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Abstract 

 

Polygenic scores, a measure of genome-wide allelic contribution for a trait, have gained attention 

in the medical research community in recent years and have led to polarised opinions in terms of 

their clinical importance. A growth in the number and size of genome-wide association studies, 

enabled by the assembly of large consortia of case-control and cohort studies, and the advent of 

national biobanks, has led to the discovery of millions of DNA sequence variants associated with 

thousands of continuous traits of biomedical relevance (e.g. blood pressure) and disease endpoints 

(e.g. coronary artery disease). This has contributed to the development of thousands of polygenic 

scores and a heightened interest in their use in disease prediction and screening. 

 

This thesis evaluates the clinical utility of polygenic scores mainly in the context of cardiovascular 

disease prediction and screening. The poor performance of polygenic scores in disease prediction 

is first demonstrated by analysing the Polygenic Score Catalog that aggregates many published 

polygenic scores for various disease endpoints. The incremental predictive utility of polygenic 

scores to currently used cardiovascular risk prediction tools in the UK, based on non-genetic risk 

factors (e.g. QScores) is then evaluated for various cardiovascular disease endpoints using the 

appropriate metrics. The thesis also explores the potential application of polygenic scores for the 

discovery of individuals more likely to carry rare genetic variants, using the example of familial 

hypercholesterolaemia (FH), the most common monogenic disease, which is still currently highly 

underdiagnosed worldwide. This section begins by modelling a two-stage population screen for 

the systematic identification of FH cases in the general adult population, followed by an evaluation 

of the improvement in FH case detection by the inclusion of environmental predictors and a 

polygenic score for low-density lipoprotein cholesterol. 

 

In conclusion, this thesis puts into perspective the incremental utility of polygenic scores in 

cardiovascular disease prediction, questioning the claims made on the performance of polygenic 

scores in prediction. The thesis also explores a potential new avenue of their utility as a tool for 

aiding with rare variant discovery. 
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Impact statement 

 

This thesis investigates the clinical utility of polygenic scores (PGS) in cardiovascular disease 

(CVD) prediction and screening. Briefly, the work presented here provides additional evidence to 

the predictive utility of PGS when added to non-genetic CVD risk prediction models (the QScores 

developed in the UK). This thesis also proposes a novel two-stage population screening strategy 

for familial hypercholesterolaemia (FH) in adults, followed by the development of a prediction 

model for FH utilising PGS information. The impact of each results chapter is presented in more 

detail below. 

 

Chapter 2 analyses data from the Polygenic Score Catalog, a publicly available website aggregating 

published PGS studies. The chapter examines various PGS performance metrics for a multitude 

of disease endpoints and converts them to a more clinically useful metric: the detection rate for a 

5% false positive rate. This work provides an overview on the poor performance of PGS in 

detecting various diseases. 

 

Chapter 4 investigates the predictive utility of PGS in non-genetic CVD clinical risk models used 

in the UK. It replicates results for QRISK3 and evaluates two other CVD subtype prediction 

models: QStroke and QDiabetes for the 10-year prediction of incident ischaemic stroke and 

incident type 2 diabetes. Additionally, the analyses were performed in the UK Biobank which 

matches the population in which/for whom the non-genetic risk prediction models (QScores) 

were derived in/for. This provides more robust comparisons than previous studies. The analyses 

indicate that in addition of being poor predictor of CVD and related endpoints, PGS do not add 

much predictive value to the clinically used non-genetic scores (QRISK3, QDiabetes and 

QStroke). 

 

A two-stage adult population screening strategy for FH is tested in Chapter 5. This screening 

strategy is compared to a previous child-parent FH screening strategy that was rejected by the UK 

National Screening Committee. If employed, the current adult screening strategy proposed would 

provide a systematic approach for detecting novel FH cases in the general population (in line with 

the NHS Long Term Plan) and is anticipated to identify (and treat) individuals at risk of a 

premature coronary artery event and death.  
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In Chapter 6, a novel prediction model for FH is developed with the help of a penalised machine-

learning algorithm (LASSO) using routinely available environmental variables and a PGS for low-

density lipoprotein cholesterol. If used in the two-stage adult population screening strategy, this 

model is expected to increase the detection rate of FH positive individuals (for a fixed false positive 

rate), therefore ultimately reducing the burden of individuals sent for confirmatory genetic testing. 

This chapter also demonstrates that PGS can be clinically useful in helping with rare variant 

discovery.  
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1 Introduction 

 

1.1 Cardiovascular disease (CVD) and its risk factors 

 

Cardiovascular disease (CVD) is a general term that encompasses many illnesses of the heart and 

vascular system. These include but are not limited to coronary heart disease (CHD), ischaemic 

stroke (IST), haemorrhagic stroke (HST), heart failure (HF) and atrial fibrillation (AF). Many of 

these illnesses have shared pathophysiology and a number of common risk factors, for example 

age, high blood pressure (BP), diabetes and elevated low-density lipoprotein cholesterol (LDL-C). 

CVD is the major cause of death globally with an estimated 17.9 million people losing their lives 

annually.[1] According to the British Heart Foundation, an estimated 168,000 deaths annually 

(24%) in the UK are caused by CVD, of which 48,000 are premature (defined as under the age of 

75).[2] 

 

1.1.1 Pathophysiology and risk factors of CVD 

 

Many CVD events manifest following an obstruction of blood supply to the heart or brain. These 

obstructions can be caused by atherosclerotic plaques or, if these plaques rupture, by blood clots 

that can form on their surface.[3] An atherosclerotic plaque is a deposit of lipids, fibrous material 

and immune cells that accumulate over time in the inner layer of artery walls.[3] Elevated 

circulating LDL-C is a major cause of atherosclerosis, as evidenced by observational epidemiology, 

genetic studies and clinical trials of LDL-C lowering drugs.[4–6] As atherosclerotic plaques grow 

in size, they progressively narrow the arterial lumen and can lead to the reduction of blood flow 

to vital organs – a phenomenon known as ischaemia.[3] In the coronary arteries, that can lead to 

angina.[3] Atherosclerotic plaques can also rupture, releasing the fatty and fibrous elements into 

the circulation, and triggering local formation of a thrombus leading to an acute ischaemic event 

such as an IST or myocardial infarction (MI).[3]  

 

AF is a common heart rhythm disturbance that can lead to blood stasis in the left atrium and the 

formation of left atrial thrombus.[7] Such thrombi can embolise to the brain causing a type of 

ischaemic stroke called a cardioembolic stroke, or to other organs causing systemic embolism.[7,8] 

Risk factors for AF include age, high BP, obesity, elevated alcohol and tobacco consumption, 

certain types of valvular heart disease, and HF of any cause.[9]  
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HF is characterised by abnormal pumping of the heart, leading to changes in blood ejection 

fraction or ventricular filling.[10] It is a progressive disease linked to many comorbidities and poor 

prognosis, with risk factors including ischaemic heart disease and hypertension.[10] 

 

CVD has a long preclinical phase (decades) where many modifiable risk factors influence the 

progression and severity of disease.[3,11,12] Many risk factors are well studied, providing the 

opportunity for primary prevention and risk prediction.[11,12] Primary prevention has played a 

key role in trying to reduce the burden of CVD globally.[13] This relates to lifestyle modifications 

such as smoking cessation, alcohol intake reduction, regular exercise, and diet modifications (i.e. 

reducing saturated fat, salt and sugar intake, and increasing the consumption of fresh fruit, 

vegetables and high-fibre nutrients) or prescription medication (e.g. statins to reduce LDL-C levels, 

and antihypertensives to reduce elevated BP) to prevent the occurrence of a primary CVD 

event.[11,12] Over time, adverse lifestyle factors can accumulate and lead to hypertension, 

inflammation, type 2 diabetes and hypercholesterolemia, which are all major risk factors for 

CVD.[3,14] Secondary prevention of CVD aims to prevent a subsequent CVD event from 

occurring mostly via medical interventions such as prescription medication or surgery (e.g. 

coronary artery bypass).[3] 

 

1.1.2 Relationships between risk factors and disease endpoints 

 

Many CVD risk factors (e.g. BP, LDL-C) were first identified in prospective longitudinal cohort 

studies. The first major influential study of this kind was the Framingham Heart Study which began 

in 1947 in the United States (US).[15] The initial report described the sex, age, BP, cholesterol and 

body mass index (BMI) differences observed in patients with incident CHD.[16] Other major risk 

factors such as smoking and diabetes were later identified.[17,18] The inverse relationship between 

high-density lipoprotein cholesterol (HDL-C) levels and CHD incidence was also found.[19]. Since 

then, numerous global (e.g. MONICA, INTERHEART) and national (e.g. Whitehall I/II, the 

Reykjavik Heart Study, ARIC) cohort studies have further quantified the relationship between risk 

factors and CVD endpoints.[14,20–24]  

 

The Emerging Risk Factors Collaboration and the Prospective Studies Collaboration have 

undertaken meta-analyses of the associations of risk factors and cardiovascular endpoints to 

provide detailed information on the strength and slope of associations.[25,26] These analyses have 

confirmed that the relationship between CVD and many of its risk factors is log-linear, meaning 
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that there is the same proportionate increase in CVD risk per unit change of the risk factor. For 

example, meta-analysing over 200 studies has shown that LDL-C has a dose-dependent and log-

linear association with atherosclerotic CVD.[27] There is also a linear increase in the relative risk 

for CHD and the number of cigarettes smoked per day.[28] Similarly, there is a log-linear 

association between BP (systolic and diastolic) and the hazard for cardiovascular events (including 

cardiac death, MI, stroke and HF).[29,30] Although age is not a modifiable risk factor, it is the 

biggest predictor of CVD.[30] 

 

There is also an additive relationship between CVD risk factors.[31] For example, in AF, there is 

a clear increase in risk with each additional risk factor (hypertension, low HDL-C, impaired fasting 

glucose, high waist circumference, elevated triglycerides).[32] Identifying a risk factor-disease 

association has potential clinical applications for treatment (for which the risk factor must be causal 

(e.g. BP, LDL-C)), or for disease prediction (for which the risk factor need not be causal).[33,34] 

 

Since CVD risk factors are normally or log normally distributed in the population and exhibit a 

log-linear disease association, there is also no clear-cut threshold value above which disease risk is 

clearly increased.[35] These relationships help provide some basic information into how well a risk 

factor might perform as a predictive test, alone or in combination. 

 

1.1.3 Individual risk factors as predictive tests 

 

Most clinical CVD events occur among people with average risk factor levels because most risk 

factors are normally distributed and there are large numbers of individuals with near-average levels 

of risk factors at intermediate risk of disease.[36] This is sometimes referred to as Rose’s 

Prevention Paradox: most cases of disease occur among the large number of individuals at 

intermediate risk rather than the small number of individuals at high risk.[37] This has important 

implications for CVD risk prediction. 

 

The distributions of risk factors among people who do and do not develop CVD overlap 

substantially, so there is usually no clear cut-point for the risk factor that readily separates the two 

groups (Figure 1.1 from Wald et al.[33]). This means that a CVD risk factor, even a causal one 

such as BP or LDL-C, poorly discriminates between affected and unaffected individuals and turns 

out to be a modest predictor of CVD (see section 1.2.4. of the Introduction for more information 

on model discrimination).[38] A risk factor has to be extremely strongly associated with a disease 
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for it be considered a useful screening test (this is the case for example for serum alpha fetoprotein 

in pregnancies affected by spina bifida) (Figure 1.1).[38] A causal risk factor is therefore not 

necessarily a good predictor of disease, but a risk factor also does not need to be causal for the 

disease for it to be a good predictor (e.g. alpha fetoprotein does not cause neural tube defects in 

spina bifida).  

 

 

 

Figure 1.1 from Wald et al.[38] Distribution of risk factors in affected and unaffected 
individuals as predictors of disease. A) Distribution of alpha fetoprotein in affected and 
unaffected pregnancies for spina bifida. B) Distribution of serum cholesterol in men affected and 
unaffected by deadly ischaemic heart disease. The ROQ1-5 (i.e. relative odds for people in the first 
versus fifth quintiles) is higher when the affected and unaffected distributions have a greater 
separation (see Introduction section 1.2.4 for a more detailed explanation). 
 

 

The poor performance of a single CVD risk factor in disease prediction, coupled with the fact that 

most CVD events occur in the average-risk category, present many challenges for CVD 

prediction.[39,40] However, since there is an additive relationship between CVD risk factors and 

CVD risk, efforts have been made to develop CVD risk models that include multiple risk factors 
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in order to improve prediction and risk stratification of high-risk individuals.[41] These risk models 

have been developed using logistic regression analysis where the incident outcome (e.g. CVD 

incidence over a 10-year period) is regressed against independent variables (i.e. the predictors such 

as age, BP, LDL-C) to find the appropriate baseline risk value and prediction coefficients for each 

variable in the regression analysis. The development, evaluation and potential application of such 

models are described in more detail in the next section. 

 

1.2 Evaluating clinical prediction models 

 

The World Health Organisation estimates that 80% of CVD deaths are preventable, but the 

optimal strategy to prevent CVD events has been the subject of debate.[42] Rose’s Prevention 

Paradox makes prediction challenging because most CVD events occur in individuals at 

intermediate risk, and there is no clear cut-point that delineates individuals who will and will not 

develop CVD. This has led the scientific community to question whether an individual-based (i.e. 

for high-risk individuals) or population-based strategy for CVD prevention would be more 

beneficial, especially considering the reduction in cost of some treatments (e.g. statins).[39,40]  

 

In current clinical practice, individuals at high risk of CVD are identified by means of risk 

prediction models (despite their limitations). These models estimate a person’s risk of developing 

CVD, after which a threshold value can be applied to guide early detection and prevention 

strategies. Examples of such models are the QRISK3 calculator in the United Kingdom (UK), the 

FINRISK-calculator in Finland, and the European SCORE risk charts.[43–45] CVD risk scores 

from the US include the Framingham Risk Score (FRS), the 2013 American College of Cardiology 

and American Heart Association (ACC/AHA) Pooled Cohort Equations, and the Reynolds Risk 

Score for women and men.[19,45–47] Clinical risk score models are available for many other 

cardiovascular-related traits. QResearch in the UK has developed QStroke for the 10-year 

prediction of IST, and QDiabetes for the 10-year prediction of type 2 diabetes (T2D).[48,49] 

 

1.2.1 Model derivation 

 

In order for a clinical prediction model to be useful, it has to be accurate and easy to implement.[50] 

Typically, clinical predictors are readily or routinely collected variables such as age, sex, ethnicity, 

certain physiological measurements such as BP, height and weight, medical and family history.[51] 

Each variable carries a specific weight in the final risk score depending on how much it contributes 



 
 

27 

to the prediction of the disease endpoint. A baseline risk for time to follow up is also added in the 

risk calculations. Effective clinical prediction models should also be able to communicate risk in 

an interpretable manner.[52] For example, an absolute risk over a specified timeframe (as is used 

in the QRISK3 10-year CVD risk calculator) and other similar calculators. 

 

All new clinical prediction models should be derived in a population that is representative of the 

population in which the prediction model is to be used, otherwise the newly derived model might 

not generalise very well.[53] Additionally, a simple but robust model is preferred over a 

complicated one as this could lead to overfitting of the model, which means that the model is too 

specific to the dataset where it is developed in and does not generalise well to others.[50,54] When 

developed, model predictors are carefully evaluated and dropped if they do not add much value to 

the overall predictive ability of the model.  

 

1.2.2 Selecting model predictors 

 

In disease prediction, predictors are often established risk factors for the disease (e.g. BP, LDL-C 

and BMI for CVD prediction).[41] However, more recently, novel biomarkers (e.g. C-reactive 

protein (CRP)) have been investigated as potential predictors of CVD.[55] The selection of model 

predictors is commonly done in a stepwise manner: this technique selects predictors by alternating 

between forward and backward selection.[54,56] Forward selection of predictors starts with an 

empty model. Predictors are added to the model one at a time and are retained if they add 

significant predictive value to the model.[56] Conversely, backward selection starts with a model 

that contains all the known predictors. These predictors are progressively removed from the model 

in a stepwise fashion and the predictive ability of the model is evaluated at each step. If the 

predictors do not add significant predictive value to the model, they are removed.[54,56] Implicit 

in the removal (or retention) of potential risk factors from a model is that certain risk factors tend 

to be correlated with one another and so having all may not add much to a risk model.[54] This is 

the case with CRP for example, where the addition of CRP to CVD prediction does not improve 

the discrimination of the prediction model by much, partly because CRP is already associated with 

the other CVD risk factors.[57,58] And while stepwise selection of model predictors is often 

performed, this can sometimes lead to overfitting of the resulting model.[54] Predictors can also 

be chosen by evaluating all the possible combinations of predictors and selecting the best ones.[56]  
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Some machine learning methods, such as least absolute shrinkage and selection operator (LASSO), 

automatically perform variable selection. LASSO does so by shrinking the predictor coefficients 

and excluding those that reach zero (as they would not provide an improvement in 

prediction).[53,59] This reduces the issue of model overfitting when performing variable selection. 

 

Polygenic scores (PGS) differ in the way that their predictors (i.e. known genetic variants) are 

chosen: the variants are selected based on pre-specified p-value, linkage disequilibrium (LD) and 

minor allele frequency (MAF) cut-off values (see section 1.3. of the Introduction for more 

information on PGS).[60] While most non-genetic predictors such as hypertension and 

hypercholesterolemia for CVD are discovered through longitudinal population cohort studies, 

genetic risk factors are often identified from case-control genome-wide association studies 

(GWAS) as genetic variants remain unchanged throughout life.[60] 

 

1.2.3 Model calibration & recalibration 

 

Once the predictors have been selected, the performance of a model is evaluated based on its 

calibration and discrimination metrics. Calibration assesses the ability of a model to accurately 

predict the outcome of a group of interest. This can be done by plotting the mean observed risk 

against the mean predicted risk from the model using groups of individuals from low to high 

risk.[50,53] A well calibrated model will have a slope value close to one with a y-intercept value of 

zero. The calibration-in-the-large, which is a measure of the difference in the means of the 

observed and predicted risks, will be close to zero for well calibrated models.[50,53] The calibration 

estimate of a model in a training dataset will always be perfect because the model was made to fit 

(i.e. calibrated to) that specific dataset. Therefore, the success of calibration can only be defined in 

a dataset that is distinct from the training dataset and highlights the importance of having an 

independent testing dataset where the model can be impartially evaluated.[53] 

 

And since model performance does not always translate well to new datasets, models can be 

recalibrated.[53] This also involves splitting the data into a training dataset and a testing dataset. 

In model recalibration, the training data’s logistic regression model is defined as a linear predictor, 

and this linear predictor is used in a subsequent logistic regression model where the overall slope 

and intercept values are re-evaluated to adjust the model parameters for the new dataset.[61,62] 

The recalibrated model is then validated in the test data. 
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1.2.4 Model discrimination: ROC curve & AUC 

 

The discrimination of a model is its ability to differentiate between people getting the outcome of 

interest (diseased/affected) or not (non-diseased/unaffected).[53] The model generates a 

continuous value, and a cut-point is chosen. For any cut-point, the detection rate (DR) gives the 

proportion of individuals with a predicted risk above the cut-point value who will develop the 

outcome of interest.[38] The DR is also known as the sensitivity, but “sensitivity” is often 

misinterpreted as the lower limit of detection for a biochemical test, hence why DR is preferred. 

The false positive rate (FPR) (1-specificity) is the proportion of individuals above the threshold 

value who will not develop the outcome of interest.[38] Assuming that the risk factor distributions 

for those who do or do not become affected overlap, the DR and FPR will be influenced by the 

cut-point chosen (Figure 1.2 from E. Christensen[63]). The discriminative performance for 

different cut-points can be summarised using a receiver-operating characteristic (ROC) curve, 

which is a plot of the DR versus the FPR for different cut-points of predicted risk (Figure 

1.2)).[63]  

 

 

 
 
Figure 1.2 from E. Christensen[63] Relationship between risk factor distributions and the 
ROC curve. (A) Three identical unaffected and affected distributions with different 
discrimination thresholds. The discrimination threshold is the arbitrary cut-point value chosen for 
a predictive test. It is a compromise between the DR (sensitivity) of disease and the FPR (1-
specificity). (B) The three cut-point values from the distributions in panel A are annotated on the 
corresponding ROC curve. The ROC curve is a visual summary of all the potential cut-point values 
that exist for the distributions. The higher the DR a cut-point allows, the higher the FPR. The 
shape of the ROC curve is the same for all the distributions in panel A as the cut-points do not 
influence it, but rather the difference in the means and the variance of the distributions influence 
the shape of the ROC curve. DR = detection rate; FPR = false positive rate; ROC = receiver-
operating characteristic. 
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The ROC curve is related to the distributions of affected and unaffected individuals (Figure 1.3 

from Janssens et al.[64]). The area under the receiver-operating curve (AUC), provides information 

on how far apart these two normal distributions are from each other. The higher the mean 

predicted risk among affected versus unaffected, the better the separation of the distribution. A 

higher degree of separation between the risk distributions means that a model is better able to 

discriminate between affected and unaffected individuals, and is therefore a more useful prediction 

model (Figure 1.3.a).[64] The AUC represents the area between the ROC curve and the diagonal: 

the better the model, the further apart the two distributions are from each other, therefore the 

further apart the ROC curve is from the diagonal, and the closer the AUC is to 1 (Figure 

1.3.b).[64] The AUC is often interpreted as the probability that an affected individual is correctly 

assigned as affected by the model compared to an unaffected individual.[53,65] For binary 

outcomes, the AUC and the concordance statistic (C-statistic or C-index) are equivalent and used 

synonymously.[53] 

  

 

 
 
Figure 1.3 from Janssens et al.[64] Evaluating the discriminative ability of a model to 
distinguish between affected and unaffected individuals. (a) The risk distributions of affected 
and unaffected individuals given the predicted risk of a model. The overlap of both distributions 
is represented in white, and the non-overlapping regions are highlighted in two different shades of 
grey. The degree of separation between these distributions will have a direct effect on the size of 
the white and grey areas. (b) The corresponding ROC plot of the risk distributions in panel (a). 
The AUC is depicted by the grey areas. The degree of separation between the risk distributions 
influences the size of the grey areas, which determines the “height” of the ROC curve and the 
AUC. AUC = area under the receiver-operating curve; ROC = receiver-operating characteristic; 
Se = sensitivity; Sp = specificity. 
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The AUC is considered to be insensitive when it comes to adding a predictor to a model that 

already has good discrimination as the AUC will likely not visibly improve by much after a certain 

point.[66] This is because with every additional predictor that is added to a model, the separation 

of the means of the two distributions will increase, but the standard deviations (SD) will also 

increase, and hence the overlapping regions of the two distributions will not decrease as much as 

expected.[67] The effect of adding predictors to a model becomes increasingly modest with every 

new predictor, especially if they are not very strong. Model performance can still improve when 

adding predictors of small effect sizes, however a larger number of predictors will be needed to 

achieve the same discriminative ability as stronger predictors, and the improvement rate will also 

be much slower compared to predictors with large effect sizes.[58,68]  

 

Another criticism of using the AUC as a measure of screening performance is that it covers all 

possible DR and FPR values for the test, including those that would never be considered useful in 

prediction.[69] Indeed, many studies with modest AUC values would never be considered as 

screening tests in clinical practice.[69] This is why it is important to specify the DR for different 

FPRs that would be considered acceptable. 

 

1.2.5 Comparing models: net reclassification index (NRI) & decision curve analysis 

 

The performance of a newly developed prediction model is often compared to that of other 

model(s) predicting the same outcome of interest. Usually, the models’ discrimination metrics 

(AUC or C-index) are compared in a first instance, followed by a model classification analysis such 

as a net reclassification index (or net reclassification improvement) (NRI) analysis.  

 

1.2.5.1 NRI 

 

A NRI analysis computes the probability that a model correctly and incorrectly reclassifies cases 

and controls compared to another model at a pre-specified threshold value.[70] This type of 

analysis is often done as it provides more tangible information regarding the impact of applying 

the prediction models in practice, which is not always concretely interpretable if only comparing 

the AUC or C-index of models.  

 

However, the NRI has also been criticised as a metric. Studies have shown that the NRI tends to 

always be positive in large datasets even if a new variable added to a model is not predictive on its 
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own, likely due to overfitting.[71,72] The authors caution against using the NRI to evaluate the 

addition of a predictor to a pre-existing model. Another limitation of a NRI analysis is that it is 

performed at a specific cut-off value. This type of analysis does not provide an overview of the 

performance of the models at all possible threshold values, which might not always be required if 

the threshold value is set in practice.  

 

1.2.5.2 Decision curve analysis 

 

A decision curve analysis overcomes this limitation of having to evaluate the performance of 

models based on a single pre-specific threshold value: a decision curve analysis computes the 

models’ net benefit across all possible threshold values.[73] The net benefit of a model is calculated 

as the weighted difference between true and false positive cases (at all possible thresholds).[73] For 

example, a net benefit of 0.05 for a model at a specific probability threshold can be interpreted as 

overall 5 true positive cases detected (after subtracting all false positive cases from all true positive 

cases) for 100 individuals tested.[73] The decision curve analysis results are often plotted on a 

graph with the models’ threshold values shown on the x-axis and the net benefit on the y-axis 

(Figure 1.4 from Vikers et al.[73]). This provides a visual comparison of the changes in net benefit 

across all possible probability thresholds for various models. 

 

 

 

Figure 1.4 from Vickers et al.[73] Decision curve analysis plot. The threshold values are 
plotted on the x-axis against the net benefit of the models on the y-axis. This graph evaluates the 
net benefit of four possible scenarios for various probability thresholds: 1) intervention for none; 
2) intervention for all; 3) model; 4) test. 
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1.2.6 Clinical utility 

 

The metrics described previously provide a necessary measure of model performance, however, 

they do not provide tangible information as to the disease risk that they convey. The metrics more 

commonly used to assess the clinical usefulness of models are the DR (sensitivity), specificity 

(equal to 1 minus the FPR), and odds of being affected given a positive test result (OAPR).[74] 

These metrics require a pre-specified cut-off value for a model to classify individuals into “test 

positive” and “test negative” groups.  

 

As mentioned in section 1.2.4 of the Introduction, the DR is a measure of the proportion of 

affected (diseased) individuals who test positive, and the FPR is a measure of the proportion of 

unaffected (non-diseased) individuals who incorrectly test positive (Table 1.1).[75] These metrics 

enable more comprehensible one-to-one comparisons of clinical models: the DR of tests can be 

directly compared if their FPR are fixed at a same level (e.g. comparing the DR of two tests for a 

5% FPR). The likelihood ratio (LR) is calculated as the ratio between the DR and the FPR. This 

metric provides a relative measure of disease risk.[76]  

 

 

 Disease + Disease - Total Predictive values 

Test + 80 45 125 

 

𝑂𝐴𝑃𝑅 = 80 ∶ 45 ≃ 2 ∶ 1 
 

𝑃𝑃𝑉 =
80

80 + 45
× 100 = 64% 

 

Test - 20 855 975 

 

𝑁𝑃𝑉 =
855

20 + 855
× 100 = 97.7% 

 

Total 100 900 1000 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑖𝑠𝑘 =
100

1000
× 100 = 10% 

 

𝑂𝑑𝑑𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑒𝑠𝑡 = 1: 9 
 

Sensitivity & 
specificity 

 

𝐷𝑅 =
80 × 100

100
= 80% 

 

 

𝐹𝑃𝑅 =
45 × 100

900
= 5% 

  

𝐿𝑅 =
𝐷𝑅

𝐹𝑃𝑅
=

80

5
= 16 

 
Table 1.1 Two by two table illustrating the relationship between the DR, FPR, OAPR, 
PPV, NPV, odds of disease, absolute risk and LR. DR = detection rate; FPR = false positive 
rate; LR = likelihood ratio; NPV = negative predictive value; OAPR = odds of being affected 
given a positive test result; PPV = positive predictive value. 
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The OAPR is the positive predictive value (PPV) of a test expressed as an odd.[74] As illustrated 

in Table 1.1, it can be calculated as the ratio of affected to unaffected individuals with a positive 

test result (Table 1.1). The OAPR and PPV are examples of measures expressing disease risk in 

absolute terms. [74] 

 

Indeed, disease risk can be expressed as a relative or an absolute measure. The relative risk of a 

disease refers to an estimate of the risk of one group in relation to another.[77] The absolute risk 

provides information on the individual or group risk of disease over a specified time (usually 

expressed as a probability or percentage).[77] Absolute risk is what clinical prediction models with 

multiple variables provide. When the DR and FPR are calculated, they can be converted to the 

absolute risk scale using transformation on average disease incidence rate (which is an absolute 

risk). This is done as follows: 

 

• If the average absolute risk (𝑃) over a specified period is 10%, the odds are equal to 1: 9 

(where 𝑜𝑑𝑑𝑠 =
𝑃

1−𝑃
);  

• The OAPR depends on the DR and FPR (or LR) of the test cut-off, such that 𝑂𝐴𝑃𝑅 =

𝐷𝑅 × 1 ∶ 𝐹𝑃𝑅 × 9 (or 𝑂𝐴𝑃𝑅 = 𝐿𝑅 × 1: 9) in this example. 

o For example, for a DR of 20% and a false positive of 5%, the 𝑂𝐴𝑃𝑅 = 0.2 × 1 ∶

0.05 × 9 = 0.2 ∶ 0.45 ≃ 1 ∶ 2 

• The odds can be converted back to probability (𝑃) using 𝑃 =
𝑜𝑑𝑑𝑠

𝑜𝑑𝑑𝑠+1
, indicating an 

individual’s probability of having the disease at that test cut-off. 

o In this example, 𝑃 =
1

2
1

2
+1

=
2

6
=

1

3
 or ≃ 33% 

 

While these measures are commonly used to assess the clinical utility of novel non-genetic 

prediction models or tests, as I show later in the thesis, PGS studies have yet to routinely 

incorporate these metrics when assessing their value in disease prediction. 

 

1.3 Polygenic risk scores (PRS) in disease prediction 

 

The terms “polygenic scores” (PGS), “polygenic risk scores” (PRS), “genetic scores” and “genetic 

risk scores” are used interchangeably in the literature. I will use the term PGS when referring to 
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them in a broader context of a genetic score for a trait (continuous or binary), and PRS when 

referring to them as risk scores for a binary disease endpoint. 

 

1.3.1 Generating polygenic scores (PGS) 

 

Over the past 15 years, GWAS have uncovered many single nucleotide polymorphisms (SNPs) 

associated with complex biological traits and common diseases. Each SNP has a small influence 

on its own, however, the idea behind PGS is that the aggregation (or burden) of these common 

variants in any individual’s genome has a more substantial influence on an observable trait effect 

when pooled together.  

 

1.3.1.1 Weighted and unweighted scores 

 

PGS are constructed from the sum of independent genetic variants associated with a trait (e.g. 

height, breast cancer, schizophrenia, educational attainment) in an individual’s genome. The 

genetic variants used in the score are obtained from the summary statistics of a published GWAS 

for the trait. Two main types of PGS can be constructed: weighted and unweighted scores.[60]  

 

 

      𝑃𝐺𝑆𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ∑ 𝑔𝑘

𝐾

𝑘=1

                           𝑃𝐺𝑆𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ∑ 𝛽𝑘𝑔𝑘

𝐾

𝑘=1

 

 

 

Unweighted scores require a simple addition of the total number of “risk” or trait alleles (𝐾) 

obtained from the GWAS summary statistics; with 0 having no risk allele (𝑔 = 0), 1 having one 

risk allele (𝑔 = 1), and 2 having both risk alleles (𝑔 = 2). Weighted scores follow this same 

principle but have a specific genetic effect size estimate (𝛽𝑘) associated with each variant (𝑔𝑘), 

meaning that each genetic variant will carry a different weight in the overall score. The premise 

behind PGS is the higher the overall score for a trait, the higher the risk (or chances) of having or 

getting the trait in question.  

 

The construction of these scores assumes that the effect of risk alleles is additive, meaning that the 

more risk alleles someone has for a disease, the higher their risk of having the disease.[78] This 

𝑔 ∈  {0,  1,  2} 
𝛽 ∈ ℝ  

𝑘 ∈  {1, … , 𝐾} 
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assumption is based on the independent assortment of variants according to Mendel’s law. And 

according to the central limit theorem, a variable that is the sum of many independent effects 

should be normally distributed, meaning that the distribution of risk variants for any given trait in 

a population is Gaussian in nature. This implies that a given unit increase in a PGS produces the 

same proportional increase in disease risk.[60] 

 

1.3.1.2 Score parameters: linkage disequilibrium (LD) & p-value thresholds 

 

It is believed that the power of current GWAS is not large enough to detect all the genetic variants 

that would pass the genome-wide significance threshold due to sample size limitations.[79,80] For 

this reason, the variants included in the scores do not necessarily need to pass the genome-wide 

significance threshold (p-value of 5x10-8).[60]  

 

The genetic architecture of the human genome is such that genetic variants in close physical 

proximity tend to be inherited together because they are less prone to being separated at meiosis 

by genetic recombination. Such variants are said to be in LD, and the extent of LD between pairs 

of variants is typically denoted by the squared coefficient of correlation (r2). When calculating PGS, 

LD structure is accounted for to prevent score inflation.[60] Score inflation can arise from 

erroneously including multiple linked genetic variants due to LD in the score (the equivalent of 

counting a single variant multiple times). Clumping is a commonly used technique to account for 

LD structure. This method selects the most significant genetic variant per LD region defined.[60] 

Accounting for LD can also potentially lead to the removal genetic variants that are in LD with 

the most significant genetic variant of the LD region defined, but that are also independently 

associated with the studied trait.[68] This would lead to loss of information, and this is also a 

reason why multiple LD cut-offs are usually tested when generating PGS.[60] 

 

Currently, there is no gold standard method when it comes to selecting which genetic variants 

should be included in a PGS. In practice, multiple scores are generated using different p-value, LD 

and MAF cut-off values to prevent underfitting of the prediction models.[60] Underfitting 

happens when the variables of a prediction model do not sufficiently predict the outcome of 

interest; usually because there are not enough useful predictors in the model. Testing different p-

value, LD and MAF cut-off values ensures that the PGS generated include enough predictive 

genetic variants to prevent this issue of underfitting. 
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PGS can be constructed from a few tens of variants to millions of variants depending on the 

parameters chosen to generate the scores. The PGS that best predicts the outcome of interest is 

most commonly chosen based on the AUC (for binary endpoints) or R2 (for continuous measures) 

of the score. 

 

1.3.1.3 Dataset considerations 

 

PGS have emerged because of the increasing sample size of GWAS, leading to more discovered 

associations between genetic variants and traits, as well as bigger longitudinal cohort studies that 

have made the testing of these scores possible. Disease GWAS, which are used to discover genetic 

variants, are often case-control in design. These study designs cannot be used to evaluate the 

performance of predictors of future risk as they are cross-sectional.[81] To do so requires 

longitudinal cohort studies of initially healthy participants. There is a long history of such studies, 

and the UK Biobank is one of the most recent and largest.[82] 

 

PGS are also often derived and then applied to an independent dataset (the target dataset) to avoid 

inflation of the observed effects.[83] PGS can be recalibrated in a subset of the independent data 

(the training data) and then applied to the rest of the independent data (the test data) to improve 

prediction (Figure 1.5). PGS can also be tested in an external dataset. 

 

PGS tend to have poor predictive performance across diverse ancestries due to differences in allele 

frequencies and LD structure.[84,85] It is recommended to use GWAS summary statistics from 

the same ancestry background as the target dataset to prevent this issue.[60] 

 

The unit of the final PGS depends on the unit of the genetic variants’ weights in the GWAS they 

were derived from.[60] For example, a GWAS on height might express its weights in centimetres, 

which means that the final PGS are also expressed in centimetres. If the weights of the GWAS are 

mean centred and predict risk in terms of SD, the weights can then be multiplied by the SD of the 

GWAS trait, and the mean trait value can subsequently be added to the scores to convert them 

into the same unit as the trait in question. For case-control GWAS, the weights are usually 

expressed as log odds ratios (OR), and the PGS are derived relative to an individual who does not 

have any risk increasing alleles.[60] PGS therefore give a measure of relative risk rather than 

absolute risk. 
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Figure 1.5 Workflow for generating trait specific PGS and applying them to a target 
dataset. Typically, the largest published GWAS summary statistic for the trait is chosen and 
multiple PGS are generated using different tuning parameters (p-value and LD cut-off thresholds). 
The PGS are tested in the target population (training dataset) and the PGS that best predicts the 
outcome of interest is chosen. The scores are then validated in a test dataset, which is either a 
subset of the target population (different from the training data), or an external dataset. 
 

 

1.3.2 The prediction of complex heritable traits and incident diseases using PRS 

 

One of the first PRS studies showed that the burden of common variants with small effect sizes 

play a role in the complex polygenic nature of schizophrenia and bipolar disorder.[86] Weighted 

PRS, or “allele scores”, were generated using five different p-value thresholds that were not 

genome-wide significant (p-values of less than or equal to 0.1, 0.2, 0.3, 0.4 and 0.5). The genetic 

scores explained about 3% of the variance observed in schizophrenia; and cases had higher scores 

than controls. Nevertheless, the authors concluded that these scores did not have much clinical 

value in individual risk prediction. Since then, there have been numerous studies looking at the 

predictive performance of PRS in various other heritable complex diseases such as CVD and 

cancers, discussed in more detail later. A landmark paper showed that PRS can account for disease 

risk comparable to monogenic mutations for coronary artery disease (CAD), AF, T2D, 

inflammatory bowel disease and breast cancer.[87] 

 

The main advantage of PRS is that they can be constructed early in a person’s life as their genetic 

makeup remains unchanged throughout their lifetime, instead of restricting risk prediction to a 10-
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year time frame later in life as is currently the case with most non-genetic risk models. This implies 

that people at high risk of a disease could potentially be targeted earlier than is currently done by 

some screening programs or intervention strategies. This approach would be extremely beneficial 

for people at risk of a premature CHD event for example, as they would greatly benefit from early 

lipid- or BP-lowering therapy.[81] Khera et al. developed a PGS for predicting and tracing BMI 

over a person’s lifetime, suggesting a potential for early intervention and prevention strategies in 

individuals with a high PGS for BMI.[88] Another study showed that PRS could potentially inform 

the age of onset of a disease: PRS developed for five diseases (CHD, T2D, AF, breast cancer and 

prostate cancer) all showed a positive correlation between PRS and age of disease onset, although 

the mean age at diagnosis among those with the highest PRS was higher than the age at which 

national screening programmes are done (>67 for CHD, T2D, AF, breast and prostate cancer).[89]  

These findings point towards a potential use of PRS in targeted screening and prevention, and 

maybe also potentially delaying (or optimising) the screening age of certain conditions. 

 

1.3.3 Comparing the predictive performance of clinical risk prediction models and 

PRS 

 

The current literature on PRS shows that these scores exhibit an association with a variety of 

complex traits and disorders. However, associations with a significant p-value are not a guarantee 

that a risk score will be usefully predictive of disease.[38] If risk scores exhibit a relatively weak 

log-linear relationship with risk and are normally distributed, their distributions among those with 

and without disease will be highly overlapping.[33] No cut-point readily separates those with from 

those without disease. And while the OR between the top versus the bottom x% of the distribution 

might seem large (as is often reported in PRS publications), this way of presenting the data is often 

misleading as it does not necessarily translate to a high OR per SD.[90] The OR per SD has to be 

very high in order to provide useful discrimination.[33] 

 

Furthermore, PRS and non-genetic clinical scores assess risk in different ways. PRS are a measure 

of relative risk over a lifetime for a particular trait or disease either based on the population studied 

or on a hypothetical individual who does not carry any risk increasing alleles.[60] They are not a 

measure of absolute disease risk unlike non-genetic clinical models that estimate the absolute risk 

of developing a disease over a defined period of time (e.g. QRISK3 predicts the 10-year risk of 

developing CVD), although this field of research is rapidly evolving.[43,91] 
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Then comes the issue of whether PRS add to existing non-genetic risk prediction tools. To assess 

this, their ability to predict future disease must be compared to the performance of current clinical 

risk prediction tools. So far, the general consensus seems to be that PRS do not necessarily perform 

better than traditional risk scores, but that prediction may be improved if they are combined. 

Inouye et al.’s metaGRS for CAD showed improved model discrimination based on the C-statistic 

when combined with six conventional risk factors for CAD.[92] Abraham et al. also developed a 

PRS for CHD that showed an increase of 0.016 in the C-statistic when combined with the FRS, 

and of 0.015 when combined with the ACC/AHA13 risk score.[93] A 53 genetic variant score for 

CVD improved the C-statistic of QRISK2 by 0.012.[94] And more recently, a study comparing 

QRISK3 to a PRS for CAD in the UK Biobank showed a significant although very modest added 

value of genetic information in risk prediction (an improvement of 0.02 in the C-statistic).[95] 

Similar results were obtained in FinnGen when comparing a PRS for CHD to the ASCVD risk 

calculator (C-statistic improvement of 0.003), a PRS for T2D to T2D risk factors (C-statistic 

improvement of 0.010), and a PRS for AF to CHARGE-AF (C-statistic improvement of 

0.009).[89] Adding genetic information to clinical risk factors for IST also improved the ability to 

predict a future IST event (improvement of about 0.01 in the C-index); and the same was observed 

when adding a T2D PRS to the Framingham Offspring T2D risk score (improvement of 0.01 in 

the AUC).[96,97]  

 

These incremental increases in the C-statistic are all very modest, and these studies have not 

evaluated the clinical utility of these new models using the appropriate clinically useful metrics of 

sensitivity, specificity and OAPR, as described in section 1.2.5 of the Introduction. Better research 

is needed to properly examine the utility of PRS in clinical risk prediction, screening, and risk 

stratification before their use in clinical practice can be recommended.  

 

1.3.4 Leveraging polygenic information for the discovery of rare genetic variants 

 

As seen previously, PGS are a measure of allelic burden for a trait or disease that are constructed 

from common variants. These scores have until now primarily been used to help predict the risk 

of common heritable diseases, but these scores could also be exploited to predict the value of a 

quantitative trait. This information might then hold value for identifying individuals harbouring 

rare genetic variants of large effect size for a trait.[98,99] The idea behind this being that individuals 

in whom the observed value of a continuous trait exceeds that predicted by their common allele 

burden (i.e. PGS) might be more likely to carry a rare variant of large effect size that would account 
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for this discrepancy. An example of this are individuals with LDL-C levels far exceeding those 

predicted by their LDL-C PGS who could be potential carriers of a monogenic variant for familial 

hypercholesterolaemia, which is explored in more detail in Chapter 6.[99] 

 

1.4 Familial hypercholesterolaemia (FH) 

 

1.4.1 Overview of FH 

 

Familial hypercholesterolaemia (FH) is a monogenic disorder resulting from mutations in the 

LDLR, APOB, PCSK9, APOE and LDLRAP1 genes, typically characterised by elevated LDL-C 

levels.[100,101] Individuals with FH have a 3 to 22 fold increased risk of CAD depending on age, 

and patients benefit from lipid-lowering therapies which reduce the risk of premature coronary 

events (Figure 1.6.A from Versmissen et al.[102]).[103,104]  

 

 

 
 
Figure 1.6 FH prevalence and the effects of statin treatment on survival. (A) from 
Versmissen et al.[102]: The cumulative CHD-free survival (%) for FH cases with and without statin 
treatment for a follow-up of 12.5 years. The blue curve (statin treatment) shows a higher 
cumulative event-free survival than the dotted red curve (no statin treatment). (B) from 
Nordestgaard et al.[107]: The estimated number of diagnosed FH cases (based on a prevalence of 
1/500) per selected countries as of 2013. CHD = coronary heart disease; FH = familial 
hypercholesterolaemia. 
 

 

The estimated population prevalence of FH is 1 in 250, making it the most common monogenic 

disorder worldwide.[105,106] Despite this, FH remains highly underdiagnosed in most countries 

(Figure 1.6.B from Nordestgaard et al.[107]). Increasing the identification of FH cases in the UK 
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has been listed as one of the objectives in the National Health Service’s (NHS) Long Term Plan, 

but there is currently no proposal as to how this will be achieved.[108] 

 

1.4.2 Genetics of FH 

 

The pathogenic genetic variants responsible for FH are located in and near the LDLR, APOB, 

PCSK9, APOE and LDLRAP1 genes, all of which encode proteins that play a role in lipid 

metabolism.[107] The low-density lipoprotein (LDL) receptor (LDLR) is a cell surface protein 

mainly expressed in the liver, responsible for the uptake of LDL-C from the blood, ultimately 

reducing circulating LDL-C concentration (Figure 1.7 from Soutar & Naoumova[109]).[110]  

 

 

 
 
Figure 1.7 from Soutar & Naoumova.[109] The LDLR-mediated cellular uptake of LDL. 
The cytoplasmic internalisation of LDL is mediated through LDLR, a cell-surface protein, with 
the help of Apo-B and LDLRAP1. Once internalised, PCSK9 targets LDLR for lysosomal 
degradation. 
 

 

Proprotein convertase subtilisin/kexin Type 9 (PCSK9) is a cytoplasmic protein that is secreted. 

It binds the LDLR on the cell surface and targets it for lysosomal degradation (Figure 1.7).[111] 

Inhibiting the function of PCSK9 prevents this process, leads to the retention of LDLRs on the 

cell surface, and consequently leads to a decrease in circulating LDL-C concentration. This effect 

represents the intended mechanism of action of PCSK9 inhibitor drugs for treating 

hypercholesterolaemia.[112]  
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Apolipoprotein B (Apo-B) and apolipoprotein E (APOE) are located on lipoprotein particles such 

as LDL (Figure 1.7).[113] FH-causing variants in APOB disrupt the binding affinity of LDL to 

LDLR, leading to hypercholesterolaemia.[114] For APOE, the gain-of-function FH-causing 

variant p.Leu167del increases the binding affinity of APOE to LDLR and thereby prevents the 

effective recycling of LDLR back to the cell surface, leading to hypercholesterolaemia.[115]  

 

Homozygous or compound heterozygous mutations in LDLRAP1, a gene encoding the LDLR 

adapter protein 1 (LDLRAP1, also known as ARH) which mediates the internalisation of LDL-

LDLR complexes, have also be found to cause a recessive form of FH (Figure 1.7).[116,117] Due 

to its recessive mode of inheritance, parents and children of affected individuals do not display the 

hypercholesterolaemia phenotype, but affected individuals have severe hypercholesterolaemia 

requiring treatment by LDL-apheresis.[118] 

 

The spectrum of FH-causing variants makes it difficult to develop a simple genotype-based test 

for FH, unless the particular variant responsible for FH in a family is seen. For this reason, many 

clinical genetics services have developed exome sequencing protocols to confirm or refute a 

diagnosis of FH in suspected cases.[119] 

 

1.4.3 Clinical diagnosis of FH 

 

Several criteria have been developed to help diagnose FH in clinical practice. Examples include 

the Simon Broome Criteria in the UK, the Dutch Lipid Clinical Network (DLCN) criteria in the 

UK and the Netherlands, and the Make Early Diagnosis to Prevent Early Death (MEDPED) 

criteria in the US.[120] These tools work similarly to risk calculators: they provide a measure of 

certainty for having FH. The variables included in these scores vary but they all incorporate a 

measure of either LDL- or total cholesterol concentration (Table 1.2).[120] Genomic sequencing 

of suspected FH cases is necessary to confirm the diagnosis. 
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Simon Broome Criteria Dutch Lipid Clinical 
Network (DLCN) 

Make Early Diagnosis 
to Prevent Early 
Death (MEDPED) 

Age 
   

Total cholesterol >7.5 mmol/L 
  

LDL-C >4.9 mmol/L >4.0 mmol/L 
 

Total cholesterol/LDL-C ratio 
  

Age-dependent (from 
5.7/4.0 mmol/L) 

DNA-based evidence of a function LDLR, 
PCSK9 and APOB mutation 

   

Clinical history/examination 

Tendon xanthomas 
   

Premature coronary heart disease 
   

Premature cerebral or peripheral vascular 
disease 

   

Arcus cornealis <45 years of age 
   

Family history 

Family history of premature CVD events 
   

Family history of extremely high cholesterol 
   

Family history of tendon xanthomas 
   

Family history of FH 
   

 
Table 1.2 The FH diagnostic variables included in the Simon Broome, Dutch Lipid 
Clinical Network, and the Make Early Diagnosis to Prevent Early Death criteria. The 
shaded boxes in grey indicate the variables used in each score. CVD = cardiovascular disease; FH 
= familial hypercholesterolaemia; LDL-C = low-density lipoprotein cholesterol. 
 

 

1.4.4 Cascade testing of index FH cases 

 

Since FH is primarily an autosomal dominant disorder, first-degree relatives of patients have a 

50% chance of being affected. Once a new index FH case has been identified and confirmed via 

genetic sequencing, the FH-causing genetic variant is cascade tested in close relatives (first, second, 

and third degree if possible) using simpler mutation detection approaches, as recommended by the 

National Institute for Health and Care Excellence (NICE).[121] This approach has been shown 

to be cost-effective in the UK, however, it relies on a means of identifying new index cases.[122] 

Currently, FH index case detection is opportunistic. For this reason, there is much interest in 

considering cost-effective approaches for FH population screening.  
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1.4.5 Population screening of FH 

 

Currently, new FH cases are detected when individuals are found to have an elevated LDL or total 

cholesterol level, usually when blood tests are organised for another reason. Other patients are 

identified only after they suffer a CHD event at an early age. There is no systematic way of 

identifying new FH cases in the UK population, even though the NHS Long Term Plan published 

in 2019 stated that it aims to increase the diagnosis of FH cases from 7% to 25% in the next five 

years.[108]  

 

Some studies have proposed population screening for FH, such as the child-parent screening 

strategy by Wald et al.[123] This involves measuring 15-month-old children’s cholesterol levels via 

a blood spot while attending routine immunisation. Children with elevated cholesterol levels (e.g. 

>1.53 multiple of the median (MoM) for total cholesterol, or >1.84 MoM for LDL-C) are 

considered to be potential FH cases.[123] Their parents’ cholesterol levels are subsequently 

measured, and the parent with the highest cholesterol concentration is considered to be the 

affected parent. Cascade screening is then initiated in close relatives (other children, siblings, and 

parents) of index cases for further FH case identification. This strategy was validated by Futema et 

al., and similar ones are being trialled in Bavaria and Slovenia.[124–126] Despite its merits, the 

child-parent population screen for FH was rejected as an approach by the UK National Screening 

Committee because of concerns about the screened population being children who are not 

immediately eligible for lipid-lowering therapies.[127] Nevertheless, a pilot Child-Parent Screening 

Service is underway in 30,000 children aged 1 to 2 years old over a course of 24 months in select 

testing sites affiliated with the UK Academic Health and Science Network.[128,129]  

 

A recent cost-effectiveness study from Australia also suggested that the genomic sequencing of all 

young adults for FH was cost-effective, assuming reasonably priced tests (<AU$250).[130] This 

type of cost-effectiveness study has not been done in the UK, and other more cost-effective 

screening strategies for FH in the general adult population have also yet to be explored. 

Considering the potential applications of PGS in rare variant discovery, PGS could play a role in 

population screening to identify FH cases in the general population.[98,99]  

 

 

 



 
 

46 

1.5 Thesis overview 

 

The aim of this thesis was to evaluate the clinical utility of PGS in CVD prediction and screening. 

In the first part of the thesis (Chapter 2), I undertook an overview of the performance of the PGS 

reported in the Polygenic Score Catalog. 

 

I then performed my own PGS analyses using data from the UK Biobank as it is the largest and 

most current longitudinal cohort study of the UK population to date, and it contains all the 

information needed to perform the various analyses detailed in this thesis. Chapter 3 describes the 

cohort study in more detail and the various quality control steps that were performed prior to 

utilising the dataset for the analyses. 

 

Chapter 4 analyses the incremental predictive utility of PGS when added to the non-genetic clinical 

risk prediction calculators QRISK3, QStroke and QDiabetes for the 10-year prediction of incident 

CVD/CHD, IST and T2D respectively. It addresses some limitations of previous PGS studies and 

provides further evidence as to the clinical utility (or otherwise) of PGS in CVD prediction. 

 

Chapter 5 introduces a new adult population screening strategy for FH and compares its 

performance to that of the child-parent screening strategy proposed by Wald et al.[123] This 

chapter addresses the current issues faced with the underdiagnosis of FH in the UK and provides 

a solution to address the target of identifying 25% of all FH cases as indicated in the NHS Long 

Term Plan. 

 

Chapter 6 builds on Chapter 5 by developing a novel prediction model for detecting monogenic 

FH using machine learning (LASSO) to improve the efficiency of the two-stage adult population 

screen. The prediction model incorporates use of an LDL-C PGS together with other variables. 

This chapter provides further evidence as to the possible clinical applications of PGS in aiding 

monogenic FH detection and screening. 

 

The thesis ends with a discussion in Chapter 7 on the various analyses undertaken throughout the 

thesis, and on the impact and implications that these have with regards to PGS in CVD prediction 

and screening. 
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2 Analysis of polygenic risk scores (PRS) in the Polygenic Score Catalog for 

disease screening, risk prediction, and population stratification 

 

A preprint version of the following chapter is available on medRxiv and has been submitted for 

publication.[1] 

 

2.1 Abstract 

 

Background: There is interest in the potential use of polygenic risk scores (PRS) for disease 

prediction and screening but uncertainty on their performance. The aim of this chapter was to 

evaluate the PRS published in the Polygenic Score Catalog as predictive and screening tests using 

the relevant performance metrics.  

 

Methods: I converted metrics curated in the Polygenic Score Catalog (odds ratios (OR), hazard 

ratios (HR), area under the receiver operating characteristic curve (AUC), C-index), into the 

sensitivity or detection rate (DR) for PRS cut-offs that define a 5% false positive rate (FPR). I 

evaluated the performance of PRS for disease in screening, risk prediction and population 

stratification by obtaining the odds of becoming affected calculated as the background odds of 

disease multiplied by the likelihood ratio. I also analysed the effect of adding a PRS to conventional 

risk factors in the prediction and primary prevention of coronary artery disease (CAD) and stroke.  

 

Results: I identified 10,723 performance metrics for 2,194 polygenic scores for the prediction of 

544 endpoints as of April 2022. At a 5% FPR, PRS detected between 8-19% (and therefore missed 

81-92%) of affected individuals. For a CAD PRS with a DR for a 5% FPR (DR5) of 13% (DR5 = 

13%) and a population 10-year risk of 8% (background odds of 1 to 12), the odds would be reduced 

to 1 to 20 with a PRS at the 25th centile and increased to 1 to 10 with a PRS at the 75th centile. 

Based on two data sources, adding a PRS to non-genetic risk prediction models for cardiovascular 

disease (CVD) and CAD, using a 10-year risk cut-off  of  10% for initiation of  statin treatment, 

produced numbers-needed-to-genotype to prevent one additional event of  5,882 and 8,879.  

 

Conclusion: Analysis using the relevant metrics revealed the weak predictive performance of PRS 

for a wide range of disease endpoints (including various CVD endpoints), casting doubt on the 

future role of PRS in screening, population risk stratification, and individual risk prediction. 
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2.2 Introduction 

 

Polygenic scores (PGS) represent the weighted sum of independent DNA sequence variants in a 

genome that increase risk of a particular trait. When the trait in question is a disease, PGS are more 

commonly referred to as polygenic risk scores (PRS). The weight assigned to each variant is based 

on the strength of its trait association in a genome wide association study (GWAS).[2] The 

increasing range and scale of GWAS over the last decade, now spanning over 900 diseases, has led 

to a proliferation in PGS and sparked widespread interest in their potential healthcare applications, 

capturing the attention of policy makers.[3] Individual consumers and healthcare providers can 

already access commercial genetic testing and software services based on PGS.[4–6] In a 

progression toward healthcare implementation, position papers have appeared on reporting 

standards and responsible clinical use from the Clinical Genome Resource (ClinGen) Complex 

Disease Working Group,[2] and the Polygenic Risk Score Task Force of the International 

Common Disease Alliance.[7] Yet, there is disagreement on the performance of PRS in disease 

screening, prediction, and risk stratification, and their eventual role in medicine and public health 

remains uncertain.[8–11] 

 

Recently, Lambert and colleagues produced the Polygenic Score Catalog, a comprehensive, 

regularly updated, publicly accessible directory of studies on PGS for quantitative traits (e.g. blood 

pressure) and PRS for diseases (e.g. coronary artery disease (CAD)).[12] The catalogue lists the 

following performance metrics for PRS: the hazard (HR) and odds ratio (OR), both per one 

standard deviation (SD) increment in the score, and the area under the receiver operating 

characteristic curve (AUC), sometimes expressed as the C-index.  

 

However, these widely reported metrics are not directly informative of performance in disease 

screening, individual risk prediction, or population risk stratification. The required metric is the 

odds of becoming affected given a result, which is the positive predictive value expressed as an 

odd. It is obtained by multiplying the background odds of disease in a population by the likelihood 

ratio. In each case (screening, prediction, and risk stratification), the likelihood ratio can be 

calculated from the PRS standard normal distributions. The aim of this chapter was to derive the 

required metrics from the reported metrics (HR per SD, OR per SD, AUC, and C-index) to 

properly evaluate the performance of PRS in their intended applications. The performance of PRS 

in established risk factor models in the prediction of CVD and CAD was also evaluated.  
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2.3 Methods 

 

2.3.1 Analysis overview 

 

The data analysed here was downloaded from the Polygenic Score Catalog in April 2022.[12] When 

referring to a particular PGS, I used the Polygenic Score Catalog reference number. Data analysis 

was done in R version 4.0.2, and figures were plotted using the R package ggplot2 version 

3.3.6.[13,14] 

 

I excluded implausible values for the original metrics (OR or HR per SD <1; AUC and C-index 

either <0.5 or >1). I then used the overlap of  the Gaussian distributions to calculate the detection 

rate (DR) for a pre-specified false positive rate (FPR). For simplicity and consistency, I set PRS 

cut-offs that define a 5% FPR and calculated the corresponding DR (the DR5) as explained 

below.[15]  

 

The likelihood ratio in screening is defined as the ratio of the DR to the FPR; in risk prediction, 

as the ratio of the heights of the relative Gaussian distributions of PRS for affected and unaffected 

groups at a particular PRS value; and in risk stratification, as the relative areas under the 

distributions for affected and unaffected individuals in each PRS quantile (e.g., each fifth of the 

PRS distribution). PRS “centile” or “quantile” is in reference to the distribution in the unaffected 

group. In each of these three cases, multiplying the likelihood ratio by the background odds of 

disease gives the corresponding odds of becoming affected.  

 

I re-analysed data from two original studies to quantify the extent to which the addition of 

information from PRS improves the prediction of CVD and CAD events.[16,17] I did so by 

computing the DR and FPR, with and without information from PRS, using risk cut-offs 

recommended in guidelines for the initiation of statin treatment. The DR was calculated as the 

ratio of true positive cases to the total number of positive cases (i.e. true positive cases plus false 

negative cases). The FPR was calculated as the ratio of false positive cases to the total number of 

negative cases (i.e. false positive plus true negative cases). I calculated the number of individuals 

who need to be genotyped to detect or prevent one additional CVD or CAD event.  
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2.3.2 Assumptions 

 

The calculations assume that PRS exhibit a Gaussian distribution in a population: the proportional 

difference in disease risk is the same for any given difference in PRS value from any starting level 

(i.e. a log-linear relationship), and PRS distributions have the same SD (~1) in affected and 

unaffected individuals.[12] 

 

2.3.3 Deriving DR5 from HR or OR per SD 

 

From these assumptions, it is possible to mathematically derive the DR and FPR from the OR or 

HR per SD.[15,18] These derivations taken from Wald and colleagues’ work are detailed in the 

methods section below.[18,19]  

 

 

 
 
Figure 2.1 Standardised normal distributions for affected and unaffected individuals and 
their relationship to the OR or HR per SD and the DR5. The distribution for the affected 

(mean: 𝜇𝐴) is shown in red, and the distribution for the unaffected (mean: 𝜇𝑈) is depicted in blue. 
The standardised distributions have a SD of 1. The dotted vertical line refers to the 95th centile of 
the unaffected distribution, equivalent to the cut-off value for the 5% FPR. The DR5 refers to the 
DR for a 5% FPR, which is the area under the curve of the affected distribution to the right of the 
dotted line (i.e. the 5% FPR cut-off). The OR can be calculated by dividing the heights of the 
distributions at equivalent SDs (e.g. +0.5 and -0.5) from the mean of the unaffected distribution. 
DR = detection rate; DR5 = detection rate for a 5% false positive rate; FPR = false positive rate; 
HR = hazard ratio; OR = odds ratio; SD = standard deviation. 
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Consider two overlapping Gaussian PRS distributions with equal SD (𝜎) standardised using the Z-

score: one for affected (A) and one for unaffected (U) with mean values 𝜇𝐴 and 𝜇𝑈 respectively 

(Figure 2.1). The OR per SD is equal to the ratios of  the probability density function values (𝜑) 

for affected (𝜑𝐴) and unaffected (𝜑𝑈) individuals that are one SD apart, for example 

corresponding to values at +0.5 SD and -0.5 SD of  the distribution of  unaffected individuals. In 

Figure 2.1, the values are shown by the vertical red and blue lines respectively. This can be 

expressed as: 

 

𝑂𝑅𝑆𝐷 =
(

𝜑𝐴
𝜑𝑈

⁄ )
+0.5

(
𝜑𝐴

𝜑𝑈
⁄ )

−0.5

 

 

For a value 𝑥 on the x-axis, the probability density function (𝜑) of  a Gaussian distribution is equal 

to: 

 

𝜑(𝜇, 𝜎, 𝑥) =
1

𝜎√2𝜋
𝑒− 

1
2(

𝑥−𝜇
𝜎 )

2

 

 

Which means that for the distribution of  the unaffected, where 𝜇 = 0 and 𝜎 = 1: 

 

𝜑𝑈(0,1, 𝑥) =
1

1√2𝜋
𝑒− 

1
2(

𝑥
1)

2

 

 

𝜑𝑈(0,1, 𝑥) =
1

√2𝜋
𝑒− 

𝑥2

2  

 

At values of  𝑥 = 0.5 and 𝑥 = -0.5, we know that 𝜑𝑈+0.5 = 𝜑𝑈−0.5, which means that: 

 

𝑂𝑅𝑆𝐷 =
 (𝜑𝐴+0.5) 

(𝜑𝐴−0.5)
 

 

For the distribution of  the affected, 𝜇 = 𝜇𝐴 and 𝜎 = 1; so at 𝑥 = 0.5 and 𝑥 = -0.5: 

 

𝜑𝐴(𝜇𝐴, 𝜎, −0.5) =
1

1√2𝜋
𝑒− 

1

2
(

−𝜇𝐴−0.5

1
)

2
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And, 

 

𝜑𝐴(𝜇𝐴, 𝜎, +0.5) =
1

1√2𝜋
𝑒− 

1
2(

0.5−𝜇𝐴
1 )

2

 

 

Thus: 

 

𝑂𝑅𝑆𝐷 =

 
1

1√2𝜋
𝑒− 

1
2(

0.5−𝜇𝐴
1 )

2

 

 
1

1√2𝜋
𝑒− 

1
2(

−𝜇𝐴−0.5
1 )

2 

 

𝑂𝑅𝑆𝐷 =
𝑒−

1
2 (0.5−𝜇𝐴)2

𝑒−
1
2 (−𝜇𝐴−0.5 )2

 

 

𝑂𝑅𝑆𝐷 = 𝑒[−
1
2 (0.5−𝜇𝐴)2+

1
2 (−𝜇𝐴−0.5 )2]

 

 

𝑂𝑅𝑆𝐷 = 𝑒−
1
2[ (0.5−𝜇𝐴)2− (−𝜇𝐴−0.5 )2]

 

 

𝑂𝑅𝑆𝐷 = 𝑒−
1
2[−2𝜇𝐴]

 

 

𝑂𝑅𝑆𝐷 = 𝑒𝜇𝐴 

 

𝜇𝐴 = ln 𝑂𝑅𝑆𝐷 

 

The DR at a cut point 𝑥 of  a standard normal cumulative distribution can be calculated using the 

cumulative distribution function (CDF), which corresponds to the area under the normal 

distribution among affected at the right of  𝑥 (note that the entire area under the distribution is 

equal to 1): 

 

𝐷𝑅 = 1 − ∅(𝑥 − 𝜇𝐴) 
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And since the normal distribution is symmetrical: 

 

𝐷𝑅 = ∅(𝜇𝐴 − 𝑥) 

 

The DR5 can be calculated using the 95th centile cut-off  of  the unaffected distribution (i.e. the 

threshold for a 5% FPR). This has a value of  1.645 on the unaffected distribution of  𝜇𝑈 = 0 and 

𝜎 = 1. Using the previous equations, we can obtain the DR5 and link it to the OR (or HR) per 

SD: 

 

𝐷𝑅5 = ∅(𝜇𝐴 − 1.645) 

 

𝐷𝑅5 = ∅(ln 𝑂𝑅𝑆𝐷 − 1.645) 

 

 

2.3.4 Deriving DR5 from AUC and C-index 

 

It is also possible to derive the DR5 from the AUC and C-index, as demonstrated by Wald and 

Bestwick.[19] The calculations below detail how this can be achieved.  

 

 

 
 
Figure 2.2 Standardised normal distributions for affected and unaffected individuals and 
their relationship to the AUC or C-index, the DR and the FPR. The affected distribution 

(mean: 𝜇𝐴) is depicted in red, and the unaffected distribution (mean: 𝜇𝑈) in blue. For a cut-off 𝑇, 
the DR and FPR can be calculated. AUC = area under the curve; DR = detection rate; FPR = 
false positive rate. 
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The DR for a cut-point value 𝑇 (Figure 2.2) is given by: 

 

𝐷𝑅 = 1 − ∅ (
𝑇 − 𝜇𝐴

𝜎𝐴
) 

 

And because of  the symmetry of  the distribution: 

 

𝐷𝑅 = ∅ (
𝜇𝐴 − 𝑇

𝜎𝐴
) 

 

∅−1(𝐷𝑅) =
𝜇𝐴 − 𝑇

𝜎𝐴
 

 

Similarly, the FPR can be expressed as: 

 

𝐹𝑃𝑅 = ∅ (
𝜇𝑈 − 𝑇

𝜎𝑈
) 

 

∅−1(𝐹𝑃𝑅) =
𝜇𝑈 − 𝑇

𝜎𝑈
 

 

Now writing both equations in terms of  T: 

 

𝑇 = 𝜇𝐴 − 𝜎𝐴∅−1(𝐷𝑅) 

 

And  

 

𝑇 = 𝜇𝑈 − 𝜎𝑈∅−1(𝐹𝑃𝑅) 

 

Combining the equations 

 

𝜇𝐴 − 𝜎𝐴∅−1(𝐷𝑅) = 𝜇𝑈 − 𝜎𝑈∅−1(𝐹𝑃𝑅) 
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And making DR the subject, 

 

𝜎𝐴∅−1(𝐷𝑅) = 𝜇𝐴 − 𝜇𝑈 + 𝜎𝑈∅−1(𝐹𝑃𝑅) 

 

∅−1(𝐷𝑅) =
𝜇𝐴 − 𝜇𝑈 + 𝜎𝑈∅−1(𝐹𝑃𝑅)

𝜎𝐴
 

 

𝐷𝑅 = ∅ (
𝜇𝐴 − 𝜇𝑈

𝜎𝐴
+

𝜎𝑈∅−1(𝐹𝑃𝑅)

𝜎𝐴
) 

 

Considering the standard normal distribution and assuming equal SD in unaffected and affected 

groups (𝜎𝐴 = 𝜎𝑈 = 1), with 𝜇𝑈 = 0: 

 

𝐷𝑅 = ∅ (
𝜇𝐴

1
+

1 ∙ ∅−1(𝐹𝑃𝑅)

1
) 

 

𝐷𝑅 = ∅(𝜇𝐴 + ∅−1(𝐹𝑃𝑅)) 

 

The AUC (or C-index) is the probability that an affected individual drawn at random (𝐴) has a 

higher PRS than an unaffected individual drawn at random (𝑈), i.e.: 

 

𝑃(𝐴 > 𝑈) = 𝑃(𝐴 − 𝑈 > 0) 

 

The AUC is therefore the CDF for the distribution of  differences (the variances sum): 

 

𝐴𝑈𝐶 = ∅ (
𝜇𝐴 − 𝜇𝑈

√𝜎𝐴
2 + 𝜎𝑈

2
) 

 

∅−1(𝐴𝑈𝐶) =
𝜇𝐴 − 𝜇𝑈

√𝜎𝐴
2 + 𝜎𝑈

2
 

 

Given that 𝜇𝑈 = 0 and that the SD for the distributions for affected and unaffected individuals 

are equal to 1 (𝜎𝐴 = 𝜎𝑈 = 1): 
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∅−1(𝐴𝑈𝐶) =
𝜇𝐴

√2
 

 

𝜇𝐴 = √2∅−1(𝐴𝑈𝐶) 

 

From the previous DR equation,  

 

𝐷𝑅 = ∅(𝜇𝐴 + ∅−1(𝐹𝑃𝑅)) 

 

To obtain the DR5 from the previous equations: 

 

𝐷𝑅5 = ∅(𝜇𝐴 + ∅−1(0.05)) 

 

𝐷𝑅5 = ∅ (√2∅−1(𝐴𝑈𝐶) + ∅−1(0.05)) 

 

 

2.3.5 Screening: calculating the likelihood ratio and odds of becoming affected 

given a positive test result (OAPR) 

 

In evaluating the performance of a PRS as a screening test, I calculated the likelihood ratio for a 

positive result (i.e. a PRS at or above a pre-specified cut-off) as the ratio 𝐷𝑅/𝐹𝑃𝑅 (Figure 2.2). 

The likelihood ratio for a test cut-off with a 5% FPR is given by 𝐷𝑅5
5%⁄  where DR5 is expressed 

as a percentage.  

 

The odds of becoming affected is calculated by multiplying the background odds of disease by the 

likelihood ratio for a positive test result. For example, if the background odds of disease in the 

population is 1:9 and the DR5 is 15%, the likelihood ratio is 15/5 = 3 and the 𝑂𝐴𝑃𝑅 =

(1 × 3): 9 or 1: 3. 
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2.3.6 Risk prediction: calculating the likelihood ratio and odds of becoming 

affected given a PRS result 

 

The likelihood ratio corresponds to how many times more likely a given PRS result is to arise from 

an affected individual than an unaffected individual. For evaluating PRS in risk prediction, the 

likelihood ratio (LR) can be calculated using the heights of  the standard normal distribution curves 

for affected (𝜑𝐴) and unaffected (𝜑𝑈) individuals at a specific PRS value.  

 

 

 
 
Figure 2.3 Standardised normal distributions for affected and unaffected individuals and 

their relationship to the likelihood ratio. The affected distribution (mean: μA) is depicted in 

red, and the unaffected distribution (mean: μU) in blue. φA is the height of the distribution of 

affected individuals and φU the height of the distribution of unaffected individuals at a same cut-

point. The likelihood ratio is given by the ratio 
φA

φU
⁄ . 

 

 

In Figure 2.3, this is equal to: 

 

𝐿𝑅 =
𝜑𝐴

𝜑𝑈
⁄  

 

The heights of  the distributions can be calculated using the equation for the Gaussian distribution: 

 

𝐿𝑅 =

 
1

𝜎√2𝜋
𝑒−

1
2

 (𝑍𝐴)2

 

 
1

𝜎√2𝜋
𝑒−

1
2 (𝑍𝑈)2
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For a standard normal distribution of  SD 1 (𝜎 = 1): 

 

𝐿𝑅 =

 
1

√2𝜋
𝑒−

1
2 (𝑍𝐴)2

 

 
1

√2𝜋
𝑒−

1
2 (𝑍𝑈)2

 

 

For example, for a PRS with a performance metric expressed as a HR per SD of  1.71 (𝑂𝑅𝑆𝐷 =

1.71): 𝜇𝐴 = ln 𝐻𝑅𝑆𝐷 = ln 1.71 = 0.54. 

A PRS at the 75th centile of  the distribution for unaffected individuals yields a Z-score of  0.67 for 

unaffected individuals (𝑍𝑈 = 0.67). Using the formula above (𝜑(0,1, 𝑥) =
1

√2𝜋
𝑒− 

𝑥2

2 ): 𝜑𝑈 =

0.32. 

The Z-score for the affected distribution is equal to the difference between the Z-score of  the 

unaffected distribution (𝑍𝑈) minus the mean of  the affected distribution (𝜇𝐴) (Figure 2.3): 𝑍𝐴 =

𝑍𝑈 − 𝜇𝐴 = 0.67 − 0.54 = 0.13. Using the same formula above, this equals a height of  𝜑𝐴 =

0.40. 

The likelihood ratio can then be calculated: 𝐿𝑅 =
𝜑𝐴

𝜑𝑈
⁄ = 0.40

0.32⁄  = 1.25. 

If  the odds of  disease in the population is 1:9, an individual whose PRS is at the 75th centile of  

the distribution among unaffected has an odd of  becoming affected of  (1.25 × 1): 9 ≃ 1: 7. 

 

2.3.7 Risk stratification: calculating the likelihood ratio and odds of becoming 

affected for a particular PRS group 

 

In evaluating a PRS in risk stratification, the likelihood ratio was calculated as the ratio of areas 

under the distributions for affected and unaffected individuals in each PRS quantile (e.g. each fifth 

of the PRS distribution with respect to the unaffected) (Figure 2.4). The background odds of 

disease were then multiplied by the corresponding likelihood ratio to determine the odds of 

becoming affected for each quantile of the distribution. For example, for individuals in the fourth 

quintile, the odds of becoming affected are 1.47. If the background odds of disease in the 

population is 1:9, the odds of becoming affected for this group is (1.47 × 1): 9 ≃ 1: 6. 
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Figure 2.4 Standardised normal distributions for affected and unaffected individuals and 
their relationship to the likelihood ratio for different quintiles of the distributions. The 

affected distribution (A; mean 𝝁𝑨) is depicted in red, and the unaffected distribution (U; mean 

𝝁𝑼) in blue. The unaffected distribution is split into quintiles. The likelihood ratio for each quintile 
is calculated as the ratio of the areas under the distributions for affected and unaffected individuals 
in each quintile. 
 

 

2.4 Results 

 

2.4.1 Performance of PGS in the Polygenic Score Catalog 

 

By April 2022, the Polygenic Score Catalog had curated 10,723 performance metrics for 2,194 

PGS, involving 544 diseases or traits, reported in 303 publications (Figure 2.5). Of the 10,723 

metrics, 3,915 (37%) concerned disease endpoints, reported as OR per SD in 1,216, HR per SD 

in 378, AUC in 2,077 and C-index in 244 instances (Figure 2.5). 
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Figure 2.5 Summary of data included in the Polygenic Score Catalog as of April 2022. For 
ease of illustration, six outlier publications were removed from the first histogram. These included 
4039, 3380, 302, 280, 221 and 170 PGS per publication. 
 

 

The median DR5 values [interquartile range (IQR)] for PRS whose performance was reported 

using HR or OR per SD were 8.1% [7.0; 10.1] and 8.5% [6.3; 11.5] respectively, excluding 167 

instances where the HR or OR per SD were recorded as <1 (Table 2.1 and Figure 2.6).  

 

 

Metric Count Median 
DR5 

25th centile 75th centile Maximum 
DR5 value 

Minimum 
DR5 value 

HR per SD 378 8.1 7.0 10.1 51.3 5.0 

OR per SD 1216 8.5 6.3 11.5 81.3 5.0 

AUC 2077 13.5 9.9 22.1 96.9 5.1 

C-index 244 19.1 12.8 25.3 58.6 6.3 

 
Table 2.1 The DR5 values derived from the HR per SD, OR per SD, AUC, and C-index 
metrics reported in the Polygenic Score Catalog. AUC = area under the receiver operating 
characteristic curve; DR5 = detection rate for a 5% false positive rate; HR = hazard ratio; OR = 
odds ratio; SD = standard deviation. 
 

 

For PRS performance reported using the AUC or C-index, the corresponding median DR5 values 

were 13.5% [9.9; 22.1] and 19.1% [12.8; 25.3] respectively, excluding two instances where the AUC 

was < 0.5, and one instance where the C-index was recorded as 632 (Table 2.1 and Figure 2.6). 
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Figure 2.6 Distribution of DR5 derived from HR per SD, OR per SD, AUC, and C-index 
values listed in the Polygenic Score Catalog. AUC = area under the receiver operating 
characteristic curve; DR5 = detection rate for a 5% false positive rate; HR = hazard ratio; OR = 
odds ratio; SD = standard deviation. 
 

 

2.4.2 Performance of PRS in disease screening 

 

Based on this overview, PRS typically detect 8-19% (and therefore miss 81-92%) of affected 

individuals at a 5% FPR. For example, for a PRS for CAD (PGS000018), the DR5 is 12% (with 

88% of cases missed). Applied in a middle-aged population with a 10-year CAD incidence of 10% 

(i.e. a background odds of 1:9), the OAPR is equal to (0.12 × 1): (0.05 × 9) ≃ 1: 4. This can 

be interpreted as the false positives outnumber the true positives by around four to one. Changing 

the cut-off to reduce the FPR (e.g. to 1%) also reduces the DR (to 3% in this example, with 97% 

of cases missed). And retaining a 5% FPR but applying the test in a population with a 1% CAD 

incidence over the same period (i.e. a background odds of 1:99) (e.g. in younger individuals) yields 

an OAPR of 1:41 (i.e. the false positives outnumber the true positive by around 41 to one). 



 
 

74 

 

Achieving more effective discrimination requires much greater separation of the PRS distributions 

of affected and unaffected individuals than is observed in practice. For instance, achieving a DR5 

of 85% requires an OR per SD of 15 (compared to the median observed value of 1.31) or an AUC 

of 0.96 (compared to the median observed value of 0.65) (Figure 2.6).[15,19] Only 11.4% of AUC 

values in the Polygenic Score Catalog exceeded 0.8 which equates to a DR5 of 32%, with most of 

these reflecting large effect variants at the HLA locus in a few autoimmune diseases. 

 

2.4.3 Risk prediction: interpretation of PRS in an individual 

 

The overlap in PRS distributions also enables calculation of the odds of becoming affected for an 

individual based on their PRS result (see Methods section). For example, a 8% 10-year risk of CAD 

for a 40-year old individual living in the UK is approximately equal to an odds of disease of 

8: (100 − 8) ≃ 1: 12.[16] A CAD PRS (PGS000018) of HR per SD of 1.71 equals to a DR5 of 

13%.[20] For an individual in the 75th PRS centile, the likelihood ratio is 1.25 (see Methods section 

1.3.6) and the odds of CAD are increased from 1:12 to 1:10 (i.e. (1.25 × 1): 12). For an individual 

with a PRS at the 25th centile, the likelihood ratio is 0.6 and the 10-year odds of CAD is reduced 

from 1:12 to 1:20 (i.e. (0.6 × 1): 12). The change in odds is more substantial for individuals with 

a CAD PRS in either tail of the distribution: the odds are reduced from the background odds of 

1:12 to 1:40 (i.e. (0.30 × 1): 12) at the 2.5th centile, and increased to 1:5 (i.e. (2.48 × 1): 12) at 

the 97.5th centile. 

 

2.4.4 Performance of PRS in population stratification 

 
Population stratification involves assorting individuals in a population into groups according to 

their disease risk. Using the previous CAD PRS example, we saw that the change in the odds is 

more substantial for individuals with PRS at either tail of the distribution: 1:40 at the 2.5th centile, 

and 1:5 at the 97.5th centile. However, the latter group only accounts for 7.8% of all CAD cases 

(the 97.5th centile of the unaffected distribution is equal to a Z-score of 1.42 in the affected 

distribution). In risk stratification, setting a more stringent PRS cut-off for designating individuals 

as high risk shortens the odds of disease in the high-risk group, but because group size diminishes, 

so does the proportion of cases that are available to detect. 
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2.4.5 Using PRS in conjunction with conventional screening tests or risk factors 

 

It has been proposed that adding PRS to conventional risk factors for CAD and stroke (e.g. blood 

pressure and low-density lipoprotein cholesterol) could improve risk estimation to guide the 

prescription of statins for primary prevention.[16,17] Figure 2.7 and Table 2.2 shows a re-analysis 

of results from Sun et al. (from the publication’s Supplementary Figure 13), based on a hypothetical 

cohort of 100,000 40-year-old individuals with a risk factor profile representative of the UK 

population and a background 10-year risk of CAD and stroke of 8%.[16] A conventional risk factor 

model incorporating age detects 60% of CAD and stroke cases at a 24% FPR (DR24 = 60%); and 

adding the PRS to the model detects 61% of CAD and stroke cases for a 23% FPR (DR23 = 61%) 

(Figure 2.7). Assuming a 10-year risk cut-off of 10% for prescribing statins, 100% adherence, and 

a statin risk-reduction for CAD and stroke of 20%, Sun et al. estimated that 974 events would be 

prevented using conventional risk factors and PRS together instead of 957 events using 

conventional risk factor prediction alone (Figure 2.7).[21] This gives a number-needed-to-

genotype of 5,882 to prevent one additional event (Table 2.2). 
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Figure 2.7 Flow diagram of a hypothetical cohort of 100,000 individuals modelled by Sun 
et al. for the detection of CAD and stroke cases using conventional risk factors (CRF) 
alone versus a model combining CRF and PRS.[16] 20% of detected CAD and stroke cases 
are expected to be prevented following statin treatment initiation. A) CRF model scenario. B) CRF 
+ PRS model scenario. CAD = coronary artery disease; DR = detection rate; FPR = false positive 
rate; PRS = polygenic risk score. 
 

 

Riveros-Mckay et al. also investigated the extent to which the addition of a PRS to conventional 

risk factors improves the identification of UK Biobank participants eligible to receive statins 

because their 10-year risk of CAD exceeds the cut-offs in UK or US primary prevention 

guidelines.[17] Re-analysis of their data (from the publication’s Table 2 and Supplementary Table 

4) reveals that the effect of adding information from a PRS is small. For example, using a 10-year 

risk cut-off of 10%, the QRISK3 model (based on conventional risk factors including age) detected 

81% of cases at a 42% FPR (DR42 = 81%) overall for men and women (Table 2.2). Adding a 

PRS detected 84% of cases for a 41% FPR (DR41 = 84%). Using the 10% 10-year risk cut-off and 

assuming statins reduce CAD events by 20%, the number-needed-to-genotype to prevent one 

additional event based on this study is 8,879 (Table 2.2). 
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Table 2.2 Effect of adding a PRS to non-genetic risk factors in prediction of CAD or CVD. The values are based on a re-analysis of data reported 
by Sun et al. and Riveros-Mckay et al.[16,17] Both studies utilised data from UK Biobank. Sun et al. developed their own conventional risk factor score 
(CRF) and examined the effect of adding PRS for stroke and CAD on the prediction of CVD. They used a 10-year risk cut-off of 10% for offering 
statin treatment. Riveros-McKay et al. modelled screening performance in 18,6451 participants from UK Biobank based on either the Pooled Cohort 
Equation (PCE) developed for CVD prediction in the USA, using a 7.5% 10-year CVD risk cut-off, or using QRISK3 developed for CVD prediction 
in the UK, using a 10% CVD risk cut-off. The data on events reported by Riveros-Mckay et al. were for CAD alone rather than CVD (CAD and stroke). 
Calculations assume that all those exceeding the specified risk cut-off receive a statin and that statin treatment produces a 20% relative risk reduction 
(“events avoided” column). Number-needed-to-genotype refers to the number of individuals that need to be genotyped to detect or prevent one 
additional CVD event. CAD = coronary artery disease; CRF = conventional risk factor score; CVD = cardiovascular disease; DR = detection rate; FPR 
= false positive rate; PCE = Pooled Cohort Equation; PRS = polygenic risk score; # = number.

Study Risk tool Screened Genotyped Risk  
cut-off 

DR FPR # below 
cut-off 

Events  
Below 
cut-off 

#  
above  
cut-off 

Events  
above 
cut-off 

Additional  
events 
detected 

Events  
avoided 
(statin)  

Additional  
events  
avoided  

# needed 
to genotype  
for detection 
of 1 
additional 
case 

# needed to 
genotype for 
prevention of 
1 additional 
case 

Sun et al. CRF 100000 0 ≥10% 60% 24% 73277 3214 26722 4783 - 957 - - - 

 CRF + 
PRS 

100000 100000 ≥10% 61% 23% 73554 3127 26445 4870 87 974 17 1149 5882 

Riveros-
Mckay et 
al. 

PCE 186451 0 >7.5% 74% 36% 118082 1112 68369 3135 - 627 - - - 

 PCE + 
PRS 

186451 186451 >7.5% 80% 36% 117516 855 68935 3392 257 678 51 725 3656 

 QRISK3 186451 0 >10% 81% 42% 106697 797 79754 3450 - 690 - - - 

 QRISK3 
+ PRS 

186451 186451 >10% 84% 41% 108359 690 78092 3557 107 711 21 1743 8879 



 78 

2.5 Discussion 

 

This analysis converting 3,915 binary endpoint performance metrics to the relevant metrics 

indicates weak performance of  PRS in disease screening, individual risk prediction, and population 

stratification, whether used alone or added to conventional risk factor models. Using PRS to 

identify the minority of  individuals at very high risk necessitates genetic testing in all, generates 

many more false than true positives, and overlooks most cases which occur among those with 

average PRS. 

 

These insights are not obvious from the widely reported (but less clinically informative) metrics 

curated by the Polygenic Score Catalog: the OR or HR per SD, AUC, and C-index.[12] However, 

by using these metrics to derive the odds of  becoming affected for those with a “positive test” (in 

the case of  screening), with a particular PGS value (in the case of  risk prediction), or who occupy 

a particular PRS quantile (in the case of  risk stratification), the limited performance of  PRS in 

their intended applications become clearer. The conversion from less to more informative metrics 

involves first reconstituting the PRS distributions for affected and unaffected individuals. These 

distributions were found to overlap substantially for almost all conditions studied. Achieving more 

effective discrimination requires much greater separation of  the distributions of  affected and 

unaffected individuals than is observed in practice: it is this overlap of  distributions that constrains 

the performance of  PRS whether for screening, prediction, or risk stratification.  

 

Studies have equated the predictive performance of  PRS to that of  non-genetic risk factors, such 

as blood pressure and low-density lipoprotein cholesterol for CAD.[22] However, although 

causally associated with CAD, they are also weak predictors of  disease, making them bad 

comparators.[18] Furthermore, where a risk factor displays a Gaussian distribution in the 

population and a relatively weak log-linear association with disease risk, more cases occur among 

the average than among the few with extreme values.[23,24] For this reason, where there are safe, 

inexpensive preventative interventions (e.g. statins for the prevention of  CAD and stroke), there 

is greater public health benefit in broadening rather than limiting their access.[25] Ascertaining a 

minority of  individuals at very high risk (whether genetic or otherwise) may be justified if  a 

preventative intervention is costly, resource limited, or potentially harmful. However, it entails 

testing in all and, aside from missing the many cases among those at average risk, generates many 

false positives. This could have substantial downstream resource implications for healthcare 

systems. 
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Despite this, it has been claimed that PRS generate substantial improvements in risk prediction, 

are likely to transform health care, and are ready to implement in practice.[26] Hopes may have 

been raised by several factors. PRS for disease prediction are appealing because of  the low cost of  

genotyping and the invariant nature of  genotype, which means that testing only needs to be done 

once in a lifetime to compute the risk for a wide range of  diseases.[27] Many common disease-

associated genetic variants are known, and together with the availability of  large, longitudinal 

cohort studies with genetic and health outcome data, this has fuelled a growth in research on PGS. 

Pressure to demonstrate a tangible health impact of  genetic research, coupled with increasing 

demand on healthcare systems has also forced consideration of  new approaches to predict or 

detect disease. The appeal of  PRS may also have been inflated by the depiction of  their 

performance in research papers or company materials.[6,9,28] What is relevant in screening is the 

risk of  an event in a group compared to that of  the whole population, but published materials 

often illustrate comparisons between mutually exclusive groups such as those in opposite tails of  

a PGS distribution.[29] 

 

The current analysis underlines the need for more responsible and pertinent presentation of  the 

performance of  PRS in disease prediction, screening, and population stratification. This could be 

achieved by 1) deriving the DR for a specified FPR; 2) primary studies always reporting the mean 

and SD of  PRS among affected and unaffected individuals from which the overlap in distributions 

and the relevant performance metrics can then be derived; 3) authors reporting the performance 

of  PGS with and without the inclusion of  other variables (especially age and sex) which can 

markedly influence predictive performance so that users can judge the increment provided by the 

PGS itself; 4) commercial providers communicating individual test results to customers with 

greater clarity and relevance to screening performance (e.g. by reporting the odds of  becoming 

affected, which requires additional information on population average risk at a particular age over 

a specified time). Finally, as others have already suggested, policy makers should consider tighter 

regulation of  commercial PGS providers based on clinical (not just analytical) performance to 

protect already stretched out public health systems from being burdened by management of  false 

positive results. 

 

Although the current analysis unveils the limitations of  PRS in disease screening, prediction, and 

risk stratification, they may find use in other applications. For example, they may explain the 

variable penetrance of  rare mutations in monogenic diseases (e.g. familial hypercholesterolaemia) 
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and be employed to aid case detection.[30,31] There are also other predictive applications of  

genotyping (e.g. in pharmacogenetic testing) to optimise efficacy and safety of  medicines.[32] The 

main healthcare benefit of  common disease genomics may come from understanding the causes 

of  disease and drug target discovery rather than disease prediction.[33] 

 

The current analysis provides an overview of  the PGS available on the Polygenic Score Catalog 

website.[12] The PRS analysed in this study were selected based on whether they had one of  the 

following performance metrics associated with them: OR per SD, HR per SD, AUC, or C-index. 

These outcome measures were assumed to relate to binary disease outcomes (as opposed to non-

disease traits). Furthermore, some PRS included in the current analysis might contain outliers that 

did not meet the assumptions in the Methods section for the derivation of  the DR5, likelihood 

ratio, and OAPR. Finally, covariates were included in some of  the reported PRS metrics but were 

not filtered out of  the study, meaning that the performance of  the PRS analysed here is likely to 

be an overestimation, highlighting the poor performance of  PRS in disease screening, population 

risk stratification, and individual risk prediction. 
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3 The UK Biobank study 

 

3.1 Overview 

 

The UK Biobank is a large longitudinal cohort study of approximately 500,000 individuals living 

in the UK.[1] The participants have been thoroughly phenotyped through self-reported 

questionnaires, physical measurements (including physiological measures, biomarker measures and 

imaging data), and medical record linkage (hospital episode statistics (HES) and primary care data). 

This information is organised into “data fields”, which are coded columns containing the relevant 

measures. Genetic data is also available for most participants through genotyping arrays and whole 

exome sequencing. Whole genome sequencing of the UK Biobank participants is underway and is 

expected to be released for all participants in early 2023.  

 

Recruitment of participants started in 2006 up until 2010 in 22 assessment centres across England, 

Wales and Scotland. Participants’ age ranged from 37 to 69 at the time of recruitment. These 

individuals come from various socio-demographic backgrounds and ethnicities, although the large 

majority of people (~94%) self-identify as White British and are known to be healthier than the 

average British population.[2] 

 

3.2 Genotyping data 

 

The UK Biobank whole-genome genotyping was done using the UK BiLEVE Axiom Array and 

the UK Biobank Axiom Array. The arrays are 95% similar, with the first array genotyping 807,411 

markers and the second array genotyping 820,967 single nucleotide polymorphisms (SNPs) and 

short insertions and deletions (indel) markers.[1] 49,979 participants were genotyped using the UK 

BiLEVE Axiom Array, and the rest of the participants (438,427) were genotyped using the UK 

Biobank Axiom Array. The genotyping data was phased using SHAPEIT3 and imputed with 

IMPUTE4 (a recoded version of IMPUTE2) using the Haplotype Reference Consortium and the 

merged UK10K haplotype and 1000 Genomes phase 3 reference panels.[1,3,4] A total of 

93,095,623 autosomal SNPs, indels and large structural variants were imputed. The data was 

aligned to the positive strand of the reference in chromosome build 37. 

 

The Wellcome Trust Centre for Human Genetics performed an initial marker-based and sample-

based quality control (QC) of the data.[1] Briefly, poor quality markers were set to missing, and 
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unreliable markers across multiple genotype batches were altogether removed from the dataset. 

Lists of sample IDs (referred to as “eid” in the UK Biobank) with sex mismatches and outliers for 

missingness and heterozygosity were generated and assigned to specific UK Biobank data fields 

but were not removed from the study. The only participants removed from the initial QC were 

sample duplicates and those who wished to withdraw from the study.  

 

The imputed genotype data (Version 3) is available to download in BGEN v1.2 format (.bgen, 

.sample, .bgi files).[5] The additional QC steps that we performed on these data are explained 

below. 

 

3.3 Quality control (QC) 

 

The UK Biobank is a large multi-ancestry dataset that underwent very minimal QC of its 

genotyping data prior to release. A thorough QC of the genetic data was therefore required before 

generating the PGS. Errors arising from poor genotyping, insufficient imputation quality, or even 

sample mishandling from human error can all lead to significant bias in the analyses if they are not 

accounted for. The QC steps that were performed by the UK Biobank and those undertaken by 

our group are detailed in this section. The UK Biobank project ID that was approved for this work 

is 40721. 

 

3.3.1 Sample QC 

 

As mentioned previously, the UK Biobank provides a list of recommended sample exclusions 

based on their initial QC of the data. These include outliers for heterozygosity and missingness 

(UK Biobank data field 22027: 968 individuals) and putative chromosome aneuploidy (UK 

Biobank data field 22019: 652 individuals).  

 

Sex mismatches between self-reported sex (UK Biobank data field 31) and genetic sex (UK 

Biobank data field 22001) were identified and participants were excluded (378 individuals). 14,248 

participants with missing genetic sex information (i.e. not genotyped) were also excluded. These 

participants were removed from the dataset using QCTOOL v2.[6] 

 

For the work in this thesis, I only QCed the data for participants of European ancestry from UK 

Biobank data field 22006 (409,616 individuals). This UK Biobank data field was derived using self-
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reported “White British” ethnicity (UK Biobank data field 21000) and principal components 

analysis of their genotypes. The participant eids from data field 22006 were extracted and added 

as inclusion samples when running QCTOOL v2.[6] 

 

3.3.2 Genetic variant QC 

 

The QC for variant data was done in two stages. The sample exclusions described in the previous 

section and the first part of the variant QC were performed in a single step, followed by a second 

variant QC and sample relatedness exclusion step (see Figure 3.1 for the full workflow of the QC 

procedure).  

 

The first variant QC stage consisted of excluding all variants with an imputation information 

(INFO) score <0.3 using bgenix.[7] The INFO score gives a measure of the certainty of the 

imputation: a value of 1 means complete certainty or directly genotyped, while a value of 0 means 

complete uncertainty about the imputation of the genetic variant.[8]  

 

Newly recalculated minor allele frequencies (MAF) were also generated for the subset of 

participants of European ancestry. MAF is the frequency of the rarest allele for a given variant in 

a cohort and will therefore fluctuate based on the ancestry of the cohort. These MAF values were 

subsequently used in the second stage of the variant QC. 

 

For the second variant QC stage, I implemented four different genetic variant QC parameters as 

was done by the Bristol MRC-IEU: genetic variants were removed if they had a MAF <0.1%, 

MAF <0.5% and INFO <0.9, MAF <1% and INFO <0.8, MAF <3% and INFO <0.6.[9] It is 

often the case that low MAFs are a result of poor imputation quality (low INFO score). In order 

to retain a maximum number of genetic variants with low MAFs, we ensured that their INFO 

score was high: the higher the imputation quality (and certainty), the lower the MAF I allowed. 

The final number of variants retained after the genetic QC steps was 15,125,437. 

 

3.3.3 Relatedness 

 

The inclusion of related individuals in a study cohort can skew the results of some analyses by 

erroneously enriching some SNPs. An in-house script was written to maximise the number of 

individuals to keep while removing up to and including third degree relatives (equivalent to a 
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kinship coefficient greater or equal to 0.0442). The UK Biobank has pre-calculated kinship 

coefficients for pairs of participants using the KING toolset[10]. The information is provided in 

the format of a table with three columns: the first two columns represent pairs of participants’ 

unique identifying numbers (“eid”) with their kinship coefficient in the third column. All pairs of 

individuals with a kinship coefficient below 0.0442 were excluded from the table and kept in our 

analysis as they were more distantly related than third degree relatives. 

 

The “remove_relatedness” script works by first identifying the individual with the most relatives 

in the UK Biobank. This is done by counting the number of times an eid appears in the table. The 

eid that appears the most times is the individual who has the largest number of first to third degree 

relatives in the UK Biobank. That individual and their pairs are then removed from the table, the 

eid counts are regenerated, and so on. This loop ends when there are only unique eids left in the 

table, at which point one eid per pairs of individuals left (i.e. either from the first or the second 

column of the table) is arbitrarily remove. In the end, I obtained a list of 74,704 unique eid to be 

removed from the QCed dataset. 

 

3.3.4 Final QC step: merging the phenotype file 

 

As a final step, the QCed data above was merged with an updated UK Biobank phenotype file to 

drop any participants who had withdrawn from the study. The phenotype file is continuously 

updated by the UK Biobank to ensure such removal of participants throughout the course of the 

study. At the time of this project, the final count of participants of European ancestry obtained 

after the QC steps was 341,515. 
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Figure 3.1 Workflow of the QC steps for the UK Biobank genotype data. QC step 1 is 
highlighted in purple and QC step 2 in orange. The highlighted section in green represents the 
final merge between the genetic data and the sample list. The sample list is continuously updated 
with participant withdrawals. The non-highlighted QC steps have not been completed. Caucasians 
refer to individuals of European (White British) ancestry. 
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4 Evaluating PRS in the prediction of cardiovascular disease (CVD), coronary heart 

disease (CHD), type 2 diabetes (T2D), and ischaemic stroke (IST) 

 

4.1 Abstract 

 

Background: Current clinical risk prediction tools do not incorporate polygenic information, but 

studies have shown that the addition of polygenic risk scores (PRS) to non-genetic risk prediction 

tools might improve disease prediction for various disease endpoints. The utility of PRS has not 

been thoroughly evaluated for the clinically utilised QRISK3, QDiabetes and QStroke prediction 

tools in the UK population which are used respectively in the 10-year prediction of incident 

cardiovascular disease (CVD)/coronary heart disease (CHD), type 2 diabetes (T2D) and ischaemic 

stroke (IST). In this chapter, I evaluated the performance of each of these risk models with and 

without the incorporation of PRS.  

 

Methods: Utilising data from 341,515 White British UK Biobank participants, I externally 

validated the QRISK3, QStroke and QDiabetes prediction models and expanded these to include 

PRS for CVD/CHD, IST and T2D, respectively. Disease endpoints were defined using available 

hospital episode statistics data (ICD-10 and OPCS-4 codes). Weighted PRS for CHD, T2D and 

IST were generated using external genetic variants and weights from the genome-wide association 

studies Cardiogram, Diagram, and Megastroke respectively. Model performance was evaluated 

based on discrimination (C-statistic) and calibration (calibration-in-the-large and calibration slope). 

The detection rate for a 5% false positive rate (DR5) was calculated to inform the clinical utility of 

the models. Five different models were evaluated for the prediction of each disease endpoint: 1) 

PRS, 2) QScore, 3) PRS, age and sex, 4) PRS and QScore, 5) age and sex. 

 

Results: There were 14,010 incident CHD events, 23,389 incident CVD events, 2,909 incident 

IST events and 12,599 incident T2D events observed in the ten years post-enrolment of the study 

cohort. The mean predicted risk of the PRS were slightly lower for unaffected individuals than the 

affected individuals for incident CVD (0.068 (SD: 0.019) vs 0.074 (SD: 0.022)), CHD (0.041 (SD: 

0.009) vs 0.043 (SD: 0.009)), IST (0.008 (SD: 0.001) vs 0.009 (SD: 0.001)) and T2D (0.036 (SD: 

0.021) vs 0.049 (SD: 0.027)). Very little to no correlation was observed between the PRS and their 

respective QScore (highest correlation: r = 0.11 (p-value <2.2x10-16) for T2D PRS and QDiabetes). 

All models calibrated well, except for QStroke in men with or without IST PRS (calibration slope 

without IST PRS = 2.24 (95% CI: 2.06; 2.41); calibration slope with IST PRS = 20.84 (95% CI: 
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18.60; 23.08)). The PRS for CVD, CHD and IST poorly discriminated between cases and controls 

(C-statistic range from 0.55 (95% CI: 0.53; 0.58) to 0.59 (95% CI: 0.58; 0.59)). The addition of PRS 

to the QScores (QRISK3, QDiabetes, QStroke) did not significantly improve the C-statistic of the 

QScore models, with the highest increase in the C-statistic (of 0.015) observed for CVD PRS and 

QRISK3 in men. This translates to an improvement of 1.5% in the DR5. Overall, men benefited 

more from the addition of PRS to QRISK3 and QDiabetes, while the opposite was found for 

women. 

 

Conclusion: The overlap in PRS distributions between affected and unaffected individuals, 

coupled with the low C-statistics and DR5 of the PRS models for all outcomes studied indicated 

that the PRS did not predict the 10-year risk of incident CVD, CHD, IST and T2D very well. I 

also did not observe a substantial improvement in model discrimination and calibration when 

adding the PRS to QRISK3, QStroke and QDiabetes. PRS have limited clinical utility in the 10-

year prediction of CVD/CHD, IST and T2D. 

 

4.2 Introduction 

 

Cardiovascular disease (CVD) is the major cause of death globally. It has a long preclinical phase 

where many modifiable risk factors influence disease progression and severity over decades.[1] 

These risk factors are well studied and provide the opportunity for primary prevention, secondary 

prevention and risk prediction.  

 

Identifying individuals at increased risk has been beneficial in reducing the burden of CVD 

globally. Many countries have since developed and calibrated unique CVD risk prediction models 

for their own populations, such as QRISK3 in the United Kingdom (UK), the Framingham Risk 

Score and the 2013 ACC/AHA Pooled Cohort Equations in the United States, the European 

SCORE risk charts in Europe, and the FINRISK-calculator in Finland.[2–7] These predictors 

typically include readily ascertained or routinely collected variables (e.g. age, sex, ethnicity, 

physiological measurements, family and medical history) that have been specifically calibrated for 

their populations. 

 

In recent years there has been an interest in incorporating polygenic information into clinical 

practice for disease prediction.[8–10] Many studies have analysed the predictive utility of polygenic 

scores in combination with non-genetic CVD risk factors.[11–14] The current consensus is that 
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polygenic scores provide modest additional discriminative ability, with the non-genetic factors 

explaining most of the CVD incidence variability.[14–17] Some have argued that the modest 

additional improvement in discrimination that these genetic scores provide might not warrant 

integration into clinical care.[15,17–19] While these polygenic scores have been analysed alongside 

non-genetic risk factors and risk prediction models, these studies have not always applied the non-

genetic risk prediction tools in the same population they were developed in and for (e.g. QRISK3 

in the UK for the 10-year prediction of CVD when using the UK Biobank dataset), which could 

lead to less accurate and more variable model performance estimates, and potentially influence 

(limit or inflate) the added benefit of polygenic score information.[20,21]  

  

In early 2022, the UK National Health Service (NHS) and Genomics plc announced a joint trial 

combining QRISK3 with polygenic information to identify individuals at high risk of CVD.[22] 

While this trial will deliver valuable data, I here provide preliminary evidence on the utility of 

adding polygenic information to the freely available UK-based QRISK3, QStroke and QDiabetes 

risk prediction models in the UK Biobank for the 10-year prediction of incident CVD/coronary 

heart disease (CHD), ischaemic stroke (IST), and type 2 diabetes (T2D), respectively. 

 

4.3 Methods 

 

4.3.1 Implementing QRISK3, QStroke and QDiabetes in the UK Biobank 

 
The UK Biobank is a large ongoing longitudinal cohort study of approximately 500,000 individuals 

living in the UK, with recruitment of participants in 2006-2010.[23] Participants have been 

thoroughly phenotyped through self-reported questionnaires, physical measurements (including 

physiological measures, biomarker measures and imaging data), and medical record linkage (HES 

and primary care data).  

 

QResearch in the UK have developed publicly available clinical (non-genetic) risk prediction tools 

for the prediction of various disease endpoints: CVD for QRISK3, IST for QStroke, and T2D for 

QDiabetes. The implementation of the QRISK3-2018, QStroke-2012 and QDiabetes-2018 

algorithms in the UK Biobank in this study used variables referenced from baseline, defined as the 

date of first attendance of the participants at the UK Biobank assessment centre (Supplementary 

Table 4.1).[2,24,25] Incident events were capped at 10 years post study enrolment. Variables with 

missing data were imputed using the R package MICE.[26] The QDiabetes variable “learning 
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difficulties” was not included in the 10-year calculation of incident T2D because the data was not 

available (Supplementary Table 4.1). 

 

4.3.2 The prediction models developed and tested 

 

The four incident disease outcomes evaluated in this study were coronary heart disease (CHD), 

T2D, IST, and CVD (defined as a composite of CHD, all stroke, heart failure and atrial fibrillation). 

HES data, including the International Classification of Diseases (ICD-10) and the Office of 

Population Censuses and Surveys Classification of Interventions and Procedures (OPCS-4) codes, 

were used to define the four disease endpoints in the UK Biobank (Supplementary Table 4.2).  

 

Five prediction models were tested for each of these incident disease outcomes (Table 4.1). These 

included a baseline model of age and sex evaluated for all outcomes (model 5). Disease-specific 

polygenic risk scores (PRS) were generated for each endpoint studied (CVD, CHD, IST, T2D) 

(model 1), and the QScores (QRISK3-2018, QStroke-2012 and QDiabetes-2018) (model 2) were 

evaluated in an outcome-specific manner (e.g. QDiabetes for the prediction of incident T2D) 

(Table 4.1). A combined model of PRS with age and sex was tested for each endpoint (model 3), 

and a model combining the QScore and PRS information (in an outcome-specific manner) was 

developed to evaluate the incremental predictive utility of adding PRS information to the QScores 

studied (model 4) (Table 4.1). The combined models 3, 4, and 5 in Table 4.1 used interaction 

terms in the logistic regression analyses (denoted by the “x” sign), allowing for non-linear 

interactions between model predictors. The QScores and PRS were logit transformed prior to 

generating the combined models, and the output of the combined models was transformed back 

to the risk probability scale. 

 

 
Incident CVD Incident CHD Incident IST Incident T2D 

1. PRS for CVD 1. PRS for CHD 1. PRS for IST 1. PRS for T2D 
2. QRISK3 2. QRISK3 2. QStroke 2. QDiabetes 
3. CVD PRS x age x sex 3. CHD PRS x age x sex 3. IST PRS x age x sex 3. T2D PRS x age x sex 
4. CVD PRS x QRISK3 4. CHD PRS x QRISK3 4. IST PRS x QStroke 4. T2D PRS x QDiabetes 
5. Age x sex  5. Age x sex 5. Age x sex 5. Age x sex 

 
Table 4.1 The prediction models evaluated for incident CVD, CHD, IST and T2D. “ x “ 
denotes the interaction term used in the models. CHD = coronary heart disease; CVD = 
cardiovascular disease; IST = ischaemic stroke; PRS = polygenic risk score; T2D = type 2 diabetes. 
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4.3.3 Data QC of the UK Biobank 

 
The UK Biobank genotyping data underwent minimal quality control (QC) prior to its release. The 

QC of the dataset is explained in more detail in Chapter 3. Briefly, I performed additional QC 

steps based on Bristol’s MRC-IEU protocol and excluded the UK Biobank’s recommended 

exclusions of outliers for heterozygosity and missingness (data field 22027), and putative 

chromosome aneuploidy (data field 22019).[27] I removed individuals with sex mismatches 

between self-reported sex (data field 31) and genetic sex (data field 22001), and with missing 

genetic sex information. I selected individuals of White British ancestry (data field 22006) and 

removed up to 3rd degree relatives. All genetic variants with an imputation information (INFO) 

score of <0.3 were excluded. Genetic variants were also removed if they had a minor allele 

frequency (MAF) <0.1%, MAF <0.5% and INFO <0.9, MAF <1% and INFO <0.8, MAF <3% 

and INFO <0.6.[27] The total number of participants remaining in the study cohort following 

these QC steps was 341,515.  

 

4.3.4 Generating PRS for CVD, CHD, IST and T2D 

 
Weighted PRS for CHD, T2D and IST were generated for the entire QCed UK Biobank dataset 

using external genome-wide association study (GWAS) summary statistics genetic variants and 

weights from Cardiogram, Diagram, and Megastroke, respectively (Table 4.2).[28–30] The CVD 

PRS was calculated by combining a PRS for CHD, PRS for all stroke, PRS for heart failure, and 

PRS for atrial fibrillation in a logistic regression analysis with incident CVD as the outcome and 

the PRS as predictors (allowing for interactions between PRS predictors in the regression analysis) 

(Table 4.2).[28,30–32] The GWAS summary statistics were restricted to participants of European 

ancestries, matching the ancestry of the study cohort. For each PRS, a combination of p-value 

(5x10-8, 5x10-7, 5x10-6, 5x10-5, 5x10-4) and linkage disequilibrium (LD) (0.8, 0.6, 0.4, 0.2, 0.01) cut-

off values were tested. For each disease endpoint, the PRS with the highest area under the curve 

(AUC), equivalent to the C-statistic for binary outcomes, was retained (Supplementary Figure 

4.1).  
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Trait Consortium Source Article link Data 
download 
link 

Access to 
data 
download 

Studied 
SNPs in 
discovery 
GWAS 

Cases Controls Additional 
information 

Coronary 
artery disease 
(CHD) 

Cardiogram Nikpay et 
al. 
2015[28] 

https://www.natu
re.com/articles/n
g.3396 

http://www.car
diogramplusc4d
.org/data-
downloads/  

13th January 
2020 

9,455,778 60,801 123,504 CAD additive; 
populations: 
European, 
South Asian, 
East Asian 

Type 2 
diabetes 
(T2D) 

Diagram Scott et al. 
2017[29] 

https://diabetes.d
iabetesjournals.or
g/content/66/11
/2888 

https://diagra
m-
consortium.org
/downloads.ht
ml 

4th February 
2020 

10,221,232 26,676 132,532 Not adjusted 
for BMI; 
European 
ancestry 

Any 
ischaemic 
stroke (IST) 

Megastroke Malik et al. 
2018[30] 

https://www.natu
re.com/articles/s
41588-018-0058-3  

http://www.m
egastroke.org/d
ownload.html  

25th 
November 
2019 

1,216,870 34,217 406,111 European 
ancestry 

Atrial 
fibrillation 
(AF) 

HUNT, 
deCODE, 
MGI, 
DiscovEHR, 
UK Biobank, 
AFGen  

Nielsen et 
al. 
2018[32] 

https://www.nat
ure.com/articles
/s41588-018-
0171-3  

http://csg.sph
.umich.edu/wi
ller/public/afi
b2018/  

29th 
January 
2021 

34,740,186 60,620 970,216 European 
ancestry 

Heart 
failure (HF) 

HERMES Shah et al. 
2020[31] 

https://www.nat
ure.com/articles
/s41467-019-
13690-5  

https://cvd.hu
geamp.org/din
spector.html?d
ataset=GWAS
_HERMES_e
u  

29th 
January 
2021 

3,468,278 47,309 930,014 European 
ancestry 

Any stroke Megastroke Malik et 
al. 
2018[30] 

https://www.nat
ure.com/articles
/s41588-018-
0058-3  

https://www.
megastroke.or
g/download.ht
ml 

25th 
November 
2019 

8,254,765 67,162 454,450 European 
ancestry 

 
Table 4.2 The GWAS summary statistics used to generate the PRS. Cardiogram for CHD 
PRS, Diagram for T2D PRS, and Megastroke for IST PRS. The PRS for AF, HF and any stroke 
were combined with the CHD PRS to form the CVD PRS. AF = atrial fibrillation; CAD = 
coronary artery disease; CHD = coronary heart disease; GWAS = genome-wide association study; 
HF = heart failure; IST = ischaemic stroke; PRS = polygenic risk score; SNP = single nucleotide 
polymorphism; T2D = type 2 diabetes. 
 

 

4.3.5 Assessment of the prediction models 

 
The QCed UK Biobank cohort of 341,515 White British participants was split into approximately 

50% training (n = 171,338) and 50% testing (n = 170,180) data. The models in the test data were 

recalibrated using data from the training set: the logistic regression models were first fitted onto 

the training data and the calibration slope and intercept values were re-adjusted in the test data. 

The scores were then transformed back to the risk probability scale. The calibration (calibration-

in-the-large and calibration slope) and discrimination (C-statistic/AUC) were evaluated for each 

model in Table 4.1 of the test data. The increase in the odds of disease per one standard deviation 

(SD) of the PRS and QScores were obtained after calculating the Z-scores and fitting a logistic 

regression with the respective incident diseases as outcomes and the Z-scores as predictors. The 
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https://www.nature.com/articles/s41588-018-0171-3
https://www.nature.com/articles/s41588-018-0171-3
https://www.nature.com/articles/s41588-018-0171-3
https://www.nature.com/articles/s41588-018-0171-3
http://csg.sph.umich.edu/willer/public/afib2018/
http://csg.sph.umich.edu/willer/public/afib2018/
http://csg.sph.umich.edu/willer/public/afib2018/
http://csg.sph.umich.edu/willer/public/afib2018/
https://www.nature.com/articles/s41467-019-13690-5
https://www.nature.com/articles/s41467-019-13690-5
https://www.nature.com/articles/s41467-019-13690-5
https://www.nature.com/articles/s41467-019-13690-5
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https://www.megastroke.org/download.html
https://www.megastroke.org/download.html
https://www.megastroke.org/download.html
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Z-scores were calculated by subtracting the mean of the scores from the score for each individual 

and dividing the whole by the SD of the score distributions. The correlation between PRS and 

their respective QScore was computed using the non-parametric Spearman correlation (rho) from 

the R package stats version 4.0.2.[33] The detection rate (or sensitivity) for a 5% false positive rate 

(DR5) of the models were calculated based on the C-statistic of the models. These measures are 

commonly used in clinical settings for evaluating clinical models and tests. The calculations are 

described in more detail in Chapter 2 and in the manuscript by Hingorani et al.[18]  

 

4.3.6 Software  

 
All data analysis was performed in R version 4.0.2.[33] The study’s participant characteristics table 

was produced using the R package tableone version 0.12.0, and the p-values of group differences 

between sexes in Table 4.3 were calculated using the Kruskal-Wallis Rank sum nonparametric test 

for continuous variables and the Man-Whitney U test for binary variables.[34] The plots were 

generated with ggplot2 version 3.3.5.[35] 

 

4.4 Results 

 

4.4.1 Characteristics of study participants 

 
In total, 341,515 White British participants from the UK Biobank were included in the analysis 

whose summary characteristics are shown in Table 4.3 and Supplementary Table 4.3. There 

were 14,010 incident CHD cases, 23,389 incident CVD cases, 2,909 incident IST cases and 12,599 

incident T2D cases observed in the cohort for a follow up time of 10 years post study enrolment. 

Significant group difference between sexes were observed for all variables with the exception of 

prevalent severe mental illness (p-value = 0.997) and congestive cardiac failure (p-value = 0.076) 

(Table 4.3). 

 
 
 

Female Male P-value of 
group 
differences 

Missing 
(%) 

n (%) 183651 (53.8%) 157864 (46.2%) 
  

Age (median [IQR]) 58.0 [50.0, 63.0] 59.0 [51.0, 64.0] <0.001 0.0 

BMI, kg/m2 (median [IQR]) 26.1 [23.4, 29.6] 27.3 [25.0, 30.0] <0.001 0.3 

Cholesterol ratio (median [IQR]) 3.7 [3.1, 4.4] 4.3 [3.6, 5.2] <0.001 12.8 

Systolic blood pressure, mmHg (median [IQR]) 133.5 [121.5, 147.5] 140.0 [129.0, 152.0] <0.001 0.2 

Smoking status (%) 
  

<0.001 3.6 
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   Non-smoker 109168 (60.9) 77149 (51.4) 
  

   Former smoker 58387 (32.6) 61682 (41.1) 
  

   Light smoker (<10 cigarettes/day) 2802 (1.6) 1678 (1.1) 
  

   Moderate smoker (10-19 cigarettes/day) 5376 (3.0) 4397 (2.9) 
  

   Heavy Smoker (>20 cigarettes/day) 3589 (2.0) 5148 (3.4) 
  

Townsend deprivation index (median [IQR]) -2.8 [-3.8, 0.0] -2.7 [-3.8, 0.1] 0.004 0.1 

Family history of CHD (%) 84064 (50.0) 64025 (46.4) <0.001 10.4 

Family history of type 2 diabetes (%) 38740 (23.6) 30308 (22.7) <0.001 12.7 

Prescription history 
    

   Statins (%) 17638 (9.6) 28171 (17.8) <0.001 0.0 

   Atypical antipsychotics (%) 453 (0.2) 474 (0.3) 0.003 0.0 

   Corticosteroids (%) 2885 (1.6) 2631 (1.7) 0.028 0.0 

   Erectile dysfunction (%) 0 (0.0) 1897 (1.2) <0.001 0.0 

   Treated hypertension (%) 8833 (4.8) 11070 (7.0) <0.001 0.0 

   NSAIDs (%) 46701 (25.7) 45247 (29.0) <0.001 1.1 

   Anticoagulants (%) 1099 (0.6) 2653 (1.7) <0.001 0.0 

Prevalent medical conditions 
    

   Atrial fibrillation (%) 1310 (0.7) 3388 (2.1) <0.001 0.0 

   Congestive cardiac failure (%) 5 (0.0) 12 (0.0) 0.076 0.0 

   Coronary heart disease (%) 2640 (1.4) 8743 (5.5) <0.001 0.0 

   Chronic kidney disease (stage 4 or 5) (%) 172 (0.1) 312 (0.2) <0.001 0.0 

   Cardiovascular disease (%) 4124 (2.2) 11737 (7.4) <0.001 0.0 

   Gestational diabetes (%) 220 (0.1) 0 (0.0) <0.001 0.0 

   Ischaemic stroke (%) 373 (0.2) 874 (0.6) <0.001 0.0 

   Manic depression/schizophrenia (%) 397 (0.2) 449 (0.3) <0.001 0.0 

   Migraine (%) 2171 (1.2) 652 (0.4) <0.001 0.0 

   Polycystic ovary syndrome (%) 142 (0.1) 0 (0.0) <0.001 0.0 

   Rheumatoid arthritis (%) 1054 (0.6) 457 (0.3) <0.001 0.0 

   Systemic Lupus Erythematosus (%) 156 (0.1) 31 (0.0) <0.001 0.0 

   Severe mental illness (%) 677 (0.4) 583 (0.4) 0.997 0.0 

   Valvular heart disease (%) 636 (0.3) 1042 (0.7) <0.001 0.0 

   Type 2 diabetes (%) 3100 (1.7) 5622 (3.6) <0.001 0.0 

   Type 1 diabetes (%) 214 (0.1) 271 (0.2) <0.001 0.0 

   Renal disease (%) 226 (0.1) 388 (0.2) <0.001 0.0 

Incident disease 
    

   CHD (%) 4609 (2.5) 9401 (6.0) <0.001 0.0 

   CVD (%) 8626 (4.7) 14763 (9.4) <0.001 0.0 

   Ischaemic stroke (%) 1109 (0.6) 1800 (1.1) <0.001 0.0 

   Type 2 diabetes (%) 5051 (2.8) 7548 (4.8) <0.001 0.0 

 
Table 4.3 Characteristics of 341,515 UK Biobank White British participants included in the 
analysis stratified by sex. The p-values of group differences between sexes were obtained using 
the Kruskal-Wallis Rank sum nonparametric test for continuous variables, and the Man-Whitney 
U test for binary variables. The percentage of missing data for each variable are shown in the last 
column. BMI = body mass index; CHD = coronary heart disease; CVD = cardiovascular disease; 
IQR = interquartile range; NSAID = non-steroidal anti-inflammatory drug. 
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4.4.2 PRS for CHD, IST and T2D 

 
The PRS studied were selected based on the highest C-statistic calculated for each incident disease 

endpoint after testing various p-value and LD cut-off values. The optimal p-value threshold was 

5x10-4 in most cases, while the optimal LD cut-off values were 0.2 and 0.6 (Supplementary 

Figure 4.1 and Supplementary Table 4.4). The C-statistic of the PRS ranged from 0.547 to 0.658, 

with the lowest one obtained for the IST PRS in the prediction of incident CVD, and the highest 

one obtained for the T2D PRS for the prediction of incident T2D (Supplementary Figure 4.1 

and Supplementary Table 4.4). 

 

4.4.3 Relationship of QScores and PRS to incident CVD, CHD, IST, T2D 

 

4.4.3.1 Score distributions 

 

 

 
Figure 4.1 The CVD, CHD, IST and T2D PRS distributions for cases and controls. The 
standard normal distributions (based on the mean and SD) of the PRS are plotted on the same 
scale on the x-axis against the density of the distributions on the y-axis. Cases are in red and 
controls in blue. CHD = coronary heart disease; CVD = cardiovascular disease; IST = ischaemic 
stroke; PRS = polygenic risk score; SD = standard deviation; T2D = type 2 diabetes. 
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The distributions of the QScores (QRISK3, QStroke and QDiabetes) and the PRS for CVD, 

CHD, IST and T2D were overlapping for cases and controls (Figures 4.1 and 4.2). The separation 

of the mean of the distributions for cases and controls was bigger for all QScores than their 

respective PRS, indicating better discrimination (Figure 4.2 and Table 4.4). This separation of 

the means for cases and controls was outcome-specific: the biggest separations were observed for 

incident T2D (QDiabetes and T2D PRS), and the smallest for incident IST (QStroke and IST 

PRS) (Figures 4.1, 4.2 and Table 4.4). 

 

 

 
 
Figure 4.2 Logit transformed risk distributions for CVD, CHD, IST and T2D PRS, and 
QRISK3, QStroke and QDiabetes. The plots were generated using the test data. The logit 
predicted risks are plotted on the same x-axis scale. The mean of the distributions is depicted by 
the dotted lines. CHD = coronary heart disease; CVD = cardiovascular disease; IST = ischaemic 
stroke; PRS = polygenic risk score; T2D = type 2 diabetes. 
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Controls: mean (SD) Cases: mean (SD) Mean difference 

CVD PRS 0.068 (0.019) 0.074 (0.022) 0.006 

CHD PRS 0.041 (0.009) 0.043 (0.009) 0.002 

IST PRS 0.008 (0.001) 0.009 (0.001) 0.001 

T2D PRS 0.036 (0.021) 0.049 (0.027) 0.013 

QRISK3 for incident CVD 0.067 (0.047) 0.095 (0.062) 0.028 

QRISK3 for incident CHD 0.040 (0.036) 0.068 (0.063) 0.028 

QStroke 0.008 (0.011) 0.012 (0.037) 0.004 

QDiabetes 0.035 (0.046) 0.080 (0.098) 0.045 

 
Table 4.4 The mean predicted risk and SD of the distributions for cases and controls for 
CVD PRS, CHD PRS, IST PRS, T2D PRS, QRISK3 for incident CVD, QRISK3 for 
incident CHD, QStroke and QDiabetes. CHD = coronary heart disease; CVD = cardiovascular 
disease; IST = ischaemic stroke; PRS = polygenic risk score; SD = standard deviation; T2D = type 
2 diabetes. 
 

 

4.4.3.2 Score odds ratio 

 

Mean disease incidence increased per risk score decile for QRISK3, QDiabetes, CVD PRS, CHD 

PRS, and T2D PRS, while this increase was less important for QStroke and IST PRS (Figure 4.3). 

This means that there was a log-linear increase in risk, and the relationship between incident 

disease risk and score increase can be described in a single value: the odds ratio (OR) per SD. The 

OR were higher for QRISK3 than for their respective PRS (CVD and CHD) (e.g. 1.4 (standard 

error (SE): 1.01) for QRISK3 versus 1.32 (SE: 1.01) for CVD PRS), while the IST PRS and T2D 

PRS showed a higher OR of incident disease per one SD than their respective QScores (e.g. 1.18 

(SE: 1.03) for the IST PRS versus 1.06 (SE: 1.01) for QStroke) (Figure 4.3).  
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Figure 4.3 Log mean incident disease (CVD, CHD, IST, T2D) per risk score decile for 
CVD, CHD, IST, T2D PRS and QRISK3, QStroke and QDiabetes. The y-axis represents the 
log mean incident disease per risk score decile (on the x-axis). The OR increase per one SD of the 
scores are indicated on the plots by the diamonds with the SE depicted by the horizontal lines. 
The QScores (QRISK3, QStroke, QDiabetes) are shown on the left side of the figure, and the 
PRS on the right side of the figure. CHD = coronary heart disease; CVD = cardiovascular disease; 
IST = ischaemic stroke; OR = odds ratio; PRS = polygenic risk score; SE = standard error; SD = 
standard deviation; T2D = type 2 diabetes. 
 

 

4.4.3.3 Correlation between PRS and QScores 

 

There was very little correlation observed between the PRS and their respective QScore. The 

highest spearman correlation coefficient rho (r) obtained was for T2D PRS and QDiabetes (r = 

0.11; p-value <2.2 x 10-16) and the lowest one observed was for IST PRS and QStroke (r = 0.017; 

p-value <1.5 x 10-12) (Figure 4.4). This suggests that PRS could potentially provide additional 

information for disease prediction not currently captured by the QScores. 
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Figure 4.4 Correlation scatter plots of PRS and QScores for the prediction of incident 
outcomes. a) between CVD PRS and QRISK3 for the prediction of incident CVD; b) between 
CHD PRS and QRISK3 for the prediction of incident CHD; c) between IST PRS and QStroke 
for the prediction of incident IST; d) between T2D PRS and QDiabetes for the prediction of 
incident T2D. r refers to the spearman correlation coefficient rho, and p is the p-value of the 
strength of association of the correlations. CHD = coronary heart disease; CVD = cardiovascular 
disease; IST = ischaemic stroke; PRS = polygenic risk score; T2D = type 2 diabetes. 
 

 

4.4.4 Calibration of the models tested 

 

The calibration of the models was assessed by plotting the mean observed and mean predicted 

risks for each model, depicting agreement. For all outcomes studied, men had a higher observed 

risk of disease than that predicted by their PRS (Figure 4.5). For both men and women combined 

(overall), the calibration-in-the-large of the PRS models (Table 4.1 model 1) showed good 

agreement between observed and predicted risk (with a difference in means close to 0) 

(Supplementary Table 4.5).  

 

The age and sex combined model (Table 4.1 model 5) also calibrated well for all disease outcomes 

(Figure 4.5). The inclusion of PRS to the age and sex models (Table 4.1 model 3) did not affect 

model calibration (Figure 4.5 and Supplementary Table 4.5). 
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Figure 4.5 The calibration curves of the prediction models (CVD PRS, CHD PRS, IST 
PRS, QRISK3, QStroke, QDiabetes or combined models) tested for incident CVD, CHD, 
IST and T2D. The mean observed risk (y-axis) for each decile is plotted against the mean 
predicted risk (x-axis) for each decile in the test data. The deciles are shown as dots on the graph. 
A subgroup analysis by sex is depicted in red for men, green for women, and both (overall) in blue. 
The “x” sign refers to the interaction term used in the regression analyses. (a) Models for CVD 
prediction include CVD PRS, QRISK3, CVD PRS x age x sex, CVD PRS x QRISK3, age x sex. 
(b) Models for CHD prediction include CHD PRS, QRISK3, CHD PRS x age x sex, CHD PRS 
x QRISK3, age x sex. (c) Models for IST prediction include IST PRS, QStroke, IST PRS x age x 
sex, IST PRS x QStroke, age x sex. (d) Models for T2D prediction include T2D PRS, QDiabetes, 
T2D PRS x age x sex, T2D PRS x QDiabetes, age x sex. CHD = coronary heart disease; CVD = 
cardiovascular disease; IST = ischaemic stroke; PRS = polygenic risk score; T2D = type 2 diabetes. 
 
 

The calibration of the QScores (Table 4.1 model 2) was dependent on the score: QStroke showed 

the poorest calibration with individuals in the highest risk deciles having their risk of incident IST 

underestimated (especially in men: calibration slope = 2.24 (95% CI: 2.06; 2.41)), while QRISK3 

and QDiabetes slightly underestimated the risk of incident CVD, CHD and T2D in the middle 
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risk deciles (Figure 4.5). The calibration of the QScores combined with the PRS (Table 4.1 model 

4) followed the calibration patterns of the QScores (Figure 4.5).  

 

4.4.5 Discrimination of the models tested 

 

A model’s ability to differentiate accurately between cases and controls was evaluated by 

comparing the C-statistic of the models where 0.5 indicates no discrimination and 1 indicates 

perfect discrimination. The PRS (Table 4.1 model 1) had the lowest C-statistic for incident CVD, 

CHD and IST (C-statistic range from 0.548 (95% CI: 0.530; 0.567) for IST PRS in men to 0.588 

(95% CI: 0.581; 0.595) for CVD PRS in men) (Figure 4.6 and Supplementary Table 4.5). The 

C-statistic of the T2D PRS outperformed that of the age and sex model (Table 4.1 model 5) (C-

statistic of 0.659 (95% CI: 0.652; 0.666) for T2D PRS versus C-statistic of 0.636 (95% CI: 0.629; 

0.642) for the age and sex model) (Figure 4.6 and Supplementary Table 4.5).  

 

The C-statistics of the PRS models improved when combining them with the age and sex variables 

(Table 4.1 model 3) for all disease endpoints (C-statistic range from 0.668 (95% CI: 0.661; 0.675) 

for CHD PRS with age and sex in men to 0.724 (95% CI: 0.704; 0.745) for IST PRS with age and 

sex in women) (Figure 4.6 and Supplementary Table 4.5).  

 

In terms of the QScores’ (Table 4.1 model 2) discriminative ability in the UK Biobank, QDiabetes 

had the highest C-statistic (0.802 (95% CI: 0.797; 0.807)) and QStroke the lowest (0.698 (95% CI: 

0.684; 0.712)) (Figure 4.6 and Supplementary Table 4.5). 

 

The addition of polygenic information to the QScores (Table 4.1 model 4) did not greatly improve 

the C-statistic of the QScore models for all incident disease outcomes studied (Figure 4.6 and 

Table 4.5). The highest increase in the C-statistic (of 0.015) was observed when combining the 

CVD PRS with QRISK3 in men for the 10-year prediction of incident CVD (Table 4.5). This is 

equivalent to an increase of 1.5% in the detection rate for a 5% false positive rate (see methods 

section). In some instances, the addition of a PRS to the QScore worsened the discrimination of 

the QScore, as was the case with the IST PRS and QStroke in men, women and overall (Table 

4.5). 
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Figure 4.6  The discrimination (C-statistic) of the prediction models (PRS, QScore and 
combined models) tested for incident CVD, CHD, IST and T2D. The discriminative ability 
of the models in the test data is quantified by the C-statistic on the x-axis. The 95% confidence 
intervals (CI) are depicted by lines protruding from the dots as shown in the figure legend (narrow 
95% CI are not visible as they are incorporated into the datapoint). Model discrimination is shown 
by subgroup of sex (y-axis). The “x” sign refers to the interaction term used in the regression 
analyses. (a) Models for CVD prediction include CVD PRS, QRISK3, CVD PRS x age x sex, 
CVD PRS x QRISK3, age x sex. (b) Models for CHD prediction include CHD PRS, QRISK3, 
CHD PRS x age x sex, CHD PRS x QRISK3, age x sex. (c) Models for IST prediction include 
IST PRS, QStroke, IST PRS x age x sex, IST PRS x QStroke, age x sex. (d) Models for T2D 
prediction include T2D PRS, QDiabetes, T2D PRS x age x sex, T2D PRS x QDiabetes, age x sex. 
CHD = coronary heart disease; CVD = cardiovascular disease; IST = ischaemic stroke; PRS = 
polygenic risk score; T2D = type 2 diabetes. 
 

 

Model discrimination was also found to be sex-specific in some cases. For example, the C-statistic 

for the age and sex model (Table 4.1 model 5), for the PRS combined with age and sex (Table 

4.1 model 3) for all outcomes studied, for QRISK3 and for QDiabetes were all higher in women 

than men (Figure 4.6 and Supplementary Table 4.5). Meanwhile, the CHD PRS had a slightly 
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higher C-statistic in men (0.599 (95% CI: 0.581; 0.595)) than in women (0.563 (95% CI: 0.551; 

0.575)), as did QStroke (C-statistic of 0.723 (95% CI: 0.707; 0.739) in men and of 0.681 (95% CI: 

0.658; 0.705) in women) (Figure 4.6 and Supplementary Table 4.5). Overall, men benefited 

more (in terms of improvement in the C-statistic) from the addition of PRS to QScores (with the 

exception of QStroke), while the opposite was observed for women for all outcomes studied 

(Table 4.5). 

 

 

Models: QScore vs QScore x PRS Outcome Subgroup Change in C-statistic Change in DR5 

QRISK3 vs CVD PRS x QRISK3 Incident CVD Overall 0.005 0.006 

QRISK3 vs CVD PRS x QRISK3 Incident CVD Female -0.006 -0.007 

QRISK3 vs CVD PRS x QRISK3 Incident CVD Male 0.015 0.015 

QRISK3 vs CHD PRS x QRISK3 Incident CHD Overall 0.002 0.002 

QRISK3 vs CHD PRS x QRISK3 Incident CHD Female -0.009 -0.012 

QRISK3 vs CHD PRS x QRISK3 Incident CHD Male 0.01 0.01 

QStroke vs IST PRS x QStroke Incident IST Overall -0.008 -0.008 

QStroke vs IST PRS x QStroke Incident IST Female -0.084 -0.067 

QStroke vs IST PRS x QStroke Incident IST Male -0.009 -0.011 

QDiabetes vs T2D PRS x QDiabetes Incident T2D Overall -0.002 -0.003 

QDiabetes vs T2D PRS x QDiabetes Incident T2D Female -0.013 -0.025 

QDiabetes vs T2D PRS x QDiabetes Incident T2D Male 0.008 0.013 

 
Table 4.5 Change in the C-statistic and detection rate for a 5% false positive rate between 
the QScore and the QScores x PRS models. DR5 = detection rate for a 5% false positive rate; 
CHD = coronary heart disease; CVD = cardiovascular disease; IST = ischaemic stroke; PRS = 
polygenic risk score; T2D = type 2 diabetes. 
 

 

4.4.6 Detection rate of cases by the models for a 5% false positive rate 

 

The detection rate for a 5% false positive rate (DR5) is a well-established performance metric that 

is commonly used to evaluate new clinical models in screening and prediction. The DR5 of the 

models tested in this study are shown in Supplementary Table 4.5. Since the AUC and the DR5 

are linked, the higher the C-statistic, the higher the DR5. For example, for the QScore that showed 

the best improvement in the C-statistic when adding a PRS (i .e. the QRISK3 x CVD PRS model 
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in men): the DR5 for QRISK3 was equal to 15%, while the DR5 for CVD PRS was equal to 9.2%, 

and the DR5 of the combined QRISK3 x CVD PRS model was equal to 16.5% (Supplementary 

Table 4.5). This means that for a 5% false positive rate, adding a PRS improved the detection rate 

of the non-genetic clinical model by 1.5% at best out of all the QScores and sex-subgroups tested 

(Table 4.5). 

 

4.4.7 Comparison with similar studies 

 

Comparisons of the study results with previous key publications evaluating CHD and/or CVD 

PRS in disease prediction are shown in Table 4.6. The C-statistic (or AUC) of the PRS ranged 

from 0.56 (95% CI: 0.56; 0.57) to 0.81 (95% CI: 0.81; 0.81) (Table 4.6). This large range can be 

explained by the various covariates that were included (or not) in the PRS models when evaluated 

for CVD or CHD prediction. A PRS with over 3.5 million variants (and without other covariates 

in the model) (C-statistic = 0.662 (95% CI: 0.658; 0.665)) did not greatly outperform a PRS with 

88 times less variants (n = 40,079) (C-statistic = 0.61 (95% CI: 0.60; 0.62)) (Table 4.6).[15,36] The 

incremental increase in the C-statistic when adding PRS to a non-genetic model in these studies 

ranged from 0.002 to 0.03 (Table 4.6). 
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Publication # individuals Outcome definitions # cases PRS 
construction 
method 

# variants 
in PRS 

Performance metric 
(95% confidence 
interval) 

Covariates in 
model 

Non-genetic model 
evaluated 

Change in C-
statistic with PRS 
added to non-
genetic model 

Detection rate for 
a 5% false 
positive rate 

Khera et al. (Nat 
Gen 2018)[37] 

Validation dataset: 
n = 120,280; 
Testing dataset: n = 
288,978 

CAD: self-reported, 
ICD-9, ICD-10, OPCS-
4 codes 

Prevalent CAD 
in testing 
dataset: 8,676 

Weighted PRS 
(LDPred) 

6,630,150 AUC = 0.81 (0.81; 0.81) Age, sex, 
genotyping array, 
first 4 principal 
components of 
ancestry 

N/A N/A 34% 

Inouye et al. (J 
Am Coll Cardiol 
2018)[14] 

482,629 CAD: self-reported, 
ICD-9, ICD-10, OPCS-
4 codes 

22,242 total: 
12,513 incident 
cases + 9,729 
prevalent cases 

Weighted PRS 
from 3 
published 
genetic risk 
scores 

1.7 million C-index (prevalent cases) 
= 0.623 (0.615; 0.630) 

Genotyping array, 
10 first genetic 
principal 
components of 
ancestry 

6 risk factors: smoking, 
diabetes, family history of 
heart disease, BMI, 
hypertension, high 
cholesterol 

0.073 12% 

Elliott et al. 
(JAMA 2020)[15] 

Derivation dataset: 
n = 15,947; Testing 
dataset: n = 352,660 

CAD: mortality data, 
ICD-9, ICD-10, OPCS-
4 codes; CVD = CAD 
+ angina + stroke 

Incident CAD: 
6,272; incident 
CVD: 13,753 

Weighted PRS 
(lassosum) 

CAD PRS: 
40,079; 
CVD PRS: 
297,862 

C-statistic for CAD = 
0.61 (0.60; 0.62); C-
statistic for CVD = 0.56 
(0.56; 0.57) 

N/A Pooled cohort equation 0.02 11% for CAD 
PRS;  
8% for CVD PRS 

Sun et al. (PLOS 
Med 2021)[8] 

306,654 CVD = CHD + IST 5,680 incident 
CVD = 3,333 
CHD + 2,347 
IST 

Weighted PRS 
from 3 
published 
genetic risk 
scores 

CAD PRS: 
1.7 million; 
IST PRS: 
3.2 million 

HR CHD PRS = 1.31 
(1.27; 1.34); HR IST PRS 
= 1.18 (1.15; 1.21); C-
statistic N/A 

Age, smoking 
status, history of 
diabetes, systolic 
BP, total 
cholesterol, HDL-C 

7 risk factors: age, sex, 
smoking status, history of 
diabetes, systolic BP, 
total cholesterol, high 
LDL-C 

CVD PRS: 0.012; 
CAD PRS: 0.022; 
IST PRS: 0.003  

8% for CHD PRS; 
7% for IST PRS 

Riveros-Mckay 
et al. (Circ 
Genom Precis 
Med 2021)[36] 

Training dataset: n 
= 60,000; Testing 
dataset: n = 212,563 

CAD: self-reported, 
ICD-9, ICD-10, OPCS-
4 codes 

4,247 incident 
CAD  

Weighted PRS 
(LDPred) 

>3.5 
million 

C-statistic = 0.662 (0.658; 
0.665) 

N/A Pooled cohort equation 0.03 15% 

Current analysis Training dataset: n 
= 171,335; Testing 
dataset: n = 170,180 

CVD = CHD + all 
stroke + HF + AF: 
ICD-10, OPCS-4 codes 

Incident CVD: 
11,673; incident 
CHD: n = 
6,973   

Weighted PRS 2,642 C-statistic for CVD PRS 
= 0.586 (0.580; 0.591); C-
statistic for CHD PRS = 
0.569 (0.562; 0.576) 

N/A QRISK3 CVD PRS: 0.005; 
CHD PRS: 0.002 

9% for CVD PRS; 
8% for CHD PRS  

 
Table 4.6 Comparison of PRS in previous key studies for CHD and CVD prediction. The incremental increase in the C-statistic of the models 
when comparing the non-genetic model to the combined model (non-genetic + PRS) is shown. AF = atrial fibrillation; AUC = area under the receiver-
operating characteristic curve; BMI = body mass index; BP = blood pressure; CAD = coronary artery disease; CHD = coronary heart disease; CVD = 
cardiovascular disease; HES = hospital episode statistic; HDL-C = high-density lipoprotein cholesterol; HF = heart failure; HR = hazard ratio; ICD = 
International Classification of Disease; IST = ischaemic stroke; LDL-C = low-density lipoprotein cholesterol; MI = myocardial infarction; OPCS = 
Office of Population Censuses and Surveys 4 Classification of Interventions and Procedures; PRS = polygenic risk score. 
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4.5 Discussion 

 

4.5.1 Overview of the study 

 
This study evaluated whether the addition of PRS to the clinically used QScores (QRISK3, 

QStroke and QDiabetes) in the UK population improved model performance for the 10-year 

prediction of incident CVD, CHD, IST and T2D.  

 

Since the QScores evaluated here were derived specifically for the UK population, the dataset used 

for this study was also from the UK: the UK Biobank. The UK Biobank is a large ongoing 

longitudinal cohort study of approximately 500,000 participants that provides genetic data and 

information on non-genetic variables required for the calculation of the non-genetic and genetic 

risk scores.[23]  

 

QRISK3 calculates a person’s 10-year risk of CVD. There is currently no GWAS on the CVD 

definition that matches that of QRISK3’s; the closest GWAS being for CHD. While I also 

generated a PRS for CVD by combining PRS for CHD, all stroke, heart failure, and atrial 

fibrillation (more detail in the methods section), matching the outcome CVD definition of 

QRISK3; evaluating both incident CVD and CHD ensured a more accurate like-for-like 

comparison of the genetic and non-genetic risk prediction models assessed in this study. 

 

4.5.2 An external validation of the QScores in the UK Biobank 

 

This study provided an external validation of QRISK3, QStroke and QDiabetes. QRISK3 and 

QDiabetes had good calibration and discrimination, despite obtaining a lower AUC/C-statistic 

than the original publications.[2,24,25] Overall, QDiabetes had the best discrimination (C-statistic 

= 0.802 (95% CI: 0.797; 0.807)) and calibration (calibration-in-the-large = 0.003 (95% CI: -0.023; 

0.029); calibration slope = 0.975 (95% CI: 0.950; 1.001)) metrics out of all the QScores studied. 

QStroke did not calibrate well for men in the UK Biobank and discriminated relatively poorly in 

women (C-statistic = 0.681 (95% CI: 0.658; 0.705)). This could be because the freely available C 

code for QStroke dates to 2012, whereas the current interactive calculator was updated in 2018. 

The weights of the QStroke variables in this study are likely to be outdated. There were also overall 

less incident IST cases in the UK Biobank than the other disease outcomes studied, which 

influences the confidence of the predictions (Supplementary Table 4.2).  
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4.5.3 The performance of PRS in CVD, CHD, IST and T2D prediction 

 

While a higher PRS was associated with a higher rate of disease incidence for all outcomes studied, 

the CVD, CHD and IST PRS showed the worst calibration and discrimination (C-statistic <0.588 

(95% CI: 0.581; 0.595)) metrics out of all the models tested. The T2D PRS outperformed the age 

and sex model. Likely explanations include variable disease aetiology (e.g. earlier age of onset of 

T2D), the quality and size of published GWAS that are available for generating the outcome-

specific PRS (e.g. 10 million single nucleotide polymorphism hits for the T2D Diagram GWAS 

versus 1 million hits for IST Megastroke GWAS), and the fact that CVD-related endpoints 

(especially CVD, CHD and IST) are highly age and sex-dependent.[29,30,38]  

 

4.5.4 The effects of age and sex in incident disease prediction 

 
The addition of the age and sex variables to the PRS model improved the C-statistic for all the 

incident outcomes studied. This is important to highlight as some publications do not clearly report 

all the variables included in their prediction models when evaluating their PRS in disease 

prediction.[18,37] The high AUC (or C-statistic) of these PRS models is likely to be driven by other 

covariates in the model more than by the genetic score itself (Table 4.6). This was clearly shown 

by Lello et al. where the inclusion of age and sex improved the C-statistic of 16 PRS for complex 

traits.[39] 

 

The magnitude of this effect was also seen to be outcome specific: the addition of T2D PRS to 

the age and sex model for the prediction of incident T2D in this study lead to the highest increase 

in the C-statistic (of 0.03) compared to the age and sex model alone out of all the outcomes studied. 

This is likely because the T2D PRS had relatively good discrimination on its own (see previous 

section) and therefore its combination with uncorrelated variables (age and sex) resulted in this 

higher increase observed. A study looked at the relative effect of adding a T2D genetic risk score 

to modifiable and non-modifiable risk factors and observed that this effect was greater in younger 

and leaner participants.[40] While the median age of UK Biobank participants was 58 to 59 at 

baseline (Table 4.3), they are known to be healthier than the general population, which might 

explain why this larger increase in the C-statistic was observed for T2D.[41] The influence of 

genetics in the development of T2D is more important in individuals with lower adverse factors 

for T2D (such as lower BMI and age).  
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For CVD prediction, the CHD and CVD PRS alone performed poorly in this study. When 

combining the PRS with age and sex, the C-statistic obtained were similar to that of QRISK3 

which also includes the age and sex variables. The C-statistic of the age and sex model only was 

also very similar (Supplementary Table 4.5). Wald et al. have highlighted the importance that age 

plays in CVD prediction, proposing that age alone is an appropriate and more cost-effective 

screening strategy for CVD than current clinical risk models such as the Framingham risk 

score.[38] Furthermore, a study by Khan et al. analysed the effects of adding PRS to a non-genetic 

risk score for CVD stratified by age.[42] They observed that the C-statistic of the combined model 

only marginally improved in young adults after adding the PRS, while it did not improve in midlife 

adults. This shows that the relevance of PRS in risk prediction differs with age, and that PRS 

provide minimal added benefits to non-genetic risk model for the prediction of CVD in later life 

when it is usually employed.  

 

4.5.5 The combined PRS and QScore models 

 

The minimal correlation between the QScores and their respective PRS seemed to suggest that 

PRS could potentially add novel predictive information to these scores (Figure 4.4). To evaluate 

the incremental predictive utility of polygenic information in the QScores, I generated combined 

models in an outcome-specific way: CVD PRS and QRISK3 for the incidence of CVD, CHD PRS 

and QRISK3 for the incidence of CHD, IST PRS and QStroke for the incidence of IST, and T2D 

PRS and QDiabetes for the incidence of T2D. All combined models had a similar calibration and 

discrimination as their respective QScores with overlapping confidence intervals (Figures 4.5, 4.6 

and Supplementary Table 4.5). This suggests that the PRS generated in this study provided 

minimal added predictive value to QRISK3, QStroke and QDiabetes for the prediction of incident 

CVD/CHD, IST and T2D, respectively. This might be because the non-genetic variables included 

in QRISK3, QStroke and QDiabetes might already sufficiently mediate the PRS associations with 

the outcomes studied (e.g. the inclusion of family history of premature CVD as a predictor in 

QRISK3 and QStroke). The modest improvement in the C-statistic when comparing QRISK3 to 

a combined model of QRISK3 and PRS (in this study an increase of 0.015 in men, and of 0.006 

for men and women combined) was also previously reported by Elliott et al. (an increase of 0.02 

in the C-statistic) and Riveros-Mckay et al. (an increase of 0.03 in the C-statistic).[15,36] This 

minimal improvement in the C-statistic can be more readily interpreted by converting it to a 
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detection rate for a 5% false positive rate: a 0.015 improvement in the C-statistic is equivalent to 

an improvement of 1.5% in the detection rate for a 5% false positive rate (see results section). 

 

4.5.6 Study limitations 

 
A limitation of the study is that the UK Biobank cohort is known to be healthier than the general 

UK population, which might impact the prediction metrics obtained here.[41] However, 

considering this, PRS might play a more important role in incident disease prediction in this study 

than they would in a general population where adverse environmental variables have a bigger 

influence on disease risk. Regardless, more evidence is needed to properly assess the utility of 

including polygenic information to QRISK3, such as the combined trial by the NHS and 

Genomics plc.[22] 

 

Another study consideration is that I limited the analyses to individuals of White British ancestry. 

The reason for this was the poor availability of GWAS in non-European ancestries. Subgroup 

analyses in different ethnic groups might produce variable results; however, due to the poor 

transferability of PRS in different ancestries, I do not expect to see an improvement in the 

performance of these combined genetic and non-genetic risk prediction models.[43]  

 

The GWAS summary statistics used to generate the atrial fibrillation PRS and the heart failure PRS 

in this study contained data from the UK Biobank. These PRS were combined with the CHD PRS 

and the all stroke PRS to form the CVD PRS analysed here. The reason for using these data was 

that there were no other GWAS datasets available for atrial fibrillation and heart failure that did 

not contain UK Biobank information. This could potentially lead to an overinflation in the CVD 

PRS predictions observed in this study and could mean that these effects would be attenuated if 

implemented in an external and independent dataset, emphasising the limited utility of PRS in 

CVD prediction.[44] 

 

4.5.7 Conclusion 

 

The results of this study echo what previous studies have found: PRS can add some discriminative 

value to non-genetic CVD scores (in this case QRISK3), but this improvement is minimal, 

meaning that the clinical utility of PRS is still unconvincing at this point. The inclusion of PRS to 

QStroke and QDiabetes also did not improve the discrimination of the models for men and 
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women combined; highlighting that the utility of PRS information in disease prediction is 

outcome- and model-specific, likely driven by the underlying aetiology of the disease in question. 

The benefits of PRS in disease prediction are also likely to be more useful in younger individuals 

where external environmental risk factors have had less of an effect on disease progression and 

risk. However, considering the large impact that non-genetic risk factors (including age and sex) 

have on CVD risk, it is unlikely that PRS would be of much use for predicting CVD events in later 

life. Further critical evaluation of the inclusion of polygenic information to non-genetic risk 

prediction models is required prior to clinical implementation. Cost-effectiveness studies will also 

be needed to appropriately guide discussions on possible implementation in clinical settings. Other 

uses of polygenic scores in the clinic besides risk prediction are also worth exploring, such as its 

potential in rare variant discovery. 
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4.7 Appendix 

 

Supplementary Table 4.1 The QRISK3, QDiabetes and QStroke variables and their 
corresponding UK Biobank data field numbers and ICD-10 diagnostic codes. CHD = 
coronary heart disease; ICD = International Classification of Disease. 
 
 

QRISK3 
variables 
(model B) 

QStroke 
variables 

QDiabetes 
variables 

UK Biobank 
data field 
number 

UK Biobank data field 
41270: ICD-10 diagnosis 
codes 

sex    31 
 

age    21003 
 

ethnicity    22006 
 

Townsend deprivation index    189 
 

body mass index    21001 
 

treated hypertension    20002 I10 

smoking    20116, 3456 
 

type 1 diabetes    
 

E10 

type 2 diabetes    
 

E11 

systolic blood pressure    93, 4080 
 

total cholesterol:high density lipoprotein cholesterol 
ratio    

30690, 30760 
 

family history of CHD in a 1st degree relative <60 yo 

   

20107, 20110, 
20111 

 

rheumatoid arthritis 

   

 
M06.9, M05.0, M05.1, 
J99.0, M06.1, M06.4 

atrial fibrillation    
 

I48 

major chronic renal disease 

   

 
N04, N03.2, N11.1, Z99.2, 
Z94.0 

chronic kidney disease (stages 3, 4 or 5) 

   

 
N18.0, N18.3, N18.4, 
N18.5, N18.9 

migraine    
 

G43, G44.0 

corticosteroids    
  

systemic lupus erythematosus    
 

M32.9, M32.1, I39 

atypical antipsychotics    
  

severe mental illness (schizophrenia, bipolar disorder, 
moderate/severe depression) 

   

 
F23, F28, F29, F20, F31 

erectile dysfunction diagnosis    
 

N52.9 

chronic kidney disease (stages 4 or 5) 

   

 
N18.0, N18.4, N18.5, 
N18.9 
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congestive cardiac failure    
 

I50.0 

coronary heart disease 

   

 
G45, I20, I21, I22, I23, I24, 
I25 

valvular heart disease 

   

 
I34, I35, I05, I06, I08 

cardiovascular disease 

   

 
G45, I20, I21, I22, I23, I24, 
I25, I63, I64 

gestational diabetes    
 

O244, O249 

polycystic ovary syndrome    
 

E282 

statins    
  

family history of diabetes    20107 
 

manic depression or schizophrenia    
 

F29, F20, F31 

learning difficulties    N/A 
 

 

 

Supplementary Table 4.2 The ICD-10 and OPCS-4 codes used to define incident 
cardiovascular disease, coronary heart disease, ischaemic stroke, and type 2 diabetes. The 
number of incident cases relative to the study baseline (i.e. date of first attendance at the UK 
Biobank assessment centre) as of January 2021. ICD = International Classification of Diseases; 
OPCS = Office of Population Censuses and Surveys Classification of Interventions and 
Procedures. 
 

  ICD-10 codes OPCS-4 codes 

Number of 
incident cases 
in entire 
dataset 

Number of 
incident cases 
in the test data 

Cardiovascular disease 

I21, I22, I23, I24, I25.0, I25.1, 
I25.2, I25.3, I25.5, 125.6, 
I25.8, 125.9, I48, I50, I11.0, 
I13.0, I13.2, I32.2, I61, I63 

K40, K41, K42, K43, K44.1, K44.8, K44.9, 
K45.1, K45.2, K45.3, K45.4, K45.5, K45.8, 
K45.9, K46.1, K46.2, K46.3, K46.4, K46.8, 
K46.9, K47.1, K49, K50, K75, K52.1, K57.1, 
K57.5, K62.1, K62.2, K62.3, K62.4, K62.5, 
X50.1, X50.2 

23,389 11,673 

Coronary heart disease 
I21, I22, I23, I24, I25.0, I25.1, 
I25.2, I25.3, I25.5, 125.6, 
I25.8, 125.9 

K40, K41, K42, K43, K44.1, K44.8, K44.9, 
K45.1, K45.2, K45.3, K45.4, K45.5, K45.8, 
K45.9, K46.1, K46.2, K46.3, K46.4, K46.8, 
K46.9, K47.1, K49, K50, K75 

14,010 6,973 

Ischaemic stroke I63   2,909 1,456 

Type 2 diabetes E11   12,599 6,293 

 

 

Supplementary Table 4.3 Characteristics of 341,515 UK Biobank White British participants 
included in the analysis with missing data singly imputed stratified by sex. The p-values of 
group differences between sexes were obtained using the Kruskal-Wallis Rank sum nonparametric 
test for continuous variables, and the Man-Whitney U test for binary variables. The percentage of 
missing data for each variable are shown in the last column. BMI = body mass index; CHD = 
coronary heart disease; CVD = cardiovascular disease; IQR = interquartile range; NSAID = non-
steroidal anti-inflammatory drug. 
 
 

Female Male p-value for 
group difference 

n (%) 183651 (53.8%) 157864 (46.2%) 
 

Age (median [IQR]) 58.00 [50.00, 63.00] 59.00 [51.00, 64.00] <0.001 
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BMI, kg/m2 (median [IQR]) 26.06 [23.43, 29.62] 27.30 [24.99, 30.05] <0.001 

Cholesterol ratio (median [IQR]) 3.68 [3.11, 4.42] 4.34 [3.61, 5.17] <0.001 

Systolic blood pressure, mmHg (median [IQR]) 133.50 [121.50, 147.50] 140.00 [129.00, 152.00] <0.001 

Smoking status (%) 
  

<0.001 

   Non-smoker 111512 (60.7) 81469 (51.6) 
 

   Former smoker 59985 (32.7) 64533 (40.9) 
 

   Light smoker (<10 cigarettes/day) 2879 (1.6) 1807 (1.1) 
 

   Moderate smoker (10-19 cigarettes/day) 5557 (3.0) 4651 (2.9) 
 

   Heavy Smoker (>20 cigarettes/day) 3718 (2.0) 5404 (3.4) 
 

Townsend deprivation index (median [IQR]) -2.37 [-3.75, -0.01] -2.36 [-3.76, 0.12] 0.003 

Family history of CHD (%) 91654 (49.9) 73856 (46.8) <0.001 

Family history of diabetes (%) 43140 (23.5) 36094 (22.9) <0.001 

Prescription history 
   

   Statins (%) 17638 (9.6) 28171 (17.8) <0.001 

   Atypical antipsychotics (%) 453 (0.2) 474 (0.3) 0.003 

   Corticosteroids (%) 2885 (1.6) 2631 (1.7) 0.028 

   Erectile dysfunction (%) 16 (0.0) 1897 (1.2) <0.001 

   Treated hypertension (%) 8833 (4.8) 11070 (7.0) <0.001 

   NSAIDs (%) 47160 (25.7) 45788 (29.0) <0.001 

   Anticoagulants (%) 1099 (0.6) 2653 (1.7) <0.001 

Prevalent medical conditions 
   

   Atrial fibrillation (%) 1310 (0.7) 3388 (2.1) <0.001 

   Congestive cardiac failure (%) 5 (0.0) 12 (0.0) 0.076 

   Coronary heart disease (%) 2640 (1.4) 8743 (5.5) <0.001 

   Chronic kidney disease (stage 4 or 5) (%) 172 (0.1) 312 (0.2) <0.001 

   Cardiovascular disease (%) 4124 (2.2) 11737 (7.4) <0.001 

   Gestational diabetes (%) 220 (0.1) 0 (0.0) <0.001 

   Ischaemic stroke (%) 373 (0.2) 874 (0.6) <0.001 

   Manic depression/schizophrenia (%) 397 (0.2) 449 (0.3) <0.001 

   Migraine (%) 2171 (1.2) 652 (0.4) <0.001 

   Polycystic ovary syndrome (%) 142 (0.1) 0 (0.0) <0.001 

   Rheumatoid arthritis (%) 1054 (0.6) 457 (0.3) <0.001 

   Systemic Lupus Erythematosus (%) 156 (0.1) 31 (0.0) <0.001 

   Severe mental illness (%) 677 (0.4) 583 (0.4) 0.997 

   Valvular heart disease (%) 636 (0.3) 1042 (0.7) <0.001 

   Type 2 diabetes (%) 3100 (1.7) 5622 (3.6) <0.001 

   Type 1 diabetes (%) 214 (0.1) 271 (0.2) <0.001 

   Renal disease (%) 226 (0.1) 388 (0.2) <0.001 

Incident disease 
   

   CHD (%) 4609 (2.5) 9401 (6.0) <0.001 

   CVD (%) 8626 (4.7) 14763 (9.4) <0.001 

   Ischaemic stroke (%) 1109 (0.6) 1800 (1.1) <0.001 

   Type 2 diabetes (%) 5051 (2.8) 7548 (4.8) <0.001 
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Supplementary Table 4.4 The p-values and linkage disequilibrium (LD) cut-off values that 
yielded the polygenic risk scores (PRS) with the highest C-statistic for each incident 
outcome studied. CHD = coronary heart disease; CVD = cardiovascular disease. 
 

PRS 
Incident endpoint 
predicted 

P-value cut-off LD cut-off C-statistic 

CHD CHD 5x10-4 0.2 0.566 
Ischaemic stroke Ischaemic stroke 5x10-4 0.6 0.547 
Type 2 diabetes Type 2 diabetes 5x10-4 0.01 0.658 
CHD CVD 5x10-5 0.2 0.535 
Heart failure CVD 5x10-4 0.6 0.537 
All stroke CVD 5x10-8 0.6 0.522 
Atrial fibrillation CVD 5x10-4 0.2 0.571 
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Supplementary Table 4.5 The C-statistic, calibration-in-the-large, calibration slope values and detection rate for a 5% false positive rate 
(DR5) of the PRS (CVD, CHD, IST, T2D), QScores (QRISK3, QStroke, QDiabetes) and combined models (age and sex; PRS, age and sex; 
PRS and QScore) for incident disease outcomes (CVD, CHD, IST and T2D). The values obtained are from the independent test dataset. CI = 
confidence interval; CHD = coronary heart disease; CVD = cardiovascular disease; IST = ischaemic stroke; PRS = polygenic risk score; T2D = type 2 
diabetes. 
 
Models Outcome Subgroup C-statistic C-statistic 

lower 95% 
CI 

C-statistic 
upper 95% 
CI 

Calibration-
in-the-large 

Calibration-
in-the-large 
lower 95% CI 

Calibration-
in-the-large 
upper 95% CI 

Calibration 
slope 

Calibration 
slope lower 
95% CI 

Calibration 
slope upper 
95% CI 

DR5 

CVD PRS Incident CVD Overall 0.586 0.58 0.591 0.001 -0.018 0.02 0.997 0.937 1.057 0.091 

CVD PRS Incident CVD Female 0.584 0.575 0.593 -0.409 -0.439 -0.378 0.998 0.901 1.095 0.089 

CVD PRS Incident CVD Male 0.588 0.581 0.595 0.345 0.321 0.369 1.007 0.93 1.084 0.092 

CHD PRS Incident CHD Overall 0.569 0.562 0.576 -0.002 -0.026 0.022 1.083 0.977 1.189 0.081 

CHD PRS Incident CHD Female 0.563 0.551 0.575 -0.528 -0.569 -0.486 1.013 0.829 1.197 0.078 

CHD PRS Incident CHD Male 0.573 0.564 0.581 0.398 0.369 0.428 1.133 1.003 1.262 0.083 

IST PRS Incident IST Overall 0.55 0.535 0.565 0.009 -0.043 0.06 1.101 0.77 1.433 0.071 

IST PRS Incident IST Female 0.552 0.528 0.577 -0.369 -0.454 -0.284 1.035 0.49 1.579 0.072 

IST PRS Incident IST Male 0.548 0.53 0.567 0.321 0.256 0.386 1.134 0.716 1.552 0.07 

T2D PRS Incident T2D Overall 0.659 0.652 0.666 0.006 -0.02 0.031 1.031 0.986 1.077 0.143 

T2D PRS Incident T2D Female 0.668 0.657 0.679 -0.296 -0.336 -0.257 1.109 1.037 1.181 0.151 

T2D PRS Incident T2D Male 0.653 0.644 0.662 0.276 0.243 0.309 0.98 0.921 1.039 0.138 

QRISK3 Incident CVD Overall 0.715 0.711 0.719 -0.002 -0.021 0.017 1.008 0.98 1.037 0.2 

QRISK3 Incident CVD Female 0.72 0.713 0.728 -0.139 -0.17 -0.108 1.353 1.292 1.413 0.206 

QRISK3 Incident CVD Male 0.667 0.661 0.673 0.093 0.069 0.118 0.774 0.738 0.81 0.15 

QRISK3 Incident CHD Overall 0.738 0.733 0.744 -0.009 -0.033 0.016 1.032 1.001 1.063 0.229 

QRISK3 Incident CHD Female 0.739 0.73 0.749 -0.222 -0.264 -0.18 1.356 1.289 1.424 0.23 

QRISK3 Incident CHD Male 0.684 0.677 0.691 0.119 0.089 0.149 0.802 0.764 0.841 0.167 

QStroke Incident IST Overall 0.698 0.684 0.712 0 -0.052 0.052 1.019 0.93 1.108 0.181 

QStroke Incident IST Female 0.681 0.658 0.705 -0.257 -0.343 -0.17 0.619 0.505 0.732 0.164 

QStroke Incident IST Male 0.723 0.707 0.739 0.18 0.115 0.245 2.235 2.063 2.407 0.21 

QDiabetes Incident T2D Overall 0.802 0.797 0.807 0.003 -0.023 0.029 0.975 0.95 1.001 0.328 

QDiabetes Incident T2D Female 0.818 0.811 0.826 -0.047 -0.087 -0.007 1.292 1.243 1.341 0.359 

QDiabetes Incident T2D Male 0.776 0.769 0.783 0.042 0.007 0.076 0.83 0.799 0.861 0.284 

Age x sex Incident CVD Overall 0.702 0.697 0.706 -0.002 -0.021 0.017 1.037 1.008 1.065 0.185 

Age x sex Incident CVD Female 0.695 0.688 0.703 -0.022 -0.053 0.009 1.595 1.522 1.667 0.178 

Age x sex Incident CVD Male 0.659 0.653 0.665 0.011 -0.014 0.035 0.868 0.829 0.907 0.143 

Age x sex Incident CHD Overall 0.706 0.7 0.711 -0.008 -0.032 0.016 1.048 1.013 1.084 0.19 

Age x sex Incident CHD Female 0.685 0.674 0.695 -0.076 -0.118 -0.034 1.887 1.763 2.011 0.168 

Age x sex Incident CHD Male 0.651 0.643 0.658 0.028 -0.002 0.058 0.857 0.807 0.906 0.137 

Age x sex Incident IST Overall 0.713 0.701 0.725 0.003 -0.049 0.055 1.109 1.032 1.185 0.198 
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Age x sex Incident IST Female 0.722 0.701 0.742 -0.041 -0.126 0.044 1.702 1.517 1.886 0.208 

Age x sex Incident IST Male 0.674 0.657 0.691 0.03 -0.035 0.095 0.931 0.83 1.032 0.157 

Age x sex Incident T2D Overall 0.636 0.629 0.642 0.002 -0.023 0.027 1.056 0.999 1.113 0.124 

Age x sex Incident T2D Female 0.616 0.606 0.627 0.001 -0.039 0.04 1.493 1.345 1.64 0.11 

Age x sex Incident T2D Male 0.602 0.594 0.611 0.003 -0.03 0.036 0.952 0.864 1.041 0.1 

CVD PRS x age x sex Incident CVD Overall 0.719 0.714 0.723 -0.005 -0.024 0.014 1.021 0.995 1.048 0.205 

CVD PRS x age x sex Incident CVD Female 0.712 0.704 0.719 -0.077 -0.108 -0.046 1.336 1.278 1.394 0.197 

CVD PRS x age x sex Incident CVD Male 0.683 0.677 0.689 0.043 0.018 0.068 0.855 0.821 0.889 0.166 

CHD PRS x age x sex Incident CHD Overall 0.717 0.711 0.723 -0.01 -0.035 0.014 1.031 0.998 1.064 0.202 

CHD PRS x age x sex Incident CHD Female 0.694 0.683 0.704 -0.093 -0.135 -0.051 2.005 1.882 2.127 0.177 

CHD PRS x age x sex Incident CHD Male 0.668 0.661 0.675 0.034 0.005 0.064 0.841 0.797 0.884 0.151 

IST PRS x age x sex Incident IST Overall 0.717 0.704 0.729 0.002 -0.049 0.054 1.101 1.028 1.173 0.202 

IST PRS x age x sex Incident IST Female 0.724 0.704 0.745 -0.063 -0.148 0.022 1.384 1.242 1.526 0.211 

IST PRS x age x sex Incident IST Male 0.68 0.663 0.697 0.043 -0.022 0.109 0.953 0.855 1.05 0.163 

T2D PRS x age x sex Incident T2D Overall 0.707 0.701 0.713 0.005 -0.02 0.031 1.062 1.025 1.098 0.191 

T2D PRS x age x sex Incident T2D Female 0.703 0.693 0.713 -0.077 -0.116 -0.037 1.306 1.235 1.376 0.186 

T2D PRS x age x sex Incident T2D Male 0.684 0.676 0.693 0.066 0.033 0.1 0.916 0.87 0.962 0.167 

CVD PRS x QRISK3 Incident CVD Overall 0.72 0.715 0.724 -0.002 -0.021 0.017 0.994 0.96 1.027 0.206 

CVD PRS x QRISK3 Incident CVD Female 0.714 0.706 0.721 -0.256 -0.287 -0.226 1.414 1.333 1.496 0.199 

CVD PRS x QRISK3 Incident CVD Male 0.682 0.676 0.688 0.192 0.167 0.216 0.732 0.694 0.771 0.165 

CHD PRS x QRISK3 Incident CHD Overall 0.74 0.735 0.746 -0.007 -0.032 0.017 1.048 1.005 1.092 0.231 

CHD PRS x QRISK3 Incident CHD Female 0.73 0.72 0.74 -0.4 -0.442 -0.358 1.591 1.47 1.712 0.218 

CHD PRS x QRISK3 Incident CHD Male 0.694 0.687 0.701 0.265 0.235 0.295 0.763 0.716 0.811 0.177 

IST PRS x QStroke Incident IST Overall 0.69 0.675 0.704 0.007 -0.044 0.059 1.052 0.839 1.265 0.173 

IST PRS x QStroke Incident IST Female 0.597 0.571 0.622 -0.371 -0.456 -0.286 0.96 0.7 1.219 0.097 

IST PRS x QStroke Incident IST Male 0.714 0.698 0.731 0.32 0.255 0.385 20.838 18.598 23.079 0.199 

T2D PRS x QDiabetes Incident T2D Overall 0.8 0.795 0.806 0.003 -0.023 0.029 0.939 0.905 0.972 0.325 

T2D PRS x QDiabetes Incident T2D Female 0.805 0.796 0.813 -0.176 -0.215 -0.136 1.537 1.454 1.62 0.334 

T2D PRS x QDiabetes Incident T2D Male 0.784 0.777 0.791 0.156 0.122 0.19 0.758 0.721 0.794 0.297 

 
 
 



 122 

Supplementary Figure 4.1 The polygenic risk score (PRS) parameters tested (p-value and 
linkage disequilibrium (LD) cut-off values) and their C-statistic for incident coronary 
heart disease (CHD), incident ischaemic stroke (IST), and incident type 2 diabetes (T2D). 
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5 Modelling a two-stage adult population screen for autosomal dominant familial 

hypercholesterolaemia (FH) 

 

A manuscript for the following chapter is underway. 

 

5.1 Abstract 

 

Background: Autosomal dominant familial hypercholesterolaemia (FH) is highly underdiagnosed 

worldwide and increased detection of FH cases has been identified as one of the goals of the NHS’ 

Long Term Plan. There is currently no population screening strategy in place for FH in the UK. 

Instead, new cases are identified opportunistically. Increasing case detection could require a 

population screening strategy with the potential to reduce and prevent premature coronary heart 

disease and death. The aim of the work in this chapter was to evaluate the performance of a two-

stage adult population screen for FH and compare it to child-parent screening. 

 

Methods: I modelled use of different low-density lipoprotein cholesterol (LDL-C) cut-offs (stage 

1) to select individuals for DNA sequencing to identify FH-causing variants in LDLR, APOB, 

PCSK9 and APOE (stage 2) in 140,439 unrelated participants of European ancestry from the UK 

Biobank with information on circulating LDL-C concentration and exome sequencing data. For 

different LDL-C cut-offs, I estimated the stage 1 detection and false positive rate, the proportion 

of individuals requiring DNA sequencing (stage 1 screen positive rate), and the number of FH 

cases identified by population screening. I also modelled the number of additional FH cases that 

might be detected by cascade testing of first-degree relatives of index cases and compared this 

approach with child-parent screening for FH. 

 

Results: I identified 488 individuals with an FH-causing variant and 139,951 without (prevalence: 

1 in 288). An LDL-C cut-off of >4.8 mmol/L had a stage 1 detection rate (DR; sensitivity) of 40% 

(95% CI: 36-44%) for a false positive rate of 10% (95% CI: 10-11%). Using this LDL-C cut-off 

to screen 100,000 individuals (among whom there would be an estimated 347 FH cases) would 

generate 10,398 stage 1 screen positives for sequencing, detect 138 FH cases, miss 209, with a 

further 207 cases potentially being detected through two-generation cascade testing of first-degree 

relatives of index cases. This is about a third as many FH cases as childhood screening with three 

generation cascade testing, for twice the sequencing burden. Detecting 25% of all FH cases 

(~49,000 additional cases; the target set in the NHS Long Term Plan) with the two-stage adult 
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screening strategy would require screening around 14 million adults and sequencing of 1.5 million 

of them, or screening 4.6 million children and sequencing ¼ million of them with cascade testing.  

 

Conclusion: Two-stage adult population screening for FH could help achieve the FH case 

detection target in the NHS Long Term Plan, but less efficiently than childhood screening and 

with a greater sequencing requirement.  

 

5.2 Introduction 

 

Autosomal dominant familial hypercholesterolaemia (FH) is the commonest monogenic disorder 

with a prevalence of about 1 in 250.[1–3] People with FH have a heterozygous DNA variant in 

either the LDLR, APOB, PCSK9 or APOE genes,[4,5] leading to at least a 4.8-fold age-adjusted 

risk of coronary artery disease compared to the general population.[6] If detected, affected 

individuals can benefit from drugs that lower low-density lipoprotein cholesterol (LDL-C) to 

reduce the risk of a coronary event.[7,8]    

 

First-degree relatives of index FH cases have a one in two chance of carrying the same causative 

genetic variant, enabling further case detection through each index case by family-based cascade 

testing.[9,10] However, cascade testing is limited by the stream of index cases identified, and this 

is currently opportunistic rather than systematic. FH cases are currently detected when they present 

with coronary disease at a young age or are found by chance to have an extreme elevation of LDL-

C concentration when assessed as part of a healthcare contact for another reason. As a 

consequence, only 19,000 (7%) of an estimated 270,000 FH cases in the UK are known.[11,12]  

 

Systematic identification of individuals with FH in the population would address underdiagnosis 

and the missed opportunity for coronary disease prevention. The NHS Long Term plan has set a 

target of detecting at least 25% of FH cases (~67,500) over the next 5 years,[13] but does not 

elaborate on how this will be achieved. Measurement of circulating LDL-C concentration in adults 

performs poorly as a screening test in distinguishing people with FH from those with other causes 

of a high LDL-C (e.g., due to diet, lifestyle, or carriage of a high burden of common genetic variants 

that affect LDL-C concentration).[14,15]  

 

Although individuals with elevated LDL-C regardless of cause can benefit from LDL-C lowering, 

cascade testing is only relevant in the families of those with autosomal dominant FH.[16] 
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Moreover, adults with autosomal dominant FH may have a higher risk of coronary disease than 

people who have a similar LDL-C but without a causative genetic variant.[17] LDL-C 

concentration in childhood identifies individuals with FH more accurately than measurement in 

adults and underpins the concept of child-parent screening. In this approach, affected parents, 

older siblings and grandparents are identified through the screening of children by the age of two 

by measurement of LDL-C, followed by genetic testing of stored samples with an LDL-C beyond 

a pre-specified cut-off.[18,19] Despite demonstration of the feasibility and efficiency of this 

approach,[18] it did not receive the endorsement of the UK National Screening Committee when 

last reviewed.[20]  

 

Different genes and DNA variants may cause FH in different families. Thus, sequencing of the 

four relevant FH-causing genes is needed to identify the causative variant in an index case after 

which simpler, cheaper mutation detection methods can be employed for cascade testing of family 

members. Although DNA sequencing is more accurate than biochemical screening, and could be 

used at any age, it is currently too expensive to be considered as the primary screening method for 

FH.  

 

An alternative approach that minimises sequencing burden while avoiding concern about FH 

screening in childhood is a two-stage screening design in adults. In this approach, LDL-C (an 

inexpensive test with a high false positive rate in adults) is measured at stage 1, followed by targeted 

sequencing of FH genes (a more expensive test with a low false positive rate) at stage 2 for 

individuals whose LDL-C concentration exceeds a specified cut-off. However, the effectiveness 

of this approach, evaluated on the basis of the number of index FH cases detected and missed, 

the additional cases detected by cascade testing, and the sequencing burden, has not been evaluated 

nor compared with child-parent screening.  

 

Participants in UK Biobank, a national, population-based cohort study, have already had LDL-C 

measurement and exome sequencing, which offers an opportunity to model the performance of 

two-stage adult population screening for FH. The age range of UK Biobank participants at 

recruitment also overlaps with that of individuals who, until the COVID-19 pandemic, were 

invited to NHS Health Checks in England.[21] NHS Health Checks evaluate a range of risk factors 

and blood is routinely drawn for the measurement of circulating lipid concentration. Since genomic 

sequencing could subsequently be undertaken from a stored blood sample drawn at the time of 
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assessment in those with an LDL-C above a pre-specified cut-off, the NHS Health Check could 

serve as a setting for an adult FH screening programme. 

 

Here, I model the performance of two-stage adult population screening to identify index FH cases 

and compare it with the previously reported performance of child-parent screening for FH, when 

both are followed by cascade testing of relatives of index cases.[10,18] I also estimate the time 

needed to reach the NHS Long Term Plan Goal.  

 

5.3 Methods 

 

5.3.1 Participants 

 

UK Biobank recruited ~500,000 participants between 40 and 75 years of age between 2006 and 

2010.[22] Participants completed questionnaires, undertook a variety of physical assessments, and 

provided biological samples for genotyping, sequencing, and other measurements.[23,24] 

 

5.3.2 LDL-C measurement 

 

In a total of 486,459 UK Biobank participants, serum was obtained from a blood draw in the non-

fasting state at the time of recruitment and stored at -80oC and liquid nitrogen for later analysis. 

LDL-C was measured directly by enzymatic protective selection analysis with a Beckman Coulter 

AU5800 and the values were recorded in mmol/L.[25] Where an LDL-C measurement was 

missing for an included participant, I imputed it using single imputation with the R package MICE 

version 3.10.0.[26] Where an included participant was already recorded as receiving a statin, I 

adjusted their LDL-C concentration using the correction coefficient 1.43.[27] 

 

5.3.3 Identification of carriers of FH-causing genetic variants 

 

A blood sample was drawn for DNA analysis in 454,787 participants of UK Biobank and stored 

at -80oC.[28] Exome capture was done using the IDT xGen Exome Research Panel v1.0 which 

included additional probes, and exome-sequencing was performed on the Illumina NovaSeq 6000 

platform.[29]  
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I identified 140,439 European ancestry participants from data-field 22006 of the UK Biobank with 

exome sequence data and valid (directly typed or imputed) measurements of LDL-C at the time 

of analysis and included them in the study. Each participant was assigned to one of three groups: 

(1) individuals with an established FH causing variant in LDLR, PCSK9, APOB or APOE genes 

based on annotation in ClinVar and manual curation (Supplementary Table 5.1); (2) individuals 

with variants of unknown significance (VUS) in these four genes (Supplementary Table 5.2); 

and (3) individuals with no FH-causing variant or VUS. I classified individuals from the first group 

as “affected” and those from the other two groups as “unaffected”.  

 

The LDLR, PCSK9, APOB or APOE gene regions were extracted from the UK Biobank exome 

data (Table 5.1). Multiallelic sites were converted to biallelic sites using BCFtools version 1.11.,[30] 

and genetic variants were annotated using Ensembl’s Variant Effect Predictor (VEP) release 

103.1.[31] The LDLR variants in the canonical transcript ENST00000558518 were filtered for a 

minor allele frequency (MAF) of 0.0006, which is equal to the frequency of the most common FH 

variant (p.Arg3527Gln in APOB) according to the gnomAD database version 2.1.1.[32] Further 

variant filtering steps included a minimum read depth of 10 and genotype quality of 20. The 

SAMtools plugin split-vep was used to keep variants that had a predicted consequence of missense 

or worse, and the resulting variants with a SIFT annotation of “tolerated” or a PolyPhen 

annotation of “benign” were excluded.[30,33,34] These filtering steps were followed by manual 

curation of the variants by two expert reviewers who respected the Association for Clinical 

Genomics Science (ACGS) guidelines and the evidence accrued from the LOVD database for 

LDLR.[35,36] For the APOE gene, the heterozygous p.Leu167del in-frame deletion was 

considered to be FH-causing, and the pathogenic variants in PCSK9 and APOB were filtered based 

on a pre-defined list of curated variants with functional assay backing.[5,37] 

 

 

Gene name Chromosome number Start coordinate End coordinate 

LDLR 19 11,089,262 11,133,820 

APOB 2 21,001,429 21,044,073 

APOE 19 44,905,791 44,909,393 

PCSK9 1 55,039,347 55,064,852 

 
Table 5.1 Genetic coordinates of FH-causing genes. Genetic coordinates are mapped to 
GRCh38. 
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5.3.4 Evaluation of two-stage adult FH screening performance  

 

I counted the number of individuals with an FH-causing variant above and below different LDL-

C cut-off values and used this to estimate the stage 1 detection rate (the proportion of eligible 

participants with an FH-causing variant whose LDL-C value exceeded the cut-off), the stage 1 

false positive rate (the proportion of eligible participants with no FH-causing variant whose LDL-

C value exceeded the cut-off), the odds of being affected give a positive result (the ratio of true to 

false positives), and the stage 1 screen positive rate (the proportion of individuals whose LDL-C 

exceeded the cut-off regardless of FH-causing variant status). I assumed that all individuals with 

an LDL-C value above the cut-off would undergo targeted sequencing (stage 2). I assumed that 

targeted sequencing has a 100% detection rate for individuals with FH-causing variants, and that 

individuals with a VUS identified on sequencing would not be taken forward into the cascade 

testing phase.   

 

5.3.5 Comparison of two-stage adult and child-parent screening 

 

I used data from the current analysis and from previous reports to compare the performance of 

two-stage adult and child-parent screening in terms of samples requiring sequencing, index FH 

cases detected, and additional cases detected through cascade testing.[9,10,18,38] For the 

comparison, I assumed that samples from children or adults with an LDL-C concentration beyond 

a pre-specified cut-off would undergo targeted sequencing of FH-causing variants.  

 

5.3.6 Modelling cascade testing in families of index cases 

 

Using the methods and assumptions described by Morris et al. and Wald et al.,[9,18] I estimated 

the number of additional FH cases identified by cascade testing in the families of each index case 

identified by the two population screening strategies. I assumed cascade testing of first-degree 

relatives only: since each index case in the two-stage adult screen would be between 40 and 75 

years of age, I assumed their parents would either have died or be too old for screening. I also 

assumed that families comprise of two children on average (as estimated by Office of National 

Statistics) such that each index case would have an average of one sibling and two offspring.[39]For 

the child-parent screen, I assumed that this strategy would enable screening of three generations 

(the sibs, parents, and grandparents of the index child), as opposed to two generations (the sibs 
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and children of the index adult) in the two-stage adult screen. Calculations were based on a best-

case scenario for cascade testing where all affected first-degree relatives would be detected. 

 

5.3.7 Achieving the NHS Long Term Plan target for FH case detection 

 

To estimate the amount of time it would take for the child-parent and the adult two-stage screen 

to reach the NHS Long Term Plan goal of 25% FH case detection, I assumed that current FH 

case detection in the UK is at 7%, and that an additional 49,000 FH cases would need to be 

diagnosed to reach the 25% target set out by the NHS.[11–13] For the child-parent screen, I 

assumed that 95% of children would be immunised and eligible for FH screening.[40,41] For the 

two-stage adult screen, I assumed that around one million adults attend their NHS Health 

Check.[42] I then calculated the number of FH cases that would be detected per year if 

implementing the child-parent or the adult-two stage screen followed by cascade testing, based on 

the previous modelling. I extrapolated these figures to estimate the number of years it would take 

to detect the additional 49,000 FH case target set out by the NHS. These calculations do not 

account for related individuals being picked up from the population screen who were previously 

detected via cascade testing (or vice versa). 

 

5.4 Results 

 

5.4.1 Demographic and other characteristics of study participants 

 

I identified 140,439 White British participants from UK Biobank with a valid (directly measured 

or imputed) LDL-C value and exome sequence data available at the time of analysis. I compared 

the UK Biobank participant characteristics with individuals who participated in the NHS Health 

Check in 2017-2018, where FH screening could be rolled out. The UK Biobank participants in the 

current analysis were slightly older than individuals evaluated in the NHS Health Check but had a 

similar gender distribution (Table 5.2). About 15.8% of those undergoing NHS Health Checks 

self-report as non-White, whereas the dataset I analysed from UK Biobank was limited to those 

of who self-reported as being White (Table 5.2).[43] 
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NHS Health Check (2017-2018) UK Biobank study cohort 

Count of participants 1,108,841 140,439 

Sex (male) 509,752 (46.0%) 63878 (45.5%) 

Age 
  

   39 0 (0%) 2 (0.001%) 

   40 to 44 240,438 (21.7%) 13,338 (9.5%) 

   45 to 49 205,722 (18.6%) 17,577 (12.5%) 

   50 to 54 209,088 (18.9%) 21,066 (15.0%) 

   55 to 59 180,624 (16.3%) 25,385 (18.1%) 

   60 to 64 147,444 (13.3%) 35,473 (25.3%) 

   65 to 69 125,525 (11.3%) 26,938 (19.2%) 

   70 to 74 0 (0%) 660 (0.5%) 

Self-reported ethnicity 
  

   Any other ethnic group 17,531 (1.6%) 0 (0%) 

   Asian or Asian British 98,692 (8.9%) 0 (0%) 

   Black or African or Caribbean or Black British 45,674 (4.1%) 0 (0%) 

   Mixed or multiple ethnic groups 13,498 (1.2%) 0 (0%) 

   White 864,173 (77.9%) 140,439 (100%) 

   Ethnicity not stated or recorded 69,273 (6.2%) 0 (0%) 

 
Table 5.2 Participant characteristic comparison between UK Biobank participants of the 
study cohort and the NHS Health Check 2017-2018.[43] 

 

 

5.4.2 Participants with an FH-causing variant or variant of unknown significance 

 

Of the 140,439 participants studied (median age 58 years, 45% male), I identified 488 with an FH-

causing variant interpreted as “pathogenic” or “likely pathogenic” (Table 5.3 and Supplementary 

Table 5.1) as per ACGS guidelines,[44] giving a prevalence of 1 in 288. A further 660 (1 in 213) 

individuals were found to carry a VUS (Supplementary Table 5.2). In those with an FH-causing 

variant, the variant was in LDLR in 374 (1 in 376), in APOB in 101 (1 in 1,390), and in APOE in 

13 participants (1 in 10,803) (Table 5.3 and Supplementary Table 5.1). None of those analysed 

carried an FH-causing variant in PCSK9.   
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 No FH-causing variant FH causing variant 
P-value of 
group 
differences  

n 139291 488  

LDLR variant (%) 0 (0.0) 374 (76.6)  

APOB variant (%) 0 (0.0) 101 (20.7)  

APOE variant (%) 0 (0.0) 13 (2.7)  

Age (median [IQR]) 58 [51, 63] 58 [51, 63] 0.803 

Sex (male) (%) 63382 (45.5) 207 (42.4) 0.187 

BMI, kg/m2 (median [IQR]) 26.7 [24.1, 29.8] 27.1 [23.9, 29.8] 0.689 

Townsend deprivation index (median [IQR]) -2.4 [-3.8, 0.0] -2.2 [-3.7, 0.2] 0.346 

Smoking status (%)  0.827 

   Non-smoker 79618 (57.2) 281 (57.6)  

   Former smoker 51177 (36.7) 173 (35.5)  

   Light smoker (<10 cigarettes/day) 2021 (1.5) 7 (1.4)  

   Moderate smoker (10-19 cigarettes/day) 3497 (2.5) 13 (2.7)  

   Heavy Smoker (>20 cigarettes/day) 2978 (2.1) 14 (2.9)  

Statin use (%) 18139 (13.0) 165 (33.8) <0.001 

Family history of CHD (%) 67013 (48.1) 306 (62.7) <0.001 

Blood biomarkers   

   LDL-C (unadjusted), mmol/L (median [IQR]) 3.5 [3.0, 4.1] 3.9 [3.2, 4.8] <0.001 

   LDL-C (adjusted for statin users), mmol/L (median 
[IQR]) 

3.7 [3.1, 4.2] 4.4 [3.7, 5.4] <0.001 

   Total cholesterol, mmol/L (median [IQR]) 5.7 [4.9, 6.4] 6.1 [5.2, 7.3] <0.001 

   Triglycerides, mmol/L (median [IQR]) 1.5 [1.1, 2.2] 1.3 [0.9, 1.9] <0.001 

   HDL-C, mmol/L (median [IQR]) 1.4 [1.2, 1.7] 1.4 [1.2, 1.6] 0.086 

Disease incidence & prevalence    

   CHD prevalence (%) 3890 (2.8) 40 (8.2) <0.001 

   CHD incidence (%) 5370 (3.9) 32 (6.6) 0.003 

   CVD prevalence (%) 5686 (4.1) 45 (9.2) <0.001 

   CVD incidence (%) 9038 (6.5) 46 (9.4) 0.011 

   Type 2 diabetes prevalence (%) 3593 (2.6) 11 (2.3) 0.757 

   Type 2 diabetes incidence (%) 4948 (3.6) 19 (3.9) 0.776 

 
Table 5.3 Characteristics of the study participants. P-values were obtained following Kruskal-
Wallis Rank sum nonparametric testing. BMI = body mass index; CHD = coronary heart disease; 
CVD = cardiovascular disease (defined as CHD, ischaemic and haemorrhagic stroke, heart failure, 
and atrial fibrillation); FH = familial hypercholesterolaemia; HDL-C = high-density lipoprotein 
cholesterol; IQR = interquartile range; LDL-C = low-density lipoprotein cholesterol. 
 

 

LDL-C concentration was higher in those with an FH-causing variant (median 4.43 mmol/L, IQR 

[3.67; 5.43]) than those without (median 3.67 mmol/L, IQR [3.14; 4.24]) (Figure 5.1 and Table 

5.3). LDL-C concentration was on average higher among those with an FH-causing variant in the 

APOB gene than among those with mutations in the other FH-causing genes (Supplementary 

Table 5.3). 
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Figure 5.1 Relative frequency distributions of the adjusted LDL-C concentrations in 
monogenic FH variant carriers and non-carriers of the study cohort. Unaffected individuals 
are shown in blue and affected individuals in red.  
 

 

There was no significant difference between those with and without FH-causing variants in age, 

sex, body mass index (BMI), Townsend deprivation index, smoking status, high-density 

lipoprotein cholesterol (HDL-C) and lipoprotein(a) concentration (Table 5.3). Of those with FH-

causing variants, 34% were prescribed statins, compared to 13% of those without (p-value <0.001) 

(Table 5.3). There was a higher proportion of people with a family history of coronary heart 

disease (CHD) in those with FH-causing variants than those without (63% versus 48%; p-value 

<0.001), as well as more than double the prevalence of both CHD (8% versus 3%; p-value <0.001) 

and cardiovascular disease (CVD) (a composite of CHD, ischaemic and haemorrhagic stroke, heart 

failure, and atrial fibrillation) (9% versus 4%; p-value <0.001) (Table 5.3). The 10-year CHD (7% 

vs 4%) and CVD incidence (9% vs 7%) were also significantly higher in the FH-causing variant 

positive group (p-value <0.05) (Table 5.3).  

 

5.4.3 Performance of two-stage adult screen for autosomal dominant FH  

 

For different LDL-C cut-offs between 3 and 8.5 mmol/L, I estimated the detection and false 

positive rate of stage 1 screening, the proportion of samples eligible for sequencing (stage 1 screen 
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positive rate), and the number and proportion of FH cases identified by the two-stage population 

screen (Supplementary Table 5.4). The lower the LDL-C cut-off, the higher the detection rate 

but also the false-positive rate and therefore the number of stage 1 screen positive samples that 

would be submitted for sequencing (Figure 5.2 and Table 5.4). For example, using an LDL-C 

cut-off of 5.0 mmol/L (1.36 multiples of the median (MoM) LDL-C value), gave a detection rate 

of 35% (95% CI: 31-39%) for a 7% (95% CI: 7%-7.3%) false-positive rate at stage 1, with a screen 

positive rate of 7% (Table 5.4). An LDL-C cut-off of 4.0 mmol/L (1.09 MoM) gave a stage 1 

detection rate of 65% (95% CI: 60%-69%) for a 35% (95% CI: 35-35%) false-positive rate, with a 

stage 1 screen positive rate of 35%. 

 

 

 
 
Figure 5.2 The number of samples sequenced, and the number of FH cases detected using 
various LDL-C cut-off values in the two-stage adult screening population strategy for FH 
for a hypothetical population of 100,000 individuals. The orange vertical line represents the 
total number of 347 FH cases in the hypothetical sample population of 100,000 individuals (for 
an FH prevalence of 1:288). 
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    Stage 1 
(LDL-C) 

     Stage 2 
(Sequencing) 

 

LDL-C 
cut-off 

(mmol/L) 

MoM Detection rate (%) False positive rate (%) OAPR Cases 
detected 

Cases  
missed 

False positives Number  
sequenced 

 Cases 
confirmed 

VUS  

3 0.82 91 (88-93) 81 (80-81) 1:255 315 32 80258 80573  315 417 

3.5 0.95 80 (76-83) 59 (58-59) 1:211 277 70 58346 58623  277 331 

4 1.09 65 (60-69) 35 (35-35) 1:154 225 122 34678 34903  225 218 

4.1 1.12 62 (57-66) 31 (30-31) 1:143 214 133 30556 30770  214 196 

4.2 1.14 59 (55-64) 27 (27-27) 1:129 206 141 26628 26834  206 177 

4.3 1.17 54 (50-59) 23 (23-23) 1:123 188 159 23075 23263  188 159 

4.4 1.2 51 (46-55) 20 (20-20) 1:112 177 170 19835 20012  177 139 

4.5 1.22 48 (43-52) 17 (17-17) 1:102 166 181 16997 17163  166 124 

4.6 1.25 46 (41-50) 15 (14-15) 1:92 158 189 14470 14628  158 108 

4.7 1.28 43 (39-48) 12 (12-12) 1:81 150 197 12195 12345  150 92 

4.8 1.31 40 (36-44) 10 (10-11) 1:74 138 209 10260 10398  138 79 

4.9 1.33 38 (34-42) 9 (9-9) 1:65 131 216 8572 8703  131 70 

5 1.36 35 (31-39) 7 (7-7) 1:59 121 226 7116 7237  121 59 

6.8 1.85 4 (3-6) 0.2 (0.2-0.2) 1:15 14 333 211 225  14 1 

8.5 2.31 0.4 (0.1-2) 0 (0-0) 1:15 1 346 15 16  1 0 

 
Table 5.4 Performance of a two-stage adult population screen for monogenic FH using different stage 1 LDL-C cut-offs. Reported counts 
are based on a screened population of 100,000 adults with 347 monogenic FH cases and 470 individuals with a VUS. FH = familial 
hypercholesterolaemia; MoM = multiple of the median; OAPR = odds of being affected given a positive test result; VUS = variant of uncertain 
significance. 
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Figure 5.3 illustrates the performance of the two-stage screen scaled to a cohort of 100,000 

people, using a stage 1 LDL-C cut-off of 4.8 mmol/L (1.32 MoM). The 10,398 stage 1 screen 

positive individuals include 138 (40%) of the 347 FH cases, all of whom would be identified by 

sequencing at stage 2. Individuals who are screen positive from stage 1 would also include 10,181 

individuals with no FH-causing variant or VUS, as well as 79 individuals with no FH-causing 

variant but with a VUS; the two groups together giving a stage 1 false positive rate of 10% (95% 

CI: 10%-11%). All these individuals would be correctly classified by DNA sequencing at stage 2, 

giving a stage 2 false positive rate of 0%, with a VUS rate of 0.8%. Table 5.4 documents the 

corresponding values for a range of LDL-C cut-offs. Where cascade screening is seeded by the 

two-stage adult screen with a stage 1 LDL-C cut-off of 4.8 mmol/L (1.31 MoM), based on the 

previous assumptions about family size, the 138 index cases identified for every 100,000 screened 

would lead to an additional 207 FH cases being identified through cascade testing, giving 345 cases 

in all (Figure 5.3). Overall, one FH case would be identified for every 290 individuals recruited to 

the two-stage population screen using the LDL-C cut-off of 4.8 mmol/L.  

 

 

 
 
Figure 5.3 Illustration of the two-stage adult screen and subsequent cascade screening of 
first-degree relatives of index FH cases scaled to 100,000 individuals using an LDL-C cut-
off value of 4.8 mmol/L in the first stage screen. DR = detection rate (sensitivity); FPR = false 
positive rate (1-specificity); OAPR = odds of being affected given a positive result; VUS = variant 
of uncertain significance. 
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5.4.4 Comparison of two-stage adult with child-parent screening 

 

 Child-parent  Adult two-stage 

Population screen   

Target population Children Adults 
Number screened 100,000  100,000  
Estimated FH population prevalence  1:288 1:288 

Estimated FH cases  347 347 

Test Total cholesterol LDL-C 

Test cut-off  ≥1.35 MoM 1.31 MoM (>4.8 
mmol/L) 

Index FH cases missed 44 209 
Index FH cases detected 303 138 
False positives 4,681 10,260 
Number eligible for sequencing  4,984 10,398 

Index FH cases confirmed on sequencing 303 138 

Cascade testing   

Generations screened 3 2 
1st degree relatives of index cases detected1 455 207 
2nd degree relatives of index cases detected1 303 0 

Combined   

Number of FH cases detected  1,061 345 

Screening efficiency   

Number needed to screen to identify one FH case (population 
screen) 

330 725 

Number needed to sequence to identify one FH case (population 
screen) 

16 75 

Number needed to screen to identify one FH case (combined) 94 290 
Number needed to sequence to identify one FH case (combined) 5 30 

 
Table 5.5 Comparison of child-parent and adult two-stage screening strategies for FH. 
The FH prevalence of 1:288 of the UK Biobank was applied to the child-parent screen and counts 
were adjusted accordingly.[10,18] 1Estimates are based on figures from the Office of National 
Statistics where the average UK family comprises two children.[39] 
 

 

Two-stage adult screening of 100,000 individuals based on an LDL-C cut-off of >4.8 mmol/L 

(1.31 MoM) would identify just under half as many FH cases (138 versus 303) for twice the burden 

of sequencing (10,398 versus 4,984 samples) when compared to child-parent screening of 100,000 

participants at age two using a total cholesterol cut-off of ≥1.35 MoM (Table 5.5).[10,18] Child-

parent screening identifies 1 index case per 330 individuals screened and 16 sequenced, whereas 

the corresponding values for two-stage adult screening are 725 and 75 (Table 5.5). Because child-

parent screening can seed cascade testing of three generations rather than two, it identifies about 

three times as many cases as two-stage adult screening (1,061 versus 345 cases for 100,000 

individuals screened) (Table 5.5). Child-parent screening identifies 1 index case per 330 individuals 

screened and 16 sequenced, whereas the corresponding values for two-stage adult screening are 
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725 and 75. Overall (combining screening and cascade testing of index cases), child-parent 

screening identifies 1 index case per 94 individuals screened and 5 sequenced, whereas the 

corresponding values for two-stage adult screening are 290 and 30 (Table 5.5). 

 

5.4.5 Achieving the NHS target for FH case detection 

 

In 2019 the NHS Long Term Plan set to increase FH detection from ~7% to 25% (~49,000 

additional cases) in the next five years but has not outlined how this will be achieved.[13] Here I 

compare how long it would take to reach this target if the child-parent screen or the two-stage 

adult screen were to be implemented as population screening strategies in the UK.  

 

In 2020 there were 681,560 live births in England and Wales, and immunisation uptake was 

~95%.[40,41] This equates to around 650,000 children eligible for FH screening each year using 

the child-parent screening approach. Assuming that 1,061 FH cases are detected for 100,000 

individuals screened with the child-parent screening strategy when followed by cascade testing 

(Table 5.5), 4.6 million children would have to be screened and ¼ million sequenced to identify 

49,000 additional FH cases, which would take approximately 7 years to reach the NHS Long Term 

Plan goal’s FH target identification of 25%.  

 

In 2017/2018, around one million adults attended their NHS Health Check.[42] This means that 

14 million adults would have to be screened and 1.5 million sequenced to identify 25% of all UK 

FH cases (Table 5.5), which would take approximately 14 years to reach the NHS’ Long Term 

Plan goal with cascade testing. 

 

5.5 Discussion 

 

5.5.1 Overview of the study 

 

I have modelled the performance of adult two-stage screen for FH in individuals between the age 

of 40 and 75 years (median age 58 years) using data available from the UK Biobank. Combining 

an inexpensive test with a high false positive rate at stage 1 (LDL-C concentration), with an 

expensive test with low false positive rate at stage 2 (DNA sequencing) was estimated to detect 

40% (95% CI: 36-44%) of cases for a false positive rate of 10% (95% CI: 10-11%), using an LDL-

C cut-off of 4.8 mmol/L (1.31 MoM). This cut-off would result in 10,398 samples being sequenced 
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for every 100,000 people screened. Lowering the LDL-C cut-off would increase the number of 

people with FH who are detected but increase the sequencing burden and vice versa.  

 

The two-stage adult screen modelled here is less efficient than the child-parent screening approach 

proposed and evaluated previously.[18,19] Two-stage adult screening with two-generation cascade 

testing identifies about a third as many FH cases as childhood screening with three generation 

cascade testing, for twice the sequencing burden. Detecting 25% of all FH cases (the target set in 

the NHS Long Term Plan) requires screening around 14 million adults and sequencing of 1.5 

million of them, or 4.6 million children and sequencing ¼ million of them if followed by cascade 

testing. Nevertheless, child-parent screening was not endorsed by the National Screening 

Committee when last reviewed on the grounds that it does not immediately benefit the children 

who are screened at around one year of age, because they do not become eligible to receive 

cholesterol lowering treatment until the age of ten.[20] The developers of the approach have 

countered this and other concerns,[45,46] but at present, child-parent screening is not in general 

use in the UK. 

 

5.5.2 Limitations of the approach 

 

Several assumptions were made to carry out this proof-of-principle study. Firstly, calculations were 

based on the average UK family size, and on the assumption that cascade testing identifies all 

affected close relatives, which is likely to be an overestimation.[47,48] In the calculations, I also 

did not account for the fact that the pool of unrelated index cases diminishes as more FH cases 

are identified through screening and cascade testing. However, the same assumptions were applied 

to both the child-parent and the adult two-stage screening strategies, which is unlikely to 

significantly affect the comparisons made between both strategies. 

 

Secondly, I assumed that parents of affected adults were either deceased or too old to benefit from 

treatment in the cascade testing phase of the adult two-stage screen, which might not always be 

the case and is likely to be an underestimation of the performance of this screening strategy 

compared to the child-parent screen. Nevertheless, without taking cascade testing into account, 

the child-parent screen still outperformed the adult two-stage screen for FH in the study (Table 

5.5).  
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Thirdly, this cohort was not fully representative of the UK population who attended the NHS 

Health Checks (Table 5.2). I used data available in UK Biobank because participants (aged 

between 40 and 75 at the time of recruitment) have had LDL-C measurements and exome 

sequencing data available for analysis. However, the median age of participants (58 years) is older 

than might be considered optimal for adult FH screening. Screening at a younger age (e.g., 40 to 

50 years) would have the advantage of a potentially higher stage 1 detection rate, because LDL-C 

concentration better separates FH cases from those with an elevated LDL-C for other reasons at 

younger than older ages, and because screening parents of index cases as well as siblings and 

children may be possible (three rather than two generation screening). This study was a proof-of-

principle, and a pilot of this study in the general UK population would provide invaluable 

information as to the feasibility and outcome of this two-stage screen. Cost-effectiveness studies 

would also provide additional information regarding the benefits of this screening strategy in the 

prevention of premature CHD and death. 

 

Finally, the potential success of two-stage adult screening for FH in practice also requires 

consideration of several practical issues including (1) the potential setting of a screening 

programme; (2) the capacity of the NHS Genomic Medicine Service to undertake sequencing on 

the necessary scale; and (3) the capacity to undertake cascade testing of first-degree relatives.  

 

5.5.3 Potential setting of a two-stage adult screening programme 

 

The NHS Long-Term Plan has a stated aim of increasing the proportion of detected FH cases 

from 7% to 25% but does not elaborate on how this is to be achieved.[13] Cascade testing has 

been endorsed by the National Institute of Health and Care Excellence (NICE),[16] but the 

efficiency of cascade testing is dependent on the detection of index cases. The approach I have 

modelled involves a two-stage population screen in adults in which the high false positive rate of 

a stage 1 LDL-C measurement is mitigated by the low false positive rate of a stage 2 DNA 

sequencing test. Although less efficient than child-parent screening, it avoids concerns about 

screening for FH in childhood.   

 

Until the COVID-19 pandemic, an NHS Health Check was operating in England since 2009, and 

was offered to men and women aged 40 to 74 without previously diagnosed hypertension, diabetes 

mellitus, FH, CHD, heart failure, atrial fibrillation, stroke or transient ischaemic attack, peripheral 

arterial disease, or chronic kidney disease. Those already on statins or known to have a 10-year 
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CVD risk of ≥20% were also excluded. Of those invited, about 50% attended (about 1 million 

people per annum);[43] thus, if re-introduced, the NHS Health Check could, in principle, provide 

the setting for a two-stage population screen for FH modelled here. 

 

5.5.4 DNA sequencing capacity in the NHS 

 

The National Genomic Medicine Service was established to enable the NHS to harness the power 

of genomic technology and science to improve the health of the population and deliver on the 

commitments of the NHS Long Term Plan.[49] One of its stated aims is the “early detection and 

treatment of high-risk conditions including expanding genomic testing for familial 

hypercholesterolaemia”.[49] To service a two-stage population screen of the type I have modelled, 

with around 1 million people per annum undergoing stage 1 of the screen via the NHS Health 

Check, the National Genomic Medicine Service would need develop capacity to offer targeted 

sequencing of FH-causing genes in around 400,000 people per annum (assuming a detection rate 

of 40%; Table 5.5).  

 

5.5.5 Cascade testing capacity 

 

In its guidelines, NICE has already drawn up recommendations for cascade testing in families 

where an FH-causing variant has been detected in an index case.[16] Under the current guidance, 

NICE suggests case finding should be based on identification of individuals whose total 

cholesterol concentration >7.5 mmol/L below and >9.0 mmol/L above 30 years of age, which is 

very high and therefore likely to miss many FH-variant carriers. However, it makes no 

recommendation on the systematic measurement of cholesterol concentration but implies that 

potential cases are identified through surveys of existing health records, which is not an approach 

that has been evaluated directly. Thus, although the mechanisms and financial support for cascade 

testing are already in place, the means to identify affected individuals through systematic 

population screening is not.  

 

5.5.6 Reaching the NHS Long Term Plan target 

 

The NHS Long-Term Plan’s aim of increasing the proportion of detected FH cases from 7% to 

25% requires the further identification of approximately 49,000 FH cases in the UK population. 

Using the child-parent screen followed by cascade testing and the assumptions listed in this study, 
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it would take approximately 7 years to reach this target (confirming Wald and Bestwick’s estimate 

in a previous report),[51] and 14 years to reach it if employing the adult two-stage screen combined 

with cascade testing. These two estimations are well over the 5-year target set by the NHS Long 

Term Plan, which has not specified how it will achieve it.[13] However, these two screening 

strategies are not mutually exclusive and could both be rolled out if approved by the UK National 

Screening Committee. If sequencing capacities are not able to cope with increased demand, it is 

likely that the NHS might have to reconsider their Long Term Plan goal of identifying 25% of UK 

FH cases in 5 years, or detail how this might be achieved. 

 

5.5.7 Conclusion 

 

In summary, I have used data from the UK Biobank to model the performance of two-stage adult 

population screen to identify index FH cases and to estimate the performance of cascade screening 

in affected families. I compared its performance to child-parent screening, and although I found 

it to be less efficient, two-stage adult screening could be used to meet the target of detecting 25% 

of FH cases stated in the NHS Long Term Plan in 14 years. The approach could be evaluated 

prospectively, and if feasible and cost-effective, then the foundations for a national programme 

may already be in place through the NHS Health Check, the NHS Genomic Medicine Service, and 

the NICE endorsed frameworks for cascade testing.  
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5.7 Appendix 

 
Supplementary Table 5.1 Autosomal dominant FH-causing mutation identified in the study cohort. Genetic coordinates are mapped to 
GRCh38. 
 

Gene Chromosome Position Reference allele Alternate allele Nucleotide change Protein 
Number of 
carriers 

UKB frequency 
(1/n) 

APOB 2 
21006289 G A c.10579C>T p.Arg3527Trp 2 70,220 

21006288 C T c.10580G>A p.Arg3527Gln 99 1,419 

APOE 19 44908791 GCTC G c.499_501del p.Leu167del 13 10,803 

LDLR 19 

11100236 C G c.81C>G p.Cys27Trp 1 140,439 

11100291 T G c.136T>G p.Cys46Gly 1 140,439 

11100294 G A c.139G>A p.Asp47Asn 5 28,088 

11102705 C T c.232C>T p.Arg78Cys 13 10,803 

11102714 C T c.241C>T p.Arg81Cys 2 70,220 

11102732 T G c.259T>G p.Trp87Gly 6 23,407 

11102741 G A c.268G>A p.Asp90Asn 5 28,088 

11102765 G A c.292G>A p.Gly98Ser 10 14,044 

11102774 G A c.301G>A p.Glu101Lys 12 11,703 

11102787 G A c.313+1G>A . 5 28,088 

11102787 G C c.313+1G>C . 1 140,439 

11102787 G GT c.313+2dup . 2 70,220 

11105249 C T c.343C>T p.Arg115Cys 2 70,220 

11105268 G T c.362G>T p.Cys121Phe 2 70,220 

11105324 G A c.418G>A p.Glu140Lys 1 140,439 

11105339 
GTGCTCACCTGTGGTCCCG
CCAGC 

G c.435_457del p.Leu146ProfsTer26 1 140,439 

11105407 C A c.501C>A p.Cys167Ter 2 70,220 

11105408 G A c.502G>A p.Asp168Asn 14 10,031 

11105415 AC A c.513del p.Asp172ThrfsTer34 1 140,439 

11105448 C G c.542C>G p.Pro181Arg 2 70,220 

11105549 C T c.643C>T p.Arg215Cys 4 35,110 
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11105567 G A c.661G>A p.Asp221Asn 2 70,220 

11105568 A G c.662A>G p.Asp221Gly 5 28,088 

11105585 GAC G c.680_681del p.Asp227GlyfsTer12 4 35,110 

11105585 GAC GAG c.681delinsG p.Asp227Glu 2 70,220 

11105588 G T c.682G>T p.Glu228Ter 2 70,220 

11105589 AG A c.685del p.Glu229LysfsTer36 1 140,439 

11106579 C T c.709C>T p.Arg237Cys 1 140,439 

11106588 G A c.718G>A p.Glu240Lys 20 7,022 

11106592 T C c.722T>C p.Phe241Ser 1 140,439 

11106631 A C c.761A>C p.Gln254Pro 1 140,439 

11107432 C A c.858C>A p.Ser286Arg 1 140,439 

11107433 G A c.859G>A p.Gly287Ser 4 35,110 

11107436 G A c.862G>A p.Glu288Lys 1 140,439 

11107461 G A c.887G>A p.Cys296Tyr 1 140,439 

11107481 C T c.907C>T p.Arg303Trp 2 70,220 

11107486 C G c.912C>G p.Asp304Glu 4 35,110 

11107512 G A c.938G>A p.Cys313Tyr 2 70,220 

11110660 G A c.949G>A p.Glu317Lys 35 4,013 

11110678 G A c.967G>A p.Gly323Ser 1 140,439 

11110714 G A c.1003G>A p.Gly335Ser 3 46,813 

11110738 G A c.1027G>A p.Gly343Ser 8 17,555 

11110759 C T c.1048C>T p.Arg350Ter 4 35,110 

11110760 G C c.1049G>C p.Arg350Pro 4 35,110 

11111571 G A c.1118G>A p.Gly373Asp 1 140,439 

11111619 C T c.1166C>T p.Thr389Met 8 17,555 

11113286 G A c.1195G>A p.Ala399Thr 1 140,439 

11113287 C A c.1196C>A p.Ala399Asp 1 140,439 

11113292 CTCTTC CTCT c.1205_1206del p.Phe403HisfsTer37 1 140,439 

11113307 C T c.1216C>T p.Arg406Trp 5 28,088 

11113308 G A c.1217G>A p.Arg406Gln 4 35,110 

11113313 G A c.1222G>A p.Glu408Lys 1 140,439 

11113322 A G c.1231A>G p.Lys411Glu 1 140,439 

11113329 C T c.1238C>T p.Thr413Met 14 10,031 

11113337 C T c.1246C>T p.Arg416Trp 2 70,220 
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11113419 G C c.1328G>C p.Trp443Ser 1 140,439 

11113426 C G c.1335C>G p.Asp445Glu 5 28,088 

11113554 CA C c.1379del p.His460ProfsTer47 1 140,439 

11113590 G T c.1414G>T p.Asp472Tyr 6 23,407 

11113608 G A c.1432G>A p.Gly478Arg 2 70,220 

11113612 T C c.1436T>C p.Leu479Pro 2 70,220 

11113620 G A c.1444G>A p.Asp482Asn 29 4,843 

11113650 G A c.1474G>A p.Asp492Asn 1 140,439 

11113678 C T c.1502C>T p.Ala501Val 5 28,088 

11113705 C T c.1529C>T p.Thr510Met 3 46,813 

11113743 G A c.1567G>A p.Val523Met 1 140,439 

11116095 T G c.1588T>G p.Phe530Val 10 14,044 

11116125 G A c.1618G>A p.Ala540Thr 2 70,220 

11116141 G A c.1634G>A p.Gly545Glu 1 140,439 

11116198 A G c.1691A>G p.Asn564Ser 2 70,220 

11116873 C T c.1720C>T p.Arg574Cys 2 70,220 

11116898 T C c.1745T>C p.Leu582Pro 1 140,439 

11116918 G A c.1765G>A p.Asp589Asn 1 140,439 

11116928 G A c.1775G>A p.Gly592Glu 1 140,439 

11116936 C T c.1783C>T p.Arg595Trp 6 23,407 

11116937 G A c.1784G>A p.Arg595Gln 2 70,220 

11116976 C G c.1823C>G p.Pro608Arg 1 140,439 

11120091 G A c.1846-1G>A . 1 140,439 

11120106 G T c.1860G>T p.Trp620Cys 1 140,439 

11120110 GAT G c.1867_1868del p.Ile623HisfsTer21 1 140,439 

11120143 C T c.1897C>T p.Arg633Cys 9 15,604 

11120144 G A c.1898G>A p.Arg633His 1 140,439 

11120152 G A c.1906G>A p.Gly636Ser 3 46,813 

11120212 C A c.1966C>A p.His656Asn 8 17,555 

11120370 G A c.1988G>A p.Gly663Glu 1 140,439 

11120408 G A c.2026G>A p.Gly676Ser 5 28,088 

11120436 C T c.2054C>T p.Pro685Leu 12 11,703 

11120441 A T c.2059A>T p.Ile687Phe 5 28,088 

11120442 T TC c.2061dup p.Asn688GlnfsTer29 1 140,439 
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11123200 G T c.2167G>T p.Glu723Ter 1 140,439 

11128027 C CA c.2332dup p.Arg778LysfsTer4 1 140,439 

 

 

Supplementary Table 5.2 List of variants of unknown significance (VUS) excluded from the analysis. Genetic coordinates are mapped to 
GRCh38. Count refers to the number of participants having the VUS. 
 
Gene Chromosome number Position Reference allele Alternate allele HGVSc HGVSp Count 

APOB 2 21001939 ACTG A ENST00000233242:c.13480_13482delCAG ENSP00000233242.1:p.Gln4494del 132 

21006196 C T ENST00000233242:c.10672C>T ENSP00000233242.1:p.Arg3558Cys 299 

21006239 C G ENST00000233242:c.10629C>G ENSP00000233242.1:p.Asn3543Lys 3 

21006349 C T ENST00000233242:c.10519C>T ENSP00000233242.1:p.Arg3507Trp 1 

21015387 G C ENST00000233242:c.3491G>C ENSP00000233242.1:p.Arg1164Thr 1 

PCSK9 

1 55044021 A G ENST00000302118:c.386A>G ENSP00000303208.5:p.Asp129Gly 2 

55052698 G A ENST00000302118:c.706G>A ENSP00000303208.5:p.Gly236Ser 4 

55058543 C G ENST00000302118:c.1399C>G ENSP00000303208.5:p.Pro467Ala 3 

LDLR 19 11100261 G C ENST00000558518.6:c.106G>C ENSP00000454071.1:p.Asp36His 1 

11100322 C T ENST00000558518.6:c.167C>T ENSP00000454071.1:p.Ser56Phe 1 

11100328 A T ENST00000558518.6:c.173A>T ENSP00000454071.1:p.Glu58Val 2 

11100340 C T ENST00000558518.6:c.185C>T ENSP00000454071.1:p.Thr62Met 10 

11102720 A T ENST00000558518.6:c.247A>T ENSP00000454071.1:p.Ile83Phe 1 

11105262 G C ENST00000558518.6:c.356G>C ENSP00000454071.1:p.Gly119Ala 1 

11105337 C T ENST00000558518.6:c.431C>T ENSP00000454071.1:p.Pro144Leu 1 

11105379 C T ENST00000558518.6:c.473C>T ENSP00000454071.1:p.Ser158Phe 1 
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11105414 G A ENST00000558518.6:c.508G>A ENSP00000454071.1:p.Asp170Asn 22 

11105415 AC GC ENST00000558518.6:c.509delinsG ENSP00000454071.1:p.Asp170Gly 1 

11106580 G A ENST00000558518.6:c.710G>A ENSP00000454071.1:p.Arg237His 10 

11106593 C A ENST00000558518.6:c.723C>A ENSP00000454071.1:p.Phe241Leu 3 

11106601 C G ENST00000558518.6:c.731C>G ENSP00000454071.1:p.Ser244Cys 1 

11106639 C T ENST00000558518.6:c.769C>T ENSP00000454071.1:p.Arg257Trp 2 

11107472 A G ENST00000558518.6:c.898A>G ENSP00000454071.1:p.Arg300Gly 1 

11111538 A C ENST00000558518.6:c.1085A>C ENSP00000454071.1:p.Asp362Ala 60 

11111558 G A ENST00000558518.6:c.1105G>A ENSP00000454071.1:p.Val369Met 3 

11111609 G T ENST00000558518.6:c.1156G>T ENSP00000454071.1:p.Asp386Tyr 5 

11113278 G T ENST00000558518.6:c.1187G>T ENSP00000454071.1:p.Gly396Val 1 

11113287 C T ENST00000558518.6:c.1196C>T ENSP00000454071.1:p.Ala399Val 1 

11113292 CTCTTC CTCTTG ENST00000558518.6:c.1206delinsG ENSP00000454071.1:p.Phe402Leu 1 

11113362 C T ENST00000558518.6:c.1271C>T ENSP00000454071.1:p.Pro424Leu 3 

11113374 A C ENST00000558518.6:c.1283A>C ENSP00000454071.1:p.Asn428Thr 1 

11113409 A G ENST00000558518.6:c.1318A>G ENSP00000454071.1:p.Arg440Gly 4 

11113561 TCTCTTCCTA TCTCTTACTA ENST00000558518.6:c.1391delinsA ENSP00000454071.1:p.Ser464Tyr 2 

11113625 G T ENST00000558518.6:c.1449G>T ENSP00000454071.1:p.Trp483Cys 1 

11113751 T G ENST00000558518.6:c.1575T>G ENSP00000454071.1:p.Asp525Glu 6 

11113762 G T ENST00000558518.6:c.1586G>T ENSP00000454071.1:p.Gly529Val 1 

11116101 T C ENST00000558518.6:c.1594T>C ENSP00000454071.1:p.Tyr532His 1 

11116132 T A ENST00000558518.6:c.1625T>A ENSP00000454071.1:p.Ile542Asn 1 
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11116205 C G ENST00000558518.6:c.1698C>G ENSP00000454071.1:p.Ile566Met 1 

11116885 G A ENST00000558518.6:c.1732G>A ENSP00000454071.1:p.Val578Ile 2 

11116914 C G ENST00000558518.6:c.1761C>G ENSP00000454071.1:p.Ser587Arg 4 

11116949 T C ENST00000558518.6:c.1796T>C ENSP00000454071.1:p.Leu599Ser 4 

11116970 C A ENST00000558518.6:c.1817C>A ENSP00000454071.1:p.Ala606Asp 14 

11120454 C T ENST00000558518.6:c.2072C>T ENSP00000454071.1:p.Ser691Leu 4 

11120484 G T ENST00000558518.6:c.2102G>T ENSP00000454071.1:p.Gly701Val 1 

11120507 A G ENST00000558518.6:c.2125A>G ENSP00000454071.1:p.Arg709Gly 1 

11123315 C T ENST00000558518.6:c.2282C>T ENSP00000454071.1:p.Thr761Met 11 

11128062 C A ENST00000558518.6:c.2366C>A ENSP00000454071.1:p.Ala789Asp 1 

11129553 G C ENST00000558518.6:c.2430G>C ENSP00000454071.1:p.Trp810Cys 1 

11129573 A T ENST00000558518.6:c.2450A>T ENSP00000454071.1:p.Asn817Ile 1 

11129582 G A ENST00000558518.6:c.2459G>A ENSP00000454071.1:p.Ser820Asn 1 

11129633 A G ENST00000558518.6:c.2510A>G ENSP00000454071.1:p.His837Arg 18 

11129653 G A ENST00000558518.6:c.2530G>A ENSP00000454071.1:p.Gly844Ser 1 

11131299 G C ENST00000558518.6:c.2566G>C ENSP00000454071.1:p.Glu856Gln 1 
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Supplementary Table 5.3 Study participants characteristics categorised by FH-causing gene. P-value of group differences between FH-causing 
genes are shown and obtained from the Kruskal-Wallis Rank sum test. Missing (%) refers to the proportion of missing data in each field. BMI = body 
mass index; CHD = coronary heart disease; CVD = cardiovascular disease (defined as CHD, ischaemic and haemorrhagic stroke, heart failure, and 
atrial fibrillation); HDL-C = high-density lipoprotein cholesterol; IQR = interquartile range; LDL-C = low-density lipoprotein cholesterol. 
 
 

LDLR APOB APOE P-value 
Kruskal-
Wallis 
Rank sum 
test 

Missing 
(%) 

n 374 101 13 
  

Age (median [IQR]) 58.00 [51.00, 63.00] 57.00 [51.00, 62.00] 63.00 [53.00, 66.00] 0.378 0.0 

Sex (male) (%) 156 (41.7) 45 (44.6) 6 (46.2) 0.844 0.0 

Townsend deprivation index (median [IQR]) -2.22 [-3.64, 0.16] -2.20 [-3.98, 0.13] -1.37 [-3.47, -0.12] 0.848 0.4 

Smoking status (%) 
   

0.825 0.0 

   Non-smoker 217 (58.0) 59 (58.4) 5 (38.5) 
  

   Former smoker 131 (35.0) 35 (34.7) 7 (53.8) 
  

   Light smoker (<10 cigarettes/day) 5 (1.3) 2 (2.0) 0 (0.0) 
  

   Moderate smoker (10-19 cigarettes/day) 10 (2.7) 2 (2.0) 1 (7.7) 
  

   Heavy Smoker (>20 cigarettes/day) 11 (2.9) 3 (3.0) 0 (0.0) 
  

BMI, kg/m2 (median [IQR]) 26.92 [23.84, 29.61] 27.78 [24.02, 30.06] 25.73 [24.81, 27.26] 0.245 0.2 

Family history of CHD (%) 237 (63.4) 61 (60.4) 8 (61.5) 0.857 0.0 

Statin use (%) 128 (34.2) 33 (32.7) 4 (30.8) 0.932 0.0 

Biomarkers 
     

   LDL-C (unadjusted), mmol/L (median [IQR]) 3.74 [3.05, 4.71] 4.35 [3.81, 5.32] 3.55 [3.01, 4.25] <0.001 0.0 

   LDL-C (adjusted for statin users), mmol/L (median [IQR]) 4.28 [3.56, 5.23] 5.01 [4.28, 5.76] 3.68 [3.55, 4.98] <0.001 0.0 

   HDL-C, mmol/L (median [IQR]) 1.38 [1.18, 1.64] 1.34 [1.15, 1.58] 1.73 [1.50, 1.86] 0.037 14.5 

   Total cholesterol, mmol/L (median [IQR]) 5.93 [5.06, 7.02] 6.56 [5.70, 8.03] 5.58 [5.21, 6.58] 0.001 6.1 

   Triglycerides, mmol/L (median [IQR]) 1.28 [0.92, 1.91] 1.26 [1.00, 1.93] 0.76 [0.69, 1.13] 0.019 6.1 
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   Lipoprotein(a), nmol/L (median [IQR]) 29.00 [11.52, 60.52] 26.35 [8.52, 50.35] 8.50 [4.77, 57.71] 0.245 26.8 

   Apolipoprotein A, g/L (median [IQR]) 1.46 [1.33, 1.64] 1.44 [1.26, 1.60] 1.67 [1.56, 1.75] 0.029 15.0 

   Apolipoprotein B, g/L (median [IQR]) 1.11 [0.96, 1.34] 1.31 [1.12, 1.46] 0.99 [0.81, 1.16] <0.001 7.2 

   C-reactive protein, mg/L (median [IQR]) 1.19 [0.58, 2.20] 1.25 [0.69, 2.64] 1.45 [0.76, 1.93] 0.402 6.4 

Disease prevalence & incidence 
     

   CHD prevalence (%) 30 (8.0) 10 (9.9) 0 (0.0) 0.457 0.0 

   CHD incidence (%) 26 (7.0) 6 (5.9) 0 (0.0) 0.586 0.0 

   CVD prevalence (%) 34 (9.1) 11 (10.9) 0 (0.0) 0.435 0.0 

   CVD incidence (%) 38 (10.2) 8 (7.9) 0 (0.0) 0.395 0.0 

   Type 2 diabetes prevalence (%) 10 (2.7) 1 (1.0) 0 (0.0) 0.514 0.0 

   Type 2 diabetes incidence (%) 17 (4.5) 2 (2.0) 0 (0.0) 0.379 0.0 
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Supplementary Table 5.4 The counts obtained from the two-stage screen in the study cohort of 140,439 individuals for various LDL-C cut-
off values. LDL-C = low-density lipoprotein cholesterol; OAPR = odds of being affected given a positive test result; VUS = variant of unknown 
significance. 
 

Cut-off Detection rate 
(sensitivity) 

False positive rate (1-
specificity) 

Positive predictive 
value (PPV) 

Negative predictive 
value (NPV) 

OAPR Cases 
missed 

True 
positive 
cases 

False 
positive 
cases 

Number sent 
for sequencing 

Number of VUS 
above threshold 

3 90.6 (87.7-92.9) 80.5 (80.3-80.7) 0.4 (0.4-0.4) 99.8 (99.8-99.9) 1:255 46 442 112713 113155 586 

3.5 79.7 (75.9-83) 58.5 (58.3-58.8) 0.5 (0.4-0.5) 99.8 (99.8-99.9) 1:211 99 389 81940 82329 465 

4 64.8 (60.4-68.9) 34.8 (34.6-35) 0.6 (0.6-0.7) 99.8 (99.8-99.8) 1:154 172 316 48702 49018 306 

4.1 61.5 (57.1-65.7) 30.7 (30.4-30.9) 0.7 (0.6-0.8) 99.8 (99.8-99.8) 1:143 188 300 42913 43213 275 

4.2 59.2 (54.8-63.5) 26.7 (26.5-27) 0.8 (0.7-0.9) 99.8 (99.8-99.8) 1:129 199 289 37396 37685 248 

4.3 54.1 (49.7-58.5) 23.2 (22.9-23.4) 0.8 (0.7-0.9) 99.8 (99.8-99.8) 1:123 224 264 32406 32670 223 

4.4 50.8 (46.4-55.2) 19.9 (19.7-20.1) 0.9 (0.8-1) 99.8 (99.8-99.8) 1:112 240 248 27856 28104 195 

4.5 47.7 (43.3-52.2) 17.1 (16.9-17.3) 1 (0.9-1.1) 99.8 (99.8-99.8) 1:102 255 233 23871 24104 174 

4.6 45.5 (41.1-49.9) 14.5 (14.3-14.7) 1.1 (0.9-1.2) 99.8 (99.7-99.8) 1:92 266 222 20322 20544 151 

4.7 43.2 (38.9-47.7) 12.2 (12.1-12.4) 1.2 (1.1-1.4) 99.8 (99.7-99.8) 1:81 277 211 17127 17338 129 

4.8 39.8 (35.5-44.2) 10.3 (10.1-10.5) 1.3 (1.2-1.5) 99.8 (99.7-99.8) 1:74 294 194 14409 14603 111 

4.9 37.7 (33.5-42.1) 8.6 (8.5-8.7) 1.5 (1.3-1.7) 99.8 (99.7-99.8) 1:65 304 184 12038 12222 99 

5 34.8 (30.7-39.2) 7.1 (7-7.3) 1.7 (1.4-1.9) 99.8 (99.7-99.8) 1:59 318 170 9994 10164 83 

6.8 3.9 (2.5-6) 0.2 (0.2-0.2) 6 (3.9-9.2) 99.7 (99.6-99.7) 1:16 469 19 297 316 2 

8.5 0.4 (0.1-1.5) 0 (0-0) 8.7 (2.4-26.8) 99.7 (99.6-99.7) 1:10 486 2 21 23 0 
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6 A machine learning model to aid detection of familial hypercholesterolaemia 

(FH) 

 

A preprint version of the following chapter can be found on medRxiv and has been submitted for 

publication.[1] 

 

6.1 Abstract 

 

Background: People with monogenic familial hypercholesterolaemia (FH) are at an increased risk 

of premature coronary heart disease and death. With a prevalence of 1:250, FH is relatively 

common; but there is no population screening strategy in place for FH so most carriers are only 

identified late in life, delaying timely and cost-effective interventions. The previous chapter 

modelled a two-stage adult screen with low-density lipoprotein cholesterol (LDL-C) concentration 

in stage 1, followed by confirmatory FH variant sequencing in stage 2. The aim of this chapter was 

to derive an algorithm to improve the identification of people with suspected monogenic FH in 

stage 1 for subsequent confirmatory genomic testing and cascade screening. 

 

Methods: A penalised (LASSO) logistic regression model was used to identify predictors that 

most accurately identified people with a higher probability of monogenic FH in 139,779 unrelated 

participants of the UK Biobank. Candidate predictors included information on medical and family 

history, anthropometric measures, blood biomarkers, and a LDL-C polygenic score (PGS). Model 

derivation and evaluation was performed using a random split of 80% training and 20% testing 

data. 

 

Results: 488 FH variant carriers were identified using whole exome-sequencing of the LDLR, 

APOB, APOE and PCSK9 genes. A 14-variable algorithm for monogenic FH was derived, where 

the top five variables included triglyceride, LDL-C, and apolipoprotein A1 concentrations, self-

reported statin use, and an LDL-C PGS. Model evaluation in the test data resulted in an area under 

the curve (AUC) of 0.77 (95% CI: 0.71; 0.83), and appropriate calibration (calibration-in-the-large: 

-0.07 (95% CI: -0.28; 0.13); calibration slope: 1.02 (95% CI: 0.85; 1.19)). Excluding the PGS as a 

candidate feature resulted in a 9-variable model with a comparable AUC: 0.76 (95% CI: 0.71; 0.82). 

Both multivariable models (with or without the PGS) outperformed screening-prioritisation based 

on LDL-C adjusted for statin use.   
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Conclusion: The detection of individuals with monogenic FH can be improved with the inclusion 

of additional non-genetic variables as well as a PGS for LDL-C. This reduces the burden of genetic 

sequencing required in an adult two-stage population screening strategy for FH. 

 

6.2 Introduction 

 

Familial hypercholesterolaemia (FH) is an autosomal dominant disorder caused by variants in the 

LDLR, APOB, PCSK9, or APOE genes. It is characterised by elevated low-density lipoprotein 

(LDL-C) concentration and premature coronary heart disease (CHD).[2] FH-causing variants are 

found in about 1 in 250 individuals (95% CI: 1:345; 1:192),[3] however the condition remains 

highly underdiagnosed worldwide with only an estimated 1% to 10% of cases diagnosed.[4,5] 

Affected individuals are at increased risk of premature CHD, where early initiation of lipid-

lowering treatment is paramount for risk management.[4] There is currently no systematic way of 

identifying new index FH cases in the general population, although cascade testing in families of 

affected individuals has been shown to be highly cost-effective in many countries.[6–9] Currently, 

patient diagnosis often happens after the development of CHD symptoms or by opportunistic 

measurement of lipid profile and at the discretion of clinicians. Diagnosis is made using tools such 

as the Dutch Lipid Clinical Network (DLCN) and the Simon Broome criteria, which have not 

been designed to be used as population screening tools.[2]  

 

In 2016, Wald et al. suggested screening children aged 15 months of age by measurement of total 

or LDL-C to systematically identify index monogenic FH cases in the general population as a 

prelude to testing parents and other family members.[10] Futema et al. showed that measurement 

of LDL-C alone at age 9 may be insufficiently accurate in reliably distinguishing FH-variant carriers 

from those with an elevated cholesterol as a consequence diet and lifestyle factors, or carriage of 

a high burden of common cholesterol-raising alleles, and suggested adding a confirmatory 

targeted-sequencing step to reduce the number of false positive cases detected.[11]  

 

The increased availability of routine health checks in adults either through work-place schemes or 

local healthcare providers offers an opportunity to systematically identify adult carriers of FH-

causing variants.[12] Positioning adult FH screening within routine health checks, which typically 

record a substantial number of other clinical measurements, offers the opportunity to consider 

additional predictors for FH. This may be important because, while the effect of FH on CHD risk 

is mediated through elevated circulating LDL-C concentration, it is well-known that LDL-C 
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concentration associates with other variables such as blood and liver biomarkers, diet, and also 

with common, genetic variants.[13] Combining multiple environmental factors and a polygenic 

score for LDL-C raising genetic variants may improve the detection of people with monogenic 

FH for prioritisation for confirmatory genetic testing.[14,15] This is because individuals with 

monogenic FH are likely to have a measured LDL-C concentration that is higher than can be 

accounted for by these other variables. 

 

In the current chapter I utilise the UK Biobank data to evaluate the detection rate and testing 

burden of four prioritisation strategies to identify people with suspected FH-causing variants for 

confirmatory genetic testing: 1) no prioritisation (i.e., referring all participants for sequencing), 2) 

a plasma LDL-C-based prioritisation model adjusting for statin treatment, 3) a multivariable 

machine learning prioritisation model with non-genetic variables, 4) a multivariable machine 

learning prioritisation model which includes a polygenic score (PGS) for LDL-C. 

 

6.3 Methods 

 

6.3.1 Genomics data availability and FH case ascertainment 

 

I identified 472,147 UK Biobank participants of White British ancestry (data-field 21000) as part 

of the approved project ID 40721. After performing genomic quality control steps (Chapter 3), 

341,515 individuals remained, including 140,439 with whole-exome sequencing (WES) data 

necessary to identify those who carry an FH-causing variant. Causal FH variants were searched for 

in the WES data encompassing the LDLR, APOB, PCSK9 and APOE genes (Chapter 5 Methods). 

A total of 488 pathogenic and likely pathogenic FH variants were identified (Chapter 5 

Supplementary Table 5.1). Additionally, 660 participants were found to carry FH variants of 

uncertain significance (VUS) (Chapter 5 Supplementary Table 5.2). These were excluded from 

the analysis because more evidence is required to interpret the effect of those VUS.  

 

6.3.2 LDL-C PGS generation  

 

I next generated a PGS for LDL-C concentration using an independent data subset of 173,672 

White British participants without lipid-lowering medication or WES data (Figure 6.1). An initial 

list of 10,137 genetic variants with a p-value threshold of <5x10-4 was obtained from the Global 

Lipids Genetics Consortium (GLGC) genome-wide association study (GWAS) summary statistics 
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for LDL-C.[16] To reduce the number of potentially redundant variants and optimise LDL-C 

prediction, I next applied a least absolute shrinkage and selection operator (LASSO) regression 

algorithm using the biglasso package in R.[17] The degree of penalisation was determined through 

15-fold cross-validation, maximising the explained variance (R-squared), which resulted in a 1,466 

genetic variant LDL-C PGS.  

 
 

 
Figure 6.1 Workflow of LDL-C PGS generation, FH case ascertainment and testing versus 
training data split of the UK Biobank’s White British participants. The data was split 
according to the availability of whole-exome sequencing data. FH = familial 
hypercholesterolaemia; LASSO = least absolute shrinkage and selection operator; PGS = 
polygenic score; QC = quality control; VUS = variants of uncertain significance. 
 

 

6.3.3 Deriving a machine learning algorithm to prioritise participants with FH 

 

I extracted data on a total of 24 candidate FH predictors, specifically: LDL-C, high-density 

lipoprotein cholesterol (HDL-C), total cholesterol, triglycerides, lipoprotein A (Lp(a)), 

apolipoprotein A1 (Apo-A1), apolipoprotein B (Apo-B), C-reactive protein (CRP), aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), sex, body 

mass index (BMI), age, self-reported statin use, alcohol use, systolic blood pressure (SBP), diastolic 

blood pressure (DBP), Townsend deprivation index, smoking status, family history of CHD, type 

2 diabetes diagnosis, hypertension, and LDL-C PGS. This was expanded by including 10 product 

terms between: age and LDL-C, age and LDL-C PGS, LDL-C PGS and LDL-C, age2, LDL-C2, 

statin use and LDL-C, family history of CHD and sex, family history of CHD and statin use, family 
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history of CHD and alcohol use, family history of CHD and hypertension. The limited missing 

data (Supplementary Table 6.1) were singly imputed using the R package MICE.[18] 

 

Model derivation was performed using the WES data, applying a 80% training data split of 111,824 

subjects, retaining 20% testing data (containing 93 carriers out of 27,955 subjects) to unbiasedly 

evaluate model performance (Figure 6.1). To prevent potential model instability, highly correlated 

variables (i.e. multicollinear) were removed. These included Apo-B and total cholesterol 

(Supplementary Figure 6.1). Variables were standardised to mean zero and standard deviation 

(SD) one. Finally, I applied a binomial regression model with LASSO penalisation to derive a 

discrimination-optimised FH prediction model. Specifically, optimal penalisation was determined 

through 15-fold cross-validation maximising the C-statistic (i.e., the area under the receiver 

operating characteristic (AUC-ROC) curve).[17] A first multivariable model was derived with non-

genetic variables only (i.e. without LDL-C PGS), and a second model was generated with the 

inclusion of LDL-C PGS. 

 

Model performance was evaluated using the 20% testing data based on its discriminative ability 

(C-statistic), appropriate calibration of predicted and observed probability of having an FH variant 

(using calibration plots, calibration-in-the-large, and calibration slope), and classification metrics 

(sensitivity, specificity (or its compliment the false positive rate), positive predictive value, and the 

negative predicted value). 

 

6.3.4 Evaluating the burden of genomic sequencing for FH 

 
While genetic sequencing is the gold standard for FH diagnosis, it may often be prohibitively 

expensive to offer it to an entire population as a screening strategy. I therefore explored whether 

prioritising people with suspected FH can reduce the screening burden with an acceptable number 

of false-negative results. I evaluated the following prioritisation strategies: 1) no prioritisation (i.e. 

referring all participants for sequencing), 2) prioritisation based on LDL-C concentration 

(adjusting for statin use), 3) a multivariable model built from clinical biomarkers and environmental 

predictors only, 4) a multivariable model built from genetic, clinical biomarkers and environmental 

predictors. 

 

These prioritisation strategies were evaluated on the number of subjects that would need to be 

sequenced, the proportion of FH carriers who would be missed, and the ratio of FH carriers 

correctly prioritised by the number of non-carriers unnecessarily offered sequencing. A decision 
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curve analysis was performed comparing a model’s net-benefit across various probability 

thresholds for confirmatory FH screening. Here, “net benefit” is calculated as the weighted 

difference between true and false positives at a specific threshold.[19] Additionally, prioritisation 

based on LDL-C concentrations (adjusted for statin use) was compared to prioritisation using the 

multivariable model with the PGS with the help of a net reclassification index (NRI) analysis. The 

choice of 0.006 as a probability threshold was used as an example. This choice of threshold was 

based on the results of the decision curve analysis (i.e. located within the plausible range of 

probability thresholds). 

 

6.3.5 Software  

 

The data analysis and figures were done in R version 4.0.2.[20] The R package tableone version 

0.12.0. was used to make Table 6.1.[21] The receiver operating characteristic (ROC) curves were 

plotted with the R package pROC version 1.16.2.[22] The NRI analysis was done using the R 

package nricens version 1.6,[23] the decision curve analysis was performed using the R package 

dcurves version 0.3.0.[24] 

 

6.4 Results 

 

6.4.1 Participant characteristics of our study cohort 

 

Using the UK Biobank WES data, I identified 488 pathogenic or likely pathogenic FH variant 

carriers (list of variants shown in Chapter 5 Supplementary Table 5.1) and 139,291 non-carriers. 

FH variant carriers had a significantly higher frequency of a family history of CHD (62.7% versus 

48.1% in controls), higher prevalence (8.2% versus 2.8% in controls) and incidence (6.6% versus 

3.9% in controls) of CHD (Table 6.1).    

 
 

FH-variant negative FH-variant positive p-value  Missing 
(%) 

n 139291 488 
  

Sex (male) (%) 63382 (45.5) 207 (42.4) 0.187 0.0 

Age (median [IQR]) 58.0 [51.0, 63.0] 58.0 [51.0, 63.0] 0.803 0.0 

Townsend deprivation index (median [IQR]) -2.4 [-3.8, 0.0] -2.2 [-3.7, 0.2] 0.346 0.1 

BMI, kg/m2 (median [IQR]) 26.7 [24.1, 29.8] 27.1 [23.9, 29.8] 0.689 0.3 

Smoking status (%) 
  

0.685 3.7 

   Non-smoker 76862 (57.3) 262 (56.2) 
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   Former smoker 49302 (36.7) 171 (36.7) 
  

   Light smoker (<10 cigarettes/day) 1952 (1.5) 6 (1.3) 
  

   Moderate smoker (10-19 cigarettes/day) 3296 (2.5) 13 (2.8) 
  

   Heavy Smoker (>20 cigarettes/day) 2796 (2.1) 14 (3.0) 
  

Alcohol use (%) 
  

0.492 0.0 

   Prefer not to answer 88 (0.1) 1 (0.2) 
  

   1/day 29719 (21.3) 93 (19.1) 
  

   3-4 times/week 34015 (24.4) 135 (27.7) 
  

   1-2 times/week 36823 (26.4) 130 (26.6) 
  

   1-3 times/month 15498 (11.1) 54 (11.1) 
  

   Special occasions 14383 (10.3) 45 (9.2) 
  

   Never 8765 (6.3) 30 (6.1) 
  

Family history of CHD (%) 67013 (48.1) 306 (62.7) <0.001 0.0 

Systolic blood pressure, mmHg (median [IQR]) 136.5 [125.0, 149.5] 135.0 [124.5, 148.5] 0.119 0.2 

Diastolic blood pressure, mmHg (median [IQR]) 82.0 [75.0, 89.0] 81.0 [74.0, 87.0] 0.024 0.2 

Statin use (%) 18139 (13.0) 165 (33.8) <0.001 0.0 

Hypertension (median [IQR]) 7946 (5.7) 35 (7.2) 0.195 0.0 

LDL-C PGS (median [IQR]) 3.7 [3.5, 3.9] 3.7 [3.5, 3.9] 0.652 0.0 

Biomarkers 
    

   LDL-C (unadjusted for statin use), mmol/L (median 

[IQR]) 

3.5 [3.0, 4.1] 3.9 [3.2, 4.9] <0.001 5.0 

   HDL-C, mmol/L (median [IQR]) 1.4 [1.2, 1.7] 1.4 [1.2, 1.6] 0.086 12.5 

   Total cholesterol, mmol/L (median [IQR]) 5.7 [4.9, 6.4] 6.1 [5.2, 7.3] <0.001 4.8 

   Lipoprotein(a), nmol/L (median [IQR]) 20.0 [9.3, 59.8] 27.6 [10.3, 59.2] 0.083 24.3 

   Apolipoprotein A1, g/L (median [IQR]) 1.5 [1.4, 1.7] 1.5 [1.3, 1.6] <0.001 13.0 

   Apolipoprotein B, g/L (median [IQR]) 1.0 [0.9, 1.2] 1.2 [1.0, 1.4] <0.001 5.3 

   Triglycerides, mmol/L (median [IQR]) 1.5 [1.1, 2.2] 1.3 [0.9, 1.9] <0.001 4.9 

   C-reactive protein, mg/L (median [IQR]) 1.3 [0.7, 2.7] 1.2 [0.6, 2.3] 0.065 5.1 

   Aspartate aminotransferase, um (median [IQR]) 24.4 [21.0, 28.8] 25.1 [21.0, 29.6] 0.111 5.2 

   Alanine aminotransferase, um (median [IQR]) 20.1 [15.4, 27.3] 20.2 [15.6, 27.2] 0.848 4.9 

   Alkaline phosphatase, um (median [IQR]) 80.1 [67.1, 95.4] 80.6 [66.8, 96.1] 0.506 4.8 

Disease prevalence & incidence 
    

   CHD prevalence (%) 3890 (2.8) 40 (8.2) <0.001 0.0 

   CHD incidence (%) 5370 (3.9) 32 (6.6) 0.003 0.0 

   CVD prevalence (%) 5686 (4.1) 45 (9.2) <0.001 0.0 

   CVD incidence (%) 9038 (6.5) 46 (9.4) 0.011 0.0 

   Type 2 diabetes prevalence (%) 3593 (2.6) 11 (2.3) 0.757 0.0 

   Type 2 diabetes incidence (%) 4948 (3.6) 19 (3.9) 0.776 0.0 
 

Table 6.1 UK Biobank participant characteristics stratified by carrying a FH-causing 
variant. The p-values shown in the table are from the Kruskal-Wallis Rank Sum test for 
continuous variables, and from the Man-Whitney U test for binary variables. BMI = body mass 
index; CHD = coronary heart disease; CVD = cardiovascular disease; FH = familial 
hypercholesterolaemia; HDL-C = high-density lipoprotein cholesterol; IQR = interquartile range; 
LDL-C = low-density lipoprotein cholesterol; PGS = polygenic score. 
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6.4.2 LDL-C PGS 

 

The p-value cut-off of 5x10-4 for the variants of GLGC’s LDL-C GWAS summary statistics 

included 10,137 variants. After running the LASSO regression on these variants using the LASSO 

training dataset described in the methods section, 1,466 genetic variants were retained by the 

model. The LDL-C PGS r-squared was 0.14 (95% CI: 0.13-0.15) in the independent test data. 

 

6.4.3 Multivariable machine learning model to prioritise FH variant carriers 

 

Nine non-genetic variables were retained by the LASSO regression model which did not include 

the LDL-C PGS (Supplementary Table 6.2). These predictors were age, statin use, SBP, DBP, 

Apo-A1, and triglyceride concentrations, family history of CHD, and two interaction terms: LDL-

C2, and statin use and LDL-C. The test data AUC for this model was 0.76 (95% CI: 0.71; 0.82). 

 

14 out of the 32 variables were retained by the LASSO regression model which included a LDL-

C PGS for the prediction of FH (Figure 6.2.a, Supplementary Figure 6.2, and Supplementary 

Table 6.3): triglyceride, Apo-A1, ALT and CRP concentrations, statin use, LDL-C PGS, family 

history of CHD, DBP, BMI, and prevalent T2D. Additionally, the following product terms were 

selected: LDL-C2, statin use and LDL-C, age and LDL-C PGS. The test data AUC for this model 

was comparable but superior to the previous model: 0.77 (95% CI: 0.71; 0.83), with a training data 

AUC of 0.78 (95% CI: 0.75; 0.81). Calibration statistics (calibration-in-the-large: -0.073 (95% CI: 

-0.28; 0.13) and calibration slope: 1.02 (95% CI: 0.85; 1.19)) indicated the predicted probability 

agreed well with the observed probability (Figure 6.3.a). The median predicted probability of 

having monogenic FH by this multivariable model was around three folds higher in FH carriers 

(0.64%, interquartile range (IQR): 0.31; 1.62) compared to non-carriers (0.23%, IQR: 0.14; 0.38), 

with partial overlap between FH carriers and non-carriers (Figure 6.2.b). 
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Figure 6.2 Feature importance of the variables retained by LASSO regression predicting 
monogenic FH, and the density predicted probability distributions from this model for 
unaffected and affected FH individuals in White British participants of the UK Biobank. 
a) The 14 predictors retained by LASSO regression ordered by absolute log odds ratio (OR) per 
standard deviation (SD). The “x” sign is used to indicate an interaction term. Abs = absolute; ALT 
= alanine aminotransferase; Apo-A1 = apolipoprotein A1; BMI = body mass index; CHD = 
coronary heart disease; CRP = C-reactive protein; DBP = diastolic blood pressure; LDL-C = low-
density lipoprotein cholesterol; PGS = polygenic score; T2D = type 2 diabetes. b) The density 
predicted probability distributions for affected (in orange) and unaffected (in blue) familial 
hypercholesterolaemia (FH) participants in our test cohort as predicted by the multivariable model. 
14 unaffected individuals had a monogenic FH predicted probability above 0.12 and are not shown 
on the plot for legibility purposes. The vertical dotted lines represent the various FH predicted 
probability thresholds evaluated in Table 6.2.  
 

 

Both multivariable machine learning models outperformed the model which only considered 

LDL-C (AUC: 0.62, 95% CI: 0.56; 0.68), as well as the model which corrected for statin use (AUC: 

0.71, 95% CI: 0.65; 0.77) (Figure 6.3.b). 
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Figure 6.3 Discrimination and calibration of a multivariable algorithm including LDL-C 
PGS predicting FH carriership using independent testing data. a) The calibration plot for 
the multivariable model where the mean predicted and mean observed probability for each decile 
of the test data are depicted by the datapoints with their 95% confidence intervals (CI). Perfect 
calibration is indicated by the vertical black line. The calibration-in-the-large (CIL) and the 
calibration slope (CS) values are indicated on the plot with their 95% CI in brackets. The loess line 
was fitted with FH-causing variant status as the outcome and mean predicted probability as the 
predictor. b) The receiver operating characteristic (ROC) curves for the multivariable model with 
LDL-C PGS (in red), LDL-C concentration and statin model (in green), and LDL-C concentration 
only model (in blue). The area under the curve (AUC) for each of these models are equal to 0.77 
(95% CI: 0.71; 0.83), 0.71 (95% CI: 0.65; 0.77) and 0.62 (95% CI: 0.56; 0.68) respectively. LDL-C 
= low-density lipoprotein cholesterol; PGS = polygenic score. 
 

 

6.4.1 Evaluating the FH screening strategies through decision curve analysis 

 

We next determined at which probability threshold the net benefit of the various models was larger 

than the “sequence all” strategy (Figure 6.4). The net benefit of the “sequence all” strategy was 

lower than that of the other models tested at a threshold of 0.0013 (0.13%). This implies that 

model-based prioritisation for confirmatory FH sequencing is more beneficial if one decided to 

screen 1/0.0013 = 769 or more people to detected one FH case. Irrespective of the probability 

threshold, the multivariable machine learning models had a larger net benefit than the LDL-C 

adjusted for statin use model. At a threshold of 0.0050 (0.5%), the multivariable model with the 

LDL-C PGS had the largest net benefit out of all the models tested (Figure 6.4).  
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Figure 6.4 Decision curve analysis of the FH prediction models. The highest curve indicates 
the highest net benefit which considers the benefits and harms of a model. “Sequence all” refers 
to screening and sequencing the entire population, while “sequence none” refers to no FH 
screening. The “LDL-C + statin” model is a model based on LDL-C concentration adjusted for 
statin use. The LASSO models are the multivariable machine learning models that either included 
or excluded the LDL-C PGS. 

 

 

6.4.2 Model FH classification  

 

Next, I evaluated the performance of FH classification of the multivariable model with the largest 

net benefit (i.e. the model including the LDL-C PGS) (Figure 6.4) using six probability thresholds 

of having an FH variant (from 0.001 to 0.10) in the test dataset. The sensitivity increased from 

1.1% (95% CI: 0.2; 5.8) for a predicted probability of 0.10, to 94.6% (95% CI: 88.0; 97.7) for a 

predicted probability of 0.001; with the false positive rate similarly increasing from 0.1% (95% CI: 

0.0; 0.1) to 87.0% (95% CI: 86.6; 87.4) (Table 6.2). I further compared the performance of these 

thresholds to a simpler model of LDL-C concentration adjusted for statin, which underperformed 

(Table 6.2).   
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Predicted 
probability 
cut-off  

% sensitivity 
(95%CI) 

% false positive 
rate (95%CI) 

% positive 
predictive value 

(95%CI) 

% negative 
predictive 

value (95%CI) 

FH-causing 
variants 
below 

threshold 

FH-causing 
variants 
above 

threshold 

Controls 
above 

threshold 

Multivariable model 

0.1 1.1 (0.2;5.8) 0.1 (0.0;0.1) 5.6 (1.0;25.8) 99.7 
(99.6;99.7) 

92 1 17 

0.05 7.5 (3.7;14.7) 0.2 (0.1;0.2) 13.0 (6.4;24.4) 99.7 
(99.6;99.8) 

86 7 47 

0.02 20.4 (13.5;29.7) 1.1 (0.9;1.2) 6.0 (3.9;9.2) 99.7 
(99.7;99.8) 

74 19 296 

0.01 41.9 (32.4;52.1) 4.5 (4.2;4.7) 3.0 (2.2;4.1) 99.8 
(99.7;99.8) 

54 39 1244 

0.006 54.8 (44.7;64.6) 11.9 (11.5;12.3) 1.5 (1.2;2.0) 99.8 
(99.8;99.9) 

42 51 3311 

0.001 94.6 (88.0;97.7) 87.0 (86.6;87.4) 0.4 (0.3;0.4) 99.9 
(99.7;99.9) 

5 88 24240 

Model: LDL-C concentration + statin use 

0.1 0.0 (0.0;4.0) 0.0 (0.0;0.1) 0.0 (0.0;35.4) 99.7 
(99.6;99.7) 

93 0 7 

0.05 1.1 (0.2;5.8) 0.1 (0.1;0.2) 3.2 (0.6;16.2) 99.7 
(99.6;99.7) 

92 1 30 

0.02 12.9 (7.5;21.2) 1.1 (1.0;1.2) 3.8 (2.2;6.5) 99.7 
(99.6;99.8) 

81 12 304 

0.01 38.7 (29.4;48.9) 5.6 (5.4;5.9) 2.2 (1.6;3.1) 99.8 
(99.7;99.8) 

57 36 1574 

0.006 52.7 (42.6;62.5) 14.6 (14.2;15.0) 1.2 (0.9;1.6) 99.8 
(99.8;99.9) 

44 49 4067 

0.001 90.3 (82.6;94.8) 84.0 (83.5;84.4) 0.4 (0.3;0.4) 99.8 
(99.6;99.9) 

9 84 23393 

 
Table 6.2 The classification accuracy of an algorithm for predicting monogenic FH using 
the multivariable model and LDL-C concentration accounting for statin use. There are 93 
FH-causing variant positive participants in the test data comprising of a total of 27,955 
participants. CI = confidence interval; FH = familial hypercholesterolaemia; LDL-C = low-density 
lipoprotein cholesterol. 
 

 

The net reclassification index (NRI) comparing the LDL-C and statin use model to the 

multivariable model, indicated that the improved performance of the latter was due to it assigning 

a higher predicted probability to FH variant carriers. At a predicted probability threshold of 0.006, 

the probability for FH carriers being reclassified as having an FH variant was equal to 0.097 (95% 

CI: 0.038; 0.159), as opposed to the probability of 0.075 (95% CI: 0.026; 0.130) of being down-

classified as not having an FH variant (Table 6.3). 
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Multivariable model 
 

LDL-C + statin use 
model 

< 0.006 predicted probability 
threshold 

>= 0.006 predicted probability 
threshold 

Total 

< 0.006 predicted 
probability threshold 

22,846 993 23,839 

>= 0.006 predicted 
probability threshold 

1,747 2,369 4,116 

Total 24,593 3,362 27,955 

NRI estimates 

NRI: 0.049 (-0.037; 0.131) 

Event NRI:  0.022 (-0.063; 0.104) 

Non-event NRI: 0.027 (0.023; 0.031)  

Pr(Up|Case) 0.097 (0.038; 0.159) 

Pr(Down|Case) 0.075 (0.026; 0.130) 

Pr(Down|Ctrl) 0.062 (0.060; 0.065)  

Pr(Up|Ctrl) 0.035 (0.033; 0.037)  

 
Table 6.3 NRI table and estimates for a predicted probability threshold of 0.006 for FH 
comparing the multivariable model with LDL-C PGS to a simpler model of LDL-C 
concentration and statin use. The predicted probability threshold of 0.006 was chosen to 
illustrate the NRI analysis between the multivariable model and the LDL-C with statin use model. 
The test dataset of 27,955 participants was used, which included 93 FH variant carriers. NRI 
estimates were obtained via percentile bootstrap method. Case = positive for an FH-causing 
variant; Ctrl = control (negative for an FH-causing variant); Down = reclassified to the lower 
category; FH = familial hypercholesterolaemia; LDL-C = low-density lipoprotein cholesterol; NRI 
= net reclassification index; Pr = probability; Up = reclassified to the higher category. 
 

 

6.4.3 Prioritising individuals for FH genomic testing in a two-stage population 

screening strategy  

 

Finally, I evaluated the performance of a two-stage population screen for identifying new index 

FH cases, where the second stage consisted of targeted sequencing of FH variants (Figure 6.5). 

The multivariable (with LDL-C PGS) and LDL-C with statin use models were compared using a 

common threshold of 0.006, which falls within the plausible range found using the decision curve 

analysis (Figure 6.4). On average, seven additional FH carriers would be detected for 100,000 

individuals screened when using the multivariable model compared to the LDL-C and statin use 

model. Per 100,000 individuals screened, the multivariable model with LDL-C PGS would refer 

12,033 individuals (12%) for genetic sequencing, compared to 14,730 (15%) with the LDL-C and 

statin use model, resulting in a 18% reduction in genetic testing at this specific threshold. 
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Furthermore, if I assume that FH has a population prevalence of 1 in 286 (equal to our cohort’s 

prevalence) and that one FH case has on average 1.5 first-degree relatives ((2 children + 1 sibling) 

/ 2) who are also affected by FH (discovered through cascade testing),[25] then overall one FH 

case would be identified for every ~219 people screened when using the multivariable model with 

LDL-C PGS, compared to one FH case for every ~228 individuals screened with the LDL-C and 

statin use model.  
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Figure 6.5 Adult two-stage population screening strategy for monogenic FH. Stage 1 screen 
identifies individuals with a predicted probability by the LASSO model (with LDL-C PGS) above 
a pre-specified threshold value, followed by a second stage of exome-sequencing. FH cases 
detected following this two-stage screen are brought forward for cascade testing of first-degree 
relatives. The sensitivity and false positive rate of the first stage depends on the threshold value 
chosen for the model. I assume perfect discrimination in the second stage of exome-sequencing 
(sensitivity of 100% and false positive rate of 0%). Cascade testing is expected to yield 1.5 
additional FH cases detected for every FH case identified through the two-stage population 
screening strategy, as described in the results section. FH = familial hypercholesterolaemia; 
LASSO = least absolute shrinkage and selection operator; LDL-C = low-density lipoprotein 
cholesterol; PGS = polygenic score. 
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6.5 Discussion 

 

In the current chapter I derived a multivariable machine learning model to identify people with 

suspected FH for confirmatory DNA sequencing in the context of population screening. Using 

LASSO regression, I derived a 14-feature model consisting of LDL-C, Apo-A1, triglyceride, ALT, 

and CRP concentrations, self-reported statin use, family history of CHD, DBP, BMI, type 2 

diabetes diagnosis, three product terms, and an LDL-C PGS. The multivariable algorithm was able 

to discriminate between FH and non-FH carriers with an AUC of 0.77 (95% CI: 0.71; 0.83), with 

good calibration, outperforming a simpler model consisting of LDL-C and an indicator for statin 

prescription, and a multivariable model without LDL-C PGS as a predictor. 

 

Above a classification threshold of 0.0013 (0.13%), the multivariable algorithm that contained the 

LDL-C PGS showed the highest net benefit out of all the models tested (Figure 6.4), and was 

able to decrease the number of subjects referred to genetic sequencing (e.g. from 100,000 

individuals without any prioritisation, to 14,730 with prioritisation using the LDL-C and statin use 

model, and to 12,033 with prioritisation using the multivariable model for a predicted probability 

threshold of carrying a variant for monogenic FH of 0.006; equivalent to approximately a 18% 

decrease in individuals needed to be sequenced between the last two models (Figure 6.5)). These 

differences become more significant if extrapolating the values to a population-wide scale 

comprising of millions of participants screened. Our results provide support for opportunistic 

screening and seeding of cascade testing for FH, which could be integrated within existing health 

checks offered to employers or local healthcare providers (e.g. NHS Health Checks).[12] 

 

Previously, Banda et al. used a machine learning method to detect monogenic FH cases from 

electronic health records.[26] While their model showed an impressive AUC of 0.94, one of their 

most important features was referral to a cardiology clinic, which is in very close proximity to 

confirmatory FH testing, limiting the model’s utility as a prospective tool for FH diagnosis. 

Besseling et al. developed a multivariable model to identify FH carriers validated in study 

participants consisting of FH cases and their relatives, again limiting applicability to the general 

population.[27] Our model instead considers FH prioritisation in a non-GP-referred population 

and is more generalisable as a systematic population screening tool. 

 

Our multivariable model included three terms for LDL-C (LDL-C itself, LDL-C squared, and an 

interaction with statin prescription), which combined makes it the most important predictor. 
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Additionally, our model also identified novel predictors for FH such as triglyceride and Apo-A1 

concentrations, with triglycerides having the largest absolute OR per SD (0.60). In this study, I 

find that FH carriers had significantly lower triglyceride concentrations than non-carriers (Table 

6.1), which resulted in a negative association, indicating that triglyceride concentrations can be 

useful in discriminating between individuals who have hypercholesterolaemia due to lifestyle 

factors or other causes (e.g. combined hyperlipidaemia) as opposed to an FH-causing variant. I 

also found that higher Apo-A1 concentrations, a protein found on high-density lipoprotein (HDL) 

particles, was associated with a decreased probability of FH.  

 

The variables included in our multivariable algorithm should not be interpreted as causal risk 

factors for monogenic FH; they simply help to distinguish non-monogenetic sources of variation 

in LDL-C concentrations from monogenic causes (as was discussed in more detail previously with 

triglyceride concentrations). This also provides the rational for including an LDL-C PGS in the 

model: a large discrepancy between predicted LDL-C concentrations (by the LDL-C PGS) and 

observed LDL-C concentrations might be indicative of FH carriership,[14,15] demonstrated here 

by a negative coefficient for LDL-C PGS in the model (Supplementary Table 6.3). I note that a 

previous LDL-C PGS by Wu et al. had a substantially larger R-squared (0.21 (95% CI: 0.20-0.22)) 

than reported here (0.14 (95% CI: 0.13-0.15)).[32] Unlike Wu et al. who identified genetic variants 

from an internal UK Biobank LDL-C GWAS overlapping with the PGS training data; I identified 

variants based on an independent dataset from GLGC,[16] guarding against overfitting through 

‘data-leakage’ between the training and testing datasets and providing a more robust estimate of 

explained variance. Currently, PGS information is not routinely used or collected in clinical 

practice, which is why I also derived a multivariable model without LDL-C PGS, which did not 

meaningfully differ (Supplementary Table 6.2). Previous studies have suggested that PGS could 

be used to identify individuals with a rare variant for certain diseases, such as FH.[14,15] Our study 

confirms the utility of the PGS for FH prioritisation; however, given its correlation with 

environmental variables (e.g. lipid levels), this genetic information can be readily replaced with 

information from non-genetic data. 

 

A study limitation to consider is the exclusion of individuals with VUS from our study cohort. 

There is conflicting evidence as to the causal effects of these VUS in FH. I anticipate that some 

are likely to be FH-causing while others are not, but more research is needed. As more VUS are 

classified as either FH-causing or not, the model can be readily updated to reflect our growing 

understanding of FH. Additionally, it is impossible to know whether some study participants have 
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been genetically tested for carrying an FH variant, and whether they might have modified their 

behaviour (e.g. diet) following their diagnosis. This could potentially impact the accuracy of the 

multivariable model developed here; however, considering that only approximately 7% of FH 

cases have been diagnosed in the UK,[33] this low number of diagnoses is unlikely to have a 

significant effect on the model and results presented here.  

 

I have tested our multivariable model in a dataset which was independent from the training data, 

with no significant difference between training and testing AUC (difference of 0.01), suggesting 

limited model overfitting to the current sample. Nevertheless, considering the health discrepancies 

observed between the UK Biobank and the general UK population,[34] I suggest that this model 

is locally validated and updated before applying it to distinct settings. Model validation should 

especially be conducted when considering populations of non-European ancestry. Irrespective of 

the important considerations regarding model transferability, prior to integrating the model in 

clinical care, an informed decision should be made on the optimal predicted probability threshold 

for monogenic FH classification. I wish to highlight that the choice of 0.006 as a threshold in 

Table 6.3 and Figure 6.5 is simply an illustration, and depending on the available healthcare 

resources, a different threshold might be preferred (Figure 6.4).  

 

In conclusion, I derived a multivariable classification model for detecting monogenic FH variant 

carriers that outperformed a model based on LDL-C concentration (adjusted for statin use) for 

FH screening, and that offers an opportunity to prioritise suspected FH carriers for genetic 

sequencing.  
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6.7 Appendix 

 
Supplementary Table 6.1 UK Biobank participant characteristics post imputation of 
missing values stratified by FH carriership. The p-values shown in the table are from the 
Kruskal-Wallis Rank Sum test for continuous variables, and from the Man-Whitney U test for 
binary variables. BMI = body mass index; CHD = coronary heart disease; CVD = cardiovascular 
disease; FH = familial hypercholesterolaemia; HDL-C = high-density lipoprotein cholesterol; IQR 
= interquartile range; LDL-C = low-density lipoprotein cholesterol; PGS = polygenic score. 
 
 

Mutation negative Mutation positive p-value of 
differences 

n 139291 488 
 

Sex (male) (%) 63382 (45.5) 207 (42.4) 0.187 

Age (median [IQR]) 58.0 [51.0, 63.0] 58.0 [51.0, 63.0] 0.803 
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Townsend deprivation index (median [IQR]) -2.4 [-3.8, 0.0] -2.2 [-3.7, 0.1] 0.367 

BMI, kg/m2 (median [IQR]) 26.7 [24.1, 29.8] 27.1 [23.9, 29.8] 0.647 

Smoking status (%) 
  

0.827 

   Non-smoker 79618 (57.2) 281 (57.6) 
 

   Former smoker 51177 (36.7) 173 (35.5) 
 

   Light smoker (<10 cigarettes/day) 2021 (1.5) 7 (1.4) 
 

   Moderate smoker (10-19 cigarettes/day) 3497 (2.5) 13 (2.7) 
 

   Heavy Smoker (>20 cigarettes/day) 2978 (2.1) 14 (2.9) 
 

Alcohol consumption (%) 
  

0.492 

   Prefer not to answer 88 (0.1) 1 (0.2) 
 

   1/day 29719 (21.3) 93 (19.1) 
 

   3-4 times/week 34015 (24.4) 135 (27.7) 
 

   1-2 times/week 36823 (26.4) 130 (26.6) 
 

   1-3 times/month 15498 (11.1) 54 (11.1) 
 

   Special occasions 14383 (10.3) 45 (9.2) 
 

   Never 8765 (6.3) 30 (6.1) 
 

Family history of CHD (%) 67013 (48.1) 306 (62.7) <0.001 

Systolic blood pressure, mmHg (median [IQR]) 136.5 [125.0, 149.5] 135.0 [124.5, 148.5] 0.109 

Diastolic blood pressure, mmHg (median [IQR]) 82.0 [75.0, 89.0] 81.0 [74.0, 87.0] 0.024 

Hypertension (%) 7946 (5.7) 35 (7.2) 0.195 

Statin use (%) 18139 (13.0) 165 (33.8) <0.001 

LDL-C PGS, mmol/L (median [IQR]) 3.7 [3.5, 3.9] 3.7 [3.5, 3.9] 0.652 

Blood biomarkers 
   

   LDL-C (unadjusted for statin use), mmol/L 
(median [IQR]) 

3.5 [3.0, 4.1] 3.9 [3.2, 4.8] <0.001 

   LDL-C (adjusted for statin use), mmol/L (median 
[IQR]) 

3.7 [3.1, 4.2]        4.4 [3.7, 5.4]   <0.001 

   HDL-C, mmol/L (median [IQR]) 1.4 [1.2, 1.7] 1.4 [1.2, 1.7] 0.199 

   Total cholesterol, mmol/L (median [IQR]) 5.7 [4.9, 6.4] 6.0 [5.1, 7.2] <0.001 

   Lipoprotein(a), nmol/L (median [IQR]) 17.9 [9.8, 55.3] 21.3 [12.3, 53.1] 0.223 

   Apolipoprotein A1, g/L (median [IQR]) 1.5 [1.4, 1.7] 1.5 [1.3, 1.7] <0.001 

   Apolipoprotein B, g/L (median [IQR]) 1.0 [0.9, 1.2] 1.1 [1.0, 1.4] <0.001 

   Triglycerides, mmol/L (median [IQR]) 1.5 [1.1, 2.2] 1.3 [0.9, 1.9] <0.001 

   C-reactive protein, mg/L (median [IQR]) 1.3 [0.7, 2.7] 1.2 [0.6, 2.4] 0.045 

   Aspartate aminotransferase, um (median [IQR]) 24.4 [21.0, 28.8] 25.2 [21.0, 29.5] 0.089 

   Alanine aminotransferase, um (median [IQR]) 20.1 [15.4, 27.3] 20.2 [15.6, 27.4] 0.830 

   Alkaline phosphatase, um (median [IQR]) 80.1 [67.1, 95.5] 80.6 [66.5, 95.8] 0.571 

Disease prevalence & incidence    

   CHD prevalence (%) 3890 (2.8) 40 (8.2) <0.001 

   CHD incidence (%) 5370 (3.9) 32 (6.6) 0.003 

   CVD prevalence (%) 5686 (4.1) 45 (9.2) <0.001 

   CVD incidence (%) 9038 (6.5) 46 (9.4) 0.011 

   Type 2 diabetes prevalence (%) 3593 (2.6) 11 (2.3) 0.757 

   Type 2 diabetes incidence (%) 4948 (3.6) 19 (3.9) 0.776 
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Supplementary Table 6.2 The non-genetic variables and coefficients retained by LASSO 
regression for monogenic FH prediction. The C-statistic of the independent test dataset was 
equal to 0.76 (95% CI: 0.71; 0.82). The variables were standardised prior to running the LASSO 
regression: the mean and SD are given in the table. Apo-A1 = apolipoprotein A1; CHD = coronary 
heart disease; CI = confidence interval; FH = familial hypercholesterolaemia; LASSO = least 
absolute shrinkage and selection operator; LDL-C = low-density lipoprotein cholesterol; PGS = 
polygenic score; SD = standard deviation.  
 

                  Coefficients Mean SD 

(Intercept)       -6.014496   

Age -0.071679 56.86088 7.971519 

Statin use       0.180699 0.1314255 0.3378712 

Systolic blood pressure        -0.005447 138.0973 18.44399 

Diastolic blood pressure -0.060420 82.26036 10.08779 

Apo-A1      -0.258628 1.552397 0.2721509 

Triglycerides     -0.561805 1.738264 1.009821 

Family history of CHD 0.146255 0.4811304 0.4996527 

LDL-C x LDL-C         0.626778 13.53496 6.539555 

Statin use x LDL-C    0.406210 0.3680052 0.9784316 
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Supplementary Table 6.3 The variables and coefficients retained by LASSO regression for 
monogenic FH prediction. The variables were standardised prior to running the LASSO 
regression: the mean and SD are given in the table. ALT = Alanine aminotransferase; Apo-A1 = 
apolipoprotein A1; BMI = body mass index; CHD = coronary heart disease; CRP = C-reactive 
protein; FH = familial hypercholesterolaemia; HDL-C = high-density lipoprotein cholesterol; 
LASSO = least absolute shrinkage and selection operator; LDL-C = low-density lipoprotein 
cholesterol; PGS = polygenic score; SD = standard deviation.  
 

                  Coefficients Mean SD 

(Intercept)       -6.061379   

LDL-C 0.252485 3.575719 0.8655747 

BMI              -0.005819 27.30579 4.653879 

Statin use       0.381582 0.1314255 0.3378712 

Diastolic blood pressure        -0.082472 82.26036 10.08779 

Apo-A1      -0.282415 1.552397 0.2721509 

Triglycerides     -0.600269 1.738264 1.009821 

CRP      -0.004564 2.521555 4.347809 

ALT               -0.017213 23.38488 13.94569 

LDL-C PGS -0.190587 3.706099 0.3052653 

Family history of CHD 0.161401 0.4811304 0.4996527 

Prevalent type 2 diabetes -0.002958 0.02464675 0.1550489 

Age x LDL-C PGS          -0.169897 210.7329 34.35274 

LDL-C x LDL-C         0.520575 13.53496 6.539555 

Statin use x LDL-C    0.314738 0.3680052 0.9784316 
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Supplementary Figure 6.1 Correlation plot of the variables tested in the LASSO regression 
model for the prediction of monogenic FH. The data shown here is from the training dataset 
as this was used to evaluated highly correlated variables prior to running LASSO regression. ALP 
= alkaline phosphatase; ALT = alanine transaminase; Apo-A1 = apolipoprotein A1; ApoB = 
apolipoprotein B; AST = aspartate aminotransferase; BMI = body mass index; CHD = coronary 
heart disease; CRP = C-reactive protein;  DBP = diastolic blood pressure; FH = familial 
hypercholesterolaemia; HDL-C = high-density lipoprotein cholesterol; LASSO = least absolute 
shrinkage and selection operator; LDL-C = low-density lipoprotein cholesterol; Lp(a) = 
lipoprotein A; PGS = polygenic score; SBP = systolic blood pressure; T2D = type 2 diabetes. 
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Supplementary Figure 6.2 LASSO regression model feature selection and importance for 
monogenic FH prediction. Feature importance is ordered by value of log odds ratio (OR) per 
standard deviation (SD). ALT = alanine transaminase; Apo-A1 = apolipoprotein A; BMI = body 
mass index; CHD = coronary heart disease; CRP = C-reactive protein; DBP = diastolic blood 
pressure; FH = familial hypercholesterolaemia; LASSO = least absolute shrinkage and selection 
operator; LDL-C = low-density lipoprotein cholesterol; PGS = polygenic score; T2D = type 2 
diabetes.  
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7 General discussion 

  

7.1 Overview of thesis 

 

7.1.1 PGS in CVD prediction 

 

This thesis explored the utility of polygenic scores (PGS) in cardiovascular disease (CVD) 

prediction and screening. The first project (Chapter 2) started with an analysis of 2,194 previously 

published PGS for 544 disease endpoints aggregated in the freely available Polygenic Score 

Catalog.[1] In this chapter, I converted the hazard ratios (HR) and odds ratio (OR) per one 

standard deviation (SD) of the PGS, and the area under the receiver operating characteristic curve 

(AUC) (or C-index/C-statistic) of these scores into a detection rate for a 5% false positive rate 

(DR5). The detection rate (or sensitivity) is a measure that is commonly used to evaluate the clinical 

utility of novel models but has yet to be widely incorporated into PGS studies.[2] This measure 

also provides a more tangible understanding of incremental changes in the HR, OR and AUC/C-

index of models in terms of clinical impact.[3,4] The results of the study indicated that the overall 

strength of association of PGS with various disease endpoints is weak, with the median DR5 

[interquartile range (IQR) %] values for the HR and OR per one SD equalling 8% [7; 10] and 9% 

[6; 12], and the median DR5 for the AUC and C-index reaching 14% [10; 22] and 19% [13; 25] 

respectively. This means that on average, PGS in the Polygenic Score Catalog missed 81%-92% of 

affected individuals at a 5% false positive rate. 

 

The chapter further put into perspective the performance of polygenic risk scores (PRS) in 

individual risk prediction, population stratification, and disease screening by respectively evaluating 

the odds of being affected given a PRS result, the odds of being affected given the occupancy of 

a particular PRS quintile, and the odds of being affected given a positive test result (OAPR). These 

are clinically useful metrics to evaluate tests as they provide an absolute risk that considers the 

background odds of disease in a population over a specified timeframe, as opposed to PRS which 

measure relative risk in a population. The normal distributions of the PRS can be exploited to 

derive the likelihood ratio, which is then used to calculate the odds of being affected. Taking 

example PRS from the Polygenic Score Catalog, this chapter illustrated the interpretation of a PRS 

in individual CVD risk prediction, where an average 40-year old individual with a coronary artery 

disease (CAD) PRS (DR5 = 13%) at the 75% centile of the distribution had their 10-year 

background odds of CAD increased from 1:12 to 1:10, and at the 25% centile of the PRS 

distribution had their odds reduced to 1:20. For PRS in population stratification, individuals in the 
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97.5th centile of a CAD PRS had their odds increased from 1:12 to 1:5, but this tail of the 

distribution only accounts for 7.5% of all CAD cases, which is important to consider if the aim of 

risk stratification is to identify many additional at-risk individuals. And in disease screening, the 

false positives outnumbered the true positives by four to one for a CAD PRS (DR5 = 12%) in a 

middle-aged population with a background 10-year odds of disease of 1:9, and 41 to one for a 

population were the background 10-year risk of disease was 1% (e.g. in younger individuals). This 

shows that the background odds of disease heavily influence the number of false positive cases 

detected in screening, which is not immediately visible if only relying on a PRS. The conversion 

of the relative risk that PRS confer to an absolute risk scale (i.e. the odds of being affected) not 

only provides a more concrete understanding of personal risk on an individual level, but also gives 

insight into the performance and limitations of PRS in population stratification and disease 

screening. 

 

The following project (Chapter 4) investigated whether PGS might improve the predictive ability 

of non-genetic clinical risk prediction models for a range of cardiovascular and related outcomes 

(the QScores) when combined. More specifically, whether they improved the 10-year risk 

estimation of incident CVD/coronary heart disease (CHD), type 2 diabetes and ischaemic stroke 

in QRISK3, QDiabetes and QStroke respectively. These non-genetic scores were developed in 

and for the UK population, and it was therefore appropriate to use the UK Biobank as a test 

dataset for this project. The quality control and data cleaning steps applied to the UK Biobank 

data are detailed in Chapter 3. The models generated were compared with one another based on 

their odds of incident disease per one SD in the scores, their discrimination (C-statistic), their 

calibration (calibration-in-the-large and calibration slope), and their detection rate for a 5% false 

positive rate. The results showed that the effects of adding PGS to these non-genetic QScores 

were outcome- and sex-specific and provided at best minimal improvements in the C-statistic 

(highest improvement obtained: 0.015, equivalent to an increase of 1.5% in the DR5). These results 

were similar to the ones obtained by previous studies, however, as is often the case with the current 

PGS literature, the interpretation of the results vary widely.[5,6]  

 

7.1.2 PGS in rare variant discovery 

 

The next section of the thesis investigated a novel potential clinical application of PGS: whether 

PGS information could be used to aid with rare variant discovery for disease screening.[7] 

Individuals with a PGS for a trait that does not match their observed trait value might be more 
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likely to harbour a rare monogenic variant of large effect size for the trait in question; as the variant 

of large effect size would not be captured by the PGS and could explain the discrepancy between 

observed and expected values.[8]  

 

To study this, I focused on familial hypercholesterolaemia (FH) which is the most common 

monogenic disorder. FH is caused by deleterious genetic variants in the LDLR, APOB, PCSK9 or 

APOE genes, which lead to elevated circulating levels of low-density lipoprotein cholesterol (LDL-

C) and increase the risk of premature CHD and death. FH is highly underdiagnosed (only around 

7% of UK cases have been detected) as there is currently no population screening strategy in place 

for it, which is a missed primary prevention opportunity.[9] The NHS Long Term Plan set a goal 

to increase the diagnosis of FH cases from 7% to 25% in five years but has not specified how this 

will be achieved.[10] 

 

The first part (Chapter 5) of the project consisted of developing a two-stage population screening 

strategy for FH in adults, which was then subsequently improved by developing a novel prediction 

model using a machine learning algorithm that included a PGS for LDL-C (Chapter 6). This novel 

population screening approach for the systematic identification of FH patients is in line with the 

NHS Long Term Plan to increase the diagnosis of FH cases from 7% to 25% in the UK.[10] The 

two-stage adult screen relies on a first stage where LDL-C concentrations are measured in 

individuals aged 40 and above attending their NHS Health Check. Measurement of LDL-C is low 

cost, but insufficiently accurate on its own to properly discriminate FH cases in adults. However, 

it could be used as part of a two-stage screen in which individuals with LDL-C concentrations 

exceeding a certain pre-specified threshold value are referred to genomic sequencing in the second 

stage (a more expensive but highly accurate stage) to either confirm or refute the presence of a 

monogenic variant for FH.[11] Cascade testing of close relatives of newly identified index cases 

could then be initiated. This strategy was compared to a similar population screening approach in 

which index cases are ascertained in childhood: the child-parent screen proposed by Wald et al.. 

This approach was considered previously by the UK National Screening Committee but rejected 

as an option on the grounds that it does not immediately benefit the children who are screened (at 

around one to two years of age), as they only become eligible to receive cholesterol-lowering 

treatment from the age of ten.[12–15] The comparison of both approaches showed that it would 

take twice a long (approximately 14 years versus 7 years) to reach the NHS’ Long Term Plan goal 

of identifying 25% of UK FH cases if implementing the two-stage adult screen instead of the child-

parent screen. It is worth noting that both methods are not mutually exclusive and that 



 
 

185 

implementing both screening strategies (and/or other strategies) would shorten the amount of 

time needed to reach the 25% target detection rate set out by the NHS, depending on available 

resources. 

 

The second part of the project (Chapter 6) investigated whether the two-stage adult screening 

strategy could be improved by reducing the burden of false positive cases sent for sequencing in 

the second stage. For this, I developed a novel FH prediction model using a machine learning 

algorithm (LASSO) and various clinical variables that are readily obtained. It also included a PGS 

for LDL-C. This novel prediction model improved FH case detection and reduced the number of 

false positive cases sent for genomic sequencing; however, the feasibility of clinical implementation 

was not evaluated in this instance.  

 

This project also provided evidence that PGS might have additional clinical benefits other than 

disease prediction, for which I showed in Chapter 2 that their performance is limited. One 

application is in aiding the identification of individuals with a monogenic form of a disease.[7,8] 

Indeed, the negative coefficient of the LDL-C PGS in the model indicated that individuals with 

hypercholesterolaemia due to a high LDL-C PGS were given a lower probability of having 

hypercholesterolaemia from carriage of a monogenic variant for FH. However, when I developed 

a separate model for FH case detection where the PGS for LDL-C was not included, I observed 

that model performance was almost identical to the one that included the LDL-C PGS. This was 

likely because the non-genetic variables present in the model (e.g. LDL-C and triglyceride 

concentrations) acted as proxies for the LDL-C PGS. It is worth noting that the cohort participants 

were middle aged; and given that the weight of PGS information in prediction seems to be more 

important in younger individuals, it is possible that the model with the LDL-C PGS for FH 

detection would perform significantly better than the model without it in younger individuals (such 

as in children).[16,17] This remains to be tested on a larger scale. For now, the results of this 

chapter show that polygenic information can be applied in principle as one means to improve the 

detection of monogenic FH cases, but that this information can also be replaced by measured risk 

factor variables (in adults).  

 

 

 

 



 
 

186 

7.2 Wider perspective 

 

7.2.1 PGS in context 

 

Research into PGS has substantially increased in the past 10 years. This is partly due to the 

increasing size and number of published genome-wide association studies (GWAS) providing 

freely available summary statistics for various traits and diseases. The development of large 

longitudinal cohort studies (such as the UK Biobank) has enabled the development and testing of 

these scores. PGS have been shown to be significantly associated with many heritable traits, and 

the concept of utilising this information to improve healthcare is understandably attractive. The 

nature of PGS means that they only need to be measured once in a person’s lifetime, can be applied 

to a variety of traits and diseases, can be measured with high technical accuracy, and are cheap to 

obtain with genotyping costs rapidly declining. It is for these reasons that many private and public 

entities are funding research into PGS and advocating their use in healthcare.[18–22]  

 

Although PGS are undisputedly associated with many disease traits, the strength of this association 

is not sufficient to mean that they are clinically useful in disease prediction, screening, and risk 

stratification. Other scientists have demonstrated that causal risk factors for disease are not 

necessarily good predictors of disease; and that for a risk factor to be a good predictor, it has to 

be very highly associated with the disease in question.[23,24] These important points seem to have 

been overlooked in the field of PGS research. 

 

This can be partly attributed to the way in which the performance of PRS is depicted in scientific 

publications. Many papers compare the very top of a PGS distribution to other sections of the 

distribution (such as the bottom end), instead of comparing the top end of the distribution to the 

rest of the distribution.[21,25,26] These analyses lead to inflated risk ratios that are misleading.  

 

Furthermore, most studies base their conclusions of clinical utility on the OR or HR per SD and 

the AUC/C-index of PGS models, which are measures that provide information on association 

but are not directly informative of clinical utility.[3,4] As seen previously, the clinical utility of 

models is better understood in terms of the detection rate for a pre-specified false positive rate 

and the OAPR for disease screening, the odds of being affected for a particular test result for 

individual risk prediction, and the odds of being affected as a result of occupancy of a particular 

PRS group or quintile for risk stratification, which PGS studies have failed to report.[2,27] 
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PGS are normally distributed in a population and the overlap in the distributions of affected and 

unaffected individuals is substantial. The degree of overlap between these distributions indicates 

the level of discrimination that PGS provide (see Chapter 1). However, these distributions (or the 

mean and SD of the distributions) are not often reported by PGS studies.[25,26,28,29]  

 

Another point to consider is that most PGS studies include other variables in their models, 

particularly age, but do not often clearly state this.[28] This thesis (Chapter 4) and many scientific 

publications have shown how the inclusion of other variables in PGS models (such as age and sex) 

have a major influence on disease prediction, especially CVD.[6,16,30] There needs to be clearer 

transparency and objectiveness in PGS reporting, and when evaluating their clinical utility. 

 

Many studies have also looked at whether the inclusion of PGS in non-genetic risk prediction 

models for disease (such as CVD) improve prediction and risk stratification of individuals. There 

are multiple points to consider here. While the inclusion of PGS have shown to increase the C-

statistic of most non-genetic risk prediction models, this increase has not been substantial 

(Chapter 4).[6,16,26,31] Net reclassification index (NRI) tables in these papers show that the 

inclusion of PGS in non-genetic risk prediction models improves the reclassification of individuals 

into higher or lower risk categories. While this might be true, these numbers tend to be low, as 

most cases occur in the middle of the risk distribution rather than the upper tail.[27] Therefore, 

for diseases where there are cheap, non-invasive, and safe preventative options (such as statins for 

CVD), there might be more benefit in lowering the age of treatment commencement than to 

include a PGS in the risk prediction models.[32] It is also worth noting that NRI tables have been 

criticised as a measure of clinical utility.[33] A more intuitive measure is the DR for a given FPR 

(e.g. DR5): Chapter 4 showed that the inclusion of a PGS in non-genetic CVD models improved 

the DR5 by at best 1.5%.[2,27] 

 

7.2.2 Important considerations 

 

In this polarised field of research, some scientists believe that the magnitude change in the C-

statistic that PGS provide to non-genetic CVD risk prediction tools is clinically useful in improving 

disease prediction, disease screening, and patient risk stratification, while others interpret these 

results with more caution.[5,34–36] Further evidence from trials, such as the one announced by 

the NHS and Genomics plc in the UK in early 2022, will provide invaluable information on the 
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feasibility of PGS implementation in clinical care and on their utility in patient risk stratification 

and disease prediction.[37] Proper cost-effectiveness studies will also be needed. 

 

As it currently stands, there are important points to consider if moving forward with the clinical 

implementation of PGS in disease prediction and screening. The first point being that the 

improvement in discrimination and in the detection rate for a false positive rate that these scores 

provide is still minimal. With the increasing size and diversity of genome-wide association studies 

from which these PGS are derived, and with the development of statistical and computational 

methods that improve the predictive power of these scores, it is conceivable to imagine that PGS 

might one day provide benefits to patients. However, progress and research in this field is still 

much needed prior to clinical implementation.  

 

Another point to consider are the valid concerns behind the poor transferability of PGS to other 

ancestry groups.[38] Many efforts are underway to address these issues, but currently the 

implementation of such scores could cause more harm than good by widening health 

disparities.[38]  

 

And finally, the issue of communicating the meaning of PGS (and risk) to the general public (and 

to scientists) is still a major one. The most damaging being the false interpretation or over-

interpretation of PGS “determinism” in terms of the magnitude risk they confer to various traits 

and diseases. An example of this are the various start-ups that are now incorporating PGS 

screening into embryo selection, which will not only likely disappoint parents-to-be, but also 

presents significant ethical concerns that borders on eugenics.[21] 

 

7.2.3 Future avenues 

 

While PGS seem to have limited added benefit in terms of CVD prediction and screening in the 

general population, they could still be useful in other contexts. The combination of multiple PGS 

for improving risk prediction has yet to be fully explored for example. Their utility in risk 

prediction or stratification may also depend on the outcome studied, or on patient subgroups 

rather than the general population (as was seen in the improved prediction of incident CVD in 

type 2 diabetes patients).[39] 
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It has also been proposed that PGS could be useful in aiding with rare variant discovery, which 

was explored in Chapter 6.[7,8] Indeed, there is a need to identify individuals with rare variants 

for Mendelian disorders (such as for FH), especially where interventions are available. There are 

two main reasons for this: treating the index case, and cascade testing of close relatives. In the case 

of FH, multiple treatment options are available such as oral (statins, ezetimibe) and injectable 

(PCSK9 inhibitors, monoclonal antibodies) therapies, and the emergence of base editing therapies 

(e.g. CRISPR for PCSK9).[40,41] Cascade testing of index cases has also been shown to be highly 

cost-effective in many countries.[42–45] The role that PGS play in modulating monogenic variant 

penetrance is also being studied.[21] 

 

7.3 Summary 

 

Research into PGS and how they might improve clinical care has grown significantly in the past 

few years. The current consensus in the scientific community seems to be that they are useful and 

will play a part in future clinical care, but this viewpoint is still contested by many. This thesis puts 

the utility of PGS in CVD prediction, screening and risk stratification into perspective and 

provides evidence of them being poor predictors of incident CVD in the general population, but 

they may still find other purposes. Further critical research is needed in the field, and careful 

practical and ethical considerations will be essential prior to clinical implementation. More research 

into other applications of PGS, such as in rare variant discovery and how they might benefit patient 

care, is also worth pursuing and is expected to grow in this fast-evolving field of research.  
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