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Prediction of Alzheimer’s disease from magnetic resonance imaging using a 
convolutional neural network 
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A B S T R A C T   

Objectives: The primary goal of this study is to examine if a convolutional neural network (CNN) can be applied as a diagnostic tool for predicting Alzheimer’s Disease 
(AD) from magnetic resonance imaging (MRI) using the MIRIAD-dataset (Minimal Interval Resonance Imaging in Alzheimer’s Disease) from one single central slice of 
the brain. 
Methods: The MIRIAD dataset contains patients’ health records represented by a set of MRI scans of the brain and further diagnostic data. Hyperparameters and 
configurations of CNNs were optimized to determine the best-performing model. The CNN was implemented in Python with the deep learning library ‘Keras’ using 
Linux/Ubuntu as the operating system. 
Results: This study obtained the following best performance metrics for predicting Alzheimer’s Disease from MRI with Matthew’s Correlation Coefficient (MCC) of 
0.77; accuracy of 0.89; F1-score of 0.89; AUC of 0.92. The computational time for the training of a CNN takes less than 30 sec. s with a GPU (graphics processing 
unit). The prediction takes less than 1 sec. on a standard PC. 
Conclusions: The study suggests that an axial MRI scan can be used to diagnose if a patient has Alzheimer’s Disease with an AUC score of 0.92.   

1. Introduction 

1.1. Alzheimer’s diseases 

Alzheimer’s Disease (AD) is associated with the progressive accu
mulation of abnormal proteins in the brain, which leads to progressive 
synaptic, neuronal, and axonal damage [1]. ICD-11 (eleventh revision of 
the International Classification of Diseases) from the WHO codifies 
Alzheimer’s with 6D80* and 8A20* as a disorder with neurocognitive 
impairment as a major feature [2]. Clinical symptoms include loss of 
memory, linguistic and cognitive degradation, and personality and 
mood changes [3]. The number of people with AD worldwide is esti
mated at 50 million in 2017, growing to 132 million by 2050, while the 
total cost associated with AD worldwide as of 2018 is estimated at 1 
trillion dollars [3]. Although these costs and prevalence numbers appear 
high, they may represent a substantial underestimate of the true figures 
since undiagnosed AD can be as high as 80% of all cases worldwide [3]. 

Although currently, no drugs can cure AD early diagnosis and 
treatment of AD has substantial benefits, both in terms of personal 
wellbeing and societal cost [3]. A class of drugs, cholinesterase in
hibitors, are effective at slowing down the progression of AD [3]. Given 
the advantages of early-stage diagnosis of Alzheimer’s disease, any 
methodology that improves early detection is beneficial. There is no 

specific biomarker for AD and diagnosis relies on a range of tests which 
include one or more of the following: cognitive assessment tests, blood 
tests, Computerized Tomography (CT), Magnetic Resonance Imaging 
(MRI), Single Photon Emission Computed Tomography (SPECT) and 
Positron Emission Tomography (PET) [4]. Of relevance to this study are 
MRI and the cognitive assessment test – Mini-Mental State Examination 
(MMSE). MRI scans show the atrophy of certain brain regions that are 
indicative of Alzheimer’s [5,6]. MMSE is a quick, inexpensive test, 
scoring from 0 to 30, where higher scores are indicative of better 
cognitive functioning [7]. 

1.2. Convolutional neural networks to detect Alzheimer 

Studies have been using CNNs (Convolutional Neural Networks) to 
diagnose Alzheimer’s [8–26] using data from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) or Open Access Series of Imaging 
Studies (OASIS). The ADNI-dataset has 1455 participants with five 
diagnosis groups [27]. The OASIS-dataset is composed of 193 partici
pants aged 62 years or more [27]. The primary goal of this study is to 
examine if convolutional neural networks can also be applied as a 
diagnostic tool using the MIRIAD-dataset (Minimal Interval Resonance 
Imaging in Alzheimer’s Disease). 
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2. Methods 

2.1. Data and material 

MIRIAD (Minimal Interval Resonance Imaging in Alzheimer’s Dis
ease) is a series of longitudinal volumetric T1-MRI scans of mild- 
moderate Alzheimer’s subjects and controls [28]. An overview of the 
MIRIAD demographics and publications is published in Malone et [28]. 
The dataset consists of scans with the same scanner with accompanying 
information on gender, age, and Mini-Mental State Examination 
(MMSE) scores [28]. The data used in this study contains two class la
bels: Alzheimer’s Disease (AD) if a patient has an MMSE score of 26 or 
under at baseline and healthy control (HC) with an MMSE of 27 or above 
[28]. This is also the cut-off point to describe the class label for each 
feature vector. Each patient has multiple MRI scans from different time 
points. Many scans were collected of each participant at intervals from 
two weeks to two years, the study was designed to investigate the 
feasibility of using MRI as an outcome measure for clinical trials of 
Alzheimer’s treatments [28]. Table 1 shows the demographics of the 
included patients. 

Each scan is provided in NIfTI-format (Neuroimaging Informatics 
Technology Initiative) [29]. It is an open file format for volumetric 
images with a size of 256 x 256 x 124. 

Fig. 1 shows a sample of the MRI dataset. An axial, sagittal, and 
coronal view is displayed. The raw dataset still contains bone structures. 
The bone structures are not relevant for the diagnosis of Alzheimer’s and 
were removed in the pre-processing steps. 

2.2. Feature engineering and pre-processing 

Pre-processing is an important step to prepare the dataset for the 
following training of the classification algorithm. The MIRIAD dataset is 
pre-processed by applying spatial normalization, bias correction, and 
grey matter segmentation. Spatial normalization is the process of map
ping images from different scans onto a single template. There are two 
steps to this: linear transformation (e.g. translation, rotation, shear) and 
non-linear transformation (e.g. warping). This results in all images 
referencing the same coordinate space [30] and should adjust, for 
example, for different subject positioning when the MRI was recorded. 

The ratio of MRI scans of AD subjects to healthy controls is approx
imately 2:1. To mitigate this imbalance, data augmentation is performed 
by creating copies and flipping them. This results in almost the same 
number of instances labelled for AD and non-AD subjects. This can also 
be considered a specific type of oversampling in medical imaging. 

Finally, grey matter segmentation is performed, and grey matter is 
extracted from the raw data. This excludes features that are unlikely to 
be discriminative in the classification task e.g., skull bones. The Python 
‘Nipype’ library interface is used, allowing all processing to be done in 
Python [31]. An axial MRI scan of the central part of the brain for each 
patient was used as an input for the following classification algorithm. 

2.3. Convolutional neural network 

Convolutional Neural networks (CNNs) are a specialized kind of 

neural network for processing data that has a grid-like topology [32]. A 
CNN consists of several layers: convolutional, pooling, and fully con
nected layers. Each convolutional layer consists of a certain number of 
trainable parametric filters. Each convolutional layer is typically fol
lowed by a pooling layer which reduces the feature space. Finally, the 
data is passed to one or more fully connected layers and the predicted 
output is produced. A further description of the basic ingredients of a 
convolutional neural network can be derived from a textbook in deep 
learning [32] and are not further explained. 

The applied CNN to distinguish between Alzheimer’s and non- 
Alzheimer patients is used as a classification algorithm. Classification 
is to learn a mapping from inputs x to output y, where y ∈ {1,.., C} with C 
being the number of classes [33]. If C = 2, this is called binary classi
fication [33]. In our study, a binary classification task is performed to 
distinguish between patients with Alzheimer’s and patients who do not 
show signs of Alzheimer’s. The current configuration for a convolutional 
neural network is a bespoke solution. Pre-trained models from Keras 
(ResNet-50 and Inception_V3) were tested as a baseline method. The 
baseline models (ResNet-50 and Inception_V3) achieved low accuracies 
of 0.72 and 0.55 on a test dataset and were disregarded for further 
analysis. We converted our greyscale images to RGB images with three 
channels and rescaled them for the pre-trained models. The number of 
layers and convolutional filters per layer were varied. The 

Table 1 
MIRIAD demographic information.   

Alzheimer’s Disease (n = 46 
(number of patients), Total MRI- 
scans = 465) 

Healthy Controls (n = 23 
(number of patients), Total 
MRI-scans: 243) 

Age at study 
entry 

69.4 ± 7.1 69.7 ± 7.2 

Men 41% 52% 
Mean (SD) 

baseline 
MMSE 

19.2 ± 4 29.4 ± 0.8  

Fig. 1. Sample of raw MRI-data – axial, sagittal, and coronal views of the 
MIRIAD-dataset. 
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hyperparameter tuning used GridSearch with an exhaustive search over 
specified parameter values. For example, a 3-layer or 4-layer setting was 
defined and for each layer a range of different input size of 32, 64, 128, 
or 256. The following sections describe parameters for loss the loss 
function, max-pooling, dropout layer, activation function, and 
regularization. 

2.3.1. Loss function 
As a loss function for the convolutional neural network, the binary 

cross-entropy was chosen [34,35]. Every training epoch of the CNN has 
the aim to reduce the loss function (binary cross-entropy). RMSprop is a 
gradient-based optimization technique used in training neural networks. 
It has also been applied in deep learning for MR images by Medina et al. 
[36]. 

2.3.2. Convolutional filter size and max-pooling 
For a two-dimensional image I as our input (from an MRI scan), a 

two-dimensional kernel K can be used. In this study, the convolutional 
filter size was set to (3,3). In convolutional network terminology, the 
output is referred to as a feature map [32]. The convolutional operation 
can be described as follows [32]: 

S(i, j)= (I ∗ K)(i, j)=
∑

m

∑

n
I(m, n)K(i − m, j − n) (1) 

A pooling function replaces the output with a summary statistic. For 
example, the max-pooling operation reports the maximum output 
within an area [32]. Different layers of the CNN, specifically pooling, 
include the two following important aspects, namely that: (i) they 
introduce nonlinearity into the neural network to achieve improved 
function approximation ability, and (ii) they help CNNs to achieve 
spatial invariance, capable of recognizing features in an image regard
less of location. The Max-pooling filter size of the final configuration 
after hyperparameter tuning was set to (2,2). 

2.3.3. Dropout layer 
Dropout provides a computationally inexpensive method for regu

larizing a model and preventing overfitting [32,37]. During training, 
units get randomly get removed [37]. The randomly selected unit is 
removed from the network, along with all its incoming and outgoing 
connections [37]. It prevents overfitting and provides a way of 
approximately combining exponentially many different neural network 
architectures efficiently [37]. Dropout introduces an extra hyper
parameter—the probability of retaining a unit [37]. A value of p = 1 
implies no dropout, and low values of p mean more dropout [37]. The 
dropout rate was set to 0.4 in our configuration to avoid overfitting. 

2.3.4. Activation function 
Neurons in the activation map pass through a non-linear function 

[38]. There are different activation functions. For example, the sigmoid 
function, the rectified linear unit (ReLU), and the leaky rectified linear 
unit (leaky ReLU). The logistic sigmoid function can be defined as the 
following [12]: 

fsigmoid(x)=
1

1 + exp(− x)
(2) 

Another activation-function is the ReLu-function [12]: 

fReLu(x)=max(0, x)=
{

0, x < 0
x, x ≥ 0 (3)  

whenever the activation values are zero, the ReLu-function cannot learn 
in a gradient-based learning method [12]. Therefore, a leaky 
ReLu-function can be used. 

fLeaky Relu(x)=
{

x, x ≥ 0
αx, x < 0 (4) 

In our study, the parameter alpha was set to 0.1 and a leaky rectified 
linear unit was used. 

2.3.5. Regularization 
To prevent overfitting a regularization method can be used to train 

the neural network. L1-Regularization is also known as Lasso- 
Regularization [39]. L2-Regularization, also known as Ridge Regulari
zation [39]. L1+L2 Regularization is also known as Elastic Net Regu
larization [39]. A small value for the regularization parameters for L1 =
0.001 and L2 = 0.002 has been added to prevent overfitting. 

Table 2 contains the settings of the final CNN model. 

2.4. Performance metrics 

The evaluation of model performance is an essential step in under
standing and developing a machine learning algorithm. Definitions of 
conventional performance metrics such as accuracy, precision, speci
ficity, recall, and F1-score are not further described. The definition can 
be obtained from textbooks in machine learning such as Goodfellow 
et al. [32], Murphy [33], and Hastie et al. [39]. This study used as an 
additional metric Matthew’s Correlation Coefficient (MCC) [40]. The 
following abbreviations have been used TP = True Positives, TN = True 
Negatives, FP=False Positive, FN=False Negative. 

The MCC is defined as [40]: 

MCC=
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (5) 

The MCC metric is more balanced than metrics like accuracy and F1- 
score because its score is high only if the classifier is good on both 
positive and negative predictions [41]. The MCC is calibrated so that it 
ranges from − 1 to +1. A value of 0 indicates a result close to chance, the 
closer to +1 the score is, the better the result [41]. Receiver Operating 
Characteristic (ROC) curves have also been plotted for the best outcome. 
The data are split into training, validation, and test-dataset. Table 3 
shows the exact split of the data. The best configuration of the CNN was 
determined with the highest MCC on unseen medical images of a set of 
AD and non-AD patients. 

2.5. Implementation 

The used hardware: Intel Core i9 with 64 GB of memory, hard disk: 
Samsung 1 Terabyte SSD, GPU: NVIDIA GE Force RTX 2080 TI. The 
implementation used as software: ‘Statistical Parametric software’, 
Matlab, Python, Keras, and as operating system Linux/Ubuntu. 

Table 2 
Configuration of the CNN.  

Setting/Parameter Values in Keras 

Loss Function Binary Cross-Entropy 
Optimiser Function RMSprop(lr = 0.001) 
Convolutional filter (kernel) size (3, 3) 
Padding for all convolutional layers “Same” (results in output feature map 

being the same size as input) 
Padding for max-pooling layers “Same” (results in output feature map 

being half the size of the input) 
Max-pooling filter size (2, 2) 
Activation function for all layers Leaky ReLU (alpha = 0.1) 
Weight regularization added to all 

models to mitigate overfitting 
L1 = 0.001,L2 = 0.002 

Dropout layer added to all models to 
mitigate overfitting 

0.4 

Batch size 100 
Number of epochs 20  
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3. Results 

3.1. Pre-processed medical images 

Fig. 2 shows the axial, sagittal, and coronal views in 2D as well as a 
3D surface rendering of a typical pre-processed scan. Extraneous fea
tures (for example the skull and bone structures) have been removed. 

3.2. Results from the optimized configuration of the CNN 

Table 4 shows for the best model with optimized MCC the associated 
confusion metric (TN = 91, FN = 12, FP = 11, TP = 88). 

The obtained best performance metric for MCC = 0.77. 

MCC=
88 × 91 − 11 × 12

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(88 + 11)(88 + 12)(91 + 11)(91 + 12)

√ = 0.77 (6) 

Accuracy = 0.89=(88 + 91)/(91 + 12+11 + 88); Precision = 0.89 =

88/(11 + 88); Specificity = 0.89 = 91/(91 + 12); Recall = 0.88 = 88/ 
(12 + 88); F1 = 0.88 = 88/(88 + 0.5(11 + 12)). 

The final architecture for the model was guided by the best MCC- 
score of 0.77 in 3-layer CNN with 64 convolutional filters in each 
layer, represented as (64, 64, 64) and an associated AUC of 0.92. Fig. 3 
shows AUC scores for different configurations. 

The computational time for the training using a CNN takes less than 
30 sec.s with a GPU (graphics processing unit) using NVIDIA GE Force 
RTX 2080 TI. The prediction or classification using the trained algorithm 
takes less than 1 sec. on a standard PC. 

4. Discussion and conclusion 

This study shows that convolutional neural networks for pattern 
recognition of neurological conditions such as Alzheimer’s can be used. 
A CNN was proposed to distinguish between patients having 

Table 3 
Data augmentation, training, validation, test.  

Class 
Label 

Number of 
MRI-scans 

Total slices after 
data 
augmentation 

Slices in 
training 
split 

Slices in 
validation 
split 

Slices 
in test 
split 

AD 465 465 326 39 100 
non- 

AD 
243 486 342 42 102  

Fig. 2. Pre-processed data – axial, sagittal, coronal, and 3D surface view.  

Table 4 
Performance for the optimized CNN-model.  

Confusion matrix 

0: negative diagnosis Alzheimer 

1: positive diagnosis Alzheimer 

true label  0 1 
0 91 11 
1 12 88  
predicted label  
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Alzheimer’s Disease (AD) and patients who have not been diagnosed 
with AD. Medical images of the brain have been used as input for CNN. 
The CNN and the number of layers and convolutional filters per layer 
were varied and optimized based on Matthew’s Correlation Coefficient 
(MCC). This study obtained the following performance metrics for pre
dicting Alzheimer’s Disease from MRI scans of the brain; MCC: 0.77, 
Accuracy: 0.89, F1: 0.89, AUC: 0.92. An AUC>0.90 is seen as an 
excellent diagnostic test [42]. A potential interpretation of AUC values is 
1.0 for a perfect test, 0.9–0.99 for an excellent test, 0.8–0.89 for a good 
test, 0.7–0.79 for a fair test, 0.51–0.69 for a poor test, and 0.5 of no value 
[42]. This suggests that potentially a diagnostic tool could be developed 
based on the provided methodology. A comparison with the baseline 
models (ResNet-50 and Inception_V3) using transfer learning revealed a 
low performance. The pre-trained models in Keras have been trained on 
natural images from ImageNet. The modality of the images is different, 
and this could affect the effectiveness of pre-trained models and transfer 
learning in Keras [43]. 

Minimizing the risk of overfitting was done with three techniques: 
Firstly, the dataset was randomly split into a training set, validation set, 
and test set. The general assumption is that the instances are randomly 
selected. This ensures that the trained CNN will be tested on previously 
unseen instances. Secondly, regularization parameters were set to non- 
zero values. This ensures that the loss function considers regulariza
tion. This is a common method in machine learning to avoid overfitting. 
Thirdly, a specified dropout rate is a safeguard that the neural network 
at the dense layer (fully connected deep neural network) does not 
overlearn presented instances. Random units of the dense layer get 
removed [37]. It can empirically be shown that a neural network that 
makes use of a dropout rate reduced the risk of overfitting [37]. These 
three methods 1) random split, 2) regularization, and 3) dropout helped 
to minimize the potential risk of overfitting and generally avoid that a 
complex function is perfectly fitted to the provided training set. 

The underlying problem is a binary classification problem to di
agnose Alzheimer vs. non-Alzheimer. The MCC-score is a more reliable 
statistical rate that produces a high score only if the prediction obtained 
good results in all four confusion matrix categories (true positives, false 
negatives, true negatives, and false positives) [40]. For this reason, the 
optimization of our study used the MCC score. The performance metrics 
such as F1-score or AUC are a by-product of this process. The MCC score 
is useful for imbalanced datasets where the AUC might be less useful 
[41]. This imbalance was reduced by using methods of augmentation 
which can be considered as a type of oversampling in machine learning 
for medical images. The confusion matrix shows that overall few in
stances have been misclassified as false negatives or false positives. 

Analysis of the literature identifies the usage of convolutional neural 
networks for AD-classification from MRI [16]. A direct comparison of 
the performance is limited as the studies used different datasets such as 

the ADNI or OASIS-dataset for Alzheimer’s disease. For example, 
different demographics, origins, and sample sizes have an impact on the 
performance metric. Additionally, the hyperparameters were tuned on 
different performance metrics and the CNNs used different configura
tions regarding kernels and the number of layers. Another factor is 
different cross-validation methods across the studies. Since random seed 
values are used to split data in different folds or to split into training sets 
and test set a meaningful comparison is limited, too. The ADNI-dataset 
was used by Aderghal et al. [8], Taqi [21], Cheng [13], Lian et [19], 
Farooq et al. [14], Senanayake [20], Gunawardena [15], Hosseini et al. 
[16], Korolev [18], Bäckström et al. [9], Folego et al. [26], Feng et al. 
[25], Wu [23]. The OASIS dataset has been used by Islam et al. [17], 
Wang et al. [12], Hon et al. [44], Ebrahimi and Luo [45]. The models in 
Hosseini et al. [16] and Bäckström et al. [9] used accuracy as a perfor
mance metric for optimization. Accuracy, sensitivity, specificity have 
been used in Farooq et al. [14] and Wang et al. [12]. Also, a multi-class 
classification process was used in Islam et al. [17] as opposed to binary 
classification in this study. 

A key question towards a potential clinical deployment is the reli
ability of such as clinical decision support system. Even though the AUC 
is above 0.90 it is crucial to indicate that the performance metrics must 
be seen in the context of the specific clinical application. The therapeutic 
consequences for false positive and false negative subjects must be 
carefully considered. As a rule of thumb, diagnostic tools having an 
AUC>0.9 could potentially be candidates for a clinical decision support 
system. However, a decision for a potential deployment cannot be based 
on a fixed threshold but also need an extended qualitative study that 
considers the expert opinions of clinicians to provide further insights 
whether such a decision support system is fit for purpose. The practical 
advantage of the developed CNN lies in the fact that one axial scan 
provides sufficiently enough information to achieve high performance. 
One immediate potential usage of a deployed system could be in a low- 
resource setting or where clinical consultants are not readily available. 

A recent study confirms that Alzheimer’s disease can be diagnosed 
from a single brain scan [46]. The model was trained on T1-weighted 
MRI scans obtained from the Alzheimer’s Disease Neuroimaging Initia
tive (ADNI) [46]. The applied method uses a two-stage process including 
least absolute shrinkage and selection operator (LASSO) [46]. The study 
achieved an accuracy of 0.92 to detect AD [46]. However, the results are 
not directly comparable due to different datasets, performance scores, 
different objectives, and settings. However, the study further proves that 
a single slice from MRI can be used to diagnose Alzheimer’s disease. The 
focus of this study is directed towards the use case of predicting Alz
heimer’s from a single MRI slide using a CNN. 

Ethical approval and consent to participate 

Ethical approval for the data (and subsequently its release) was 
received from the local MIRIAD research ethics committee, and written 
consent was obtained from all participants (see Malone et al. [28]). 

Consent for publication: Consent for publication using the dataset is 
provided by Malone et al. (see Ref. [28]). 

Availability of data and materials 

The MIRIAD (Minimal Interval Resonance Imaging in Alzheimer’s 
Disease) dataset is publicly available. Data are here made publicly 
available as a common resource for researchers to develop, validate and 
compare techniques, particularly for measurement of longitudinal vol
ume change in serially acquired MR (see Ref. [28]). By registering and 
agreeing to the data use agreement the data can be downloaded. Data
sets are available in the MIRIAD database for research, which is acces
sible after registration from a public repository using the following URL: 
https://www.ucl.ac.uk/drc/research/research-methods/minimal-int 
erval-resonance-imaging-alzheimers-disease-miriad. 

Fig. 3. ROC-plot for different configurations of the CNN.  
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