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Abstract 

The current global biodiversity crisis is complicated by a data crisis. Reliable tools are 

needed to guide scientific research and conservation policy decisions, but the data 

underlying those tools is incomplete and biased. For example, the Living Planet Index (LPI) 

tracks the changing status of global vertebrate biodiversity, but gaps, biases and quality 

issues plague the aggregated data used to calculate trends. Unfortunately, we have little 

understanding of how reliable biodiversity indicators are. In this thesis I develop a suite of 

tools to assess and improve the reliability of trends in the LPI and similar indicators. First, I 

explore distance measures as a flexible toolset for comparing time series and trends. I test 

distance measures for properties related to time series comparisons and rate their relative 

sensitivities, then expand the results into a framework for choosing an appropriate distance 

measure for any time series comparison task in ecology. I use the framework to select an 

appropriate metric for determining trend accuracy. Second, I construct a model of trend 

reliability from accuracy measurements of sampled trend replicates calculated from 

artificially generated time series datasets. I apply the model to the LPI to reveal that the 

majority of trends need more data to be considered reliable, particularly across the global 

south, and for reptiles and amphibians everywhere. Finally, I develop a method to account 

for sampling error and serial correlation in confidence intervals of indicators that use 

aggregated abundance data from different sources. I show that the new method results in 

more robust and accurate confidence intervals across a wide range of dataset parameters, 

without reducing trend accuracy. I also apply the method to the LPI to reveal that the 

current method used by the LPI results in inaccurate and overly wide confidence intervals.  
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Impact Statement 

Biodiversity is the key to healthy ecosystems that provide essential services to sustain 

human life. Medicines, clean water, breathable air, a functioning climate, food, and many 

other life-sustaining services depend on biodiversity. But biodiversity is increasingly under 

threat from anthropogenic forces. To prevent its continued decline, there is a growing need 

for reliable data on the changing status of global biodiversity. Governments, NGOs, and 

scientists rely upon biodiversity indicators to provide this information to make decisions 

about policies, conservation, and research, but we have little understanding of their 

reliability. The work presented in this thesis will greatly help to improve our understanding 

of the state of knowledge on biodiversity trends, as well as pinpoint data deficient taxa and 

regions on which to focus research efforts. More importantly, it provides flexible 

methodological tools to aid and enable further investigations and discoveries. 

The selection method presented in Chapter 2 is much more flexible and broader than 

previous methods, making use of both existing and new research to aid scientists in 

choosing an appropriate distance measure for any time series comparison task. The work is 

presented in an ecological context and will expand the scope for using distance measures to 

answer ecological questions; however, it is also broadly applicable and may be useful or 

inspirational to scientists from many other disciplines. The modelling approach presented in 

Chapter 3 will move forward the field of indicator assessment by providing a flexible 

modelling framework that can be used to predict indicator accuracy instead of just testing 

responses to modelled scenarios. I demonstrate its potential by using it to assess the level of 

data deficiency underlying all regional taxonomic group trends in the Living Planet Index and 

quantifying the number of populations needed to overcome data deficiency for each trend. 

This work can be used to direct data-aggregation efforts for the Living Planet Index, and to 

focus future data-collection efforts where they are most needed. It will also provide policy 

makers with information on which trends are reliable before making consequential 

decisions. Chapter 4 introduces a new approach to calculating confidence intervals for 

biodiversity indicators that use aggregated data from multiple sources. Current methods are 

unable to produce reliable confidence intervals as they fail to take sampling error and serial 

correlation into account. The new approach solves these issues, which I demonstrate using 
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the Living Planet Index. Both the modelling framework and the method of calculating 

confidence intervals can be easily adapted to other biodiversity indicators. 

All the code I produced for my projects is available online, open source. I have already 

adapted parts of the code from Chapter 3 for use in a real-time online-accessible version of 

the Species Information Index. I also used my understanding of biodiversity trends and 

indicators to contribute to a manuscript (currently on bioRxiv but intended to be submitted 

for publication) that used counterfactual analysis to reveal the impact of conservation 

actions on populations in the Living Planet Database.  
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Thesis outline of contents and collaborators 

Chapter 1 

Introduction. 

In this chapter, I introduce the concepts and focus of this thesis, and highlight important 

gaps in the field of biodiversity indicators that this thesis aims to fill. 

Chapter 2 

Selecting appropriate distance measures to compare ecological time series 

In this chapter, I present an objective method to select the most appropriate distance 

measures for any ecological research that involves comparing time series. The work was 

conducted in collaboration with Monika Böhm, Robin Freeman, Sean Jellesmark and David J. 

Murrell. I conceived the study with input from DJM, RF, and MB. I produced all the code, 

synthetic data, and figures, and designed and conducted all analyses. Wading bird indices, 

along with percentage improvement and t-test results, were produced by SJ. Time series 

used for uncontrolled testing were obtained freely from the UCR Time-Series Classification 

Archive (Dau et al., 2019). I wrote the paper, with critical feedback from all authors. This 

work is available on bioRxiv under the title ‘A user-friendly guide to using distance measures 

to compare time series in ecology’ and is under review at Methods in Ecology and Evolution. 

Original code is available online at https://github.com/shawndove/Trend_compare. Wading 

bird indices will be archived at Zenodo upon acceptance of the manuscript for publication. 

Datasets from the UCR Time Series Classification Archive are available at 

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/. 

Chapter 3 

Reliability and data deficiency in global vertebrate biodiversity trends  

In this chapter, I simulate datasets of population abundance time series and use them to 

build a model of accuracy for sampled trends. I then use the model to analyse the data 

underlying each regional taxonomic group trend in the Living Planet Index, assign reliability 

ratings to each trend, and determine the number of additional population time series 

https://github.com/shawndove/Trend_compare
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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needed to reach a threshold of reliability. This work was carried out in collaboration with 

MB, RF, Louise McRae, and DJM. I conceived the study with input from DJM, RF, and MB. I 

produced all the code, synthetic data, and figures, and designed and conducted all analyses. 

I wrote the paper, with critical feedback from all authors. Original code is available at 

https://github.com/shawndove/DD_LPI. Some of the time series from the Living Planet 

Database are not available for public use, but a limited public version of the database is 

available at https://www.livingplanetindex.org/data_portal. Simulated datasets used for 

analysis comprise more than 250 GB and are thus too large to archive online but can be 

approximately reproduced using the available code and parameter settings. 

Chapter 4 

Accounting for sampling and measurement error in aggregated abundance-based 

biodiversity indicators 

In this chapter, I introduce a new method of calculating confidence intervals for aggregated 

abundance-based biodiversity indicators that accounts for sampling error and serial 

correlation. The work was carried out in collaboration with MB, RF, and DJM. RF, DJM, and I 

jointly conceived the study. RF provided the GAM resampling code. I wrote the rest of the 

code, produced the synthetic data and figures, and designed and conducted all analyses. I 

wrote the paper, with critical feedback from all authors. Original code is available at 

https://github.com/shawndove/LPI_Sampling_Error. Some of the time series from the Living 

Planet Database are not available for public use, but a limited public version of the database 

is available at https://www.livingplanetindex.org/data_portal. Simulated datasets used for 

analysis comprise more than 200 GB and are thus too large to archive online but can be 

approximately reproduced using the available code and parameter settings. 

Chapter 5 

Discussion and synthesis 

In this chapter, I evaluate the key findings and methodological contributions of this thesis 

and place them into context. I also discuss some of the limitations of the work, and explore 

challenges and future directions of biodiversity indicator research. 

https://github.com/shawndove/DD_LPI
https://www.livingplanetindex.org/data_portal
https://github.com/shawndove/LPI_Sampling_Error
https://www.livingplanetindex.org/data_portal
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Chapter 1: Introduction 

The reign of modern humans is devastating global biodiversity (Primack, 2018). Coral reefs 

are dying as the ocean warms, old-growth forests are being cut down or burned to make 

way for agriculture, and overexploitation is pushing many species to the brink of extinction. 

In the geological eye-blink since we evolved, we have accelerated the pace of species 

extinctions to a thousand times the normal background rate (de Vos et al., 2015). If we do 

not act soon to prevent it, we could cause a 6th mass extinction event (Barnosky et al., 

2011).  

The goal of conservation science, and by extension, conservation scientists, is to protect 

biodiversity (Primack, 2018). But to protect the world’s biodiversity, we need to understand 

it. What is out there, where is it, and how is it doing? More importantly, we need to know 

how the situation is changing, and be able to relate changes to drivers so that we can 

influence them. The problem is that our understanding of global biodiversity and its trends 

is limited by lack of data (Hortal et al., 2015; Turak et al., 2017). So far, we have described an 

estimated 14% (Mora et al., 2011) of extant species, and assessed less than 2.7% of 

described species for extinction risk (Barnosky et al., 2011), and we have detailed 

demographic information for only 1.3% of tetrapod species (Conde et al., 2019). In the 

context of a global biodiversity crisis, this constitutes an urgent data crisis. 

Decisions about which species, ecosystems, or geographical areas to protect hinge on 

knowing which ones need protecting, why, and how successful any previous efforts have 

been. Attempts to comprehensively assess global biodiversity (e.g., the Intergovernmental 

Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES), and to set policies 

and goals that will halt or reverse its loss (e.g., the Convention on Biological Diversity, CBD, 

and Sustainable Development Goals, SDGs), need reliable and up-to-date scientific 

information (Jetz et al., 2019). Governments, conservation organizations, and researchers 

contribute, but most studies and tracking programs are either species- or region-focused, 

temporally limited and inherently biased, leaving large geographic and taxonomic 

knowledge gaps (Hortal et al., 2015; Jetz et al., 2019; Meyer et al., 2015; Proença et al., 

2017; Turak et al., 2017). Advances in technologies such as camera tracking, satellite 

sensors, digital image recognition, network speed and capacity, data access, and mobile 
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devices are improving our ability to track and count populations of birds and mammals 

(Lausch et al., 2016; Nichols et al., 2011; Rose et al., 2015), but even for these species our 

datasets are far from complete. The situation is worse for amphibians, reptiles, insects, and 

other groups, for which many species have yet to even be described (Mora et al., 2011).  

We need tools to improve our understanding of global biodiversity within the limitations 

imposed by our biased and incomplete datasets. Mace & Baillie (2007) suggested a solution: 

develop indicators based on existing data, understand data biases, and develop methods to 

reduce the bias. Biodiversity indicators summarize complex scientific information in a simple 

way, often serving as a bridge between science and policy (Secretariat of the Convention on 

Biological Diversity, 2006). Biodiversity indicators are used for monitoring biodiversity 

trends (Jones et al., 2011), progress towards conservation goals (Buckland et al., 2012), and 

impacts of biodiversity policies (Nicholson et al., 2012), and for understanding the impacts 

humans have on the environment (Watermeyer et al., 2021). They also aid in management 

decisions and serve political purposes, spurring community dialogue and influencing 

resource allocation toward urgent conservation issues (Robertson & Hull, 2001). But given 

the limitations imposed by the state of biodiversity knowledge, indicators can only 

summarize a fraction of the biodiversity they purport to measure. Therefore, to what extent 

can we rely on biodiversity indicators to present a true picture of the changing state of 

global biodiversity? That is the fundamental question I address in this thesis. 

1.1. Measuring Biodiversity 

The concept of biodiversity lies at the core of conservation science, yet there is no 

scientifically agreed upon definition of what biodiversity is (Heink & Kowarik, 2010b; 

Newman et al., 2017). The United Nations’ Convention on Biological Diversity (CBD; United 

Nations, 1992, p. 3) defined biological diversity as “the variability among living organisms 

from all sources […] includ[ing] diversity within species, between species and of 

ecosystems.” The U.S. Congress (1987, p. 3) defined it to encompass “different ecosystems, 

species, genes, and their relative abundance.” Noss (1990) divided biodiversity into 

structural, functional, and compositional aspects, and three main levels of organization: 

ecosystem, species, and gene, with greater diversity at any of these levels or in any of these 

aspects making a sample more diverse. More recently, the concept of Essential Biodiversity 
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Variables (EBVs) was developed by the Group on Earth Observations Biodiversity 

Observation Network (GEO BON) to reduce the variety of possible biodiversity 

measurements to a manageable common framework of key measurements (Pereira et al., 

2013). There are six classes of EBVs, including genetic composition, species populations, 

species traits, community composition, ecosystem structure, and ecosystem function; 

however, debate continues over which of the many potential EBVs to codify within these 

classes (Schmeller et al., 2018). While there are many important biodiversity measures, this 

thesis will focus on species populations. 

Biodiversity is most commonly measured as species richness (Hillebrand et al., 2018; 

Redford & Sanderson, 1992), meaning simply the number of species. However, species are 

not equally common; in an environment or taxonomic group, typically a few species will be 

very abundant, many will be rare, and some will be moderately abundant (Magurran, 2004). 

Diversity indices such as the Simpson’s Diversity Index (Simpson, 1949) and the Shannon 

Diversity Index (Shannon, 1948) take abundance into account, describing some combination 

of species richness and species evenness (the similarity in abundances between species). 

With an awareness of ongoing human impacts to the environment, such as anthropogenic 

climate change, deforestation, and agricultural expansion and intensification, there has 

been an increase in focus on measuring changes in biodiversity over time, referred to as 

biodiversity trends. Species richness and species evenness are inadequate for measuring 

temporal changes in biodiversity. If abundance declines evenly across species, there will be 

no change in evenness. Neither will richness change unless and until extinctions occur (and 

are recorded). Furthermore, invasive species introductions can contribute to an increase in 

richness while simultaneously causing declines in abundance (Hillebrand et al., 2018).  

Comparing biodiversity across sites or time periods also requires consideration of scale, 

particularly if using a measure that involves species richness, as richness is an absolute, and 

therefore scale-dependent, value (Chase & Knight, 2013). Furthermore, richness estimates 

depend on total and relative abundance, spatial aggregation, and density, as e.g., less 

abundant and less aggregated species are less likely to be discovered or counted during 

surveys (Hillebrand et al., 2018). Finally, richness may not reflect changes in species 

composition, as immigrations due to human-mediated dispersal or human-caused 
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environmental change may meet or exceed extinctions, and often occur far in advance of 

extinctions (Elahi et al., 2015; Hillebrand et al., 2018; Sax et al., 2002). With immigration and 

range expansions occurring on a wide scale, richness can show markedly different changes 

at different scales, with regional increases belying global declines while local richness 

remains stable (Dornelas et al., 2019; Thomas, 2013; Vellend et al., 2013). 

Biodiversity is widely believed to be declining globally, but the scale of this decline is a topic 

of controversy and may depend on how biodiversity is defined and measured (Dornelas et 

al., 2014, 2019; Gonzalez et al., 2016; McGill et al., 2015; Vellend et al., 2013, 2017). There 

are many ways to quantify or measure biodiversity change. McGill et al. (2015) defined 

fifteen different types of biodiversity trends. However, biodiversity cannot be measured 

comprehensively even on a small scale; therefore, indicators are used (Duelli & Obrist, 

2003). In general, indicators are surrogate measures intended to be simpler or easier to 

measure than the parameter they indicate (Gregory & van Strien, 2010). However, 

indicators may be simple or complex, one or multi-dimensional, measure directly or 

indirectly, be descriptive or normative, and may or may not be a component of the 

indicandum, i.e., the parameter being indicated (Heink & Kowarik, 2010a). Biodiversity 

indicators may have to contend not only with the question of how biodiversity is to be 

defined, often further complicated by spatial considerations, but also with the question of 

relative importance (Duelli & Obrist, 2003). For example, are some species more valuable (in 

conservation terms) than others due to rarity, life history traits, extinction risk, evolutionary 

uniqueness, etc.?  

1.2. Types of Biodiversity Indicators 

State indicators measure biodiversity change. There are also indicators measuring pressures 

and drivers that influence biodiversity change, indicators measuring conservation measures 

taken in response to biodiversity change, and indicators measuring the socioeconomic 

impacts of biodiversity change (Biggs et al., 2007). However, this thesis is concerned only 

with measuring biodiversity change. Therefore, henceforth the term ‘biodiversity 

indicator(s)’ will refer only to state indicators.  
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State indicators can be further divided. Area-based indicators measure biodiversity change 

according to the fraction of occupied area in comparison to a reference year, e.g., of forests 

(FAO, 2020), coral reefs (Wilkinson, 2000), or mangroves (Wilkie & Fortuna, 2003). 

Fragmentation indicators measure the level of fragmentation of habitats, e.g., by mean 

fragment size or by using the density of roads as a proxy (Biggs et al., 2007). Extinction-risk 

indicators measure species’ risk of extinction. The Red List Index (Butchart et al., 2004) does 

this using empirical data on population sizes and trends, range extent and occupancy, 

population fragmentation, and threats, along with expert knowledge and/or judgment. 

Population-based indicators measure changes in abundance of populations. Some, such as 

the UK Farmland Bird Indicator (Gregory et al., 2004) or the European Grassland Butterfly 

Index (van Swaay et al., 2019), do this using a small number of species with high-quality data 

compiled at national or regional scales, while others, such as the Living Planet Index (McRae 

et al., 2017), utilize as much data as possible from various sources and quality levels, using a 

more complex methodology in an attempt to overcome biases and data quality issues at a 

global scale.  

Population-based indicators, particularly the Living Planet Index, are the focus of this thesis. 

The Living Planet Index is a global biodiversity indicator tracking the changing state of the 

world’s vertebrate biodiversity over time via population time series, beginning at a base 

year of 1970. While 1970 is modern enough that much of biodiversity decline likely 

happened prior to that date, population abundance data before 1970 is scarce due to a lack 

of monitoring programmes (Collins et al., 2020). The LPI is one of the oldest and best-known 

biodiversity indicators, with a 25-year development history (Ledger et al., 2022). It remains 

under constant development, with new time series added regularly, as well as 

methodological updates to improve indicator accuracy and address biases and criticism. The 

Living Planet Database underlying the LPI currently has more than 38,000 populations 

representing more than 6,000 vertebrate species (Ledger et al., 2022). Recently, the LPI has 

come under fire, with papers criticizing it for being biased towards decline due to random 

population fluctuations (Buschke et al., 2021) and oversensitivity to outliers (Leung et al., 

2020). The claims were themselves controversial, with Leung et al. (2020) receiving four 

published responses (Loreau et al., 2022; Mehrabi & Naidoo, 2020; Murali et al., 2022; 

Puurtinen et al., 2022). Nonetheless, the fallout resulted in the LPI being removed from the 
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Convention on Biological Diversity (CBD), where it was previously a headline indicator. Its 

long history, status and up-to-dateness, and the recent criticism, make the LPI an ideal 

candidate for examining the reliability and robustness of population-based global 

biodiversity indicators. 

1.3. Data Deficiency in Biodiversity Indicators 

We lack the data to fully understand how biodiversity is changing globally. Biodiversity 

indicators can aid in this by calculating proxy measurements from samples of the world’s 

biodiversity. But to provide accurate proxy measurements, samples must be sufficiently 

large and sufficiently representative. The quality and abundance of data varies widely 

between taxa and geographical regions (Boakes et al., 2010; Collen et al., 2008; Conde et al., 

2019; Hortal et al., 2015; McRae et al., 2017; Oliveira et al., 2016; Oliver et al., 2021; Scheele 

et al., 2019; Yesson et al., 2007). This is because resources are limited and data availability is 

generally a product of interest or convenience, rather than importance (Cardoso et al., 

2011; Oliveira et al., 2016). Birds are the best-known organisms, in no small part due to 

public interest, which leads to increased funding and the availability of citizen science data 

(Oliver et al., 2021). Birds are charismatic, visible and audible almost everywhere, even in 

big cities, and relatively easy to identify. By contrast, apart from a few charismatic or highly 

visible species, invertebrates remain largely unnoticed and poorly known, with millions likely 

still undescribed (Cardoso et al., 2011), and only 1.7% of described invertebrates assessed 

for extinction risk (Hochkirch et al., 2021). Even more extreme are microbes, which are 

generally invisible to the unaided eye, difficult to identify without genetic sequencing, and 

of very limited interest to the public; they are very poorly known, despite being the most 

abundant and diverse organisms on Earth (Shoemaker et al., 2017). The tropics are much 

more diverse than colder northern regions but are poorly studied and therefore much of 

their biodiversity remains undocumented or poorly understood (Collen et al., 2008). Marine 

and freshwater biodiversity are less understood than terrestrial biodiversity (Bouchet, 2006; 

Darwall et al., 2011; Miqueleiz et al., 2020), likely because underwater areas are less 

accessible and thus less visible. 
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On a small scale, data deficiency can be evaluated and even compensated. Expert 

assessment makes clear which species on the IUCN Red List are too data poor to reliably 

determine extinction risk, and these species are listed as data deficient. In many cases trait 

data and/or geographic distributions are available for data deficient species (Bland, Orme, 

et al., 2015), and this information may be used to indirectly assess them. Machine learning 

algorithms have shown promise for relieving data deficiency in the Red List Index (Bland et 

al., 2015; Bland & Böhm, 2016; Caetano et al., 2022), as have trait-based models (Luiz et al., 

2016; Walls & Dulvy, 2019; Welch & Beaulieu, 2018). However, these methods are only 

useful to predict individual species. Determining change in extinction risk requires repeated 

assessments of entire groups; therefore, a trend can only be calculated from the first year of 

assessment for that group. An advantage of a time-series based indicator like the LPI is that 

trends can be calculated using existing data. The Living Planet Database contains data from 

1950 and resulting LPI trends are assessed either from 1970 or from the earliest date for 

which time series exist in the database for a given group. On the level of individual species 

or populations, data deficiency is present in the form of old or short time series. Unlike the 

Red List Index, data deficient time series can still contribute to LPI trends, although in a 

reduced capacity. This is because the trends are calculated through a system of hierarchical 

aggregation of interannual changes, thus allowing individual time series to begin and end at 

any year in the index. There have to date been no successful attempts to use predictive 

methods to lengthen or update short or old time series, although efforts are underway 

(Ledger et al., 2022). But data deficiency can also be considered in relation to biodiversity 

trends; if a taxonomic group contains too little data to calculate an accurate trend, then that 

group can be considered as data deficient.  

1.4. Assessment of Biodiversity Indicators 

Given their use in management and policy decisions, as well as conservation, ecology, and 

environment research, it is important that biodiversity indicators be assessed to make sure 

they do what they claim. Biodiversity indicators have been assessed on several criteria, 

including feasibility, efficiency, sensitivity, specificity, measurability, predictability, 

complementarity, uncertainty, responsiveness, timeliness, relevance, design, effectiveness, 

and how fit for purpose they (Halouani et al., 2019; Jones et al., 2011; Link et al., 2009; 
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Mace & Baillie, 2007; Rowland et al., 2020; Watermeyer et al., 2021). In addition, it has been 

pointed out that there are spatial and taxonomic biases, and information gaps in underlying 

data (Hortal et al., 2015; Jetz et al., 2019; Meyer et al., 2015; Proença et al., 2017; Turak et 

al., 2017). But what has not been assessed, and is rarely discussed, is how accurately 

biodiversity indicators measure the indicandum. Consider a thermometer that has a scale of 

degrees and a liquid that expands and contracts when the temperature changes, but the 

internal diameter of the glass tube is inconsistent and the ticks on the scale are too far 

apart. This thermometer does what it is supposed to do; it measures temperature. But it is 

not a thermometer anyone would want to rely on because it will report inaccurate 

temperatures and respond unpredictably to temperature changes. However, this would only 

be clear when testing the thermometer against one known to be accurate. Likewise, a 

biodiversity indicator may do what it claims to but mislead by measuring biodiversity 

changes inaccurately. The only way to determine this is by testing it against a reference.  

The problem is that there is no reference. There is no direct way to measure the accuracy of 

biodiversity indicator trends because there is no basis for comparison. Biodiversity 

indicators are unique; what we know about the indicandum comes from the indicator. If the 

‘true’ situation was known the indicator would not be needed. However, there are indirect 

ways to approach the problem. Indicators are often tested using simulated data models that 

mimic real-world systems (Fulton et al., 2005; Halouani et al., 2019; Hill et al., 2016; 

Mccarthy et al., 2014; Rowland et al., 2020). This approach has the advantage that the 

parameters of the modeled data can be fully known, which is not possible in the real world 

due to insufficient data (Rowland et al., 2018). An alternative that may be feasible when 

real-world data is comprehensive is to use a sampled approach, as Baillie et al. (2008) did 

when testing the minimum sample size needed to achieve reliable trends when developing 

the sampled approach to the Red List Index (sRLI). This approach involves taking sub-

samples of existing real-world data and comparing the resulting trends to the trend of the 

full sample (Baillie et al., 2008). 
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1.5. Comparing Trends of Biodiversity Indicators 

Baillie et al. (2008) used a simple one-tailed test to compare the direction of linear trends in 

the sRLI, as the groups they tested were declining and their interest was in avoiding falsely 

positive trends. Henriques et al. (2020) updated this to include falsely neutral trends. They 

also added slope comparison, with stronger negative slopes in the samples considered 

correct and equal or less negative slopes considered false. Non-linear trends, such as those 

presented in the Living Planet Index, can be compared in various ways. One way is to treat 

them as linear and only compare the endpoints. It would then be possible to borrow the 

simplistic sRLI method with adaptations to account for groups with positive trends. 

However, this ignores important information contained in the more complex trends of the 

LPI, such as slope and directional changes. A trend could fall steeply, then change directions 

to become positive, yet still be below its starting index value. Treating such a trend as a 

linear negative trend would ignore the fact that biodiversity change had been strongly 

reversed, potentially leading to egregiously wrong results. As an extreme example, consider 

that a trend with the opposite trajectory (rising at the start, then changing direction and 

falling steeply) but the same end value would be considered accurate, although 

representing a negative scenario rather than a positive one. Information is valuable and 

should not be ignored without good reason. Other options include a statistical test, such as 

a t-test, or dividing each sampled trend into linear segments (e.g., one segment per year) 

and calculating the number of times it deviates in direction and/or slope from the reference 

trend. While these methods capture more information than an end point comparison by 

allowing for non-linearity, they still decouple the temporal aspect by ignoring the shape of 

the trend and treating it as a cloud of unconnected points. The temporal information 

contained in the order of points can be retained by comparing each segment or point on the 

sampled trend to its corresponding segment or point on the reference trend. One way to do 

this is by using a distance measure. 

The concept of a distance measure is as straightforward as it sounds, a measure of the 

distance between points. However, the way distance is calculated varies from the simple 

and familiar Euclidean distance, which uses the Pythagorean theorem, to distances based on 

complex algorithms that can match multiple points to a single point to account for time 
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series distortions (e.g., the Dynamic Time Warping distance – Berndt & Clifford, 1994; Mori 

et al., 2016), and distances based on particular features of time series, such as their 

estimated partial autocorrelation coefficients (the Partial Autocorrelation-based 

dissimilarity – Galeano & Peña, 2000; Montero & Vilar, 2014). There are many distance 

measures that either have been, or could be, used to compare time series. Distance 

measures are widely used by ecologists in time series comparison tasks, including 

classification, clustering, prediction, and anomaly detection (e.g., Capinha, 2019; Capinha et 

al., 2020; Marques et al., 2018; Potamitis et al., 2015; Priyadarshani et al., 2020). However, 

there is little discussion in the literature of how to select an appropriate distance measure 

for a given time series comparison task. While a few studies have analysed the classification 

accuracy of distance measures across different datasets (Bagnall et al., 2017; Paparrizos et 

al., 2020; Pree et al., 2014; Wang et al., 2013), they only discussed overall accuracy, ignoring 

dataset- and task-related differences. In my second chapter I fill this hole in the literature by 

developing an objective method to determine appropriate distance measures to use for any 

ecological time series comparison task. I evaluate 42 distance measures for 16 properties 

related to comparing time series, then show how to use the test results, along with a 

decision tree derived from existing literature, to choose a distance measure fit for the user’s 

purpose. I demonstrate the selection method on a set of UK bird population trends from a 

study of the effectiveness of conservation measures (Jellesmark et al., 2021). This distance 

measure selection method not only provides an objective basis to choose a distance 

measure for comparing biodiversity indicator trends, which I utilize in Chapters 3 and 4, but 

also provides a generalized method to aid ecologists and scientists from other disciplines 

who need to compare time series in selecting appropriate distance measures for their own 

projects. 

1.6. Reliability in Biodiversity Indicators 

The Living Planet Index is an aggregate index. It calculates a global biodiversity trend from 

population time series through a series of hierarchical averaging steps, and as such can also 

be disaggregated into three system trends (Terrestrial, Freshwater, Marine), sixteen realm 

trends (geographical areas within a given system), and fifty-seven regional taxonomic trends 

(taxa within realms) (McRae et al., 2017). The accuracy of each trend is a product of the 
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quality and quantity of the underlying data, as well as the design of the indicator (Collen & 

Nicholson, 2014). The LPI calculates trends using the geometric mean approach, which has 

been shown to be the most appropriate for abundance trends (Buckland et al., 2005; van 

Strien et al., 2012). However, the underlying data in the Living Planet Database (LPD) is 

known to be biased both geographically and taxonomically (McRae et al., 2017). The LPI has 

implemented a representative weighting system to account for this, which weights each 

disaggregated trend according to the number of species in that realm and taxon relative to 

others (McRae et al., 2017). However, this ignores that trends based on poorly represented 

regional taxonomic groups might be less accurate due to data paucity. I expect that the 

quantity of time series (sample size) used to calculate each trend, as well as underlying 

properties of the time series data, such as the length and the variance in growth rates, 

determine accuracy. I examine this idea in my third chapter, using a modeling approach to 

derive a formula for accuracy based on underlying properties of the population time series 

data the LPI is based on. I create simulated time series datasets using a generalized time 

series model with varied parameters. I then randomly sample from the datasets and 

compare the sampled trends to the trends of the full datasets using a distance measure 

chosen via the method developed in Chapter 2. I then apply the formula to the regional 

taxonomic groups of the LPI to determine reliability ratings for the disaggregated regional 

taxonomic trends, as well as the number of populations that would be required to achieve a 

reasonable threshold of reliability. While others have tested for appropriate responses of 

biodiversity indices in response to specific modeled scenarios (Fulton et al., 2005; Halouani 

et al., 2019; Hill et al., 2016; Mccarthy et al., 2014; Rowland et al., 2020), this is to my 

knowledge the first time anyone has created a generalized model of accuracy that can be 

used to assess the reliability of real-world trends. 

1.7. Uncertainty in Biodiversity Indicators 

All biodiversity indicators have some level of uncertainty associated. First, monitoring 

surveys introduce observational error (measurement error) through e.g., species 

misidentification and non-detection, errors in counting, and inaccurate plot area 

measurements (Elphick, 2008; Holdaway et al., 2014). Often, estimates of observational 

error are not reported (Morrison, 2016), although they may be substantial (Alldredge et al., 
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2008; Strickfaden et al., 2020). Second, as biodiversity cannot be comprehensively assessed, 

sampling must be involved, usually on multiple levels. Any form of sampling introduces 

sampling error. Population sizes of some large animals can be directly counted, but often it 

is inaccurate and too expensive, so various direct or indirect estimation methods may be 

used instead (Fryxell et al., 2014). For example, density can be estimated by averaging 

counts from a sample of plots (Fryxell et al., 2014), or mark-recapture can be used to 

indirectly estimate population sizes from samples by capturing a certain number of animals, 

marking them, releasing them, then capturing more animals and determining how many are 

marked. Standard errors can be calculated for population size or density estimates but are 

not always reported. Further, incorporating them into biodiversity indices can be more 

complicated. Extinction risk in the Red List Index is determined according to objective 

criteria. Those criteria include quantitative estimates, and may factor in standard errors, but 

extinction risk categories are qualitative and therefore do not have associated uncertainty 

(Akçakaya et al., 2000). Index values in the RLI are quantitative and therefore trends do have 

associated uncertainty in the form of confidence intervals. However, the confidence 

intervals only incorporate sampling variability (Baillie et al., 2008). To whatever extent, if 

any, uncertainty in quantitative estimates is accounted for in assessments of extinction risk, 

that uncertainty does not make it into the index. The Living Planet Index is purely 

quantitative. However, the Living Planet Database contains data from a wide variety of 

sources, including grey literature (McRae et al., 2017), which do not always provide 

estimates of observational or sampling error. Further sources of uncertainty in the LPI are 

introduced during calculation of the index, including sampling error when species trends are 

estimated from a sample of the populations within that species, and sampling error when 

taxonomic or regional trends are estimated from a sample of the species within that taxon 

or region. The LPI does present confidence intervals, but they only incorporate interannual 

variation in the species indices (Soldaat et al., 2017). An alternative Monte Carlo estimation 

method suggested by Soldaat et al. (2017) takes sampling error into account but is not 

compatible with the LPI because the indicator lacks site-based data (data collected 

systematically through repeated assessments at the same sites over many years). I address 

this issue in my fourth chapter by presenting a new method of generating confidence 

intervals for the LPI that accounts for multiple sources of sampling error without requiring 

site-based data. I apply a model-based resampling approach to population time series, 
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modeling each time series with a Generalized Additive Model and using the variance 

inherent in the model to generate variants of each time series to account for observation 

error. This method addresses criticism by accounting for sampling error to improve the 

relevance and accuracy of confidence intervals for LPI trends, and thereby improves the 

robustness of the LPI. 

1.8. Conclusion 

Biodiversity is complex and difficult to define, but there is little doubt that it is under threat. 

As we simultaneously face a climate crisis, biodiversity crisis, and data crisis, biodiversity 

indicators are becoming increasingly important to understanding the state of biodiversity 

across the planet so that we can respond appropriately with policies and conservation 

actions. The research I present in this thesis not only represents an important contribution 

to the field of biodiversity indicator research but will improve and enlarge the 

methodological toolbox for other ecologists and conservation scientists to utilize. In my final 

chapter, I place my research into context and explain its importance to the Living Planet 

Index, indicator research, and ecology in general. 
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Chapter 2: Selecting Appropriate Distance Measures to 

Compare Ecological Time Series 

2.1. Abstract 

1. Time series are a critical component of ecological analysis, used to track changes in biotic 

and abiotic variables. Information can be extracted from the properties of time series for 

tasks such as classification, clustering, prediction, and anomaly detection. These common 

tasks in ecological research rely on the notion of (dis-) similarity which can be determined by 

using distance measures. A plethora of distance measures have been described, 

predominantly in the computer and information sciences, but many of them have not been 

introduced to ecologists. Furthermore, little is known about how to select appropriate 

distance measures and the properties they focus on for time-series related tasks.  

2. Here I describe 16 potentially desirable properties of distance measures, test 42 distance 

measures for each property, and present an objective method to select appropriate 

distance measures for any task and ecological dataset. I then demonstrate my selection 

method by applying it to a set of real-world data on breeding bird populations in the UK. I 

also discuss ways to overcome some of the difficulties involved in using distance measures 

to compare time series.  

3. The real-world population trends exhibit a common challenge for time series comparison: 

a high level of stochasticity. I demonstrate two different ways of overcoming this challenge, 

first by selecting distance measures with properties that make them well-suited to 

comparing noisy time series, and second by applying a smoothing algorithm before selecting 

appropriate distance measures. In both cases, the distance measures chosen through my 

selection method are not only fit-for-purpose but are consistent in their rankings of the 

population trends.  

4. The results of my study should lead to an improved understanding of, and greater scope 

for, the use of distance measures for comparing ecological time series, and allow for the 

answering of new ecological questions.  
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2.2. Introduction 

Time series are a critical component of ecological analysis: ecologists use time series to track 

changes in biotic variables, such as population sizes and mean growth rates of individuals, as 

well as abiotic variables, such as temperature and atmospheric carbon dioxide. Time series 

provide insight into food web and ecosystem function and the causes and effects of 

environmental change, and are vital to any scientific approach to environmental 

management (Boero et al., 2015). Time series datasets may contain thousands or even 

millions of time series (e.g., The Living Planet Index – WWF, 2020; BioTIME - Dornelas et al., 

2018; the North American Breeding Bird Survey - Pardieck et al., 2020; the British Trust for 

Ornithology Breeding Bird Survey - Harris et al., 2020; and the Continuous Plankton 

Recorder Survey - Edwards et al., 2016). Ecologists make inferences through time series 

comparisons. For example, one might look for similarities or differences in climate change 

response between populations within or across geographic or taxonomic groups. However, 

examining and analysing each time series by hand is unwieldy.  

Data mining of time series is the process of extracting information from the properties of 

time series for tasks such as classification, clustering, prediction, and anomaly detection 

(Esling & Agon, 2012). These tasks are common in ecology, e.g., clustering time series of 

parasite counts to identify infection patterns (Marques et al., 2018); predicting the 

emergence of fruiting bodies by classifying time series of environmental drivers (Capinha, 

2019); identifying insect species by classifying wingbeat frequency signals (Potamitis et al., 

2015); surveying bird population sizes by classifying recorded calls (Priyadarshani et al., 

2020); and predicting species distributions based on time series of environmental variables 

(Capinha et al., 2020). These tasks all rely on the notion of (dis-) similarity. Clustering 

involves grouping similar time series together by maximizing the similarity within groups 

and minimizing the similarity between groups (Aghabozorgi et al., 2015; Esling & Agon, 

2012; Warren Liao, 2005). Classification is like clustering, except labels are predefined and 

new time series are assigned to existing clusters to which they are most similar (Keogh & 

Kasetti, 2003). Prediction may rely on similarity to determine accuracy by comparing 

predicted time series against the originals (Capinha, 2019; Esling & Agon, 2012). Finally, 
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anomaly detection involves comparing time series against an anomaly-free model to 

determine if they fall outside of a similarity threshold (Esling & Agon, 2012; Teng, 2010).  

Similarity between time series can be determined by using distance measures to measure its 

inverse: dissimilarity. Dissimilarity is more intuitive as a measurement because a value of 

zero occurs when two time series are identical (while similarity is at a scale-dependent 

maximum value). Distance measures can be broadly categorized into four different types: 

shape-based, feature-based, model-based, and compression-based. Shape-based distances 

compare the shapes of time series by measuring differences in the raw data values 

(Aghabozorgi et al., 2015; Esling & Agon, 2012) and can be further divided into lock-step 

measures and elastic measures. Lock-step measures compare each time point of one time 

series to the corresponding time point of another time series, while elastic measures allow a 

single point to be matched with multiple points or no points (Wang et al., 2013). Elastic 

measures fall into two groups. The first, Dynamic Time Warping (DTW), computes an 

optimal match between two time series by allowing single points to be matched with 

multiple points, thus allowing local distortion or ‘warping’ of the time dimension (Esling & 

Agon, 2012). The second comprises edit distances, which compare the minimum number of 

‘edits,’ or changes, required to transform one time series into another (Esling & Agon, 

2012). They are based on the concept of transforming one string into another by changing 

one letter at a time, with each ‘edit’ being an insertion, deletion, or substitution. Feature-

based distances compute some feature of time series, such as Discrete Fourier Transforms 

or autocorrelation coefficients, and use either a specialized or common distance function 

(e.g., the Euclidean distance) to determine the distance between the computed features 

(Mori et al., 2016a). Model-based distances compare the parameters of models fitted to the 

time series, such as autoregressive moving average (ARMA) models, with the advantage that 

they can incorporate knowledge about the process used to generate the time series data 

(Esling & Agon, 2012). Finally, compression-based distances assess the similarity of two 

digital objects according to how well they can be ‘compressed’ when connected (Cilibrasi & 

Vitanyi, 2018; Esling & Agon, 2012); the more similar the objects, the better they compress 

when joined in series (Esling & Agon, 2012). Although there are comparatively few model-

based and compression-based distance measures, there are many shape-based and feature-

based measures available.  
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 The choice of distance measure for any task should depend on the properties of the data to 

be analysed and the nature of the task (Esling & Agon, 2012). In practice, choosing a 

distance measure often becomes a matter of convenience. For example, the well-known 

and easy to use Euclidean distance is among the most widely used distance measures, 

although there are often better choices (Paparrizos et al., 2020; Wang et al., 2013). When 

investigating the performance of five distance measures for comparing animal movement 

trajectories, Cleasby et al. (2019) found that the most used measure was the least 

appropriate choice. One problem is that many distance measures originate within computer 

science, information science, systems science, and mathematics, and few are in common 

use within ecology. Another problem is that information on the strengths, weaknesses, and 

appropriate uses of distance measures is limited and often difficult to find. Some reviews of 

distance measures have been published (Esling & Agon, 2012; Lhermitte et al., 2011; 

Montero & Vilar, 2014; Mori et al., 2016a; Liao, 2005), but are not generally aimed at 

ecologists (but see Lhermitte et al., 2011); analysis of the properties of distance measures is 

limited, and guidance on how to choose an appropriate distance measure is either missing 

or very general. Other studies have analysed the classification accuracy of multiple distance 

measures across a variety of datasets (Bagnall et al., 2017; Paparrizos et al., 2020; Pree et 

al., 2014; Wang et al., 2013), but pooled the results to give overall performance scores. This 

ignores the fact that different distance measures perform better on different datasets and 

for different tasks. Kocher & Savoy (2017) tested 24 distance measures for six properties, 

then compared their effectiveness in classification on 13 real-world datasets. However, the 

study focused on a single task (author profiling, i.e., determining demographic information 

about the author of a document based on the document itself) and did not present a 

general method for selecting distance measures for other tasks. Furthermore, the distance 

measures that demonstrated all proposed properties did not perform best on real-world 

datasets. Mori et al. (2016b) developed an automated process for selecting distance 

measures based on nine quantifiable properties of datasets. However, their classifier is 

limited to clustering tasks, and only includes five common distance measures. I am not 

aware of any more generalized method of distance measure selection. 

In this study, I present a generalized, objective, user-driven method of choosing fit-for-

purpose distance measures for time-series comparison. I evaluate 42 distance measures for 
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16 properties related to time series comparison. I then demonstrate my selection method 

by applying it to a set of real-world UK bird population trends from a study of the 

effectiveness of conservation measures (Jellesmark et al., 2021). Finally, I discuss how to 

select appropriate distance measure(s) for any dataset and task. 

2.3. Methods 

I selected 42 distance measures from the literature (see Table S2.1 in Appendix 1 for a 

detailed list). I chose measures that had already been implemented in publicly accessible R 

packages, and that represented each of the categories we defined in the introduction, as 

well as a variety of potential use cases. Eighteen of the distance measures I selected are 

implemented in the R package ‘TSclust’ (version 1.3.1) and have been studied for use in 

clustering time series (Montero & Vilar, 2014). The other twenty-four are implemented in 

the R package ‘philentropy’ (version 0.5.0; Drost, 2018). 

I defined a set of 16 properties of distance measures that may be of interest in time series 

comparison: four metric properties, six value-based properties, five time-based properties, 

and one uncategorized property. Metric properties define whether dissimilarity is measured 

in metric space (a space that has physical meaning). Distance measures that do not 

demonstrate all the metric properties (semi-metrics and non-metrics; McCune & Grace, 

2002) are useful, but less intuitive (e.g., negative distances, or distances between identical 

objects may be non-zero). Value-based properties focus on dissimilarities on the y-axis 

(differences in values; Figs 2.1-2.2), while time-based properties focus on dissimilarities on 

the x-axis (differences in time; Fig. 2.1). 

2.3.1. Metric properties (adapted from McCune & Grace, 2002) 

M1. Zero distance. d(X, X) = 0. The dissimilarity value between a time series and itself 

should be zero. 

M2. Symmetry. d(X, Y) = d(Y, X). The dissimilarity value should be the same regardless of 

the order in which time series are compared, X to Y or Y to X. A distance measure 

without symmetry might, for example, cluster a collection of time series differently 

depending on how the time series are ordered. In the real world, distances within 

city road networks are often non-symmetric due to one-way streets. Animal 
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migration times might be non-symmetric if they are moving uphill in one direction 

and downhill in the other. 

M3. Triangle inequality. d(X, Y) ≤ d(X, Z) + d(Y, Z).  Given three time series, the distance 

between any pair of them should never be larger than the sum of the distances 

between the other two pairs of time series. This property is related to Euclidean 

geometry (one side of a triangle cannot be longer than the other two combined). A 

non-metric or semi-metric that does not satisfy the triangle inequality can cause 

errors for many clustering algorithms (Jacobs et al., 2000). On the other hand, some 

time series classification problems require a distance measure that does not satisfy 

the triangle inequality, e.g., when it is important to ignore outliers or whole subsets 

of observations (Weinshall et al., 1998). Matching many points to a single point, 

which allows for warping invariance (T3 below) would not be possible with a metric 

distance. Therefore, comparing animal calls or movement patterns or other time 

series that may have a similar pattern but with one time series stretched relative to 

the other may require a semi-metric (e.g., DTW) or non-metric for accurate 

classification. 

M4. Non-negativity. d(X, Y) ≥ 0. The dissimilarity value should never be less than zero. 

Mathematically, this must be true if properties M1, M2, and M3 are true. However, 

some distance measures that do not satisfy the triangle inequality can return 

negative dissimilarity values. 

2.3.2. Value-based properties 

V1. Translation invariance (also called amplitude shifting invariance or offset invariance; 

Fig. 2.1a). d(X + q, Y) = d(X, Y), where q is any real number (Batyrshin et al., 2016). 

Increasing the value of all observations of one time series by the same amount q 

should not change the dissimilarity value. Translation sensitivity can be defined 

where the dissimilarity between X and Y increases relative to the value of q, and 

translation insensitivity where the dissimilarity between X and Y increases by an 

amount that is independent of q. Translation sensitivity can be measured in relative 

terms, allowing comparison between distance measures. Invariance to translation 

can be useful when time series have different starting values, e.g., time series of 

radiation spikes with different background levels. However, it is often easier to apply 
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a normalization or scaling adjustment so that all time series start at the same value. 

See Section S2.2 in Appendix 1 for a more detailed discussion of this property. 

V2. Amplitude sensitivity (Fig. 2.1b). Translation sensitivity can be defined on a local 

scale (sensitivity to translation of a section of a time series) and in that case will be 

referred to as amplitude sensitivity. If a vertical shift transformation, f(t) = t + q, is 

applied to one or more observations t of time series X to form time series Y, d(X, Y) > 

d(X, X) and d(X, Y) increases with q (sensitivity). This could be important, for 

example, in determining deviations in the strength of seasonal temperature 

patterns. See Section S2.2 in Appendix 1 for a more detailed discussion of this 

property. 

V3. White noise invariance (invariance against random noise; Fig. 2.1c). d(X + f(X), Y) ≈ 

d(X, Y), where f(X) is a function that adds a small pseudo-random value from a 

normal distribution with a mean of zero and standard deviation q to each 

observation of time series X (adapted from Lhermitte et al., 2011). Adding a random 

noise term to one time series from a pair should have an inconsequential effect on 

the dissimilarity value between them. A distance measure sensitive to white noise 

will show an increase in dissimilarity values relative to q, allowing us to obtain a 

relative measure of robustness against white noise. Robustness against white noise 

might be desirable, e.g., when comparing trends of stochastic processes, such as 

population growth.  

V4. Biased noise invariance (invariance against non-random noise, i.e., noise in a single 

direction; Fig. 2.1d). d(X + f(X), Y) ≈ d(X, Y), where f(X) is a function that adds a small 

non-random value q to half of the observations (randomly chosen) of time series X 

(adapted from Lhermitte et al., 2011). Biased noise is different from random noise in 

that it is in a single direction and therefore more likely to be systematic. An 

invariance or low sensitivity to biased noise might be important, e.g., if comparing 

time series of vegetation density calculated from satellite images biased by 

differential cloud cover. 

V5. Outlier invariance (Fig. 2.1e). d(X + f(X), Y) ≈ d(X, Y), where f(X) is a function that adds 

a large pseudo-random value q to a single randomly chosen observation of time 

series X. Outlier sensitivity is thus defined as the dissimilarity value increasing with q, 

and is a specific case of amplitude sensitivity limited to a single time point. Sensitivity 
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to outliers is useful for detecting anomalies or disruptive events, but robustness may 

be preferred where outliers represent measurement errors or irrelevant anomalies. 

V6. Antiparallelism bias (see Fig. 2.2). Antiparallelism refers to line segments or trends 

which have slopes with the same value but opposite signs, while parallelism refers to 

those which have identical slopes in both value and sign. A distance measure with 

positive antiparallelism bias ignores the sign of the slope and treats antiparallel and 

parallel trend curves the same. A distance measure with negative antiparallelism bias 

treats trend curves with opposite signs as more dissimilar than those with identical 

signs. Distance measures with no antiparallelism bias (neutral) measure absolute 

differences on the y-axis, without respect to slope or direction. Mathematically, if Y = 

f(X), where f(X) is a function that reflects X across the axis of t0 (for all t in X, 𝑌𝑡𝑖
=

2𝑋𝑡0
− 𝑋𝑡𝑖

), and Z = g(X), where g(X) is a function that applies a scale transformation 

to X relative to t0 such that the absolute difference in summed values between Z and 

X is the same as that between Y and X (for all t in X, 𝑍𝑡𝑖
= 3𝑋𝑡𝑖

 – 2𝑋𝑡0
), then d(X,Z) > 

d(X,Y) for positively biased distance measures; d(X,Z) < d(X,Y) for negatively biased 

measures; and d(X,Z) = d(X,Y) for neutral measures. Whether and which kind of 

antiparallelism bias is desirable depends on the application. For example, it might be 

important to differentiate between positive and negative fluctuations from a 

baseline value of energy flow, which would require a distance measure with a 

positive or negative antiparallelism bias; conversely, if the only concern were the 

magnitude of fluctuation, a neutral distance measure might be preferred. 

2.3.3. Time-based properties 

T1. Phase invariance (Fig. 2.1f). d(Xi+p, Yi) = d(Xi, Yi) (adapted from Lhermitte et al., 2011). 

Phase invariance is the x-axis equivalent of translation invariance. If all observations 

of X are shifted temporally by the same value p, it should not affect the dissimilarity 

value. Phase invariance may be a desirable property to detect similarities that occur 

separated in time. For example, when matching audio recordings of bird songs, it is 

likely that similar songs occur at different time points in different recordings. 

Conversely, when comparing population trends of different species within a 

community or geographical area to see which ones responded similarly to a 
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disruptive event occurring at time t, phase invariance is not a desirable property as 

responses should match in time. 

T2. Time scaling invariance (Fig. 2.1g). d(Xpi, Yi) = d(Xi, Yi) (adapted from Esling & Agon, 

2012). If one time series is expanded or compressed along its time axis, the 

dissimilarity value should not change. This property is useful for certain applications, 

such as comparing animal behaviour patterns occurring at different speeds. 

T3. Warping invariance (Fig. 2.1h). Time scaling invariance can be defined locally, i.e., 

involving the expansion or compression of one or more sections of a time series, 

rather than the entire series (Batista et al., 2011). If a function f(Si) = Spi is applied to 

expand or compress S, where S is any subset of X, S ⊆ X, to form time series Y, then 

d(X,X) = d(X,Y). Warping invariance is particularly useful when matching similar time 

series which have plateaus or valleys of uneven lengths. For example, recordings of 

bird calls may have pauses of different lengths. 

T4. Frequency sensitivity (Fig. 2.1i). If time series Y is obtained by applying the same 

transformation f(t) to one or more observations t of time series X, such that d(X, Y) > 

d(X, X), then the dissimilarity value will depend on the number of observations to 

which the transformation f(t) is applied. In other words, if a distance measure is 

sensitive to frequency, increasing the number of differences between two time 

series should increase the dissimilarity value. This could be important, for example, 

to rank a set of environmental time series according to the number of aberrations. 

T5. Duration sensitivity (Fig. 2.1j). If time series Y is obtained by applying the same 

transformation f(t) to one or more consecutive observations of time series X, such 

that d(X, Y) > d(X, X), then the dissimilarity value will depend on the number of 

consecutive observations to which the transformation f(t) is applied. This property is 

a special case of frequency sensitivity. Distance measures which are sensitive to 

duration must be sensitive to frequency, but the converse is not true. Continuing the 

example from T4, ranking a set of environmental time series according to the 

number of aberrations without respect to the lengths of those aberrations would 

require a distance measure sensitive to frequency but not duration. See Section S2.2 

in Appendix 1 for a more detailed discussion of this property. 
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2.3.4. Other properties 

N1. Non-positive value handling. Some distance measures will not return results if the 

data contains negative values or zeros. This has implications e.g., for tasks such as 

classification, where it is common to first perform min-max normalization to rescale 

time series values to [-1,1]. 

 

Figure 2.1. Illustration of time series distortions. They are used to demonstrate sensitivities or 

invariances of distance measures to a) translation; b) amplitude; c) white noise; d) biased noise; e) 

outliers; f) phase; g) time scaling; h) warping; i) frequency; and j) duration. A dissimilarity value of zero 

(or equivalent, for any distance measure not demonstrating uniqueness) between any of the illustrated 

pairs of time series would indicate an invariance to that type of distortion.  
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Figure 2.2. Illustration of antiparallelism bias.  Time series X and Y are antiparallel (Y has the same 

slope as X, but in the opposite direction), while Z has a different slope than X, but in the same 

direction. The total difference in values between X and Z is the same as that between X and Y. Distance 

measures with positive antiparallelism bias rate time series X as more dissimilar to time series Z than 

to time series Y, while the opposite is true for those with negative antiparallelism bias. Distance 

measures with neutral antiparallelism bias rate the time series pairs as equally dissimilar.  

2.3.5. Metric properties tests 

The metric properties of some distance measures are specified in the literature, but for 

others it is unclear. Therefore, I devised a set of tests for metric properties. I confirmed the 

robustness of my tests by comparing my results to the literature for distance measures with 

known metric properties. 

The test for uniqueness was conducted by comparing a time series first to itself, and then to 

a similar time series with a value difference at a single point. For distance measures with 

threshold settings (e.g., EDR), I set the threshold to zero to ensure they would recognize the 

difference. Any distance measure that returned a value of zero when comparing the time 

series against itself, and any non-zero value when comparing it against a time series with a 

value difference at a single point, was considered to demonstrate uniqueness.  

Symmetry was tested by comparing a pair of different time series, X and Y, in both forward 

order, d(X, Y), and reverse order, d(Y, X). If the two values returned were identical, the 

distance measure was considered to demonstrate symmetry. I ensured that the time series 
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were different enough that no distance measure returned zero for both forward and reverse 

order.  

The triangle inequality and nonnegativity properties were tested by comparing thousands of 

short, randomized time series generated by a stochastic exponential model. Shorter time 

series were better at detecting violations, so I set the length to five. I generated 300,000 

time series and divided them into 100,000 sets of three. Within each set of three, I 

considered each time series to represent one corner of a triangle and compared them 

pairwise, with the resulting distances representing the sides of the triangle. I then 

subtracted the two shorter sides from the longest side. If the difference was greater than 

zero for any of the 100,000 sets, then the distance measure was considered to violate the 

triangle inequality. Additionally, if any of the 300,000 time series comparisons produced a 

negative value, the distance measure was considered to violate nonnegativity. I set the time 

series generator such that zeros and negative values were included in some time series, as 

some distance measures satisfy the triangle inequality and/or non-negativity only when all 

input values are positive or non-negative. 

Distance measures were classified as ‘Full’ for full metric if they passed all metric tests, 

‘Semi’ for semi-metric if they passed all tests except the triangle inequality, or ‘Non’ for non-

metric if they failed one or more of the other tests. 

Settings for adaptive distance measures (distance measures with settings that can be 

changed to alter their behaviour) were set at defaults given in examples from the 

documentation of the TSdist R package (Mori et al., 2016). For triangle inequality and 

nonnegativity tests, I kept the same settings for initial testing. If they passed the tests at 

those settings, I tested them over a range of settings. If they failed at default settings, there 

was no need for further testing. 

2.3.6. Time-based and value-based properties tests 

I performed two types of testing for non-metric properties in this study. Controlled testing 

was performed on sets of short, simple time series to clearly demonstrate specific 

properties. However, the demonstrated properties may not translate as clearly onto real-

world datasets, and the behaviour of distance measures may vary depending on the types of 
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time series involved (see Lhermitte et al., 2011). Therefore, I employed uncontrolled testing 

by applying functions to real-world time series from the UCR Time-Series Classification 

Archive (Dau et al., 2019) to induce differences, then comparing the altered time series to 

their unaltered counterparts. I applied the functions over a range of parameters, then 

plotted the resulting curves to show how responses of distance measures vary with 

magnitude. 

2.3.7. Controlled testing 

I used the Manhattan distance as a basis for devising controlled sensitivity tests for 

translation, amplitude, duration, frequency, white noise, biased noise, and outliers. The 

Manhattan distance is the summed absolute difference between each pair of points in a 

time series. It is a simple-to-calculate metric and demonstrates all the sensitivities I tested 

for. Furthermore, it responds to sensitivity tests in a linear manner. These properties make 

the Manhattan distance an ideal basis for comparison of other distance measures.  

For each sensitivity test, I constructed a series of five time series with linearly increasing 

differences, T1, T2, ..., T5, such that the differences in absolute value between point pairs of 

any consecutive pair of time series summed to one. Thus, the Manhattan distance between 

any pair of consecutive time series, Ti and Ti+1, was one, and between any non-consecutive 

pair of time series, Ti and Ti+j, is j. For example, the Manhattan distance between T1 and T2 

would be one, between T2 and T3 would be one, and between T1 and T5 would be five. 

Sensitivity tests were conducted for each distance measure by comparing each time series Ti 

in the set T1, T2, ..., Tn, to T1. Any distance measure returning a dissimilarity value of zero for 

every pair of time series for a given sensitivity test would be considered as invariant for that 

property, while a distance measure returning the same non-zero value for every time series 

pair would be considered as insensitive (note that invariance implies insensitivity, but 

insensitivity is not the same as invariance. Distance measures that demonstrate insensitivity 

to a property register differences as binary—different or not different—while those 

demonstrating invariance do not register differences at all).  

Sensitivity is calculated as the mean of all distances between consecutive time series, 
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𝑠 =
∑ 𝑑(𝑇𝑖,𝑇𝑖+1)𝑛−1

𝑖=1

𝑛
  ,                                             (2.1) 

where s is sensitivity, d(Ti, Ti+1) is the distance between a pair of consecutive time series Ti 

and Ti+1, and n is the total number of time series being compared.  

Given that s is an absolute sensitivity value, its interpretation is dependent on the scale of 

the distance measure. A scale-independent relative sensitivity is obtained by 

             𝑟𝑠𝑥 =
𝑠𝑥

𝑠𝜇
  ,                                                               (2.2) 

where rsx is the relative sensitivity to property x, sx is the absolute sensitivity to that 

property, and sμ is the mean of absolute sensitivities to all tested properties. 

The sensitivity values for all distance measures are separated into five bins and designated 

as ‘Very Low,’ ‘Low,’ ‘Medium,’ ‘High,’ or ‘Very High.’ The sensitivity value for the 

Manhattan distance is one for every property and serves as the median value for the bins, 

which are: less than 0.2, 0.2 to 0.75, 0.75 to 1.25, 1.25 to 2.5, and greater than 2.5, 

respectively. Note, however, that the equation for sensitivity is derived from the linear slope 

equation, but the sensitivity for many distance measures is non-linear. The calculated 

sensitivity is a linear approximation along the tested range.  

Phase invariance testing was conducted in a similar way to sensitivity testing, with T1, T2, ..., 

T5 representing a set of time series, with the difference in phase increasing with i in Ti. 

However, the Manhattan distance could not be used as a basis for comparison. This is 

because lock-step distance measures (those that match every time point one-to-one), 

including the Manhattan distance, do not respond to time translation in a way that can be 

interpreted by a function. Distance measures were designated as ‘Inv’ (meaning they 

demonstrated phase invariance) when the dissimilarity between every pair of time series 

was 0, ‘Ins’ (insensitive) when every pair of time series returned the same non-zero 

dissimilarity value, ‘Sens’ (sensitive) when the dissimilarity value was dependent on i, or 

‘Unp’ (unpredictable) when dissimilarity values differed but did not depend on i. For those 

distances with window size settings (e.g., some distance measures that act stepwise along 

time series have a setting to control how many time points are considered in each step), I 
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set the window large enough to cover the maximum difference in phase (that between T1 

and Tn). 

Time scaling invariance was tested using a set of time series in which Ti+1 was stretched 

compared to Ti. This involved lengthening the time series Ti, keeping the first and last time 

points the same while altering the values at each time point in between to fit the shape 

change. Warping was tested by stretching only one horizontal section of a time series, such 

that a set was formed, with Ti+1 longer than Ti. As with phase invariance, results for time 

scaling invariance and warping invariance were not compared against the Manhattan 

distance. The Manhattan distance and other lock-step distance measures are unable to 

handle time series with different lengths and therefore by default are not invariant to 

uniform time scaling or warping. Thus, elastic distance measures were tested and 

designated as either ‘Inv’ (invariant) if all returned dissimilarities were zero, ‘Ins’ 

(insensitive) if all returned dissimilarities were identical and non-zero, ‘Sens’ (sensitive) if the 

returned value depended on the degree of time scaling or warping, or ‘Unp’ (unpredictable) 

if returned values differed but did not depend on the degree of time scaling or warping. All 

lock-step distance measures were designated as ‘n/a.’ 

Antiparallelism bias was tested by comparing pairs of time series that differed by the same 

relative amount in different directions. Distance measures were designated as having 

‘Positive’ bias if they gave a greater dissimilarity value to pairs of time series differing in the 

same direction than to pairs differing in the same direction, ‘Negative’ bias if they gave a 

greater dissimilarity value to those differing in opposite directions, or ‘Neutral’ if they 

assigned each pair of time series the same dissimilarity value. 

2.3.8. Correlation between distance measures 

I used the relative sensitivity values (before binning) for translation invariance, amplitude 

sensitivity, white noise invariance, biased noise invariance, outlier invariance, frequency 

sensitivity, and duration sensitivity to test for correlations between distance measures, to 

determine how similarly related and unrelated distance measures responded to my 

properties tests. First, I calculated the Pearson correlation between each pair of distance 

measures. I then separated the results into pairwise correlations of distance measures 
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within the same families and pairwise correlations of unrelated distance measures, and 

performed a Welch two sample t-test to determine if distance measures within the same 

family or group are more closely correlated than unrelated distance measures. 

2.3.9. Uncontrolled testing 

Uncontrolled tests were performed on two real-world time series (Fig. 2.3) from the UCR 

Time-Series Classification Archive (Dau et al., 2019), an archive of 128 time-series datasets 

intended for testing of classification algorithms. One was randomly selected from the Yoga 

dataset and represents body movement during pose transitions. Captured images of actors 

were converted to one-dimensional time series by calculating the distance between the 

outline and its centre. The other time series was randomly selected from the Synthetic 

Control dataset and is a synthetically generated pattern designed to be quantifiably similar 

or dissimilar to other time series in the dataset. Neither of these are ecological time series, 

but it does not matter for the purpose of generalized testing. 

I created a function for each property to be tested, which applies a transformation to one or 

more time points of a real-world time series. Each function accepts a value q, the purpose of 

which varies depending on the function (see section S2.3 in Appendix 1 for details). For 

example, the translation function adds a real number q to every observation value of a time 

series. The transformed time series is returned as output and compared against its 

unaltered counterpart. I applied the functions to a range of q in increments, then graphed 

the results as response curves (Figs S2.2-S2.5 in section S2.6 of Appendix 1). I did not 

compare them against a reference or assign sensitivity ratings as they were intended only as 

a confirmatory check against the results of controlled testing. 
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Figure 2.3. Examples of time series used for uncontrolled testing.  One time series from each of the Yoga 

(top) and Synthetic Control (bottom) datasets of the UCR Time-Series Archive (Dau et al., 2019). Time series in 

the archive are z-normalized. Therefore, I applied a translation shift before testing to ensure compatibility with 

distance measures that are unable to handle zeros or negative values. 

2.3.10. Selection process 

I devised a three-step selection process to guide researchers through determining the most 

appropriate distance measure(s) for their intended application. The selection process 

utilizes a set of purpose-built tools that I created by combining the results of my properties 

tests with existing knowledge from the literature (especially Esling & Agon, 2012). The first 

step is to use a decision tree (Figs 2.11-2.12) to select a general category of distance 

measures. Step two is to use Table 2.1 to determine which pre-processing steps might be 

necessary to prepare the dataset and/or to further narrow the choice of distance measures. 

The final step is to determine which properties will be most important to achieve the 

desired outcome and use Figs 2.4-2.6 to narrow the selection to the distance measure(s) 

that exhibit these properties.  
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2.3.11. Real-world example dataset 

To demonstrate the selection process and add real-world context, I used a dataset from a 

study of conservation impact of wet grassland reserves on breeding birds in the UK 

(Jellesmark et al., 2021). The dataset consists of 25 years of breeding pair count data for five 

wading bird species, from within and outside of reserves. The within-reserves data came 

from 47 RSPB lowland wet grassland reserves, while the counterfactual (outside of reserves) 

data was selected from the UK Breeding Bird Survey data. Data were matched to select sites 

that represent how reserve land would look in the absence of conservation measures. The 

reserve and counterfactual count data were aggregated into species trends, then converted 

to indices by dividing each annual species count total by the first-year species count total. 

Thus, each of the five bird species was represented with a reserve trend index and a 

matched counterfactual trend index. Jellesmark et al. (2021) compared each pair of indices 

to determine the effects of conservation efforts on each bird species, by calculating the 

percentage improvement of reserve indices over counterfactual indices and performing t-

tests to determine significance and effect size of the difference. I ranked the results of 

Jellesmark et al. (2021) according to both percentage improvement and effect size. I then 

applied my selection method to select appropriate distance measures, ranked the 

dissimilarity results returned by each selected distance measure, and examined the rankings 

with respect to Jellesmark et al. (2021). I also ranked the results returned by unselected 

distance measures for comparison. 

2.4. Results 

2.4.1. Metric test results 

Fourteen out of 42 distance measures were identified as full metrics, meaning they passed 

the metric tests for uniqueness, symmetry, non-negativity, and the triangle inequality (see 

Fig. 2.4). Sixteen distance measures were identified as semi-metrics (failed the triangle 

inequality test but passed the other three tests) and 12 were identified as non-metrics 

(failed at least one of the tests for uniqueness, symmetry, or non-negativity; Fig. 2.4). 

However, in some cases results depended on settings or input values (some distance 

measures passed the triangle inequality and/or non-negativity tests only when inputs were 
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constrained to non-negative real numbers). All tested feature-based and model-based 

distances were full metrics, while all tested compression-based distances were non-metrics. 

Shape-based measures showed mixed results, even within families and groups. See section 

S2.4 in Appendix 1 for additional results. 
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Figure 2.4. Metric test results for 42 distance measures.  Results are arranged by family (for lock-step 

shape-based measures) or type.  
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2.4.2. Sensitivity test results 

Lock-step shaped-based measures varied in the strength of responses to the sensitivity 

tests, but none tested as unpredictable and only two (the Chebyshev distance and the Short 

Time Series, or STS, distance) showed any invariances or insensitivities (Fig. 2.5; see Figs 2.1-

2.2 for illustrations of the time-series distortions I used to test for sensitivities and 

invariances). The Welch two sample t-test shows that correlations between distance 

measures within families or groups (mean Pearson correlation = 0.48) are significantly 

stronger than between unrelated distance measures (mean Pearson correlation = 0.15): t = 

5.5, df = 82.3, p < 0.001. However, not all related distance measures were closely correlated 

(see Fig. S2.1 in section S2.5.3 of Appendix 1), nor were there clear differences between 

families of distance measures. Elastic, feature-based and model-based distances showed 

greater variation in responses, with insensitivities, invariances, and unpredictability being 

common. The two compression-based distances I tested responded unpredictably to all 

controlled tests except translation and outliers; they responded unpredictably to all 

uncontrolled tests without exception. See Section S2.5.1 in Appendix 1 for additional results. 
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Figure 2.5. Sensitivity test results for 42 distance measures.  Results are arranged by family (shape-based 

measures) or type, and colour-coded according to sensitivity value.  
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2.4.3. Time-based invariances and other test results 

All distance measures except the Time Alignment Measurement (TAM) distance responded 

unpredictably to phase invariance testing (Fig. 2.6; see Figs 2.1-2.2 for illustrations of the 

time-series distortions I used to test for sensitivities and invariances). TAM was sensitive to 

phase changes, however the response curve in uncontrolled testing was not smooth, 

suggesting some level of unpredictability. The Edit Distance with Real Penalty (ERP) distance 

was sensitive to uniform time scaling, while all other distances either responded 

unpredictably or were unable to be tested due to an inability to handle unequal-length time 

series. Warping sensitivity was more common, occurring in three elastic distance measures. 

DTW tested as invariant to warping and was thus the only distance measure I tested with 

any time-based invariances. Elastic measures were the only group of distance measures that 

showed any predictable time-based sensitivities or time-based invariances. 

Two distance measures in the Shannon’s entropy family were unable to deal with zeros, 

while the entire family was unable to deal with negative values. Three other lock-step 

shape-based measures also showed an inability to deal with negative values. Antiparallelism 

bias showed no obvious group-based patterns, but negative antiparallelism bias was most 

common and positive bias was least common. See Section S2.5.2 in Appendix 1 for 

additional results. 
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Figure 2.6. Test results for antiparallelism bias, non-positive value handling, and time-related 

invariances for 42 distance measures.  Results of ‘n/a’ for uniform time scaling invariance and warping 

invariance mean that the distance measure in question is unable to handle unequal length time series and 

therefore could not be tested for those properties. 
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Figure 2.7. Reserve and counterfactual trends for five wading bird species that breed on RSPB 

lowland wet grassland reserves in the UK.  Left: Unsmoothed trends based on original data presented in 

Jellesmark et al. (2021). Right: LOESS smoothed trends with a span setting of 0.75.  
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2.4.4. Selection process 

The distance measure selection process I describe and demonstrate here was developed 

using the results from this study in combination with existing literature, and is intended to 

be useful for any dataset and task the user might have in mind. The first step in the selection 

process should be to determine the task to be performed. Applications for time series 

comparisons typically fall into the four main categories described in the introduction: 

clustering, classification, prediction, and anomaly detection. However, there are other less 

well-known applications, such as content queries, hypothesis testing, and accuracy 

assessment. Distance measures can also be used for pattern matching against databases to 

identify animal species or biological or ecological events from recorded or streaming data 

sources, such as video, audio, photographs, motion capture, temperature monitors, or other 

types of sensors. In addition, there are many other types of time series that one might wish 

to compare, such as activity patterns, biomass, nutrient uptake, growth rates, entropy, etc. 

Both the dataset and the intended task are important in selecting an appropriate distance 

measure. For example, in classification, generally the entire shape of the time series is 

important, while anomaly detection might work best with distance measures that are 

especially sensitive to outliers. Classifying bird species according to their songs may require 

flexibility on the time axis (e.g., warping invariance), while clustering fish populations 

according to changes in biomass over a set time period does not. 

I demonstrated the process of selecting an appropriate distance measure using a real-life 

example dataset from a study that used trends from wading birds inside and outside of 

reserves to determine the conservation impact of reserves (see detailed description in 

Section 2.3.10; also Jellesmark et al., 2021). A greater difference between the trend within 

reserves and the corresponding counterfactual trend outside of reserves means greater 

conservation impact on a given wading bird species. I chose this example because it is a type 

of application that many readers will be unfamiliar with in the context of distance measures, 

and because the results can be compared with other methods.  

I began by examining the wading bird dataset in context of the decision trees in Figs 2.11-

2.12. The dataset consisted exclusively of short (25 data points), non-stationary time series. 
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Following Fig. 2.11, I focused on shape-based distance measures, which compare raw data 

values. As the time series were of equal-length, in phase, using the same time scale, and 

without any missing data points, both lock-step and elastic measures would be appropriate 

(Fig. 2.12).  

Next, I worked through Table 2.1. As the wading bird trends were indexed to a starting value 

of one (Fig. 2.7), they had the same starting value and the same value scale. There were no 

negative values because the trends were indexed and based on wetland bird counts; nor 

were there any zeroes. However, I did notice that some of my time series were noisy (Fig. 

2.7), which could obscure the trends. Noise is a common characteristic of population data, 

largely due to the stochasticity of population dynamics and the environmental variables 

they depend on (Vasseur & Yodzis, 2004). While this noise is often white (random, 

uncorrelated), biased ‘red’ noise (positively autocorrelated, tending toward a single 

direction) is also common, e.g., when environmental conditions are above or below average 

for an extended period (van de Pol et al., 2011; Vasseur & Yodzis, 2004). Biased noise is 

therefore more likely to represent a legitimate difference in trends. There are multiple ways 

to deal with noisy time series (Table 2.1). I first tried the properties-based solution (Table 

2.1; see below for the pre-processing solution). Using Fig. 2.5, I filtered out all shape-based 

distance measures with a white noise sensitivity category of medium or higher (a sensitivity 

value of 0.7 or more). Next, I required biased noise to be at least two categories higher in 

sensitivity than white noise (Fig. 2.5; e.g., if white noise sensitivity was very low, biased 

noise sensitivity must be at least medium). My choices here were based on practicality; 

sensitivity categories are arbitrary (I categorized them for convenience), so I wanted to 

avoid being too specific while ensuring that any chosen distance measure exhibited a non-

trivial difference in sensitivity between white noise and biased noise.  

Finally, I considered the remaining properties in the context of my intended task and desired 

outcome. I deemed amplitude sensitivity to be important, as I was interested in the overall 

divergence between population indices within and outside reserves. Duration sensitivity was 

also important, as I considered population indices which diverged more steeply or for a 

longer period to be more different, i.e., that conservation measures had a stronger effect on 

these species. Therefore, both amplitude and duration sensitivity had to be at least low (a 
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sensitivity value of 0.2 or higher; Fig. 2.5). Again, I could have chosen a different (higher) 

category, but I was more concerned with making sure the distance measures exhibited some 

sensitivity to these properties than the exact degree of sensitivity. I did not filter for 

antiparallelism bias, as the high stochasticity in some of the time series (Fig. 2.7) would 

dilute the signal too much for it to matter.  

This selection process left me with two distance measures: the K-Divergence (KDiv) and the 

Kullback-Leibler distance (Kullback), both of which returned the same rankings that 

Jellesmark et al. (2021) obtained using percent improvement (Figs 2.8-2.9). Only two of the 

40 unselected distance measures, the Edit Distance for Real Sequences (EDR) and TAM, 

returned the same rankings (Fig. 2.9). 

Another way of dealing with noisy time series is by applying a smoothing algorithm (Table 

2.1). I applied a LOESS smoothing algorithm (span = 0.75) to all time series in the dataset to 

remove the noise and reveal the trends (Fig. 2.7). I then re-ran the selection process using 

the same settings, except that I did not filter for noise sensitivity, and I added a filter for 

antiparallelism bias. Antiparallelism bias is not very important when dealing with highly 

stochastic time series because the signals for slope and direction are muddied by noise; 

however, smoothing introduces strong positive autocorrelation, making the slope and 

direction signals clear. I selected neutral for antiparallelism bias (Fig. 2.6) because I was 

more interested in relative differences in the population indices than the direction of 

change.  

I was left with seven distance measures: ERP, the Euclidean distance, the Manhattan 

distance, the Gower distance, the Lorentzian distance (Lorentz), the Average distance (AVG), 

and the Squared Euclidean distance (Sq. Euclid). All seven selected distance measures 

agreed on the following order: Redshank, Snipe, Lapwing, Curlew, Yellow Wagtail (Figs 2.8 & 

2.10). Four of the 35 unselected distance measures returned the same results (Fig. 2.10). 
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Figure 2.8. Comparative rankings of conservation impact on five wading bird species.  Values on the y-

axis represent the distance between unsmoothed (top) or LOESS smoothed (bottom) reserve and 

counterfactual trends for each species. Results are from the distance measures chosen by my selection 

process, as well as the percent improvement and t-test methods (top) used by Jellesmark et al. (2021). Percent 

improvement is the difference (multiplied by 100) between the final year index values of the two trends 

(within and outside of reserves) for a given bird species, while the t-test represents the results of a Welch 2-

sample t test between the two trends. 
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Figure 2.9. Comparative rankings of conservation impact on unsmoothed trends of five wading bird 

species. Species are ranked according to percent improvement, t-test, and distance measures. Species ranked 

first had the greatest difference between trends. *Starred distance measures were chosen by my selection 

process. †Daggered distance measures were not chosen but returned the same results as the chosen 

measures.  
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Figure 2.10. Comparative rankings of conservation impact on smoothed trends for five wading bird 

species. Species are ranked according to percent improvement, t-test, and distance measures. Species ranked 

first had the greatest difference between trends. *Starred distance measures were chosen by my selection 

process. †Daggered distance measures were not chosen but returned the same results as the chosen 

measures. 
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Figure 2.11. Decision tree to aid in choosing a distance measure category.  *Structure refers to trends, 

repeated patterns, spikes, etc. 
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Figure 2.12. Decision tree to aid in choosing a sub-category of shape-based distance measures.  
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Table 2.1. Solutions to potential issues in the data. Note that choice of invariance or sensitivity as a 

solution should depend on whether the difference in question is important.

 Problem Pre-processing solution Properties-based solution 

Missing data points Interpolate missing values. 

Choose an elastic distance. They handle gaps 

through one-to-none or one-to-many point 

matching. 

Different starting values 

but similar value scales 
Apply a translation shift. 

Choose a distance measure invariant (or 

sensitive) to translation. 

Different value scales Normalize or standardize data.  

Zeroes or negative values Transform data to obtain positive values. 
Choose a distance with non-positive value 

handling. 

Noise Apply a smoothing algorithm.  

Choose a distance measure robust (or 

sensitive) to the type of noise that is of 

concern. 

Out of phase  
Choose a phase invariant (or phase 

sensitive) distance measure. 

Unequal lengths Cut all time series to the same length. 
Choose an elastic, model-based or 

compression-based distance measure. 

Different time scales  
Choose a distance measure invariant (or 

sensitive) to uniform time scaling. 

Nonuniform sampling 

intervals 
Interpolate intermediate values. 

Choose a distance measure that 

incorporates temporal information, such as 

the STS distance. 

 

2.5. Discussion  

The aim of this study was to provide enough information to make informed, objective 

decisions about which distance measures to use. I tested 42 distance measures for 16 

properties and presented an objective method of selecting distance measures for any task 

based on those properties. I demonstrated the viability of the method on a real-world 

dataset by selecting distance measures to rank differences between pairs of wading bird 

population trends (within and outside of reserves) and showing that the distance measures I 

selected were fit-for-purpose and consistent in their rankings. The method is user-directed; 
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therefore, success depends on an understanding of the dataset, the task to be performed, 

and the hoped-for outcome.  

Time series length and stationarity inform what category of distance measures the user 

should focus on (Fig. 2.11). Shape-based distances are best for short time series with 

differences that are easy to visualize, while longer, stationary time series may be better 

suited to feature-based, model-based, or compression-based distance measures (Esling & 

Agon, 2012).  

The majority of distance measures I tested are lock-step measures. While I have categorized 

many of them by family, it is not evident from my testing that there is enough similarity 

between distance measures within families for this categorization to be of much use. While 

there are clear differences in sensitivities (Fig. 5) between lock-step measures, they share a 

rigidity in their treatment of time, comparing all point pairs 1-to-1, and most lack 

invariances. This makes them best-suited to applications where sampling is repetitive (e.g., 

yearly) and standardized in time, such as long-term population trends. Elastic measures, 

such as DTW, have tremendous flexibility due to their ability to match multiple time points 

to a single time point, and are therefore best used when time series have different time 

structures, such as recordings of animal calls or movements.  

The broadest difference in use-cases occurs between shape based and non-shape based 

distance measures. Feature-based and model-based measures are typically used to compare 

stationary time series, which are time series characterized by repeating patterns rather than 

stochasticity. Model-based and feature-based measures identify particular aspects of these 

repeating patterns, thus their uses tend to be more specific than shape-based measures. 

They are especially useful for prediction, as repeating patterns can be forecast into the 

future (prediction is generally not applied to non-stationary time series, as stochasticity is by 

definition unpredictable). For example, they might be used to classify or predict time series 

of environmental parameters (temperature, pollution, etc), or events or changes that 

fluctuate or reoccur seasonally or diurnally, and are therefore likely to be stationary. 

Compression-based measures are designed to be extremely general and can theoretically be 

applied to any kind of time series. However, in practice I did not find them to be of any use 

on the time series I used for testing. They were unpredictable and did not demonstrate their 
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purported metric properties. They are better suited to much longer time series (many 

thousands or even millions of time points), but there is little I can say about them here. 

The results of my properties tests showed a variation in strength of sensitivity to different 

properties in different distance measures (Fig. 2.5), although most distance measures were 

highly sensitive to outliers (Fig. 2.5). Invariances were uncommon among the distance 

measures I tested (Figs 2.5 & 2.6), although several distance measures did demonstrate 

invariance to translation (Fig. 2.5). Some distance measures, such as EDR and ERP, have 

tuning parameters that may affect their behaviour. In the case of ERP, these parameters can 

determine whether and how sensitive it is to missing values, while in the case of EDR, the 

threshold setting determines how far apart values must be to be considered different, and 

therefore serves to toggle responses to multiple properties between invariance and 

sensitivity. 

When dealing with time series of unequal length or missing data points, distance measures 

that allow unequal matching (e.g., matching multiple points to one point), such as DTW, or 

that allow gaps, such as ERP, may be the solution. Alternatively, pre-processing of data may 

remove such concerns. For example, missing data points can be filled in by interpolation, or 

longer time series can be cut to the same length as shorter ones (only attempt such 

solutions if they make sense for the data). 

Elastic measures, such as DTW, EDR, and ERP, are the most versatile distance measures, 

able to handle many common complications of datasets with little or no pre-processing. For 

general tasks, they are often a good option (see Figs 2.11-2.12). However, for tasks involving 

large datasets containing thousands of time series, some elastic measures may be 

impractical due to processing speed. Much of the research into speeding up time series 

comparisons for large datasets has focused on a select few distance measures, especially 

the Euclidean Distance and DTW. While the Euclidean Distance is faster, better known, and 

still widely used in some fields, an extensive body of research has shown DTW to be more 

accurate (Dau et al., 2019; Paparrizos et al., 2020; Zhu et al., 2012) and it is considered the 

de facto standard for accuracy in classification (note that it is still important to consider the 

properties of DTW in relation to the data, as it does not perform well in every case). Despite 

this, it is rarely used in ecology (Hegg & Kennedy, 2021). Note, however, that DTW is 
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computationally expensive and therefore can be slow for large datasets (for discussion on 

ways to speed up DTW, see Section S2.8 in Appendix 1). 

For many analyses involving distance measures, researchers may first want to normalize or 

standardize their data or translate it along the y-axis. This may be an important step if the 

time series use different scales or have different starting values. For example, when 

performing classification or clustering tasks, it is common to apply z-normalization to rescale 

time series to a mean of zero and standard deviation of one (Rakthanmanon et al., 2013). 

Min-max normalization to a scale of [0,1] or [-1,1] is also common for datasets that are not 

normally distributed. Be aware, however, that these transformations may affect the 

subsequent choice of distance measures, as some cannot handle zeros or negative values 

and some metrics are non-metric when there are negative values present (see Fig. 2.4).  

Although I ignored the metric properties of distance measures for my real-world example, 

they are very important for some tasks. For example, many algorithms for classification and 

clustering are designed to work only in metric space and may return unexpected results for 

non-metric distances, while some classification and clustering problems require a semi- or 

non-metric to get meaningful results (Weinshall et al., 1998). Another thing to be aware of is 

that output values (distances) returned by distance measures can be on dramatically 

different scales. Some, such as the Jaccard distance, are confined to [0,1], while others go to 

positive infinity [0,∞) (e.g., the Euclidean distance), or even include negative values (any 

distance that does not satisfy non-negativity, e.g., the Canberra distance). Depending on the 

intended application, the output scale could affect analysis, so may be worth considering. 

Noise is a common aspect of ecological time series, as environmental and population 

dynamics are stochastic. There are several potential ways to deal with noisy time series. 

Some distance measures, such as EDR, have threshold settings; any difference between time 

series that falls below the threshold will be ignored. If the noise is relatively uniform in 

amplitude, this may be a simple solution if the distance measure in question meets all other 

requirements. Other distance measures, such as KDiv, are relatively robust against white 

noise although lacking a sensitivity setting, and may be more appropriate if the noise is less 

uniform. A more drastic solution is to apply a smoothing algorithm as a pre-processing step, 

though this should be approached with caution. Smoothing will remove noise and outliers 
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but may distort the time series and increase bias in the process. Therefore, it is important to 

avoid over-smoothing. Smoothing time series that have sudden and/or drastic value 

changes may also be problematic, particularly if these changes are an important aspect of 

differentiation between time series. 

My demonstration using wading bird trends from Jellesmark et al. (2021) served to illustrate 

both the potential benefits and complications introduced by smoothing. When I filtered by 

noise sensitivity, I was left with two distance measures; both returned the same results as 

the percentage difference calculations by Jellesmark et al. (2021). When I ran the method 

after applying a smoothing algorithm, I was left with a larger choice of seven distance 

measures. Although the ordering differed slightly from Jellesmark et al. (2021), all seven 

distance measures agreed. The slight difference in ordering (Snipe vs Lapwing, ambiguous 

from visual inspection of the trends; Fig. 2.7) is unsurprising given that the smoothing 

algorithm removed all noise from the trends, while the distance measures we selected using 

noise filtering, although demonstrating very low sensitivity to white noise, were not 

invariant to it. Smoothing in this case gave me more distance measures to choose from, but 

with the added complication of not knowing whether I had improved or distorted my 

results. 

While in both cases (smoothed and unsmoothed trends) there were distance measures that 

gave the same rankings as Jellesmark et al. (2021) despite not matching my selection criteria 

(Figs 2.9-2.10), the distance measures I selected were all in agreement. Had I been less 

specific when choosing important properties, I would have risked including measures that 

were not fit-for-purpose. A single suitable distance measure is better than any number of ill-

suited measures. 

2.6. Conclusion 

Distance measures are widely used in ecology, but the selection of distance measures 

described in the ecological literature is limited and their use is often poorly understood, 

leading to misuse. In the wider literature, there are hundreds of distance measures, with 

new ones frequently described. This study introduces a selection of 42 distance measures 

for the purpose of ecological time series analysis and describes an objective method for 
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choosing an appropriate distance measure for any task involving time series. I have used a 

suite of criteria to uncover their properties and my tests can be applied to distance 

measures not included in this study. I have provided the first general selection method for 

choosing a distance measure based on their properties, and I believe this will be useful for a 

large range of ecological problems that require comparisons of time series. My work should 

lead to an improved understanding of, and greater scope for, the use of distance measures 

for comparing time series within the field of ecology. Nonetheless, it is up to the user to 

think their way through the process. There are hundreds of potential cases for using 

distance measures to compare time series in ecology, and as many potential issues that may 

arise in the process. Most of them are beyond the scope of this study. However, my 

framework can easily be adapted to incorporate other properties to select a distance 

measure that is appropriate for the task. There is not always a right choice of distance 

measure, but there are wrong ones, and my main goal is to help avoid those.  
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Chapter 3: How much data do we need? Reliability and 

data deficiency in global vertebrate biodiversity trends 

3.1. Abstract 

Global biodiversity is facing a crisis, which must be solved through effective policies and on-

the-ground conservation. But governments, NGOs, and scientists need reliable indicators to 

guide research, conservation actions, and policy decisions. Developing reliable indicators is 

challenging because the data underlying those tools is incomplete and biased. For example, 

the Living Planet Index tracks the changing status of global vertebrate biodiversity, but gaps, 

biases and quality issues plague the aggregated data used to calculate trends. But without a 

basis for real-world comparison, there is no way to directly assess an indicator’s accuracy or 

reliability. Instead, a modelling approach can be used. 

I developed a model of trend reliability, using simulated datasets as stand-ins for the real 

world, degraded samples as stand-ins for datasets in the Living Planet Database, and a 

distance measure to quantify reliability by comparing sampled to unsampled trends. The 

model revealed that the proportion of species represented in the database is not always 

indicative of trend reliability. Important factors are the number and length of time series, as 

well as their mean growth rates and variance in their growth rates, both within and 

between time series. I found that many trends in the Living Planet Index are too data-poor 

to be considered reliable, particularly trends across the global south. In general, bird trends 

are the most reliable, while reptile and amphibian trends are most in need of additional 

data. I simulated three different solutions for reducing data deficiency and found that 

adding existing data (to the extent that it is available) is the most efficient way to improve 

trend reliability, and that revisiting previously studied populations is a quick and efficient 

way to improve trend reliability until new long-term studies can be completed and made 

available. 

3.2. Introduction 

An urgent data crisis complicates the global biodiversity crisis (Turak et al., 2017). Attempts 

to assess global biodiversity (e.g., the Intergovernmental Science-Policy Platform on 
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Biodiversity and Ecosystem Services, IPBES), and to set policies and goals that will halt or 

reverse its loss (e.g., the Convention on Biological Diversity, CBD, and Sustainable 

Development Goals, SDGs), need reliable and up-to-date scientific information (Jetz et al., 

2019). Yet most studies and tracking programs are either species- or region-focused, 

temporally limited and inherently biased, leaving large geographic and taxonomic 

knowledge gaps (Hortal et al., 2015; Jetz et al., 2019; Meyer et al., 2015; Proença et al., 

2017; Turak et al., 2017). Advances in technologies such as camera tracking, satellite 

sensors, digital image recognition, network speed and capacity, data access, and mobile 

devices are improving our ability to track and count populations of birds and mammals 

(Lausch et al., 2016; Nichols et al., 2011; Rose et al., 2015), but our datasets are far from 

complete. The situation is worse for amphibians, reptiles, insects, and other groups, for 

which many species have yet to even be described (Mora et al., 2011).  

We need tools to improve our understanding of global biodiversity within the limitations 

imposed by biased and incomplete datasets. Mace & Baillie (2007) suggested a solution: 

develop indicators based on existing data, understand data biases, and develop methods to 

reduce the bias. Biodiversity indicators summarize complex scientific information in a simple 

way, often serving as a bridge between science and policy (Secretariat of the Convention on 

Biological Diversity, 2006). But what can we expect from indicators that summarize a 

fraction of the biodiversity they purport to measure? To what extent can we rely on them to 

present a true picture of the state of global biodiversity? 

Two of the best-known biodiversity indicators are the Living Planet Index (LPI), which tracks 

vertebrate population trends (McRae et al., 2017), and the Red List Index (RLI), which tracks 

extinction risk trends (Butchart et al., 2005). The RLI is based on extinction risk classifications 

at the species-level, created by expert assessment using an objective set of criteria (IUCN 

Species Survival Commission, 2012). By contrast, the LPI uses continuous population data 

collected by scientific surveys. But, as intensive global long-term studies do not exist for 

most species, the LPI calculates trends from data compiled from a variety of sources, 

including grey literature (McRae et al., 2017). This means a lack of standardization in study 

design (individual population time series are standardized, but there is no standardization 

between populations), monitoring strategy, frequency of assessment, monitoring intensity 

and effort, even data type (densities, counts of individuals or breeding pairs or even nests, 
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and population size estimates are mixed). The LPI has taxonomic and geographical 

imbalances (Collen et al., 2009; McRae et al., 2017), a problem found also in other global 

biodiversity datasets (Boakes et al., 2010; Collen et al., 2008; Yesson et al., 2007). Further, 

many included time series are short (McRae et al., 2016; Proença et al., 2017; Saha et al., 

2018), and shorter trends tend to be less accurate than longer ones (Arkilanian et al., 2020; 

Wauchope et al., 2019). Recognizing these weaknesses, the LPI employs statistical 

techniques to increase the accuracy and precision of trends. Generalized Additive Models or 

log-linear interpolation are used (depending on the length of a given time series) to fill in 

missing values in time series, bootstrapping is used to generate confidence intervals (Collen 

et al., 2009), and a hierarchical weighting system is applied to account for geographical and 

taxonomic bias (Collen et al., 2009; McRae et al., 2017). 

Without a basis for real-world comparison, there is no way to directly assess an indicator’s 

accuracy or reliability. However, there are ways to address this question indirectly. Baillie et 

al. (2008) employed one solution when they developed the sampled approach to the Red 

List Index (sRLI). To determine the minimum representative sample size that would provide 

accurate trends, they chose two comprehensively assessed taxonomic groups (Birds and 

Mammals) in the Red List Index and compared trends generated from thousands of 

subsamples of different sizes to trends generated from the complete dataset (Baillie et al., 

2008). When the probability of falsely showing a positive trend for a given assessment 

period was less than 5% (trends for those groups in the complete dataset were negative), 

the sample was considered large enough (Baillie et al., 2008). The sRLI method was later 

updated to include more groups as well as a minimum sample size for detecting change in 

slope instead of just slope direction (Henriques et al., 2020). 

Two challenges presented by the LPI prompted me to take a different approach than the 

sRLI. First, LPI trends are based on population time series that are often short and/or 

infrequently measured, and there are no regional or taxonomic groups within the LPI where 

the data is comprehensive enough to be certain of the real-world trend. Therefore, 

comparing sampled trends to LPI trends would tell little about how the sampled trends 

might compare to reality. Second, the LPI uses non-linear trends that change slope and 

direction over time, so trends should be compared in a way that reflects this. To overcome 

these challenges, I used a modeling approach. I generated thousands of datasets of 
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synthetic population time series with variations in the underlying properties of the data to 

represent regional taxonomic groups in the real world, then took samples from those 

datasets, degraded the samples by randomly removing observations and adding observation 

error to resemble regional taxonomic groups in the Living Planet Database (LPD, the 

database underlying the LPI), then compared the trends calculated from the samples with 

those from the complete datasets using a distance measure. I constructed a multiple 

regression model of the distance value to understand how accuracy responds to variations 

in properties of the data. By selecting a threshold value for accuracy and applying the model 

to the LPI, I was able to quantify the reliability of disaggregated LPI trends and determine 

the number of additional time series needed to meet the threshold. Finally, I modelled and 

compared three different solutions for reducing data deficiency: a) tracking unstudied 

populations for a decade to generate new time series for the LPD, b) resampling previously 

studied populations to update old time series in the LPD, and c) gathering more time series 

from existing studies to add to the LPD. The results from this study can be used to focus 

data-gathering and data-collation efforts on the regions, taxa, and populations that would 

be of greatest benefit to improving our understanding of the state of global vertebrate 

biodiversity. 

3.3. Material and Methods 

Fig. 3.1 shows an overview of my methods, with each numbered step corresponding to a 

numbered subheading in the text. 
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Figure 3.1. Modelling trend accuracy in the LPI: an overview.  
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3.3.1. Synthetic data generation 

I first created simulated datasets to represent real-world regional vertebrate groups for 

which the LPI calculates biodiversity trends. The LPI is often represented as a single global 

index trend but can also be disaggregated into hierarchical groups: first into systems 

(terrestrial, marine, freshwater), then geographical realms within each system, and finally 

taxonomic groups within each realm. It is this lowest level of the hierarchy, the regional 

taxonomic groups, which I simulate. From here on each simulated regional taxonomic group 

will be referred to as a dataset. The base units of the LPI, and of my synthetic datasets, are 

population time series, which I will refer to simply as populations. These populations are 

grouped into species, and species are grouped into regional taxonomic groups, or datasets. 

My procedure that simulates a dataset requires six parameters: 1) the total number of 

populations to simulate (set to 10,000), 2) the mean number of populations assigned to 

each species (set to 10), 3) the number of years (length of trend) to simulate (set to 50), 4) 

the mean of the population mean growth rates (μds), 5) the standard deviation of the 

population mean growth rates (variation among populations, σds), and 6) the mean of the 

population standard deviations of the growth rate (process error, μɳ). The first three 

parameters were fixed. The first, total populations, affects trend accuracy only when greater 

than half of all populations in a dataset are sampled (see Fig. S3.1 in Appendix 2), a situation 

that is unlikely for regional taxonomic groups in the LPD, as it is rare even at the species 

level (see taxonomic representativeness in McRae et al., 2017). The second parameter, the 

mean number of populations per species, has no effect on trend accuracy within the wide 

range of values I tested (see Fig. S3.2 in Appendix 2). The third, trend length, is constant 

across regional taxonomic groups in the LPD. However, it does affect trend accuracy (see 

Fig. S3.3 in Appendix 2) and would therefore need to be set appropriately if adapting the 

model for a different indicator. Parameters four through six are variable in the LPD and 

affect trend accuracy, and are therefore set to vary in the simulations. 

Growth rates can be expressed as discrete annual growth rates, 

λ =  (𝑁𝑡+1 𝑁𝑡⁄ )      (1) 

where Nt is population size at year t, or as instantaneous growth rates,  
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r = ln(𝑁𝑡+1 𝑁𝑡⁄ )     (2) 

Therefore, 

r = ln(λ)            (3) 

I will discuss both λ and r, but to avoid confusion, I will refer to discrete annual growth rates 

as lambdas. When I refer simply to the growth rate, I mean r. Each population has a normal 

distribution of growth rates, r ~ N(μpop, 𝜎𝑝𝑜𝑝
2 ), which translates to a log-normal distribution 

of lambdas, λ ~ LN(μpop, 𝜎𝑝𝑜𝑝
2 ). A stable population would have a mean r of zero, or a mean λ 

of one. The growth rate distributions simulate a stochastic exponential model with process 

error. To allow adequate control of dataset parameters, the time series model had to be 

kept simple and flexible; therefore, growth rates are not serially correlated (although 

population sizes are), and carrying capacity is not modelled. Population mean growth rates 

(r) are drawn from a normal distribution for the species, μpop ~ N(μspec, 𝜎𝑠𝑝𝑒𝑐
2 ). Species mean 

growth rates are in turn drawn from a normal distribution representing the whole dataset, 

μspec ~ N(μds, 𝜎𝑑𝑠
2 ). 

Process error, ɳ, is represented by the mean of the population standard deviations of r, with 

σpop ~ Exp(𝜆𝜎𝑝𝑜𝑝
). An exponential distribution has only one parameter, the rate (λ), but here 

I instead describe the ‘mean’ for ease of interpretation and to avoid confusion with the 

annual growth rate, which is also λ. The mean, μɳ, is the inverse of the rate (not the annual 

growth rate): 

 𝜇ɳ =  1 𝜆𝜎𝑝𝑜𝑝
⁄                      (4) 

Each dataset was constructed as follows: a normal distribution of μspec was generated from 

μds and σds, and an exponential distribution of σpop was generated from μɳ. Each species was 

randomly assigned a mean growth rate from the normal distribution and a standard 

deviation from a uniform distribution, σspec ~ U(0, μɳ). These species parameters were used 

to generate normal distributions of population means for each species. Population growth 

rates must be expressed as lambdas, λ, to enable calculation of population sizes. Therefore, 

a log-normal distribution, λ ~ LN(μpop, 𝜎𝑝𝑜𝑝
2 ), was created for each population using μpop 

randomly selected from the normal distribution for the species it was assigned to and σpop 

randomly selected from the exponential distribution. This method ensured that variance in 

growth rates within a population would be lower than the variance in growth rates within 
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the species it was assigned to, and that population mean growth rates would be more 

similar within species than between species. This models ecologically significant 

relationships between populations within species and species within taxa by assuming that 

growth rates of related populations and species will respond to ecological processes more 

similarly than unrelated ones. Growth for each population was modelled for 50 years, 

starting at a population size of 100, with lambdas randomly assigned each year from a log-

normal distribution with parameters drawn from a species-level normal distribution of 

growth rates. Populations were assigned to species by randomly sampling from a pool of 

1000 species IDs, with replacement, resulting in a normal distribution of populations per 

species, pps ~ N(μpps, 𝜎𝑝𝑝𝑠
2 ), with μpps = 10 and σpps = 3.1. While populations are unlikely to be 

normally distributed across species in the real world (one would expect more rare species 

than common species), simulations confirmed that my modelling approach is robust against 

distributional assumptions for this parameter (see Fig. S3.2 in Appendix 2). 

3.3.2. Observation error 

The variation in lambdas modelled above assumes all variation is due to process error. 

However, time series in the LPD are based on population estimates, which can be assumed 

to include some level of observation error due to e.g., species misidentification, non-

detection, and counting errors. This observation error is not accounted for in the LPI but 

may affect trend reliability. Observation error, ɛ, can be calculated using the coefficient of 

variation (cv), defined as  

 𝑐𝑣𝜀 =  
𝜎𝑎𝑏

𝜇𝑎𝑏
       (5) 

where μab and σab are the mean and standard deviation (respectively) of the abundance 

values. Since data in the LPD was collected using a variety of methods, and ɛ is not recorded 

in the database, I chose a range of ɛ consistent with values reported for other vertebrate 

surveys (Fryxell et al., 2014; Westcott et al., 2012; Zylstra et al., 2010). I determined through 

simulations that there is no effect of increasing observation error on trend accuracy (Fig. 

S3.4 in Appendix 2), therefore an approximate range of ɛ should suffice. For each time 

series, ɛ was randomly selected from a normal distribution with μɛ = 0.15 and σɛ = 0.1. I 

simulated observed versions of each time series, modeled as 
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𝑍𝑡 =  𝑋𝑡 +  𝜙𝑡  , Zt ≥ 0     (6) 

where Zt is a simulated observation, Xt is a simulated value from a time series at time t, and 

ϕt is a normally distributed variable, ϕt ~ N(0, 𝜎𝑜𝑏𝑠
2 ), with 

𝜎𝑜𝑏𝑠  = 𝑋𝑡  ∗ 𝜇𝜀     (7) 

where σobs is the standard deviation of ϕt. A value for μɛ of 0.1 (10%) would result in 

approximately 68.2% of observations falling within 10% of their corresponding simulated 

values and 99.7% of simulated observations falling within 30%. 

3.3.3. Data degradation 

Observed versions of the datasets were then randomly degraded to resemble the varied 

quality of sampled real-world data present within the LPD. The length (number of years 

from first to final observation) for each degraded time series within a dataset was randomly 

chosen by sampling from a Poisson distribution. I determined through simulations that 

varying the number of observations does not affect trend accuracy at a given time series 

length, so I fixed the mean number of observations at half of the mean time series length 

(rounded up). The starting years for each time series were assigned randomly. Time series 

were then cut to their assigned length, and half of the remaining observations were 

randomly removed. 

3.3.4. Sampling 

Populations were randomly sampled from each dataset, without replacement. This was 

repeated to obtain 20 random samples of the same size for each dataset. Values for four of 

the six dataset parameters described in Section 3.3.1 may be different for samples than for 

the dataset they are selected from, and may also vary between samples: the mean number 

of populations per species (μpps), the mean and standard deviation of population mean 

growth rates (μds and σds, respectively), and the mean of population standard deviations of 

the growth rate (μɳ). 
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3.3.5. Calculation of sampled trends 

Non-linear index trends were calculated from each sample, following the LPI method 

described in McRae et al. (2017). First, time series with six or more data points were 

modelled using a Generalized Additive Model (GAM), as described in Collen et al. (2009), 

with a Gaussian (normal) distribution, smoothed by a thin plate regression spline, with the 

number of knots set to half the number of observations (rounded down). The model fit was 

checked by applying a GAM to the residuals, this time smoothed by a shrinkage version of a 

cubic regression spline, with the number of knots set to the full number of observations of 

the time series (before the GAM model was applied) and gamma set to 1.4. If the sum of the 

estimated degrees of freedom from the modeled residuals was close to one (greater than 

0.99 and less than 1.01), the population GAM was considered a good fit. Time series that did 

not pass the model fit test, or that had fewer than six data points, were interpolated using 

the chain method (Loh et al., 2005), as described in Collen et al. (2009). The chain method 

imputes missing values using log-linear interpolation by 

𝑁𝑖 = 𝑁𝑝(
𝑁𝑠

𝑁𝑝
)[𝑖−𝑝 𝑠−𝑝⁄ ]         (8) 

where N is the population estimate, i is the year for which the value is to be interpolated, p 

is preceding year with an observed value, and s is the subsequent year with an observed 

value. For all populations, whether interpolated or modeled by a GAM, species indices were 

formed by a three-step process. First, population sizes were converted to growth rates by 

𝑟 = 𝑙𝑜𝑔10
𝑁𝑡

𝑁𝑡−1
      (9) 

where N is the population estimate and t is the year. Second, average growth rates were 

calculated for each species by 

𝑟�̅� =
1

𝑛
∑ 𝑟𝑖𝑡

𝑛𝑡
𝑖=1                  (10) 

where 𝑛𝑡 is the number of populations in a given species, 𝑟𝑖𝑡 is the growth rate for 

population i at year t, and 𝑟�̅� is the average growth rate at year t. Growth rates were capped 

at [-1:1]. Finally, index values were calculated by 
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𝐼𝑡 =  𝐼𝑡−1 ∗ 10𝑟�̅� , I0 = 1      (11) 

where I is the index value and t is the year. 

3.3.6. Calculation of the ‘true’ trend 

A non-linear index trend was calculated for each complete, undegraded dataset (without 

observation error), following McRae et al. (2017), as for the sampled trends. However, the 

undegraded datasets have no missing values, therefore modeling each time series using the 

chain method or a GAM was unnecessary, and that step was skipped. 

3.3.7. Comparison of trends 

I used the process described in Chapter 2 to determine appropriate distance measures to 

compare sampled trends with ‘true’ trends. Of the distance measures deemed appropriate, I 

chose the Jaccard distance because it uses a 0-1 scale, making it easier to interpret. The 

Jaccard distance is calculated as 

 𝑑𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
∑ (𝑃𝑡− 𝑄𝑡)2𝑛

𝑡=1

∑ 𝑃𝑡
2 𝑛

𝑡=1 + ∑ 𝑄𝑡
2 𝑛

𝑡=1 − ∑ 𝑃𝑡𝑄𝑡
𝑛
𝑡=1

    (12) 

(from Cha, 2007), where Pt and Qt are index values from two trends P and Q at time point t, 

and n is the number of time points. From here on, any value calculated by applying the 

Jaccard distance to compare sampled vs ‘true’ trends will be referred to as a trend deviation 

value, or TDV.  

I use TDV here as a measure of trend accuracy, but it is in fact the complement of accuracy 

(a perfectly accurate trend would yield a TDV of zero); lower TDV means higher accuracy. 

Furthermore, when referring to TDVs of simulated trends, I use the term ‘trend accuracy,’ 

but when referring to TDVs of LPI trends, I use the term ‘trend reliability.’ This is because 

TDVs for simulated trends are measured, while TDVs for LPI trends are estimated based on a 

model. So, a ‘reliable trend’ is expected to be accurate but may not be; likewise, an 

‘unreliable trend’ is expected to be inaccurate but may not be. 
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3.3.8. Generation of datasets 

I generated 3,000 datasets (each consisting of 1,000 species and 10,000 populations), with 

each dataset sampled 20 times, resulting in 60,000 samples. Values for mean time series 

length, μds, σds, and μɳ were randomly selected from uniform distributions, while sample size 

was randomly selected from a log-uniform distribution, ln(SS) ~ U(ln(a), ln(b)), where SS is 

sample size and a and b are the minimum and maximum values, respectively (log-uniform 

was chosen to ensure the model would be robust at small sample sizes, as most datasets in 

the LPD are small). Ranges for the distributions were chosen to ensure that parameter 

ranges in the samples would be broader than the ranges present in the LPD (Table 3.1). 

Regional taxonomic groups from the LPD with fewer than 20 populations were excluded 

from parameter range calculations to avoid extreme outliers. I set the minimum sample size 

to 50 because smaller samples rarely generated a complete trend, and the maximum to 

10,000 to improve predictions of the effects of sample size increases.  

Table 3.1. Parameters with value ranges for simulated datasets, degraded samples, and the LPD . 

Independent Variable Range in Datasets Range in 
Samples 

Range in 
LPD 

Sample Size – 50 – 9975 2 – 3000 

Mean Length of Time Series 6.0 - 38 5.5 – 39 6.0 – 39 

Mean of Pop. Mean Growth Rates, μds -0.13 – 0.12 -0.25 – 0.31 -0.19 – 0.16 

St. Dev. of Pop. Mean Growth Rates, σds 0.074 – 0.59 0.097 – 0.83 0.12 – 0.63 

*Mean of Pop. Growth Rate St. Dev., μɳ 0.049 – 1.17 0.13 – 1.06 0.16 – 0.89 

*This parameter is modelled as process error in the simulated datasets, but in the degraded samples it represents process 
error and observation error combined. 

3.3.9. Multiple regression model 

I built a multiple linear regression model to understand how variables in the data determine 

trend accuracy (TDV). First, I removed all datasets in which the mean of the sample 

parameter values fell outside of LPD parameter ranges (individual replicates were allowed 

to fall outside of LPD ranges), leaving 2,361 datasets, or 47,220 samples. I then randomly 

selected 67% of the remaining datasets (1,581 datasets) to train the model. The other 33% 

(780 datasets) I set aside for testing the model. 

3.3.10. Model validation 

The residuals of the combined data used to train the model were approximately normally 

distributed. Likewise, the residuals appeared homoscedastic when plotted against fitted 
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values. I compared the actual TDV of each sample in the testing datasets to the predicted 

TDV for that sample calculated by the model, then calculated the RRMSEP (relative root 

mean squared error of prediction), defined as 

𝑅𝑅𝑀𝑆𝐸𝑃 = 𝑅𝑀𝑆𝐸 𝑆𝐷⁄      (13) 

where RMSE is the root mean squared error and SD is the standard deviation of the actual 

TDVs, and 

𝑅𝑀𝑆𝐸 = √ 
∑ (𝑦𝑖−�̂�)2𝑛

𝑖=1

𝑛
    (14) 

where yi is the ith actual TDV, ŷ is the predicted TDV, and n is the number of samples. 

3.3.11. Maximum trend deviation value 

I set a maximum predicted TDV as a threshold that regional taxonomic group trends within 

the LPI should not exceed to be considered reliable. First, I built a linear regression model of 

the square root of TDV from my training datasets, with the natural log of sample size as the 

predictor variable, since sample size is the only user-controlled variable within the LPD. 

Every regional taxonomic group within the LPD represents a single sample from the real 

world; therefore, I was not interested in the mean TDV achieved by each dataset, but in the 

range of possible TDV values, especially the upper part of the range (the least accurate 

sample trends from each dataset).  

I used 10,000 bootstrap estimations of the mean of the TDV from each dataset to calculate 

the 90% confidence intervals using the bias corrected and accelerated bootstrap interval 

(BCa) method, also known as the adjusted bootstrap percentile method. The BCa method is 

a non-parametric method that does not assume the data is normally distributed (the TDV 

values have a beta distribution) and corrects for bias and skewness in the distribution of the 

mean estimates. I plotted the curve of the sqrt-log model of the upper 90% confidence 

interval of TDV in relation to sample size on a (non-log) graph of TDV vs sample size (Fig. 

3.2).  
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To choose a maximum TDV, I used a method called the concordance probability method (CZ) 

(Liu, 2012). I borrowed CZ from the field of biomedical research, where it is often necessary 

to specify a cut-off value to discriminate between positive and negative results from 

screening or diagnostic tests (Liu, 2012). First, a receiver operating characteristic (ROC) 

curve is built, plotting the rate of true positives (sensitivity) against the rate of false positives 

(1 - specificity). The idea is to find the point on the curve that maximises both sensitivity and 

specificity. The CZ method simply finds the point where their product is maximized.  

By considering the sqrt-log model of the upper 90% confidence interval of TDV vs sample 

size (Fig. 3.2) as equivalent to an ROC curve, I applied the CZ method to find the point on the 

curve where TDV and sample size are minimized. This is the point where the data should 

provide maximum value. Further right along the curve, increasing the sample size would 

give a smaller improvement in trend reliability and is therefore not cost or resource 

effective. Since an ROC curve is intended for binary classification, the CZ method assumes 

that both sensitivity and specificity are on a 0-1 scale. TDV already ranges from 0-1, so I set 

sensitivity as 1 - TDV. I normalized sample size to a 0-1 scale by converting it to a proportion 

of the complete dataset (dividing by the total number of time series in the dataset). Since all 

datasets were the same size, the relationship between TDV and sample size was not altered 

by the conversion to a proportion. Specificity was then 1 - sample proportion. The optimal 

cut-point on the curve is defined as 

 max(CZ), CZ(c) = Se(c) * Sp(c)     (15) 

where Se is sensitivity, Sp is specificity, and c is any cut-point. 

 



96 
 

 

Figure 3.2. Sqrt-log model of trend deviation value (TDV) vs sample size with optimal cut point.  This 

plot includes only the upper 90% confidence interval of TDV from each simulated dataset. The curved blue line 

is the sqrt-log model of the plotted values. The vertical red line intersects the sqrt-log curve at the optimal cut-

point.  

3.3.12. Minimum sample size for regional taxonomic groups 

Minimum sample size was calculated by rearranging the formula for the multiple regression 

model to solve for sample size and replacing the TDV variable in the formula with the cut-off 

value determined above. Values for the other variables in the formula were determined 

separately for each regional taxonomic group from the LPD, as follows: any populations with 

less than two data points were removed, missing data was interpolated using the chain 

method (Collen et al., 2009), then the mean growth rate, μpop, was calculated for each 

population. Growth rates were capped at [-1:1] before taking the mean, as in the LPI 

(McRae et al., 2017). Next, μds, σds, and μɳ were calculated. The mean time series length was 

calculated by dividing the total number of observations (after interpolation) by the total 

number of populations (excluding those with less than two data points). The calculated 

values were then placed into the model formula to determine minimum sample size. 
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3.3.13. Assigning reliability ratings to regional taxonomic groups 

The actual number of populations in each regional taxonomic group was divided by the 

minimum sample size and multiplied by 100 to determine the percentage of the minimum 

sample size met by each group. Groups achieving 100% or greater were designated as 

reliable, those achieving between 50% and 100% were designated as data deficient, and 

those achieving less than 50% were designated as severely data deficient. 

3.3.14. Correlations between reliability rating and LPI relative weighting 

The Pearson’s product moment correlation coefficient test was performed to determine if 

there was any significant correlation between percentage of the minimum sample size 

achieved for each regional taxonomic group and the assigned relative weightings in the LPI 

for each group. The test was performed on the combined dataset as well as each individual 

system. 

3.3.15. Modelling potential solutions 

I used the model to simulate three different methods of improving trend reliability in the 

LPD: A) tracking unstudied populations for ten years, B) resampling previously studied 

populations, and C) gathering more time series from existing studies. First, I generated 50 

control datasets with a sample size of 200 and mean time series length of 14 (similar to the 

median values for regional taxonomic groups in the LPI of 180 and 13, respectively). I set μds 

to zero, σds to 0.25, and μɳ to 0.30. Using the same parameters, I then generated groups of 

50 datasets with each of the following changes: group A had an extra 200 populations (total 

sample size: 400), but with observations only for the final ten years, to simulate tracking 

additional populations for ten years; group B had the final observation revealed on every 

sampled, degraded time series (total sample size: 200) to simulate resampling previously-

studied populations; group C had an extra 200 randomly sampled populations (total sample 

size: 400) to simulate adding existing data to the LPD. 

3.3.16. Coding and data 

All trends for synthetic data were produced using original code designed to reproduce the 

functionality of the rlpi package (Freeman et al., 2021). All coding was done in R (R Core 
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Team, 2021) using RStudio (RStudio Team, 2022). Fig. 3.1 and parts of Fig. 3.4 were 

produced using Inkscape (Inkscape Project, 2020). All other figures were produced in R (R 

Core Team, 2021) using the ggplot2 package (Wickham, 2016). Population time series used 

to evaluate reliability of LPI trends are from the LPD (McRae et al., 2016). All original code is 

available on GitHub at https://github.com/shawndove/DD_LPI. 

3.4. Results 

3.4.1. Regression model 

The regression model contains five independent variables (Tables 3.1 & 3.2). Together they 

describe 62% of the variation (adjusted r-squared: 0.6223) in the TDV associated with 

sampled trends. The model is significant, with F(5, 29385) = 9,686, p < .001. All independent 

variables are significant predictors, with p < 0.001. Interaction terms were significant but did 

not increase the adjusted r-squared of the model, so I left them out. RRMSEP is 0.231. 

Sample size is the most important variable affecting trend accuracy, with differences in 

importance between the other three variables comparatively small. Much of the 

unexplained variance from the model is due to random sampling. I confirmed this by 

remaking the model using the sample means, which resulted in an adjusted r-squared of 

0.8706. Using the square root of TDV instead of the log further increased the adjusted r-

squared to 0.9343. This was not the case for the model using the individual samples, where 

the log resulted in a higher adjusted r-squared than the square root. 

Table 3.2. Multiple regression model of ln(TDV). 

coefficient estimate standard error 
beta 

coefficient 
t value p value 

(Intercept) 3.957 0.04406 – 89.81 < .001 

ln(Sample size) -0.8460 0.004441 -0.6860 -190.5 < .001 

ln(St. dev. of mean growth rate, σds) 0.7569 0.01630 0.1672 46.42 < .001 

Mean growth rate, μds 8.057 0.1454 0.1989 55.42 < .001 

Mean of population st. dev., μɳ 1.503 0.02224 0.2426 67.57 < .001 

Mean time series length -0.03890 0.0007336 -0.1917 -53.02 < .001 

3.4.2. Maximum trend deviation value 

Using the concordance probability (CZ) method to select a cut point on the sqrt-log model of 

the 90% upper confidence interval of TDV vs sample size, I found a maximum TDV value of 
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0.176. After placing this value into the model equation and reorganizing to solve for sample 

size, I applied the model to the LPI to find the minimum number of populations needed for 

each regional taxonomic group. 

3.4.3. Minimum sample size 

The number of populations needed to achieve the TDV threshold for a reliable trend varies 

across taxonomic groups and realms (Table 3.3), but weakly across systems, with medians of 

210, 259, and 233 for terrestrial, freshwater, and marine systems, respectively. Fewer 

populations are needed in the global north (median: 201) than in the global south (median: 

259). Birds show the highest variability, having both the smallest number of populations 

needed for any group (freshwater Nearctic birds: 32), and the largest (freshwater Afrotropic 

birds: 6,768). Mammals have the smallest sample size requirements, with a median of 170, 

while fishes have the largest, with a median of 472. 

Table 3.3. Estimated TDV and number of populations needed to meet the threshold for all regional 

taxonomic groups in the LPD. Note that because the trend deviation values here were estimated using 

the model formula, they occasionally fall outside of the 0-1 range of the Jaccard distance used to 

determine TDVs for simulated data.

 System Realm Taxon TDV 

Current 

Sample 

Size 

Minimum 

Sample Size 

Additional 

Pops Needed 

Terrestrial  

Afrotropic 

Birds 0.497 166 566 400 

Mammals 0.031 916 116 0 

Reptiles & Amphibians 0.425 56 159 103 

IndoPacific 

Birds 0.148 466 378 0 

Mammals 0.123 279 182 0 

Reptiles & Amphibians 0.841 84 533 449 

Palearctic  

Birds  0.018 1724 119 0 

Mammals 0.019 2153 157 0 

Reptiles & Amphibians 0.370 57 137 80 

Neotropic 

Birds 0.148 375 305 0 

Mammals 0.298 210 391 181 

Reptiles & Amphibians 0.166 225 210 0 

Nearctic  

Birds 0.005 2564 38 0 

Mammals 0.095 775 374 0 

Reptiles & Amphibians 0.577 127 516 389 

Freshwater Afrotropic 
Birds 4.603 143 6768 6625 

Mammals 0.477 18 58 40 
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Reptiles & Amphibians 0.729 18 96 78 

Fishes 0.808 180 1090 910 

IndoPacific 

Birds 0.175 267 264 0 

Mammals 0.336 22 47 25 

Reptiles & Amphibians 0.242 141 206 65 

Fishes 0.395 231 600 369 

Palearctic 

Birds 0.039 1527 255 0 

Mammals 0.255 179 277 98 

Reptiles & Amphibians 0.317 100 201 101 

Fishes 0.171 601 581 0 

Neotropic 

Birds 0.348 88 197 109 

Mammals 3.146 13 392 379 

Reptiles & Amphibians 0.353 94 214 120 

Fishes 0.364 295 696 401 

Nearctic 

Birds 0.012 736 32 0 

Mammals 0.310 30 58 28 

Reptiles & Amphibians 0.260 307 485 178 

Fishes 0.081 821 326 0 

Marine 

Temperate 

Atlantic 

Birds 0.038 783 128 0 

Mammals 0.214 196 247 51 

Reptiles & Amphibians 0.836 57 359 302 

Fishes  0.039 2826 472 0 

Tropical 

Atlantic 

Birds 0.218 174 223 49 

Mammals 2.082 20 371 351 

Reptiles & Amphibians 0.887 113 764 651 

Fishes 0.041 3037 547 0 

Arctic 

Birds 0.153 175 149 0 

Mammals 0.300 56 105 49 

Fishes 1.192 36 345 309 

South 

temperate  

Birds 0.045 510 101 0 

Mammals 0.482 27 89 62 

Fishes 0.175 246 244 0 

IndoPacific  

Birds 0.218 197 254 57 

Mammals 0.276 68 116 48 

Reptiles & Amphibians 0.578 86 351 265 

Fishes 0.067 1103 349 0 

Pacific 

temperate 

Birds 0.084 245 102 0 

Mammals 0.235 154 216 62 

Reptiles & Amphibians 6.528 2 143 141 

Fishes 0.054 798 199 0 

3.4.4. Trend reliability 

Reliability varies strongly across realms, taxonomic groups, and systems (Figs 3.3-3.4). 

Terrestrial trends are the most reliable and freshwater trends the least. Terrestrial and 
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freshwater trends are more reliable in the global north than in the global south, with the 

exception of terrestrial reptiles and amphibians. Marine bird trends are more reliable in 

temperate areas than the tropics, while marine fish trends are more reliable in warm waters 

than cold. Globally, bird trends are the most reliable, but are nonetheless poor in the 

tropics, especially Africa. Reptile and amphibian trends are data deficient everywhere 

except the terrestrial Neotropical realm, and aquatic mammal trends are data deficient 

everywhere.  

The groups with the greatest potential to affect the reliability of aggregated LPI trends are 

exclusively tropical (Fig. 3.5), due to a combination of high relative weighting and low 

reliability scores. The nine groups of greatest concern include six freshwater and three 

terrestrial groups, but no marine groups. All are from the tropics. Fishes, birds, and reptiles 

and amphibians are represented, with mammals absent. Overall, the reliability scores of 

regional taxonomic groups did not show a statistically significant correlation with their 

relative weightings in the LPI, r(55) = -0.042, t = -0.31, p = 0.76. Likewise, there were no 

statistically significant correlations for terrestrial and freshwater systems, with terrestrial 

r(13) = -0.34, t = -1.31, p = 0.21; and freshwater r(18) = -0.19, t = -0.81, p = 0.43. The marine 

system showed a moderate positive correlation between reliability and relative weightings: 

r(20) = 0.43, t = 2.15, p = 0.044. 



102 
 

 

Figure 3.3. Proportion of the total amount of time series data needed to achieve the trend reliability 

threshold that each regional taxonomic group in the LPD currently contains.  A score of 100% or greater 

means that group already has enough data to produce a reliable trend. A grey box refers either to a group that 

could not be evaluated because there was too little data (South temperate marine reptiles) or to an invalid 

realm-taxon combination (there are no marine reptiles in the Arctic).  
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Figure 3.4. Reliability of regional taxonomic group trends in the LPI, grouped by system, realm, and 

taxon. Map A shows the terrestrial (top) and freshwater (bottom) results. Map B shows the marine results. 

Reliability scores are binned into three categories, according to the number of time series in the LPD relative to 

the minimum sample size needed to achieve the TDV threshold. A check mark means that group has at least 

100% of the minimum sample size and is considered reliable, a dash means it is data deficient (50-99%) and 

considered unreliable, and an X mark means it is severely data deficient (< 50%) and considered very 

unreliable. 
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Figure 3.5. Trend reliability of regional taxonomic groups in the LPD vs the relative weighting applied 

to each group when calculating aggregated LPI trends.  Trend reliability is measured as the percentage of 

populations in the LPD relative to the number required to achieve the TDV threshold. Only groups with 

reliability ratings below the threshold (less than 100%) are included here. To determine the groups having the 

strongest negative effect on the reliability of aggregated LPI trends, I calculated relative weight * (100 – 

reliability) and labelled the groups with a value higher than one. 

3.4.5. Modelling potential solutions 

Revealing the final year observation (equivalent to resampling previously studied 

populations) for every population improved the median TDV by 6.5%, while adding 200 

additional time series to the sample with observations only in the final ten years (equivalent 

to tracking 200 unstudied populations for ten years) improved the mean TDV by 11% (Fig. 

3.6). By contrast, simply doubling the sample size (equivalent to randomly adding 200 

existing time series to the LPD) improved the median TDV by a significant 43%. This solution 

showed a significant improvement in trend accuracy compared to the control group (p < 

0.001).  
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Figure 3.6. The effect on trend accuracy of potential solutions to data deficiency in LP regional 

taxonomic groups. The control group has a sample size of 200 and mean time series length of 14. Group A 

has an additional 200 time series with observations only in the final ten years of the index to simulate a ten-

year data blitz. In group B, the final observation has been added back in for every time series to simulate 

resampling of previously studied populations. Group C is like the control group, but the sample size has been 

doubled to 400 to simulate adding additional pre-existing studies to the LPI. 

3.5. Discussion 

Understanding the changing global state of biodiversity is crucial to making good policy and 

conservation decisions to ‘bend the curve’ of biodiversity loss. Acquiring accurate and 

comprehensive data is crucial, but the first step is to answer the question: what do we 

actually know? The present study quantifies the reliability of trends for each regional 

taxonomic group in the Living Planet Index and estimates the number of population time 

series needed to meet a standard of expected accuracy. 

I used synthetic population time series datasets to construct a multiple regression model of 

trend accuracy by comparing trends of degraded samples with the trends of the full, 

undegraded datasets using the Jaccard distance metric (Fig. 3.1). I applied the model to 

regional taxonomic groups in the Living Planet Database to reveal that the majority need 

additional data for their trends to be considered reliable. Data deficiency is a problem 
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globally but is more pronounced in the tropics. This is consistent with the analysis of 

geographical representativeness in McRae et al. (2017), which tested proportional 

representativeness of biodiversity compared to the global dataset and found that species 

groups in tropical realms are underrepresented. Bird trends are the most reliable and 

reptiles and amphibians the least. This is consistent with the picture of species 

representation in the LPD presented in McRae et al. (2017) and is unsurprising given that 

monitoring and data collection for birds is more extensive than for reptiles and amphibians 

(Oliver et al., 2021; Scheele et al., 2019), especially with the rise of citizen science (Oliver et 

al., 2021). However, many of my reliability scores differ from what would be expected given 

McRae et al. (2017)’s analysis of taxonomic representativeness. McRae et al. (2017) found 

that all Nearctic taxonomic groups are overrepresented, yet in my analysis Nearctic 

terrestrial and freshwater reptiles and amphibians, as well as Nearctic freshwater mammals, 

score as data deficient. The starkest differences occur in the marine system, where 

mammals and marine reptiles are overrepresented by species in all realms (except South 

temperate reptiles, which are not represented at all) but which I found to be data deficient 

in all realms. By contrast, marine fishes are underrepresented by species numbers (McRae 

et al., 2017), but I found that in all except the Arctic realm marine fishes are data-rich 

enough to produce reliable trends. These results strongly suggest that the percentage of 

species represented does not tell the whole story. 

Geographical and taxonomic biases in the distribution of data in the LPI are known (McRae 

et al., 2017), and reflect underlying biases in the availability of data (Boakes et al., 2010; 

Collen et al., 2008; Yesson et al., 2007). In 2017, McRae et al. introduced a weighting system 

to the LPI, which accounts for the estimated number of species in each regional taxonomic 

group to reduce representational bias. One problem with this is that the majority of the 

world’s vertebrate species are located in the tropics (Collen et al., 2008; McRae et al., 2017), 

which are underrepresented in the LPD (McRae et al., 2017). My concern was that if trends 

from these areas are the most unreliable due to data deficiency, then the LPI could have 

simply replaced one problem, representation bias, with another: overreliance on unreliable 

trends. Indeed, my analysis shows that all regional taxonomic groups with a high relative 

weight and low reliability (bottom right of Fig. 3.5) are tropical. Surprisingly, though, I did 

not find a statistically significant negative correlation between reliability of trends and their 
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relative weights in the LPI. This also holds true for the terrestrial and freshwater systems 

when considered separately (the marine system shows a slight positive correlation), and is 

consistent with Nori et al. (2020), who found that species richness and knowledge gaps are 

not always correlated. 

According to my model, the size of a dataset, i.e., the number of species or populations 

existing in the real world for any regional taxonomic group, is unimportant to the calculation 

of trend reliability for a given sample, as long as the sample represents less than half of the 

time series in the dataset (see Fig. S3.1 in Appendix 2). In other words, it is the absolute 

number of populations represented in the sample that matters, regardless of whether that 

sample represents 1% or 50% of the total populations in a regional taxonomic group. There 

are two principles working to cause this seemingly counterintuitive effect. First, the 

relationship between population size and the sample size needed to reach a desired level of 

precision is logarithmic and becomes more extreme at lower levels of precision (Israel, 

1992). This means that a small sample size should be able to estimate a large population 

almost as well as it can estimate a small population. Second, there are limitations to the 

level of trend accuracy that can be achieved, regardless of sample size, because most time 

series in my simulated samples (and in the LPD) are much shorter than the length of the 

trend being estimated. Short time series tend to produce more extreme trends (Leung et al., 

2020) and are less likely to accurately reflect long-term trends for individual populations 

(Wauchope et al., 2019). They also reduce the number of observations used for the 

calculation of group trends. For example, even if the mean time series length was 50% of 

the length of a trend (mean time series lengths for all regional taxonomic groups in the LPD 

are much shorter than that), if those time series were randomly distributed in time, only 

about 4% of them would begin at the first year and about 4% would end at the final year. 

Thus, the crucial early and final years of the trend would depend on only a fraction of the 

observations that the sample size indicates. This randomized distribution of time series 

across the trend results in less accurate trends than would be possible if observations were 

evenly distributed across time points (confirmed through simulations – see Fig. S3.5 in 

Appendix 2). This issue is slightly complicated in the LPD. On one hand, the database begins 

20 years earlier than the index, giving time for the number of observations to increase 

before measuring the trend. But on the other hand, there is a delay in getting recent studies 
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into the LPD (McRae et al., 2017), reducing the number of observations in the final years 

even more than a random distribution would suggest (see Fig. S3.6 in Appendix 2).  

This dramatic fall-off of observations suggests that the LPI may not reliably reflect changes 

in the status of global vertebrate biodiversity over the past decade. More data is needed, 

and while a reduction in the delay involved in getting new studies into the LPD might help, 

increasing the number of populations in the LPD is only possible to the extent that the 

necessary data exists. Therefore, I simulated two potential ways of generating new data to 

improve trend reliability: A) a global data blitz, with researchers coordinating to track as 

many unstudied populations as possible for ten years to generate new time series, and B) 

resampling already-studied populations to uncover recent changes and lengthen existing 

time series (Fig. 3.6). Both solutions had a slight but non-significant positive effect on trend 

accuracy but were far less effective than adding existing data. It is likely that both solutions 

have a greater effect on the accuracy of the final portion of the trend than on the overall 

trend, but further study would be required to be certain. Either way, resampling would be 

more efficient than a data blitz, as the same improvement could be achieved in one year 

instead of ten. In the long term, tracking additional populations is essential to completing 

our picture of biodiversity change. But natural stochasticity means that short time series are 

of limited value in generating reliable trends (Wauchope et al., 2019), so tracking additional 

populations takes time to pay dividends.  

There is another problem underlying the LPI, which cannot be solved by generating new 

data. All trends in the LPI begin in the year 1970, which is set as the base year for calculating 

the index values. Past trends can only be determined by existing data; therefore, while there 

may be some currently inaccessible data that either could be shared or made available for 

confidential storage in the LPD (Saha et al., 2018), there are likely to be severe limitations to 

relieving data deficiency for this time period. However, two other potential solutions could 

be examined in future studies. One would be to begin the index at a later year in which 

there is more data available (e.g., 1990). Another would be to change the base year for 

calculating the index to a more data-rich year, thus increasing the uncertainty around the 

early years of LPI trends (Gregory et al., 2019). The downside is that the interpretation of 

trends would be different. The LPI would no longer measure change in global vertebrate 
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biodiversity relative to 1970, but relative to another year. Much of the change currently 

recorded in the index would have already occurred before the base year. 

My modelling approach to quantifying trend reliability is subject to several limitations. 

Certain aspects of the underlying data, such as the distribution of observations and biases in 

which populations or species are tracked, are too complex to be included as factors in the 

model, but nonetheless may play a significant role in determining trend reliability. For 

example, monitoring efforts tend to focus on species at higher risk of extinction (Scheele et 

al., 2019). Many amphibian populations in the LPD were tracked because they were 

declining due to the devastating disease chytridiomycosis. This could negatively bias trends 

and falsely reduce variance in growth rates, leading the model to overestimate reliability 

because it assumes that tracked populations are randomly selected. On the other hand, 

Murali et al. (2022) found that population coverage in the LPD is biased towards protected 

areas, where species are less likely to be threatened, therefore potentially causing a positive 

bias in LPI trends. Another common phenomenon in the LPD is that time series are non-

randomly distributed across time and/or space. For example, while some biodiversity 

hotspots (e.g., tropical Africa) are poorly known, others, especially islands (e.g., 

Madagascar), are well-studied (Nori et al., 2020), and this may bias entire realms. In the 

Afrotropical realm, only 12.5% of terrestrial reptile and amphibian populations in the LPD 

are from mainland Africa, while 20% are from a tiny uninhabited island near Mauritius, and 

more than half are from a single study that took place at a reserve in Madagascar over a 

nine-year period. In this case, the model likely severely underestimates the amount of data 

needed to get a reliable trend. While this is an extreme example, it makes the point that 

there are important underlying aspects of the data that cannot be assessed by a model. 

Fortunately, these issues tend to diminish when more data is present, and thus should not 

have a large effect on trends assessed as reliable. 

The model also assumes that adding additional time series to the LPD will maintain the 

parameters of the regional taxonomic group to which they are added (e.g., the mean time 

series length and the level of variance in population mean growth rates will not change). 

This results in the model occasionally suggesting that unrealistically large numbers of 

populations are required to achieve a reliable trend. For example, it suggested that 6,768 

populations of freshwater Afrotropical birds are needed. This likely occurred due to 
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problems with the existing data. Although there are 143 freshwater Afrotropical bird 

populations in the LPD, most of them are short and/or sporadically observed (the mean 

number of observations is 4.1), and observations are clustered in the 90’s and 2000’s, with 

only a single time series containing observations past 2009. However, this is an issue only 

for small or exceptionally poor-quality samples, and if more and better time series are 

added to the LPD, the model should improve its estimates. 

Another limitation of my modelling approach is that I could not correct for the sizes of the 

real-world datasets (the number of populations that exist) that the LPD samples are drawing 

from, and therefore may overestimate the sample size needed to achieve a reliable trend 

for very small datasets. Although there are estimates of the number of species for each 

regional taxonomic group, my model uses populations as the base unit to measure sample 

size. I chose to base sample size on populations rather than species for two reasons. First, I 

found that mean growth rates within the LPD vary almost as much between populations 

within a species as they do between species. Therefore, I cannot assume that the trend of a 

population represents the trend of the species it belongs to any better than it represents 

the trend of its entire regional taxonomic group. Second, localized threats such as land-use 

change and habitat destruction are likely to affect some populations within a species 

disproportionately. Population extinctions also occur much more frequently than species 

extinctions and may serve as a prelude (Ceballos et al., 2017). However, a population is not 

a well-defined unit, and there are no estimates of how many populations each species or 

regional taxonomic group is composed of. While my testing suggested the number of 

existing populations can be assumed to be unimportant in determining trend reliability, this 

assumption breaks down when the sample comprises a large percentage of the dataset. It is 

unlikely that any regional taxonomic groups currently approach this level of representation 

within the LPD, but it is nonetheless an important caveat to be aware of.  

3.6. Conclusion 

The results of this study reveal the strengths and weaknesses in our understanding of global 

vertebrate biodiversity, highlighting the regional taxonomic groups for which we have 

enough data to make responsible decisions, as well as those on which future data gathering 
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and collation efforts should focus. Some underlying aspects of the data create biases that 

are not taken into account by my modelling approach, and more fine-scale studies on gaps 

in population trends should be performed to better understand these biases and where to 

divert scientific resources. I show that revisiting previously studied populations is a quick 

and efficient way to improve trend reliability for data deficient groups until more long-term 

studies can be completed and made available. The modelling approach I use to quantify 

trend reliability can also be generalized to assess other global and/or regional biodiversity 

indices that utilize population time series data. We are facing an urgent global biodiversity 

crisis made worse by biased and deficient data, but through careful study and cooperative 

global efforts we can solve the data problem and begin to ‘bend the curve’ of biodiversity 

toward a positive trend. 
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Chapter 4: Accounting for sampling and measurement 

error in aggregated abundance-based biodiversity 

indicators 

4.1. Abstract 

Multi-species biodiversity indicators are used to track biodiversity trends and make 

conservation and policy decisions. Therefore, it is important that they include reliable 

measurements of uncertainty. Precise confidence intervals can be calculated for indicators 

that track select groups of species, as they typically use systematic monitoring protocols and 

high-quality site-based data. However, for indicators that use aggregated time series data 

collected from multiple sources, such as the Living Planet Index and the Priority Species 

Indicator, existing methods of calculating confidence intervals do not account for sampling 

and measurement error at the population level. Proposed alternatives are untenable for 

these indicators due to a lack of site-based data, a high level of missing observations, and 

strong differences between population trends within species. 

I developed the GAM-resampled rank envelope method to account for sampling and 

measurement error in aggregated abundance-based biodiversity indicators without 

requiring site-based data or similarity between population trends; this method is also highly 

robust against missing data. Here, I use synthetic time series data to compare my method to 

that used in the Living Planet Index and show that my method generates more accurate and 

precise confidence intervals across a wide range of parameters. I show that my method not 

only accounts for multiple levels of uncertainty in the confidence intervals, but also reduces 

the influence of outlier growth rates in the data that lead to inappropriately wide 

confidence intervals when measurement or sampling error are high. 

4.2. Abbreviations 

CI – confidence interval 

CP – capture percentage 

GO – GAM only 

GAM – Generalized Additive Model 
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GC – GAM + Chain 

GRRE – GAM-resampled rank envelope 

LPI – Living Planet Index 

LPD – Living Planet Database 

PPS – populations per species 

RE – rank envelope 

TDV – trend deviation value 

4.3. Introduction 

Reliability is essential for multi-species biodiversity indicators (Soldaat et al., 2017). They 

compile complex scientific information into simple, user-friendly indices, and are therefore 

frequently used as information sources by policymakers and conservation decision-makers 

(Buckland et al., 2012; Jetz et al., 2019; Jones et al., 2011; Mace & Baillie, 2007; Mcowen et 

al., 2016; Nicholson et al., 2012; Rochette et al., 2019; Watermeyer et al., 2021). Biodiversity 

indicators are used to track biodiversity trends, make policy and conservation decisions, and 

evaluate the success of existing policies and programs (Mace & Baillie, 2007; Nicholson et 

al., 2012; Rowland et al., 2021). Indicators that monitor trends are calculated from samples 

or estimates and have some level of uncertainty, which is generally reported as intervals 

around the index values of the trend (e.g., Butchart et al., 2004; Eaton et al., 2015; Freeman 

et al., 2001; Gregory et al., 2004, 2005; Gregory & van Strien, 2010; McRae et al., 2017; 

Wotton et al., 2020). Intervals can account for variability in the data, quantify statistical 

precision of sampled or subsetted data, or show uncertainty from sampling or measurement 

errors (Rowland et al., 2021). When the data are used to generalize trends based on a 

sample, as in the Living Planet Index (LPI; McRae et al., 2017), confidence intervals (CIs) 

produced by resampling methods are considered an appropriate way to estimate precision 

in the index (Rowland et al., 2021). Many biodiversity indicators, especially at the national 

level, are constructed from standardized, systematically collected data from repeat 

sampling of the same sites over many years, referred to here as site-level data; others, 

especially at the global level where systematically collected data do not exist, are 

constructed from collated data from multiple sources and data types (e.g., The Living Planet 

Index: Loh et al., 2005; Large mammal trends in African protected areas: Craigie et al., 2010; 
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The Priority Species Indicator: Eaton et al., 2015). In the latter case, it is common to apply 

bootstrapping to the interannual variation of the species indices, considering species trends 

as replicates of the multi-species index (Craigie et al., 2010; Eaton et al., 2015; Gregory et 

al., 2019; Loh et al., 2005). However, this method neglects to take sampling and 

measurement error into account (Gregory et al., 2019; Soldaat et al., 2017). 

Sampling error constitutes the uncertainty caused by sampling only part of a population, 

while measurement error is caused by e.g., species misidentification and non-detection, 

errors in counting, and inaccurate plot area measurements (Elphick, 2008; Holdaway et al., 

2014). Because counting all individuals in a species or population is often expensive and 

inaccurate, sampling strategies are typically used to estimate population abundance (Fryxell 

et al., 2014). Sampling may also occur at each level of data collation. Sample-based counts 

represent population sizes; samples of population trends represent species trends; and 

samples of species trends represent taxonomic group trends. Each occurrence of sampling 

introduces uncertainty to the index. Unless this uncertainty is accounted for, CIs may appear 

artificially narrow, leading to a false sense of precision in the index. 

Soldaat et al. (2017) proposed a method of calculating confidence intervals that accounts for 

sampling error at the population level using a Monte Carlo simulation. Their method has 

been applied to several bird and insect indices (Dennis et al., 2019; Gregory et al., 2019; 

Kamp et al., 2021; Wotton et al., 2020). However, the Monte Carlo simulation requires 

species indices with standard errors. Soldaat et al. (2017) suggested using the TRIM (Trends 

and Indices for Monitoring data) software (Pannekoek & van Strien, 2005) to produce 

species indices with standard errors. TRIM uses Poisson regression to estimate indices and 

trends from multiple counts and can impute missing counts based on other counts for the 

same year (Pannekoek & van Strien, 2005). TRIM is intended for use with site-level data. 

Gregory et al. (2005) and van Strien et al. (2001) employed a solution for European bird 

indicators; they used TRIM to estimate supranational year totals from country year totals by 

grouping countries by region and assuming that species showed similar population trends 

within regions. However, this solution assumes that grouped countries have similar trends 

and that at least one country-level count exists for each year (van Strien et al., 2001). 

Because the Living Planet Index (LPI) and similarly constructed indices are formed from 
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aggregated studies, they not only lack site-level data, but population-level trends are often 

dramatically different within species, with many years having no observations and many 

populations entirely missing. Therefore, an alternative approach is needed. 

In this study, I present an alternative method of calculating CIs for multi-species biodiversity 

indicators based on aggregated time series data. My method not only accounts for 

measurement error and sampling error at the survey level as in Soldaat et al. (2017), but 

goes a step further by accounting for the additional sampling error introduced by sampling 

at the population and species levels. I use Generalized Additive Models (GAMs) to model 

population trends, then resample repeatedly from a multivariate normal distribution 

calculated from the means and covariance matrices of the coefficients of the GAMs, thus 

utilizing the variation inherent in the model as an estimate of sampling and measurement 

error at the survey level. The resampled population trends are pooled and used to 

propagate variation through each step of index calculation. Population trend variants are 

chosen for each species by random sampling with replacement, thus accounting for 

sampling error at the population level. Species trend variants are chosen in the same way as 

population trend variants, thus accounting for sampling error at the species level. The final 

index is formed by taking the mean of multi-species trend variants. Confidence intervals are 

calculated from the multi-species trend variants using the rank envelope method. The rank 

envelope method is a Monte Carlo global envelope test developed for hypothesis testing on 

spatial data (Myllymäki et al., 2017). It has also been shown to be useful in testing disparity 

through time curves to detect non-random bursts of evolution (Murrell, 2018). The rank 

envelope method has the advantage of reducing false positives (type 1 errors) in hypothesis 

testing by treating a curve or set of points as a whole instead of as independent points; in 

the context of calculating CIs, that means it will take serial correlation, an inherent property 

of time series, into account, which current methods do not.  

I first test my GAM-resampled rank-envelope (GRRE) method using simulated time series 

datasets. I sample from the datasets, introduce error and remove some observations to 

emulate regional taxonomic groups in the Living Planet Database (LPD; McRae et al., 2016), 

then compare the GRRE method with the LPI method in terms of the percentage of the 

‘true’ trend (‘true’ meaning unsampled, undegraded, and without introduced error) 



120 
 

captured by the CIs, the width of the CIs, and the accuracy of the sampled trend. Since the 

GRRE method introduces an important change in how time series are modelled, namely it 

avoids the use of the chain method which the LPI uses for time series with fewer than six 

data points or where the GAM fit is poor, I also reproduce the LPI method with all time 

series modelled by GAMs and use it as a control. Finally, I apply all three methods to the LPD 

itself. 

4.4. Material and Methods 

4.4.1. Synthetic data generation, observation error, data degradation, 
and sampling 

I began by creating simulated datasets, each constructed from 1,000 population time series 

generated by a stochastic exponential model to represent real-world regional taxonomic 

groups. I created an observed version of each time series by modelling error, which I will 

refer to as observation error, or ɛ, using a normal distribution of the coefficient of variation 

(cv). Observation error ɛ can be assumed to include both sampling and measurement error, 

since I did not model them separately. The observed time series were then degraded by 

removing observations to resemble time series in the LPD. Finally, I randomly sampled time 

series from each dataset, without replacement, 20 times for each dataset. The process of 

generating datasets, adding error, degrading the time series, and sampling followed the 

methods detailed in Sections 3.3.1-3.3.4 of Chapter 3 of this thesis. Sampled parameters are 

referenced using the subscript ‘samp’ instead of ‘ds’ (e.g., μsamp and σsamp) and were 

calculated by first taking the means of the replicates for each dataset, then the overall mean 

(i.e., a mean of means). This was done to avoid issues of pseudoreplication, as samples from 

the same dataset are not independent. 

I varied ɛ across a range of cv (see Table 4.1), but when other parameters varied, ɛ was fixed 

at μɛ = 0.3 and σɛ = 0.2. These values are higher than I used in Chapter 3 for two reasons. 

First, the range of ɛ chosen in Chapter 3 may have been an underestimate (e.g., de Valpine, 

2003; Dunham et al., 2001; Viljugrein et al., 2005; G. Wang et al., 2006). Second, while the 

simulations I did in Chapter 3 showed that ɛ has no effect on trend accuracy (Fig. S3.4 in 

Appendix 2), increasing ɛ does increase within-population variance in growth rates (Fig. S4.1 

in Appendix 3), which may affect confidence intervals. In samples, process noise, ɳ, and ɛ 
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cannot be measured separately, so I refer to them as combined error, ɳɛ, except in specific 

cases where observation error was set to zero.  

4.4.2. Calculation of sampled trends for GRRE method 

Non-linear index trends were calculated for each sample, following the LPI method 

described in McRae et al. (2017) and Section 3.3.5 in Chapter 3 of this thesis, but with some 

deviations. As in the LPI, population sizes were converted to growth rates by 

𝑟𝑡 = 𝑙𝑜𝑔10
𝑁𝑡

𝑁𝑡−1
      (1) 

All time series were modeled using a Generalized Additive Model (GAM), as described in 

Collen et al. (2009). For each modelled time series, a normal distribution of 100 time series 

variants was drawn from the means and covariance matrix of the coefficients of the GAM. 

This technique uses the variance inherent in the GAM to represent observation error, ɛ. 

Since variance cannot be extracted this way from time series modelled using the chain 

method, I did not employ the chain method for any time series; nor did I check GAM fit, as 

there was no alternative in the case of poor fit.  

Species trends were produced as follows. First, all time series variants for a given species 

were pooled and a sample equal in size to the number of populations in the sampled 

dataset belonging to that species was randomly selected from the pool, with replacement. 

For a species consisting of 10 populations, 10 time series variants would be selected from a 

pool of 1,000 (10 populations * 100 variants = 1,000). This step accounts for sampling error 

involved in selecting populations, as not all populations from the dataset can be in each 

sample. Second, average growth rates were calculated by 

𝑟�̅� =
1

𝑛
∑ 𝑟𝑖𝑡

𝑛𝑡
𝑖=1        (2) 

where 𝑛𝑡 is the number of time series variants selected from the pool, 𝑟𝑖𝑡 is the growth rate 

for time series i at year t, and 𝑟�̅� is the average growth rate at year t. Growth rates were 

capped at [-1:1]. Finally, index values were calculated by 

𝐼𝑡 =  𝐼𝑡−1 ∗ 10𝑟�̅� , I0 = 1       (3) 
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where I is the index value and t is the year. This process was repeated 3,000 times for each 

species to generate 3,000 variants of each species trend. A large number of variants is 

important for generating CIs using the rank envelope method (see Section 4.4.6 below).  

Species trends were then pooled and a sample size equal to the number of species in the 

sampled dataset was randomly selected from the pool, with replacement. This step 

accounts for sampling error involved in selecting species, as it is likely that not all species 

from the dataset will be represented in each sample. The sample was averaged using the 

geometric mean, as with the population variants. This was repeated 3,000 times to provide 

3,000 multi-species trend variants. The final index was calculated as the arithmetic mean of 

the multi-species trend variants. 

4.4.3. Calculation of sampled trends using the LPI (GC) method 

Non-linear index trends were calculated from each sample exactly as described in Section 

3.3.5 of Chapter 3. Since this method uses both GAMs and the chain method to model 

populations, it will henceforth be referred to as the GC (GAM + Chain) method. 

4.4.4. Calculation of sampled trends using a modified LPI (GO) method 

Non-linear index trends were calculated from each sample as described in Section 3.3.5 of 

Chapter 3, except that every time series was modelled using a GAM. Model fit was not 

tested, and the chain method was not employed for any time series. This was to make 

results directly comparable to the GRRE method, as the smoothing effect of a GAM removes 

outlier growth rates that can lead to wider CIs. Since this method uses only GAMs, it will 

henceforth be referred to as the GO (GAM only) method. 

4.4.5. Calculation of the ‘true’ trend & trend comparison 

An index was calculated for each unsampled original dataset (without observation error or 

degradation), following McRae et al. (2017), but without using a GAM or the chain method 

to model the time series (because there were no missing values). 

Sampled trends calculated by all three methods were then compared with the ‘true’ trend 

using the Jaccard distance metric, with the resulting value referred to as a trend deviation 
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value, or TDV, as described in Section 3.3.7 of Chapter 3. The TDV represents the 

complement of trend accuracy, therefore lower is better. 

4.4.6. Confidence intervals for sampled trends using the GRRE method 

Confidence intervals for sampled trends were determined using the rank envelope (RE) 

method adapted from Murrell (2018) and Myllymäki et al. (2017). The rank envelope test is 

a method widely used in spatial statistics to evaluate the range of output values of a 

function which leads to rejection of the null hypothesis (Myllymäki et al., 2017). Unlike the 

LPI method of bootstrapping the species rates of change, the GRRE method accounts for 

serial correlation by not treating time points within trends as independent. Instead, each 

trend is assigned a ranking based on its most extreme deviation from the median at any 

given time point and then removing the most extreme trends to form confidence intervals. 

The GRRE method employs a non-parametric rank test to determine CIs, and Myllymäki et 

al. (2017) recommends at least 2,500 simulated variants. Here I used 3,000 multi-species 

trend variants, calculated as described in Section 4.4.2, and assigned two ranks for every 

time point, based on its index value at that time point relative to all other variants. One rank 

was in ascending order of index value, the other in descending order. A global rank for each 

variant was then determined according to the maximum rank (ascending or descending) of 

that variant at any time point. The CIs for the final index were defined by the highest and 

lowest index values at each time point within the 95% globally lowest-ranked multi-species 

trend variants. In other words, I excluded the most extreme 5% of variants and then took 

the highest and lowest values at each time point from the remaining variants as the CIs. 

4.4.7. Confidence intervals for sampled trends by bootstrapping the 
species rates of change (GC and GO methods) 

For both the GC method and the GO method, confidence intervals for sampled trends were 

determined according to Collen et al. (2009). For each year t, 3,000 variants of the multi-

species trend were calculated from n randomly selected species annual rates of change 

(with replacement), where n is the number of species with rates of change for that year. The 

bounds of the central 2,850 values for each year formed the 95% CIs. 
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4.4.8. Percentage of ‘true’ trend captured within confidence interval of 
sampled trends (capture percentage) 

For each sampled multi-species index, I calculated the percentage of time points of the 

‘true’ trend that fell between the values of the upper and lower 95% CIs of the index. I then 

averaged across samples to determine the mean percentage of the trend that was captured 

by the 95% confidence intervals for that dataset. This will be referred to as mean capture 

percentage, or CP. 

4.4.9. Mean normalized width of confidence intervals of sampled trends 

The mean difference between the upper and lower CIs of the index was calculated, 

excluding the first year where the difference was always zero, and this was then averaged 

across samples to determine mean CI width for a given dataset. Since CI width is naturally 

higher for increasing trends than for decreasing trends due to differences in index values, 

the mean CI width was then divided by the mean index value of the trend to normalize.  

4.4.10. Comparison of confidence interval methods 

I applied the GC, GO, and GRRE methods described above to simulated datasets to test 

performance at different parameter settings, including mean time series length, sample size, 

mean number of populations assigned to each species (populations per species, or PPS), 

mean of population mean growth rates (overall slope of the dataset; μds), standard 

deviation in population mean growth rates (variation in growth rates among species; σds), 

mean of the population standard deviations (process noise, which is the inherent, or ‘real’, 

stochasticity in a time series, unrelated to measurement or observation; μɳ), and mean 

coefficient of variation (observation error; the standard deviation was set to the same as the 

mean; cvɛ). Values for these parameters are provided in Table 4.1. For each parameter, I 

calculated the mean percentage of the ‘true’ trend captured, the mean confidence interval 

width, and the mean trend deviation for the GO, GC and GRRE methods. 

I then applied all three methods to regional taxonomic groups from the Living Planet 

Database and plotted the results side-by-side to visually demonstrate the differences. 
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Table 4.1. Parameters with values for simulated datasets and degraded samples.  

Independent Variable Values in Datasets Values in Samples 

Sample Size (out of 1,000 time series) - 50, 70, 100, 150, 200, 300, 500, 800 

Mean Length of Time Series 5.5, 8, 13, 18, 23, 31, 39 6.1, 8.3, 13, 18, 23, 31, 39 

Mean of Pop. Mean Growth Rates, μds -0.08, -0.04, -0.02, 0, 0.02, 0.04, 0.08 -0.1, -0.05, -0.01, 0.01, 0.05, 0.1 

St. Dev. of Pop. Mean Growth Rates, σds 0.05, 0.15, 0.25, 0.4, 0.55, 0.6, 0.8, 1 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.1 

*Mean of Pop. Std. Deviations, μɳ 0.1, 0.2, 0.3, 0.4, 0.55, 0.7, 0.85, 1 0.32, 0.37, 0.41, 0.47, 0.52, 0.6, 0.65, 0.7 

Mean Number of Pops / Species (PPS) 5, 10, 15, 20, 30, 50, 100, 200 1.6, 2.3, 3.2, 4.1, 6.0, 10, 20, 40 

Mean Observation Error, cvɛ - 0.05, 0.25, 0.45, 0.65, 0.85, 1, 2, 4 

*This parameter represents process noise in simulated datasets, but in degraded samples it represents process 

noise and observation error combined. 

 

4.5. Results 

Trend deviation values (TDV, lower is better) were similar across methods for all levels of 

mean time series length, sample size, mean PPSsamp, μsamp, σsamp, or ɳɛ (Fig. 4.1), but TDVs 

were higher for the GC method than GO or GRRE at all but the lowest level of observation 

error (Fig. 4.1F). All three methods showed lower TDV when mean time series length 

increased (Fig. 4.1A), and higher TDV when μsamp, σsamp, or ɳɛ increased (Fig. 4.1D, E, G). The 

mean and range of TDV decreased for all methods as sample size increased (Fig. 4.1B). 

There was no clear effect on TDV when altering the mean number of populations per 

species for any method (Fig. 4.1C). Increasing observation error caused an increase in TDV 

for the GC method; however, the GO and GRRE methods showed an increased range of TDV 

but no clear effect on the mean (Fig. 4.1F). Mean TDV remained comparable between all 

three methods when process noise (the ‘real’ stochasticity in a time series) increased 

without the presence of observation error (Fig. 4.1H).  

Capture percentage (CP) was consistently higher for the GRRE method than the GC or GO 

methods across all tested levels of every parameter (Fig. 4.2). The GC method consistently 

had a higher CP than the GO method, except when σsamp was very high (Fig. 4.2). Capture 

percentage increased for the GO and GC methods at both low and high mean time series 

lengths, while the GRRE method was unaffected (Fig. 4.2A). All methods showed an increase 

in CP as mean PPSsamp increased until it surpassed 4.1 (GRRE method) or 6 (GC and GO 

methods) (Fig. 4.2C). The same relationship was evident with increasing sample size, except 

when sample size was very low (all methods) or greater than 200 (GRRE method only) (Fig. 
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4.2B). The GC method showed lower CP as σsamp increased but held steady at σsamp above 

0.5; there was no apparent effect of σsamp on GO or GRRE methods (Fig. 4.2E). The 

parameters μsamp and ɳɛ did not seem to have an effect on CP for any of the methods (Fig. 

4.2D, G). The GC method showed an increase in CP as observation error increased up to 

45%, then maintained the higher CP as observation error increased to the maximum tested 

level of 400% (Fig. 4.2F). When only process noise was present, capture percentage 

increased slightly for the GC method, but the effect was weak (Fig. 4.2H). 

Mean normalized CI width decreased for all methods with increasing mean time series 

length or sample size, and increased for all methods with increasing μsamp, σsamp, or ɳɛ (Fig. 

4.3). Confidence interval width increased for all methods with increasing PPSsamp when 

mean PPSsamp was above 6 (Fig. 4.3C). The range of CI widths increased with increasing σsamp 

or ɳɛ (Fig. 4.3E, G). The GO method resulted in narrower CIs than the other two methods 

across all levels of all parameters; the GRRE method resulted in wider CIs than the other two 

methods across all levels of all parameters except observation error (Fig. 4.3). The GO 

method showed no effect of observation error on CI width; CI width increased for the GRRE 

and GC methods, but the increase was much faster for the GC method, with the GC method 

having the widest CIs for all values of observation error above 45% (Fig. 4.3F). When no 

observation error was present, results were similar as for combined error, with increasing 

process noise resulted in wider CIs for all methods, the strongest increases occurring for the 

GRRE method, and the weakest for the GO method (Fig. 4.3H). 

In contrast to the results from the simulated datasets, regional taxonomic groups in the LPD 

typically had wider CIs with the GC method than the GRRE method (e.g., Fig. 4.4; for full 

results see Figs S4.2-S4.18 in Appendix 3). The GO method results were more consistent 

with the simulated datasets, often showing narrower CIs than the GRRE and GC methods 

(Fig. 4.4), but not in all cases (e.g., marine South Temperate birds in Fig. 4.4). When sections 

of trends were represented by one or more time series belonging to a single species, CIs 

were calculated for the GRRE method but could not be calculated for the GO and GC 

methods, resulting in wider overall CIs for the GRRE method for those trends (e.g., 

freshwater Afrotropical herps in Fig. 4.4). 
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Figure 4.1. Mean trend deviation value of sampled trends.  The following eight parameters were varied: 

A) time series length, B) sample size, C) number of populations per species, D) population mean growth rates, 

E) variance in population mean growth rates, F) observation error, G) process noise with fixed observation 

error, and H) process noise without observation error. Reported values are from the samples. Fixed values 

were standardized as follows – dataset size: 1000; sample size: 200; PPSds: 20; μds: 0; σds: 0.2; ɳds: 0.2; ɛ: 0.3. 

Twelve datasets were simulated at each parameter value, with 20 samples collected per dataset. 
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Figure 4.2. Percentage of the ‘true’ trend captured within sample confidence intervals.  Eight 

parameters were varied: A) time series length, B) sample size, C) populations per species, D) population mean 

growth rates, E) variance in population mean growth rates, F) observation error, G) process noise with fixed 

observation error, and H) process noise without observation error. Reported values are from the samples. 

Fixed values were standardized as follows – dataset size: 1000; sample size: 200; PPSds: 20; μds: 0; σds: 0.2; 

ɳds: 0.2; ɛ: 0.3. Twelve datasets were simulated at each parameter value, with 20 samples collected per 

dataset.  
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Figure 4.3. Normalized width of sampled confidence intervals.  Eight parameters were varied: A) time 

series length, B) sample size, C) populations per species, D) population mean growth rates, E) variance in 

population mean growth rates, F) observation error, G) process noise with fixed observation error, and H) 

process noise without observation error. Reported values are from the samples. Fixed values were 

standardized as follows – dataset size: 1000; sample size: 200; PPSds: 20; μds: 0; σds: 0.2; ɳds: 0.2; ɛ: 0.3. 

Twelve datasets were simulated at each parameter value, with 20 samples collected per dataset.  
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Figure 4.4. LPI trends for four regional taxonomic groups. From left to right, the columns were calculated 

using the GAM + Chain (GC) method, which is the method used for the LPI; the GAM Only (GO) method; and 

the GAM-Resampled Rank Envelope (GRRE) method, respectively. The GC and GO methods were unable 

calculate CIs for the first half of the freshwater Afrotropical herps trend because the group is represented in 

the LPD by a single species during those years. 
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4.6. Discussion 

Existing methods of calculating confidence intervals (CIs) for biodiversity indicators that are 

based on aggregated time series data collected from multiple sources rather than through 

systematic monitoring protocols fail to account for sampling and measurement error at the 

population level (Soldaat et al., 2017) and serial correlation. I tested an alternative method, 

the GAM-resampled rank envelope (GRRE) method, against the method used in the LPI 

(here called the GC method) as well as a control method identical to the GC method except 

that all time series are modelled using GAMs (the GO method). I found the GRRE method 

maintained the highest capture percentage (CP) across all parameter ranges, while 

maintaining similar trend accuracy (TDV) to the GC and GO methods. It also produced wider 

CIs in simulations, with one exception; when observation error was high, CI width for the GC 

method exceeded the GRRE method. However, even when the GC method produced wider 

CIs, it was unable to match the GRRE method for CP. At the tested sample size of 200 time 

series, the GRRE method maintained a CP of approximately 95% across most parameter 

settings, while the CP for the GC and GO methods was consistently too low, only reaching 

95% at a sample size of 800 (80% of the dataset), four times higher than the GRRE method. 

This suggests that the GRRE method is better at accounting for error and noise and 

produces more efficient and more accurate CIs. 

The wider CIs produced by the GRRE method when using simulated datasets reflect the 

uncertainty introduced from three sources: a combination of measurement and sampling 

error introduced when estimating population abundances or densities (here termed 

observation error), sampling error introduced when selecting only certain populations 

within each species, and sampling error introduced when selecting only certain species 

within each dataset (regional taxonomic group). The GC method used to calculate LPI CIs 

makes no attempt to account for observation error nor the sampling error related to 

population selection; instead, CIs in the LPI reflect only the sampling error related to species 

selection (Gregory et al., 2019; Soldaat et al., 2017). Confidence interval width increases 

more strongly in response to increased observation error for the GC method than it does for 

the GRRE method. This is because the GC method models some time series by the chain 

method, which uses log-linear interpolation, and the additional variance introduced to those 
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time series by randomized observation error is not smoothed away. This results in outlier 

growth rates propagating to species trends, and the growth rates of the species trends are 

then bootstrapped to calculate CIs. Final CIs around the multi-species index are calculated 

by cumulative product, therefore wide CIs around any year will increase CI width in later 

years. However, the increased width makes these CIs inefficient. Capture percentage 

increases but remains below that of the GRRE method, likely because the wider CIs are 

offset by reduced trend accuracy caused by the propagation of outlier growth rates. The GC 

and GO methods not only ignore sampling error but calculate CIs separately for each year 

and thus do not account for serial correlation; even when producing wider CIs than the 

GRRE method, it is clear that the GC method does not work as intended. 

When all time series are modelled by GAMs (GO method), increased observation error does 

not change CI width, capture percentage, nor trend accuracy, because the error is random 

and is largely smoothed away; outlier growth rates are not propagated to species trends. 

Observation error does cause wider CIs for the GRRE method, but without any change in 

trend accuracy or capture percentage. While the GRRE method models all time series by 

GAMs and therefore smooths away the outlier growth rates, it also captures the increased 

variance from the covariance matrices of the GAMs and propagates this variance through to 

the CIs, increasing their width. However, given that TDV does not increase, the lack of 

corresponding improvement in capture percentage suggests that increased observation 

error reduces CI efficiency for the GRRE method as well as for the GC method.  

The differences in response to process noise vs observation error in the GRRE and GO 

methods is interesting, given that process noise and observation error are both captured in 

the samples as within-population variance in the growth rates. However, process noise is 

present in the unsampled dataset while observation error is not. Increasing process noise 

also increases the variance in mean growth rates between populations in the samples (but 

not in the original dataset), while increasing observation error does not (see Fig. S4.1 in 

Appendix 3). Since all methods respond much more strongly to increased variance between 

populations than to increased variance within populations, this is likely a major reason for 

the difference. Process noise is applied to the entire dataset, so samples likely capture a 
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similar range of mean growth rates in a smaller number of populations, thus increasing the 

standard deviation. Observation error, on the other hand, is present only in the samples. 

Capture percentage is independent of time series length, but strongly depends on sample 

size for all methods. As time series length is reduced, TDV increases, and CI width increases 

to compensate. The same occurs when sample size is reduced; however, compensation is 

limited because when sample size is low outliers are less likely to be sampled and the range 

of growth rates represented in the sample reduces. The mean PPS in the samples also 

reduces at low sample sizes, and low PPS can reduce CP. When sample size (the number of 

populations in a sample) is set, sample PPS is the inverse of species richness. Raising PPS 

(reducing richness) increases CI width and CP for all methods without affecting trend 

accuracy. When there are few species, if other parameters stay the same there will be 

higher variance in population mean growth rates within each species. Due to randomized 

resampling with replacement, the GRRE method should produce a wider variation in trends 

for each species, and a wider variation in multi-species trends, which will in turn lead to 

wider CIs. While this is not the case for the GC and GO methods, they do use random 

sampling of species growth rates, with replacement, to form CIs; fewer species trends mean 

a higher frequency of extreme growth rates being selected multiple times, and thus more 

extreme CIs when those growth rates are averaged. If sampling were performed without 

replacement, I would not expect the same relationship between CI width and PPS or CP and 

PPS. As sample size decreases, PPS drops faster than richness because the likelihood of 

randomly selecting populations from different species is higher than from the same species. 

This drop in PPS likely tempers the rise in CI width, further dropping CP in addition to the 

effect of the reduced representation of the range of growth rates. 

Increasing the mean population growth rates does not affect CP for any method, although it 

decreases trend accuracy and increases normalized CI width for all methods. Increased CI 

width due to more extreme trends balances decreased trend accuracy to maintain capture 

rates. More positive growth rates result in larger index values, which amplifies differences in 

trends caused by small differences in growth rates, while more negative growth rates 

minimize differences due to a smaller potential range of index values. This is partially 

compensated for by normalization of CI widths and the use of a normalizing distance 
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measure for comparing trends. However, relative differences are still higher because index 

values cannot go below zero but are unbounded on the positive side. 

When all three confidence interval methods were applied to LPI regional taxonomic groups, 

the GC method consistently resulted in the widest CIs. The difference is likely due to two 

types of growth rate outliers. The first type of outlier occurs in individual growth rates 

within LPI time series, which may occur due to high levels of observation error. Typical 

observation error estimates for vertebrates are within the standard range I modelled for my 

tests (Fryxell et al., 2014; X. Wang et al., 2013; Westcott et al., 2012; Zylstra et al., 2010), but 

it has been shown that observation error may depend on density, reaching 400% for voles 

when burrow density was low but less than 10% when density and sample size were high 

(Lisická et al., 2007). A deeper look into the LPD could shed light on the matter by revealing 

whether outlying growth rates occur more frequently when abundance or density is low. It 

would be difficult to determine whether process noise or observation error is responsible; 

however, with my simulated datasets CI widths for the GC method surpassed the GRRE 

method when only observation error was high but did not show the same effect from high 

process noise. The second type of outlier occurs in the mean growth rates for population 

time series, and may also explain why even the GO method produced wider CIs than the 

GRRE method for some regional taxonomic group trends, as this type of outlier is not 

smoothed away by GAMs. The GC and GO methods calculate CIs by bootstrapping species 

growth rates. Each species has equal power to influence CIs regardless of the number of 

populations associated with it, so species represented by a single population, which are 

more likely to be outliers due to the lack of moderating effect from other populations 

contributing to the mean, have as much power to influence CIs as species represented by 

many populations. Therefore, some outlier populations may be highly influential, especially 

when sample sizes are small. This does not occur with the GRRE method, which calculates 

CIs from multi-species trend variants rather than species growth rates and therefore gives 

individual populations less influence. 

My implementation of the GRRE method employs successive trend calculation steps that 

involve random sampling with replacement to account for sampling error. This method 

assumes that sampling of populations and species is random. While this assumption would 
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be entirely false for some indicators that use carefully selected species, it is closer to the 

truth for indicators like the LPI that are based on multiple and varied data sources. Time 

series in the LPD are selected according to availability of survey data, and surveyed 

populations are chosen for various reasons, such as protected status, commercial or popular 

interest, or suspected or known declines (Scheele et al., 2019). A weighting system applied 

to LPI trends accounts for biases in the number of populations available in the LPD for 

particular taxa and regions (McRae et al., 2017), but biases in the reasons those populations 

are studied are not accounted for (see Discussion in Chapter 3). However, since selection 

biases are varied, with some favouring positive trends and others negative trends, it is 

reasonable to assume that selection is random. 

4.7. Conclusion 

My analysis suggests that the current method of calculating confidence intervals for the 

Living Planet Index overestimates their width, likely due to high levels of observation error 

and a failure to account for serial correlation in the time series, which may also reduce trend 

accuracy. If the observation error is random, modelling all populations with GAMs and 

calculating the multi-species index and confidence intervals using the GRRE method I 

present here would not only make the confidence intervals narrower, but likely improve 

capture percentage and trend accuracy as well. The GRRE method proved robust against 

missing observations (short time series), extreme growth rates, and high levels of process 

noise and observation error. It improved mean capture of the ‘true’ trend by sampled 

confidence intervals under all tested parameter ranges, and maintained a capture 

percentage of approximately 95% across most parameter settings. Therefore, it could also 

be used to improve confidence interval efficiency for other indicators that are based on 

aggregated population time series data. While current methods are not viable because they 

fail to account for serial correlation or sampling and measurement error, the GRRE method 

overcomes both issues and produces accurate confidence intervals. 
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Chapter 5: Discussion and Synthesis 

Global biodiversity is facing a crisis, which must be solved through effective policies and on-

the-ground conservation. But governments, NGOs, and scientists need reliable indicators to 

guide research, conservation actions, and policy decisions. Developing reliable indicators is 

challenging because the data underlying those tools is incomplete and biased. For example, 

the Living Planet Index (LPI) tracks the changing status of global vertebrate biodiversity, but 

gaps, biases and quality issues plague the aggregated data used to calculate trends. Large-

scale scientific surveys to overcome data deficiency are important but are an expensive and 

long-term solution. In the meantime, new methods are needed to determine the limitations 

of existing data, target data-gathering efforts, and maximize the reliability and robustness of 

indicators. 

In this thesis, I presented a set of methods to quantify the reliability and robustness of LPI 

trends and their confidence intervals, and provided quantitative recommendations for 

targeted data-gathering efforts that would allow all LPI trends to meet a reliability standard. 

First, I explored the properties of distance measures in relation to comparing time series 

and trends in ecology, and developed a framework for choosing an appropriate measure for 

any time-series comparison task (Chapter 2). Importantly, I demonstrated that distance 

measures can be used to directly compare not only stochastic time series, but smoothed 

trends. I then developed a model of trend reliability, using simulated datasets as stand-ins 

for the real world, degraded samples as stand-ins for LPD datasets, and the Jaccard distance, 

chosen using the described framework, to quantify reliability (Chapter 3). The model 

revealed that many trends in the LPI are too data-poor to be considered reliable, particularly 

across the global south. I set a trend reliability standard and showed which regions and taxa 

are most in need of additional data, as well as how much data is needed to bring each 

regional taxonomic group to meet a reliability standard. A key result was that taxonomic 

representativeness as measured by McRae et al. (2017) is not always indicative of trend 

reliability; a regional taxonomic group can be data deficient despite having a comparatively 

high percentage of species represented in the Living Planet Database (LPD). My results 

showed that the number and quality of time series is more important than the number of 

species. Finally, I demonstrated a method to account for sampling and measurement error 
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in the confidence intervals of LPI trends that resulted in more accurate and robust 

confidence intervals (Chapter 4). The results of Chapter 4 revealed that current confidence 

intervals in the LPI are larger than necessary and therefore inefficient, likely due to high 

levels of measurement and/or sampling error; the GRRE (GAM-resampled rank envelope) 

method can account for measurement error and multiple levels of sampling error while 

reducing the width of confidence intervals by smoothing away outlier growth rates.  

In this chapter, I will discuss my work in a broader context. I will explain the importance of 

my research on distance measures, highlight the strengths and weaknesses of my modelling 

approach, and describe its usefulness in indicator research. I will outline ongoing issues, 

limitations, complications, and repercussions related to my research and the LPI. Finally, I 

will discuss how the work I present in this thesis can move the field of biodiversity indicator 

research forward, and give my perspective on future research directions. 

5.1. Distance measures 

Time series are not only the basic components of abundance-based biodiversity indicators 

but are ubiquitous in ecology and conservation science to track changes in populations and 

environments over time. Often time series need to be compared, e.g., to detect anomalies, 

or for classification or clustering tasks, and distance measures are common and highly 

diverse tools for such tasks. Hundreds of distance measures have been described in the 

literature, but guidance on selection is largely limited to comparisons of mean classification 

accuracy (e.g., Bagnall et al., 2017; Paparrizos et al., 2020; Pree et al., 2014; Wang et al., 

2013), without accounting for differences between datasets or tasks. Properties-based 

selection has been studied for certain tasks (Kocher & Savoy, 2017) or data types (Lhermitte 

et al., 2011). Mori et al. (2016) provided an automated selection process for clustering 

based on quantifiable properties of datasets; however, they ignored task-based differences 

and included only five distance measures. The research I presented in Chapter 2 is novel in 

two important ways. First, it provides a selection process generalized to cover any task or 

dataset; it covers 42 distance measures and 16 properties, and because the process is user-

directed and the code is open-source, it can be expanded. The work goes far beyond any 

previous studies to fill an important gap in the literature. Although the selection process can 

be utilized by a general audience, it is tailored to ecologists, providing contextual examples 
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to guide them in the use of tools for which most existing literature is highly technical and 

aimed at computer or information scientists. The second novel aspect of my work in 

Chapter 2 is that I used distance measures to compare non-linear trends. I showed that 

distance measures can match the results of other comparison methods, both for stochastic 

time series and for smoothed trends. But the advantage of using distance measures is not 

that they can emulate the results of other methods, but that they can solve problems those 

other methods cannot. Distance measures are highly varied and compare different aspects 

of time series, but generally include some level of temporal information. The number and 

variety of distance measures described in the literature means that there should be an 

appropriate measure available for most comparison tasks. However, since many are only 

described within computer or information science literature, and very little guidance has 

been provided on appropriate usage or selection, many scientists are unaware that distance 

measures may be useful for a particular task, and have no idea how to choose one that is 

appropriate. The work I’ve done in this thesis not only introduces many distance measures 

to ecologists but provides context and a framework for selecting one that is fit for purpose. 

This should increase the scope for the application of distance measures in ecology. 

Furthermore, I introduced distance measures as a way of comparing trends, a task for which 

I am not aware of any previous application, and which provides the foundation the rest of 

my thesis rests upon. Therefore, the method I presented in Chapter 2 expands the 

possibilities for ecological research and is fundamental to the modelling approach I 

developed in this thesis. 

5.2. Modelling approach 

The modelling approach I developed greatly improves our ability to evaluate biodiversity 

indicators. Simulation models are used for indicator testing when comprehensive data are 

not available because models can provide a known ‘truth’ as a basis for comparison 

(Rowland et al., 2020). Typically, these models are parameterized to represent specific real-

world datasets and/or scenarios to test indicator responses (e.g., Halouani et al., 2019; 

Nicholson et al., 2012; Rowland et al., 2020). I applied a different approach in this thesis; 

instead of modelling specific scenarios or datasets, I built a generalized and highly flexible 

model to represent regional taxonomic groups in the Living Planet Database (LPD). My 
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approach sacrificed ecological accuracy for flexibility, enabling me to test the LPI across a 

wide range and combination of parameter settings. I then used the results to create 

something novel: a predictive of model of trend reliability. While other studies are 

concerned with indicator responses to specific modelled scenarios or datasets, often for 

policy reasons, my generalized modelling approach allowed me to predict the reliability of 

all existing indicator trends, as well as modelled scenarios and datasets. My approach can be 

used to test whether new methods or tools impart actual improvements in trend accuracy. 

It can also be adapted for other indicators using the modular open-source code I created. I 

have already adapted part of the code for an online-accessible, real-time version of the 

Species Awareness Index (SAI) (online version not yet published; for the offline SAI, see 

Millard et al., 2021). There are two key innovations to my approach that have the potential 

to change the way that biodiversity indicators are tested. The first is the ability to evaluate 

indicators based not just on how they respond to simulations, but on how accurately they 

respond. The second is the ability to predict accuracy (referred to as reliability because it is 

predicted rather than measured) for unsimulated data. 

There are three important caveats to my approach. First, while I was able to simulate the 

parameters of LPD datasets, I did not accurately simulate individual time series. I developed 

a stochastic exponential time series model, but I did not model carrying capacity; 

exponential growth of individual populations is limited only by stochasticity and the growth 

rate parameters (mean and standard deviation) assigned to them. Second, the model 

implicitly assumes closed populations. While stochasticity could be assumed to include 

some element of migration, it is not modelled as such, and therefore there is no intraspecies 

dependence in size fluctuations across populations. Third, growth rates are not serially 

correlated; they are randomly distributed across time series (in the real world, temporal 

variations in the environment caused lagged responses in life history traits, leading to 

serially correlated growth rates - Tuljapurkar et al., 2009). The same is not true of 

abundances (modelled as index values), which are serially correlated because they are 

calculated from growth rates using the cumulative product function. The lack of carrying 

capacity, migration, and serial correlation of growth rates were necessary trade-offs, as 

increasing the complexity of the time series model reduces control over the parameters of 
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the dataset. However, it could be a valuable next step to test the performance of the 

reliability model using a more complex time series model that can simulate real-world taxa. 

A lot of biodiversity indicator research is designed to achieve specific policy-related goals, 

which can result in simplified methods but also bias the results and limit their application. 

The sampled approach to the Red List Index (sRLI) was designed to achieve a sample size 

large enough to ensure that extinction risk trends did not appear positive when they were in 

fact negative (Baillie et al., 2008). This approach assumes that it is more important to detect 

increased extinction risk than reduced extinction risk, which is a biased value judgement. Dr. 

Brian Leung, who along with his colleagues published a Nature paper (Leung et al., 2020) 

that has caused considerable controversy around the LPI, recently presented a method to 

determine the number of populations needed to detect positive change in specific LPI 

regional taxonomic group trends (Leung, 2022). While the idea has some similarities to the 

work I have presented in this thesis, the goal is aimed at satisfying a specific policy goal, 

namely tracking the reversal of biodiversity declines for 2030 CBD (Convention on Biological 

Diversity) milestones. Just like the sRLI, this results in biased methodology, with negative 

change not considered. While it is important to support policy goals aimed at reversing 

biodiversity loss, the goal of the research I presented in this thesis is to improve our overall 

understanding of biodiversity change. That results in my approach being necessarily more 

general and more complex, but the results will be more widely applicable, potentially 

leading to an increase in the relevance of the LPI and other similar indicators for a wide 

range of policy goals. Analysis targeted to specific policy goals tends to be overly specific 

and provides results with limited predictive power. The work of Baillie et al. (2008) was 

based on only two taxonomic groups and ignored the underlying factors that led to their 

results, so they were only able to offer a general prescription to be applied to all taxonomic 

groups. Likewise, the work of Leung (2022) is currently based on ten regional taxonomic 

groups that have suffered catastrophic declines and seems to offer a generalized 

prescription only for those groups (the work is unfinished, so this may change). By contrast, 

my modelling approach takes into account the underlying factors that lead to particular 

results, and is based on thousands of synthetic datasets that cover a wide range of 

parameter values; it is therefore able to make tailored predictions and prescriptions for 

each regional taxonomic group in the LPI, and can be easily applied to similar indicators. 
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5.3. Populations vs species 

My reliability model revealed that populations are more relevant than species as sampling 

units in the LPD; however, this revelation is potentially problematic because populations are 

poorly defined in the LPD. It is important to be careful about making inferences from a 

model before considering the real-world context. Many biodiversity indicators are localized 

and/or specialized to single taxa or even a group of species within a taxon, such as European 

grassland butterflies (Van Swaay et al., 2019; Van Swaay & van Strien, 2005) or UK farmland 

birds (Freeman et al., 2001; Gregory et al., 2004). These indicators use carefully chosen 

species with comprehensive survey data that typically includes yearly transect counts or 

abundance estimates across multiple sites (Gregory et al., 2019; Soldaat et al., 2017; Van 

Swaay et al., 2019). Global biodiversity indicators cannot rely on the availability of such 

comprehensive data because it is unavailable for many taxa and geographical areas (Collen 

et al., 2009; Gregory et al., 2019; McRae et al., 2017; Soldaat et al., 2017). Species trends in 

the LPI are constructed from time series units referred to as populations, which may be 

aggregated from different countries or regions, different studies with different 

methodologies, and even different units of measurement. A population might be 

represented by transect-sampled individuals from a precisely defined 250 m2 location (e.g., 

Cole et al., 2014) or the biomass caught by the marine fishing fleets of an entire country 

(e.g., Carvalho et al., 2014). Yet populations are equally weighted when averaged to form 

species trends; this is by necessity, as even though there is no standardization between 

studies in the database, the calculation of the index must be standardized, else it would not 

be feasible to aggregate thousands of time series into a single index. Diversity weighting was 

introduced to the LPI to account for biases in representativeness but is based only on the 

geographic and taxonomic distributions of species richness. My results suggest that species 

representativeness may not be a good indicator of taxonomic or geographical 

representativeness since the number of populations is more important than the number of 

species. This is because mean growth rates in the LPD vary almost as widely between 

populations within the same species as they do between populations belonging to different 

species. Species are traditionally considered as discrete fundamental units of both 

taxonomy and biodiversity (Hey & Pinho, 2012), with associated life history traits, genetic 

and phenotypic profiles, and ecological niches, while populations (often referred to as 
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subpopulations) can be thought of as subunits sharing the traits and profiles of the species 

they belong to but confined to a more limited geographical area. However, as different 

environments can result in heritable epigenetic and phenotypic differences between 

populations belonging to the same species (Bossdorf et al., 2008), it may be reasonable to 

think of populations as ecological units. This ecological meaning may be partially 

undermined by the ill-defined nature of populations, but the concept and delimitation of 

species are also major sources of confusion and disagreement between biologists and across 

disciplines (de Queiroz, 2007; Tobias et al., 2010). There is no clearly defined boundary 

between species and populations; they can be said to sit at different ends of a continuum 

(de Queiroz, 2007), with species having slightly more evolutionary independence due to a 

lower distribution of migration rates and higher distribution of separation times compared 

to populations, but with a lot of overlap (Hey & Pinho, 2012). Nonetheless, the number of 

populations is problematic as a measure of representativeness because there are no 

estimates of total numbers of populations for comparison. Nor is the number of populations 

consistent across species; rare species may exist as a single population, while abundant or 

widely distributed species may consist of hundreds or thousands of populations, and some 

species may have greater variance between population trends than others. Population 

trends may also depend on the location of the population within the species distribution 

range, with more extreme or fluctuating trends likely to be found at the margins (e.g., 

European terrestrial breeding bird growth rates were found to be lowest at species thermal 

maxima and highest at thermal minima — Jiguet et al., 2010). My modelling approach 

defined sample size in terms of populations, and showed it to be the most important factor 

in determining the reliability of LPI trends as well as their associated confidence intervals, 

while the number of species was not relevant. If populations were selected at random for 

research, that might be true. But, as selection is never truly random due to intentional and 

unintentional research biases, species representativeness should not be ignored when 

adding populations to the LPD to meet the trend reliability threshold.  

In the context of my results, it may be worth considering whether the use of species trends 

as an intermediate step in calculation of the LPI remains relevant. Currently, confidence 

intervals in the LPI are generated by resampling species rates of change. However, I showed 

that it is more robust and accurate to resample from GAMs of the population trends. While 
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the GRRE method still employs resampling of the species trends to account for sampling 

error in species selection, Soldaat et al. (2017) suggested that this may be unjustified 

because it is based on the idea that species are randomly sampled when in fact they are 

deliberately selected. This is only partially true for aggregated abundance indicators; 

however, if we are to consider species as irrelevant for the purpose of meeting the trend 

reliability threshold (which I argue above should not be done, contrary to the results of my 

own research), then there is no reason to account for sampling error in a unit we have 

assigned no meaning to. Another reason for calculating species trends as an intermediate 

step in the LPI is to reduce the influence of species which are overrepresented (many 

populations present from the same species) in the LPD. But if we consider the number of 

species to be irrelevant, then overrepresentation should not be a concern. Therefore, it 

would be an interesting avenue of further research to rebuild the model without calculating 

species indices and compare the results. What would change? Is it possible that the number 

of species is only irrelevant to the model because species indices are preventing 

overrepresentation, and thus would become relevant if their indices were not calculated?  

5.4. Challenges, remaining questions, and the future 

In Chapter 3, I showed that due to an uneven distribution of time series data by year in the 

LPD, and a steep drop in the number of observations from the late 2000s until the present 

due to a lag in acquiring new data, the LPI may not reflect a successful reversal of 

biodiversity loss until a decade or more after it occurs. Although my analysis assigned a 

single reliability rating to each trend in the LPI, the accuracy of a trend is likely to vary over 

its length, with the first and final parts of each trend being the least reliable because that is 

where the fewest observations occur. Inaccuracy at the beginning of a trend leads to larger 

disparities in final index values and therefore a poorer picture of how population 

abundances in the present compare to abundances in 1970. Inaccuracy at the end of a trend 

has a smaller effect on index values but is more concerning from a policy perspective 

because it hinders our ability to track and react appropriately to biodiversity change, to 

evaluate whether targets have been met, and to set effective future targets. There is no 

easy fix for this problem, and it is not confined to the LPI, but it is important to be aware of 

the issue so that it can be accounted for in scientific and policy discussions. Confidence 



148 
 

intervals provide an indication of uncertainty in index values, and my work contributes to 

making them more robust and reliable. However, two important issues remain. First, 

confidence intervals indicate uncertainty surrounding index values, but do not give a clear 

indication of the level of uncertainty in the direction of a trend at any given year along the 

index. Second, my work in this thesis considered confidence intervals only at the regional 

taxonomic level, but LPI trends are further aggregated to realm, system, and global levels. 

While there is no sampling error to account for at these levels, weighting is applied before 

averaging at each level, and there is a large but unknown amount of error inherent in the 

weighting system. It might be possible to account for uncertainty in estimates of species 

richness, but species richness is a poor indicator of representativeness and therefore the 

true uncertainty in the weightings is much higher than the uncertainty in richness estimates 

would indicate. That means each successive level of aggregation results in additional 

uncertainty that the LPI confidence intervals do not account for. 

Such weaknesses are inherent to the production of global biodiversity indicators. The Red 

List Index is a global, standardized, and comprehensive indicator of extinction risk. It gets 

around some of the weaknesses of the LPI by sacrificing precision. Extinction risk is 

categorical, therefore expert assessment can fill in when quantitative data are lacking. 

Trends are linear as they are assessed at multi-year intervals rather than yearly. Species, not 

populations or sites, are the base units. And because assessments are conducted for all 

species at once, trends can only be calculated to the most recent assessment year. 

Amphibians, for example, have not been assessed since 2004, so there is no indication of 

the extinction risk trend for amphibians over the last 18 years. There is no perfect method 

of tracking global biodiversity change, and every index has its strengths and weaknesses. 

The important thing is to keep probing and assessing those weaknesses and finding ways to 

minimize them. My thesis has extensively discussed weaknesses in the Living Planet Index 

and the state of biodiversity knowledge, and suggested ways to reduce those weaknesses. 

However, I chose to focus on the LPI because it is one of the most comprehensive and useful 

global biodiversity indicators; its 25-year development history (Ledger et al., 2022) attests to 

its continued relevance. The LPI is built on the foundation of data collected by thousands of 

researchers over a period of more than 70 years, and the extensive research and effort that 
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has gone (and continues to go) into developing and maintaining the LPI is what made this 

thesis possible. 

Scientists, policymakers, and conservations need up-to-date information on biodiversity 

change to make objective decisions; therefore, biodiversity indicators should respond 

quickly to changes in biodiversity trends. Stevenson et al. (2021) classified biodiversity 

indicators as leading (changes before the fact; predictive), coincident (measures the target 

variable), or lagging (changes after the fact) for three target variables related to global 

species extinctions: changes in abundance (population declines), changes in distribution 

(population-level extinctions), and species extinctions. The LPI, along with other abundance-

based indicators, was classified as a leading indicator for distribution change and extinction, 

and a coincident indicator of abundance change. But in light of my third-chapter analysis 

showing that the LPI is unlikely to reliably indicate changes in biodiversity trends until a 

decade after the fact, the LPI should be considered a lagging indicator of abundance change. 

Indicators like the LPI, that compile information from many sources, are essential to bridging 

the synthesis gap, a gap between science and policy through which policy-relevant scientific 

information is often lost due to the time and effort required to synthesize it into a form that 

can be communicated to policymakers (Westgate et al., 2018). However, the lagging 

response of the LPI means that there is still a large time gap between the research and its 

communication to policymakers. This lagging response is largely due to the time involved in 

getting new monitoring data into the LPD. There are at least three components involved in 

the lag. First, it takes time for new research to be published, especially if it involves multi-

year sampling, which all studies in the LPD necessarily do. Second, once published, studies 

must be found, and their data extracted, compiled, and added to the LPD. Third, LPI trends 

must be recalculated and published, which currently happens every two years. All three of 

these components can be reduced to some extent. Publication times can be reduced by 

making new studies available on open-access archives such as bioRxiv. Finding and 

extracting data from new studies may be able to be automated or semi-automated 

(Cornford et al., 2022; Millard et al., 2020; Westgate et al., 2018), although the technology 

still has teething issues (Cornford et al., 2022), or the work involved could be reduced by the 

researchers themselves offering data directly (although it would still need to be reviewed by 

a human). The website for the LPI already contains a way for scientists to contribute data, 
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but many are likely unaware. Finally, the two-year time gap between LPI publications could 

be eliminated by calculating trends in real time through a web application, although there 

may be labour, resource, and security-related hurdles to implementation.  

In the future, it may be possible to produce a true real-time global biodiversity indicator, 

with monitoring data automatically added directly to a time-series database as it occurs, 

and trends continuously updated in real-time to reflect the new data. Monitoring 

technology is improving; cheap, low-maintenance camera trap networks can be rapidly 

deployed (Blount et al., 2021; Chianucci et al., 2021), machine learning algorithms can 

identify some taxa from camera traps (Tabak et al., 2019), recorded sounds (Darras et al., 

2019; Sugai et al., 2019), or satellite images (Duporge et al., 2021); drones can cover 

territory quickly, spotting animals from above (Edney & Wood, 2021; Petso et al., 2022); 

eDNA can be used to detect the presence of marine or freshwater species, even in 

subterranean locations, without the need for visual or audial detection or invasive sampling 

(Blattner et al., 2021; Bonfil et al., 2021; Pukk et al., 2021; Saccò et al., 2022); citizen 

scientists can identify species and upload images, GPS coordinates, and other information in 

real time (Echeverria et al., 2021). However, there are hurdles that need to be overcome 

first. Machine learning models can only detect species included in their training data, and 

tend to be poor at generalizing out-of-sample data, so manual verification is generally still 

used (Wäldchen & Mäder, 2018; Whytock et al., 2021); however, some scientists feel that 

manual verification is unnecessary if machine learning models are used with care (Whytock 

et al., 2021). Most available automated or citizen-science monitoring methods have strong 

detection biases towards charismatic animals, large animals, animals that move in the open, 

or highly vocal animals. Small, quiet animals, including many reptiles, remain difficult to 

detect without active searching by experts, so will likely be undercounted or ignored, 

leading to bias in the indicator. Insects are even harder to detect, given their size, vast 

numbers, and diversity, and how many remain unidentified. Microbial biodiversity is 

virtually unknown, with up to 99.999% of species still undiscovered (Locey & Lennon, 2016). 

Many of these hurdles can eventually be overcome, leading to the production of 

comprehensive global biodiversity indices that responds instantly to changes in biodiversity; 

but it will take time, resources, and effort to get there. 
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5.5. Conclusions 

Hortal et al. (2015) conducted a review of shortfalls related to large-scale biodiversity 

knowledge. They concluded that it is important to assess the extent, quality, and 

representativeness of biodiversity data to identify knowledge gaps and biases and direct 

future research. They also stated that it is important to find new ways to represent and 

account for uncertainty to improve the robustness of conclusions obtained from biodiversity 

research. This thesis not only reveals weaknesses in our understanding of global vertebrate 

biodiversity, but quantifies the amount of data needed to shore up each weakness, and 

describes new methods to improve our global picture of vertebrate biodiversity using 

existing data. The second chapter presents an objective way of choosing an appropriate 

distance measure for any time-series comparison task by comparing how 42 different 

distance measures react to common differences between time series. It provides the 

foundation for using distance measures as a tool for testing the accuracy and reliability of 

biodiversity indicator trends. The third chapter quantitatively highlights weaknesses in the 

Living Planet Index by measuring the reliability of each regional taxonomic group trend 

against a target rating and calculating the number of time series needed to meet the target. 

It then describes and compares potential solutions to acquire the needed data. The fourth 

chapter improves our understanding of biodiversity trends and their associated uncertainty 

by defining confidence intervals in a more robust, efficient, and accurate way.  

This thesis is primarily methodological; the work will form part of the foundational toolset 

that other scientists can use to aid their own research. My work on distance measures can 

lead to new ways of conducting ecological research, while my modelling framework will 

allow new methods, solutions, or other potential improvements for abundance-based 

biodiversity indicators to be tested before implementation. While a proposed change to the 

way an indicator is calculated might theoretically improve trend reliability or robustness, my 

modelling framework can be applied to quantitatively measure the effect on synthetic data. 

Furthermore, the methods I’ve presented here can be expanded upon to increase their 

utility. Additional distance measures can be tested for relevant properties. Time series can 

be simulated to emulate specific taxonomic groups to improve the model’s precision for 
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those groups. Thus, the potential for my thesis work to move forward the fields of ecology 

and conservation biology is greater than the sum of its parts. 

The most important issue that my work highlights is that reliability will remain limited by the 

availability of data. If there is not enough existing data to reach the reliability threshold, 

then more studies must be conducted, and it could take many years before time series from 

those studies contribute positively to trend reliability. By then, computational methods such 

as machine learning may reduce the data needed to reach threshold levels. Additionally, 

mass data gathering efforts using satellites, drones, camera traps, listening devices, and 

eDNA, combined with artificial intelligence or advanced machine learning methods, may 

allow for real-time indicators that present a more sensitive picture of the changing state of 

biodiversity. Regardless of current limitations of biodiversity indicators, we cannot wait 

around for things to improve. While research continues, important policy and conservation 

decisions must be made based on the limited and incomplete picture we have. Biodiversity 

loss will not wait for science to catch up.  

5.6. Bibliography 

Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2017). The great time series 

classification bake off: a review and experimental evaluation of recent algorithmic 

advances. Data Mining and Knowledge Discovery, 31(3), 606–660. 

https://doi.org/10.1007/s10618-016-0483-9 

Baillie, J. E. M., Collen, B., Amin, R., Akcakaya, H. R., Butchart, S. H. M., Brummitt, N., 

Meagher, T. R., Ram, M., Hilton-Taylor, C., & Mace, G. M. (2008). Toward monitoring 

global biodiversity. Conservation Letters, 1(1), 18–26. https://doi.org/10.1111/j.1755-

263x.2008.00009.x 

Blattner, L., Ebner, J. N., Zopfi, J., & von Fumetti, S. (2021). Targeted non-invasive 

bioindicator species detection in eDNA water samples to assess and monitor the 

integrity of vulnerable alpine freshwater environments. Ecological Indicators, 129. 

https://doi.org/10.1016/j.ecolind.2021.107916 

Blount, J. D., Chynoweth, M. W., Green, A. M., & Şekercioğlu, Ç. H. (2021). Review: COVID-

19 highlights the importance of camera traps for wildlife conservation research and 



153 
 

management. Biological Conservation, 256. 

https://doi.org/10.1016/j.biocon.2021.108984 

Bonfil, R., Palacios-Barreto, P., Mendoza Vargas, O. U., Ricaño-Soriano, M., & Píndaro Díaz-

Jaimes, ·. (2021). Detection of critically endangered marine species with dwindling 

populations in the wild using eDNA gives hope for sawfishes. Marine Biology, 168(60). 

https://doi.org/10.1007/s00227-021-03862-7 

Bossdorf, O., Richards, C. L., & Pigliucci, M. (2008). Epigenetics for ecologists. Ecology 

Letters, 11(2), 106–115. https://doi.org/10.1111/j.1461-0248.2007.01130.x 

Carvalho, F., Ahrens, R., Murie, D., Ponciano, J. M., Aires-da-Silva, A., Maunder, M. N., & 

Hazin, F. (2014). Incorporating specific change points in catchability in fisheries stock 

assessment models: An alternative approach applied to the blue shark (Prionace 

glauca) stock in the south Atlantic Ocean. Fisheries Research, 154, 135–146. 

https://doi.org/10.1016/j.fishres.2014.01.022 

Chianucci, F., Bajocco, S., & Ferrara, C. (2021). Continuous observations of forest canopy 

structure using low-cost digital camera traps. Agricultural and Forest Meteorology, 307. 

https://doi.org/10.1016/j.agrformet.2021.108516 

Cole, E. M., Bustamante, M. R., Almeida-Reinoso, D., & Funk, W. C. (2014). Spatial and 

temporal variation in population dynamics of Andean frogs: Effects of forest 

disturbance and evidence for declines. Global Ecology and Conservation, 1, 60–70. 

https://doi.org/10.1016/j.gecco.2014.06.002 

Collen, B., Loh, J., Whitmee, S., McRae, L., Amin, R., & Baillie, J. E. M. (2009). Monitoring 

Change in Vertebrate Abundance: the Living Planet Index. Conservation Biology, 23(2), 

317–327. https://doi.org/10.1111/j.1523-1739.2008.01117.x 

Cornford, R., Millard, J., González-Suárez, M., Freeman, R., & Johnson, T. F. (2022). 

Automated synthesis of biodiversity knowledge requires better tools and standardised 

research output. Ecography, 2022(3). https://doi.org/10.1111/ecog.06068 

Darras, K., Eter, P., Ary, B., Furnas, B. J., Grass, I., Mulyani, Y. A., & Tscharntke, T. (2019). 

Autonomous sound recording outperforms human observation for sampling birds: a 

systematic map and user guide. https://doi.org/10.1002/eap.1954 

de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56(6), 

879–886. https://doi.org/10.1080/10635150701701083 



154 
 

Duporge, I., Isupova, O., Reece, S., Macdonald, D. W., Wang, T., & Buchanan, G. (2021). 

Using very-high-resolution satellite imagery and deep learning to detect and count 

African elephants in heterogeneous landscapes. Remote Sensing in Ecology and 

Conservation, 7(3), 369–381. https://doi.org/10.1002/rse2.195 

Echeverria, A., Ariz, I., Moreno, J., Peralta, J., & Gonzalez, E. M. (2021). Learning Plant 

Biodiversity in Nature: The Use of the Citizen-Science Platform iNaturalist as a 

Collaborative Tool in Secondary Education. Sustainability, 13, 735. 

https://doi.org/10.3390/su13020735 

Edney, A. J., & Wood, M. J. (2021). Applications of digital imaging and analysis in seabird 

monitoring and research. Ibis, 163, 317–337. https://doi.org/10.1111/ibi.12871 

Freeman, S. N., Baillie, S. R., & Gregory, R. D. (2001). Statistical analysis of an indicator of 

population trends in farmland birds. British trust for Ornithology. 

Gregory, R. D., Noble, D. G., & Custance, J. (2004). The state of play of farmland birds: 

population trends and conservation status of lowland farmland birds in the United 

Kingdom. Ibis, 146(Suppl. 2), 1–13. 

Gregory, R. D., Skorpilova, J., Vorisek, P., & Butler, S. (2019). An analysis of trends, 

uncertainty and species selection shows contrasting trends of widespread forest and 

farmland birds in Europe. Ecological Indicators, 103, 676–687. 

https://doi.org/10.1016/j.ecolind.2019.04.064 

Halouani, G., le Loc’h, F., Shin, Y. J., Velez, L., Hattab, T., Romdhane, M. S., & ben Rais 

Lasram, F. (2019). An end-to-end model to evaluate the sensitivity of ecosystem 

indicators to track fishing impacts. Ecological Indicators, 98, 121–130. 

https://doi.org/10.1016/j.ecolind.2018.10.061 

Hey, J., & Pinho, C. (2012). Population genetics and objectivity in species diagnosis. 

Evolution, 66(5), 1413–1429. https://doi.org/10.1111/j.1558-5646.2011.01542.x 

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. (2015). 

Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annual Review of 

Ecology, Evolution, and Systematics, 46, 523–549. https://doi.org/10.1146/annurev-

ecolsys-112414-054400 

Jiguet, F., Devictor, V., Ottvall, R., van Turnhout, C., van der Jeugd, H., & Lindström, Å. ˚. 

(2010). Bird population trends are linearly affected by climate change along species 



155 
 

thermal ranges. Proceedings of the Royal Society B, 277(1700), 3601–3608. 

https://doi.org/10.1098/rspb.2010.0796 

Kocher, M., & Savoy, J. (2017). Distance measures in author profiling. Information 

Processing and Management, 53(5), 1103–1119. 

https://doi.org/10.1016/j.ipm.2017.04.004 

Ledger, S. E. H., McRae, L., Loh, J., Almond, R., Böhm, M., Currie, J., Deinet, S., Galewski, T., 

Grooten, M., Jenkins, M., Marconi, V., Painter, B., Scott-Gatty, K., Young, L., & 

Hoffmann, M. (2022). Past, present, and future of the Living Planet Index. BioRxiv. 

https://doi.org/10.1101/2022.06.20.496803 

Leung, B. (2022). Risk, biodiversity, power analysis, and sampling needs for global 

biodiversity monitoring. [Conference Abstract.] Ecological Society of America 2022 

Annual Meeting. Montréal, Québec, Canada. 

Leung, B., Hargreaves, A. L., Greenberg, D. A., McGill, B., Dornelas, M., & Freeman, R. (2020). 

Clustered versus catastrophic global vertebrate declines. Nature, 588(7837), 267–271. 

https://doi.org/10.1038/s41586-020-2920-6 

Lhermitte, S., Verbesselt, J., Verstraeten, W. W., & Coppin, P. (2011). A comparison of time 

series similarity measures for classification and change detection of ecosystem 

dynamics. Remote Sensing of Environment, 115(12), 3129–3152. 

https://doi.org/10.1016/j.rse.2011.06.020 

Locey, K. J., & Lennon, J. T. (2016). Scaling laws predict global microbial diversity. 

Proceedings of the National Academy of Sciences of the United States of America, 

113(21), 5970–5975. https://doi.org/10.1073/pnas.1521291113 

McRae, L., Deinet, S., & Freeman, R. (2017). The diversity-weighted living planet index: 

Controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE, 12(1). 

https://doi.org/10.1371/journal.pone.0169156 

Millard, J. W., Freeman, R., & Newbold, T. (2020). Text-analysis reveals taxonomic and 

geographic disparities in animal pollination literature. Ecography, 43(1), 44–59. 

https://doi.org/10.1111/ecog.04532 

Millard, J. W., Gregory, R. D., Jones, K. E., & Freeman, R. (2021). The species awareness 

index as a conservation culturomics metric for public biodiversity awareness. 

Conservation Biology, 35(2), 472–482. https://doi.org/10.1111/cobi.13701 



156 
 

Mori, U., Mendiburu, A., & Lozano, J. A. (2016). Similarity Measure Selection for Clustering 

Time Series Databases. IEEE Transactions on Knowledge and Data Engineering, 28(1), 

181–195. https://doi.org/10.1109/TKDE.2015.2462369 

Nicholson, E., Collen, B., Barausse, A., Blanchard, J. L., Costelloe, B. T., Sullivan, K. M. E., 

Underwood, F. M., Burn, R. W., Fritz, S., Jones, J. P. G., McRae, L., Possingham, H. P., & 

Milner-Gulland, E. J. (2012). Making robust policy decisions using global biodiversity 

indicators. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0041128 

Paparrizos, J., Liu, C., Elmore, A. J., & Franklin, M. J. (2020). Debunking Four Long-Standing 

Misconceptions of Time-Series Distance Measures. Proceedings of the ACM SIGMOD 

International Conference on Management of Data, 1887–1905. 

https://doi.org/10.1145/3318464.3389760 

Petso, T., Jamisola Jr., R. S., & Mpoeleng, D. (2022). Review on methods used for wildlife 

species and individual identification. European Journal of Wildlife Research, 68(3), 2–

18. https://doi.org/10.1007/s10344-021-01549-4 

Pree, H., Herwig, B., Gruber, T., Sick, B., David, K., & Lukowicz, P. (2014). On general purpose 

time series similarity measures and their use as kernel functions in support vector 

machines. Information Sciences, 281, 478–495. 

https://doi.org/10.1016/j.ins.2014.05.025 

Pukk, L., Kanefsky, J., Heathman, A. L., Weise, E. M., Nathan, L. R., Herbst, S. J., Sard, N. M., 

Scribner, K. T., & Robinson, J. D. (2021). eDNA metabarcoding in lakes to quantify 

influences of landscape features and human activity on aquatic invasive species 

prevalence and fish community diversity. Diversity and Distributions, 27, 2016–2031. 

https://doi.org/10.1111/ddi.13370 

Rowland, J. A., Lee, C. K. F., Bland, L. M., & Nicholson, E. (2020). Testing the performance of 

ecosystem indices for biodiversity monitoring. Ecological Indicators, 116. 

https://doi.org/10.1016/j.ecolind.2020.106453 

Saccò, M., Guzik, M. T., van der Heyde, M., Nevill, P., Cooper, S. J. B., Austin, A. D., Coates, P. 

J., Allentoft, M. E., & White, N. E. (2022). eDNA in subterranean ecosystems: 

Applications, technical aspects, and future prospects. Science of the Total Environment, 

820. https://doi.org/10.1016/j.scitotenv.2022.153223 

Soldaat, L. L., Pannekoek, J., Verweij, R. J. T., van Turnhout, C. A. M., & van Strien, A. J. 

(2017). A Monte Carlo method to account for sampling error in multi-species 



157 
 

indicators. Ecological Indicators, 81, 340–347. 

https://doi.org/10.1016/j.ecolind.2017.05.033 

Stevenson, S. L., Watermeyer, K., Caggiano, G., Fulton, E. A., Ferrier, S., & Nicholson, E. 

(2021). Matching biodiversity indicators to policy needs. Conservation Biology, 35(2), 

522–532. https://doi.org/10.1111/cobi.13575 

Sugai, L. S. M., Silva, T. S. F., Ribeiro Jr., J. W., & Llusia, D. (2019). Overview Articles 

Terrestrial Passive Acoustic Monitoring: Review and Perspectives. BioScience, 69(1), 

15–25. https://doi.org/10.1093/biosci/biy147 

Tabak, M. A., Norouzzadeh, M. S., David, |, Wolfson, W., Sweeney, S. J., Vercauteren, K. C., 

Snow, N. P., Halseth, J. M., Salvo, P. A. di, Lewis, J. S., White, M. D., Teton, B., James, |, 

Beasley, C., Peter, |, Schlichting, E., Boughton, R. K., Wight, B., Newkirk, E. S., … Miller, 

R. S. (2019). Machine learning to classify animal species in camera trap images: 

Applications in ecology. Methods Ecol Evol, 10. https://doi.org/10.1111/2041-

210X.13120 

Tobias, J. A., Seddon, N., Spottiswoode, C. N., Pilgrim, J. D., Fishpool, L. D. C., & Collar, N. J. 

(2010). Quantitative criteria for species delimitation. Ibis, 152, 724–746. 

https://doi.org/10.1111/j.1474-919X.2010.01051.x 

Tuljapurkar, S., Gaillard, J.-M., & Coulson, T. (2009). From stochastic environments to life 

histories and back. Philosophical Transactions of the Royal Society B, 364(1523), 1499–

1509. https://doi.org/10.1098/rstb.2009.0021 

van Swaay, C. A. M., Dennis, E. B., Schmucki, R., Sevilleja, C., Balalalaikins, M., Botham, M., 

Bourn, N., Brereton, T., Cancela, J. P., Carlisle, B., Chambers, P., Collins, S., Dopagne, C., 

Escobés, R., Feldmann, R., Fernández-García, J. M., Fontaine, B., Gracianteparaluceta, 

A., Harrower, C., … Roy, D. B. (2019). The EU Butterfly Indicator for Grassland species: 

1990-2017. www.butterfly-monitoring.net 

van Swaay, C., & van Strien, A. (2005). Using butterfly monitoring data to develop a 

European grassland butterfly indicator. In E. Kühn, R. Feldmann, J. A. Thomas, & J. 

Settele (Eds.), Studies on the Ecology and Conservation of Butterflies in Europe Vol. 1: 

General Concepts and Case Studies (pp. 106–108). Pensoft. 

Wäldchen, J., & Mäder, P. (2018). Machine learning for image based species identification. 

Methods in Ecology and Evolution, 9, 2216–2225. https://doi.org/10.1111/2041-

210X.13075 



158 
 

Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., & Keogh, E. (2013). 

Experimental comparison of representation methods and distance measures for time 

series data. Data Mining and Knowledge Discovery, 26(2), 275–309. 

https://doi.org/10.1007/s10618-012-0250-5 

Westgate, M. J., Haddaway, N. R., Cheng, S. H., McIntosh, E. J., Marshall, C., & Lindenmayer, 

D. B. (2018). Software support for environmental evidence synthesis. Nature Ecology 

and Evolution, 2(4), 588–590. https://doi.org/10.1038/s41559-018-0502-x 

Whytock, R. C., Świeżewski, J., Zwerts, J. A., Bara-Słupski, T., Flore Koumba Pambo, A., 

Rogala, M., Bahaa-el-din, L., Boekee, K., Brittain, S., Cardoso, A. W., Henschel, P., 

Lehmann, D., Momboua, B., Kiebou Opepa, C., Orbell, C., Pitman, R. T., Robinson, H. S., 

Abernethy, K. A., Franke, A., & Alberto Silva, C. (2021). Robust ecological analysis of 

camera trap data labelled by a machine learning model. Methods in Ecology and 

Evolution, 12, 1080–1092. https://doi.org/10.1111/2041-210X.13576 



159 
 

Appendices 

This section contains supplementary figures, tables, and text from the three research 

chapters of this thesis. Due to the number of supplementary figures and tables 
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Appendix 1: Supplementary materials for Chapter 2 

S2.1. Descriptions and formulas for selected distance measures 

The Euclidean distance (Euclidean), also known as the L2 distance, is the straight-line 

distance between a pair of points. It also forms the basis for some of the more complicated 

transformation-based and model-based metrics presented here. It is defined as: 

    (3) 

where P and Q are (time series) vectors and d is the length of the vectors. 

The Manhattan distance (Manhattan), or L1 distance, is the shortest distance between two 

points on a grid. Because it is not based on Euclidean geometry, there can be multiple paths 

with the same shortest distance. It is defined as: 

    (4) 

The Chebyshev distance (Chebyshev), or L∞ distance, is the greatest of the differences 

between two points or vectors along any coordinate dimension. For example, if two points 

had the x,y coordinates (0,0) and (3,5), the Chebyshev distance would be five, the difference 

between the y coordinates of the two points, as this is greater than three, the difference 

between the x coordinates. The Chebyshev distance is defined as: 

    (5) 

The Complexity-Invariant Distance (CID) applies a complexity correction factor to the 

Euclidean distance to increase the dissimilarity value between time series with different 

complexities (where complexity is the length of a time series if stretched into a straight 

line—more and greater peaks and valleys means more complexity). It is defined as: 
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  (6) 

where d is the Euclidean distance and CF is a complexity correction factor 

  (7) 

where CE is a complexity estimator 

   (8) 

The Dynamic Time Warping distance (DTW) computes a warping path between two time 

series to align them in time. It can be defined as a man-dog distance, but instead of the 

shortest leash length, it measures the average leash length. This makes it more robust than 

the Fréchet distance, as it is less sensitive to outliers and short divergences. The DTW 

distance is defined as: 

  (9) 

The Time Alignment Measurement distance (TAM) is a derivative of the DTW distance that 

measures how well two time series align in time. Segments not in phase are penalized, while 

amplitude differences are not. A dissimilarity value of zero can occur for non-identical series 

that are perfectly aligned in time.  

The Normalized Compression Distance (NCD) is based on the concept of Kolmogorov 

complexity, which is the minimum information needed to generate a string using an 

algorithm. The Kolmogorov complexity is a measure of randomness of the string. The 

smaller the value, the less randomness. The NCD applies the concept to a relationship 

between objects (time series) when a compression algorithm is applied. The greater the 

advantage in compression (reduction in randomness) gained by multiplying two time series 
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together, the more closely they are related, and therefore the smaller the dissimilarity 

between them. NCD is defined as: 

 (10) 

where C represents the compressed size. 

The Compression-based Dissimilarity Measure (CDM) is a simplified version of the NCD, 

defined as:  

   (11) 

The Edit Distance with Real Penalty (ERP) is an edit distance, meaning it quantifies the 

number of insert, delete, or replace operations required to turn one string (time series) into 

another. ERP includes a penalty for gaps between matched substrings based on the gap 

length. 

The Edit Distance for Real Sequences (EDR) is an edit distance refined for trajectories. It 

includes a quantization feature as well as the length-based gap penalty of ERP.  

The Fourier Coefficient-based distance (Fourier) calculates the Euclidean distance between 

Discrete Fourier Transforms of a pair of time series. Fourier transforms extract frequency 

information by decomposing a signal (time series) into its frequency components (sine and 

cosine functions). While a time series is visualized as a single graph of amplitude vs time, its 

Fourier Transform consists of multiple sinusoidal waves, each with a specific, constant 

amplitude and frequency. Time information is lost. The Fourier Transform works well for 

stationary time series, as they have periodic repeating signals. However, the loss of time 

information presents problems for deconstructing non-stationary series, as they change 

randomly over time.  

The Autocorrelation-based dissimilarity (ACF) calculates the Euclidean distance between 

estimated autocorrelation functions of time series. An autocorrelation function of a time 

series describes the correlation between two values of the time series at different times 
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with a specified lag (delay between the two values). In other words, it describes the 

correlation of a time series with a time-offset version of itself. It is defined as: 

  (12) 

where Ω is a matrix of weights and ρ-hat refers to estimated autocorrelation vectors. 

The Partial Autocorrelation-based dissimilarity (PACF) is identical to the ACF except that it 

uses the partial autocorrelation functions. 

The Periodogram-based dissimilarity (Per) calculates the Euclidean distance between the 

periodograms of time series. A periodogram is a method of estimating the power spectrum 

of a time series, which is equivalent to the Fourier transform of the autocorrelation 

function. It describes how power is distributed over the frequency components of a time 

series. 

The Piccolo distance (Piccolo) calculates the Euclidean distance between the AR(∞) 

operators, or autoregressive expansions, of invertible ARIMA models of time series. ARIMA 

is a time series forecasting method. ARIMA models work by describing autoregressive (AR) 

and moving average (MA) parameters. An autoregressive model explains a value in a time 

series by one or more previous values plus random error. It is generally written as AR(p), 

where p is the order of the model. An autoregressive expansion, AR(∞), is thus an AR model 

of infinite order. A moving average model—written as MA(q), where q is the order—

explains a value in a time series by one or more past random errors as well as its own 

random error term. Invertible ARIMA models are those which can be written simply as 

autoregressive (AR) models. This is a necessary property to be able to forecast the 

dependent variable, and is important for the Piccolo distance, since only the AR aspect is 

used. ARIMA models can be applied to non-stationary time series, but they must first be 

converted to stationary time series by one or more differencing operations (subtracting 

each value from the one before it to remove stochastic trends). 

The Short Time Series distance (STS) measures the difference between the slopes of time 

series defined as piecewise linear functions. It is intended to incorporate temporal 

information while ignoring absolute values, to overcome a weakness of many other 
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distances, including the Euclidean distance, which ignore the temporal order of points and 

the length of sampling intervals. The STS distance is defined as: 

 (13) 

Equations 3, 4, and 5 are copied from Cha (2007), equations 6 through 12 are copied from 

Montero and Vilar (2014), and equation 13 is copied from Mori et al. (2016). 
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Table S2.1: Distance measures included in the study. Parameters are provided as a range if one or more parameters are optional (e.g., some can be set to ‘NULL,’ while 

others are only sometimes relevant, depending on the input data). Note that one or more parameters may be listed for distance measures that are considered parameter-

free if they require the user to choose a linked component, e.g., a compression algorithm. Note that names of distance measures are not necessarily given by the original 

authors, as some authors did not name their distance measures. References in the source column provide additional information on respective distance measures, but do 

not necessarily introduce them to the literature.  

Distance Measure 
Abbreviated 

Name 
Type/Family Category Characteristics 

Param

eters 
Source 

Manhattan Distance1,2 Manhattan 
Norm distance 
(Lp Minkowski 
family) 

Lock-step 
Shape-based 

Shortest distance between points on 
a grid 

0 (Cha, 2007) 

Euclidean Distance1,2 Euclidean 

Norm distance 

(Lp Minkowski 

family) 

Lock-step 

Shape-based 

Shortest distance between points in 

Euclidean space 
0 (Cha, 2007) 

Chebyshev Distance1,2 Chebyshev 

Norm distance 

(Lp Minkowski 

family) 

Lock-step 

Shape-based 

Takes maximum distance between 

point pairs (all other point pairs are 

ignored) 

0 (Cha, 2007) 

Lorentzian Distance2 Lorentz L1 family 
Lock-step 

Shape-based 
 1 (Cha, 2007) 

Gower Distance2 Gower L1 family 
Lock-step 

Shape-based 
 0 (Cha, 2007) 

Soergel Distance2 Soergel L1 family 
Lock-step 

Shape-based 
 0 (Cha, 2007) 

Kulczynski Distance2 Kulcz L1 family 
Lock-step 

Shape-based 
 0 (Cha, 2007) 
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Canberra Distance2 Canberra L1 family 
Lock-step 

Shape-based 
Normalizes 0 (Cha, 2007) 

Squared Euclidean Distance2 SqEuclid 
Squared L2 

family 

Lock-step 

Shape-based 
 0 (Cha, 2007) 

Divergence Squared Distance2 Diverge 
Squared L2 

family 

Lock-step 

Shape-based 
Normalizes 0 (Cha, 2007) 

Squared Chi-Squared distance2 SqChi 
Squared L2 

family 

Lock-step 

Shape-based 
 0 (Cha, 2007) 

Probabilistic Symmetric Chi-Squared 

Distance2 
ProbSymm 

Squared L2 

family 

Lock-step 

Shape-based 
 0 (Cha, 2007) 

Clark Squared Distance2 Clark 
Squared L2 

family 

Lock-step 

Shape-based 
Normalizes 0 (Cha, 2007) 

Additive Symmetric Chi-Squared 

Distance2 
Additive 

Squared L2 

family 

Lock-step 

Shape-based 
 0 (Cha, 2007) 

Topsoe Distance2 Topsoe 
Shannon’s 

entropy family 

Lock-step 

Shape-based 
Symmetric form of K divergence 1 (Cha, 2007) 

Kullback-Leibler (KL) Divergence2 Kullback 
Shannon’s 

entropy family 

Lock-step 

Shape-based 
Non-symmetric 1 (Cha, 2007) 

K Divergence2 KDiv 
Shannon’s 

entropy family 

Lock-step 

Shape-based 
Non-symmetric 1 (Cha, 2007) 

Jensen Difference2 Jensen 
Shannon’s 

entropy family 

Lock-step 

Shape-based 
 1 (Cha, 2007) 

Jeffreys Divergence2 Jeffreys 
Shannon’s 

entropy family 

Lock-step 

Shape-based 
Symmetric form of KL divergence 1 (Cha, 2007) 
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Squared-Chord Distance2 SqChord Fidelity family 
Lock-step 

Shape-based 
 0 (Cha, 2007) 

Jaccard Distance2 Jaccard 
Inner Product 

family 

Lock-step 

Shape-based 
Normalizes 0 (Cha, 2007) 

Dice Dissimilarity2 Dice 
Inner Product 

family 

Lock-step 

Shape-based 
Normalizes 0 (Cha, 2007) 

Wave-Hedges Distance2 Wave 
Intersection 

family 

Lock-step 

Shape-based 
Normalizes 0 (Cha, 2007) 

Czekanowski Distance2 Czek 
Intersection 

family 

Lock-step 

Shape-based 
Normalizes 0 (Cha, 2007) 

Time Alignment Measurement 

Distance1 TAM 
Dog-man 

Distance 

Elastic Shape-

based 

Warping path 

Time distortion penalty 
0 (Folgado et al., 2018) 

Edit Distance with Real Penalty1 ERP Edit distance 
Elastic Shape-

based 
Gap-length penalty 1-2 (Chen and Ng, 2004) 

Dynamic Time Warping Distance1 DTW 
Dog-man 

Distance 

Elastic Shape-

based 
Warping path 0-4 

(Sakoe and Chiba, 

1978) 

Edit Distance on Real Sequences1 EDR Edit distance 
Elastic Shape-

based 

Threshold parameter 

Gap-length penalty 
1-2 (Chen et al., 2005) 

Taneja Difference2 Taneja  
Lock-step 

Shape-based 

Uses both arithmetic and geometric 

means 
1 (Cha, 2007) 

Short Time Series Distance1 STS  
Lock-step 

Shape-based 
Captures temporal information 0-2 

(Möller-Levet et al., 

2003) 
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Kumar-Johnson Distance2 Kumar  
Lock-step 

Shape-based 

Uses symmetric chi-squared, 

arithmetic, and geometric means. 
0 (Cha, 2007) 

Dissimilarity Index Combining 

Temporal Correlation and Raw Value 

Behaviour1 

Cort 
Correction 

factor 

Lock-step 

Shaped-based 

and Feature-

based 

Temporal correlation coefficient 

Adaptive tuning function 
2 

(Chouakria and 

Nagabhushan, 2007) 

Complexity-Invariant Distance1 CID 
Correction 

factor 

Lock-step 

Shape-based 
Invariant to complexity 1 (Batista et al., 2011) 

Average(L1,Linf)2 AVG  
Lock-step 

Shape-based 

Average of the Manhattan and 

Chebyshev distances 
0 (Cha, 2007) 

Periodogram Based Dissimilarity1 Per  Feature-based Frequency domain 2 (Caiado et al., 2005) 

Partial Autocorrelation-Based 

Dissimilarity1 PACF  Feature-based 
Compares partial autocorrelation 

coefficients 
1-2 

(Montero and Vilar, 

2014) 

Integrated Periodogram Based 

Dissimilarity1 IntPer  Feature-based Frequency domain 1 (Casado de Lucas, 2010) 

Fourier Coefficient Based Distance1 Fourier  Feature-based Frequency domain 1 (Agrawal et al., 1993) 

Autocorrelation-Based Dissimilarity1 ACF  Feature-based Compares autocorrelation coefficients 1-2 
(D’Urso and 

Maharaj, 2009) 

Piccolo Distance1 Piccolo  Model-based ARIMA models 0-3 (Piccolo, 1990) 

Normalized Compression Distance1 NCD 
Compression 

distance 

Compression-

based 

Normalization of differences 

Quasi-universality 

Choice of compression algorithm 

1 
(Cilibrasi and Vitanyi, 

2005) 



169 
 

Compression-Based Dissimilarity 

Measure1 CDM 
Compression 

distance 

Compression-

based 

Compatible with symbolic 

representation 

Choice of compression algorithm 

1 (Keogh et al., 2004) 

1Available in the TSdist R package (Mori et al., 2016). 

2Available in the philentropy R package (Drost, 2018). 
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S2.2. Distance measure properties 

Here I have included some additional explanation for translation invariance, amplitude 

sensitivity and duration sensitivity. 

Translation invariance: Translation invariance is a shape-preserving property, meaning that 

a distance measure with this property would treat two time series with identical shapes as 

equal, even if the mean values were different. The same effect can be achieved by a vertical 

shift transformation. For example, time series X can be transformed by adding the same real 

number q to each observation, f(X) = X + q, such that time series X and Y have the same 

starting value (if they already have the same starting value there is no need for 

transformation). It is a simple matter to apply this transformation to thousands of time 

series. Note, however, that translation invariance can be problematic. Consider two 

populations, with population A having a starting size of 100 and population B a starting size 

of 10,000. If both populations increase by 10 every year for 10 years, population A would 

now be 200, which means it doubled to twice its original size, while population B would be 

10,100, an increase of only 1%. A distance measure with the property of translation 

invariance (or any distance measure after applying a vertical shift transformation to equalize 

the starting values) would treat these trends as equal. 

An alternative way to deal with such comparisons would be a scale transformation, f(X) = X * 

q, multiplying each observation of time series x by the same real number q, such that time 

series X and Y have the same starting value. A scale transformation allows for shape 

deformation while preserving percentage change. If populations A and B both doubled by 

increasing linearly for 10 years from 100 to 200 and 10,000 to 20,000 respectively, a scale 

transformation would result in identical trends, although they did not originally have the 

same shape. Likewise, in the previous example where two populations of different sizes 

increase by the same amount but different percentages, a scale transformation would result 

in trends with very different shapes (slopes). Scale invariance, which is defined as d(X*q, Y) = 

d(X, Y), with q greater than 0 (Batyrshin et al., 2016), is a rare property of distance 

measures. 
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Note that translation invariance is a special case of translation insensitivity, where d(X + q, 

Y) is independent of q. Defining its opposite, translation sensitivity, gives d(X + q, Y) > d(X, Y), 

with d(X + q, Y) increasing with q. In other words, adding a number to all values of X causes 

the dissimilarity between X and Y to increase, and the greater the number added to X, the 

greater the increase in dissimilarity. This is a useful property and one that can be measured 

in relative terms.  

Amplitude sensitivity:  Amplitude sensitivity is particularly relevant when comparing time 

series which have been scale transformed or vertical shift transformed to have the same 

starting value. But some distance measures, especially among edit distances, are insensitive 

to amplitude. For example, the Edit Distance for Real Sequences (EDR) has a threshold value 

that can be set. Only differences that exceed the threshold are counted. This can be useful 

when looking for aberrations. For example, time series of maximum daily temperatures 

could be ranked according to how often they exceed a baseline by a set number of degrees. 

Duration sensitivity: Some distance measures, such as Dynamic Time Warping (DTW) or the 

Short Time Series Distance (STS), may rank time series with more differences as more 

dissimilar only if those differences are separated by similarities. Consider a time series A, 

with five points, t0, t1, ..., t4. Some transformation f(t) is applied only to point t1 to form time 

series B (B thus differs from A by a single point), to both t1 and t2 to form time series C, and 

to both t1 and t3 to form time series D (thus C and D each differ from A by the same value at 

two points, but in C those points are consecutive while in D they are not). For distance 

measures which are sensitive to both frequency and duration, d(D, A) > d(C, A) > d(B, A), but 

for distance measures which are sensitive to frequency but not duration, d(D, A) > d(B, A), 

while d(C, A) = d(B, A). This is because a distance that is invariant to duration will treat a 

difference that occurs over multiple consecutive time points as a single difference.  

  



172 
 

S2.3. Uncontrolled testing 

I created a function for each property to be tested, which applies a transformation to one or 

more time points of a real-world time series given as input. Each function accepts a value q, 

the purpose of which varies depending on the function (see below for details). For example, 

the translation function adds a real number q to every value ti of a time series T. The 

transformed time series is returned as output and compared against its unaltered 

counterpart. I applied the functions to a range of q in increments, then graphed the results 

as response curves (see Figs S2.2-S2.5). I did not compare them against a reference or assign 

sensitivity ratings, as they were intended only as a confirmatory check against the results of 

controlled testing. 

Functions: 

Translation sensitivity: Add q to every data point of a time series T. 

White noise sensitivity: Create a normal distribution with mean q and standard deviation 0.3 

times q (the latter is arbitrary). Randomly select half of the data points of a time series T and 

add randomly selected values from the normal distribution to the selected points. Finally, 

subtract randomly selected values from the normal distribution from the points that were 

not selected. This function scales q by 
𝑞

max (𝑞)
 to avoid the noise being too large. 

Biased noise sensitivity: Proceed exactly as with white noise sensitivity but skip the final step 

(the points that were not selected remain untransformed). This function scales q by 

𝑞

0.5∗max (𝑞)
 (the 0.5 is because the function is only applied to half of the time points). 

Outlier sensitivity: Add q to one randomly selected point of a time series T (excluding the 

first and final points, which can cause unintended behaviour in some distance measures). 

Phase invariance: Shift the first q time points of a time series T to the end of the time series.  

Warping invariance: Randomly select a single value from a time series T and extend the time 

series by repeating the chosen value q times. 

Uniform time scaling invariance: Stretch a time series T along the x-axis by a factor of q. The 

y-axis values of the first and final points remain unchanged, but the final point is shifted 
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along the x-axis and all points in between are recomputed. For this function, q is scaled: 

𝑞

max (𝑞)
+ 1. Thus, time series T will be stretched to a maximum of twice its original length. 
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S2.4. Metric test results 

In some cases, results depended on input values or settings. Eight of the lock-step shape-

based distance measures passed the triangle inequality test and/or non-negativity test 

when inputs were constrained to non-negative real numbers but failed when negative 

numbers were included. EDR behaved as a metric when the threshold setting, ε, was set 

near zero, but failed the triangle inequality test when ε was set at five. The Normalized 

Compression Distance (NCD) and the Compression-based Dissimilarity Measure (CDM) both 

failed uniqueness and symmetry tests and thus qualified as non-metrics, although NCD is 

stated by its authors to be a metric (Cilibrasi and Vitányi, 2005). However, this is qualified 

with respect to the compression algorithm paired with it, with none quite reaching the 

definition the metric behaviour depends on. NCD should approach closer to true metric 

behaviour the longer the time series (Cilibrasi and Vitányi, 2005). I tested it here with very 

short time series, and therefore it would not be expected to behave as a metric. Additional 

testing (not included) showed NCD came closer to passing the uniqueness and symmetry 

tests, although as the time series reached a length of one million, it was still failing. Beyond 

that length, running the tests was too slow to be practical. CDM, on the other hand, is not 

considered to be a metric (Keogh et al., 2004), nor did it approach closer to metric 

behaviour when tested with longer time series. 
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S2.5. Controlled test results 

S2.5.1. Sensitivity tests 

Results for EDR depended on the value of the threshold setting, ε. I reported the results 

with ε at 0.1. However, when ε was set high, EDR was invariant to all seven of these 

properties. When ε was set within the range of the input values, results were less 

predictable. 

The two compression-based distances I tested, the Normalized Compression Distance (NCD) 

and the Compression-based Dissimilarity Measure (CDM), showed insensitivity to 

translation and outliers. However, uncontrolled test results did not confirm this. It is not 

clear why this difference occurred, but keep in mind that compression-based distances may 

behave differently for short time series than for long ones (e.g., they do not behave as 

metrics when comparing short time series). 
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S2.5.2. Time-based invariances and other tests 

Again, results for EDR depended on the value of ε. I reported the results with ε at 0.1., but 

when ε was set high, EDR was invariant to phase, and sensitive to both warping and time 

scaling. When ε was set within the range of the input values, it responded unpredictably to 

phase shift, but remained sensitive to both warping and time scaling. 

The results for the Autocorrelation-based dissimilarity (ACF) and the Partial Autocorrelation-

based dissimilarity (PACF) were ‘n/a’ for both warping and time scaling, suggesting that 

these distance measures are unable to deal with unequal-length time series. However, this 

is not the case. The problem is that these measures require an equal number of 

autocorrelation coefficients, which the short time series I used for controlled testing did not 

satisfy. However, ACF and PACF did provide results for warping and time scaling in 

uncontrolled testing (Fig. S2.2 and S2.4). 
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S2.5.3. Pairwise correlations between distance measures 

 

Figure S2.1. Pairwise Pearson correlation of all tested distance measures, based on the unbinned results of 

controlled sensitivities testing for translation, amplitude, duration, frequency, white noise, biased noise, and 

outliers. Distance measures are organized by family on the plot. 
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S2.6. Uncontrolled test results 

Figures S2.2-S2.5 show the results of uncontrolled testing of distance measure properties 

using two real-world time series (main text: Fig. 2.3) from the UCR Time-Series Classification 

Archive (Dau et al., 2019), an archive of 128 time-series datasets intended for testing of 

classification algorithms. All dissimilarity values in the test results have been rescaled to a 

range of [0,1] using Min-Max scaling. This was done to facilitate placing response curves for 

different types of transformations on the same plot while still allowing the shape of each 

response curve to be seen regardless of the strength of the response. For controlled testing, 

time series were carefully constructed to allow comparison of response strength across 

different properties. That is a far more difficult problem when working with real-world time 

series, so I opted instead to exchange strength information for better shape resolution.  

For those distance measures that are sensitive to a tested property, the dissimilarity value 

shows a response curve as the size of the transformation value q increases. The sensitivity 

response curve may be linear or not but should be described by a function. Invariances 

show as horizontal lines at a dissimilarity value of zero, while insensitivities show as 

horizontal lines at some non-zero value. The response curves for some properties differ in 

shape between time series, especially for elastic distance measures and those designed for 

stationary time series. Despite this, results are largely consistent with the controlled testing 

results shown in Figs 2.5-2.6 (main text). 

There are a few exceptions, however. Both compression-based distances I tested, NCD and 

CDM, registered as insensitive to translation and outliers in controlled testing, while 

showing unpredictability in uncontrolled testing. Two feature-based distances, ACF and 

PACF, showed unpredictability for warping invariance and uniform time scaling invariance in 

uncontrolled testing but failed to give results in controlled testing. This was because these 

distance measures require the time series being compared to have an equal number of 

autocorrelation coefficients, a requirement which was met when extending the real-world 

time series, but not when extending the short time series that I created for controlled 

testing. Finally, the Time Alignment Measurement distance, TAM, showed unpredictability 

to outliers in controlled testing, but was insensitive in uncontrolled testing. The raw 

dissimilarity values from the controlled testing showed a sudden increase from a 
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dissimilarity value of 0 to 0.33 as the value of q increased from 2 to 3. Given that I used the 

same starting value of q (1) and the same increment size (also 1) for both controlled and 

uncontrolled testing, the threshold is presumably not determined simply by the value of the 

outlier, q, but by a more complex calculation. 
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Figure S2.2. Dissimilarity measurements from 17 distance measures of the TSdist package after applying 

transformations to a randomly selected time series from the Yoga dataset of the UCR Time-Series Archive. The 

x-axis depicts the transformation value q across a range of 1 to 200 in increments of 10. Dissimilarity values 

were rescaled using Min-Max scaling to a range of [0,1] to ensure that the shape of each response curve would 

be visible regardless of the strength of the response. 
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Figure S2.3. Dissimilarity measurements from 24 distance measures of the philentropy package after applying 

transformations to a randomly selected time series from the Yoga dataset of the UCR Time-Series Archive. The 

x-axis depicts the transformation value q across a range of 1 to 200 in increments of 10. Dissimilarity values 

were rescaled using Min-Max scaling to a range of [0,1] to ensure that the shape of each response curve would 

be visible regardless of the strength of the response. 
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Figure S2.4. Dissimilarity measurements from 17 distance measures of the TSdist package after applying 

transformations to a randomly selected time series from the Synthetic Control dataset of the UCR Time-Series 

Archive. The x-axis depicts the transformation value q across a range of 1 to 20 in increments of 1. Dissimilarity 

values were rescaled using Min-Max scaling to a range of [0,1] to ensure that the shape of each response curve 

would be visible regardless of the strength of the response. 
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Figure S2.5. Dissimilarity measurements from 24 distance measures of the philentropy package after applying 

transformations to a randomly selected time series from the Synthetic Control dataset of the UCR Time-Series 

Archive. The x-axis depicts the transformation value q across a range of 1 to 20 in increments of 1. Dissimilarity 

values were rescaled using Min-Max scaling to a range of [0,1] to ensure that the shape of each response curve 

would be visible regardless of the strength of the response. 
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S2.7. Example dataset results 

When comparing unsmoothed time series, the two selected distance measures gave 

identical results to percent improvement from Jellesmark et al. (2021) (main text: Fig. 2.9). 

Among the 40 unselected distance measures, only two, EDR and TAM, gave the same 

rankings as the selected distance measures and percent improvement (main text: Fig. 2.9). 

Another 30 agreed with Jellesmark et al. (2021) in ranking Redshank first, but beyond that 

the results differed strongly, with 28 ranking Yellow Wagtail second and 23 ranking Curlew 

last (main text: Fig. 2.9). None of the distance measures returned the same results as the t-

test. 

In the smoothed time series comparison, all seven of the selected distance measures agreed 

with each other but differed slightly from the percent improvement results of Jellesmark et 

al. (2021) by placing Snipe ahead of Lapwing (main text: Fig. 2.10). Of the 35 unselected 

distance measure, four gave the same rankings as the selected distance measures, while 11 

agreed with percent improvement and five agreed with the t-test (main text: Fig. 2.10). 

  



185 
 

S2.8. Speeding up DTW 

For matching problems, such as content queries and classification, the slowness of DTW can 

be avoided by indexing, which severely reduces the number of time series that need to be 

compared to find the best match. For the Euclidean Distance, indexing is straightforward to 

accomplish. However, as DTW does not satisfy the triangle inequality (main text: Fig. 2.4), it 

presents more of a challenge. Keogh and Ratanamahatana (2005) solved this problem using 

a tight ‘lower-bounding’ measure, which is included in the TSdist package (Mori et al., 2016) 

as LBKeoghDistance. For an explanation of lower bounding and the indexing process with 

respect to DTW, refer to Keogh and Ratanamahatana (2005). The lower-bounding technique 

does not apply to clustering, where some real-world problems can take weeks or even 

months (Zhu et al., 2012). However, Zhu et al. (2012) solved this problem for clustering by 

creating an interactive ‘anytime algorithm’, which uses a fast approximation of DTW to give 

a best available answer that improves over time as exact DTW calculations are performed 

and can be paused or terminated at any time. 
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S2.9. Plots of controlled test results for all distance measures 

This section contains plots of controlled testing results for all 42 distance measures I tested. 

Each figure includes all time-based and values-based properties for which that distance 

measure gave results. Distance measures are presented in alphabetical order. 

 

Figure S2.6. Controlled testing results for the Autocorrelation-Based Dissimilarity. Sensitivities and phase 

invariance were tested by comparing time series with linearly increasing differences in summed y-axis values 

(or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 
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Figure S2.7. Controlled testing results for the Additive Symmetric Chi-Squared Distance. Sensitivities and phase 

invariance were tested by comparing time series with linearly increasing differences in summed y-axis values 

(or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 
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Figure S2.8. Controlled testing results for the Average Distance. Sensitivities and phase invariance were tested 

by comparing time series with linearly increasing differences in summed y-axis values (or phase), against a 

reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed by the 

same relative amount in different directions. The bias is neutral if the two values are identical, negative if the 

value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance and 

warping invariance could not be tested for this distance measure, as it cannot measure unequal-length time 

series. 
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Figure S2.9. Controlled testing results for the Canberra Distance. Sensitivities and phase invariance were tested 

by comparing time series with linearly increasing differences in summed y-axis values (or phase), against a 

reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed by the 

same relative amount in different directions. The bias is neutral if the two values are identical, negative if the 

value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance and 

warping invariance could not be tested for this distance measure, as it cannot measure unequal-length time 

series. 
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Figure S2.10. Controlled testing results for the Compression-Based Dissimilarity Measure. Sensitivities and 

phase invariance were tested by comparing time series with linearly increasing differences in summed y-axis 

values (or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time 

series that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance were tested by stretching time series, or parts of time series, 

respectively, by different amounts.   
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Figure S2.11. Controlled testing results for the Chebyshev Distance. Sensitivities and phase invariance were 

tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.12. Controlled testing results for the Complexity-Invariant Distance. Sensitivities and phase 

invariance were tested by comparing time series with linearly increasing differences in summed y-axis values 

(or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 
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Figure S2.13. Controlled testing results for the Clark Squared Distance. Sensitivities and phase invariance were 

tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.14. Controlled testing results for the Dissimilarity Index Combining Temporal Correlation and Raw 

Value Behaviour. Sensitivities and phase invariance were tested by comparing time series with linearly 

increasing differences in summed y-axis values (or phase), against a reference time series. Antiparallelism bias 

was tested by comparing pairs of time series that differed by the same relative amount in different directions. 

The bias is neutral if the two values are identical, negative if the value on the left is higher, and positive if the 

value on the right is higher. Uniform time scaling invariance and warping invariance could not be tested for this 

distance measure, as it cannot measure unequal-length time series. 
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Figure S2.15. Controlled testing results for the Czekanowski Distance. Sensitivities and phase invariance were 

tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.16. Controlled testing results for the Dice Dissimilarity. Sensitivities and phase invariance were tested 

by comparing time series with linearly increasing differences in summed y-axis values (or phase), against a 

reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed by the 

same relative amount in different directions. The bias is neutral if the two values are identical, negative if the 

value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance and 

warping invariance could not be tested for this distance measure, as it cannot measure unequal-length time 

series. 
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Figure S2.17. Controlled testing results for the Divergence Squared distance. Sensitivities and phase invariance 

were tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.18. Controlled testing results for the Dynamic Time Warping Distance. Sensitivities and phase 

invariance were tested by comparing time series with linearly increasing differences in summed y-axis values 

(or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance were tested by stretching time series, or parts of time series, 

respectively, by different amounts.  
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Figure S2.19. Controlled testing results for the Edit Distance on Real Sequences. Sensitivities and phase 

invariance were tested by comparing time series with linearly increasing differences in summed y-axis values 

(or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance were tested by stretching time series, or parts of time series, 

respectively, by different amounts.  
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Figure S2.20. Controlled testing results for the Edit Distance with Real Penalty. Sensitivities and phase 

invariance were tested by comparing time series with linearly increasing differences in summed y-axis values 

(or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance were tested by stretching time series, or parts of time series, 

respectively, by different amounts.  
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Figure S2.21. Controlled testing results for the Euclidean Distance. Sensitivities and phase invariance were 

tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.22. Controlled testing results for the Fourier Coefficient-Based Distance. Sensitivities and phase 

invariance were tested by comparing time series with linearly increasing differences in summed y-axis values 

(or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 
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Figure S2.23. Controlled testing results for the Gower Distance. Sensitivities and phase invariance were tested 

by comparing time series with linearly increasing differences in summed y-axis values (or phase), against a 

reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed by the 

same relative amount in different directions. The bias is neutral if the two values are identical, negative if the 

value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance and 

warping invariance could not be tested for this distance measure, as it cannot measure unequal-length time 

series. 
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Figure S2.24. Controlled testing results for the Integrated Periodogram Based Dissimilarity. Sensitivities and 

phase invariance were tested by comparing time series with linearly increasing differences in summed y-axis 

values (or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time 

series that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 
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Figure S2.25. Controlled testing results for the Jaccard Distance. Sensitivities and phase invariance were tested 

by comparing time series with linearly increasing differences in summed y-axis values (or phase), against a 

reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed by the 

same relative amount in different directions. The bias is neutral if the two values are identical, negative if the 

value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance and 

warping invariance could not be tested for this distance measure, as it cannot measure unequal-length time 

series. 
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Figure S2.26. Controlled testing results for the Jeffreys Divergence. Sensitivities and phase invariance were 

tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.27. Controlled testing results for the Jensen Difference. Sensitivities and phase invariance were 

tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.28. Controlled testing results for the K Divergence. Sensitivities and phase invariance were tested by 

comparing time series with linearly increasing differences in summed y-axis values (or phase), against a 

reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed by the 

same relative amount in different directions. The bias is neutral if the two values are identical, negative if the 

value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance and 

warping invariance could not be tested for this distance measure, as it cannot measure unequal-length time 

series. 
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Figure S2.29. Controlled testing results for the Kulczynski Distance. Sensitivities and phase invariance were 

tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.30. Controlled testing results for the Kullback-Leibler Divergence. Sensitivities and phase invariance 

were tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.31. Controlled testing results for the Kumar-Johnson Distance. Sensitivities and phase invariance 

were tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.32. Controlled testing results for the Lorentzian Distance. Sensitivities and phase invariance were 

tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.33. Controlled testing results for the Manhattan Distance. Sensitivities and phase invariance were 

tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.34. Controlled testing results for the Normalized Compression Distance. Sensitivities and phase 

invariance were tested by comparing time series with linearly increasing differences in summed y-axis values 

(or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance were tested by stretching time series, or parts of time series, 

respectively, by different amounts.  
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Figure S2.35. Controlled testing results for the Partial Autocorrelation-Based Dissimilarity. Sensitivities and 

phase invariance were tested by comparing time series with linearly increasing differences in summed y-axis 

values (or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time 

series that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 
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Figure S2.36. Controlled testing results for the Periodogram-Based Dissimilarity. Sensitivities and phase 

invariance were tested by comparing time series with linearly increasing differences in summed y-axis values 

(or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 
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Figure S2.37. Controlled testing results for the Piccolo Distance. Sensitivities and phase invariance were tested 

by comparing time series with linearly increasing differences in summed y-axis values (or phase), against a 

reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed by the 

same relative amount in different directions. The bias is neutral if the two values are identical, negative if the 

value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance and 

warping invariance were tested by stretching time series, or parts of time series, respectively, by different 

amounts.  
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Figure S2.38. Controlled testing results for the Probabilistic Symmetric Chi-Squared Distance. Sensitivities and 

phase invariance were tested by comparing time series with linearly increasing differences in summed y-axis 

values (or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time 

series that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 
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Figure S2.39. Controlled testing results for the Soergel Distance. Sensitivities and phase invariance were tested 

by comparing time series with linearly increasing differences in summed y-axis values (or phase), against a 

reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed by the 

same relative amount in different directions. The bias is neutral if the two values are identical, negative if the 

value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance and 

warping invariance could not be tested for this distance measure, as it cannot measure unequal-length time 

series. 
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Figure S2.40. Controlled testing results for the Squared Chi-Squared Distance. Sensitivities and phase 

invariance were tested by comparing time series with linearly increasing differences in summed y-axis values 

(or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 
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Figure S2.41. Controlled testing results for the Squared-Chord Distance. Sensitivities and phase invariance 

were tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.42. Controlled testing results for the Squared Euclidean Distance. Sensitivities and phase invariance 

were tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.43. Controlled testing results for the Short Time Series Distance. Sensitivities and phase invariance 

were tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.44. Controlled testing results for the Time Alignment Measurement Distance. Sensitivities and phase 

invariance were tested by comparing time series with linearly increasing differences in summed y-axis values 

(or phase), against a reference time series. Antiparallelism bias was tested by comparing pairs of time series 

that differed by the same relative amount in different directions. The bias is neutral if the two values are 

identical, negative if the value on the left is higher, and positive if the value on the right is higher. Uniform time 

scaling invariance and warping invariance were tested by stretching time series, or parts of time series, 

respectively, by different amounts.  
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Figure S2.45. Controlled testing results for the Taneja Difference. Sensitivities and phase invariance were 

tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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Figure S2.46. Controlled testing results for the Topsoe Distance. Sensitivities and phase invariance were tested 

by comparing time series with linearly increasing differences in summed y-axis values (or phase), against a 

reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed by the 

same relative amount in different directions. The bias is neutral if the two values are identical, negative if the 

value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance and 

warping invariance could not be tested for this distance measure, as it cannot measure unequal-length time 

series. 
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Figure S2.47. Controlled testing results for the Wave-Hedges Distance. Sensitivities and phase invariance were 

tested by comparing time series with linearly increasing differences in summed y-axis values (or phase), 

against a reference time series. Antiparallelism bias was tested by comparing pairs of time series that differed 

by the same relative amount in different directions. The bias is neutral if the two values are identical, negative 

if the value on the left is higher, and positive if the value on the right is higher. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 
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S2.10. Tables of controlled test results for all distance measures 

This section contains tables of controlled testing results for all 42 distance measures I 

tested. Each figure includes all time-based and values-based properties for which that 

distance measure gave results. Distance measures are presented in alphabetical order. 
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Table S2.2. Raw controlled testing results for the Autocorrelation-based Dissimilarity. For details on how 

testing was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. 

Uniform time scaling invariance and warping invariance could not be tested for this distance measure, as it 

cannot measure unequal-length time series. 

Controlled Test Results: ACF  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 0.9611 0.9611      

Translation Sensitivity 0.0000 0.0000 0.0000 0.0000 0.0000   

Amplitude Sensitivity 0.0941 0.2352 0.3529 0.4428 0.5114   

Duration Sensitivity 0.4355 0.6796 0.6374 0.4965 0.4381   

Frequency Sensitivity 0.5277 0.8189 1.0761 1.4041 1.8403   

White Noise Sensitivity 0.0393 0.0902 0.1510 0.2196 0.2939   

Biased Noise Sensitivity 0.0485 0.1042 0.1651 0.2294 0.2953   

Outlier Sensitivity 0.1320 0.2021 0.2508 0.2910 0.3254   

Antiparallelism Bias 0.0000 0.0000      

Phase Invariance 0.3938 0.7610 1.0553 0.3934 0.2057   

Uniform Time Scaling 

Invariance 
       

Warping Invariance        

Non-positive Value Handling 0.6900 0.6900 0.8552     

Non-negativity 1.0000       

Triangle Inequality 1.0000       

Relative Sensitivity Ranges 0.0000 1.0946 0.6401 3.4429 0.6678 0.6473 0.5073 
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Table S2.3. Raw controlled testing results for the Additive Symmetric Chi-Squared Distance. For details on how 

testing was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. 

Uniform time scaling invariance and warping invariance could not be tested for this distance measure, as it 

cannot measure unequal-length time series. 

Controlled Test Results: Additive  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.00       

Symmetry 42.74 42.74      

Translation Sensitivity 0.17 0.66 1.44 2.49 3.78   

Amplitude Sensitivity 0.45 1.67 3.54 6.00 9.03   

Duration Sensitivity 1.50 3.00 4.50 6.00 7.50   

Frequency Sensitivity 1.50 3.00 4.50 6.00 7.50   

White Noise Sensitivity 0.08 0.33 0.74 1.32 2.09   

Biased Noise Sensitivity 0.16 0.61 1.33 2.29 3.48   

Outlier Sensitivity 0.45 1.67 3.54 6.00 9.03   

Antiparallelism Bias 5.33 2.13      

Phase Invariance 106.90 59.40 61.00 112.90 13.60   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 
3,999,998.

00 
0.00 -4.50     

Non-negativity 0.00       

Triangle Inequality 0.00       

Relative Sensitivity Ranges 0.66 1.58 1.10 1.10 0.37 0.61 1.58 
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Table S2.4. Raw controlled testing results for the Average Distance. For details on how testing was performed 

and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time scaling 

invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: AVG 

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 7.900 7.900      

Translation Sensitivity 0.550 1.100 1.650 2.200 2.750   

Amplitude Sensitivity 0.750 1.500 2.250 3.000 3.750   

Duration Sensitivity 1.000 1.500 2.000 2.500 3.000   

Frequency Sensitivity 1.000 1.500 2.000 2.500 3.000   

White Noise Sensitivity 0.562 1.125 1.688 2.250 2.812   

Biased Noise Sensitivity 0.625 1.250 1.875 2.500 3.125   

Outlier Sensitivity 1.000 2.000 3.000 4.000 5.000   

Antiparallelism Bias 1.500 1.500      

Phase Invariance 16.500 11.500 11.500 16.500 7.000   

Uniform Time Scaling 

Invariance 
       

Warping Invariance        

Non-positive Value Handling 2.000 2.000 3.000     

Non-negativity 1.000       

Triangle Inequality 1.000       

Relative Sensitivity Ranges 0.858 1.170 0.780 0.780 0.877 0.975 1.560 
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Table S2.5. Raw controlled testing results for the Canberra Distance. For details on how testing was performed 

and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time scaling 

invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Canb  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 4.6030 4.6030      

Translation Sensitivity 0.4297 0.8225 1.1830 1.5152 1.8222   

Amplitude Sensitivity 0.2222 0.4000 0.5455 0.6667 0.7692   

Duration Sensitivity 0.3333 0.6667 1.0000 1.3333 1.6667   

Frequency Sensitivity 0.3333 0.6667 1.0000 1.3333 1.6667   

White Noise Sensitivity 0.1633 0.3265 0.4903 0.6553 0.8222   

Biased Noise Sensitivity 0.1585 0.3022 0.4334 0.5538 0.6649   

Outlier Sensitivity 0.1111 0.2000 0.2727 0.3333 0.3846   

Antiparallelism Bias 1.0000 0.5000      

Phase Invariance 5.1143 3.0032 3.0528 5.0810 1.5667   

Uniform Time Scaling 

Invariance 
       

Warping Invariance        

Non-positive Value Handling 1.0000 1.0000 3.0000     

Non-negativity 0.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 1.6125 0.6334 1.5440 1.5440 0.7630 0.5864 0.3167 
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Table S2.6. Raw controlled testing results for the Compression-Based Dissimilarity Measure. For details on how 

testing was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. 

Uniform time scaling invariance and warping invariance could not be tested for this distance measure, as it 

cannot measure unequal-length time series. 

Controlled Test Results: CDM  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.5588       

Symmetry 0.7073 0.6829      

Translation Sensitivity 0.7222 0.7222 0.7222 0.7222 0.7222   

Amplitude Sensitivity 0.6667 0.6579 0.6750 0.6579 0.6750   

Duration Sensitivity 0.5588 0.5588 0.5882 0.5882 0.6250   

Frequency Sensitivity 0.6333 0.6333 0.6333 0.6552 0.5714   

White Noise Sensitivity 0.8793 0.8571 0.8621 0.8367 0.8621   

Biased Noise Sensitivity 0.7308 0.7255 0.7308 0.7609 0.7885   

Outlier Sensitivity 0.6591 0.6591 0.6591 0.6591 0.6591   

Antiparallelism Bias 0.6216 0.6216      

Phase Invariance 0.5532 0.5417 0.5870 0.5833 0.5833   

Uniform Time Scaling Invariance 0.7727 0.7639 0.7763 0.7975 0.7538   

Warping Invariance 0.5556 0.5556 0.5556 0.5676 0.5676   

Non-positive Value Handling 0.6923 0.6571 0.6571     

Non-negativity 1.0000       

Triangle Inequality 1.0000       

Relative Sensitivity Ranges 0.0000 0.3138 1.2139 1.5362 0.7810 1.1551 0.0000 
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Table S2.7. Raw controlled testing results for the Complexity-Invariant Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: CID  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 18.512 18.512      

Translation Sensitivity 0.316 0.632 0.949 1.265 1.581   

Amplitude Sensitivity 0.901 2.236 4.039 6.325 9.100   

Duration Sensitivity 1.000 1.414 1.732 2.000 2.236   

Frequency Sensitivity 1.414 2.449 3.464 4.472 5.244   

White Noise Sensitivity 0.373 0.796 1.284 1.846 2.492   

Biased Noise Sensitivity 0.533 1.148 1.865 2.697 3.654   

Outlier Sensitivity 1.254 3.117 5.669 8.944 12.956   

Antiparallelism Bias 1.414 4.243      

Phase Invariance 9.592 7.820 8.052 10.650 5.272   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 3.464 3.464 7.036     

Non-negativity 1.000       

Triangle Inequality 0.000       

Relative Sensitivity Ranges 0.281 1.824 0.275 0.852 0.471 0.694 2.603 
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Table S2.8. Raw controlled testing results for the Clark Squared Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Clark  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 1.5951 1.5951      

Translation Sensitivity 0.1390 0.2658 0.3819 0.4886 0.5871   

Amplitude Sensitivity 0.1571 0.2828 0.3857 0.4714 0.5439   

Duration Sensitivity 0.3333 0.4714 0.5774 0.6667 0.7454   

Frequency Sensitivity 0.3333 0.4714 0.5774 0.6667 0.7454   

White Noise Sensitivity 0.0629 0.1256 0.1887 0.2525 0.3176   

Biased Noise Sensitivity 0.0881 0.1670 0.2383 0.3030 0.3622   

Outlier Sensitivity 0.1111 0.2000 0.2727 0.3333 0.3846   

Antiparallelism Bias 0.7071 0.3536      

Phase Invariance 1.6974 1.2317 1.2546 1.7263 0.6536   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 1.0000 1.0000 3.0000     

Non-negativity 1.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 1.2743 1.1001 1.1718 1.1718 0.7244 0.7797 0.7779 
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Table S2.9. Raw controlled testing results for the Dissimilarity Index Combining Temporal Correlation and Raw 

Value Behaviour. For details on how testing was performed and how relative sensitivity ranges were 

calculated, see supplementary text S2.4. Uniform time scaling invariance and warping invariance could not be 

tested for this distance measure, as it cannot measure unequal-length time series. 

Controlled Test Results: Cort  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 2.566 2.566      

Translation Sensitivity 0.075 0.151 0.226 0.302 0.377   

Amplitude Sensitivity 0.174 0.369 0.582 0.810 1.048   

Duration Sensitivity 0.538 0.761 0.932 1.076 1.203   

Frequency Sensitivity 0.391 0.678 0.932 1.161 1.336   

White Noise Sensitivity 0.086 0.178 0.281 0.398 0.527   

Biased Noise Sensitivity 0.121 0.251 0.396 0.558 0.736   

Outlier Sensitivity 0.252 0.551 0.897 1.277 1.681   

Antiparallelism Bias 2.491 0.337      

Phase Invariance 14.955 6.919 6.215 15.084 1.561   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 0.959 0.959 1.793     

Non-negativity 1.000       

Triangle Inequality 0.000       

Relative Sensitivity Ranges 0.400 1.160 0.883 1.255 0.587 0.816 1.898 
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Table S2.10. Raw controlled testing results for the Czekanowski Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Czek  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 0.4103 0.4103      

Translation Sensitivity 0.0400 0.0769 0.1111 0.1429 0.1724   

Amplitude Sensitivity 0.0345 0.0667 0.0968 0.1250 0.1515   

Duration Sensitivity 0.0400 0.0769 0.1111 0.1429 0.1724   

Frequency Sensitivity 0.0370 0.0714 0.1034 0.1333 0.1613   

White Noise Sensitivity 0.0156 0.0312 0.0469 0.0625 0.0781   

Biased Noise Sensitivity 0.0154 0.0303 0.0448 0.0588 0.0725   

Outlier Sensitivity 0.0204 0.0400 0.0588 0.0769 0.0943   

Antiparallelism Bias 0.1000 0.0833      

Phase Invariance 0.5000 0.3214 0.3214 0.5000 0.2143   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 0.0769 0.0769 0.1200     

Non-negativity 0.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 1.3248 1.1710 1.3248 1.2432 0.6253 0.5711 0.7397 
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Table S2.11. Raw controlled testing results for the Dice Dissimilarity. For details on how testing was performed 

and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time scaling 

invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Dice  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 0.3077 0.3077      

Translation Sensitivity 0.0029 0.0108 0.0224 0.0370 0.0538   

Amplitude Sensitivity 0.0103 0.0370 0.0744 0.1176 0.1634   

Duration Sensitivity 0.0286 0.0526 0.0732 0.0909 0.1064   

Frequency Sensitivity 0.0303 0.0556 0.0769 0.0952 0.1111   

White Noise Sensitivity 0.0005 0.0018 0.0041 0.0072 0.0113   

Biased Noise Sensitivity 0.0009 0.0035 0.0075 0.0130 0.0196   

Outlier Sensitivity 0.0069 0.0256 0.0533 0.0870 0.1244   

Antiparallelism Bias 0.0952 0.0606      

Phase Invariance 0.4182 0.2545 0.2545 0.4545 0.1091   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 0.0909 0.0909 0.2000     

Non-negativity 1.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 0.6987 2.1029 1.0688 1.1100 0.1483 0.2575 1.6138 
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Table S2.12. Raw controlled testing results for the Divergence Squared Distance. For details on how testing 

was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Diverge  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 5.089 5.089      

Translation Sensitivity 0.039 0.141 0.292 0.478 0.689   

Amplitude Sensitivity 0.049 0.160 0.298 0.444 0.592   

Duration Sensitivity 0.222 0.444 0.667 0.889 1.111   

Frequency Sensitivity 0.222 0.444 0.667 0.889 1.111   

White Noise Sensitivity 0.008 0.032 0.071 0.128 0.202   

Biased Noise Sensitivity 0.016 0.056 0.114 0.184 0.262   

Outlier Sensitivity 0.025 0.080 0.149 0.222 0.296   

Antiparallelism Bias 1.000 0.250      

Phase Invariance 5.763 3.034 3.148 5.960 0.854   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 2.000 2.000 18.000     

Non-negativity 1.000       

Triangle Inequality 0.000       

Relative Sensitivity Ranges 1.237 1.031 1.690 1.690 0.368 0.469 0.515 
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Table S2.13. Raw controlled testing results for the Dynamic Time Warping Distance. For details on how testing 

was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4.  

Controlled Test Results: DTW  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 13.800 13.800      

Translation Sensitivity 1.900 3.800 5.700 7.600 9.500   

Amplitude Sensitivity 2.000 4.000 5.000 6.000 7.000   

Duration Sensitivity 0.000 0.000 0.000 0.000 0.000   

Frequency Sensitivity 1.000 2.000 3.000 4.000 5.000   

White Noise Sensitivity 2.000 4.000 6.000 8.000 9.750   

Biased Noise Sensitivity 2.000 4.000 5.750 6.000 7.000   

Outlier Sensitivity 2.000 4.000 5.000 6.000 7.000   

Antiparallelism Bias 2.000 3.000      

Phase Invariance 8.000 8.000 15.000 22.000 18.000   

Uniform Time Scaling Invariance 6.490 6.740 7.000 7.870 6.000   

Warping Invariance 0.000 0.000 0.000 0.000 0.000   

Non-positive Value Handling 3.000 3.000 4.000     

Non-negativity 1.000       

Triangle Inequality 0.000       

Relative Sensitivity Ranges 1.328 0.873 0.000 0.699 1.354 0.873 0.873 
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Table S2.14. Raw controlled testing results for the Edit Distance on Real Sequences. For details on how testing 

was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4.  

Controlled Test Results: EDR  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 10.000 10.000      

Translation Sensitivity 10.000 10.000 10.000 10.000 10.000   

Amplitude Sensitivity 2.000 2.000 2.000 2.000 2.000   

Duration Sensitivity 1.000 2.000 3.000 4.000 5.000   

Frequency Sensitivity 1.000 2.000 3.000 4.000 5.000   

White Noise Sensitivity 8.000 8.000 8.000 8.000 8.000   

Biased Noise Sensitivity 4.000 4.000 4.000 4.000 4.000   

Outlier Sensitivity 1.000 1.000 1.000 1.000 1.000   

Antiparallelism Bias 2.000 2.000      

Phase Invariance 2.000 4.000 6.000 7.000 6.000   

Uniform Time Scaling Invariance 8.000 9.000 12.000 13.000 9.000   

Warping Invariance 1.000 2.000 3.000 4.000 5.000   

Non-positive Value Handling 1.000 1.000 1.000     

Non-negativity 1.000       

Triangle Inequality 0.000       

Relative Sensitivity Ranges 0.000 0.000 1.000 1.000 0.000 0.000 0.000 
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Table S2.15. Raw controlled testing results for the Edit Distance with Real Penalty. For details on how testing 

was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4.  

Controlled Test Results: ERP  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 11.200 11.200      

Translation Sensitivity 1.000 2.000 3.000 4.000 5.000   

Amplitude Sensitivity 1.000 2.000 3.000 4.000 5.000   

Duration Sensitivity 1.000 2.000 3.000 4.000 5.000   

Frequency Sensitivity 1.000 2.000 3.000 4.000 5.000   

White Noise Sensitivity 1.000 2.000 3.000 4.000 5.000   

Biased Noise Sensitivity 1.000 2.000 3.000 4.000 5.000   

Outlier Sensitivity 1.000 2.000 3.000 4.000 5.000   

Antiparallelism Bias 2.000 2.000      

Phase Invariance 10.000 12.000 12.000 14.000 12.000   

Uniform Time Scaling Invariance 6.170 12.860 18.625 25.340 31.000   

Warping Invariance 1.000 2.000 3.000 4.000 5.000   

Non-positive Value Handling 2.000 2.000 3.000     

Non-negativity 1.000       

Triangle Inequality 1.000       

Relative Sensitivity Ranges 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table S2.16. Raw controlled testing results for the Euclidean Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Euclidean  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 4.541 4.541      

Translation Sensitivity 0.316 0.632 0.949 1.265 1.581   

Amplitude Sensitivity 0.707 1.414 2.121 2.828 3.536   

Duration Sensitivity 1.000 1.414 1.732 2.000 2.236   

Frequency Sensitivity 1.000 1.414 1.732 2.000 2.236   

White Noise Sensitivity 0.354 0.707 1.061 1.414 1.768   

Biased Noise Sensitivity 0.500 1.000 1.500 2.000 2.500   

Outlier Sensitivity 1.000 2.000 3.000 4.000 5.000   

Antiparallelism Bias 1.414 1.414      

Phase Invariance 9.592 7.483 7.483 10.000 4.899   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 2.000 2.000 3.000     

Non-negativity 1.000       

Triangle Inequality 1.000       

Relative Sensitivity Ranges 0.633 1.416 0.619 0.619 0.708 1.001 2.003 
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Table S2.17. Raw controlled testing results for the Fourier Coefficient-Based Distance. For details on how 

testing was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. 

Uniform time scaling invariance and warping invariance could not be tested for this distance measure, as it 

cannot measure unequal-length time series. 

Controlled Test Results: Fourier  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 11.381 11.381      

Translation Sensitivity 1.000 2.000 3.000 4.000 5.000   

Amplitude Sensitivity 1.732 3.464 5.196 6.928 8.660   

Duration Sensitivity 2.449 3.464 4.472 5.292 6.164   

Frequency Sensitivity 2.646 4.000 5.196 6.325 7.416   

White Noise Sensitivity 1.061 2.121 3.182 4.243 5.303   

Biased Noise Sensitivity 1.500 3.000 4.500 6.000 7.500   

Outlier Sensitivity 2.449 4.899 7.348 9.798 12.247   

Antiparallelism Bias 3.464 3.464      

Phase Invariance 21.633 16.733 16.971 22.361 11.314   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 4.899 4.899 7.348     

Non-negativity 1.000       

Triangle Inequality 1.000       

Relative Sensitivity Ranges 0.710 1.229 0.659 0.846 0.753 1.065 1.738 

  



245 
 

Table S2.18. Raw controlled testing results for the Gower Distance. For details on how testing was performed 

and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time scaling 

invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Gower  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 1.2800 1.2800      

Translation Sensitivity 0.1000 0.2000 0.3000 0.4000 0.5000   

Amplitude Sensitivity 0.1000 0.2000 0.3000 0.4000 0.5000   

Duration Sensitivity 0.1000 0.2000 0.3000 0.4000 0.5000   

Frequency Sensitivity 0.0833 0.1667 0.2500 0.3333 0.4167   

White Noise Sensitivity 0.1000 0.2000 0.3000 0.4000 0.5000   

Biased Noise Sensitivity 0.1000 0.2000 0.3000 0.4000 0.5000   

Outlier Sensitivity 0.1000 0.2000 0.3000 0.4000 0.5000   

Antiparallelism Bias 0.2000 0.2000      

Phase Invariance 2.8000 1.8000 1.8000 2.8000 1.2000   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 0.2000 0.2000 0.3000     

Non-negativity 1.0000       

Triangle Inequality 1.0000       

Relative Sensitivity Ranges 1.0244 1.0244 1.0244 0.8537 1.0244 1.0244 1.0244 
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Table S2.19. Raw controlled testing results for the Chebyshev Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Chebyshev  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 3.0000 3.0000      

Translation Sensitivity 0.1000 0.2000 0.3000 0.4000 0.5000   

Amplitude Sensitivity 0.5000 1.0000 1.5000 2.0000 2.5000   

Duration Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000   

Frequency Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000   

White Noise Sensitivity 0.1250 0.2500 0.3750 0.5000 0.6250   

Biased Noise Sensitivity 0.2500 0.5000 0.7500 1.0000 1.2500   

Outlier Sensitivity 1.0000 2.0000 3.0000 4.0000 5.0000   

Antiparallelism Bias 1.0000 1.0000      

Phase Invariance 5.0000 5.0000 5.0000 5.0000 2.0000   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 2.0000 2.0000 3.0000     

Non-negativity 1.0000       

Triangle Inequality 1.0000       

Relative Sensitivity Ranges 0.2532 1.2658 0.0000 0.0000 0.3165 0.6329 2.5316 
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Table S2.20. Raw controlled testing results for the Integrated Periodogram-Based Dissimilarity. For details on 

how testing was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. 

Uniform time scaling invariance and warping invariance could not be tested for this distance measure, as it 

cannot measure unequal-length time series. 

Controlled Test Results: IntPer  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 0.8095 0.8095      

Translation Sensitivity 0.0000 0.0000 0.0000 0.0000 0.0000   

Amplitude Sensitivity 0.0266 0.0676 0.1029 0.1305 0.1520   

Duration Sensitivity 0.5316 0.6016 0.6298 0.6331 0.7826   

Frequency Sensitivity 0.9671 1.4235 1.5994 1.8517 1.9900   

White Noise Sensitivity 0.1465 0.3306 0.5389 0.7586 0.9791   

Biased Noise Sensitivity 0.1315 0.2976 0.4847 0.6810 0.8772   

Outlier Sensitivity 0.1486 0.2231 0.2909 0.3391 0.3739   

Antiparallelism Bias 0.0000 0.0000      

Phase Invariance 0.2718 0.5069 0.6876 0.8120 0.5408   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 1.1307 1.1307 1.2898     

Non-negativity 1.0000       

Triangle Inequality 1.0000       

Relative Sensitivity Ranges 0.0000 0.2742 0.5485 2.2354 1.8197 1.6298 0.4924 
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Table S2.21. Raw controlled testing results for the Jaccard Distance. For details on how testing was performed 

and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time scaling 

invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Jaccard  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 0.4706 0.4706      

Translation Sensitivity 0.0058 0.0213 0.0439 0.0714 0.1020   

Amplitude Sensitivity 0.0204 0.0714 0.1385 0.2105 0.2809   

Duration Sensitivity 0.0556 0.1000 0.1364 0.1667 0.1923   

Frequency Sensitivity 0.0588 0.1053 0.1429 0.1739 0.2000   

White Noise Sensitivity 0.0009 0.0036 0.0082 0.0144 0.0223   

Biased Noise Sensitivity 0.0018 0.0069 0.0150 0.0256 0.0385   

Outlier Sensitivity 0.0137 0.0500 0.1011 0.1600 0.2212   

Antiparallelism Bias 0.1739 0.1143      

Phase Invariance 0.5897 0.4058 0.4058 0.6250 0.1967   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 0.1667 0.1667 0.3333     

Non-negativity 1.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 0.7484 2.0254 1.0633 1.0977 0.1660 0.2856 1.6137 
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Table S2.22. Raw controlled testing results for the Jeffreys Divergence. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Jeffreys  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 14.372 14.372      

Translation Sensitivity 0.086 0.330 0.714 1.223 1.845   

Amplitude Sensitivity 0.223 0.811 1.679 2.773 4.055   

Duration Sensitivity 0.693 1.386 2.079 2.773 3.466   

Frequency Sensitivity 0.693 1.386 2.079 2.773 3.466   

White Noise Sensitivity 0.041 0.163 0.368 0.658 1.034   

Biased Noise Sensitivity 0.079 0.303 0.654 1.119 1.687   

Outlier Sensitivity 0.223 0.811 1.679 2.773 4.055   

Antiparallelism Bias 2.197 1.022      

Phase Invariance 37.437 20.901 21.476 39.634 6.438   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 29.017 23.026      

Non-negativity 1.000       

Triangle Inequality 0.000       

Relative Sensitivity Ranges 0.701 1.527 1.105 1.105 0.396 0.641 1.527 
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Table S2.23. Raw controlled testing results for the Jaccard Difference. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Jensen  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 1.6459 1.6459      

Translation Sensitivity 0.0107 0.0412 0.0890 0.1522 0.2292   

Amplitude Sensitivity 0.0278 0.1007 0.2072 0.3398 0.4934   

Duration Sensitivity 0.0849 0.1699 0.2548 0.3398 0.4247   

Frequency Sensitivity 0.0849 0.1699 0.2548 0.3398 0.4247   

White Noise Sensitivity 0.0051 0.0204 0.0460 0.0821 0.1288   

Biased Noise Sensitivity 0.0099 0.0378 0.0815 0.1392 0.2093   

Outlier Sensitivity 0.0278 0.1007 0.2072 0.3398 0.4934   

Antiparallelism Bias 0.2616 0.1263      

Phase Invariance 4.2886 2.4001 2.4658 4.5413 0.7938   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 0.6931 0.6931      

Non-negativity 1.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 0.7105 1.5142 1.1052 1.1052 0.4024 0.6485 1.5142 
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Table S2.24. Raw controlled testing results for the Kulczynski Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Kulcz  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 1.3913 1.3913      

Translation Sensitivity 0.0833 0.1667 0.2500 0.3333 0.4167   

Amplitude Sensitivity 0.0714 0.1429 0.2143 0.2857 0.3571   

Duration Sensitivity 0.0833 0.1667 0.2500 0.3333 0.4167   

Frequency Sensitivity 0.0769 0.1538 0.2308 0.3077 0.3846   

White Noise Sensitivity 0.0317 0.0645 0.0984 0.1333 0.1695   

Biased Noise Sensitivity 0.0312 0.0625 0.0938 0.1250 0.1562   

Outlier Sensitivity 0.0417 0.0833 0.1250 0.1667 0.2083   

Antiparallelism Bias 0.2222 0.1818      

Phase Invariance 2.0000 0.9474 0.9474 2.0000 0.5455   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 0.1667 0.1667 0.2727     

Non-negativity 0.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 1.3811 1.1838 1.3811 1.2749 0.5707 0.5179 0.6905 
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Table S2.25. Raw controlled testing results for the Kullback-Leibler Divergence. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Kullback  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 14.449 -0.077      

Translation Sensitivity 1.044 2.170 3.371 4.644 5.981   

Amplitude Sensitivity 1.116 2.433 3.917 5.545 7.298   

Duration Sensitivity 1.386 2.773 4.159 5.545 6.931   

Frequency Sensitivity 1.386 2.773 4.159 5.545 6.931   

White Noise Sensitivity 0.020 0.082 0.184 0.327 0.513   

Biased Noise Sensitivity 1.040 2.156 3.342 4.591 5.900   

Outlier Sensitivity 1.116 2.433 3.917 5.545 7.298   

Antiparallelism Bias -1.099 2.554      

Phase Invariance 17.594 11.549 9.716 20.654 3.219   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling -0.000 0.000      

Non-negativity 0.000       

Triangle Inequality 0.000       

Relative Sensitivity Ranges 1.024 1.283 1.150 1.150 0.102 1.008 1.283 
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Table S2.26. Raw controlled testing results for the Kumar-Johnson Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: KumarJohnson  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.00       

Symmetry 60.0 60.0      

Translation Sensitivity 0.17 0.67 1.45 2.52 3.85   

Amplitude Sensitivity 0.45 1.70 3.68 6.36 9.78   

Duration Sensitivity 1.59 3.18 4.77 6.36 7.95   

Frequency Sensitivity 1.59 3.18 4.77 6.36 7.95   

White Noise Sensitivity 0.08 0.33 0.74 1.33 2.11   

Biased Noise Sensitivity 0.16 0.61 1.34 2.32 3.55   

Outlier Sensitivity 0.45 1.70 3.68 6.36 9.78   

Antiparallelism Bias 6.16 2.20      

Phase Invariance 140 77.9 79.9 148 14.2   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 2.82 x 109 1.60 x 106      

Non-negativity 1.00       

Triangle Inequality 0.00       

Relative Sensitivity Ranges 0.64 1.61 1.10 1.10 0.35 0.59 1.61 
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Table S2.27. Raw controlled testing results for the K Divergence. For details on how testing was performed and 

how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time scaling invariance 

and warping invariance could not be tested for this distance measure, as it cannot measure unequal-length 

time series. 

Controlled Test Results: KDiv  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 5.1984 -1.9065      

Translation Sensitivity 0.5106 1.0400 1.5853 2.1441 2.7147   

Amplitude Sensitivity 0.5268 1.0939 1.6881 2.3015 2.9288   

Duration Sensitivity 0.5754 1.1507 1.7261 2.3015 2.8768   

Frequency Sensitivity 0.5754 1.1507 1.7261 2.3015 2.8768   

White Noise Sensitivity 0.0051 0.0204 0.0461 0.0824 0.1298   

Biased Noise Sensitivity 0.5097 1.0367 1.5780 2.1314 2.6954   

Outlier Sensitivity 0.5268 1.0939 1.6881 2.3015 2.9288   

Antiparallelism Bias -0.6931 1.1157      

Phase Invariance 4.5097 2.1852 2.6634 4.3847 0.7938   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling -0.0000       

Non-negativity 0.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 1.1083 1.2078 1.1572 1.1572 0.0627 1.0990 1.2078 
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Table S2.28. Raw controlled testing results for the Lorentzian Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Lorentz  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 7.927 7.927      

Translation Sensitivity 0.953 1.823 2.624 3.365 4.055   

Amplitude Sensitivity 0.811 1.386 1.833 2.197 2.506   

Duration Sensitivity 0.693 1.386 2.079 2.773 3.466   

Frequency Sensitivity 0.693 1.386 2.079 2.773 3.466   

White Noise Sensitivity 0.942 1.785 2.548 3.244 3.884   

Biased Noise Sensitivity 0.893 1.622 2.238 2.773 3.244   

Outlier Sensitivity 0.693 1.099 1.386 1.609 1.792   

Antiparallelism Bias 1.386 1.386      

Phase Invariance 12.871 8.723 8.723 12.283 6.592   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 1.099 1.099 1.386     

Non-negativity 1.000       

Triangle Inequality 1.000       

Relative Sensitivity Ranges 1.297 0.709 1.160 1.160 1.231 0.984 0.460 
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Table S2.29. Raw controlled testing results for the Manhattan Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Manhattan  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 12.800 12.800      

Translation Sensitivity 1.000 2.000 3.000 4.000 5.000   

Amplitude Sensitivity 1.000 2.000 3.000 4.000 5.000   

Duration Sensitivity 1.000 2.000 3.000 4.000 5.000   

Frequency Sensitivity 1.000 2.000 3.000 4.000 5.000   

White Noise Sensitivity 1.000 2.000 3.000 4.000 5.000   

Biased Noise Sensitivity 1.000 2.000 3.000 4.000 5.000   

Outlier Sensitivity 1.000 2.000 3.000 4.000 5.000   

Antiparallelism Bias 2.000 2.000      

Phase Invariance 28.000 18.000 18.000 28.000 12.000   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 2.000 2.000 3.000     

Non-negativity 1.000       

Triangle Inequality 1.000       

Relative Sensitivity Ranges 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  



257 
 

Table S2.30. Raw controlled testing results for the Normalized Compression Distance. For details on how 

testing was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. 

Controlled Test Results: NCD  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.1176       

Symmetry 0.5000 0.4583      

Translation Sensitivity 0.4737 0.4737 0.4737 0.4737 0.4737   

Amplitude Sensitivity 0.4091 0.3810 0.4348 0.3810 0.4348   

Duration Sensitivity 0.1176 0.1176 0.1765 0.1765 0.2941   

Frequency Sensitivity 0.3125 0.3125 0.3125 0.3333 0.1429   

White Noise Sensitivity 0.7941 0.7500 0.7647 0.6800 0.7647   

Biased Noise Sensitivity 0.5000 0.4815 0.5000 0.5417 0.6071   

Outlier Sensitivity 0.3182 0.3182 0.3182 0.3182 0.3182   

Antiparallelism Bias 0.2632 0.2632      

Phase Invariance 0.1250 0.0833 0.2083 0.1667 0.1667   

Uniform Time Scaling Invariance 0.6429 0.6458 0.6731 0.7091 0.6098   

Warping Invariance 0.1111 0.1111 0.1111 0.1579 0.1579   

Non-positive Value Handling 0.4545 0.3333 0.3333     

Non-negativity 1.0000       

Triangle Inequality 1.0000       

Relative Sensitivity Ranges 0.0000 0.4075 1.3358 1.4418 0.8638 0.9512 0.0000 

  



258 
 

Table S2.31. Raw controlled testing results for the Partial Autocorrelation-Based Dissimilarity. For details on 

how testing was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. 

Uniform time scaling invariance and warping invariance could not be tested for this distance measure, as it 

cannot measure unequal-length time series. 

Controlled Test Results: PACF  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 0.6472 0.6472      

Translation Sensitivity 0.0000 0.0000 0.0000 0.0000 0.0000   

Amplitude Sensitivity 0.1346 0.2640 0.3414 0.3904 0.4238   

Duration Sensitivity 0.8358 0.6037 0.8581 0.3727 0.7841   

Frequency Sensitivity 0.7398 0.8911 0.8791 0.7482 0.8603   

White Noise Sensitivity 0.1006 0.2073 0.3138 0.4162 0.5122   

Biased Noise Sensitivity 0.1096 0.2155 0.3131 0.4011 0.4796   

Outlier Sensitivity 0.3645 0.5340 0.5184 0.4628 0.4217   

Antiparallelism Bias 0.0000 0.0000      

Phase Invariance 0.5308 0.5950 0.5913 0.3674 0.2403   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 0.8325 0.8325 0.9658     

Non-negativity 1.0000       

Triangle Inequality 1.0000       

Relative Sensitivity Ranges 0.0000 1.0786 1.8102 0.5642 1.5350 1.3798 0.6321 
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Table S2.32. Raw controlled testing results for the Periodogram-Based Dissimilarity. For details on how testing 

was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Per  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 0.8701 0.8701      

Translation Sensitivity 0.0000 0.0000 0.0000 0.0000 0.0000   

Amplitude Sensitivity 0.1000 0.2404 0.4218 0.6445 0.9086   

Duration Sensitivity 0.0623 0.1053 0.1463 0.1303 0.0771   

Frequency Sensitivity 0.0582 0.1368 0.2421 0.3819 0.4624   

White Noise Sensitivity 0.1191 0.2836 0.4936 0.7494 1.0511   

Biased Noise Sensitivity 0.1389 0.3176 0.5385 0.8029 1.1115   

Outlier Sensitivity 0.3066 0.6883 1.1539 1.7090 2.3572   

Antiparallelism Bias 0.0000 0.1666      

Phase Invariance 0.8618 1.3408 1.1143 1.0548 0.9195   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 0.1963 0.1963 0.4163     

Non-negativity 1.0000       

Triangle Inequality 1.0000       

Relative Sensitivity Ranges 0.0000 1.0778 0.1120 0.5386 1.2421 1.2963 2.7332 
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Table S2.33. Raw controlled testing results for the Piccolo Distance. For details on how testing was performed 

and how relative sensitivity ranges were calculated, see supplementary text S2.4. 

Controlled Test Results: Piccolo  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 0.5655 0.5655      

Translation Sensitivity 0.0000 0.0000 0.0000 0.0000 0.0000   

Amplitude Sensitivity 0.0571 0.1382 0.2019 0.2484 0.2827   

Duration Sensitivity 0.1310 0.1667 0.1500 0.0833 0.0595   

Frequency Sensitivity 0.1182 0.5564 0.5511 0.6753 0.8182   

White Noise Sensitivity 0.0680 0.1302 0.1824 0.2246 0.2586   

Biased Noise Sensitivity 0.0721 0.1312 0.1782 0.2155 0.2459   

Outlier Sensitivity 0.0523 0.0973 0.1310 0.1555 0.1734   

Antiparallelism Bias 0.0000 0.0000      

Phase Invariance 0.0000 0.0570 0.2468 0.0570 0.1139   

Uniform Time Scaling Invariance 0.3241 0.6077 0.6239 0.6389 0.6461   

Warping Invariance 0.6642 0.8488 0.8799 0.4125 0.4522   

Non-positive Value Handling 0.9883 0.9883 1.1271     

Non-negativity 1.0000       

Triangle Inequality 1.0000       

Relative Sensitivity Ranges 0.0000 1.0399 0.4940 3.2275 0.8785 0.8014 0.5587 
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Table S2.34. Raw controlled testing results for the Probabilistic Symmetric Chi-Squared Distance. For details on 

how testing was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. 

Uniform time scaling invariance and warping invariance could not be tested for this distance measure, as it 

cannot measure unequal-length time series. 

Controlled Test Results: ProbSymm  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 12.279 12.279      

Translation Sensitivity 0.086 0.329 0.710 1.212 1.822   

Amplitude Sensitivity 0.222 0.800 1.636 2.667 3.846   

Duration Sensitivity 0.667 1.333 2.000 2.667 3.333   

Frequency Sensitivity 0.667 1.333 2.000 2.667 3.333   

White Noise Sensitivity 0.041 0.163 0.368 0.655 1.028   

Biased Noise Sensitivity 0.079 0.302 0.650 1.108 1.662   

Outlier Sensitivity 0.222 0.800 1.636 2.667 3.846   

Antiparallelism Bias 2.000 1.000      

Phase Invariance 31.810 17.854 18.334 33.676 6.267   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 4.000 4.000 18.000     

Non-negativity 0.000       

Triangle Inequality 0.000       

Relative Sensitivity Ranges 0.720 1.502 1.105 1.105 0.409 0.656 1.502 
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Table S2.35. Raw controlled testing results for the Soergel Distance. For details on how testing was performed 

and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time scaling 

invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Soergel  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 0.5818 0.5818      

Translation Sensitivity 0.0769 0.1429 0.2000 0.2500 0.2941   

Amplitude Sensitivity 0.0667 0.1250 0.1765 0.2222 0.2632   

Duration Sensitivity 0.0769 0.1429 0.2000 0.2500 0.2941   

Frequency Sensitivity 0.0714 0.1333 0.1875 0.2353 0.2778   

White Noise Sensitivity 0.0308 0.0606 0.0896 0.1176 0.1449   

Biased Noise Sensitivity 0.0303 0.0588 0.0857 0.1111 0.1351   

Outlier Sensitivity 0.0400 0.0769 0.1111 0.1429 0.1724   

Antiparallelism Bias 0.1818 0.1538      

Phase Invariance 0.6667 0.4865 0.4865 0.6667 0.3529   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 0.1429 0.1429 0.2143     

Non-negativity 1.0000       

Triangle Inequality 1.0000       

Relative Sensitivity Ranges 1.2791 1.1572 1.2791 1.2152 0.6723 0.6174 0.7798 
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Table S2.36. Raw controlled testing results for the Squared Chi-Squared Distance. For details on how testing 

was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: SqChi  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 6.139 6.139      

Translation Sensitivity 0.043 0.165 0.355 0.606 0.911   

Amplitude Sensitivity 0.111 0.400 0.818 1.333 1.923   

Duration Sensitivity 0.333 0.667 1.000 1.333 1.667   

Frequency Sensitivity 0.333 0.667 1.000 1.333 1.667   

White Noise Sensitivity 0.020 0.082 0.184 0.328 0.514   

Biased Noise Sensitivity 0.040 0.151 0.325 0.554 0.831   

Outlier Sensitivity 0.111 0.400 0.818 1.333 1.923   

Antiparallelism Bias 1.000 0.500      

Phase Invariance 15.905 8.927 9.167 16.838 3.133   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 2.000 2.000 9.000     

Non-negativity 0.000       

Triangle Inequality 0.000       

Relative Sensitivity Ranges 0.720 1.502 1.105 1.105 0.409 0.656 1.502 
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Table S2.37. Raw controlled testing results for the Squared-Chord Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: SqChord  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 3.4299 3.4299      

Translation Sensitivity 0.0215 0.0824 0.1781 0.3050 0.4598   

Amplitude Sensitivity 0.0557 0.2020 0.4170 0.6863 1.0000   

Duration Sensitivity 0.1716 0.3431 0.5147 0.6863 0.8579   

Frequency Sensitivity 0.1716 0.3431 0.5147 0.6863 0.8579   

White Noise Sensitivity 0.0102 0.0408 0.0921 0.1643 0.2580   

Biased Noise Sensitivity 0.0198 0.0757 0.1633 0.2791 0.4201   

Outlier Sensitivity 0.0557 0.2020 0.4170 0.6863 1.0000   

Antiparallelism Bias 0.5359 0.2540      

Phase Invariance 8.9453 4.9998 5.1372 9.4719 1.5984   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 1.9972 2.0000      

Non-negativity 1.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 0.7057 1.5204 1.1050 1.1050 0.3990 0.6446 1.5204 
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Table S2.38. Raw controlled testing results for the Squared Euclidean Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: SqEuclid  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.00       

Symmetry 20.62 20.62      

Translation Sensitivity 0.10 0.40 0.90 1.60 2.50   

Amplitude Sensitivity 0.50 2.00 4.50 8.00 12.50   

Duration Sensitivity 1.00 2.00 3.00 4.00 5.00   

Frequency Sensitivity 1.00 2.00 3.00 4.00 5.00   

White Noise Sensitivity 0.12 0.50 1.12 2.00 3.12   

Biased Noise Sensitivity 0.25 1.00 2.25 4.00 6.25   

Outlier Sensitivity 1.00 4.00 9.00 16.00 25.00   

Antiparallelism Bias 2.00 2.00      

Phase Invariance 92.00 56.00 56.00 100.00 24.00   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 4.00 4.00 9.00     

Non-negativity 1.00       

Triangle Inequality 0.00       

Relative Sensitivity Ranges 0.30 1.52 0.51 0.51 0.38 0.76 3.03 
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Table S2.39. Raw controlled testing results for the Short Time Series Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: STS  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 5.257 5.257      

Translation Sensitivity 0.000 0.000 0.000 0.000 0.000   

Amplitude Sensitivity 0.707 1.414 2.121 2.828 3.536   

Duration Sensitivity 1.414 1.414 1.414 1.414 1.414   

Frequency Sensitivity 1.414 2.000 2.449 2.828 3.000   

White Noise Sensitivity 0.685 1.369 2.054 2.739 3.423   

Biased Noise Sensitivity 0.707 1.414 2.121 2.828 3.536   

Outlier Sensitivity 1.414 2.828 4.243 5.657 7.071   

Antiparallelism Bias 1.414 1.414      

Phase Invariance 15.748 12.124 11.662 14.933 5.292   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 2.828 2.828 4.243     

Non-negativity 1.000       

Triangle Inequality 1.000       

Relative Sensitivity Ranges 0.000 1.085 0.000 0.608 1.051 1.085 2.170 
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Table S2.40. Raw controlled testing results for the Time Alignment Measurement Distance. For details on how 

testing was performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. 

Controlled Test Results: TAM  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 2.0000 2.0000      

Translation Sensitivity 0.0000 0.6667 0.6667 0.6667 0.0000   

Amplitude Sensitivity 0.0000 0.0000 0.6667 0.6667 0.6667   

Duration Sensitivity 0.3333 0.6667 1.0000 1.3333 1.6667   

Frequency Sensitivity 0.2727 0.5455 0.8182 1.0909 1.3636   

White Noise Sensitivity 0.0000 0.0000 0.0000 0.0000 0.3333   

Biased Noise Sensitivity 0.0000 0.0000 0.3333 0.6667 1.0000   

Outlier Sensitivity 0.0000 0.0000 0.3333 0.3333 0.3333   

Antiparallelism Bias 1.0000 0.6667      

Phase Invariance 0.3333 0.6667 1.0000 1.3333 1.6667   

Uniform Time Scaling Invariance 0.7444 0.2500 0.3571 0.4375 0.5000   

Warping Invariance 0.1000 0.1818 0.2500 0.3077 0.3571   

Non-positive Value Handling 0.3333 0.3333 0.3333     

Non-negativity 1.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 0.8603 0.8603 1.7207 1.4078 0.4302 1.2905 0.4302 
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Table S2.41. Raw controlled testing results for the Taneja Difference. For details on how testing was performed 

and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time scaling 

invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Taneja  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.000       

Symmetry 1.947 1.947      

Translation Sensitivity 0.011 0.041 0.089 0.153 0.232   

Amplitude Sensitivity 0.028 0.102 0.213 0.353 0.520   

Duration Sensitivity 0.088 0.177 0.265 0.353 0.442   

Frequency Sensitivity 0.088 0.177 0.265 0.353 0.442   

White Noise Sensitivity 0.005 0.020 0.046 0.082 0.130   

Biased Noise Sensitivity 0.010 0.038 0.082 0.141 0.212   

Outlier Sensitivity 0.028 0.102 0.213 0.353 0.520   

Antiparallelism Bias 0.288 0.129      

Phase Invariance 5.071 2.825 2.903 5.367 0.816   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 6.561 12.206      

Non-negativity 1.000       

Triangle Inequality 0.000       

Relative Sensitivity Ranges 0.692 1.539 1.104 1.104 0.389 0.633 1.539 
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Table S2.42. Raw controlled testing results for the Topsoe Distance. For details on how testing was performed 

and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time scaling 

invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: Topsoe  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 3.2919 3.2919      

Translation Sensitivity 0.0215 0.0824 0.1779 0.3043 0.4584   

Amplitude Sensitivity 0.0557 0.2014 0.4143 0.6796 0.9868   

Duration Sensitivity 0.1699 0.3398 0.5097 0.6796 0.8495   

Frequency Sensitivity 0.1699 0.3398 0.5097 0.6796 0.8495   

White Noise Sensitivity 0.0102 0.0408 0.0920 0.1641 0.2577   

Biased Noise Sensitivity 0.0198 0.0757 0.1631 0.2784 0.4186   

Outlier Sensitivity 0.0557 0.2014 0.4143 0.6796 0.9868   

Antiparallelism Bias 0.5232 0.2527      

Phase Invariance 8.5772 4.8003 4.9316 9.0826 1.5876   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 1.3863       

Non-negativity 1.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 0.7105 1.5142 1.1052 1.1052 0.4024 0.6485 1.5142 
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Table S2.43. Raw controlled testing results for the Wave-Hedges Distance. For details on how testing was 

performed and how relative sensitivity ranges were calculated, see supplementary text S2.4. Uniform time 

scaling invariance and warping invariance could not be tested for this distance measure, as it cannot measure 

unequal-length time series. 

Controlled Test Results: WaveHedges  

Test Res.1 Res.2 Res.3 Res.4 Res.5 Res.6 Res.7 

Uniqueness 0.0000       

Symmetry 6.0500 6.0500      

Translation Sensitivity 0.8225 1.5152 2.1070 2.6190 3.0667   

Amplitude Sensitivity 0.4000 0.6667 0.8571 1.0000 1.1111   

Duration Sensitivity 0.5000 1.0000 1.5000 2.0000 2.5000   

Frequency Sensitivity 0.5000 1.0000 1.5000 2.0000 2.5000   

White Noise Sensitivity 0.3189 0.6231 0.9147 1.1955 1.4670   

Biased Noise Sensitivity 0.3022 0.5538 0.7677 0.9524 1.1141   

Outlier Sensitivity 0.2000 0.3333 0.4286 0.5000 0.5556   

Antiparallelism Bias 1.3333 0.8000      

Phase Invariance 6.6000 4.0667 4.1000 6.4333 2.4667   

Uniform Time Scaling Invariance        

Warping Invariance        

Non-positive Value Handling 1.0000 1.0000 1.5000     

Non-negativity 0.0000       

Triangle Inequality 0.0000       

Relative Sensitivity Ranges 1.6945 0.5369 1.5101 1.5101 0.8669 0.6130 0.2685 
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S2.11. Plots of wading bird rankings for all distance measures 

This section contains plots of wading bird dissimilarity results for all 42 distance measures I 

tested. Each figure shows dissimilarity results for both smoothed and unsmoothed indices of 

all five wading birds. Distance measures are presented in alphabetical order. 

 

 

Figure S2.48. Dissimilarity values for trend comparisons of five wading bird species using the Autocorrelation-

Based Dissimilarity. Trends within reserves were compared with counterfactual trends from outside of 

reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the right were 

calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of 

conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.49. Dissimilarity values for trend comparisons of five wading bird species using the Additive 

Symmetric Chi-Squared Distance. Trends within reserves were compared with counterfactual trends from 

outside of reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the 

right were calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study 

of conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.50. Dissimilarity values for trend comparisons of five wading bird species using the Average Distance. 

Trends within reserves were compared with counterfactual trends from outside of reserves. Values on the left 

were from comparisons of the unsmoothed trends, while values on the right were calculated after applying 

LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of wet 

grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.51. Dissimilarity values for trend comparisons of five wading bird species using the Canberra 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.52. Dissimilarity values for trend comparisons of five wading bird species using the Compression-

Based Dissimilarity Measure. Trends within reserves were compared with counterfactual trends from outside 

of reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the right 

were calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of 

conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.53. Dissimilarity values for trend comparisons of five wading bird species using the Chebyshev 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.54. Dissimilarity values for trend comparisons of five wading bird species using the Complexity-

Invariant Distance. Trends within reserves were compared with counterfactual trends from outside of 

reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the right were 

calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of 

conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.55. Dissimilarity values for trend comparisons of five wading bird species using the Clark Squared 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.56. Dissimilarity values for trend comparisons of five wading bird species using the Dissimilarity Index 

Combining Temporal Correlation and Raw Value Behaviour. Trends within reserves were compared with 

counterfactual trends from outside of reserves. Values on the left were from comparisons of the unsmoothed 

trends, while values on the right were calculated after applying LOESS smoothing with a span setting of 0.75. 

The dataset is from a study of conservation impact of wet grassland reserves on breeding birds in the UK 

(Jellesmark et al., 2021). 
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Figure S2.57. Dissimilarity values for trend comparisons of five wading bird species using the Czekanowski 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.58. Dissimilarity values for trend comparisons of five wading bird species using the Dice Dissimilarity. 

Trends within reserves were compared with counterfactual trends from outside of reserves. Values on the left 

were from comparisons of the unsmoothed trends, while values on the right were calculated after applying 

LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of wet 

grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.59. Dissimilarity values for trend comparisons of five wading bird species using the Divergence 

Squared Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. 

Values on the left were from comparisons of the unsmoothed trends, while values on the right were calculated 

after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact 

of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.60. Dissimilarity values for trend comparisons of five wading bird species using the Dynamic Time 

Warping Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. 

Values on the left were from comparisons of the unsmoothed trends, while values on the right were calculated 

after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact 

of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.61. Dissimilarity values for trend comparisons of five wading bird species using the Edit Distance on 

Real Sequences. Trends within reserves were compared with counterfactual trends from outside of reserves. 

Values on the left were from comparisons of the unsmoothed trends, while values on the right were calculated 

after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact 

of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.62. Dissimilarity values for trend comparisons of five wading bird species using the Edit Distance with 

Real Penalty. Trends within reserves were compared with counterfactual trends from outside of reserves. 

Values on the left were from comparisons of the unsmoothed trends, while values on the right were calculated 

after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact 

of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.63. Dissimilarity values for trend comparisons of five wading bird species using the Euclidean 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.64. Dissimilarity values for trend comparisons of five wading bird species using the Fourier 

Coefficient-Based Distance. Trends within reserves were compared with counterfactual trends from outside of 

reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the right were 

calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of 

conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.65. Dissimilarity values for trend comparisons of five wading bird species using the Gower Distance. 

Trends within reserves were compared with counterfactual trends from outside of reserves. Values on the left 

were from comparisons of the unsmoothed trends, while values on the right were calculated after applying 

LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of wet 

grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.66. Dissimilarity values for trend comparisons of five wading bird species using the Integrated 

Periodogram-Based Dissimilarity. Trends within reserves were compared with counterfactual trends from 

outside of reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the 

right were calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study 

of conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.67. Dissimilarity values for trend comparisons of five wading bird species using the Jaccard Distance. 

Trends within reserves were compared with counterfactual trends from outside of reserves. Values on the left 

were from comparisons of the unsmoothed trends, while values on the right were calculated after applying 

LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of wet 

grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.68. Dissimilarity values for trend comparisons of five wading bird species using the Jeffreys 

Divergence. Trends within reserves were compared with counterfactual trends from outside of reserves. 

Values on the left were from comparisons of the unsmoothed trends, while values on the right were calculated 

after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact 

of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.69. Dissimilarity values for trend comparisons of five wading bird species using the Jensen Difference. 

Trends within reserves were compared with counterfactual trends from outside of reserves. Values on the left 

were from comparisons of the unsmoothed trends, while values on the right were calculated after applying 

LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of wet 

grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.70. Dissimilarity values for trend comparisons of five wading bird species using the K Divergence. 

Trends within reserves were compared with counterfactual trends from outside of reserves. Values on the left 

were from comparisons of the unsmoothed trends, while values on the right were calculated after applying 

LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of wet 

grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.71. Dissimilarity values for trend comparisons of five wading bird species using the Kulczynski 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.72. Dissimilarity values for trend comparisons of five wading bird species using the Kullback-Leibler 

Divergence. Trends within reserves were compared with counterfactual trends from outside of reserves. 

Values on the left were from comparisons of the unsmoothed trends, while values on the right were calculated 

after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact 

of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.73. Dissimilarity values for trend comparisons of five wading bird species using the Kumar-Johnson 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.74. Dissimilarity values for trend comparisons of five wading bird species using the Lorentzian 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.75. Dissimilarity values for trend comparisons of five wading bird species using the Manhattan 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.76. Dissimilarity values for trend comparisons of five wading bird species using the Normalized 

Compression Distance. Trends within reserves were compared with counterfactual trends from outside of 

reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the right were 

calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of 

conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.77. Dissimilarity values for trend comparisons of five wading bird species using the Partial 

Autocorrelation-Based Dissimilarity. Trends within reserves were compared with counterfactual trends from 

outside of reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the 

right were calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study 

of conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.78. Dissimilarity values for trend comparisons of five wading bird species using the Periodogram-

Based Dissimilarity. Trends within reserves were compared with counterfactual trends from outside of 

reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the right were 

calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of 

conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 

 

 

  



302 
 

 

Figure S2.79. Dissimilarity values for trend comparisons of five wading bird species using the Piccolo Distance. 

Trends within reserves were compared with counterfactual trends from outside of reserves. Values on the left 

were from comparisons of the unsmoothed trends, while values on the right were calculated after applying 

LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of wet 

grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.80. Dissimilarity values for trend comparisons of five wading bird species using the Probabilistic 

Symmetric Chi-Squared Distance. Trends within reserves were compared with counterfactual trends from 

outside of reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the 

right were calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study 

of conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.81. Dissimilarity values for trend comparisons of five wading bird species using the Soergel Distance. 

Trends within reserves were compared with counterfactual trends from outside of reserves. Values on the left 

were from comparisons of the unsmoothed trends, while values on the right were calculated after applying 

LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of wet 

grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.82. Dissimilarity values for trend comparisons of five wading bird species using the Squared Chi-

Squared Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. 

Values on the left were from comparisons of the unsmoothed trends, while values on the right were calculated 

after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact 

of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.83. Dissimilarity values for trend comparisons of five wading bird species using the Squared-Chord 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.84. Dissimilarity values for trend comparisons of five wading bird species using the Squared 

Euclidean Distance. Trends within reserves were compared with counterfactual trends from outside of 

reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the right were 

calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of 

conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.85. Dissimilarity values for trend comparisons of five wading bird species using the Short Time Series 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.86. Dissimilarity values for trend comparisons of five wading bird species using the Time Alignment 

Measurement Distance. Trends within reserves were compared with counterfactual trends from outside of 

reserves. Values on the left were from comparisons of the unsmoothed trends, while values on the right were 

calculated after applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of 

conservation impact of wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.87. Dissimilarity values for trend comparisons of five wading bird species using the Taneja Difference. 

Trends within reserves were compared with counterfactual trends from outside of reserves. Values on the left 

were from comparisons of the unsmoothed trends, while values on the right were calculated after applying 

LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of wet 

grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.88. Dissimilarity values for trend comparisons of five wading bird species using the Topsoe Distance. 

Trends within reserves were compared with counterfactual trends from outside of reserves. Values on the left 

were from comparisons of the unsmoothed trends, while values on the right were calculated after applying 

LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of wet 

grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Figure S2.89. Dissimilarity values for trend comparisons of five wading bird species using the Wave-Hedges 

Distance. Trends within reserves were compared with counterfactual trends from outside of reserves. Values 

on the left were from comparisons of the unsmoothed trends, while values on the right were calculated after 

applying LOESS smoothing with a span setting of 0.75. The dataset is from a study of conservation impact of 

wet grassland reserves on breeding birds in the UK (Jellesmark et al., 2021). 
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Appendix 2: Supplementary materials for Chapter 3 

 

 

 

Figure S3.1. Trend deviation value (TDV) vs total number of populations in dataset, at different sample sizes. 

All other parameters are fixed – μds: 0; σds: 0.4; μɳ: 0.6; populations per species: 20; mean time series length: 

20; trend length: 50; μɛ: 0; σɛ: 0. Each box represents the mean values of 10 datasets, with 20 samples per 

dataset. There is no clear effect of dataset size on TDV. While TDV is lower when the dataset is equal to the 

sample size (TDV is non-zero due to degradation of the samples), there is no clear trend in median TDVs as the 

number of populations in the dataset increases from twice the size of the sample to 10,000 populations. 
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Figure S3.2. Trend deviation value vs mean number of populations assigned to each species, using three 

different distributions: a normal distribution; an exponential distribution discretized by rounding to the 

nearest whole number; and a negative binomial distribution with zeros removed by adding one to every value 

(the resulting increase of the mean was accounted for). All other parameters are fixed – dataset size: 1000; 

sample size: 200; μds: 0; σds: 0.2; μɳ: 0.2; mean time series length: 20; trend length: 50; μɛ: 0.15; σɛ: 0.1. Each 

box represents the mean values of 20 datasets, with 20 samples per dataset. Neither the mean number of 

populations assigned to each species, nor the distribution used to assign them, shows any effect on trend 

accuracy. 
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Figure S3.3. Trend deviation value vs length of trend. All other parameters are fixed – dataset size: 1000; 

sample size: 200; μds: 0; σds: 0.2; μɳ: 0.2; populations per species: 20; mean time series length: 20; μɛ: 0.15; 

σɛ: 0.1. Each box represents the mean values of 20 datasets, with 20 samples per dataset. The median and the 

range of the TDV increase as trend length increases; this likely occurs because the mean time series length and 

sample size are static, resulting in fewer observations per year. 
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Figure S3.4. Trend deviation value vs percent observation error. All other parameters are fixed – dataset size: 

1000; sample size: 200; μds: 0; σds: 0.2; μɳ: 0.2; populations per species: 20; mean time series length: 20; trend 

length: 50. Each box represents the mean values of 20 datasets, with 20 samples per dataset. The percentage 

of observation error has no effect on trend accuracy. 
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Figure S3.5. Trend deviation value vs time series distribution. Datasets assigned to ‘Endpoint Clustering’ had 

time series randomly assigned to begin at the first year of the trend or at end at the final year of the trend, 

while datasets assigned to ‘Random’ had time series randomly distributed across the simulated years of the 

trend. All other parameters are fixed – dataset size: 1000; sample size: 200; μds: 0; σds: 0.2; μɳ: 0.2; 

populations per species: 20; mean time series length: 25; trend length: 50; μɛ: 0.15; σɛ: 0.1. Each box 

represents the mean values of 40 datasets, with 20 samples per dataset. 
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Figure S3.6. Total number of observations recorded in the Living Planet Database for each year from the start 

of the database until 2019 (the most recent observations in the version of the database I used for my analysis). 

There are 250 observations for the year 1950 and 9 observations for the year 2019. The year 2000 has the 

highest number of observations, at 11,297. 
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Appendix 3: Supplementary materials for Chapter 4 

 

 

 
Figure S4.1. Variance in population growth rates vs process error and observation error. Panel A shows that 

between-population variance in the samples increases as process error increases; panel B shows that 

between-population variance in the unsampled datasets is unaffected by process error; panel C shows that 

within-population variance in the samples is unaffected by observation error; panel D shows that within-

population variance in the sample increases as observation error increases. For all panels, parameters were set 

as follows – size of dataset: 1000; sample size: 200; length of trend: 50 years; populations per species: 20; 

mean growth rate: 0; variance in mean growth rate: 0.2; mean time series length: 20. For panels A and B, 

observation error was set to 0. For panels C and D, the mean of the growth rate standard deviations was set to 

0.2. 
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Figure S4.2. LPI trends for terrestrial Afrotropical species groups, with confidence intervals. From left to right, 

the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals by 

bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, which 

models every population with a GAM but produces confidence intervals in the same way as the GC method; 

and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through repeated 

resampling of all populations from GAMs, and uses the rank envelope method to produce confidence intervals 

from multi-species trend variants.  
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Figure S4.3. LPI trends for terrestrial IndoPacific species groups, with confidence intervals. From left to right, 

the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals by 

bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, which 

models every population with a GAM but produces confidence intervals in the same way as the GC method; 

and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through repeated 

resampling of all populations from GAMs, and uses the rank envelope method to produce confidence intervals 

from multi-species trend variants. 
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Figure S4.4. LPI trends for terrestrial Palearctic species groups, with confidence intervals. From left to right, the 

columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals by 

bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, which 

models every population with a GAM but produces confidence intervals in the same way as the GC method; 

and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through repeated 

resampling of all populations from GAMs, and uses the rank envelope method to produce confidence intervals 

from multi-species trend variants. 
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Figure S4.5. LPI trends for terrestrial Neotropical species groups, with confidence intervals. From left to right, 

the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals by 

bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, which 

models every population with a GAM but produces confidence intervals in the same way as the GC method; 

and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through repeated 

resampling of all populations from GAMs, and uses the rank envelope method to produce confidence intervals 

from multi-species trend variants. 
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Figure S4.6. LPI trends for terrestrial Nearctic species groups, with confidence intervals. From left to right, the 

columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals by 

bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, which 

models every population with a GAM but produces confidence intervals in the same way as the GC method; 

and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through repeated 

resampling of all populations from GAMs, and uses the rank envelope method to produce confidence intervals 

from multi-species trend variants. 
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Figure S4.7. LPI trends for freshwater Afrotropical species groups, with confidence intervals. From left to right, 

the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals by 

bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, which 

models every population with a GAM but produces confidence intervals in the same way as the GC method; 

and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through repeated 

resampling of all populations from GAMs, and uses the rank envelope method to produce confidence intervals 

from multi-species trend variants.  
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Figure S4.8. LPI trends for IndoPacific species groups, with confidence intervals. From left to right, the columns 

were calculated using the GAM + Chain (GC) method, which calculates confidence intervals by bootstrapping 

the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, which models every 

population with a GAM but produces confidence intervals in the same way as the GC method; and the GAM-

Resampled Rank Envelope (GRRE) method, which accounts for sampling error through repeated resampling of 

all populations from GAMs, and uses the rank envelope method to produce confidence intervals from multi-

species trend variants.  
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Figure S4.9. LPI trends for freshwater Palearctic species groups, with confidence intervals. From left to right, 

the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals by 

bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, which 

models every population with a GAM but produces confidence intervals in the same way as the GC method; 

and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through repeated 

resampling of all populations from GAMs, and uses the rank envelope method to produce confidence intervals 

from multi-species trend variants.  
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Figure S4.10. LPI trends for freshwater Neotropical species groups, with confidence intervals. From left to 

right, the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals 

by bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, 

which models every population with a GAM but produces confidence intervals in the same way as the GC 

method; and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through 

repeated resampling of all populations from GAMs, and uses the rank envelope method to produce confidence 

intervals from multi-species trend variants.  
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Figure S4.11. LPI trends for freshwater Nearctic species groups, with confidence intervals. From left to right, 

the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals by 

bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, which 

models every population with a GAM but produces confidence intervals in the same way as the GC method; 

and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through repeated 

resampling of all populations from GAMs, and uses the rank envelope method to produce confidence intervals 

from multi-species trend variants.  
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Figure S4.12. LPI trends for marine Pacific Temperate species groups, with confidence intervals. From left to 

right, the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals 

by bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, 

which models every population with a GAM but produces confidence intervals in the same way as the GC 

method; and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through 

repeated resampling of all populations from GAMs, and uses the rank envelope method to produce confidence 

intervals from multi-species trend variants.  
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Figure S4.13. LPI trends for marine Temperate Atlantic species groups, with confidence intervals. From left to 

right, the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals 

by bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, 

which models every population with a GAM but produces confidence intervals in the same way as the GC 

method; and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through 

repeated resampling of all populations from GAMs, and uses the rank envelope method to produce confidence 

intervals from multi-species trend variants.  
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Figure S4.14. LPI trends for marine Tropical Atlantic species groups, with confidence intervals. From left to 

right, the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals 

by bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, 

which models every population with a GAM but produces confidence intervals in the same way as the GC 

method; and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through 

repeated resampling of all populations from GAMs, and uses the rank envelope method to produce confidence 

intervals from multi-species trend variants.  
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Figure S4.15. LPI trends for marine Arctic species groups, with confidence intervals. From left to right, the 

columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals by 

bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, which 

models every population with a GAM but produces confidence intervals in the same way as the GC method; 

and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through repeated 

resampling of all populations from GAMs, and uses the rank envelope method to produce confidence intervals 

from multi-species trend variants. 
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Figure S4.16. LPI trends for marine South Temperate species groups, with confidence intervals. From left to 

right, the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals 

by bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, 

which models every population with a GAM but produces confidence intervals in the same way as the GC 

method; and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through 

repeated resampling of all populations from GAMs, and uses the rank envelope method to produce confidence 

intervals from multi-species trend variants. 
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Figure S4.17. LPI trends for marine IndoPacific species groups, with confidence intervals. From left to right, the 

columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals by 

bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, which 

models every population with a GAM but produces confidence intervals in the same way as the GC method; 

and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through repeated 

resampling of all populations from GAMs, and uses the rank envelope method to produce confidence intervals 

from multi-species trend variants.  
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Figure S4.18. LPI trends for marine Pacific Temperate species groups, with confidence intervals. From left to 

right, the columns were calculated using the GAM + Chain (GC) method, which calculates confidence intervals 

by bootstrapping the species growth rates, and is the method used for the LPI; the GAM Only (GO) method, 

which models every population with a GAM but produces confidence intervals in the same way as the GC 

method; and the GAM-Resampled Rank Envelope (GRRE) method, which accounts for sampling error through 

repeated resampling of all populations from GAMs, and uses the rank envelope method to produce confidence 

intervals from multi-species trend variants. 

 


