage of being
much faster.

CRediT authorship contribution statement

Ayman Mukhaimar: Investigation, Methodology, Writing – review
& editing, Conceptualization. Ruwan Tennakoon: Supervision, Writing
– review & editing, Conceptualization. Reza Hoseinnezhad: Supervi
sion, Writing – review & editing, Conceptualization. Chow Yin Lai:
Supervision, Writing – review & editing, Conceptualization. Alireza
Bab-Hadiashar: Supervision, Writing – review & editing, Project
administration, Conceptualization.

Table F.1
The Classification accuracy for different RN threshold values. We report the
classification accuracy on the clean/original ModelNet40 (MN40), the Mod
elNet40 perturbed with 0.1 Gaussian noise (noise), and the ModelNet40 cor
rupted with 50% outliers (outl).

Threshold MN40 outl noise

0.05 80.5 64 63
0.11 82.3 60 64
0.13 80.9 59 64
0.143 81.6 60 66
0.148 81.2 58 62
0.168 82.4 61 64
0.2 82 61 68
0.25 82 61 65
0.6 81.5 47 71

Fig. C.1. Difference in pooling output between features of the clean (x) and its
outlier corrupted point clouds (x‘‘) of an object for mode, max, and median
pooling operations.

Fig. E.1. The confusion matrix of the ScanObjectNN dataset for PoinNet with
(a) histogram pooling for clean objects, (b) histogram pooling for objects with
background points, (c) max pooling for clean objects, and (d) max pooling for
objects with background points.

Table F.2
The Classification accuracy for different TQ threshold values. We report the
classification accuracy on the clean/original ModelNet40 (MN40), the Mod
elNet40 perturbed with 0.1 Gaussian noise (noise), and the ModelNet40 cor
rupted with 50% outliers (outl). We also show the time, in minutes, required to
train one epoch.

Threshold MN40 outl noise Time

0.2 5 04 5 120
0.5 5 04 5 120
1 83.7 51 73 30
1.5 83 27 77 20
2 81.5 9 74 13

A. Mukhaimar et al.

Intelligent Systems with Applications 17 (2023) 200162

11

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Appendix A. Density approximate and marginalization

Consider a D-dimensional feature space X ⊆ RD where D is the number of features. Denoting the joint density of the features by p(x), let‘s assume it
is approximated by a Gaussian mixture:

p(x) =
∑M

m=1
wmN

(

x; μ(m) ,
∑(m)
)

(A.1)

where wm‘s are normalized importance weights, i.e.
∑M

m=1wm = 1, and μ(m) and
∑(m) are the mean vector (Dx1) and covariance matrix (DxD) for the

mth Gaussian component whose density is given by:

N

(

x; μ(m) ,
∑(m)
)

=
exp
(
− 0.5

(
x − μ(m)

)T∑(m)
(
x − μ(m)

))

[̅̅̅̅̅
2π

√
∗ det

(∑(m)
)]D (A.2)

Let’s denote the elements of the mean and covariance of the mth Gaussian component as :

μ(m) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

μ(m)

1

μ(m)

2

...

μ(m)

D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
∑(m)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2(m)

1 σ(m)

12 ... σ(m)

1D

σ(m)

21 σ2(m)

2 ... σ(m)

2D

...

σ(m)

D1 σ(m)

D2 ... σ2(m)

D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.3)

It has been proven that the marginal distribution over a subset of the features is also Gaussian with its mean and covariance being the original from
which only the rows (and the columns for

∑
) corresponding to the feature subset are retained and the rest are removed.1

Hence, for any i= 1,..., D, the uni-variate marginal density of the math component is N(xi; μ(m)

i , σ(m)

i) and

p(xi) ≈
∑M

m=1
wmN

(
xi; μ(m)

i , σ2(m)

i

)
(A.4)

Appendix B. Maxima of joint and marginal densities

Lets assume that the first component m = 1 of the Gaussian mixture in Eq. (A.1) is dominant; i.e. ∀m > 1 ; wm >> w1.
We assume that such a dominance leads to the location of the peak of the first component being the location of the overall peak, i.e., the MAP

estimate:

x̂MAP = μ(1) =

⎡

⎢
⎢
⎣

μ1
1

...

μ1
D

⎤

⎥
⎥
⎦ (B.1)

with the above assumption (dominance of the first Gaussian component), from Eq. (A.4), the peak of the point of the marginal density will be at the
mean of the first Gaussian component too, i.e. at μ(1)

i . Thus, the MMAP estimate, constructed by stacking the μ(1)
i values will equal the MAP estimate.

Appendix C. Robustness of mode pooling

To compare the robustness of the max, mean, median, and mode in pooling operations, we first randomly selected 50 (out of 2048) feature vectors
(of size 1024) of the feature map (shown in Fig. 1A by the orange box). The experiment was repeated for both a clean and an object corrupted with 50%
outliers. The above-mentioned pooling operations were applied to both feature collections. Pooling outputs of the clean object were subtracted from
the outputs of the corrupted object and the differences were plotted as shown in Fig. C.1. Average and median pooling were very similar and the
median is only plotted. The figure shows that mode pooling has the lowest output difference between clean and corrupted data, indicating significant
robustness to the presence of outliers.

1 https://math.stackexchange.com/questions/3832119/prove-that-the-distribution-of-marginal-vectors-are-also-multivariate-normal/3832137#3832137

A. Mukhaimar et al.

https://math.stackexchange.com/questions/3832119/prove-that-the-distribution-of-marginal-vectors-are-also-multivariate-normal/3832137#3832137

Intelligent Systems with Applications 17 (2023) 200162

12

Appendix D. The classification accuracy on ModelNet40 with the presence of data perturbation and corruption

We compare the robustness of several state-of-art methods to data corruptions in Table D.1. The table shows that several methods such as DGCNN,
PointNet++, PoinctCNN, and CurveNet have low robustness to data corruption. The table also shows that Welsch and Huber Gould et al. (2019) have
low robustness to outliers, while RSCNN Mukhaimar et al. (2022) and PL-Net3D show similar robustness to TQ, RN, and HS. Overall, HS shows the best
performance in terms of robustness to outliers, noise, and missing points.

Appendix E. The confusion matrix of the ScanObjectNN dataset

We show the confusion matrix of the ScanObjectNN dataset for PoinNet with histogram and max pooling in Fig. E.1. Comparing both figures for
objects with background data indicates that both methods misclassify tables to be desks due to the high similarity between both objects when
background data exists.

Appendix F. Classification accuracy versus pooling threshold

Tables F.1 and F.2 show the classification accuracy for the RANSAC and TQ pooling operations for several thresholds, respectively. The classi
fication accuracy was reported for the ModelNet40 dataset. As shown in Table F.1, the classification accuracy does not vary much by changing the RN
threshold between 0.05-0.25. However, setting the threshold to higher values, such as 0.6, increases the robustness to noise, while reducing the
robustness to outliers. Similar behavior is also observed when RANSAC is used for geometric fitting, where increasing the threshold values means that
RANSAC can tolerate more noise levels and at the same time increases the number of outliers selected (wrongly). Table F.2 shows the classification
accuracy and the time required to train one epoch for different TQ threshold values. Reducing the threshold values increases the training time. This is
in contrast to RN training time, which is not dependant on its threshold value (the training time for one epoch using RN is around 15 minutes for the
different threshold values). Additionally, the results show that using lower TQ threshold values causes the optimizer to stuck in local minima, and thus
no solution was found (the classification accuracy is almost zero).

References

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S.,
Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015). ShapeNet: An
information-rich 3D model repository. Technical Report. Stanford University —
Princeton University — Toyota Technological Institute at Chicago. arXiv preprint
arXiv:1512.03012 [cs.GR].

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S.,
Savva, M., Song, S., Su, H., et al., 2015b. ShapeNet: An information-rich 3D model
repository. arXiv preprint arXiv:1512.03012.

Chen, C., Li, G., Xu, R., Chen, T., Wang, M., & Lin, L. (2019). ClusterNet: deep
hierarchical cluster network with rigorously rotation-invariant representation for
point cloud analysis. The IEEE conference on computer vision and pattern recognition
(CVPR).

Esteves, C., Allen-Blanchette, C., Makadia, A., & Daniilidis, K. (2018). Learning SO(3)
equivariant representations with spherical CNNs. Proceedings of the European
conference on computer vision (ECCV) (pp. 52–68).

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6), 381–395.

Gould, S., Hartley, R., Campbell, D., 2019. Deep declarative networks: A new hope. arXiv
preprint arXiv:1909.04866.

Klokov, R., & Lempitsky, V. (2017). Escape from cells: Deep Kd-networks for the
recognition of 3D point cloud models. Proceedings of the IEEE international conference
on computer vision (pp. 863–872).

Leroy, A. M., Rousseeuw, P. J., 1987. Robust regression and outlier detection (RROD).
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., & Chen, B. (2018). PointCNN: Convolution on X-

transformed points. Advances in Neural Information Processing Systems, 31, 820–830.
Maturana, D., & Scherer, S. (2015). VoxNet: A 3D convolutional neural network for real-

time object recognition. 2015 IEEE/RSJ International conference on intelligent robots
and systems (IROS) (pp. 922–928). IEEE.

Mukhaimar, A., Tennakoon, R., Lai, C. Y., Hoseinnezhad, R., & Bab-Hadiashar, A. (2019).
Comparative analysis of 3D shape recognition in the presence of data inaccuracies.
2019 IEEE International conference on image processing (ICIP) (pp. 2471–2475). IEEE.

Mukhaimar, A., Tennakoon, R., Lai, C. Y., Hoseinnezhad, R., & Bab-Hadiashar, A. (2019).
PL-Net3D: Robust 3D object class recognition using geometric models. IEEE Access,
7, 163757–163766.

Mukhaimar, A., Tennakoon, R., Lai, C. Y., Hoseinnezhad, R., & Bab-Hadiashar, A. (2022).
Robust object classification approach using spherical harmonics. IEEE Access, 10,
21541–21553.

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). PointNet: Deep learning on point sets for
3D classification and segmentation. Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 652–660).

Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). PointNet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing
systems (pp. 5099–5108).

Ramasinghe, S., Khan, S., Barnes, N., & Gould, S. (2019). Representation learning on unit
ball with 3D roto-translational equivariance. International Journal of Computer Vision,
1–23.

Riegler, G., Osman Ulusoy, A., & Geiger, A. (2017). OctNet: Learning deep 3D
representations at high resolutions. Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 3577–3586).

Shi, B., Bai, S., Zhou, Z., & Bai, X. (2015). DeepPano: Deep panoramic representation for
3-D shape recognition. IEEE Signal Processing Letters, 22(12), 2339–2343.

Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., & Dickinson, S. (2008).
Retrieving articulated 3-D models using medial surfaces. Machine Vision and
Applications, 19(4), 261–275.

Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-view convolutional
neural networks for 3D shape recognition. Proceedings of the IEEE international
conference on computer vision (pp. 945–953).

Uy, M. A., Pham, Q.-H., Hua, B.-S., Nguyen, T., & Yeung, S.-K. (2019). Revisiting point
cloud classification: A new benchmark dataset and classification model on real-
world data. Proceedings of the IEEE/CVF international conference on computer vision
(pp. 1588–1597).

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., & Solomon, J. M. (2019).
Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics
(TOG), 38(5), 1–12.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3D ShapeNets:
A deep representation for volumetric shapes. Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1912–1920).

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3D ShapeNets:
A deep representation for volumetric shapes. Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1912–1920).

Xiang, B., Tu, J., Yao, J., & Li, L. (2019). A novel octree-based 3-D fully convolutional
neural network for point cloud classification in road environment. IEEE Transactions
on Geoscience and Remote Sensing.

Xiang, T., Zhang, C., Song, Y., Yu, J., & Cai, W. (2021). Walk in the cloud: Learning
curves for point clouds shape analysis. Proceedings of the IEEE/CVF international
conference on computer vision (pp. 915–924).

Yi, L., Kim, V. G., Ceylan, D., Shen, I.-C., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer, A., &
Guibas, L. (2016). A scalable active framework for region annotation in 3D shape
collections. ACM Transactions on Graphics (ToG), 35(6), 1–12.

Zhang, K., Hao, M., Wang, J., de Silva, C. W., Fu, C., 2019a. Linked dynamic graph CNN:
Learning on point cloud via linking hierarchical features. arXiv preprint arXiv:1
904.10014.

Zhang, Z., Hua, B.-S., Rosen, D. W., Yeung, S.-K., 2019b. Rotation invariant convolutions
for 3D point clouds deep learning. arXiv preprint arXiv:1908.06297.

Zhou, Y., & Tuzel, O. (2018). VoxelNet: End-to-end learning for point cloud based 3D
object detection. Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 4490–4499).

A. Mukhaimar et al.

http://arxiv.org/abs/arXiv:1512.03012
http://arxiv.org/abs/arXiv:1512.03012
http://arxiv.org/abs/arXiv:1512.03012
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0002
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0002
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0002
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0002
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0003
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0003
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0003
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0004
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0004
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0004
http://arxiv.org/abs/arXiv:1909.04866
http://arxiv.org/abs/arXiv:1909.04866
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0005
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0005
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0005
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0006
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0006
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0007
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0007
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0007
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0008
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0008
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0008
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0009
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0009
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0009
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0010
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0010
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0010
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0011
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0011
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0011
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0012
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0012
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0012
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0013
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0013
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0013
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0014
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0014
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0014
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0015
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0015
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0016
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0016
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0016
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0017
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0017
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0017
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0018
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0018
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0018
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0018
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0019
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0019
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0019
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0020
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0020
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0020
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0021
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0021
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0021
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0022
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0022
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0022
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0023
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0023
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0023
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0024
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0024
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0024
http://arxiv.org/abs/arXiv:1904.10014
http://arxiv.org/abs/arXiv:1904.10014
http://arxiv.org/abs/arXiv:1908.06297
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0025
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0025
http://refhub.elsevier.com/S2667-3053(22)00099-0/sbref0025

	Robust pooling through the data mode
	1 Introduction
	2 Related work
	3 Method
	3.1 Problem statement
	3.2 Histogram and RANSAC pooling

	4 Experiments
	4.1 Datasets
	4.2 Selected architectures
	4.3 Classification performance on ModelNet40, ShapeNet, and ScanObjectNN datasets
	4.4 Classification robustness to outliers
	4.5 Classification robustness to noise
	4.6 Classification robustness to random point dropout
	4.7 Segmentation robustness to outliers
	4.8 Normals estimation

	5 Sensitivity analysis
	6 Limitation and future work
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Appendix A Density approximate and marginalization
	Appendix B Maxima of joint and marginal densities
	Appendix C Robustness of mode pooling
	Appendix D The classification accuracy on ModelNet40 with the presence of data perturbation and corruption
	Appendix E The confusion matrix of the ScanObjectNN dataset
	Appendix F Classification accuracy versus pooling threshold
	References

