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Abstract: Quantification of the rod photoreceptor mosaic using adaptive optics scanning light
ophthalmoscopy (AOSLO) remains challenging. Here we demonstrate a method for deriving
estimates of rod density and rod:cone ratio based on measures of rod spacing, cone numerosity,
and cone inner segment area. Twenty-two AOSLO images with complete rod visualization were
used to validate this spacing-derived method for estimating density. The method was then used
to estimate rod metrics in an additional 105 images without complete rod visualization. The
spacing-derived rod mosaic metrics were comparable to published data from histology. This
method could be leveraged to develop large normative databases of rod mosaic metrics, though
limitations persist with intergrader variability in assessing cone area and numerosity.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Adaptive optics scanning light ophthalmoscopy (AOSLO) enables noninvasive, high-resolution,
in vivo characterization of the cone mosaic, both in healthy eyes and those with retinal pathology
[1]. Cones are relatively easily imaged using confocal (to visualize cone outer segments) and
split detection (to visualize cone inner segments) modalities [2,3]. With these tools, it is possible
to derive various quantitative metrics of the cone mosaic directly from AOSLO images (e.g.,
cone density, spacing, and regularity) [4,5]. There have been dozens of studies characterizing
cone metrics in a range of retinal diseases [1], and at multiple eccentricities [6,7]. Central to the
clinical advancement of these metrics as biomarkers is having robust normative data [7–11], as
well as detailed information on the sensitivity of various metrics [4]. While the cone mosaic has
been extensively analyzed with AOSLO, fewer studies have focused on the rod mosaic. Rods play
a significant role in retinal and neurological pathologies [12–14], are vulnerable to degeneration
with age [15–18], and are suggested as a therapeutic target in many forms of blindness [19].
Challenges associated with imaging the complete rod mosaic have hindered widespread in vivo
quantitative analysis of rod structure in normal and diseased eyes. Most of the information
available related to rod structure and topography has been completed through post-mortem
histology [20,21], which is inadequate for creating large normative databases that are critical
for the development and validation of rod biomarkers for monitoring disease progression and
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therapeutic response. As such, there is a need to establish accurate normative measurements of
the rod mosaic in vivo.

One of the first accounts of in vivo visualization of the healthy rod mosaic was completed
using an AO flood-illuminated system where multiple images were collected with visible and
near-infrared light sources (650 and 750 nm) at the same retinal location following a 10 second
exposure to a 550 nm light to bleach the retina [22]. Images were filtered to reduce diffraction
blur and deconvolved for enhanced image contrast prior to image registration and summation.
This provided partial visualization of the rod mosaic, which enabled derivation of rod and cone
modal spacing at each location [22]. More recently, AOSLO has been used to visualize the rod
mosaic in healthy and diseased retinae and determine rod spacing using the density recovery
profile [23], although direct rod counts were not feasible and rod spacing estimates in healthy eyes
were higher than expected based on prior histological studies. Rod visualization with AOSLO is
enhanced through the use of high speed imaging to mitigate image artifacts due to retinal motion
[24], averaging images over time [25,26], averaging images collected at varying depths of focus
[11], or use of a sub-Airy disc confocal pinhole (with or without an annular pupil illumination
mask) [25,27]. With an increased understanding of how to obtain high-resolution images of the
rod mosaic, it has been possible to quantify structural metrics across various retinal locations
in healthy eyes, including estimates of rod and cone density, as well as the rod:cone ratio, that
are comparable to histological studies [11,25]. AO systems that integrate both SLO and optical
coherence tomography may facilitate deeper characterization of the rod mosaic in healthy and
diseased retinae, although no quantitative metrics have been published [28].

Although rods outnumber cones by a 20:1 ratio in the human retina [20], several factors limit
reliable visualization of rods, including rod cell size being close to the resolution limit of confocal
AOSLO (for which the system must be optimized) [2,25], the reduced waveguiding capacity of
rods compared to cones [29,30], differences in depth of focus required to adequately resolve rods
versus cones [25], and the fact that the rod mosaic is interspersed with cones, thereby reducing
its regularity [31]. Although standard split detection AOSLO enables disambiguation of cones
within a given region of interest (ROI), it most often cannot resolve rod or foveal cone inner
segments in a healthy retina [3]. These factors contribute to ongoing challenges associated
with accurate visualization and quantification of healthy rods. Previous work evaluating the
sensitivity of various structural cone metrics demonstrated that nearest neighbor distance (NND)
is highly insensitive to cells missed in the counting process [4]. This suggests that ROIs with
incompletely resolved mosaics can be used to produce a reliable NND estimate, as long as some
cells can be resolved. The purpose of this study was to demonstrate a method for producing
spacing-derived estimates of rod density in individuals with contiguous photoreceptor mosaics,
using measures of rod spacing and estimates of cone area within a given ROI. We demonstrate
that this spacing-derived method yields estimates of rod density that are comparable to those
obtained using direct counts in mosaics for which every rod can be visualized. We then obtained
spacing-derived estimates in additional healthy participants and retinal locations to begin to
establish a normative dataset of rod density and rod:cone ratio.

2. Methods

This study followed the tenets of the Declaration of Helsinki and was approved by the Institutional
Review Board at the Medical College of Wisconsin (PRO17439). Written informed consent was
obtained from all participants after explanation of the nature and possible risks associated with
this imaging study.

A total of 24 eyes in 21 participants (collected between July 2014 – July 2022; 13 females, 8
males; age range: 20-61 years) were analyzed for this study (for demographics, Table 1). Axial
length and corneal curvature were measured prior to dilation using a Zeiss IOL Master 500 (Carl
Zeiss Meditec, Dublin, CA, USA). Refractive error was estimated using a Topcon KR-800S Auto



Research Article Vol. 14, No. 1 / 1 Jan 2023 / Biomedical Optics Express 3

Kerato-Refractometer (Topcon Medical Systems, Inc., Oakland, NJ, USA). Ocular biometry
measures of axial length (mm), corneal curvature (diopters, D), and spherical refractive error (D)
for each eye included in this study are provided in Table 1. The eye to be imaged was subsequently
dilated. Cycloplegia or mydriasis was induced with administration of one drop each of 2.5%
phenylephrine hydrochloride (Akorn, Lake Forest, IL, USA) and 1% tropicamide (Akorn, Lake
Forest, IL, USA) or (in participants with a history of incomplete cycloplegia using phenylephrine
hydrochloride and tropicamide) one drop of 1% Cyclomydril (cyclopentolate hydrochloride,
phenylephrine hydrochloride; Alcon Laboratories, Inc. Fort Worth, Texas, USA).

2.1. AOSLO imaging and processing

A previously described AOSLO system (see [2,3]) was used to image retinal locations extending
from the center of fixation up to approximately 20° eccentricity (when possible) along the
temporal meridian in 1° increments. Confocal and non-confocal (split detection) images were
obtained simultaneously at each imaging location. The participant’s pupil was aligned and
stabilized with the use of a dental impression on a bite bar mounted to a three-axis translation
stage. Either an external light source or digital light projector-based internal fixation target was
used to guide the participant’s fixation [33]. The eye’s wavefront was detected over an 8 mm
diameter pupil using an 850 nm superluminescent diode (SLD; Superlum, Carrigtwohill, Co.,
Cork, Ireland) and a custom Shack-Hartman sensor [2], and the wavefront was corrected by a
Hi-speed DM97 deformable mirror (ALPAO S.A.S., Biviers, Grenoble, France). The confocal
imaging channel was equipped with a confocal aperture that ranged between 0.8–1.2 Airy disc
diameters. AOSLO imaging sequences consisting of 150 frames each were collected using either
a 775 nm or 790 nm SLD (Superlum, Carrigtwohill, Co., Cork, Ireland) over a field size of 1.0°
x 1.0° and 1.5° x 1.5°. In most cases, multiple imaging sequences were recorded at the same
location either over time or using a through-focus technique (0.1D steps ranging 1D in depth of
focus) to facilitate rod visualization.

For each image sequence, intra-frame distortion from the resonant scanner was corrected [34],
a reference frame for each imaging sequence was selected [35], to which the other frames were
registered and averaged [34], and residual distortion due to eye motion in the processed image
was estimated and corrected [36,37]. Processed confocal and split detection images for each
participant were aligned and montaged simultaneously using custom software [37], which outputs
to Adobe Photoshop CS6 (Adobe Systems, San Jose, CA, USA). The linear scale (µm/pixel) of
AOSLO data for each participant was estimated based on individual ocular biometry measures as
previously described [38], using the equation below:

AOSLO Scale =
T

flTs

(︃
180
π

)︃
RMF

(︃
AL
24

)︃
Where T represents the periodicity of a Ronchi ruling (µm/cycle), f1 represents the focal length
of the model eye in our system (µm), Ts represents the sampling period of the lines in the model
eye image of the Ronchi ruling (pixels/cycle), RMF represents the assumed retinal magnification
factor (291 µm/degree) of an eye with a 24.0 mm axial length [39], and AL is the participant’s
axial length (mm).

While adequate rod visualization was possible in individual images at some retinal locations
for some participants, additional processing was required at locations where multiple imaging
sequences were collected at multiple time points or multiple levels of focus. These images were
input to a separate Photoshop file and aligned and cropped to common area. Images with poor
visualization of rods were excluded. These cropped images were then exported from Photoshop
and compiled to create separate confocal and split detection videos (.AVIs) using ImageJ [40].
The ImageJ-created videos were then registered and averaged as described above to produce
a final image for a given location [34,36]. The resultant image was then added to the original
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Table 1. Participant demographics and retinal locations used for rod metrics

Participant
ID

Sex
(M/F)

Eye
(OD/OS)

AL
(mm)

Corneal
Curva-
ture

(K1/K2;
D)

Spherical
Refrac-

tive Error
(D)

ROI’s
Used for

Rod
Analyses

Total
(Direct)

ROI Locations
(Degrees)b

JC_0200 M OS 24.67 43.27/43.89 -3.00 4 (0) 8.7, 9.5, 10.2, 11.4

JC_0677 F OS 24.01 42.03/42.94 -1.25 2 (2) 9.1, 10.0
JC_10220 F OD 22.92 43.05/43.44 +0.75 12 (0) 9.9, 10.4, 11.0,

11.9, 13.9, 14.8,
16.2, 17.1, 18.5,
19.7, 20.1, 21.5

JC_10549 M OD 23.98 44.29/45.12 -1.75 3 (0) 6.9, 8.0, 10.8

JC_10549 M OS 23.99 44.88/45.36 -1.50 7(0) 10.1, 10.5, 11.6,
12.6, 13.7, 14.9,
16.3

JC_10567 F OD 22.32 45.06/45.42 +0.50 15 (3) 5.2, 6.3, 7.6, 7.8,
8.8, 8.9, 9.2, 9.8,
9.81, 10.4, 10.5,
10.6, 11.2, 12.6,
14.6

JC_10567a F OS 22.40 45.06/45.42 -0.50 NA NA

JC_10586 F OD 21.37 45.12/46.75 +3.50 9 (0) 3.9, 4.8, 5.8, 6.7,
7.4, 8.6, 9.7, 10.5,
11.0

JC_11441a F OD 23.13 44.58/45.49 -1.75 3 (0) 5.3, 7.3, 9.0

JC_11442 M OD 23.70 43.1/43.21 -0.25 3 (0) 5.9, 7.0, 10.3

JC_11442a M OS 23.63 43.05/43.55 +0.00 NA NA

JC_11591a M OD 24.44 41.77/44.00 -2.75 NA NA

JC_11658 F OS 22.29 44.58/45.36 -1.00 5 (0) 6.1, 7.3, 8.6, 9.8,
10.8

JC_11660a F OD 23.14 42.13/42.29 +2.00 13 (3) 5.5, 6.3, 9.4, 9.7,
10.1, 10.3, 11.6,
12.1, 12.8, 13.7,
14.5, 15.1, 15.7

JC_11686 F OD 23.51 42.99/44.23 -1.25 2 (2) 7.2, 10.5
JC_12019 F OS 23.84 41.72/44.00 -0.75 11 (0) 8.6, 9.5, 11.3, 13.6,

14.1, 15.4, 16.2,
16.4, 17.0, 17.6,
18.1

JC_12255 M OD 23.73 42.35/43.66 -0.50 4 (0) 6.0, 7.3, 7.9, 9.0

JC_12276 F OD 22.51 44.70/45.12 +0.25 8 (8) 2.2, 3.0, 4.0, 6.8,
7.9, 8.8, 9.8, 11.6

JC_12294 M OD 24.86 42.99/43.49 -0.50 1 (0) 7.9

JC_12351 F OD 24.58 42.35/43.21 -0.75 5 (0) 7.9, 9.1, 9.8, 10.8,
10.81

JC_12358 M OD 23.26 44.58/45.18 -0.75 2 (0) 9.9, 10.9

JC_12421 F OS 21.61 45.18/45.55 +0.75 2 (0) 9.4, 10.3

JC_12422 M OS 24.08 40.76/41.01 +2.50 6 (4) 4.3, 5.3, 6.4, 8.1,
10.0, 10.8

JC_12479 F OD 23.00 44.53/44.70 -1.00 10 (0) 3.3, 6.3, 6.9, 8.0,
8.9, 9.6, 10.6, 11.5,
12.7, 13.7

aDenotes eyes used for foveal cone analysis; data was previously published by Cava et al. [32]
b Bold values indicate ROI locations used for direct versus spacing-derived validation study (n= 22)
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montage. All montages were imported into Mosaic Analytics (v0.6.8.9, Translational Imaging
Innovations, Inc., Hickory NC) to extract 100× 100 µm confocal and split detection ROIs for
subsequent quantification of the photoreceptor mosaic. The location of each ROI was calculated
based on retinal distance, in µm, from the estimated position of peak cone density in each
montage.

2.2. Cone identification

Cones in split-detection ROIs were semi-automatically identified using Mosaic Analytics,
including those that were not completely within the confines of the ROI (termed “edge
cones”). These cone coordinates were used to determine the number of bound and un-
bound cones, and the total bound cone area using custom software (Metricks Master v0.1.5.2;
https://github.com/Eurybiadan/Metricks) [4]. A cone is defined as “bound” if the vertices of its
Voronoi domain are all contained within the ROI.

2.3. Estimating cone area

The area of individual cones within the split detection ROIs was derived using custom semi-
automatic segmentation software (see Fig. 1) [41]. The initial input parameters for segmentation
were set at 100 for the Hessian response and at 2 for the geodesic active contour iteration number.
From this automatically generated segmentation, cells were removed from the analysis when the
segmented outline encompassed edge cones or was otherwise inaccurate. Segmentations that
under- or over-estimated the area occupied by a cone were manually corrected (Fig. 1). Manually
segmented cones were also added when high contrast cones without automatic segmentation were
present. Within each ROI, a minimum of 30 segmentations were used to estimate the average
area of an individual cone for that ROI.

Fig. 1. Split-detection ROI (left) at ∼T10 (JC_10220) with corresponding uncorrected
cone segmentation output (right). The boundary of each cell produced by the segmentation
software is shown as a thin green line with the center of the cell denoted with a+ sign.
Inaccurate cell segmentations whereby two cells were segmented together (denoted with
blue+ sign) and segmentations of cones near the edges of the ROI (denoted with black+ signs)
were removed. Segmentations that were deemed to under- or over-estimate the cone boundary
(pink+ signs) were manually corrected prior to estimating cone area. Scale bar= 25 µm.

https://github.com/Eurybiadan/Metricks
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2.4. Estimating modal spacing of the rod mosaic – intercell distance

To produce a method for spacing-derived rod density estimation we require an estimate of the
modal rod spacing, which for a contiguous mosaic of a single cell type (e.g., foveal cone mosaic)
would be equal to the average intercell distance (ICD). However, the ICD of the rod mosaic
will overestimate the modal spacing of neighboring rods due to the presence of cones in the
mosaic. In contrast, NND is known to be a highly robust cell spacing metric that is unaffected
by cells missed during the cell identification process or discontinuities in the mosaic. We thus
determined the relationship between bound NND and bound ICD for a contiguous cone mosaic.
Using previously acquired confocal AOSLO data [32], we extracted 50 ROIs (each 30× 30 µm)
from five individuals with contiguous foveal cone mosaics (5 eyes; 3 females, 2 males; 23-27
years; Table 1). Cone NND and ICD were calculated using custom software (Metricks Master
v0.1.5.2) [4]. These data demonstrated a strong linear relationship between bound NND and
bound ICD, where ICD= 1.1298(NND)+ 0.1487 (Fig. 2).

Fig. 2. A strong linear relationship is found between average bound intercell distance
(ICD) and average bound nearest neighbor distance (NND) for cone photoreceptors within a
contiguous mosaic. A solid black line denotes the linear regression for the data shown with
dashed black lines representing the 95% confidence intervals for the regression. A total of
50 foveal ROIs were measured (open circles). While by definition NND is always lower
than ICD, there was a strong linear correlation between bound ICD and bound NND, which
enabled estimation of bound ICD from bound NND for a contiguous mosaic.

Prior to analyzing rods in the confocal ROIs, cone coordinates produced from section 2.2
were overlaid onto the corresponding confocal ROI, and the size of each coordinate inflated
(diameter range 5-7 pixels), so the cones within the confocal ROI were “masked” for rod analysis.
Following “masking” of the cones, rods in confocal ROIs were counted manually using Mosaic
Analytics, and rod NND was calculated using custom software (Metricks Master v0.1.5.2) [4].
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We then estimated bound rod ICD derived from the bound rod NND for each ROI, using the
theoretical relationship between ICD & NND derived from the contiguous foveal cone mosaics
as shown in Fig. 2.

2.5. Estimating spacing-derived rod density

To produce an estimate of rod density, we converted bound rod ICD spacing values from retinal
distance in µm to an angular measure (modal spacing; cycles/degree) as previously described
[42,43]. It is important to note that this conversion relies on the assumption of a triangularly-
packed mosaic. However, rod density derived only from rod spacing overestimates the number of
cells in a given retinal area, as it assumes a complete, contiguous mosaic. Therefore, we utilized
the number of bound cones and average cone area to calculate the percentage of retinal area
occupied by cones for each ROI. We then adjusted the spacing-derived rod density estimate to
account for the presence of cones.

2.6. Comparison of cone-corrected spacing-derived rod density estimates to direct rod
count density

From our study population, a total of 22 ROIs between 2.2-11.6° temporal to the fovea from
six participants (6 eyes from 6 participants; 5 females, 1 male; age range: 20-58 years) with
complete visualization of the rod mosaic were chosen for the validation study (Table 1, bold ROI
locations). These high quality images allowed a single grader (HH) to determine a direct, bound
rod density estimate and bound rod NND using custom software (Metricks Master v0.1.5.2) [4].
Spacing-derived rod density was validated against direct estimates of bound rod density from
these 22 ROIs using Bland-Altman analysis [44–46]. After verifying that there was minimal bias
between the two methods of estimating rod density, spacing-derived rod density was calculated
for a larger normative dataset.

2.7. Establishing normative data for spacing-derived rod density and rod:cone ratio

An additional 105 ROIs ranging from 3.3-21.5° temporal to the fovea from 18 eyes of 17
participants included in this study were then analyzed (Table 1). Most of these ROIs did not have
complete visualization of the rod mosaic, but clusters of rods were visible and countable. One
grader (HH) repeated the same protocol described above to evaluate the cone and rod mosaics
of these ROIs – the only difference being that no direct density estimates were available for
comparison. For each ROI, rod:cone ratio was determined by taking the ratio of the spacing-
derived rod density estimate and the bound cone density estimate. For these 105 ROIs and the 22
used for the method validation (127 total from 21 eyes), spacing-derived rod mosaic metrics were
compared with previous histological [20] and AOSLO estimates of rod density and rod:cone
ratio [11].

2.8. Evaluation of repeatability and reliability of spacing-derived rod density

As mentioned above, the spacing-derived estimate of rod density described here assumes a
complete, contiguous mosaic, which must account for the area occupied by cones. As NND is a
highly robust spacing metric, the cone metrics (i.e., individual cone area and the number of cones
identified in an ROI) represent the largest potential sources of error in the final spacing-derived
estimate of rod density. To assess these sources of error, three additional graders (EJP, ENW, IA)
completed cone counts and segmentations twice for the 22 ROIs where direct rod counts were
available for comparison. In addition, the original grader (HH) completed a second set of cone
counts and segmentations for these ROIs.

The repeatability and reliability of spacing-derived rod density estimates were evaluated using
intragrader standard deviation, Sw, to calculate the repeatability coefficient (2.77 x Sw) and
measurement error (1.96 x Sw) [47]. Rod density estimates for each grader were evaluated for
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intragrader repeatability using the intraclass correlation (R Studio v1.4.1103). The two sets of
data from each grader were then averaged and intergrader reliability was assessed using one-way
analysis of variance (ANOVA) with GraphPad Prism (v9.0.0) for Windows (La Jolla, CA, USA).
Unless otherwise mentioned, calculations were completed in either GraphPad Prism or Microsoft
Excel.

3. Results

Representative ROIs with complete visualization of the rod mosaic that were used for the
spacing-derived rod density method validation are shown in Fig. 3. Bland-Altman analysis of
one grader’s (HH) rod density from direct counts and spacing-derived estimates demonstrated a
mean bias of 0.14%, or 395 rods/mm2, with the limits of agreement between -30.5% and 30.7%,
or -24,723 (95% CI: -33,764 to -15,682 rods/mm2) and 25,514 rods/mm2 (95% CI: 16,473 to
34,555 rods/mm2; Fig. 4). With evidence to suggest that spacing-derived estimates of rod density
are on average comparable to direct count estimates, we sought to expand our normative dataset
to include ROIs where only some of the rod mosaic was visualizable, although all of the cones
in the mosaic were visible. These ROIs ranged in retinal eccentricity between 3.9 and 21.5°
temporal to the fovea, with some of these retinal locations shown in Fig. 5. The spacing-derived
estimates of rod density from these ROIs, in addition to the spacing-derived estimates from the 22
ROIs with complete rod mosaic visualization, were plotted as a function of retinal eccentricity as
open circles (Fig. 6(A)). Direct count rod density for the 22 ROIs with complete rod visualization
were included as filled black circles on this graph, for a total of 139 data points (Fig. 6(A)).
These data fall between published histological [20] and AO-derived [11] estimates of rod density.
Our estimates of rod:cone ratio were also plotted as a function of retinal eccentricity along with
previous histological [20] and AO-derived [11] estimates (Fig. 6(B)). Rod:cone ratio estimates in
the 22 ROIs with complete rod visualization were calculated from both spacing-derived (open
circles) and direct count (filled black circles) rod density measures and plotted together, totaling
149 data points.

Fig. 3. Representative ROIs with complete rod mosaic visualization. ROIs (top, confocal;
bottom, split detection) between T5 and T10 from four participants with complete visualiza-
tion of the rod mosaic in a 100× 100 µm area are displayed. All ROIs have been resized to a
common scale for display purposes. Scale bar= 25 µm. See Dataset 1, Ref. [48] to access
all ROIs, and associated coordinate files, with complete visualization of the rod mosaic.

https://doi.org/10.6084/m9.figshare.21568869
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Fig. 4. Bland-Altman plot comparing spacing-derived rod density to direct estimates of
rod density for the 22 ROIs in which all rods were visible. The mean difference between
density estimation methods was 0.14% (95% CI: -6.8 to 7.1%), with limits of agreement of
30.7% (95% CI: 19.7 to 41.8%) and -30.5% (95% CI: -19.4 to -41.5%). The solid black
line represents the average percent difference in rod density between methods; dashed lines
represent the 95% limits of agreement; gray shading represents the 95% confidence intervals.
See Data File 1 for underlying values.

We evaluated the repeatability of cone-corrected rod density, derived from spacing, for the
four graders that counted and segmented cones twice in these ROIs (Table 2). Overall, graders
produced spacing-derived rod density estimates that were fairly repeatable, with repeatability
coefficients ranging from 9,995–25,005 rods/mm2 (12.5–32.7%). Intragrader repeatability was
good for all graders in this study (ICC= 0.861–0.978). However, it is important to note that data
quality (i.e., the level of contrast within split-detection images) and grader experience with cone
segmentation likely contributes to the variance observed across repeated measures.

Intergrader reliability was evaluated by comparing the mean spacing-derived rod density
produced by each of the four graders for each ROI. These values passed the normality test for
every grader (p= 0.42–0.82, Shapiro-Wilk), so a one-way ANOVA was performed to compare
rod density estimates across graders. This analysis revealed a statistically significant difference
in rod density estimates between at least two graders (F(1.67, 35.1)= 5.99, p= 0.0085). Tukey’s
multiple comparisons test revealed that mean rod density was significantly different between
graders 1 and 2 (p= 0.016, 95% CI= 956 to 11,127 rods/mm2) as well as graders 1 and 3
(p< 0.0001, 95% CI= 4,204 to 9,853 rods/mm2). No statistically significant difference in mean
rod density was observed between graders 1 and 4 (p= 0.14), graders 2 and 3 (p= 0.90), graders
2 and 4 (p= 0.76), or graders 3 and 4 (p= 0.29).

https://doi.org/10.6084/m9.figshare.20477163
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Fig. 5. Example ROIs where spacing-derived rod density was estimated with incomplete
visualization of the rod mosaic. ROIs (left, confocal; right, split detection) from four
participants with some degree of visualization of the rod mosaic in retinal locations between
approximately T10 and T21. All ROIs have been resized to a common scale. Scale bar= 25
µm. See Dataset 2, Ref. [49] for access to all ROI and corresponding coordinate files used
for spacing-derived rod density estimates.

Table 2. Repeatability of spacing-derived rod density measurements

Metrica Grader 1 Grader 2 Grader 3 Grader 4

Measurement Error (95%
CI), rods/mm2

7,072 9,217 9,745 17,693

(6,006–8,139) (7,827–10,606) (8,276–11,215) (15,026–20,360)

Measurement Error (95%
CI), %

8.9 12.5 13.4 23.1

(7.5–10.2) (10.6–14.4) (11.4–15.4) (19.7–26.7)

Repeatability Coefficient
(95% CI), rods/mm2

9,995 13,026 13,773 25,005

(8,929–11,061) (11,636–14,415) (12,304–15,242) (22,338–27,673)

Repeatability (95% CI), %
12.5 17.7 18.9 32.7

(11.2–13.9) (15.8–19.5) (16.9–20.9) (29.2–36.2)

ICC (95% CI)
0.978 0.974 0.960 0.861

(0.959–0.996) (0.952–0.996) (0.927–0.993) (0.752–0.970)

a*Measurement error and repeatability were calculated using within participant standard deviation, Sw, as described by
Bland and Altman (1996) [47]. Measurement error is 1.96xSw, with the difference between a measurement and the
true value expected to fall below this value for 95% of observations. The repeatability coefficient is 2.77x Sw, with the
difference between two measurements by a given grader for the same image expected to fall below this value for 95% of
paired observations. See Data File 1 and Dataset 1 [48], for underlying values and corresponding ROIs with coordinate
files.

https://doi.org/10.6084/m9.figshare.21568872
https://doi.org/10.6084/m9.figshare.20477163
https://doi.org/10.6084/m9.figshare.21568869
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Fig. 6. Rod metrics as a function of retinal eccentricity. Previously published histological
data (Curcio et al. 1990, dashed black line) and AOSLO data (Wells-Gray et al. 2016, solid
black line) on rod density (A) and rod:cone ratio (B) are presented for comparison. Values
derived from direct counts are represented as filled black circles while values derived from
spacing are represented by open circles. See Dataset 1, Ref. [48] & Dataset 2, Ref. [49], as
well as Data File 1 & Data File 2 for underlying values.

https://doi.org/10.6084/m9.figshare.21568869
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4. Discussion

Cultivating a large normative database of various rod metrics will be critical for discerning
pathological changes to rod structure and topography. While rods can be visualized with advanced
imaging modalities like super-resolution SLO [50], AOSLO [11], or AO-OCT [28], it can be
quite challenging to consistently image rods due to their small size and reduced waveguiding
relative to cones [29,30]. To date, there are limited in vivo normative data available on the
human rod mosaic [11,23–27]. While further improvements in image resolution may be possible
[27,51], we sought to explore a means of deriving estimates of rod spacing, rod density, and
rod:cone ratios using existing AOSLO technology and available imagery. This method was
shown to have good agreement, on average, with rod density derived from direct counts of the
entire rod mosaic for a given ROI. Overall, our data agree nicely with previously published
histological studies, following a similar trend as a function of retinal eccentricity [20,21,52]. On
average, our rod density and rod:cone ratio estimates were 23.3% and 19.6% below that reported
from histology, respectively [20]. In contrast, our estimates of rod density and rod:cone ratio
were 11.3% and 15.7% higher, respectively, than previous in vivo measures at similar retinal
locations [11]. A similar trend was observed when we evaluated our data to a study that estimated
rod density from the power spectrum of an image acquired at 10° temporal to the fovea, with
our rod density and rod:cone ratio estimates being 11.3% and 5.3% higher [53]. Interestingly,
when compared to a separate in vivo study that evaluated three retinal locations, 5, 10, and 15°
temporal to the fovea, our rod density estimates were 7.5% lower on average but our rod:cone
ratio estimates were on average 5.4% higher [25]. Post-mortem analysis of the retinal mosaic
has well-established limitations, particularly tissue shrinkage, that can alter cell spacing and
density estimates by as much as 25% laterally [54] and up to 30% axially [55]. Most in vivo
measurements available [11,22,23,25] are lower than published histological data, consistent with
tissue shrinkage contributing to differences in estimates between in vivo and ex vivo studies.
However, inaccuracies in the absolute scale of the in vivo AOSLO images could impact the
accuracy of rod density estimates (both direct count and spacing derived) – it is thus important to
employ methods to ensure robust determination of image scale [56].

It is important to note that metrics of the rod mosaic cannot be derived independent of
information about the cone mosaic. Even when image quality is sufficient to resolve the entire
rod mosaic, it is necessary to reliably disambiguate rods and cones, as some parafoveal cones can
appear as small clusters of rods in confocal AOSLO images, due to propagation of higher-order
waveguiding modes [57]. Here we used non-confocal AOSLO to identify cone photoreceptors [3]
and effectively “mask” those regions of the corresponding confocal image, since any given point
in the photoreceptor mosaic can contain either a rod or a cone (but not both). Our spacing-derived
method, and similar approaches for rod metric extraction [23,53], are largely impacted by errors
in cone area estimation and the assumption that the rod mosaic is regularly packed in a triangular
lattice, like cones. While the rod mosaic is noncontiguous, it is presumed that rods would still have
an optimized packing geometry like that observed for the cone mosaic. We believe differences in
density estimated from either method presented in this study can largely be attributed to errors in
estimating the total area occupied by cones within an ROI.

Rod density in this study was based on estimates of rod NND, a spacing metric insensitive to
missed cells. The primary vulnerability of our method thus involves estimation of the cone area.
While the semi-automated segmentation approach we used facilitated extraction of cone area
estimates, defining the cone boundary is somewhat subjective in our non-confocal, split-detection
images (see Fig. 1). One consideration is that the quality of split detection imagery may vary
when the confocal modality is optimized for resolving the rod mosaic, as there are differences
in the optimal depth of focus for rod versus cone imaging [25]. Though, even in the clearest
split detection images, some cones can have nebulous edges. The subjective nature of cone
segmentation may explain the significant differences observed in spacing-derived rod density
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estimates across multiple graders. The four graders in this study had varying levels of experience
with cone counting and segmentation but demonstrated good repeatability when analyzing the
same ROI twice. For context, a one-pixel difference in cone diameter results in a 6% change in
rod density. Alternative non-confocal modalities like quad-detection may enhance the contrast of
cones and enable more reliable and accurate demarcation of cone boundaries (and thus more
accurate estimates of cone area) [51].

An assumption of the spacing-derived method is that the rod mosaic retains a contiguous
pattern, which might preclude its use on patient populations where the photoreceptor mosaic
is severely disrupted, such as retinitis pigmentosa and cone-rod dystrophies [58–60]. However,
in the presence of cone photoreceptor degeneration, the remaining rods can be enlarged and
therefore easier to resolve [61]; making a direct counting method more practicable. Accordingly,
greater success with in vivo imaging of the rod photoreceptor mosaic has been observed in
patients with retinal disease. This has been demonstrated in female carriers of X-linked retinitis
pigmentosa [62] and patients with fundus albipuntatus [63], acute macular neuroretinopathy
[64], oligocone trichromacy [65], cone-rod dystrophy [61,66], blue cone monochromacy [67],
achromatopsia [23,31,68], Stargardt disease [69], retinitis pigmentosa [60], and acute zonal
occult outer retinopathy [23,70]. Additionally, Godara et al. demonstrated excellent resolution of
the rod mosaic in patients with congenital stationary night blindness, despite normal cone density
[71]. Many of these studies have extracted quantitative metrics of the rod mosaic, but often rely
on normative histology data for reference. Exploring spacing-derived estimates of rod metrics in
these and other disease populations are needed to test some of the regularity assumptions of the
spacing-derived method, as we might expect rod and cone topography to deviate from that seen
in normal retinae.

In addition to the size of retinal area sampled across eccentricity, small errors in the counting
process (e.g., missing a cell) and calculation of retinal position can influence cone density
estimates [7,72,73]. While there is automated software available for counting both rods and
cones [74,75], the presence of both cell types within a single imaging modality can confound
estimates of cell density [6]. In addition, sexually dimorphic and ethnic differences in central
retinal structure have previously been reported [76] and cone packing is known to be highly
variable between individuals based on axial length [11], refractive error, age [17], and eccentricity
[77–79]. Therefore, a larger population including both sexes, a wide range of ages, pigmentation,
refractive error, and ocular biometry should help mitigate any bias present in the current dataset.
Additionally, evaluation of normal interparticipant variation in mosaic topography, as well as the
interplay of the rod and cone mosaics across retinal locations should commence to establish an
inclusive database.

Ultimately, improved imaging techniques [27,50] for complete resolution of the rod mosaic
are crucial to gaining a full understanding of photoreceptor loss. While accurate identification of
rods is necessary in order to establish a “ground truth”, the method described here is beneficial in
circumstances where the complete rod mosaic cannot be visualized, improving the utility of data
collected using AOSLO, and in some cases enabling analysis of previously unanalyzable data.
While limited to retinal areas with intact rod mosaics, this approach could be used to generate
large-scale reference databases of rod density and rod:cone ratio for use in future biomarker
development efforts.

5. Conclusion

While challenges remain when attempting to completely visualize the rod mosaic, this method
of deriving quantitative rod metrics provides the opportunity to analyze the rod mosaic in
datasets where it once was not possible. This will improve the overall value of AOSLO data by
facilitating the generation of a reference database that contains a variety of rod metrics across
retinal eccentricity, patient age, and patient population.
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