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Abstract

Deep Learning (DL) has gained momentum in recent years due to its incredible

generalisation performance achieved across many learning tasks. Nevertheless,

practitioners and academics have sometime been reluctant to apply these

models because perceived as black boxes. This is particularly problematic in

Economics and Finance. The objective of this thesis is to develop interpretable

DL models and explainable DL tools with a focus on macroeconomic and

financial applications. In doing so we highlight connections between such

models and the standard economic ones.

The first part of this work introduces a new class of interpretable models

called Deep Dynamic Factor Models. The study merges the DL literature

on autoencoders with that of the Econometrics on Dynamic Factor Models.

Empirical validations of the approach are carried out both on synthetic and on

real-time macroeconomic data.

Part two of the work analyses feature attribution methods and Shapley

values among explainability tools that are used to additively decompose model

predictions. One of their limitations is highlighted, given that it is necessary

to define a baseline that represents the missingness of a feature. A solution to

the problem is proposed and compared against the ones currently in use both

on simulated data and in the financial context of credit card default. We show

that the proposed baseline is the only one that accounts for the specific use of

the model.

The final part of the work discusses the use of DL techniques for dynamic

asset allocation. Using US market data, a comparison in recursive out-of-
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sample among different machine learning, economic-financial and hybrid models,

including the one introduced in the first part of the work, is performed. Finally,

a nonlinear factor-based portfolio performance attribution via the use of Shapley

values and the baseline proposed in part two of the work is presented.



Impact Statement

Deep Learning has increasingly been applied in the fields of Economics and

Finance. Yet, sometimes academics and practitioners in such fields are reluctant

to the adoption of deep learning methods because they are perceived as black

boxes. Meaning that for the user it is difficult if not impossible to understand

why the model is making a given prediction, suggesting a given choice or

behaving in a certain way. There can be cases where this is not relevant, but it

certainly is for economists, being the model usually deployed for policy making,

or investment decisions, among others. The aim of this PhD thesis is to assist

in alleviating this problem by building interpretable models and explainability

tools.

In Chapter 4 a new class of models called Deep Dynamic Factor Models is

introduced. The approach merges the econometric literature on Dynamic Factor

Models with the deep learning one on autoeconders. Chapter 4 is based on a

joint work (‘Deep Dynamic Factor Models’) with Paolo Andreini and Giovanni

Ricco, and was accepted for presentation at the following conferences: 2nd

Vienna Workshop on Economic Forecasting 2020, 40th International Symposium

on Forecasting (ISF 2020).

In Chapter 5 we present a new baseline for Shapley based feature attribution

methods, which is shown to outperform other commonly adopted baselines in

the empirical evaluations. This chapter is grounded on a joint work (‘A Baseline

for Shapley Values in MLPs: from Missingness to Neutrality’) with Aldo Lipani,

Francesca Medda and Ramin Okhrati, and was accepted as a conference paper

for the 29th European Symposium on Artificial Neural Networks, Computational
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Intelligence and Machine Learning (ESANN 2021).

Finally, in Chapter 6 we discuss the potential of designing financial theory

driven reward function that can be optimised with deep learning methods for

dynamic portfolio optimisation. Moreover, this chapter introduces a methodol-

ogy to perform nonlinear factor based portfolio performance attribution through

the techniques developed in Chapter 5. Chapter 6 has been inspired by the

Financial Analytics and Machine Learning, and the Asset Pricing modules.

The target audience for this PhD thesis stretches beyond the academic field.

Indeed, we hope the methods discussed here will be helpful both to practitioners

and academics alike. In particular, the content of Chapter 4 can be useful to

both public and private institutions to assess macroeconomic conditions, as it

is currently done with Dynamic Factor Models, one of the main work-horses

for macro-econometric analysis. In fact, the modelling approach proposed is

a natural extension of those. The contribution of Chapter 5 goes beyond the

economic audience, as the approach when applicable can be useful as a general

explainability tool to justify model based decision making. The findings of

Chapter 6 support the potential of hybrid strategies merging financial theory

with machine learning for investing. Although further research and experiments

are unequivocally needed, these results are encouraging.
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Chapter 1

Introduction

1.1 Context

Many economic and financial institutions have been recently investing in Data

Science and Machine Learning, ranging from central banks and hedge funds to

investment and retail banks, and to contemporary financial technology [1, 2, 3, 4].

Current applications include portfolio optimisation, algorithmic trading and

hedging, asset and derivative pricing, financial risk and risk management, factor

investing, sentiment analysis, forecasting of economic aggregates, among many

others.

However, Artificial Intelligence (AI) and Machine Learning (ML) research

in Economics and Finance are not new, occurring at least since 1986 [4]. Indeed,

significant attempts to introduce machine learning methods in general, and

neural networks in particular, in Economics date back to the 90’s with works

from White [see 5, 6, 7, 8, for example]. Nevertheless, and as discussed in Athey

[9], at that time they did not lead to significant performance improvements, and

thus they did not become popular among economists. More recently, thanks to

significant innovations in the field, and the availability of new more powerful

computational resources and that of open source libraries (e.g., TensorFlow,

PyTorch), Machine Learning is experiencing increasing adoptions in Economics

and Finance, as documented in Godell et al. [4] with respect to financial

applications, in Doerr et al. [3] for big data in central banking, in Nosratabadi
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et al. [1] when it comes to the economic sphere, in Huang et al. [2] for Finance

and Banking, and in Athey [9] for general applications to Economics.

There is however a fundamental difference between Machine Learning and

Econometrics.1 Indeed, and as discussed in Athey and Imbens [11], machine

learning methods typically rely on data-driven model selection, usually through

a method called cross-validation.2 Therefore, often these models miss formal

properties, which are the focus of the economic literature. There are however

exceptions [see 12, for a recent example]. That being said, and as discussed

in Mullainathan and Spiess [13] and in Athey and Imbens [14], there are many

problems in Economics and Finance that are primarily concerned with the

prediction issue. In these cases, selecting a model based on the prediction

performance may be sufficient. Moreover, a key argument in favour of applying

machine learning techniques to macroeconomic and financial data is their ability

to effectively capture nonlinearities [15, 16].

Indeed, some recent works have successfully applied these techniques

to such data. Cook and Hall [17] employed a number of neural network

architectures, including also autoencoders, to forecast the U.S. unemployment

rate. Loermann and Maas [18] proposed a neural net model to predict the

U.S. GDP. Holopainen and Sarlin [19] carried out a horse race among different

machine learning methods and showed that such models are able to outperform

conventional statistical approaches when predicting crisis periods. Additionally,

other authors employ Machine Learning (ML) and Deep Learning (DL) on

rich datasets incorporating both stock data and macroeconomic aggregates to

1The most common tools used to absorb economic and financial data can be found in the
field of Econometrics, whose official birth can be attributed to the first issue of Econometrica
in January 1933 by Ragnar Frisch[10], where Econometrics is conceived as the unification
of three view points, that of statistics, economic theory, and mathematics. Since then
Econometrics has played a crucial rule in Economics and Finance which has been growing
over time. Witnesses of this are the many Nobel Prizes in Economics given to econometricians
(e.g., Ragnar Frisch, 1969; Lawrence Klein, 1980; Trygve Haavelmo, 1989; James Heckman
and Daniel McFadden, 2000; Robert Engle and Clive Granger, 2003; Christopher Sims, 2011;
Lars Hansen, 2013).

2Cross-validation consists in a resampling approach that uses different data for training
and validating different models. The final model is selected based on the best performance
metric computed on the so called validation set(s).
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predict stock returns [20, 21, 22]. Finally, a number of papers have proposed

the use of deep learning techniques in order to solve the asset allocation problem

[see 23, 24, 25, 26, 27, for example]. These are only few of the works that have

shown promising performances of machine learning approaches in general, and

deep learning ones in particular.

1.2 Problem Statement and Aims of the PhD

Thesis
There is however a major impediment to machine learning deployments to

the field of Economics and Finance, and it relates to their black box nature.

Following Rudin [28], a black box model is defined as either a function that is

too complicated for a human to comprehend (e.g., deep learning models) or a

function that is proprietary. In this study we are concerned with models of the

first kind and this problematic goes beyond the application to economic and

financial data, and motivated the birth of a new branch of AI called eXplainable

AI (XAI)[29], which has seen growing interest in recent years [30]. In particular,

in Gunning [29] XAI is considered essential to understand, trust, and effectively

manage the emerging generation of artificial intelligence.

Following this literature and with a focus on economic and financial

problems, this PhD thesis intends to focus on the study and the design of

models that, while being able to outperform state of the art econometric

competitors, maintain interpretable aspects. When we find not possible to

achieve this, we develop explainability tools that are in line with how the human

user could adopt the deep learning model. On the empirical side, our focus

will be on macroeconomic forecasting and financial applications, the two are

intrinsically connected, as any financial decision should take into consideration

an assessment of the surrounding macroeconomic conditions.

1.3 Contributions
The contributions of this thesis are:
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• The introduction of a new modelling framework that combines deep

learning techniques with econometric ones. The framework is a natural

extension of Dynamic Factor Models (DFMs), thus able to handle missing

data and mixed frequencies in a unique coherent manner. Further, it

covers the more general as it can be conceptualized as an effective way to

estimate nonlinear state space models with a factor structure;

• The introduction of a novel approach that improves Shapley-based explain-

ability techniques for deep learning models by proposing an alternative

way to define baselines for Shapley values. The method allows for an

interpretation of the result where feature attributions are computed with

respect to a meaningful value for the model, that is a point of the model’s

maximum uncertainty with respect to taking a particular decision. The

advantage of such approach are shown both on synthetic data and in the

financial context of credit card default classification;

• An assessment of how the aforementioned can be used and combined with

other researches from DL, Finance and Economics, to deliver to hybrid

methodologies that can be applied to asset allocation. A theoretical frame-

work based on recent works about Deep Learning applications to portfolio

optimisation is proposed. The framework covers both portfolio construc-

tion and performance attribution with respect to financial-economic risk

factors [31, 32, 33, 34, 35].

1.4 Structure of the Thesis
The thesis is organised such that:

Chapter 2 discusses relevant works that relate to this thesis. We start

our review with general studies regarding the application of machine learning

models to Economics and Finance. We then narrow down our focus to one of

the empirical analysis of this thesis, the problem of macroeconomic forecasting.

Here we survey both standard economic approaches from the literature, and

more recent ML ones. We then discuss in more details the problem of portfolio
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optimisation and review current ML applications. We conclude this chapter by

surveying recent explainable AI (XAI) studies in the context of Economics and

Finance.

Chapter 3 provides a more formal methodological background to this

thesis which will then form the basis of subsequent chapters. Here we formally

introduce Dynamic Factor Models, deep learning models and the portfolio

optimisation problem. We then formalise the explainability problem in Artificial

Intelligence, and discuss feature attribution methods for Deep Learning.

Chapter 4 introduces a new modelling framework that merges the deep

learning literature on autoencoders with the econometric one on Dynamic

Factor Models (DFMs). The framework is a natural extension of DFMs, thus

able to handle missing data and mixed frequencies in a unique coherent manner.

Further, it covers the more general as it can be conceptualised as an effective way

to estimate nonlinear state space models with a factor structure. The chapter

discusses theoretical foundations of the approach, while corroborating them on

synthetic and real data. These empirical evaluations are carried out against

DFMs with well studied statistical properties [see 36, 37, for example] and

currently used as state-of-the art benchmarks for macroeconomic forecasting.

The framework proposed maintains aspects of interpretability common to

Dynamic Factor Models; e.g., the construction of coincident indicators [38] and

the computation of the so called news and impact [39].

Chapter 5 introduces a novel methodology which, combined with currently

available explainability methods in the context of feature attribution, delivers

to an explanation of the prediction which takes into account how the model

is used. The method allows for an interpretation of the result where feature

attributions are computed with respect to a meaningful value for the model,

that is a point of the model’s maximum uncertainty with respect to taking3 a

particular decision. Empirical evaluations are carried out both on a synthetic

dataset and on a financial one about defaults of credit cards.

3or suggesting, depending on the context;
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Chapter 6 discusses the potential of combining Deep Learning and portfolio

choice theory. A horse race in the form of a recursive out-of-sample comparison

on US stock market data among different machine learning, economic-financial

and hybrid models, including the use of the model introduced in Chapter

4 is performed. Finally, a methodology to compute nonlinear factor-based

portfolio performance attributions, via the use of Shapley values and the

baseline proposed in Chapter 5, is presented.

Chapter 7 summarises the main findings, sets out the limitations of the

studies, and outlines future work.

Finally, in Appendix A, B and C additional details and experiments are

provided.



Chapter 2

Literature Review

In Section 2.1 we survey machine learning (ML) applications in Economics

and Finance. As the forecasting of such data is among the main topics of this

thesis, a particular emphasis is devoted to works that analyse it, although

the literature is vastly dominated by financial applications. In Section 2.2 we

discuss the specific problem of macroeconomic forecasting both via standard

economic approaches and through the newer ones adopting ML tools. In

Section 2.3 we carry out a survey of works that are related to the portfolio

optimisation problem, both the old ones that initiated the statistical treatment

of the problem and the new ones that adopt ML. Finally, in Section 2.4 a

review of the fewer literature available in the emerging area of explainability in

ML for Economics and Finance is presented.

2.1 Machine Learning in Economics and Fi-

nance

Many economic and financial institutions have been recently investing in Data

Science and Machine Learning, ranging from central banks and hedge funds

to investment and retail banks, and to contemporary financial technology

[1, 2, 3, 4]. Although machine learning tools have gained significant interest in

Economics and Finance over traditional econometric models, there is still great
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potential for development.1 Current applications include portfolio optimisation

[41, 42], algorithmic trading and hedging [43, 44], asset and derivative pricing

[45, 46], financial risk and risk management [47, 48], factor investing [22], bond

risk predictability [16], sentiment analysis [49, 50, 51], trade settlements [52],

automation [53], forecasting of economic aggregates [17, 18]. Credit risk and

bankruptcy with hybrid econometric and machine learning models are analysed

in Prado [54]. Elliott and Timmermann [55] discuss forecasting methods in

Economics and Finance and conclude that no single model can be expected to

dominate across different economic variables and time periods. A key argument

in favour of applying ML techniques to economic and financial data is their

ability to capture nonlinearities, which stands in contrast to the standard tools

used for such data, as discussed in De Prado [15] and Bianchi et al. [16], for

example.

With respect to the forecasting of currency exchange rates, Nag and Mitra

[56] show the superior performance of hybrid machine learning techniques,

compared to classical methods. In Arroyo et al. [57] different traditional and

new methods are compared to forecast volatility in interval time series. Deep

belief networks are observed to outperform autoregressive moving average, the

random walk and multilayer perceptrons on the exchange rate problem in

Shen et al. [58]. Ravi et al. [59] discuss the potential of a hybrid machine

learning approach to the problem, including chaos theory and evolutionary

algorithms. In Galeshchuk and Mukherjee [60] the potential of Convolutional

Neural Network is shown with respect to the sign change prediction problem.

Stock Market has attracted the highest attention among practitioners

and academics [1]. In Chen et al. [61] different algorithms are compared on

the Chinese stock market, including a combination of an autoencoder and

a Random Boltzmann Machine. Singh and Srivastava [62] consider Google

data and the NASDAQ index and show that a hybrid 2-directional and 2-

dimensional Principal Component Analysis augmented with a Deep Neural

1For example, in Ferreira et al. [40] it has been documented that 90% of the operations
carried out in the hedge found industry are performed by a hardcoded procedure.



2.1. Machine Learning in Economics and Finance 26

Network can outperform Radial Basis Function Neural Network and Recurrent

Neural Network. Hernandez and Abad [63] analyse the performance of different

models for the prediction of the sign direction of the NASDAQ-100 index.

Fischer and Krauss [64] show successful applications of Long Short Term

Memory (LSTM) type of networks in the prediction of the directional movements

of the constituents of the S&P 500 index. They show that such type of models

can outperform memory-free classification methods like the Random Forest,

simple Deep Neural Networks, and the Logistic regression. Convolutional

Neural Networks and order-based features are used in Tashiro et al. [65] to

predict stock market mid-price trends.

In Abe and Nakayama [66] 25 risk factors are used as inputs to different

machine learning models to predict the one-month-ahead stock returns in

the cross-section of the Japanese stock market. They show that deep neural

networks generally outperform shallow neural networks and other machine

learning models. More complicated pipelines are developed in Bao et al. [67]

where the authors propose a combination of Wavelet Transforms, Stacked

Autoencoders, and Long Short Term Memory (LSTM) to predict the stock

price. In the first stage, Wavelet Transform eliminates noise by decomposing

the stock price time series, then predictive features for the stock price are

created via autoencoders. Finally, the LSTM architecture is applied to predict

the next day’s closing price based on the previous stage’s features. Similarly,

Yan and Ouyang [68] combine wavelet analysis and LSTM to forecast the daily

closing price of the Shanghai Composite Index. Chatzis et al. [69] show that

deep neural networks can outperform other machine learning models in terms

of classification accuracy for market crisis predictions.

The use of news data has also received certain attention and has been

shown to be beneficial to the forecasting problem. In Krausa and Feuerriegel

[70] a sentiment indicator via word embedding is considered, and the potential

of transfer learning together with deep neural networks is shown with respect

to the prediction of stock market directions in response to financial disclosure.
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Matsubara et al. [71] combine news data and deep neural generative models

to predict daily stock price movements of the Nikkei 225 and Standard &

Poor’s 500 indices. They compare this framework to multilayer perceptron

and supported vector machines. Minh et al. [72] combine historical price

data and news articles together with the Harvard IV-4 dataset to predict

price directions of the Standard & Poor’s 500 index and the VN-index via

different types of neural networks, among which recurrent neural networks show

better performance. In Becker and Reinganum [73] an overview of big data

and sentiment analysis applications to the problem is presented. The authors

highlight techniques such as Natural Language processing, Supported Vector

Machines and Artificial Neural Networks for the analysis of news, conference

calls, reports, and social media activity. According to their research, sentiment

information has provided short-term usefulness, but little long-term insights.

In the sphere of machine learning applications to derivative products,

Hsu et al. [74] propose a hybrid Black-Scholes and fully connected multilayer

perceptron to predict the bid-ask spread of option prices. In Buehler et al. [44] a

deep learning framework to hedge portfolio of derivatives that takes into account

market frictions such as transaction costs, market impact, liquidity constraints

or risk limits, is presented. With respect to the responsible investment sphere,

Vo et al. [75] apply multivariate bidirectional LSTM.

2.2 Macroeconomic Forecasting and Machine

Learning
It is possible to distinguish between two antipodal approaches to the problem

of macroeconomic forecasting. One that aims to be fully grounded on economic

theory, where aggregate relations emerge from the behaviour of interconnected

micro-founded agents. We can identify such approach in Dynamic Stochastic

General Equilibrium models (DSGE). Following Smets et al. [76], those models

are characterised by the derivation of behavioural relationships from the opti-

mising behaviour of agents subject to different constraints and the specification
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of a well-defined general equilibrium. Their estimation on macroeconomic data

can be carried out in the framework of Bayesian likelihood estimation, where

prior information about the structural economic parameters can be postulated

in a relatively easy manner.

An early successful application of such models to forecasting has been

shown by Smets and Wouters [77], where a DSGE with real and nominal frictions

estimated with Bayesian methods is compared to Bayesian and frequentist

vector autoregressive models (VARs) in an out of sample forecasting exercise

on US data. The model is shown to achieve competing performance. Nowadays,

more complex versions of these models including the modelling of financial

frictions [78, 79, 80] are among the standard tools for forecasting, conditional

forecasting and scenario analysis, structural and policy analysis by central banks.

However, the usefulness of economic theory for forecasting has been sometimes

provocatively and rightfully challenged. For example, Giacomini [81] makes

a critical assessment of whether economic theory can help in forecasting key

macroeconomic variables, and found many DSGE models to be outperformed

by other approaches. However, DSGE are not the only theory based approaches,

and the author finds other theoretical grounded information to be more useful,

such as accounting identities, disaggregation and spatial restrictions, and

cointegrating relationships. This of course does not mean that DSGE are not

useful for forecasting, also because the field is vibrant, and new models are

being developed continuously, together with alternative estimation methods

[see 80, 82, for example].

On a complete opposite side there are the purely statistical approaches,

such as reduced form vector autoregressive models. The econometric literature

has then provided ways to impose restrictions driven by economic theory in

order to recover a structural representation of the reduced form model. DFMs

are statistical models which impose restrictions that are particularly well suited

to capture some empirical features of economic time series. These models were

firstly introduced by Geweke [83] and Sargent and Sims [84] and are the very



2.2. Macroeconomic Forecasting and Machine Learning 29

first instance of big data in the discipline. DFMs deal with a large cross-section

problem by applying a linear dynamic latent state framework to the analysis of

economic time series. The underlying assumption of these models is that there is

a small number of pervasive, unobserved, common factors that stir the economy

and inform the comovements of hundreds of economic variables. Economic

times series are also affected by variable-specific (idiosyncratic) disturbances.

These idiosyncratic disturbances can be due either to measurement error or to

factors that are specific to some variables. A large body of empirical evidence

produced using dynamic factor models, shows how a small number of factors

– as many as two – can capture a dominant share of the variance of all the

key macroeconomic and financial variables. This family of models has been

applied intensively in Econometrics to different problems such as forecasting,

structural analysis and the construction of economic activity indicators [see

85, 86, 87, 88, 89, 90, 91, 92, among others], and it is a major work horse in

the context of macroeconomic forecasting especially at extremely short horizon,

in the so called prediction of the present and the very recent past. This is

relevant for macroeconomic data which are published with a lag and subject to

revision. The forecasting at these three horizons takes the name of Nowcasting,

as discussed in Bańbura et al. [93]. While the model parameters are usually

estimated under frequentist lens, a full Bayesian maximum likelihood approach

is possible as well [see 94, 95, 96, 97, 98, 99, 100, for example].

At a first glance DFMs and DSGE could seem unrelated, but they both

actually have a state-space model formulation. In particular, DFMs and log-

linearised DSGE2 can be both formulated such that the learning process of the

parameters is computed in terms of the likelihood of a linear Gaussian State

Space model with a factor structure.3 They however differ in the restrictions

2The system of equations derived from the DSGE are nonlinear and are usually log-
linearised around the steady states to facilitate the estimation. This together with the
assumption of Gaussian innovations allows to convert the model to a linear Gaussian state
space.

3These models do not need to be parametric, and non-parametric versions are available
as well [see 101, for a recent survey on DFMs]. The next chapter provides a more detailed
description of DFMs and their estimation methodologies. However, in most of the applications
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imposed on the state and observable equations, and of course in the interpre-

tation of the estimated parameters. In DSGE these restrictions are driven by

economic theory and the economic interpretation of the latent factors. On the

other hand, in DFMs these restrictions are driven by the underlying statis-

tical assumptions about the data generating process. Notwithstanding these

differences, in Kryshko [102] a data-rich DSGE model [103] with a standard

New Keynesian core is compared empirically to a DFM on a rich panel of U.S.

macroeconomic and financial data [104]. The work finds that the space spanned

by the statistical factors of the DFM and the space spanned by economic factors

of the data-rich DSGE are actually very close.

Recent works have applied Deep Learning to macroeconomic questions.

Cook and Hall [17] employed a number of neural network architectures, including

autoencoders, to forecast the U.S. unemployment rate. Loermann and Maas

[18] proposed a neural net model to predict the U.S. GDP. Coulombe [105]

describes a neural network architecture for the estimation of the Philips curve

and the output gap. Hauzenberger et al. [106] use different dimensionality

reduction techniques including autoencoders4 to construct features for inflation

forecasting. Holopainen and Sarlin [19] carried out a horse race among different

machine learning methods and showed that such models are able to outperform

conventional statistical approaches in predicting crisis periods. In Fernández-

Villaverde and Guerrón-Quintana [82] different methods are discussed for the

estimation of DSGE, including machine learning and deep learning ones. Finally,

it is worth mentioning that some recent studies have considered the use of

alternative data (e.g., text and google data) in DFMs [see 107, 51, for example].

these assumptions are made to facilitate the estimation.
4Those are self-supervised deep learning models that will be introduced formally in the

methodological background chapter.
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2.3 Portfolio Optimisation and Machine Learn-

ing
The emergence of Finance as a distinct theoretical and practical discipline

with respect to Economics was initiated by Harry Markowitz’s article ‘Portfolio

Selection’ in 1952, what is known as the big bang of Finance [108]. In his article,

Markowitz defines for the first time return and risk. The former being related

to the expected value of a distribution, while the latter identified with the

variance or the squared deviations around the mean of such distribution. As

noted by Miller [108], at that time the definition of variance as measure of risk

may have appeared counterintuitive to many whose perception of risk coincides

with the likelihood of losses, the downside risk. However, in front of a Normal

distribution the downside and upside risk are symmetrical, as in any symmetric

distribution. With this connection between return-risk and mean-variance,

Markowitz introduces mathematical statistics to the study of the portfolio

selection problem. Later on William Sharpe builds on Markowitz’s work to

show that in a world where investors have all mean-variance preferences and

form estimates in the same manner and conditioned on the same information

set, they will all hold the same portfolio: the market portfolio. Differences in

risk aversion among investors will only impact the portion invested in risky

assets as opposed to the risk-less bond, but not the composition of the risky

assets portfolio. Therefore, this implies that there is just one risk factor, the

market, and the distribution of expected rates of return across all risky assets

could be expressed as a linear combination of this risk factor, plus a diversifiable

idiosyncratic component. This is known as the Capital Asset Pricing Model

(CAPM). The introduction of the CAPM from William Sharpe based on the

work of Harry Markowitz lent the ground for the empirical and theoretical

investigations in Finance. Since then, new risk factors have been discovered,

and the number of such factors have been increasing with an out-of-control

rate, as documented in a recent census from Harvey and Liu [109]. Among

the many factors present in the financial economic literature, the commonly
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accepted are the betting against beta (BAB) factor from Frazzini and Pedersen

[35], the market (MKT), small minus big or size (SMB), and high minus low or

value (HML) factors from the Fama–French three-factor model [31, 32, 33], and

the up minus down or momentum (UMD) factor introduced by Carhart [34].

A formulation of the portfolio optimisation problem consists in finding the

series of vectors representing asset allocation weights {wt}t≥0 that maximise

an expected lifetime utility subject to some constraints.5 This problem involves

the estimation of future wealth distribution, which in turns is a function of

asset allocation weights and future returns’ joint distribution; thus, the task,

implicitly or explicitly, involves also a prediction problem. Therefore, one can

think of it as a combination of two problems: a forecasting problem and an

optimisation problem given these forecasts. However, the problem can also be

considered from the viewpoint of a unique reward optimisation problem under

the lens of Reinforcement Learning. In particular, one can see the portfolio

optimisation problem under the lens of stochastic control and therefore interpret

the problem as a Markov Decision Process (MDP). Namely, one can collect

in a stochastic vector xt the states relevant for a given transition probability

function that conditioned on those and the actions taken at time t will provide

the next state xt+1 and the reward achieved in transitioning from the current

state to the new state, given the action taken. Within the portfolio optimisation

context the action space could be interpreted as the feasible allocation weights

set. Those actions are expressed as the output of a function of the current states

which is called the policy function. On the other side, the state vector xt should

contain all features necessarily to specify the state transition probabilities and

rewards. Although this stochastic control problem could be approached with

standard tools from Dynamic Programming, the dimensionality of the portfolio

allocation problem makes the computational cost of these methods impossible

to sustain. Therefore, approximate methods are more appropriate and the

representation of the portfolio optimisation task as a stochastic control problem

5Within this thesis we focus on self-financing portfolios, thus assuming income and
consumption are zeros across all periods [110].
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unleashes the power of approximate methods from the Reinforcement Learning

(RL) literature [see 111, 112, 113, for example]. In practice these approaches are

sensible to algorithmic design, the features representing the states, the action

sets definition and the design of the reward function that aims to represent

and/or approximate some or all aspects of the true (lifetime) utility function

of the investor. Within the field of RL, when deep neural networks are used

to parametrise some or all parts of the process the overall approach takes the

name of Deep Reinforcement Learning (DRL).

Hu and Lin [114] outline and address some of these issues in the context of

DRL for portfolio management. Additionally, financial data are not identically

and independently distributed, and this could prohibit the use of randomised

cross validation methods for hyper-parameter tuning.6 Moreover, in its original

form the problem is not first order Markov, and it needs to be converted

from an M th order Markov.7 Also, in financial applications a full state space

representation is seldom if ever possible to obtain, given the unknown high

dimensional features of the economic and financial world. Therefore, more than

(convertible to) fully observable MDP we will be faced with a problem that can

be at most converted to a partially observable MDP (POMDP). This makes

standard RL tools prone to possible failures if applied blindly. The authors

consider also the problem of the reward design and discuss the use of different

metrics to approximate a general utility function including the Sharpe ratio.

They consider different DRL approaches including policy gradient methods

and actor-critic methods. The former optimises directly a parametrised policy

function with respect to the designed reward. In the latter the policy function

is used by the actor to output an action which is then evaluated by a critic

6These models have a number of hyperparameters whose values are selected on the so
called validation set(s) generally produced via a method called cross-validation. The problem
of cross-validation in time series is discussed also in Bergmeir et al. [115]; while, Bailey et al.
[116] discuss the related issue of backtesting in Finance.

7A stochastic process is said to satisfy the first order Markov condition (from Andrey
Andreyevich Markov) if at any time t the conditional probability of an arbitrary future event
given the entire past of the process is equal to the conditional probability given only the
present state values [see 117, for example].
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network.

According to Almahdi and Yand [118], the first applications of dynamic

programming methods to the asset allocation problem are discussed in Bertsekas

[119], while early applications of RL can be found in Moody et al. [120, 121].

More recently, Huang [122] proposes to solve the problem with a state of the

art DRL algorithm: Deep Recurrent Q-Network (DRQN). In an application

to the exchange rate market with data at the 15 minutes frequency, they

define the state space as a 198 dimensional vector which includes time features,

market features including past closing and tick volumes of each currency, and

position features representing the current allocation of the investor. The action

space allows for changes in these allocations. Rewards are defined as portfolio

log-returns net of transaction costs, which are the product of a constant spread

and the absolute change in allocations between two consecutive periods. The

DRQN is parametrised with LSTM layers and the authors show the potential

of this framework.

Chen et al. [123] propose agent-based reinforcement learning for trading

via cloning trading strategies from professionals. Chakraborty [124] evaluate

the profitability of various Reinforcement Learning (RL) algorithms, including

Q-learning and SARSA. They show that such approaches can beat the buy and

hold strategy. Jeong and Kim [125] propose a framework that combines deep

neural networks, RL and Transfer Learning (TL) to build a financial trading

system for profit maximisation. The authors identify in TL a way to address

the small data problem in Finance. Ritter [126] shows in a simulated market

the potential of reinforcement learning solutions and Q-learning in particular.

Song et al. [127] analyse portfolio allocation from the perspective of a

ranking problem to be then converted to a long-short strategy. They adopt

two ranking algorithms: ListNet and RankNet. They apply the two algorithms

using 10 years of market and news sentiment data. In a backtesting assessment

from 2006 to 2014, they show that their strategies produce risk-adjusted returns

superior to the S&P500 index and a measure of the hedge fund industry average
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performance.

Almahdi and Yang [118] extend the existing work in RL to build a port-

folio optimisation framework that accounts for transaction costs and features

adaptive stop-loss to consistently outperform the hedge fund index benchmark.

Moreover, they suggest a reassessment of the previously proposed RL objective

functions, including those based on the Sharpe ratio. They propose to use the

Calmar ratio, which differs from the Sharpe ratio with respect to the denomi-

nator adopted to adjust returns by risk. In particular, the Sharpe ratio adjust

returns by taking a ratio of the expected returns to the standard deviation;

while, the Calmar ratio uses the expected maximum drawdown as denominator.

They show this latter specification to deliver superior return performances.

Within the context of Deep Reinforcement Learning, Jiang et al. [128]

introduce a framework that aims to address the portfolio allocation issue using

three types of neural networks: CNN, a basic RNN, and LSTM. Liang et

al. [129] analyse different deep reinforcement learning algorithms, including

Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimization

(PPO) and Policy Gradient (PG). In an empirical evaluation on the Chinese

stock market, they found that the standard approaches that are useful in game

playing and robot control contests do not apply in this financial problem. In

particular, they show that PG is more desirable in financial market than DDPG

and PPO, although the latter being more advanced. Finally, they propose

adversarial training methods and a PG algorithm to outperform the uniform

constant rebalanced portfolio. Heaton et al. [42] support the idea that deep

learning tools can detect and possibly exploit interactions in the data that do

not seem to be captured by existing financial economic theory. They show

that a portfolio weighted using deep learning outperformed the IBB index.

Deng et al. [130] use a DRL approach by combining recurrent networks with

direct policy learning and show successful applications on the S&P 500 and on

commodity future contracts.

Wang et al. [131] propose a combination of LSTM and mean-variance in
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an application to the components of the UK Stock Exchange 100 Index with

data from 1994 to 2019. The LSTM selects the assets with higher expected

returns. They compare against other ML tools, such as support vector machine,

random forest, deep neural networks, and autoregressive integrated moving

average models. They show LSTM can outperform all the others. On the

selected assets a mean-variance optimisation is carried out, and the authors

find this LSTM mean-variance strategy to outperform five baselines across all

the performance measures used, including cumulative returns and Sharpe ratio.

Different approaches are adopted in De Prado [41] and Raffinot [132]. Here

the authors employ hierarchical clustering algorithms to construct diversified

portfolios. Namely, a variation of risk parity [41] and a variation of the equal risk

contribution [132], both aiming to take advantage of the possible hierarchical

correlation structure among assets, are introduced. Finally, other Machine

Learning approaches to the problem include also the application of evolutionary

algorithms [see 133, 134, 135, for example] and quantum annealing techniques

[135] in order to take into consideration additional constraints that are faced

in the practical implementation process.

2.4 Explainability in Machine Learning for Eco-

nomics and Finance
Notwithstanding eXplainable AI (XAI)[29] has experienced growing interest in

recent years [30], its applications to economic and financial problems has seen

slower development. The following are some few exceptions in this context.

In Nakagawa et al. [136] an explainable Deep learning framework is

proposed. The authors construct Deep Factor models by employing fully

connected multilayer perceptrons (MLP) to predict the next month’s stock

returns given present and past historical returns, together with 17 factor

exposures including risk, quality, momentum, value and size. They show these

deep learning architectures to be superior to a linear model, a supported vector

regression (SVR) and a random forest (RF) both on accuracy and profitability
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on the constituents of the TOPIX, a stock market index for the Tokyo Stock

Exchange. Finally, they analyse factor exposures by means of Layer-Wise

Relevance Propagation (LRP) [137]. This is a feature attribution method

aiming at additively decomposing a given prediction with respect to its drivers.

As such, their paper can be classified in the explainable space, as the model on

its own is not interpretable by default and necessitates an ex-post interpretable

representation, in this case by means of a feature attribution method. An

example of an interpretable model in the context of feature attribution is

the linear regression, where the additive decomposition of the contribution is

provided by the model itself and no ex-post external decomposition is required

to the purpose.

Nakagawa et al. [138] extend the previous work by including both LSTM

and interpretable versions of both LSTM and fully connected multilayer per-

ceptrons by means of LRP. Namely, they express asset returns as a linear

function of LRP relevance scores; thus, proposing an interpretable nonlinear

and time varying multi-factor model. In an empirical analysis on the TOPIX500

constituents they show the proposed LSTM+LRP to beat a standard LSTM,

an MLP, an MLP+LRP, a linear model, an SVR and a RF in terms of higher

Sharpe Ratio, higher returns and lower volatility. This work stays in contrast

with the previous one. Indeed, here Nakagawa et al. [138] use the forecasts

of an interpretable model, being it a linear combination of feature attribution

scores computed via LRP. This differs from the previous work [136], where the

authors use a model for prediction which is then explained via LRP for deter-

mining factor attributions. These two works highlight the difference between

direct interpretable models, and models that necessitate an explainable tool to

uncover some aspects of the predictions made.

In Bracke et al. [139] the authors extend the work of Datta et al. [140] and

define clustering based Shapley attributions to compute groups of explanations

in the context of a mortgage default prediction problem. Shapley method is

a feature attribution method that similarly to LRP provides a local additive
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decomposition of the model predictions with respect to its input variables.

Bussmann et al. [141] show how to combine Shapley values with correlation

networks for explanability in a credit risk management context to explain the

predictions of an Extreme Gradient Boosting (XGBoost).

In Hoepner et al. [142] the concepts of significance, relevance and explain-

ability are analysed both under statistical and economic lens. The authors

advocate for more research towards fully transparent and entirely replicable

algorithms, where statistical tests can be carried out and the mechanisms of

the algorithms can be entirely understood by the human decision maker.



Chapter 3

Methodological Background

In this chapter we cover the common background material on which we build

the subsequent chapters. In Section 3.1 we review dynamic factor models, in

Section 3.2 deep learning models, whereas, Section 3.3 is dedicated to portfolio

optimisation theory and approaches. We conclude this chapter with Section

3.4 about explainability in Machine Learning with a focus on Deep Learning.

3.1 Overview of Dynamic Factor Models
Following Doz and Fuleky [101] Dynamic Factor Models (DFMs) can be broadly

defined as parsimonious representations of relationships among time series

variables. The method was firstly introduced in psychology by Spearman [143],

who used a single factor or unobservable variable to describe cognitive abilities.

It was then extended by Geweke [83] to capture co-movements in economic

time series data. The actual idea that co-movements in such series can be

linked to business cycle was originally described by Burns and Mitchell [144].1

Early applications of DFMs to such data can be found in Sargent and Sims

[84] and Stock and Watson [145, 38, 146], while among the first applications to

financial data there is Chamberlain [147] and Chamberlain and Rothschild [148].

Very good surveys have been written on DFMs, and while referring to those for

further details [see 149, 150, 151, 101, for example], in what follows we briefly
1In particular, the authors describe cycles as follows: "a cycle consists of expansions

occurring at about the same time in many economic activities, followed by similarly general
recessions, contractions, and revivals which merge into the expansion phase of the next cycle;
this sequence of changes is recurrent but not periodic."
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describe the different estimation methods to then focus on one specific instance

of them which is the starting point of one of the contribution of this thesis.

Before discussing estimation methods, we highlight some differences be-

tween various factor models and some of the common assumptions. Let {yt}t≥0

be a n−dimensional vector of time series assumed to be weakly-stationary, with

zero mean and unit variance.2 DFM assumes that the following decomposition

holds

yt = ζt +εt (3.1)

The process {ζt}t≥0 is called the common component. It is a function of the

factors which are generally assumed to be stationary. The process {εt}t≥0 is a

n−dimensional vector collecting the so called idiosyncratic processes. A factor

model has a static and a dynamic representation. In dynamic factor models we

have ζt = Θ(L)ut, where Θ(L) is the factor loading polynomial matrix and ut

is an d−dimensional vector of common dynamic shocks at time t with d << n

[see 88, 87, 89, 90, 91, for example]. In the static representation of the DFM

[85, 152] the common component is assumed to satisfy the following equation

ζt = θf t (3.2)

with

f t = B(L)f t +ut = B1f t−1 + · · ·+Bpf t−p +ut (3.3)

where f t is the time t, d−dimensional vector of common factors with d << n.

The common and idiosyncratic components are always assumed to be

orthogonal to each other, while another difference made in the DFM literature

is among exact and approximate factor models. The exact factor model further

assumes that the idiosyncratic processes are also orthogonal to each other, so

that all the correlations among the observables are captured by the common

factors only. When mild cross-correlation among the idiosyncratic components

is allowed, the model is called approximate factor model.

2See [37] for an example of a DFM with non-stationary series.
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3.1.1 Estimation Methods

Different estimation methods have been proposed in the literature for DFMs,

here we summarise some of them while referring to the surveys mentioned

before for a more detailed treatment.

The static exact factor model can be estimated via maximum likelihood

under the assumption of {f t}t≥0 and {εt}t≥0 being two orthogonal i.i.d. Gaus-

sian processes [101]. The unique identification of the model is achieved via

some restrictions. One of which being the fact that the idiosyncratic compo-

nents are mutually orthogonal processes, thus implying a diagonal covariance

matrix for εt. A second restriction imposes the factors {f t}t≥0 to have their

covariance matrix equal to the identity matrix, V ar(f t) = Id, estimates can

be then obtained by means of numerical methods [101]. Also a dynamic exact

factor model can be estimated by maximum likelihood under the gaussianity

assumption. In particular, the gaussianity assumption allows to write factor

models as linear gaussian state spaces, where factors are represented as latent

states. Therefore, estimates of the values of the latent factors and the gaussian

likelihood can be computed using Kalman filter. Watson and Engle [153]

propose different methods including the EM algorithm. Despite this progress,

these early applications had two limitations: one computational and the other

conceptual [150]. For the latter, the maximum likelihood estimation requires a

full parametric specification, which translates in Gaussian disturbances and

mutually independent idiosyncratic processes (exact as opposed to approxi-

mate factor model). However, Doz et al. [154] show that maximum likelihood

estimator from the Gaussian state space formulation, and more in general

quasi-maximum likelihood estimator, is a consistent estimator of the space

spanned by the factors under weak assumptions on the error distribution and

allowing for limited correlation in the idiosyncratic components.

An alternative non-parametric method for the estimation of approximate

static factor models is provided by principal component analysis (PCA). Gen-

erally, the constraints imposed to recover a unique solution are in the form of
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normalising conditions, such as 1
T

∑T
t=1 f̂

′
tf̂ t = Id. More so, since PCA is not

scale invariant, the original series are usually centered and standardised before

applying PCA. Early application of this method are from Chamberlain and

Rothschild [148], while Stock and Watson [85, 86] and Bai and Ng [152] popu-

larise the method to macroeconomics and derive consistency of the estimates.

Extensions to deal with heteroskedastic and serially correlated idiosyncratic

terms have been analysed [see 155, for example]. Even though PCA has been

regarded as a building block for the estimation of dynamic factor models, it

needed extensions as alone it does not capture dynamics [101].

Finally, other approaches carry the estimation in the frequency domain,

as the method proposed by Forni et al. [88, 89] which is based on the dynamic

representation of the model and it consists in two steps, involving the estimation

of the spectral densities of the common and idiosyncratic parameters based on

the sample autocovariance of the observables yt.

3.1.2 Likelihood Based Approaches

Doz et al. [36] introduce a two-step quasi-maximum likelihood estimation for

approximate dynamic factor models of the following form

yt = θF f t +εt , (3.4)

f t = B1f t−1 + · · ·+Bpf t−p +ut, (3.5)

where they allow the idiosyncratic terms to be autocorrelated. The estimation

works as follows

Step 1 Compute the preliminary estimator of θ̂F and f̂ t via principal component

analysis. The idiosyncratic is then given by ε̂t = yt− θ̂F f̂ t and their

variance is obtained from the empirical variance. The dynamics of the

common factors are estimated using vector autoregressive.

Step 2 The model is cast in state-space where it is assumed that the variance

of the common shocks is the identity matrix cov(ut) = U = Id, and the
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idiosyncratic components have a diagonal matrix. Conditioned on the

parameters, the Kalman smoother provides a new estimate of the factors.

The idiosyncratic terms here are assumed to be mutually orthogonal

white noises.

In Doz et al. [154] a quasi-maximum likelihood method for the estimation

of large scale approximate dynamic factor model is proposed. The method is

derived based on a maximum likelihood estimator for mutually orthogonal i.i.d.

gaussian idiosyncratic terms and gaussian VAR for the common components.

The log-likelihood of this linear gaussian state space model is obtained via

the Kalman filter and an EM algorithm is implemented to get the maximum

likelihood estimator, thus allowing successive applications of the two-step

approach. The author prove the mean square consistency of the estimators

under standard assumptions. Further, they show that the validity of the results

is maintained even under non-gaussianity or non-i.i.d. of the idiosyncratic

terms, as long as the cross-correlation is limited.

A problem with economic data is the presence of missing observations and

Banbura and Modugno [39] adapted the EM algorithm to a general pattern of

missing data by using selection matrix when carrying out the maximisation step.

In the E-step the algorithm behaves as if the data were complete, while the

missing data are replaced by the best linear fit given the information set. The

authors also extend the approach to the case where AR processes are assumed

for idiosyncratic components. Moreover, they show how to compute a statistical

decomposition to measure the contribution to the forecast movements from the

new unexpected information, the so called news. We will use this framework

as our benchmark and starting point [93, 39]

yt = θF f t +εt , (3.6)

f t = B1f t−1 + · · ·+Bpf t−p +ut, ut
iid∼ N (0,U), (3.7)

εt = Φ1εt−1 + · · ·+Φdεt−d +ϵt, ϵt
iid∼ N (0,Q), (3.8)
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where B1, . . . ,Bp are the r× r matrices of autoregressive coefficients for the

factors and Φ1, . . . ,Φd are the n×n diagonal matrices of autoregressive coeffi-

cients for the idiosyncratic component (i.e. Φ1 = diag(ϕ1, . . . ,ϕn)). Specifically,

the authors [93, 39] assume a VAR process of order two (p = 2) for factors, and

of order one (d = 1) for the idiosyncratic components.3

The likelihood of the linear Gaussian state space model described above

is invariant to any invertible linear transformation of the factors [see 93, for

example]. These means that the parameters are not identifiable from the data

as any invertible linear transformation of them is observationally equivalent.

Therefore, the EM will converge to one of these transformations [156]. In

forecasting applications this identifiability issue is not a problem, as one is not

interested in the factor themselves but only in the space spanned by those [93].

Nevertheless, additional restrictions can be easily imposed on the parameter

space to achieve their identifiability [see 157, 158, 93, for example].

3.2 Overview of Deep Learning Models
The history of Deep Learning (DL) can be traced back to stochastic gradient

descent in 1952, which is employed for an optimisation problem. At that time

the limit of computer hardware prevented its potential applications. Today,

the developments of graphics processing units (GPUs), dataset storage and

processing and distributed systems allows effective DL applications to different

fields such as medicine, neuroscience, physics and astronomy, finance and

banking, and operations management [2].

In order to review deep learning models relevant to this PhD thesis, we

begin with the feed-forward multilayer perceptron; then we briefly review other

types of networks.4 We then present other two building blocks of this PhD

thesis: autoencoders and policy-based Deep Reinforcement Learning.

3The estimation method has been shown to be robust to the zero cross-correlation
assumption at all leads and lags of the idiosyncratic components when mildly violated in
small sample [154, 37].

4We refer to Goodfellow et al. [159] for further details.
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3.2.1 Multilayer Perceptrons

The simplest Deep Learning model is the so called multilayer perceptron (MLP),

formally designated as making the following point prediction

ŷt = gθL
(. . .gθ1(xt)) (3.9)

where ŷt is the output vector5, xt is the input vector, and Gθ(·) = gθL
(. . .gθ1(·))

is a composite operator formed by the composition of L functions and their

related parameters (one for each layer l = 1, . . . ,L after the input). Those

functions are called link functions or activation functions. The activation

functions can differ between layers and can be both linear and nonlinear. Each

activation function produces an activation output which is the product of an

element wise (usually monotone) transformation (gl(·)) applied on an affine

mapping (matrix θl) of the neurons in the lower layer.

Namely, if we assume hml
t is the neuron ml in layer l at observation t, then

hml
t = gl(θml

· ([1]||hl−1
t )) (3.10)

∀ml = 1, . . . ,kl, where kl is the number of neurons in layer l. θml
is the mth row

of matrix θl. Therefore, the activation output of each neuron, hml
t , depends on

three different elements: the activation function gl(·), the vector of weights and

biases related to that neuron, θml
, and the output vector of the previous layer,

hl−1
t . By hierarchically repeating this operation for each layer l = 1, . . . ,L, we

obtain the MLP output: Gθ(xt).

The aim of the model is to infer the correct state of the target variable

(i.e., produce an accurate estimate), which is achieved by minimising a loss

function with respect to the tensor of parameters θ:

L(yt, ŷt) = L(yt,Gθ(xt)). (3.11)

5Or a scalar in case of single target or binary class.
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The most commonly used loss functions are the squared loss for regression, it

being proportional to the likelihood of the model when assuming conditional

Gaussianity, and cross entropy for classification. The minimisation of the loss

function with respect to θ is performed via back-propagation [160, 161], thus

requiring the loss function to be almost everywhere differentiable. Although

different optimisation algorithms can be used, the first ones were based on

gradient descent [162] which uses the entire training dataset, called batch, to

update the gradient of each parameter. Afterwards, to speed up the optimisation

procedure, stochastic gradient descent (SGD) algorithms [163] that update the

gradient of each parameter using only randomly selected subsamples of the

training dataset have been applied. These subsamples are called minibatches

and are an equal partition of the original training dataset. Thus, for each

iteration SGD has a computational cost which is independent with respect to

the sample size; that is, if we assume a mini batch of one observation, SGD

has computational cost of O(1), while GD’s computational cost is O(n) where

n is the number of observations. SGD sometimes can remain slow or get stuck

when the optimisation reaches a particular point of the loss function, e.g., flat

regions or saddle points. Therefore, the method of momentum [164] is designed

to possibly overcome these issues and accelerate the learning. Momentum

algorithms add an exponentially decay moving average of past gradients by

introducing a velocity element. In the literature, different momentum algorithms

have been proposed (AdaGrad [165] and RMSProp and its variation [166]),

but ADAM [167] is the most popular because it combines the advantages of

the others. Indeed, it can suit multiple different datasets reasonably well with

little or no tuning of its hyperparameters [168]. ADAM updates the gradient

using bias correction of its first moment, through the weighted moving average,

and its raw second moment, through the uncentered variance. By doing so, it

adapts the learning rate in each dimension directly proportional with respect to

the first moment and inversely proportional with respect to the second moment.

All the optimisation algorithms tend to analyse the training dataset multiple
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times in order to reach a better estimation of the parameters. A run of the

algorithm over the entire dataset is called an epoch.

3.2.2 Other Types of Networks

In addition to the fully connected MLP, other common types of networks are

convolutional neural networks (CNNs) [169, 170] and recurrent neural networks

(RNNs) [160].

Differently from a fully connected MLP, CNNs enjoy parameter sharing

and local connections on input data with known grid-like topology. Some of

the successful early applications of such models were on handwritten characters

[171, 172, 173]. Applications of such models do not need to be on image data

only. Indeed, in Simard and Le Cun [174] convolutional networks are used for

time signals. Variants of such models are known as unshared convolution and

tiled convolution. In unshared convolutions there is local connection without

parameter sharing [159]. While tiled convolutions [175, 176] offer different

convolution operators on adjacent inputs that are shared on the remaining

ones.

Whereas recurrent neural network (RNNs) are a family of networks for

processing sequential data [159]. The idea behind this type of modelling is

to share parameters across time. They express the current observation as a

function of a hidden state that has a recurrent structure. Therefore, information

is stored from the initial state, until the current one. However, the propagation

of the model’s gradients over many time steps to learn long term dependencies

could easily make those gradients vanish or explode. To solve this problem, long

short-term memory models (LSTM) [177, 178] and their compressed versions

- gated recurrent units (GRUs) [179, 180, 181, 182] - were introduced. These

models use self-loops to make the gradient flow, partially or totally, to the

distant past.

As in this work we will make use of LSTM layers as well, we now provide

a formal definition of an LSTM layer. Namely, its update equations can be
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expressed as follows

f t = sigmoid(W f,xxt +W f,hht−1 +bf )

c̃t = sigmoid(W c̃,xxt +W c̃,hht−1 +bc̃)

it = sigmoid(W i,xxt +W i,hht−1 +bi)

ct = f t ◦ct−1 + it ◦ c̃t

ot = sigmoid(W o,xxt +W o,hht−1 +bo)

ht = ot tanh(ct)

(3.12)

where the W ’s represent matrices of weight parameters, and b are vector of

biases, while sigmoid represent the sigmoid function and tanh the hyperbolic

tangent function. xt and ht represent the input vector and the hidden state

respectively. f t,it,ot are the gates called forget, input and output. Finally

ct is the so called cell state and ◦ is the Hadamard product (element-wise

product). It is common to add on top of this layer a SLP (linear for regression,

sigmoid or softmax for classification) or a MLP to make a prediction of the

following form ŷt = Gθ(ht).

3.2.3 Autoencoders

Autoencoders (AEs) belong to the DL family of models and have been intro-

duced for applications involving dimensionality reduction [161, 183, 184, 185].

Autoencoders solve the parametric problem of finding a mapping (or learning a

representation) of the form ŷt = FθF
(GθG

(yt)) by minimising a loss function

of choice with respect to the parameters θF and θG

L(yt, ŷt) = L(yt,FθF
(GθG

(yt))) . (3.13)

Here GθG
(·) is called the encoder network, as it maps the original inputs

to a lower dimensional code that synthesises relevant information, whilst

FθF
(·) is the decoder network that maps the low dimension code back to

its original higher dimensional space. The Principal Components Analysis
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Figure 3.1: Principal component analysis (PCA) as an autoencoder.

(PCA) can be seen as the autoencoder minimising the squared loss function

(i.e.: L(yt, ŷt) = ||yt− ŷt||2) and assuming that both the encoder and the

decoder are linear networks without bias terms, i.e. f t = GθG
(yt) = θG ·yt

and ŷt = FθF
(f t) = θF ·f t. Figure 3.1 shows a representation of PCA as an

autoencoder. Indeed, as discussed in Baldi and Hornik [186], affine decoder

and encoder without any nonlinearity and squared error loss will recover the

same subspace of PCA. Moreover, when nonlinearity is added into the encoding

network, PCA appears as one of the many possible representations [183, 187].

Since in principle the two functions that compress and decompress the

data can be any kind of function, finding the correct functional form which is

capturing the data generating process of interest can be a daunting problem.

Autoencoders provide a practical implementation of this problem by expressing

the composition of two functions as a chain of two networks: the first chain

operates the encoding, while the second produces the decoded output (see a

graphical representation of a symmetric fully connected autoencoder in Figure

3.2).

Although the functional form adopted for the activation functions may

seem arbitrary, a network with such a structure can nevertheless approximate



3.2. Overview of Deep Learning Models 50

y1

y2

y3

y4

y5

y6

Input
layer

h
(1)
1

h
(1)
1

h
(1)
1

h
(1)
1

h
(1)
1

Hidden
layer 1

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

Hidden
layer 2

f
(3)
1

f
(3)
2

f
(3)
3

Code
layer

h
(4)
1

h
(4)
2

h
(4)
3

h
(4)
4

Hidden
layer 4

h
(5)
1

h
(5)
2

h
(5)
3

h
(5)
4

h
(5)
5

Hidden
layer 5

ŷ1
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Figure 3.2: A symmetric autoencoder with six observables and three neurons in
the code layer (biases are not included in the graph). The first two
hidden layers operate the encoding, while the last two hidden layers
decode into the output.

any nonlinear continuous function. In fact, the Universal Approximation

Theorem (UAT) – a key result in the neural net literature – states that a feed-

forward network, even with a single hidden layer containing a finite number

of neurons, can approximate continuous functions on compact subsets of Rn

under mild assumptions on the activation function. However, the UAT does

not guarantee that the algorithm adopted to estimate the network can learn

the correct parameters [188, 189, 190, 191].

An autoencoder is said to be symmetric when the number of hidden

layers in the encoding and in the decoding networks are the same; otherwise

it is asymmetric. Asymmetric autoencoders usually have several layers of

encoding but only a single layer of decoding (i.e. the function GθG
(·) =

gθg(·)). They were introduced by Majumdar and Tripathi [192] and have been

found to be more accurate compared to traditional symmetric autoencoders

for classification accuracy, and also able to yield slightly better results on

compression problems (over the following datasets: MNIST, CIFAR-10, SVHN

and CIFAR-100). Furthermore, the authors [192] argue that the asymmetric
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structure helps to reduce the number of parameters to estimate and hence

lessen the potential extent of overfitting. The graph in Figure 3.3 shows a fully

connected asymmetric autoencoder.
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Figure 3.3: Asymmetric Autoencoder with six observables and three neurons in
the code layer (biases are not included in the graph).

Denoising Autoencoders (DAEs) 6 are similar to classic autoencoders, but

they appear with a more general estimation method. Indeed, DAEs [193] can

be seen as AEs with noise injection on the inputs, hence the loss function

becomes:

LDAE(yt, ŷt) = L(yt,FθF
(GθG

(ỹt))) (3.14)

where ỹt ∼ C(ỹt|yt) and C is a given corruption process that maps the real data,

yt to ỹt by using a conditional distribution. The parameters of the denoising

autoencoders (θF and θG) can be optimised with standard back-propagation.

Denoising has multiple benefits, first of all, as shown by Vincent et al. [193]

and Bengio et al. [194], it forces the model to learn the real data distribution

and not only the distribution specific to the sample used; moreover, neural nets

are not very robust to noise [195], and noise injection is one way to improve
6They can be standard or asymmetric.
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robustness. Additionally, it is a useful data augmentation mechanism [196].

Another type of autoencoder is the Variational Autoencoder (VAE) intro-

duced by Kingma and Welling [197]. This approach estimates the distribution

of the latent states by optimising the evidence lower bound. Higgins et al. [198]

have extended the concept to include a hyperparameter to control divergence

from the prior distribution, yielding to the β-VAE. The loss function for such

an autencoder is expressed as

Lβ-VAE(yt, ŷt) =−Ef t∼q(f t|yt)log pdecoder(yt|f t)+βDKL(q(f t|yt)||p(f t)).

(3.15)

The first term of the loss represents the reconstruction log-likehood. It is related

to the probability of observing the data conditioned to the latent states which

are distributed according to the encoding network q(f t|yt). The second part

of the loss relates to the Kullback-Leibler divergence between the encoding

distribution network and the prior on the latent states, p(f t) . If β is set

to 1, then we have the standard VAE. Minimising the loss in equation (3.15)

coincides with maximising the evidence lower bound which is the lower bound

of the unconditional likelihood, as it misses the Kullback-Leibler divergence

between the encoding network distribution and the true conditional distribution

of the latent states given the observable. It is generally argued that VAEs

make an approximation of the loss which is arguably small, given high-capacity

models, so, they can offer computational advantages with respect to other

methods (e.g., Markov Chain Monte Carlo) [199].

3.2.4 Dynamics in Autoencoders

In Gregor et al. [200], Deep AutoRegressive networks (DARN) are proposed

to learn direct probabilistic models for binary latent variables. In their work,

hidden layers are equipped with autoregressive connections, thereby allowing

for dynamics in an autoencoder setting. Successively, Temporal Difference

Variation Autoencoder (TD-VAE) was introduced by Gregor et al. [201] to model

dynamics in autoencoders via (LSTM) connections between belief distributions
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at two distant time steps. Those distributions were estimated using VAEs

and their linkage is specified via transition distributions and smoothing. But

arguably the most relevant to our approach presented in Chapter 4 are Krishnan

et al. [202], Fraccaro et al. [203] and Rangapuram et al. [204]. In particular,

Krishnan et al. [202] adopt multilayer perceptrons (MLPs) to estimate the mean

and covariance matrix of a state space with Gaussian transition dynamics. In

Fraccaro et al. [203] a Kalman Variational Autoencoder (K-VAE) is introduced

to estimate (locally) linear Gaussian state space models. Similar in spirit to

Lee et al. [205], where Structured Variational Autoencoders (SVAEs) are used

to provide conjugate graphical models, in K-VAE the authors propose a VAE

to disentangle the observations and the latent dynamics. Furthermore, an RNN

is used to estimate a time varying linear combination of K linear Gaussian

state space models.

3.2.5 Policy-Based Deep Reinforcement Learning

In this section, after giving an introduction to Markow Decision Processes

(MDPs) following Szepesvári [111], we discuss the REINFORCE algorithm of

Ronald J. Williams and its extensions following Sewak [113].7

We define a countable Markow Decision Process (MDPs) with the triplet

M= (X ,A,P0), where X is the set collecting the states, A is the set of actions,

while P0 is the transition probability kernel that for every state-action pair

(x,a) ∈ X ×A assigns a probability measures over X ×R. In particular, given

a set U ⊂ X ×R, P0(U|x,a) represent the probability that next state and its

associated reward are in set U , conditioned on taking action a in the current

state x. It is then possible to write the state transition probability kernel

P(x,a,y) = P0({y}×R|x,a) which tells us the probability of transiting from

state x to state y when taking action a. We can then express the expected

immediate reward when doing this transition as r(x,a) = E[R(x,a)]. MDPs

come useful to describe sequential decision making problems. In particular one
7We do not cover other Reinforcement Learning algorithms that can be applied to solve

MDPs, as those will not be used in this work. We refer the interested readers to standard
textbooks on the topic [see 111, 112, 113, for example].
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could write P(x,a,y) = P(xt+1 = y|xt = x,at = a), and express the expected

reward from this transitioning as r(xt,at) = E[rt+1|xt,at]. Additionally, after

having observed a given behaviour, one could express the return underlying this

behaviour as the total discounted sum of the rewards incurred: R= ∑T
t=0 γtrt+1.

When T is finite we speak about finite horizon MDP, if T =∞ we are in

front of an infinity horizon MDP. More so, when γ = 1 the problem is called

undiscounted, while for 0 < γ < 1 the problem is called discounted. The objective

of the decision maker is to find a behaviour that maximises the expected return.

Behaviours are expressed in terms of a policy function that given the current

states provides the action to take π :X →A. When this policy is deterministic,

then at = π(xt), when it is stochastic then at ∼ π(·|xt). The set of all stationary

policy that when put in place deliver to a time homogeneous Markov chain

{xt}t≥0 is generally defined with Πstat. We can then parametrise a policy π

with parameters θ and define its value as

J(θ) = E
∑
t≥0

[γtr
(τ)
t |πθ], (3.16)

where τ = [(x0,a0, r1), . . . ,(xt,at, rt+1), . . . ] is a trajectory influenced by state-

transition probabilities under the given policy πθ. Hence, the most optimal

parameter vector θ∗ that maximises this reward can be expressed as

θ∗ = argmax
θ

J(θ). (3.17)

One can search for this by computing the following gradient

∆(θ)J(θ) =
∂J(θ)
∂θ

. (3.18)

The methods that aim to find the optimal policy in such a way are called policy

gradient methods. However, this computation is generally intractable as we

are trying to differentiate a function over a parameter when the function itself

is conditioned on this parameter. The REINFORCE algorithm introduced by



3.2. Overview of Deep Learning Models 55

Ronald J. Williams try to solve this problem based on mathematical simplifica-

tions. Namely, it is possible to show that under certain conditions equation

(3.18) can be approximated as follows [113]

∆(θ)J(θ) ≈
∑
t≥0

r
(τ)
t ∆(θ) logπθ(at|xt) (3.19)

This equation can be implemented in an iterative Monte Carlo approach which

delivers to the REINFORCE algorithm described in the Algorithm 1 from [113],

where vt is the unbiased sample estimate of the Q−function Qπθ
(xt,at), and

α is the step size. With respect to the Q−function, we next define it when

following the policy πθ for subsequent actions

Qπθ
(x,a) = E[

∑
t≥0

γtr
(τ)
t |x0 = x,a0 = a]. (3.20)

Algorithm 1 REINFORCE
Init θ arbitrary

1: for each eposide {(x0,a0, r1), . . . ,(xt,at, rt+1, , . . .)} ∼ πθ do
2: for t = 1 to T −1 do
3: θ← θ +α∆(θ) logπθ(xt,at)vt

4: end for
5: end for

The REINFORCE method is in the class of so called direct policy search

algorithms, as it does not make use of value functions [111]. However, this

algorithm has high variance for a number of reasons. Namely, this is caused

by the fact that in each experiment of Monte Carlo the rewards may vary

a lot. Also, the attribution of the reward to each specific state-action in

the trajectory is complicated, as REINFORCE averages out these rewards

across the trajectory. Thus, the reward may be due to only a specific good

state-action that can possibly hide a suboptimal behaviour across all other

state-action pairs. In an attempt to solve these problems different versions of

the REINFORCE algorithm have been introduced, including the change of the

objective to cumulated future reward or discounted cumulated future reward,
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and the inclusion of a baseline [113].

In the REINFORCE algorithm the policy function πθ is stochastic, however

under certain conditions it is possible to derive a deterministic version of it.

Namely, let’s define with a πθ :X →A the deterministic policy that maps states

to actions, if then the first derivative of this policy function (∆θπθ(x)) and the

first derivative of its related Q function (∆aQπ(x,a)) exist, it is possible to

rewrite equation (3.18) as (Theorem 1 from Silver et al. [206])

∆θJθ = E[∆θπθ(x)∆aQπ(x,a)|a=πθ(x)]. (3.21)

More so, Theorem 2 from Silver et al. [206] shows that under certain conditions,

when the variance of the stochastic policy gradient tends to zero, then the

deterministic policy gradient is equivalent to the stochastic policy gradient

under these limiting conditions. A key advantage over using the deterministic

version over the stochastic version is computational, as the deterministic version

does not require to integrate over all actions.

To get better estimates of the Q-function, one could replace the sample

estimates with a neural network as well, yielding to what is known as the

critic network QθQ . This, together with a policy network for πθπ yields to an

actor-critic framework. More so, to improve stability in the updates of the

parameters, one could differentiate between these two networks and their target

variants, the latter updating the parameters only intermittently and/or softly

via moving averages. These soft updates deliver to the Deep Deterministic

Policy Gradient algorithm (DDPG) [206]. DDPG is a model-free, off-policy,

actor-critic algorithm based on the policy-gradient theorem which has been very

successful in many applications. The algorithm updates the actor parameters

via a sample approximation of ∆θJθ, given by

∆̂θJθ =
∑

i

∆θπθ(xi)∆aQπ(xi,ai)|ai=πθ(xi). (3.22)
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3.3 Overview of Portfolio Optimisation
In this section we discuss the portfolio optimisation problem. We start by

formulating it as a single period utility maximisation problem following Scherer

and Winston [207]. We then discuss other common approaches which are not

utility based. Finally, we consider recent Deep Learning approaches for portfolio

optimisation. We conclude with a dynamic formulation of the problem that

allows to use reinforcement learning techniques. The related literature has been

surveyed in Section 2.3 to which we refer the reader. This section presents the

theoretical background for Chapter 6.

3.3.1 Portfolio Optimisation and Utility Function

Portfolio optimisation is the process of finding the optimal allocation of wealth

to different investments, given some objective and constraints. We are going

to call U(Wt) the utility function of a representative investor with wealth Wt

at the end of period t, with Wt = w′
t(1 +rt) where {rt}t≥0 is assumed to be a

vector of stationary stochastic processes representing asset returns, while wt

represents the vector of allocation weights over n assets chosen by the agent at

the beginning of the period. The optimal single period asset allocation problem

can be formulated as

max
wt∈Ω

E[U(Wt)] = max
wt∈Ω

∫
· · ·

∫
U(w′

t(1+rt))dF (rt) (3.23)

where Ω is the set of permissible portfolios, while F (rt) represents the joint

cumulative distribution function of asset returns. The expected utility can be

approximated via a Taylor Series around a root point, W̄ . The approximation

converges to the true expected utility function for all levels of wealth when we

are faced with an exponential or polynomial utility, while for power utility it

converges only if the wealth is within a given range [208, 209, 210]. Hence, and

assuming conditions for equality holds, we get

E[U(Wt)] =
∞∑

k=0

U (k)(W̄ )
k! E[(Wt− W̄ )k] (3.24)
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where U (k)(W̄ ) represents the k− th derivative of the utility function evaluated

at the root point W̄ , and can be interpreted as the investor’s preference (or

aversion) towards the k−th moment of the distribution. Notably, as observed by

Jondeau and Rockinger [210] and shown by Scott and Horvath [211], under the

assumptions of strict consistency for moment preferences, decreasing absolute

risk aversion at all levels of wealth, and positive marginal utility, U (k)(W̄ ) is

strictly negative for even k and strictly positive for odd k.

In case the root point W̄ coincides with the expected wealth, we have the

following fourth order Taylor approximation:

E[U(Wt)]≈ U(µp
t )+ 1

2U (2)(µp
t )varp

t + 1
6U (3)(µp

t )skp
t + 1

24U (4)(µp
t )κp

t . (3.25)

where we define expected returns, variance, (un-standardised) skewness and

kurtosis in the following ways: µp
t = E[w′

trt], varp
t = E[(w′

trt−µp
t )2] = E[(Wt−

W̄ )2], skp
t = E[(w′

trt−µp
t )3] = E[(Wt−W̄ )3], κp

t = E[(w′
trt−µp

t )4] = E[(Wt−

W̄ )4].

Alternatively, one can take the Taylor expansion of expected utility around

W̄ = 0, yielding to the fourth order Maclaurin expansion:

E[U(Wt)]≈U(0)+U (1)(0)M1(Wt)+ 1
2U (2)(0)M2(Wt)+

1
6U (3)(0)M3(Wt)+ 1

24U (4)(0)M4(Wt)
, (3.26)

where Mi(Wt) is the moment generating function. Conditions for sign identifi-

cation of the relations between the different moments and the utility function

can be found in Scott and Horvath [211].

Mean Variance Optimisation as a Special Case. Markowitz’s theory

suggests that two dimensions matter when picking up a portfolio that maximises

the utility of an investor: expected return and variance of the portfolio. Thus,

the problem of portfolio selection boils down to a trade-off between the mean

return of a portfolio µp
t and its variance varp

t . Therefore, yielding the following
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optimisation problem:

max
wt∈Ω

E[U(Wt)] = µp
t −

λ

2 varp
t = E[w′

trt]−
λ

2 E[(w′
trt−µp

t )2] (3.27)

where λ is a positive parameter representing investor aversion towards risk, in

this framework related to the second moment only of the return distribution.

It now emerges that equation (3.27) relates to equations (3.25) and (3.26)

when we drop dependence of the utility function to the third and fourth moment

of the distribution. This is legitimate in two circumstances: when the utility

function is quadratic, and/or when returns follow a multivariate elliptical

distribution. A critique raised against the quadratic utility assumption is that

it provides unintuitive implications when returns rise above a critical value.

In particular, investors maximising a quadratic utility function after a critical

value prefer less return to more return [207].

On the statistical properties of asset returns, Chamberlain [212] showed

that when these follow a multivariate elliptical distribution (e.g.: Normal,

Student-t and Levy distributions), the mean-variance approximation is exact

for all possible utility functions. Empirically, Kroll et al. [213] and Jondeau and

Rockinger [210] found that the mean-variance provides a good approximation

only under moderate non-normality.

Approaches to Higher Moments. When an investor is faced with two

investment options exhibiting the same first and second moments, it comes

naturally for the investor to consider higher order moments. A rational investor

would certainly prefer higher skewness and lower kurtosis. Therefore, the

mean-variance approximation is no longer appropriate when higher moments

matter and cannot be spanned by lower ones [207]. This is indeed the approach

taken, for example, by Harvey et al. [214], where skewness and co-skewness

are accounted for when considering different portfolios. In Fabozzi et al. [215],

portfolio selection in the presence of higher moments is discussed, and they

show that a fourth order Taylor expansion of a logarithmic utility function

delivers an objective that penalises variance and kurtosis, while rewarding
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expected returns and skewness. Finally, Jondeau and Rockinger [210] analyse

the case for the first four central moments of the expected utility function in

general and of the CARA (Constant Absolute Risk Aversion) in particular;

meanwhile, in Lai et al. [216], a polynomial goal programming framework is

developed to solve the mean-variance-skewness-kurtosis problem.

Transaction Costs. Transaction costs can be modelled in different ways.

Following Sun et al. [217] we can model linear transaction costs such that when

taking allocation weights wt from position w+
t−1 the cost incurred is

Ct = C(wt,w
+
t−1) = c′|wt−w+

t−1| (3.28)

where w+
t−1 is the pre-rebalance (end of period) asset position (i.e., w+

t−1 =
wt−1◦(1+rt)
w′

t−1(1+rt) ), | · | is the element-wise absolute value and c is the vector of trans-

action costs; thus, equation (3.28) induces a penalisation term on rebalancing.

Estimating Statistics. In order to maximise the approximated utility

function in equations (3.25), (3.26) or (3.27), it is first necessary to compute an

estimate for the statistics of interest, or more generally of the joint distribution

function of asset returns F (rt). Different approaches are available in the

literature, starting from the simple use of historical sample moments, using

moving average or exponential moving averages, or adopting time series models

for the purpose. For example, autoregressive models can be estimated to

provide next period estimates of the first and second moment of asset returns.

The estimation of these statistics is tantamount to the performance, as errors

propagate into the optimisation problem with the consequence of injecting

noise in the asset allocation step. In Chapter 6 we provide estimates of the

relevant statistics for the asset allocation strategies with two approaches, the

first of which applies simple sample estimates using expanding windows. In

the second approach we use the output of the Deep Dynamic Factor Model

(D2FM) introduced and elaborated in Chapter 4.
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3.3.2 Other Approaches to Portfolio Optimisation

We now present other approaches to the problem of optimal asset allocations

that we will use and empirically evaluate in Chapter 6. All of them require an

estimate for the relevant statistics characterising some aspects of the distribution

of next period asset returns.

Minimum Variance. Minimum variance is similar in spirit to the mean

variance optimisation framework, but assumes that investors care only about

risk. Hence, the objective function is:

min
wt∈Ω

E[(w′
trt−µp

t )2]. (3.29)

A comparison between mean variance and minimum variance signals that a

minimum variance investor has a lower expected return profile. Nevertheless,

empirically high volatility and high beta stocks have performed worst than low

volatility and low beta stocks in the U.S. market [218]. Additionally, one can

think about the minimum variance as a special case of the mean-variance where

prices’s stochastic processes are martingales, hence making expected returns

zero.

Risk Parity. The risk parity portfolio consists in allocating wealth to the

assets so that they contribute equally to the variance of the portfolio; while

mean-variance generally leads to concentrated positions in a few assets, the

risk parity approach favours diversification [219]. The objective function in this

setting is

min
wt∈Ω

n∑
i=1

[wt,i−
(∑n

i=1 σi(wt))2

(Σtwt)iN
]2, (3.30)

where Σt is the variance covariance matrix of asset returns rt, while (Σtwt)i is

the i− th element of the vector of the product of this matrix with the asset

weights. Finally, σi(wt) = wt,i(Σtwt)i√
w′

tΣtwt
.

Hierarchical Risk Parity. Hierarchical risk parity, as introduced by

De Prado [41, 220], deals with three major concerns of quadratic optimisers in

general and the Markowitz framework in particular: instability, concentration
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and under-performance. De Prado argues that in any optimisation framework

that involves the inversion of the variance-covariance matrix, the higher is the

correlation among asset returns, the more unstable the solution, notwithstanding

the higher the need for diversification in such a situation. This is what De Prado

[41] calls the Markowitz’ curse, and to deal with the problem he introduces an

algorithm with three steps: Hierarchical Tree Clustering, Quasi-Diagonalisation

and Recursive Bisection. The Hierarchical Tree Clustering step at first converts

a correlation matrix ρt into a correlation distance matrix Dt, such that element

Dt,i,j =
√

0.5(1−ρt,i,j). Then another distance matrix is constructed to measure

the closeness in similarity of two assets with respect to all other assets in

Euclidean metric. This measure takes the form D̄t,i,j =
√∑d

k=1(Dt,k,i−Dt,k,j)2.

Finally, clusters are defined by taking the two elements at the minimum of

this distance matrix. The procedure is repeated by recursively dropping the

clustered elements so as to construct a dendrogram. The Quasi-Diagonalisation

step consists in a rearrangement of the covariance matrix such that similar

assets are placed together, and dissimilar ones are placed far apart. Finally,

allocations are provided by the Recursive Bisection step. Namely, all weights

are initialised to 1. Then, starting from the topmost cluster, we compute the

variance of the sub-clusters as Ṽt,i = w′
tVt,iwt, where Vt,i with i = 1,2 is the

variance of child cluster i, while wt = diag(Vt)−1

trace(diag(Vt)−1) . Successively, a split

factor is computed as αt = 1− Ṽt,1
Ṽt,1+Ṽt,2

. Finally, weights in child cluster 1 are

scaled by αt, while those in child cluster 2 by 1−αt. The process is repeated

until leaf nodes. A detailed implementation of the algorithm can be found in

the original source [41, 220].

3.3.3 Deep Portfolio Optimisation

Recently, a number of papers have proposed the use of deep learning techniques

to solve the asset allocation problem [see 23, 24, 25, 26, 27, for example]. In

such a framework, asset allocation weights are given by a parametrised deep
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learning model of the following form:

wt = DNN(xt;θ) (3.31)

where DNN(xt;θ) stands for a generic deep neural network with parameters θ

and inputs xt. One difference in this approach compared to the aforementioned

is the combination of the prediction and optimisation step in a unique one.

Indeed, the method does not require the user to plug in any estimate of key

statistics for future returns distribution, but rather only the history of returns

together with any other feature that the user deems relevant, and which we

collect in xt (on top of the objective function to optimise). Another important

difference with respect to the static myopic approaches discussed thus far is the

dynamic aspect of this methodology, and its relation to Dynamic Programming

and Reinforcement Learning. The DNN in equation (3.31) can be seen as

a parametrised policy function solving the dynamic asset allocation problem

that we will discuss in next section. Nevertheless, the link is clear only when

cumulative rewards in terms of profits are specified as objective function (or

the average returns as in Noguer and Srivastava [24]), but when other types of

loss are designed, like the Sharpe ratio, such connection is no longer sharp [23].

In order to optimise the parameters θ, we need to define an objective

function (or loss function). In Zhang et al. [23] the Sharpe ratio is used, i.e.,

−L(θ) = µ̂p
t (θ)

σ̂p
t (θ) , while Noguer and Srivastava [24] use −L(θ) = µ̂p

t (θ). Here, we

set the minus in front of the loss function L(θ), as this one is generally minimised.

Estimates of the statistics are computed over a given trading period; thus,

we have µ̂p
t (θ) = 1

T

∑T
t=1(πθ(xt)′rt) and σ̂p

t (θ) =
√

1
T

∑T
t=1(πθ(xt)′rt− µ̂p

t (θ))2,

where πθ(xt) are the asset allocation decisions taken for period t, which are

function of the neural network input features summarised in the vector of

relevant states xt, and its parameters θ (i.e., πθ(xt) := DNN(xt;θ)). In both

methods, the output layer is a softmax function so that weights are larger than

zero and sum up to 1, thus, imposing a long-only fully invested constraint.

Generalised gradient methods on the loss function L(θ) allow us to ameliorate



3.3. Overview of Portfolio Optimisation 64

the parameters θ and the conditional allocation weights wt = πθ(xt) with

respect to the specified loss function.

3.3.4 Dynamic Framework

Up to now, and with the exception of the previous section, we have discussed the

static version of the portfolio optimisation problem. Namely, we have assumed

a single period framework. We now proceed by formulating the dynamic version

of the problem within a self-financing framework, thus without accounting

for consumption and income effects. Before doing this, let’s define the MDP

faced by the investor. We assume at any given point in time t the investor

observes a vector of states xt, conditioned on which he takes action wt = π(xt).

Upon taking this action, the investor incurs into an instantaneous cost Ct

defined in equation (3.28) which cumulates with the expected reward. The

latter is a function of the allocation strategy (wt) and the next period returns’

distribution rt+1 which we assume to be both fully characterised by the current

states xt. The system then evolves according to a given transition probability

kernel P from state xt to the new state xt+1, and so on. Thus, similarly to

Sun et al. [217] we can write the following Bellman equation8

Jt(x,π) = max
π
{E[G(xt,π)+Jt+1(xt+1,π)|xt = x]} , (3.32)

with the instantaneous reward defined as E[G(xt,π)|xt = x] = E[C(π(xt),w+
t−1)+

U(π(xt)′(1+rt+1))|xt = x], where we have collected the previous period weights

in the state vector xt together with all other relevant information to ensure

Markovianity. This formulation of the problem allows us to apply the techniques

discussed in Section 3.2.5.9 Indeed, in the dedicated section of the literature

review chapter (see 2.3), we introduced the formulation of the dynamic portfolio

8Sun et al. [217] use this formulation in the context of optimal portfolio rebalancing, we
borrow their formulation and adapt it to our context.

9A note of caution, however, might be made in case one would like to apply deterministic
policy gradient methods (see 3.2.5) and at the same time (s)he wishes to specify transaction
costs as in equation (3.28). Indeed, in this case the first derivative of the Q function
(∆aQπ(x,a)) does not exist when the policy suggests not to rebalance (i.e., π(xt) = w+

t−1).
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optimisation problem as an MDP and we surveyed the related literature.

Finally, as discussed in Back [110], when the return vector rt is indipendent

and identically distributed (i.i.d.) and we are in front of a linear risk tolerance

utility function, then there is not much new in the dynamic formulation of the

problem as opposed to the single period formulation discussed previously.

3.4 Explainable Deep Learning
Deep learning models can be highly nonlinear with many interaction entities;

thus, behaving akin black boxes to humans. Where a black box is a type of

model whose workings are either proprietary or known but uninterpretable

to humans [221, 28]. Thus, assuming the human user has access to a Deep

Learning model, (s)he could still be unable to interpret it. In order to solve

this problem many scientists have focused on the design of tools to explain

their models or on building models that are inherently interpretable. This

has given rise to a new branch of AI called eXplainable AI (XAI) [29]. In

the literature different surveys of XAI with related taxonomies are available

[221, 222, 223, 30], and we intend to conform to them in the following.

3.4.1 Interpretability and Explainability

While these two concepts are sometime used in an interchangeable manner

[224], Rudin [28] makes a clear distinction among the two and in this work

we intend to conform to this. Namely, a model is interpretable when its

working mechanisms are intrinsically comprehensible to humans, as it is the

case for linear regressions and decision trees for example [221];10 on the other

side explainability refers to the possibility of building a post hoc trustworthy

interface between the human and the model that makes some or all aspects of

the model comprehensible to humans [28, 30].

To formalise the model explanation problem we make use of the following

definition from Guidotti et al. [221].

10Sometime this feature is also expressed as transparency [30].
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Definition 1 (Model Explanation Problem). Given a black box predictor Gθ(·)

and a set of instances X , the model explanation problem consists in finding an

explanation εx ∈ E, belonging to a human interpretable domain E, through an

interpretable global predictor cg = f(Gθ(·),X ) derived from the black box Gθ(·)

and the set of instances X using some process f(·, ·). An explanation εx ∈ E

is obtained through cg, if εx = εxg(cg,X ) for some explanation logic εxg(·, ·),

which reasons over cg and X .

This definition is very general and it includes the case where an explanation

logic is needed to process the interpretable predictor cg. As it emerges from this

definition, interpretability is a characteristic of the model, while explainability

refers to the sequence of actions that goes from the selection of an interpretable

model to the application of the explanation logic to map the output of the

interpretable model to the human interpretable domain E .

The issue of directly building interpretable models instead of looking for a

post-hoc intepretable representation of the original model is formalised in the

definition of the Transparent Box Design Problem from Guidotti et al. [221].

Definition 2 (Transparent Box Design Problem). Given a training dataset

D = X ,Y, the transparent box design problem consists in learning a locally or

globally interpretable predictor c from D. For a locally interpretable predictor c,

there exists a local explanator logic εxl to derive an explanation εxl(c,x) of the

decision c(x) for an instance x. For a globally interpretable predictor c, there

exists a global explanator εxg(c,x) to derive an explanation εxg(c,x)(c,X ).

In general one is rarely interested in all possible εx ∈ E , and most often

researchers are concerned only about a subset of E . The definition of this subset

is problem specific, as well as the design of explanability tools and that of

interpretable models. In the context of DFMs discussed in 3.1.2, Banbura and

Modugno [39] introduce the concept of news as an explanation of the change in

the conditional prediction of a target variable given the new information set.

In this explanation context and within their DFM framework, those quantities
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are directly computable and thus their model can be considered interpretable

in this sense. In Rudin [28], the author explicitly pushes scientists to dedicate

their efforts to the development of inherently interpretable models, which we

link to the Transparent Box Design Problem of Guidotti et al. [221], and which

we identify in the DFM of Banbura and Modugno [39]. After discussing the

many technical obstacles in building inherently interpretable models, Rudin [28]

recognise the difficulty in collecting literature on interpretable machine learning

models. Indeed, the authors comment that often the keyword interpretable is

neither mentioned in the title nor in the body of the text. In particular, works

on interpretable machine learning mentioned in the paper build interpretable

models by including constraint in the optimisation and/or using dimensionality

reduction to interpretable dimensions [225, 226, 227, 228, 229]. In particular, in

Gallagher et al. [227], the authors analyse brain-wide electrical spatiotemporal

dynamics in a compressed space in order to understand depression vulnerability.

Also in this sense a DFM can be considered interpretable, as it maps a large

dataset to a lower dimensional space of common components that aim to

represent features of the Busyness Cycle. For these reasons, in Chapter 4 we

introduce a new modelling framework that extends the DFM from Banbura

and Modugno [39] with some of the deep learning techniques introduced in 3.2.

Notably, the new framework remains interpretable with respect to the different

aspects discussed.

3.4.2 Other Taxonomies

Explainability methods are model specific when they leverage the structure of

the model being explained to make its output understandable to humans. For

DL models, the Integrated Gradient [230] and the Deep SHAP [231] represent

model specific examples. As such, those approaches have the drawback of being

applicable only to the type of models for which they were designed. On the

contrary, model agnostic approaches are more flexible and general, as they are

designed to explain general black-box types of predictors. Examples in this

category are LIME [232], and Sampled and Kernel SHAP [233, 234, 140, 231].
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When measuring the importance of a feature we can use methods that

focus on a single instance or on the entire dataset. The former are referred as

local methods, while the latter are called global methods. However, if we run a

local method on an entire dataset, we could of course compute some metrics

from it to derive global measures.

Surrogate methods for explainability consist of implementing one or more

interpretable models to explain the original black box predictions. Arguably,

this approach generates wrong explanations or it is not completely faithful to

the original ones. Indeed, if this were not the case, one could have in principle

used the interpretable model [28]. Conversely, visualisation methods do not

use a different model, but rather an algorithm to explain the black box model

through visualisation maps. Feature attribution methods are in this category,

and we will next discuss one of them.

3.4.3 Feature Attribution Methods: Shapley Values and

the Choice of a Baseline

Feature attribution methods are used to indicate how much each feature

contributes to the prediction for a given example. As such they can be classified

as a local explanation method, although one could compute their global version

by taking some statistic over the local explanations (e.g., average or median).

In an attempt to unify notation in [231, 235] with the one of this thesis, we

define them as follows

Definition 3. [Additive feature attribution methods] They have an explanation

model that is a linear function of binary variables:

εxl(m,x) = ϕ0(m,x)+
K∑

i=1
ϕi(m,x)zi, (3.33)

where z ∈ {0,1}K , K is the number of input features, and ϕi(m,x) ∈ R.

The variable zi represents a feature being observed when it takes the value

of 1 or unknown when it takes the value of 0, while ϕi(m,x) represents the
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i−th feature attribution value based on model m and input x. This definition

implies the need of the construction of a mapping hx : {0,1}K →X , such that

hx(z) = x. Moreover, the model m could be the original model itself (m = Gθ)

or an interpretable version of it (m = cg from Definition 1).

A theoretically grounded feature attribution method that uses directly

the original model (i.e., m = Gθ) is provided by the Shapley values and their

approximations [231, 236]. In particular, Theorem 1 from Lundberg and Lee

[231] shows that Shapley values are the unique possible explanation model that

follows Definition 3 while satisfying three desirable properties: local accuracy,

missingness and consistency. Local accuracy establishes that the sum of

the feature attributions equates the output of the model we wish to explain.

Missingness states that missing features (i.e., zi = 0) have no importance.

Consistency ensures that when changing the model to a model where a given

feature has more importance, this will not decrease the attribution calculated

for the feature.

For a neural network, Gθ with parameters θ, and K input features, the

contribution of feature j calculated according to the Shapley value for input

x = [x1,x2, . . . ,xK ] is given by

ϕj(Gθ,x) =
∑

S⊆P \{j}

|S|!(|P |− |S|−1)!
|P |!

(
Gθ(x̃S∪{j})−Gθ(x̃S)

)
, (3.34)

where P is the collection of all feature indices, element i of vector x̃S is given

by x̃S,i = xi1{i∈S} + bi1{i̸∈S} (similarly for x̃S∪{j}), and bi is the baseline value

for feature i. The baseline models the missingness of a feature, i.e., it replaces

that feature when it is absent (i.e., zi = 0). As argued by Sturmfels et al.

[237], the concept of missingness is not well defined or explored in ML models.

Alternatively, feature(s) can be removed from the model via marginalisation,

thus assuming a distribution for bi. Nevertheless, the standard practice in

setting up a baseline is to assign a vector of zeros for all features. However,

this choice might provide wrong interpretations and even give zero importance
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to significant features.

Whereas as the number of features increases, calculating Shapley values

becomes expensive because the computational cost is exponential with respect

to the number of features. Hence, approximation methods have been developed,

of which the most commonly used ones in Deep Learning are Deep Taylor

Decomposition [238], Integrated Gradient [230], Deep SHAP [231], and Deep

LIFT [239]. Other model agnostic methods are Sampled and Kernel SHAP

[233, 234, 140, 231]. All of these methods require the choice of a baseline.

The simplest choice of a baseline is the zero vector baseline [240, 230,

239, 236], which coincides with the average vector baseline when features are

standardised. However, this choice could be misleading. For instance, consider

a feature in a model that is most significant when its value is zero. Now, if we

compute the Shapley values on this model with the zero baseline, the importance

of that will be zero. One way of addressing the zero-baseline insensitivity

problem is to use the maximum distance baseline (mdb) method [237]. This

baseline consists of taking the furthest observation from the current one in an L1

norm. However, this approach unequivocally creates incoherent justifications

for the interpretations provided by the model due to the dependence of the

baseline to each of the instances being explained.

Alternatively, one can sample a baseline from a multivariate distribution

such as Uniform [237] or Gaussian [241]. This approach can be improved by

considering a sample of baselines and to average the attributions computed

over each baseline [241, 231, 242, 243, 244]. Another form of sampling is the

one performed using the input data. Hence, one can use the underlying inputs’

empirical distribution [231, 244, 237]. We denote this as the pX baseline method.

However, the pX baseline increases the computational cost of estimating feature

attributions linearly with respect to the number of draws. Moreover, this choice

of baseline does not allow the setting of a reference value on the model output

when computing the Shapley values. This is important when decisions are

taken with respect to a specific value of the model. This generalises also to the



3.4. Explainable Deep Learning 71

other baselines described before.

For the Deep Taylor Decomposition approach, the baselines are chosen

using Layer-wise Relevance Propagation [137] or Pattern Attribution [245]. The

drawback of these baseline search methods is the non applicability to other

attribution methods, such as exact Shapley values or Shapley sampling.

Since the definition of baselines is fundamental to the correct interpretation

of Shapley values [246], in chapter 5 we analyse this problem in detail and

propose a novel approach to search for them in MLPs.

3.4.4 Measure of Explainability Power

The evaluation of explainability methods from a quantitative perspective is

difficult due to the lack of a clear definition of what is a correct explanation

[247, 230, 236]. Many extrinsic evaluation of explainability power have been

developed and are based on measuring the effect on a model when removing

the most important feature, as was identified by a feature attribution method.

Some authors quantify this effect by measuring the difference in performance,

and others by measuring the difference in prediction value. The intuition behind

these methods is that if the feature attribution method correctly identifies

the most important feature, then when this feature is removed, the model

performance should decrease more (or the prediction value should deviate more)

than when a less important feature is removed. In this thesis, we will use these

evaluation methods to compare the choice of baselines.

Among these methods, two emerge in particular. The so-called RemOve

And Retrain (ROAR) [248], that consists in, given a model, first identifying the

most important feature on a per example basis and then retraining the model

with the values of the features substituted with their respective averages, and

measuring the difference in performance between the two models. Ancona et

al. [249] propose an alternative measure of local evaluation. Given a model,

one must first identify the most important feature for each example, then

remove this feature by substituting it with its baseline value and measuring

the deviation in prediction. These deviations are then averaged to obtain a
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single value. A limitation of these evaluation methods is that, since a feature

is removed one at the time, these measures may be misled by potential feature

correlations.



Chapter 4

Deep Dynamic Factor Models

(D2FMs) as Interpretable Models

In this chapter we introduce and evaluate a new Deep Learning (DL) framework

which is constructed to embrace the suggestion of Rudin [28] to build inherently

interpretable models, and the Transparent Box Design Problem1 of Guidotti

et al. [221]. In fact, we merge the DL literature on autoencoders with the

econometric one on Dynamic Factor Models (DFMs) and Nowcasting.2 The

combination will comprise a family of models – which we label Deep Dynamic

Factor Models (D2FMs or DDFMs) – and is general enough to account for

many functional forms and datasets, while mantaining interpretablility aspects

of DFMs.

In particular, by embedding autoencoders in a dynamic nonlinear factor

model structure to tackle financial and macroeconomic problems, we provide

generalisation of linear factor models. Importantly, the equivalence between

maximum likelihood estimation and minimisation of mean squared error in

the presence of conditional Gaussianity [159], together with the Universal

Approximation Theorem [188, 189, 190], allow us to conceptualise D2FMs

and the procedure adopted in estimating them as an efficient computational

method to approximate the maximum likelihood estimates of nonlinear factor

1See Definition 2.
2Nowcasting is a contraction of the term now and forecasting and it refers to the prediction

of the present, the very near future, and the very recent past state of an economic indicator.
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models. Another contribution of this work is to show how to incorporate general

patterns of missing data, jagged edges and mixed frequencies in this framework

by extending gradient-based backpropagation methods for DL.

Our methodology scales better compared to (approximate) maximum

likelihood methods for DFMs when the dataset contains many features and/or

observations. To the best of our knowledge, this work is the first to adapt an

autoencoder structure into a dynamic model with both factor dynamics and

dynamic idiosyncratic components, in a state-space framework for real-time

high dimensional mixed frequencies time-series data with arbitrary patterns of

missing observations. The proposed D2FM framework is very general and can

in principle be applied to many different problems both in forecasting and in

structural analysis, as it is done with DFMs. The model is designed to be in

spirit as close as possible to DFMs.

Through a Monte Carlo simulation exercise and on a macroeconomic

dataset we empirically demonstrate the ability of the model to outperform the

standard DFM. For the Macroeconomic dataset we encode, using our model

and the DFM, the full McCracken and Ng [250] FRED-MD dataset, a large

macroeconomic database for the U.S. economy, which has been specifically

designed for the empirical analysis of big data.

On the methodological aspect, this chapter connects with a number of

works from the DL literature [200, 205, 202, 203, 201, 204, 251, among others]

which has been covered in Section 3.2.4 of Chapter 3. We also connect with the

literature that has been using DL techniques to estimate state space models. In

particular, Rangapuram et al. [204] propose a recurrent neural network (RNN)

structure that, given the input features, provides the latent states together

with all the (time-varying) parameters of the state space model. Optimisation

is carried out on the log-likelihood efficiently computed via the Kalman filter.

They argue that, different from Deep AR [251] models, in their approach the

target values are not used as inputs, thus making their model more robust to

noise and able to handle missing data. We tackle those two issues differently.
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For the former we apply a denoising approach, for the latter we use selection

matrices to mask missing data on the output side, while the generative spirit

of our model allows us to do conditional sampling in order to fill missing

inputs during the training. Additionally, in all of the surveyed works mixed

frequencies and variable specific (idiosyncratic) components are not taken into

consideration. In our approach we propose a way to deal with both of these

issues. The first we resolve by including restriction matrices in the emission

equation à la Mariano and Murasawa [252]. The second is handled by designing

an alternated optimisation scheme between common factors and idiosyncratic

components by means of a Markov Chain Monte Carlo algorithm.

By observing that factor models can be thought of as a special case in the

class of the dynamic autoencoder models, this work connects also with the large

and influential literature on factor models in Economics. Since its onset, a key

problem in the factor model literature has been that, due to the latency of the

factors, maximum likelihood estimators cannot be derived explicitly. Geweke

[83] and Sargent and Sims [84] for the frequency domain, Engle and Watson

[253] and Stock and Watson [38] for the time domain have proposed algorithms

for small dynamic latent models. The common drawback of all these proposed

methods is that, in general, the maximum likelihood approach is impractical for

datasets where the cross-section size is large. To solve this problem, Forni and

Reichlin [254], Stock and Watson [85] and Giannone et al. [255] have proposed

non-parametric methods based on principal component analysis to estimate the

latent components with large cross-section data.3 Banbura and Modugno [39]

have provided a methodology to deal with any pattern of missing data, while

allowing for mixed frequencies series and jagged edge issues in large datasets.4

Their methodological framework, which has been introduced in Section 3.1, will

be used as a building block and benchmark for the methodology introduced in
3Recently, Doz et al. [154] and Barigozzi and Luciani [37] showed that when the size of the

cross-section tends to infinite the estimates obtained by a quasi-maximum likelihood approach
are consistent, also when there is a weak cross-sectional correlation in the idiosyncratic
components.

4Jungbacker et al. [256] provide efficient and fast treatment of missing data in the dynamic
factor model estimation.
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this chapter.

Finally, we connect to the econometric literature that has explored the

extend of nonlinearities in macroeconomic data and proposed univariate and

multivariate nonlinear time-series models [see 257, for a comprehensive literature

review]. An important part of this literature has estimated dynamic latent

models with nonlinearities, which are explicitly modelled through structural

breaks, Markov switching regression or threshold regression [258, 259, 260, 261,

262].5 The approach of Bai and Ng [264] is the closest in spirit to ours and

an important early effort at including nonlinearities in factor models. In that

paper, either principal components of nonlinear transformation of the data

are estimated or nonlinear transformation of the factors are added to a linear

factor model. Our methodology is more general. In fact, different from their

procedure, our D2FMs need not to assume a specific form of nonlinearity, either

in the encoding or in the decoding map.6

4.1 Encoding in Economics
An overreaching idea in Macroeconomics, already present in the work of Burns

and Mitchell [144], is that a few common forces can explain the joint dynamics

of many macroeconomic variables. This stylised view of the economic data

generating process informs the effort of economic modelling in – for example,

the Real Business Cycle (RBC) and Dynamic Stochastic General Equilibrium

(DSGE) literature – and is one of the very few robust facts in empirical

macroeconomics, motivating the use of factor models [see 266, for example].

In Macroeconometrics, factor models were introduced by Geweke [83] and

Sargent and Sims [84] and are the very first instance of big data in the field.

Dynamic Factor Models (DFMs) deal with a large cross-section problem by

applying a linear dynamic latent state framework to the analysis of economic

5Nonlinearities have been also modelled in structural factor models using DSGE models
(Dynamic Stochastic General Equilibrium models) as in Amisano and Tristani [263] to detect
regime switching in volatility.

6The deep learning literature refers to this as a shift from feature engineering to architecture
engineering [see 265, for example].
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time-series. The underlying assumption of these models is that there is a small

number of pervasive, unobserved, common factors that stir the economy and

inform the comovements of hundreds of economic variables. Economic times

series are also affected by variable-specific (idiosyncratic) disturbances. These

idiosyncratic disturbances can be due either to measurement error or to factors

that are specific to some variables. A large body of empirical evidence produced

using dynamic factor models, shows how a small number of factors – as many as

two – can capture a dominant share of the variance of all the key macroeconomic

and financial variables. This family of models has been applied intensively in

Econometrics to different problems such as forecasting, structural analysis and

the construction of economic activity indicators [see 85, 86, 87, 88, 89, 90, 91, 92,

among others]. Factor models are robust and flexible models, also able to

accommodate for missing observations, jagged patterns of data and mixed

frequencies.7 However, arguably their most important limitation is that they

almost always assumed linear structure.

4.2 Autoencoders and Factor Models
Autoencoders are neural networks trained to map a set of variables into them-

selves, by first encoding the input into a lower dimensional representation

and then decoding it back into itself.8 The lower dimensional representation

forces the autoencoder to capture the most salient features of the data. In

constructing a nonlinear reflexive map that links the inputs back to itself via a

lower dimensional space, autoencoders can be thought of as a nonlinear gener-

alisation of PCA. Recently Deep AutoRegressive Networks [200] and Temporal

Difference Variational Autoencoders [201] have been introduced to extend the

static autoencoder framework to a dynamic environment.

On the other side, dynamic factor models for econometric time series are

multivariate probabilistic models in which a vector of stochastic disturbances

7Jagged edges arise when there is a varying number of missing observations at the end of
multiple time-series due to non-synchronous release dates.

8See Section 3.2.3 for additional details on autoencoders.
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are transmitted via linear dynamic equations to the observed variables. They

assume that a small number of stochastic unobserved common factors informs

the comovements of hundreds of economic variables. In doing this, they combine

two core ideas of macroeconomics: the Frisch-Slutsky paradigm, which assumes

the economic variables to be generated by the stochastic components (the

economic shocks) via usually linear dynamic difference equations [see 267,

for example]; and the Burns and Mitchell [144] idea: that a few common

disturbances explain most of the dynamics of all the macroeconomics variables,

with a residual share due to idiosyncratic components. DFMs are similar in

intuition to principal component analysis (PCA), but assume stochastic and

dynamic structure that allows for their application to econometric times series.

In this section, we explore the deep connection between factor models and

autoencoders to show that the dynamic formulation of autoencoders can be

regarded as a nonlinear generalisation of dynamic factor models in the same

way that standard autoencoders can be seen as generalisations of principal

component analysis.

4.2.1 Latent Factor Models

Let us first introduce a general formulation of latent factor models with id-

iosyncratic components. We define yt = (yt,1, ...,yt,n) as the vector collecting

the n variables of interest at time t, usually assumed to be the realisation of a

vector stochastic process. A general latent factor model can be written as

yt = FθF
(f t)+εt = ỹt +εt , (4.1)

where f t is an r×1 (for r = dim(f) << n = dim(y)) vector of latent common

stochastic components – i.e. the factors –, εt are idiosyncratic and unobserved

stochastic error terms, and FθF
(·) is a generic function mapping the unobserved

factors into the observed variables. Usual assumptions are that f t and εt are

independent, with zero mean and finite variance (the variance of f t is often

assumed to be a diagonal matrix). For later reference, we indicate as ỹt the
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projection of yt into the factors f t. By also assuming a linear function FθF
(·),

the model reduces to the standard linear factor model

yt = θF f t +εt. (4.2)

However, in general, FθF
(·) need not be linear and we can express the

factor component of equation (4.1) as

ỹt = FθF
(GθG

(yt)) = (FθF
◦GθG

)(yt) = (FθF
◦GθG

)(ỹt +εt), (4.3)

where GθG
(·) is the function mapping the observables into the code f t (encoding

function), and FθF
(·) is the function mapping the factors back into yt (decoding

function), that is ỹt. The connection between factor models and autoencoders is

more evident in this form. In fact, the map in equation (4.3) can be regarded as

a very general autoencoder. Linear factor models can be seen as a special case

of factor models assuming both a linear encoding and a linear decoding function.

It is worth noting that the model in equations (4.1) and (4.3), together with

a specification of the dynamic transition equations, correspond to the static

representation of a Dynamic Factor Model (see Section 3.1).

4.2.2 Dynamics in Factor Models

Thus far we have discussed the general structure of factor models by abstracting

from the dynamics and focusing on the static map into lower dimensional factors.

Dynamics is usually introduced in DFMs by assuming that both f t and εt

are generated by linear stochastic vector difference equations. For example,

Banbura et al. [93] and Banbura and Modugno [39] consider a system specified

as

yt = θF f t +εt , (4.4)

f t = B1f t−1 + · · ·+Bpf t−p +ut, ut
iid∼ N (0,U), (4.5)

εt = Φ1εt−1 + · · ·+Φdεt−d +ϵt, ϵt
iid∼ N (0,Q), (4.6)
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where B1, . . . ,Bp are the r× r matrices of autoregressive coefficients for the

factors and Φ1, . . . ,Φd are the n×n diagonal matrices of autoregressive coeffi-

cients for the idiosyncratic component (i.e. Φ1 = diag(ϕ1, . . . ,ϕn)). Specifically,

the authors [93, 39] assume a vector autoregressive (VAR) process of order two

(p = 2) for factors, and an autoregressive (AR) process of order one (d = 1)

for the idiosyncratic components. Morevoer, Q is assumed to be a diagonal

matrix, while restrictions on U can be imposed for identification purposes (i.e.,

U = Ir).

Such a structure can be constructed by adding to our formulation in

equations (4.1) and (4.3) the following assumptions:

A.1 Encoding function GθG
(·) : y→ f is a linear operator;

A.2 Decoding function FθF
(·) : f → ỹ is a linear operator;

A.3 Factor dynamics f t follows a linear stochastic vector difference equation;

A.4 Idiosyncratic component dynamics εt follows a linear stochastic

vector difference equation with diagonal matrices of autoregressive coeffi-

cients;

A.5 Distributions Error terms from the transition (and emission) equations

are assumed to be i.i.d. Gaussian.9

Autoencoders provide a practical solution for estimating factor models

with a more general structure, by potentially relaxing one or more of these

assumptions to obtain both nonlinear maps from reduced dimension factors to

observable variables and vice-versa, but also to introduce nonlinear dynamic

equations. This approach to the generalisation of dynamic factor models, is

what we call Deep Dynamic Factor Models (D2FMs or DDFM). In the next
9Once in state-space, a standard DFM as described in equations from (4.4) to (4.6)

features a noise process in the measurement equation (4.4), on top of the error terms ut

and ϵt from the transition equations. This measurement error term (call it ηt) is usually
assumed to be i.i.d. multivariate Gaussian with identity matrix scaled by a small constant,
that is ηt

iid∼ N (0,ηI), with η a small number larger than zero.
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section, we show how to construct and estimate an autoencoder that relaxes

assumptions A.1 and A.2, while maintaining the others.10

4.2.3 Estimation and Conditional Likelihood

In principle the parameters of a parametric factor model of the form yt =

FθF
(f t)+εt would be estimated via maximum likelihood,

θ̂ = argmax
θ

pmodel(Y |Ŷ ) , (4.7)

where by Y and Ŷ we now indicate the full sample of observation and predicted

values from the factor model, and pmodel(·|·) is the conditional probability

density function of the model.

However, a direct maximum likelihood is rarely feasible, even for linear

models, and iterative methods to find maximum likelihood or maximum a

posteriori (MAP) estimates of the parameters of the model are preferred. In fact,

maximum likelihood estimators of the parameters θ = (θF ,B(L),U ,Φ(L),Q)

are in general not available in closed form and a direct numerical maximisation

can be too demanding when the cross-section is large. Indeed, a proposed

solution in the linear factor model literature is to adopt the Expectation

Maximisation (EM) algorithm, a maximum a posteriori method, and to initialise

the common factors f t with PCA on the observables.11 The updates of the

latent components are performed using the Kalman filter and smoother.

A similar approach can be selected from a DL point of view on factor

models by employing the methodologies developed in the deep learning literature

without losing the dynamic model interpretation. As we discuss in the next

section, the model parameters of a D2FM can be estimated via Markov Chain

Monte Carlo gradient method, instead of using a least square based EM

algorithm which is the standard practice for DFMs.
10See the dedicated background Section 3.1.1 and Doz et al. [154] for the robustness of

the DFM described here to assumptions A.4 and A.5. With respect to the treatment of the
time dimension into autoencoders using alternative approaches see Section 3.2.4.

11Estimation of linear factor models was originally carried out via simple principal compo-
nent analysis (PCA).
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It is well known, in the linear case, that if the innovation εt are assumed

to be independent (or uncorrelated) of f t and normally distributed, than the

maximisation of the likelihood with respect to the parameters of the model

yields the same estimate for the parameters as does minimising the mean

squared error. Importantly, this equivalence between maximum likelihood

estimation and minimisation of mean squared error holds regardless of the

function used to predict the conditional mean of the conditionally Gaussian

distributed variable yt [see Goodfellow et al. 159, for example]. This allows for

an interpretation of estimation results from autoencoders with mean squared

error, from a Bayesian perspective using standard likelihood methods, or from a

frequentist one as the (approximated) mean estimator of a Gaussian distributed

process.

Furthermore, the equivalence between maximum likelihood estimation and

minimisation of mean squared error together with the Universal Approximation

Theorem, allows for the reinterpretation of autoencoders and the procedure

adopted in estimating them as an efficient computational method for approxi-

mating the maximum likelihood estimates of nonlinear factor models. These

are dynamic models defined by a conditionally Gaussian distribution centred

around a mean provided by a nonlinear but continuous function of the inputs.

In the next section, we provide an algorithm that implements these ideas.

4.3 D2FM Estimation
In this section we provide an algorithm to implement a Deep Dynamic Factor

Model for macro and financial data. In its general form, the D2FM can be

written as

f t = GθG
(yt) , (4.8)

yt = FθF
(f t)+εt = ỹt +εt , (4.9)

f t = B1f t−1 + · · ·+Bpf t−p +ut, ut
iid∼ N (0,U), (4.10)

εt = Φ1εt−1 + · · ·+Φdεt−d +ϵt, ϵt
iid∼ N (0,Q), (4.11)
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Figure 4.1: A graph representation of the training process for a the D2FM with an
asymmetric structure: nonlinear multilayer encoder and linear single
layer decoder.

where Bi for i = 1, . . . ,p and U are left unrestricted, while Φi for i = 1, . . . ,d and

Q are assumed to be diagonal. The assumptions on the linearity of the dynamic

equations are maintained (equations (4.10) and (4.11)), while the model allows

for a nonlinear map between variables and factors. The estimation of linear

factor dynamics separately yields to what Stock and Watson [149] call a state

space with static (common) factors, as opposed to a state space with dynamic

(common) factors.12

The D2FM can be implemented using a symmetric autoencoder structure

with an MLP capturing the encoding function (in equation (4.8)), and another

MLP providing the decoding one (in equation (4.9)). The assumption of i.i.d.

and Gaussian innovations allows for an interpretation of the estimated network

when minimising the mean squared errors loss as MAP of the likelihood of the

model [159].

Importantly, such a model specification encompasses several simplified

models, most notably the standard linear DFMs, and hence the estimation

algorithm can be specialised to the scope.
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4.3.1 Network Design
The core of the model is provided by an autoencoder with a nonlinear multi-

layer encoder, and either a symmetric structure in the decoding (for nonlinear

decoding) or an asymmetric structure with a linear single layer decoder. Lin-

ear stochastic autoregressive equations are chosen to model the dynamics of

factors and idiosyncratic components. Alternatively, one could employ nonlinear

dynamics in the form of multi-layer perceptrons (MLPs) or Long Short Term

Memory (LSTM). Figure 4.1 shows a diagrammatic representation of the model.

The number of hidden layers in the encoding network, in addition to the

number of neurons need not be pre-specified but can be selected via cross-

validation. With respect to the preferred activation functions, we equip each

neuron in the coding layers with a link function in the form of the hyperbolic

tangent (tanh) for the real-time macroeconomic dataset, and of the rectified

linear unit (relu) for the Monte Carlo exercises.13 In the encoding multilayer

perceptron we also include two batch normalisation layers to allow for some

regularisation and control over potential covariate shift [268].14

In the decoding network, an additional linear layer can be included to

introduce constraints needed to account for the mixed frequencies of macroeco-

nomic data. This additional layer does not have any additional parameter, and

it only includes restrictions on the output data structure. Finally, we allow

for idiosyncratic biases by including a bias term into the output layer of the

network.

4.3.2 Estimation and Online Learning of the D2FM
In our estimation of the D2FM, we propose a two-step procedure to differentiate

between on-line and off-line learning.

- Step 1 estimate off-line all the parameters of the model;
12See Section 3.1 for a more detailed discussion about different types of DFMs.
13In general, some tuning is needed for the user in order to find the correct specification

for the dataset at use.
14These two normalisation layers can also improve the stability of the gradient updates

among batches and potentially make the optimisation smoother, hence allowing for faster
training [269].
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- Step 2 cast the decoding part in a state-space framework to allow for

on-line updates of the latent states given the observables.

Algorithm 2 implements the off-line estimation step (Step 1) of our D2FM,

assuming an AR(d) for pidio(.), but possibly a general encoding GθG
(·) and

decoding FθF
(·) function. The proposed algorithm for estimating D2FM builds

on and extends what has been proposed by Bengio et al. [194] to estimate

Generalised Denoising Autoencoders.

Algorithm 2 MCMC for D2FM with stationary AR(d) idiosyncratic compo-
nents – requires a training set, an encoding structure GθG

(·) and a decoding one
FθF

(·)
init: θG,θF ,Φ,Σε,εt

repeat
1: ỹt|(yt, ε̂t) = yt−Φ(L)εt

2: Loop epochs, batches Do
3: draw ε

(mc)
t

iid∼ N (0,Σε)
4: y(mc)

t = ỹt|(yt, ε̂t)+ε
(mc)
t

5: θG, θF update by a gradient based step on L̂(yt,FθF
(GθG

(y(mc)
t )))

6: End Loop
7: f t|y

(mc)
t = Ey(mc)

t ∼yt,ε̂t
GθG

(y(mc)
t )

8: εt|yt,f t = yt−FθF
(f t|y

(mc)
t )

9: Φ← stationary AR(d) on εt

10: Σε← from εt

until convergence on L̂(yt,FθF
(f t|y

(mc)
t )) in L1 norm

return Σε,Φ,f t,FθF

Let us summarise the estimation algorithm. Parameters are first initialised.

Line 1 performs a filtering of the input data yt by using the conditional mean

of the AR(d) of the idiosyncratic components. From lines 2 to 6, the Monte

Carlo step and the gradient updates over each epoch and batch are carried

out, employing the filtered data ỹt and injecting Gaussian noise from εt in a

denoising fashion to obtain the noisy observations y(mc)
t . In line 7, the latent

states f t are extracted from the encoding network via Monte Carlo integration,

while from line 8 to 10 the algorithm updates the parameters of the idiosyncratic
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process εt, conditional on the factors and the observables. The adoption of an

L2 (MSE) loss function L̂(yt,FθF
(f t|y

(mc)
t )) allows for interpretability of the

results, as discussed. We specify an estimated loss, as missing data prevents

us from deriving the exact loss.15 Finally, convergence is checked as the L1

norm of the distance between the loss function at two iterations. It is worth

noting that the loss, L̂(·) includes only the common components, since under

our assumptions at convergence we have the following decomposition of the

log-likehood:

logpmodel(yt|f t = GθG
(y(mc)

t ),εt = ε̂t) =

logpdecoder(yt|f t = GθG
(y(mc)

t ))+ logpidio(yt|εt = ε̂t) ,
(4.12)

where ε̂t is the estimated idiosyncratic autoregressive component. In running

over epochs and batches (lines 2 to 6), the algorithm injects uncorrelated noise

into the data (it is a Denoising Autoencoder). Hence it searches for a maximum

a posteriori (MAP) of the parameters for the modified model with log-likelihood

Eyt∼ pdata(yt)Ey(mc)
t ∼pnoisy(y(mc)

t |yt,ε̂t)
log pmodel(yt|f t = GθG

(y(mc)
t ),εt = ε̂t) ,

(4.13)

where pnoisy(y(mc)
t |yt, ε̂t) is the corruption distribution, using a Gaussian au-

toregressive process. The idea behind this procedure is to filter out the fore-

seeable idiosyncratic part from the input variables, so that only the common

component(s) remain(s). Injecting noise from the unconditional idiosyncratic

distribution will generate new samples which are not unreasonably far from

the old ones. In doing so, we define an appealing and convenient linkage

between the corruption process of the denoising approach and the idiosyncratic

component distribution (pidio).

In Step 2, the output of the algorithm is cast in the state-space of

equations (4.9)-(4.11). Dynamics of the common factors are estimated via OLS

or Maximum Likelihood.16 State updates can then be carried out via either
15We give details about the treatment of missing data in Section 4.4.1.
16The dynamic of the common latent states can also be estimated directly in Algorithm 2.
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nonlinear filtering procedures for a nonlinear decoder, or via Kalman filtering

in the presence of a linear decoder. This allows for online (i.e., out-of-sample)

learning with the flow of data.

4.3.3 Hyperparameter Selection

The D2FM described is subject to the selection of a number of critical parameters

determining its structure beyond θ. These parameters are commonly known as

hyperparameters, in that they are set before the training starts and usually

selected over a grid with respect to some validation loss, which is generally

estimated via a process called cross-validation.

The D2FM has hyperparameters typical of both deep learning and time-

series models. In particular, the deep learning hyperparameters can be divided

into two categories. The first relates to the neural network structure and

includes: type of layers, number of hidden layers, number of neurons per each

hidden layer, penalisation coefficients, dropout layers and relative dropout rates

(if included), batch normalisation layers and the link function used. The second

category relates to the optimisation algorithm used and comprehends: size

of the mini-batches, number of epochs, the learning rate and the momentum

coefficients of the gradient optimisation method, if present. Standard time-series

factor models have a few additional hyperparameters which include: number of

latent common states, number of lags of the input variables, number of lags of the

latent common states and of the idiosyncratic states. These hyperparameters, in

the time series literature, are either fixed a-priori or estimated using information

criteria instead of using cross validation methods.17

It is important to mention that in time-series we cannot apply the common

K-fold cross-validation method because of possible serial data correlation in

the residuals, unless this is absent and some other conditions are met [115].

This can be achieved by explicitly including lagged values of the factors before the decoding
network (FθF

of the algorithm), or via the use of recurrent layers.
17The Akaike information criteria (AIC) and the Bayesian information criteria (BIC) can

be used to determine the number of lags, while the number of latent factors can, in principle,
be estimated using the method proposed by Alessi et al. [270], which improves the Bai and
Ng [152] methodology.



4.4. A Deep Dynamic Factor Model for Macroeconomic and Financial Data88

Therefore, we use a standard out-of-sample validation approach consisting of

splitting the available set of observations up to a certain point in time, T ,

between a training set [0,T − k ∗h− 1], and a validation set [T − k ∗h,T −

(k− 1) ∗h], where h determines the length of the set, and k = K,. . . ,1 with

K ≪ T −1
h . By averaging over the losses computed on the K validation sets,

we get an estimate of the validation loss which is consistent when conditions

in Bergmeir et al. [115] are met. Notably, we need to estimate a given model

with fixed hyperparameter K times, and this for each possible combination of

hyperparameters. Thus, with a grid search method the computational cost is

exponential in the number of hyperparameters. Indeed, alternative methods

based on stochastic search are available [see 271, for example], as well as other

methods based on evolutionary algorithms [272].

4.4 A Deep Dynamic Factor Model for Macroe-

conomic and Financial Data

We estimate a simplified version of the D2FM in the empirical application with

a linear mapping between the factors and the variables (see Figure 4.1), i.e.,

yt = θF f t +εt . (4.9′)

It is worth mentioning, that in this form, the model can be seen as a very flexible

generalisation of the approach of Bai and Ng [264] who propose to extract

factors from variables as well as their squared values and their crossproducts.

There are a few advantages to considering this simpler D2FM. First, the

model maintains the same level of interpretability as a standard DFM, hence

making it easy to compare the two models. Certainly, this simple architecture

is inspired by the recent work of Rudin [28] that has compelled the design of

inherently interpretable models, as opposed to a purely black box approach.

Second, while interpretable, the autoencoder structure allows us to introduce

deep learning techniques in this framework to test its potential towards the
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construction of more general models. Third, the linear decoding network

and the linear state-space framework allow us to employ a standard Kalman

Filter to update the unobservable states in real-time. Finally, the adoption

of linear filtering techniques, in turn, allows for an efficient computation and

easy interpretation of the model forecast revisions coming from the flow of data

onto the performances of the model, as in Banbura et al. [93].

4.4.1 Mixed Frequency and Missing Data

Economic data are rarely available all at the same frequency – be it weekly,

monthly or quarterly – and missing data are a feature of real-time macroeco-

nomic datasets, that are characterised by the non-synchronous and staggered

data release of new data points from statistical offices. The model accounts for

these two features of macro data.

We handle the missing data problem in two or three steps depending on

the dataset. Namely, if in the pre-training when dropping missing values we are

left with few observations,18 then we first initialise missing values with spline.

Otherwise this first step is omitted and the pre-training is carried out only

on non missing data points. Second, we iterate the parameters maximisation

by replacing the missing data in the full sample with fitted values obtained

by conditioning on the estimated model and on the realisation of the latent

factors. Maximisation is carried out only on non-missing points through the

use of mask matrices; the number of observations over which the gradients are

computed can therefore differ across dimensions. Finally, in the real-time online

update phase (out-of-sample), we employ the Kalman filter to accommodate

for missing data [see 93, 39, 259, for example].

In dealing with mixed frequency data, several options are possible [see 273,

274, for example]. When the dataset includes monthly and quarterly variables,

the most popular option is the Mariano and Murasawa [252] approximation.

In the model, this approximation is implemented by including an additional

final layer to the decoding network to allow for monthly aggregations to the
18In the empirical section we set this to 50.
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quarterly variables. This layer has fixed weights which are not subject to the

optimisation. In particular, and taking the example of a quarterly growth rate

(yq
t ), it is possible to link it to the unobserved monthly growth rate (ym

t ) in the

previous layer, where every third observation of yq
t is given by:

yq
t = 1

3ym
t + 2

3ym
t−1 +ym

t−2 + 2
3ym

t−3 + 1
3ym

t−4. (4.14)

4.4.2 Model Specification and Training Details
The core of the model is provided by an asymmetric autoencoder with a

nonlinear multilayer encoder and a linear single layer decoding structure. Table

4.1 provides a summary of the network design choices, and reports the choices

operated for each hyperparameter of our model; a number of these are selected

via out-of-sample validation (see 4.3.3).

Model Components Hyperparameter Choice taken

Autoencoder

Model Structure

number of hidden layers 3
number of neurons for each layer selected via cross-validation
penalisation none
dropout layers and rates none
batch norm layers 2 included in the encoding network
link function tanh or relu

Optimization

size of mini batches 100 monthly observations
number of epochs 100 for each MC iteration
optimisation algorithm ADAM with default parameters

Dynamic Equations Model Structure

number of latent states selected via cross-validation
number of lags input variables selected via cross-validation
number of lags for latent common states 2 as in Banbura and Modugno [39]
number of lags for idiosyncratic states 1 as in Banbura and Modugno [39]

Table 4.1: Summary of model features and choices.

Optimisation, both during pre-training and training is carried out by using

ADAM [167] with default hyperparameters and 100 epochs. Before starting the

training, ADAM is reinitialised and then is run on batches (i.e., subsamples)

with a size of at least 100 monthly observations (approximately 8 years, the

average duration of a business cycle). In the training phase we set again the

number of epochs (runs on the full sample) to 100 for each iteration of the

MCMC. These iterations are also used to update the idiosyncratic distribution.
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Parameters are initialised in a two stage approach in our empirical model.

First, by using Xavier initialisation – weights in the link functions are sampled

from a Gaussian distribution with zero mean and a variance of 2/(nin +nout),

where nin is the number of input units and nout is the number of output

units, [see 275], and second by performing a pre-training step using a standard

autoencoder on a full dataset where the rows containing missing data are

discarded.19 This pre-training procedure is needed to warm up the chain.

4.5 Monte Carlo Experiment
In this section we carry out a Monte Carlo experiment to compare on a

known data generating process (DGP) the performances of the DFM and its

more general version: the D2FM . The experiments combine the simulation

environments of Doz et al. [154], Banbura and Modugno [39], and Gu et al.

[22], the latter to extend the formers’ observable equation to nonlinearities.

4.5.1 Experimental Set-up

We assume the following data generating process (DGP) [154, 39]:

yt = F (f t)+εt , (4.15)

f t = B1f t−1 +ut, ut
iid∼ N (0,Ir), (4.16)

εt = Φ1εt−1 +ϵt, ϵt
iid∼ N (0,Q), (4.17)

with t = 1, . . . ,T . However, to include nonlinearities in the DGP, we specify

factor loadings similar to Gu et al. [22] and allow F (.) to take two forms:

F (f t) =


Λf t if linear

Λ[f t,poly(f t,2), sgn(f t)]′ if nonlinear
(4.18)

19In particular, in the empirical application we check that at least 50 observations are
present when applying this rule. If this is not the case, then we drop observations for which
the corresponding variables are missing for more than 20% of the total number of features,
and we fill the rest with splines (see Section 4.4.1).
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where sgn() is the sign function (1 if positive, −1 if negative) and poly(.,2) is

a polynomial function generator of order 2; while, all other parameters are as

in Banbura and Modugno [39],

Λij
iid∼ N (0,1), i = 1, . . . ,n,j = 1, . . . , r̃, r̃ =


r linear
4r+r(r+1)

2 nonlinear
(4.19)

Bij,1 =


ρ if i = j

0 otherwise
, Φij,1 =


α if i = j

0 otherwise
, (4.20)

Qij = τ |i−j|(1−α2)√γiγj , γi = βi

1−βi

1
1−ρ2

r̃∑
j=1

Λij , βi ∼ U([u,1−u]).

(4.21)

To balance the computational cost with the generality of the experimental

framework, we restrict the range of possible configurations for the free param-

eters to the following: r = {1,3}, n = {10,100}, ρ = {0.5,0.9}, α = {0,0.5},

T = {50,200} and the fraction of missings is in {0,0.3}. For each setting, we

run 100 Monte Carlo simulations and estimate a DFM, and a four layers D2FM

with relu nonlinearities augumented with three BatchNorm layers. The number

of factors is set for both models to the true number of factors (i.e., r when the

DGP is linear in the factors and r̃ when it is nonlinear). For the D2FM, and

starting from the factor layer, hidden neurons increase by a factor of two in

each layer up to the input layer.

We compare the models based on the trace R2 of the regression of the

estimated factors on the true ones [85, 154, 39]:

Trace(F ′F̂ (F̂ ′
F̂ )−1F̂

′
F )

Trace(F ′F )
(4.22)

where F̂ = Eθ̂[F |HT ] and HT is the history of the data, while F represent the

whole history of the true factors, including their nonlinear transformations in

the nonlinear case.
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4.5.2 Results and Discussion
In Table 4.2 we report results for the linear case. Differences in performances

between the D2FM and the DFM, although often significant, are very small and

go in both directions depending on the specific case. Thus, signalling the two

frameworks are generally equivalent when the data generating process (DGP)

is linear.

Table 4.3 shows results for the nonlinear case; here the difference in

performance is striking and in favour of the D2FM. In particular, all the

differences are statistically significant and the D2FM estimates can explain

between 15% and 34% more of the total variance of the true factors compared

to the DFM.

4.6 Encoding the US Economy in Real Time
In this section we report the empirical results of the model presented in Section

4.4. Specifically, the performances of the model are tested in forecasting,

nowcasting and backcasting using a fully real-time big US macro dataset, and

assessing against three benchmark models:20 (i) a univariate AR(1) statistical

benchmark; (ii) a state-of-the-art DFM with two and (iii) three latent factors,

estimated via quasi maximum likelihood as proposed by Giannone et al. [255]

and generalised in Banbura and Modugno [39] (we refer to this model as DFM-

EM). The model is multitarget but we mainly focus on US GDP. This exercise

can be seen as a validation test to check whether the model is able to correctly

capture the relevant features of the data generating process on a real case too.

4.6.1 A Real-Time Big Macro Dataset
To test its capability, we estimate the model by encoding a real-time version of

the full McCracken and Ng [250] FRED-MD dataset, a large macroeconomic

database for the U.S. economy, specifically designed for the empirical analysis of
20Backcast is the estimate of the previous quarter up to the official release date; nowcast is

the estimate of the current quarter up to the official release date, and forecast is the estimate
of the next quarter up to the the official release date. We are able to produce backcast values
because the GDP is released usually 5 weeks after the end of the reference quarter, hence we
use the releases of the other variables during these 5 weeks to update the backcast figure.
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Factors 1
Sample 50 200

α ρ N vars Missings D2FM DFM Diff. D2FM DFM Diff.
0 0.5 10 0 0.91 0.89 0.025*** 0.94 0.94 -0.008***
0 0.5 10 0.3 0.88 0.83 0.045*** 0.91 0.91 -0.006***
0 0.5 100 0 0.96 0.95 0.011*** 0.99 0.99 -0.001***
0 0.5 100 0.3 0.95 0.93 0.02*** 0.99 0.99 0.001
0 0.9 10 0 0.74 0.75 -0.011 0.94 0.95 -0.01***
0 0.9 10 0.3 0.71 0.70 0.001* 0.93 0.94 -0.013***
0 0.9 100 0 0.77 0.74 0.024 0.96 0.96 0.001***
0 0.9 100 0.3 0.76 0.75 0.017*** 0.96 0.96 0.002

0.5 0.5 10 0 0.90 0.85 0.043*** 0.92 0.92 0.001
0.5 0.5 10 0.3 0.85 0.77 0.086*** 0.88 0.89 -0.008
0.5 0.5 100 0 0.96 0.94 0.013*** 0.99 0.99 -0.001***
0.5 0.5 100 0.3 0.95 0.94 0.015*** 0.98 0.99 -0.001***
0.5 0.9 10 0 0.72 0.72 0.004*** 0.93 0.93 0
0.5 0.9 10 0.3 0.71 0.70 0.007*** 0.92 0.93 -0.004***
0.5 0.9 100 0 0.77 0.73 0.035** 0.96 0.96 0.001***
0.5 0.9 100 0.3 0.76 0.75 0.018*** 0.96 0.96 0.002***

Factors 3
Sample 50 200

α ρ N vars Missings D2FM DFM Diff. D2FM DFM Diff.
0 0.5 10 0 0.71 0.71 -0.001** 0.76 0.80 -0.039***
0 0.5 10 0.3 0.60 0.58 0.021 0.66 0.71 -0.051***
0 0.5 100 0 0.94 0.91 0.021*** 0.97 0.97 -0.002***
0 0.5 100 0.3 0.92 0.91 0.014*** 0.96 0.96 0.002
0 0.9 10 0 0.63 0.66 -0.029*** 0.82 0.88 -0.06***
0 0.9 10 0.3 0.58 0.64 -0.066*** 0.75 0.85 -0.101***
0 0.9 100 0 0.74 0.74 0.003*** 0.92 0.92 -0.001***
0 0.9 100 0.3 0.73 0.73 -0.002 0.92 0.92 -0.003***

0.5 0.5 10 0 0.67 0.63 0.044*** 0.70 0.69 0.01
0.5 0.5 10 0.3 0.56 0.52 0.035*** 0.60 0.61 -0.013***
0.5 0.5 100 0 0.93 0.91 0.021*** 0.97 0.97 0
0.5 0.5 100 0.3 0.92 0.88 0.033*** 0.96 0.95 0.002
0.5 0.9 10 0 0.60 0.63 -0.031*** 0.77 0.85 -0.083***
0.5 0.9 10 0.3 0.55 0.61 -0.063*** 0.70 0.82 -0.12***
0.5 0.9 100 0 0.74 0.74 0.001*** 0.92 0.92 0
0.5 0.9 100 0.3 0.73 0.72 0.01** 0.92 0.92 -0.002***

Table 4.2: Linear DGP. Median over 100 Monte Carlo simulations of the Trace of the
R2 between estimated and true factors. The difference is computed as:
R2

D2F M −R2
DF M . Significance levels are based on a two sided Wilcoxon

signed-rank test: * for 10%, ** for 5% and *** for 1%.
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Factors 1
Sample 50 200

α ρ N vars Missings D2FM DFM Diff. D2FM DFM Diff.
0 0.5 10 0 0.849 0.63 0.223*** 0.88 0.66 0.217***
0 0.5 10 0.3 0.791 0.55 0.245*** 0.827 0.61 0.22***
0 0.5 100 0 0.908 0.72 0.187*** 0.911 0.76 0.154***
0 0.5 100 0.3 0.906 0.7 0.208*** 0.912 0.74 0.17***
0 0.9 10 0 0.93 0.6 0.335*** 0.945 0.64 0.302***
0 0.9 10 0.3 0.914 0.59 0.323*** 0.94 0.64 0.299***
0 0.9 100 0 0.941 0.61 0.334*** 0.96 0.65 0.308***
0 0.9 100 0.3 0.947 0.61 0.336*** 0.962 0.66 0.305***

0.5 0.5 10 0 0.862 0.59 0.274*** 0.87 0.63 0.241***
0.5 0.5 10 0.3 0.787 0.51 0.276*** 0.802 0.58 0.222***
0.5 0.5 100 0 0.913 0.71 0.199*** 0.912 0.75 0.161***
0.5 0.5 100 0.3 0.908 0.69 0.216*** 0.911 0.74 0.17***
0.5 0.9 10 0 0.932 0.59 0.342*** 0.948 0.64 0.308***
0.5 0.9 10 0.3 0.909 0.6 0.314*** 0.934 0.64 0.295***
0.5 0.9 100 0 0.929 0.61 0.322*** 0.962 0.65 0.31***
0.5 0.9 100 0.3 0.941 0.61 0.332*** 0.961 0.66 0.303***

Factors 3
Sample 50 200

α ρ N vars Missings D2FM DFM Diff. D2FM DFM Diff.
0 0.5 10 0 0.741 0.51 0.228*** 0.662 0.44 0.224***
0 0.5 10 0.3 0.653 0.43 0.223*** 0.547 0.34 0.203***
0 0.5 100 0 0.927 0.74 0.191*** 0.948 0.76 0.184***
0 0.5 100 0.3 0.871 0.68 0.188*** 0.924 0.73 0.193***
0 0.9 10 0 0.94 0.61 0.332*** 0.926 0.65 0.274***
0 0.9 10 0.3 0.884 0.61 0.279*** 0.863 0.64 0.226***
0 0.9 100 0 0.978 0.67 0.309*** 0.987 0.73 0.253***
0 0.9 100 0.3 0.974 0.68 0.296*** 0.984 0.75 0.232***

0.5 0.5 10 0 0.735 0.51 0.227*** 0.638 0.42 0.222***
0.5 0.5 10 0.3 0.646 0.43 0.213*** 0.526 0.34 0.189***
0.5 0.5 100 0 0.907 0.72 0.189*** 0.936 0.75 0.188***
0.5 0.5 100 0.3 0.85 0.66 0.191*** 0.91 0.71 0.197***
0.5 0.9 10 0 0.942 0.61 0.332*** 0.922 0.64 0.278***
0.5 0.9 10 0.3 0.884 0.62 0.267*** 0.857 0.64 0.222***
0.5 0.9 100 0 0.978 0.67 0.31*** 0.985 0.73 0.253***
0.5 0.9 100 0.3 0.974 0.68 0.298*** 0.982 0.74 0.238***

Table 4.3: Nonlinear DGP. Median over 100 Monte Carlo simulations of the Trace of
the R2 between estimated and true factors. The difference is computed as:
R2

D2F M −R2
DF M . Significance levels are based on a two sided Wilcoxon

signed-rank test: * for 10%, ** for 5% and *** for 1%.
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Figure 4.2: Panel (a) reports the number of variables along the entire considered
time. Panel (b) reports the number of variables, factors and lags
selected over time via out-of-sample validation as described in Section
4.3.3. The grey bars represent the number of variables available for
each year (left axis); blue bars represent the optimal number of latent
common states (right axis); and cyan bars represent the optimal number
of lags of input variables (right axis). The x-axis shows the year during
which the model is used for the out-of-sample evaluation.

big data.21 The cross section of data is mixed frequency because it includes 128

monthly indicators and Real GDP, which is a quarterly indicator. All the data

are stationarised and standardised following the specifications in McCracken

and Ng [250].22 In Tables A.1-A.4, we also report the respective publication

delay (in days) of each series. There are substantial differences in the timeliness

of different variables. Some are more timely (e.g., soft indicators or surveys),

while others are released with one to two months of delay (usually hard data

on real activity).

The vintages in the dataset span the period January 1980 to May 2020.

Figure 4.2a reports the number of variables available across time periods. We

first estimate the model using the data up to December 2005, and then we

perform an expanding window forecasting exercise starting form the 1st of

January 2006, hence our test sample goes from 1st of January 2006 to 31st

of May 2020, including the Great Recession in 2007-2009. A data vintage is
21We marginally extend the dataset by including two Purchasing Managers’ Indices (PMIs),

since they are considered to be important indicators for nowcasting and do not get revised
over time.

22In the Appendix Tables A.1-A.4 provide the complete list of the variables used and their
transformation codes.
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created every time a new time-series data point is released, and it contains

all the data available up to that point in time, including also data revisions.

The real-time infrastructure adapts automatically to the expanding number of

variables used as input for the model. For each iteration, as new data arrive, the

model is re-evaluated and outputs a sequence of backcasts-nowcasts-forecasts

for GDP and all the other variables. These forecasts are conditional only to

the real-time information set, i.e. only data available up to that specific point

in time without taking into consideration further revisions.

Many of the hyperparameters determining the model specification are not

fixed ex-ante but are instead selected in an intensive out-of-sample validation

exercise, as reported in Table 4.1, and discussed in Section 4.3.3. The real-time

validation exercise also provides information on the ability of the model to

change its optimal hyperparameter specification over time as new data comes

in (the validation length is set to one year). Figure 4.2b shows the evolution

of the number of factors and lags that are selected over the sample via the

validation method described in Section 4.3.3.

4.6.2 Model Evaluation

Figure 4.3 shows the nowcast reconstruction in real-time for the D2FM, the

DFM-EM with 2 and 3 factors, and the AR(1) model against the realised

quarterly U.S. GDP. Overall, the D2FM and the DFM-EM models provide

a similar assessment of the state of the economy in the nowcasting horizon,

although the D2FM is slightly more accurate.23

We formally assess the performance(s) of the model – and of the AR(1), the

DFM-EM with 2 and 3 factors – by computing root mean square forecast error

(RMSFE). This metric is updated every time the data vintage gets updated

due to a new data release. We report both an overall RMSFE (Table 4.4) that

gives us a synthetic value about the performance of each model on the entire

23In particular, differences in predictions between the D2FM and its competitors become
statistically significant at least at the 10% level starting from 31 days after the beginning
of the reference quarter, as of the Diebold-Mariano test; whilst, they are not statistically
different for the remaining part of the nowcasting horizon and during the backcast period.
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Figure 4.3: This Figure shows the nowcast reconstruction in real-time of the D2FM,
DFM-EM with 2 and 3 factors and the AR(1) versus the growth rate
of the U.S. GDP. Shaded area is the NBER recession period.

out of sample set, and a dynamic RMSFE (Figure 4.4) that illustrates how

the RMSFE evolves from the forecast period to the backcast period, until the

day before the release. Results indicate that the D2FM is able to outperform

all the competitors during the entire forecast and nowcast period. The gain

in terms of performance achieved by the D2FM in these two periods is quite

considerable, and reflects this model’s ability to better compress the useful

information reducing the level of uncertainty.

The model also delivers forecasts for all other variables. Table 4.5 reports

the average of the RMSFEs of the D2FM over all of the monthly variables, in

ratio to the AR(1) RMSFEs. The D2FM beats the AR(1) over all the horizons

– the backcast improves by 10%; the nowcast improves by 20%; and the forecast

improves by 18%.24

24Overall, the D2FM improves the prediction accuracy for roughly 80% of the monthly
variables included in the dataset with respect to the AR(1).
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Forecasting Nowcasting Backcasting
Model 30 weeks 26 weeks 20 weeks 14 weeks 8 weeks 2 weeks
D2FM 0.895 0.906 0.895 0.798 0.839 0.832
DFM-EM 3 1.032 1.034 0.973 0.87 0.869 0.826
DFM-EM 2 1.015 1.027 0.962 0.894 0.886 0.858

Table 4.4: Comparison of RMSEs relative to the AR(1) benchmark
Notes: This table reports the RMSE of the D2FM, the DFM-EM
model with 2 and 3 factors relative to the RMSE of the AR(1):
RMSE(model,horizon)/RMSE(AR(1),horizon). Relative RMSEs are reported
for different dates in consideration of the release date of U.S. GDP. For example,
the RMSEs at 30 weeks refers to the RMSEs 30 weeks prior to the release date.

100 75 50 25 0 25 50 75 100
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DFM-EM 3 factors DFM-EM 2 factors AR D2FM

Figure 4.4: This figure reports the RMSFE evolution along the different forecasting
horizons of the D2FM model versus its competitors. The x-axis rep-
resents the difference in days between the model reference time index
for that prediction and the related reference date of U.S. GDP. For
example, 0 indicates the forecast made at the beginning of the current
quarter, while −25 refers to a forecast made 25 days before the starting
of the reference quarter.
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Forecasting Nowcasting Backcasting
6 weeks 4 weeks 2 weeks

D2FM 0.85 0.83 0.91

Table 4.5: Comparison of RMSEs relative to the AR(1) benchmark for monthly
variables.

Notes: This table reports the average RMSFE of the D2FM model relative to
the RMSFE of the AR(1) across all monthly variables included in the model.
Relative RMSEs are reported for different dates in consideration of the release
date of the monthly variables. For example, the RMSEs at 6 weeks refers to the
RMSEs 6 weeks prior to the release date of the variable under consideration.
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Figure 4.5: This Figure reports the Composite Indicator computed in real time
using the D2FM of Section 4.6.2. The grey area represents the financial
crisis of 2008.

4.6.3 A Real-Time Synthetic Indicator of the Business

Cycle

As a final exercise, we show how to build a composite indicator of the state

of economy in real-time using the decoding map (or loadings). We do this by

aggregating the latent states trough a weighting scheme. Specifically, we define
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the composite indicator as

CI =
r∑

k=1

N∑
i=1

fk

θ2
F,k,i

||θF ||2F r

, (4.23)

where fk for k = 1, ..., r are the common factors (the code) and θF,k,i is the

matrix of the coefficient for the factor k at variable i, as in the Equation 4.9′,

while ||θF ||2F r = ∑r
k=1

∑n
i=1 θ2

F,k,i is the squared Frobenius norm of the matrix

coefficients. The sign of the indicator is fixed to have a positive correlation

with GDP. Figure 4.5 reports the composite indicator using the real time out

of sample exercise, that is shown to track well the developments in the US

economy. Thus, the indicator could be potentially combined with others such

as the one introduced in Lang et al. [276] to provide assessments of the current

phase of the business cycle.

4.7 Conclusion and Future Research
The central contribution of our work is to introduce Deep Dynamic Factor

Models (DDFM or D2FMs) by showing how to embed autoencoders in a

dynamic nonlinear factor model structure with idiosyncratic components, and

accounting for mixed frequencies and missing data. Following the discussion on

interpretable models in Section 3.4, the D2FM is interpretable at least in two

dimensions relevant to real time macroeconomic forecasting. In particular, the

so called news and impact [39] can be computed in the proposed framework

as it is currently done in DFMs. This allows for an explanation of the change

in the conditional prediction of a target variable given the new information

set. Moreover, similarly to DFMs the lower dimensional space of common

components learned by the model can be interpreted as features of the Busyness

Cycle which can be summarised in a composite indicator as shown in the

empirical section of this chapter.

The empirical applications on synthetic and real data show the potential

and generality of such a methodology. Possible extensions of the approach

are numerous and different. For example, the model capability can be fur-
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ther expanded by including nonlinear dynamic equations. Also, it could be

interesting to attempt modifications of the objective function to allow for a

quantile approach [277, 278]. Furthermore, one could explore the usefulness

of alternative data (e.g., text data, satellite images) to the model prediction

performance.

Many other extensions are possible. For example, the model could be used

for asset allocation and portfolio optimisation. In Chapter 6 we will attempt

this. In fact, we will compare and combine the approach with other classical

financial and newer financial deep learning methods for portfolio optimisation.

Ultimately, a final note on interpretability. Indeed, while on-line updates

of the latent states given the observables are directly interpretable via com-

putations of news and impact [93] when applying filtering techniques, further

computations are needed to fully explain what the model has learned during

off-line training. We discuss this in detail in Appendix A.1.



Chapter 5

A Neutral Baseline for Shapley

Values in MLPs

It is true that some models are intrinsically interpretable, whereas others require

the user to develop auxiliary methods to explain what the model in use is

capturing and why it is suggesting to take a given choice. In Section 3.4.3 of the

methodological background chapter we discussed feature attribution methods

and the Shapley values, and importantly, we highlighted that the definition

of a baseline (aka reference point) indicates one limitation. The common

practice in choosing a baseline for Shapley values is to use the vector of zeros

[240, 239, 230, 236], which coincides with the average baseline when features are

standardised. However, such a generic choice does not fit all applications. For

instance, in a classification task, with binary features representing the presence

or absence of an entity, given an example and its prediction value, such a

baseline would always measure a null contribution for each feature with value

equal to zero. Ill-defined baselines can drastically change the interpretation

of these Shapley values. The use of improper baselines causes issues when

interpreting the contribution of features. In particular, most of the baselines

proposed for attribution methods are selected independently with respect to the

model. Thus, they do not explain a prediction made by the model, but rather

a difference with respect to some arbitrary value taken by the model. In this

chapter we aim to solve this issue by leveraging the concepts of neutrality value
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and fair baselines. The neutrality value is used as a parameter to represent the

point at which a user of a machine learning model is unsure about whether

to take one decision rather than another. For example, this could be the

probability of default at which a bank is unsure about whether to approve or

reject a loan request. The fairness of the baseline choice is intended to avoid

biasing the importance of a feature with respect to another due to distributional

differences in those variables. Using these two concepts as our starting point,

we theoretically demonstrate the existence of at least a neutral baseline that

is fair, given a dataset and a model. Here, we develop an algorithm to search

for this baseline. Using synthetic data and a real dataset from the financial

domain, we then empirically demonstrate the ability of this baseline to have

higher explanability power than other choices of baseline.

5.1 Feature Attribution Methods
Feature attribution methods have been introduced in Section 3.4 when dis-

cussing explainability in Deep Learning. They are used to indicate how much

each feature contributes to the prediction for a given example. In 3.4.3 we saw

that a theoretically grounded feature attribution method is provided by the

Shapley values and its approximations [231, 236]. When explaining a prediction

with Shapley values, we need to perform two steps. First, we need to define a

baseline, then with an example we compute the Shapley value of each of the

model’s features.

For a neural network, Gθ(·) with parameters θ, and K input features, the

contribution of feature j calculated according to the Shapley value for input

x = [x1,x2, . . . ,xK ] is given by:

∑
S⊆P \{j}

|S|!(|P |− |S|−1)!
|P |!

(
Gθ(x̃S∪{j})−Gθ(x̃S)

)
, (5.1)

where P is the collection of all feature indices, element i of vector x̃S is given

by x̃S,i = xi1{i∈S} + bi1{i ̸∈S} (similarly for x̃S∪{j}), and bi is the baseline value

for feature i. The baseline models the missingness of a feature, i.e., it replaces
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that feature when it is absent. As argued by Sturmfels et al. [237], the concept

of missingness is not well defined or explored in ML models. Alternatively,

feature(s) can be removed from the model via marginalisation, thus assuming a

distribution for bi. Nevertheless, the standard practice in setting up a baseline

is to assign a vector of zeros for all features. However, this choice might provide

wrong interpretations and even give zero importance to significant features.

The simplest choice of a baseline is the zero vector baseline [240, 230,

239, 236], which coincides with the average vector baseline when features are

standardised. However, this choice could be misleading. For instance, consider

a feature in a model that is most significant when its value is zero. Now,

if we compute the Shapley values on this model with the zero baseline, the

importance of that will be zero. One way of addressing the zero-baseline

insensitivity problem is to use the maximum distance baseline (mdb) method

[237]. This baseline consists of taking the furthest observation from the current

one in an L1 norm. However, this approach unequivocally creates incoherent

explanation of model outputs due to the dependence of the baseline to the

underlying dataset and the specific sample explained.

Alternatively, one can sample a baseline from a multivariate distribution

such as Uniform [237] or Gaussian [241]. This approach can be improved by

considering a sample of baselines and by averaging the attributions computed

over each baseline [241, 231, 242, 243, 244]. Another form of sampling is

the one performed using the dataset. Hence, one can use the underlying

empirical distributions of the dataset [231, 244, 237]. We denote this as the pX

baseline method. However, the pX baseline increases the computational cost of

estimating feature attributions linearly with respect to the number of draws.

Moreover, this choice of baseline does not allow the setting of a reference value

on the model output when computing the Shapley values. This is important

when decisions are taken with respect to a specific value of the model. This

generalises also to the other baselines described.
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5.2 The Neutral Baseline
We begin by theoretically justifying the existence of a baseline according to

well defined concepts of neutrality value and fair baselines, and then presenting

the algorithm to find these baselines in multilayer perceptrons (MLPs). The

intuition behind such baselines is better explained by two examples.

Example 1 (Neutrality). Consider a linear classifier used by a banking agent

to predict the probability of default of clients based on two features, formally:

Gθ(x), with θ = [ϕ0,ϕ1,ϕ2] and x ∼ N (0, I2×2) and G(·) being the sigmoid

function; while, 0.5 being the threshold level for the agent to take a decision of

whether to offer a loan or not, namely reject if Gθ(x) > 0.5. Assume now that

ϕ0 > 0, so that the decision boundary of the classifier does not cross the origin.

Imagine now that a client, whose feature values are equal to an average clients’

feature values, complains about a rejected loan application, and the banking

agent wants to explain the decision of the classifier using Shapley values with a

vector of zeros as a baseline. In this case, the agent is not going to be able to

provide a meaningful explanation since the Shapley values will all be equal to 0.

However, if the baseline is chosen on the decision boundary of the classifier,

the Shapley values, thus calculated, will provide an explanation consistent with

the loans rejection choice. Although, this example describes a client with very

specific feature values, misleading attributions of importance occurs every time

the client’s feature values lie between the baseline of zeros and the decision

boundary of the classifier. Indeed, if for example, we set ϕ0 = ϕ1 = ϕ2 = 1 then

Gθ(x1 =−0.25,x2 =−0.25) = 0.62, but the Shapley values with zero baseline

for x1 and x2 are negative, and thus provide an inconsistent justification for

the decision taken by the classifier (reject the loan).

In this work, we follow Bach et al. [137] and argue that the baseline

should rely on the decision boundary of the classifier. If we return to the above

example, and the baseline had been on the decision boundary, then the Shapley

values would have been different from zero and with positive values for those

features causing the loan to be rejected. We relate the concept of missingness
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in Shapley values to the output of the model through Definition 4.

Definition 4 (Neutrality Value). Given a model prediction ŷ and a decision

maker, we say that the value α is neutral if the decision maker’s choice is

determined by the value of ŷ being either below or above α.

This neutrality value is usually set by the decision maker. For example,

consider the probabilistic classifier used in the loan issuing example above. In

that context the banking agent is happy to approve a loan if the client has less

than a 50% chance of default; hence the neutrality value is equal to α = 0.5.

Hypothetically, if the model’s output is 0.5, then the agent will be indecisive

about issuing the loan, as the model has no relevant information to offer to the

agent in order to make a decision. We argue that when this is the case for the

model, then the same standard should be used for the explainability approach

applied to the model.

The central idea is that this neutrality value can lead to a point in the input

domain that could be used as a baseline. However, given a neutrality value and

a single-layer perceptron (SLP) with more than one (continuous) input feature,

there are an infinite number of possible combinations of such inputs that lead

to the same neutral output. We narrow down the solutions by introducing

the concept of fairness: we say that x is in the space of fair baselines for a

monotonic model Gθ(·) if every element xi with a positive monotonic relation

in Gθ(·), when sorted with respect to all of its possible realisations, has the

same number of such realisations to its left with respect to those on the right

of any other element of x with negative monotonic relation in Gθ(·), and to the

one on the left of any element of x with positive monotonic relation in Gθ(·).1

We call such baselines fair, as we are being fair in representing each feature in

relation to its probability space, and given its relation with the model. The

following simple example shows why this is a desirable property.

1To note that the monotonicity of the model is intended with respect to each single input,
that is the monotonicity of Gθ(·) is meant to be element by element.
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Example 2 (Fairness). Consider the same model of Example 1 with the sim-

plifying assumption θ = [1,1,1]. Both the baselines b1 = [−0.5,−0.5] and

b2 = [−1.5,+0.5] are neutral, but only the first satisfies our definition of fair-

ness, i.e., b1
1 = C−1

1 (0.69) and b1
2 = C−1

2 (0.69), where Ci(·)−1 is the inverse

cumulative distribution function of xi. Let’s define Sh{Gθ;b}(xi) as the Shapley

value of feature i with respect to the baseline b and the model Gθ(·). Because

of the assumptions made on the data generating process and the model, the two

features must have the same expected importance. We derive:

Ex1,x2 [(Sh{Gθ;b}(x1)−Sh{Gθ;b}(x2))] =

Ex1 [Gθ(x1, b2)]−Ex2 [Gθ(b1,x2)] = 0
(5.2)

and it is clear that only the fair baseline b1 satisfies the equality.

The following definition formalises fairness.

Definition 5 (Space of Fair Baselines). Consider a dataset in Rk, k ≥ 1,

generated by a distribution. We then define the set of fair baselines for a

monotonic model Gθ(·) as

B̃ = {xp ∈ Rk : xp
j = C−1

j (1θj>0 ·p+1θj<0 · (1−p)), p ∈ [0,1], j = 1,2, . . . ,k},

(5.3)

where C−1
j s are inverse marginal CDFs.

Alternatively, we say that x ∈ Rk is a fair baseline, if:

x ∈ B̃ ⇐⇒ Cj(xj) =

 Ci(xi) if sign(θj) = sign(θi)

1−Ci(xi) if sign(θj) ̸= sign(θi)
∀j, i = 1, . . . ,k.

(5.4)

Using the two definitions, neutrality value and space of fair baselines we

next demonstrate the existence of a fair baseline that when given to an MLP

returns the neutrality value. Before we begin, we need to state the following

two assumptions:

A1. All activation functions are monotonic and continuous.



5.2. The Neutral Baseline 109

A2. All marginals cumulative distribution functions (CDFs) of the joint

CDF of the input features are bijective and continuous.

Assumption A1 is reasonable since many activation functions are mono-

tonic like linear, sigmoid, tanh, softplus, ReLU, LeakyReLU and ELU. All of

these functions are continuous. A2 is instead a technical assumption required

in the proof of our results later.

5.2.1 The SLP Case

Using Definitions 4 and 5, A1 and A2, the following proposition guarantees

the existence of a neutral fair baseline for SLPs:

Proposition 1 (Existence of a Neutral Fair Baseline for SLPs). Given an SLP

Gθ(·) satisfying A1, a dataset satisfying A2, and a neutrality value α in the

image of Gθ(·), then there exists at least a fair baseline x such that Gθ(x) = α.

If we replace A1 with the following more stringent assumption, the solution

becomes unique (see Fig. 5.1 for intuition).

A1’. All activation functions are strictly monotonic and continuous.

Proposition 2 (Uniqueness of a Neutral Fair Baseline for SLPs). Given an

SLP Gθ(·) satisfying A1’, a dataset satisfying A2, and a neutrality value α

in the image of Gθ(·), then there exists a unique fair baseline x such that

Gθ(x) = α.

The proof of Proposition 1 provided in Appendix B suggests a way to

find one fair baseline for an SLP. This is formalised in Algorithm 3. This

algorithm using empirical CDFs instead of theoretical ones requires as inputs

an SLP Gθ(·), a neutrality value (α), a quantile function (Qj , obtained from

the marginal empirical CDF) for each dimension of input features, a granularity

level δ > 0, and a tolerance level ϵ > 0. The δ and the ϵ control the speed of

search and the margin of error in finding a baseline such that |Gθ(x)−α|< ϵ.

This algorithm starts the search from the lowest possible output value of the

SLP, which is when p = 0, and stops when it reaches a point which is close
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Figure 5.1: The chart shows a linear binary classifier with two mean zero input
features and positive intercept term. The black dashed line represents
the decision boundary (all the points on this line are such that the
output of the model is exactly 0.5). Green circles are negative labels.
Blue circles represent positive labels. Red circles represent positive
labels with misleading Shapley values for both features when using the
zero (or average) baseline. The yellow dashed line indicates the set of
fair baselines.

enough to α. This is possible because by using the parameters of the SLP, we

can restrict and define an order in function of p for the set of fair baselines (as

in Line 2). This allows us to test these baselines from the smallest SLP value

to the largest.

Algorithm 3 Neutral Baseline Search for SLPs
Input: Gθ(·),α,Q,δ,ϵ
Ouput: b

1: p← 0
2: b← [Qj(1θj>0 ·p+1θj<0 · (1−p)) ∀j ∈ 1, ..,K]
3: while Gθ(b)−α < ϵ do
4: p← p+ δ
5: b← [Qj(1θj>0 ·p+1θj<0 · (1−p)) ∀j = 1, ..,K]
6: end while
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Figure 5.2: An MLP (above) and its equivalent sparse representation (below).

Algorithm 4 Neutral Baseline Search for MLPs
Input: Gθ(·),α,Q,δ,ϵ
Ouput: b

1: queue← []
2: enqueue([α], queue)
3: T = 1
4: for l = L :−1 : 2 do
5: for t = 1 : T do
6: α← dequeue(queue)
7: for j = 1 : |α| do
8: SLP(l,j) = G(l)(G(l−1)

θ · θ(l)
j ) ▷ SLP Building

9: α̃←Algorithm 1(SLP(l,j),Q
l−1,αj , δ, ϵ)

10: enqueue(α̃, queue)
11: end for
12: end for
13: T = T ∗kl+1
14: end for
15: while queue is not empty do:
16: α← dequeue(queue)
17: b← b||α
18: end while

5.2.2 The MLP Case

Finding a baseline for MLPs is more complicated, because there is no easy way

to order the baselines in function of p, as in the SLP case, unless the MLP is

monotonic in each of the features.
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We observe that an MLP with L layers can be decomposed into∑L
l=2

∏L
l′=l kl′ SLPs by replicating every node at layer l, kl+1 times, i.e., the

number of nodes at layer l + 1, and considering every node in the layer l + 1

as an SLP with input given by the layer l. Based on this observation, we can

recursively apply Algorithm 3 backwards through the layers of the model to

recover the neutrality values across those SLPs, from the output layer to the

input layer. This will provide ∏L
l=2 kl baselines, one for each SLP in the first

hidden layer. This is implemented in Algorithm 4. Note the concatenation of

the found fair baselines from Line 15 to 18.

Finally, in order to aggregate these baselines, we define an equivalent sparse

representation of an MLP (SparseMLP), which is constructed by concatenating

each of the SLPs defined above. An example of this transformation is provided

in Figure 5.2. We find this necessary because to compute the Shapley value

for each example-feature pair we can now use all fair baselines found with

Algorithm 4 at once.2

5.2.3 Speeding up the Search

If features are approximately normally distributed, we can use conventional

convex optimisation packages to be more efficient. Thus, assuming the inputs

are approximately Gaussian (with parameters µ and σ, the vector of means

and standard deviations), we can replace the search method of Algorithm 3

with the following (constrained) optimisation problem:

argmin
p̃

[Gθ(p̃σ +µ)−α]2 (5.5)

which can be augmented with constraints on the input space. The argument

p̃ in the minimisation problem is a scalar that mimics the p of Algorithm 3.

However, this trick makes it possible to calculate the derivatives of Gθ(·) with

2To note that this equivalent sparse representation is not unique. As one can permute
the order of the SLPs and generate another equivalent sparse representation. This implies
that even when the baselines found are unique, the overall approach is unique only up to
a permutation. However, being all of these representations observationally equivalent, this
does not have any practical impact.
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respect to p̃, allowing us to use conventional convex optimisation methods. To

then obtain the baseline vector in the input space we need to set b = p̃σ +µ.

Note that if there are negative elements in θ, we need to multiply those and

the related features by −1 before running the optimisation; the final solution

is then retrieved by repeating this sign swap on the respective element in the

baseline vector found.

5.3 Experiments
We now evaluate in a classification task the explanability power of zero, average,

pX , and mdb baselines, against our proposed baseline method (neutralα), where

we set the neutrality value α to 0.5 being it a binary classification context.3

To this purpose we use two datasets: A less realistic dataset (synthetic),

where we aim to compare the choice of baselines by limiting the drawbacks of

the employed measures, and a real dataset, where we seek to validate these

results in a more realistic scenario. In what follows, we first present the setup

of evaluation methods used to quantify explainability power, and thereafter

we present the datasets and training setup. Lastly, we present and discuss the

results.4

5.3.1 Evaluation Measures

To evaluate the local explanability power we use both ROAR [248] and a

perturbation test similar to the one introduced by Ancona et al. [249]. Indeed,

since we are evaluating probabilistic classifiers, rather than measuring deviations

between predictions, we prefer a more appropriate measure of confidence: the

absolute logits. Absolute logits are defined as | log(Gθ(x)/(1−Gθ(x)))|, where

Gθ(·) is a probabilistic classifier and x is an example. These absolute logits

can be used to measure prediction confidence; in fact, when these increase it

means that the confidence of the model in predicting one of the two classes is

3One could actually estimate the optimal threshold, see for example Alessi and Detken
[279] with respect to financial early warning indicators.

4The code used to run these experiments is available at the following weblink: https:
//github.com/cosimoizzo/Neutral-Baseline-For-Shapley-Values.

https://github.com/cosimoizzo/Neutral-Baseline-For-Shapley-Values
https://github.com/cosimoizzo/Neutral-Baseline-For-Shapley-Values
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increasing and the opposite is true otherwise.

Our preference for this measure is also supported by information theory.

Standard logits can be seen as the difference between two Shannon information.

Since in this circumstance Shannon information represents the confidence level

of the model in classifying the instance as positive or as negative, we take

the absolute value of the standard logits to measure the variation in Shannon

information in both directions. As this measure decreases (increases), the

Shannon information decreases (increases). Furthermore, when the Shannon

information content is 0, we can argue that the model becomes uninformative.

The combination of ROAR with our perturbation test allows us to test

feature attribution approaches in two dimensions. The first is with respect to

the ranking of the features based on their importance, and the correctness of

this is tested with ROAR. However, ranking features in order of importance

is not the only purpose of an explainability method. It is also useful to check

whether the actual values provided by the explainability method are consistent

with the human interpretation of the model output. This second dimension is

at least partially assessed with the absolute logits measure. Indeed, by using

this measure, we are assessing whether when removing features in order of

importance we are actually reducing the information content that the model

can transfer to the human user in support of a given choice.

5.3.2 Datasets and Training Details

Next, we present the two datasets. We use a synthetic dataset to simulate

a scenario with independent features and controlled feature importance (the

independence allows us to avoid drawbacks associated with some evaluation

methods). The real dataset is used to experiment with a real use case.

Synthetic dataset. We generate a dataset with 5 independent features gov-

erned by the following sampling process. Given N , the number of examples x

we want to generate, we sample each x from a multivariate normal distribu-

tion with 0 mean and covariance matrix I5×5 to guarantee that features are
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independent among each other:

x∼N (0, I5×5). (5.6)

We then define the importance of each feature by sampling a vector ϕ:

ϕ0 = µ0 with µ0 ∼ U(−15,15) (5.7)

ϕj = (−1)σj ·µj with σj ∼ Bern(0.5), µj ∼ LogN (j,1), j = 1, . . . ,5 (5.8)

where ϕ0 is sampled from a uniform distribution and ϕj is decomposed into

two components, a sign and a magnitude. The sign is sampled from a Bernoulli

distribution with p = 0.5, while the magnitude is sampled from a log-normal

distribution with mean j and variance 1. This makes, in expectation, the

feature with the larger j more important than the one with a lower j.

We then add a constant term to each x to include a bias term and multiply

this new vector to ϕ:

y∗ = ϕ′([1]||x) (5.9)

At this point we have generated x and y∗ values. Since we are generating a

synthetic dataset for a binary classification task, we define the label values (y),

by transforming y∗ as follows:

y =


1 if Q(τ1) < y∗ < Q(τ1 + τ2)

0 otherwise
(5.10)

where τ1, τ2 ∼ U [0.3,0.5] and Q is the quantile function of the empirical CDF

of y∗, which allows us to control the balance between positive and negative

classes (i.e., by ensuring that at least 30% of the observations are in each of

the two classes), and makes this dataset unsolvable by a linear classifier.

Credit Card Default dataset. This is a dataset about default of credit card

clients [280]. The dataset contains one binary target variable and 23 features.

The number of observations is 29351. To apply ROAR to such dataset, we would
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need to compute Shapley values on all of the samples, which is computationally

demanding.5. Therefore, we reduce the number of observations to 300 for

computational reasons. We do so by sampling these observations while keeping

the two classes balanced, that is we randomly draw 300 samples from the

original 29351 while imposing the constraint that half of the sampled target

labels should be 0 and the other half should 1. This is the portion of the dataset

on which we train the model and carry out the analysis. Morevoer, to reduce

even further the computational cost of Shapley, this time with respect to the

number of features dimension, we compute them using sampling [233].

Before training the model, both datasets are preprocessed: the synthetic

one by a simple standardisation, and the real one by using a min-max scaler.

The activation function is always a sigmoid. All MLPs are trained with

binary cross-entropy loss function using ADAM as optimiser with its default

parameters, except that the learning rate is increased to 0.05. We use an

early stopping criteria to avoid overfitting, where we stop training after the

loss on the validation set has not improved over 3 consecutive epochs. The

real dataset is divided into 60% training set, 20% validation set, and 20% test

set. The synthetic dataset consists of 600 observations for training (80%) and

validation (20%), plus another 100 observations for the test set. The rest of

the hyper-parameters, i.e., the number of hidden layers and number of neurons

in each layer, are chosen via a random sampling of models using the training

and validation sets. We sample 300 models with number of hidden layers

from 0 to 5, and number of neurons for each hidden layer from 1 to 10. The

results obtained on the synthetic dataset are based on 100 Monte Carlo (MC)

simulations, where in each simulation a new synthetic dataset is generated and,

on it, training and validating the best MLP as mentioned above. Thereafter,

we evaluate the attribution method with the various choice of baselines on a

test set of 100 observations.

5It would mean calling the Shapley values method on each of the almost 30 thousand
samples, this for each iteration of ROAR.
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5.3.3 Results and Discussion
Figures 5.3a, 5.3b show evolutions of expected absolute logits when removing

features in order of importance. We show both average values and box-plots,

where for synthetic datasets both of them are computed across test set ob-

servations and MC simulations, while for the real dataset only across test set

observations. The only baseline that in all datasets guarantees a monotonic

decrease to zero in the information content of the model when removing features

is the neutrala.
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Figure 5.3: Information content on the synthetic and the credit card dataset.

Figures 5.4a, 5.4b show ROAR curves and scores, where the latter are

computed as the area under the related curves. Intuitively, the lower is this area

the better is the method in identifying the most important features first on a

per example basis, as the performance of the model is deteriorating (decreasing)

faster. For the synthetic datasets we also compute box-plots of these scores

across the 100 MC simulations together with the average curves. Although in

the synthetic dataset pX achieves the best score followed by zero and neutrala,

in the real dataset the neutrala baseline achieves the best score. Since pX and

neutrala show similar ROAR scores, the two approaches do equally well in
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Figure 5.4: ROAR on the synthetic and the credit card dataset. Panel (a) shows
the average curve and a box-plot of the area under the curves across
the 100 MC simulations. Panel (b) reports the area under the curve in
the legend.

ranking features in order of importance.

5.4 Conclusion
In this chapter we have investigated the identification of baselines for Shapley

values based feature attribution methods and MLPs. We have introduced the

concept of neutrality and fair baselines. Their combination has allowed us to

develop a neutral baseline that better explains model based decisions compared

to other baselines analysed.

It is important to mention that the computational cost of searching the
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neutrala baseline increases exponentially with respect to the number of hidden

layers. Also, in this chapter we did not analyse how to apply such method to

recurrent networks and how to extend it to regression problems. With regard to

regression problems, we provide a financial example in Chapter 6.6 Meanwhile,

we leave it to future analysis to devise on possible solutions to the computational

issue and to the extensions for other types of network architectures.

6In Appendix A.1 we discuss how to apply the methodology to the D2FM estimated
latent sates.



Chapter 6

Portfolio Optimisation and Deep

Learning

Following the discussion from Section 3.3 about portfolio optimisation and

utility function, in this chapter we introduce and empirically evaluate a way

to apply deep learning techniques via direct deterministic policy gradient

methods to different reward formulations that depend on the desired degree of

approximation of an investor’s utility function. We compare against other deep

learning and standard financial approaches, such as mean-variance, minimum-

variance, risk-parity, and hierarchical risk parity which have been discussed in

details in Section 3.3 of the background chapter. Moreover, since this problem

can be decomposed into a prediction and an optimisation problem conditioned

on such predictions, we also combine all the approaches analysed with the

D2FM (or DDFM) introduced in Chapter 4 to deal with the forecasting and

the state estimation problem. A comparison of these methods is carried out

using daily data from the U.S. stock market, while in the related appendix (i.e.,

Appendix C) we perform a robustness check on weekly data. We conclude this

chapter by carrying out an analysis of the relation between the excess returns

generated by selected strategies, and standard financial factors. We do so both

by using linear regression methods and deep learning techniques together with

Shapley values and the neutral baseline developed in Chapter 5.
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6.1 Dynamic Portfolio Optimisation with Deep

Learning
In this section we introduce our formulation of dynamic portfolio optimisation,

which is adapted from the portfolio rebalancing framework presented in Sun

et al. [217]. We assume there is no consumption and income, and thus the

wealth process in this circumstance is called self-financing [110]. Let’s start by

casting the dynamic portfolio optimisation problem into a Markov Decision

Process (MDP). Namely, we assume that at time t the investor observes the

realisation of a stochastic vector xt which includes the period t asset returns rt,

the previous period portfolio allocation weights wt−1, and any other relevant

information to correctly specify the state transition kernel from the current

state to the next state. Conditioned on the realisation of the current state xt,

the investor chooses the new allocation weights wt = πθ(xt) via the parametric

policy function πθ in order to maximise the value function. To this purpose,

we can express the value function of the investor as follows

Jt(xt,πθ) = Et[G(xt,πθ)+Jt+1(xt+1,πθ)] (6.1)

where Et is the expectation operator conditioned on information up to time t

which is summarised into xt. The first term on the right hand side of equation

(6.1) is the instantaneous reward and it is defined here as

Et[G(xt,πθ)] = C(πθ(xt),w+
t−1)+Et[U(πθ(xt)′(1+rt+1))], (6.2)

where C(πθ(xt),w+
t−1) represents transaction costs incurred when taking action

πθ(xt) from state xt. The latter includes the previous allocation weights wt−1

and the current realised returns rt through which it is possible to compute

the end of period allocation weights w+
t−1 = wt−1◦(1+rt)

w′
t−1(1+rt) .1 Thus, equation (6.2)

1In the empirical section we specify these transaction costs to be quadratic in order to
allow differentiability everywhere, as we will be using a policy gradient method. Thus, we
set them as follows C(πθ(xt),w+

t−1) = 0.0005∗ (πθ(xt)−w+
t−1)′(πθ(xt)−w+

t−1). This term
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imposes a separability condition between transaction costs and instantaneous

utility similarly to Sun et al. [217].

The second term of equation (6.2), that is Et[U(πθ(xt)′(1 + rt+1))] =

Et[U(Wt+1)] is the expected single period utility from wealth. If we then take

a fourth order Taylor expansion of Et[U(Wt+1)] around some root point W̄ = 0,

and to make this approximation implementable we assume a CARA utility

function of the form U(Wt+1) =−e−λWt+1 , we obtain

Et[U(Wt+1)]∝ λM1|t(Wt+1)− λ2

2 M2|t(Wt+1)+ λ3

6 M3|t(Wt+1)− λ4

24M4|t(Wt+1)

= ˜Et[U(Wt+1)] = ˜Et[U(πθ(xt)′(1+rt+1))]
(6.3)

where λ is the risk aversion parameter that we set to 1 in the empirical section,

while Mi|t is the i− th conditional moment to time t information, here again

summarised in xt. This formulation allows us to have an intuitive statistical

interpretation of investors’ preferences with respect to relevant statistics of the

portfolio return’s distribution, and it encompasses the mean-variance preferences

as a special case.2 We can now replace Et[U(Wt+1)] with its approximation
˜Et[U(Wt+1)] and express the new value function from equation (6.1) as follows

Jt(xt,πθ) = ˜Et[G(xt,πθ)]+Et[Jt+1(xt+1,πθ)], (6.4)

where

˜Et[G(xt,πθ)] = C(πθ(xt),w+
t−1)+ ˜Et[U(πθ(xt)′(1+rt+1))], (6.5)

noting that both terms depend just on the policy πθ and the properly con-

structed state xt. We can then express the Q−function of this problem when

following the policy πθ for all subsequent actions and conditioned on the state

aims to impose a penalisation factor on re-balancing, and we intend to intepret it as such.
Transaction costs for ETFs can vary significantly depending on the method used to compute
them [281]. Indeed, the authors report that the iShares bid-ask spread is between 1.4 and
2.4 basis points, while their estimates are up to a possible 5% round-trip cost.

2See Section 3.3 of the background chapter for further details.
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x and action w at time t = 0 as

Qπθ
(x,w) = E[

∑
t≥0

˜G(xt,πθ)|x0 = x,w0 = w]. (6.6)

It is now possible to apply Reinforcement Learning and Deep Reinforcement

Learning techniques, such as the ones discussed in Section 3.2.5, to solve this

formulation of the dynamic portfolio optimisation problem. In particular, and

assuming both the policy and the Q function are differentiable, one can apply

direct deterministic policy gradient methods to optimise the parametric policy

function πθ with respect to its parameters θ via gradient ascent computed as

follows

∆θJθ = E[∆θπθ(x)∆wQπθ
(x,w)|w=πθ(x)], (6.7)

where the actual value ∆θJθ is replaced by its sample estimates ∆̂θJθ which

involve the computation of the derivatives of the sample estimates for the

moments introduced in equation (6.3) and entering here via equation (6.6).

6.2 An Application to the US Stock Market
In this section we compare different approaches on a dataset of daily returns

from the U.S. stock market. In particular, we restrict the investment set

to the Standard & Poor’s 500 sectoral indices, plus the Bloomberg Barclay

U.S. Aggregate Bond index. The latter is a composite indicator including

Treasuries, government-related and corporate securities, MBS (agency fixed-

rate pass-throughs), ABS and CMBS (agency and non-agency) with daily

returns showing an R2 of 0.89 with the related treasury only index.3

We do a horse race in the form of a recursive out-of-sample comparison

among different investment strategies, including: buy and hold startin from

equally weighted, equally weighted, mean-variance, minimum variance, risk-

parity and hierarchical risk-parity.4 For these approaches estimates of the
3We also carry out an additional evaluation on weekly data and with the Bloomberg US

Treasury Index instead of the Bloomberg Barclay U.S. Aggregate Bond index, whose results
are reported in Appendix C.

4See Section 3.3 for additional details.
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parameters (mean, covariance or correlation matrix) are carried out both with

expanding window sample estimates and through the D2FM of Chapter 4.

We compare these methods to other Deep Learning Portfolio Optimization

(DLPO) approaches. In particular, we specify different approximations of

equation (6.3) before applying the direct policy gradient approach via equation

(6.7). Following Noguer and Srivastava [24], in one of our specification we

use the first moment only. However, we also use up to the second, third and

fourth moments. Finally, we also compare against the Sharpe ratio objective

proposed in Zhang et al. [23]. All of these deep learning approaches share the

same set of possible deep learning architectures, however we select for each

of them separately the best architecture within this shared set based on the

performance achieved on the last 10% of the in-sample data. We provide as

input either the raw historical returns or the state vectors estimated by the

D2FM . Overall, we compare a total of 20 strategies in a recursive out-of-sample

exercise. Namely, starting from the beginning of the out-of-sample portion of

the data, each of the model is provided with past data to then output asset

allocation weights for the next period. This procedure is repeated until the end

of the out-of-sample. We next provide additional details on the data, training

and evaluation methodologies adopted.

6.2.1 Data and Training Details

The dataset comprises 3830 daily observations starting 3 January 2006 and

ending on 15 March 2021. The investment set and the summary statistics are

described in Table 6.1.

The out-of-sample starts the 1st of January 2011 and runs until the end of

the sample. We allow for daily rebalancing for all the compared approaches.

Furthermore, we implement a daily re-estimation for the parameters of the

otherwise static approaches: mean-variance, minimum-variance, risk-parity and

hierarchical risk parity. Regarding deep learning methods, we re-estimate the

model at the beginning of every year and validate the hyperparameters on the

last 10% of the sample. With respect to such hyperparameters, we tune the



6.2. An Application to the US Stock Market 125

Asset Standard
Deviation

Mean Skewness Kurtosis

S&P 500 Information Technology
Sector GICS Level 1 Index

1.45 0.06 -0.07* 9.92***

S&P 500 Energy Sector GICS Level
1 Index

1.90 0.02 -0.2*** 14.68***

S&P 500 Financials Sector GICS
Level 1 Index

2.09 0.03 0.32*** 15.72***

S&P 500 Utilities Sector GICS Level
1 Index

1.24 0.02 0.41*** 17.95***

S&P 500 Consumer Discretionary
Sector GICS Level 1 Index

1.38 0.05 -0.14*** 9.82***

S&P 500 Health Care Sector GICS
Level 1 Index

1.12 0.04 -0.01 11.5***

S&P 500 Industrials Sector GICS
Level 1 Index

1.41 0.04 -0.29*** 9.08***

S&P 500 Consumer Staples Sector
GICS Level 1 Index

0.94 0.03 0.06 14.77***

S&P 500 Materials Sector GICS
Level 1 Index

1.60 0.04 -0.25*** 8.45***

S&P 500 Communication Services
Sector GICS Level 1 Index

1.32 0.03 0.23*** 11.78***

S&P 500 Real Estate Sector GICS
Level 1 Index

2.14 0.04 0.41*** 17.03***

Bloomberg Barclays US Agg Total
Return Value Unhedged USD

0.23 0.02 -0.36*** 4.27***

Table 6.1: List of indices used with sample statistics computed on daily returns.
For Skewness and Kurtosis, we conduct a statistical test of deviation
from normality. Significance levels are: * for 10%, ** for 5% and *** for
1%.

number of lags on the input variables in {0,5,21,63}, the structure of the neural

networks both in terms of number of neurons (between 3 and 5) and type of

layers (LSTM, fully connected relu or tanh), and the seed impacting parameters

initialisation. This selection is repeated at each re-estimation step. Training is

carried out using ADAM with default parameters; we stop the training if the

validation loss does not improve for 3 consecutive epochs. Finally, the same

validation approach is used for the hyperparameters of the D2FM; this time

the objects of validation are the number of lags on the same grid as above
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and the encoder structure. In particular, the number of hidden units is in

{40-20-10,32-16-8,20-10-5,16-8-4,20-4}, while the encoder is assumed to be

fully connected with tanh and batch normalisation layers.

6.2.2 Evaluation Metrics

We use a number of evaluation metrics commonly adopted for the assessment of

quantitative investment strategies. In particular, we evaluate the out-of-sample

performance of the different approaches via the following metrics:

Sharpe ratio =
√

252 E(rp)
Std(rp) (6.8)

where E(rp) is computed using the out of sample average portfolio return, while

Std(rp) is the out of sample standard deviation;

Sortino ratio =
√

252 E(rp)
Std(r−

p ) (6.9)

where Std(r−
p ) is the standard deviation computed only on negative returns;

maximum drawdown = max
0≤t1≤t2≤T

(
P p

t1−P p
t2

P p
t1

) (6.10)

where P p
t is the actual value of the portfolio at time t equal t1 and t2;

turnover = 252
T

T∑
t=1

n∑
i=1
|wi,t−

(1+ ri,t−1)wi,t−1
1+ ∑n

i=1 ri,t−1wi,t−1
|. (6.11)

6.2.3 Results and Discussion

We report the results of our exercise in Table 6.2.

By analysing Table 6.2, we note that all the strategies provide better risk

adjusted returns in terms of Sharpe and Sortino ratios compared to an equally

weighted allocation and the buy and hold strategy, the being constructed

starting from an equally weighted portfolio and without rebalancing. The

only exception is the mean-variance portfolio with the D2FM prediction. In
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particular, with the exception of the minimum variance strategy and the Deep

Learning one with Sharpe ratio as objective function, all others show a reduction

in their performance when inputs are provided from the D2FM. Thus, indicating

they do not combine well with such model. This is not suprising for the Deep

Learning Portfolio Optimisation (DLPO) approaches involving higher moments,

as at the current stage the D2FM does not take into consideration such higher

order moments.

However, the highest performance model is the minimum variance with

the covariance matrix provided by the D2FM. This approach provides the best

performance both in terms of Sharpe and Sortino ratios. Namely, it outperforms

its counterpart using the sample estimate of the covariance matrix (i.e., the

second best approach) by 11% in terms of Sharpe ratio and 7% in terms of

Sortino ratio, albeit sacrificing 13% in terms of maximum drawdown. What’s

more, its turnover is also among the lowest.

The next top performing approach is the Deep Learning based portfolio

optimisation with four moments (DLPO first four moments) and the raw

returns as input. This is the best performing method among the Deep Learning

ones in terms of risk adjusted returns. Among the DL approaches that use a

moment based loss function, it is also the best in terms of maximum drawdown.5

Finally, with respect to the annual portfolio turnover we note that the DL

based approaches make much more reallocations compared to standard financial

approaches.

We continue our analysis in Table 6.3 where we report the results of a

linear regression of the selected strategies excess returns against five factors

coming from the financial literature on factor investing.6 Our aim here is to

check whether these strategies can be linearly replicated by standard financial

factors, and whether, after correction for such factors, there is a significant

alpha. Among the many factors present in the Financial Economics literature,

5This result is confirmed in the robustness check carried out in Appendix C.
6We download data for the factors from AQR website:

https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Daily.
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we select the most important ones; in particular, we choose the betting against

beta (BAB) factor from Frazzini and Pedersen [35], the market (MKT), small

minus big or size (SMB), and high minus low or value (HML) factors from

the Fama–French three-factor model [31, 32, 33], and the up minus down or

momentum (UMD) factor introduced by Carhart [34].

equally minimum DLPO first second DLPO first DLPO sharpe
weighted variance third fourth moment moment (DDFM states)

const 0.0001 0.0001* 0.0005** 0.0002 0.0003
(0.0002) (0.0001) (0.0003) (0.0003) (0.0002)

BAB 0.4232*** 0.0587*** 0.1662*** 0.4501*** 0.1254***
(0.0498) (0.0101) (0.0509) (0.0567) (0.0385)

MKT 0.1135*** 0.0148*** 0.0929*** 0.1585*** 0.0362**
(0.0235) (0.0048) (0.0240) (0.0268) (0.0182)

SMB 0.2821*** 0.0013 0.1004* 0.2091*** 0.0467
(0.0536) (0.0109) (0.0547) (0.0610) (0.0414)

HML 0.0951* 0.0165 0.0885 0.2219*** 0.0051
(0.0560) (0.0114) (0.0571) (0.0637) (0.0432)

UMD -0.0942** -0.0072 -0.0414 -0.0455 -0.0465
(0.0434) (0.0088) (0.0443) (0.0493) (0.0335)

R-squared 0.0729 0.0307 0.0206 0.0718 0.0100

Table 6.3: OLS regression of selected strategies excess returns against financial
factors. BAB stands for ‘betting against beta factor’, MKT for the
‘market factor’, SMB for ‘small minus big’, HML for ‘high minus low’,
UMD for ‘up minus down’. All the factors are taken from the AQR
website. Significance levels are: * for 10%, ** for 5% and *** for 1%.

Regression results in Table 6.3 show that the only two factors that are

significant in linearly explaining excess returns consistently among all the

selected strategies are BAB and MKT. Furthermore, the only two strategies

that generate a significant alpha over the out of sample are the minimum

variance and the Deep Learning one with four moments. Additionally, only the

alpha of the latter is significant at the 5% level. Nevertheless, once we correct

for robust standard errors, all the regression parameters become insignificant.

Moreover, the variance explained by those factors is below 10%, indicating the

model is clearly misspecified.
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6.3 Shapley Attributions
Moehle et al. [282] use Shapley Value to compute portfolio performance attri-

bution with respect to given features. In this section we present a methodology

to compute nonlinear factor exposure and portfolio performance attribution to

financial factors. The methodology is based on Shapley values decomposition

and the baseline proposed in Chapter 5.

Indeed, OLS regressions can only linearly attribute the performances of

the strategies to each of the canonical financial factors. Hence, we go a step

further and use multi-layer perceptrons to check whether the strategies can be

better explained by the financial factors via the nonlinear formulations spanned

by these models. To this purpose we validate different network structures on

the data, including the linear model. However, we find that for most of the

strategies the best model among all the ones tested on the data under analysis

is the linear model. The only exceptions are the four moments DLPO and the

DLPO Sharpe with states estimated by D2FM as inputs. However, also for

these the variances explained by linear and nonlinear models are very close to

each other. Nonetheless, for the sake of completeness and as an illustrative

example we decide to use Shapley values and our baseline approach introduced

in Chapter 5 to decompose excess returns in terms of each of the risk factors

for these two strategies. Namely, we estimate models of the following form

rpr
p,t = Gθ(f t)+ ϵt, (6.12)

with rpr
p,t = rp,t− rf,t, that is the return of a selected portfolio (DLPO or the

DLPO Sharpe) on top of the risk free rate; while f t is the vector collecting the

financial risk factors. Finally, Gθ(·) is the selected MLP and ϵt is the error term.

All models are trained with a mean square error loss, which is proportional to

the likelihood when residuals are i.i.d. Gaussian. Once the model has been

estimated we compute its Shapley values. In particular, we set 0 as neutrality

level for the output of the model, as we want to explain excess returns on

top of the risk-free. Figures 6.1a and 6.1b display Shapley values computed
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on the strategies whose validation exercise selects neural networks as the best

performing model instead of the linear one.

BAB Factors MKT SMB HML FF UMD
0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

(a) Four moments DLPO.

BAB Factors MKT SMB HML FF UMD

0.0006

0.0004

0.0002

0.0000

0.0002

(b) DLPO sharpe (D2FM states)

Figure 6.1: Box-plot of Shapley values with neutral baseline and neutrality value
set to 0.
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Figure 6.1a shows that the financial factors contribute half of the time

positively and half of the time negatively to the excess returns generated by

the 4 moments DLPO strategy. Whereas, Figure 6.1b indicates that for the

DLPO with Sharpe loss and the D2FM states the box-plots of HML and UMD

are entirely below zero; therefore, they almost always contribute negatively to

the excess returns generated by this strategy. In order to assess whether this

finding is correct, we added to both strategies a short position on a portfolio,

which is half invested in the High Minus Low (HML) factor and half invested

in the Up Minus Down (UMD) factor. We found that the Sharpe ratio of the

DLPO with Sharpe loss (and D2FM states) improved by 10.1% compared to

the 5.9% improvement of the four moments DLPO.

6.4 Discussion

In this chapter we have introduced an approach to combine portfolio choice

theory with Deep Learning and Deep Reinforcement Learning. We have

provided a possible, albeit exploratory, framework for the dynamic portfolio

optimisation problem that takes into account higher order moments, and

allows to compute nonlinear portfolio performance attribution and exposure to

financial-economic factors. For the former, we used a simple gradient based

direct deterministic policy only deep learning method without a critic network.

We then also combined all the different methods analysed with the D2FM of

Chapter 4. With respect to the portfolio performance attribution, we show a

way to compute this via Shapley values and the baseline introduced in Chapter

5.

Empirical analysis on U.S. market data shows the approach has potential.

Nevertheless, these results also show that combining a classicial minimum

variance approach with the D2FM introduced in Chapter 4 delivers the best

risk-adjusted performances. We think more advanced algorithms from Rein-

forcement and Deep Reinforcement Learning, such as the actor-critic Deep

Deterministic Policy Gradient (DDPG) introduced in Silver et al. [206], could
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benefit the framework. Furthermore, nongradient and hybrid optimisation tools

could also better the performance given the complexity of the objective derived

especially when including higher order moments.



Chapter 7

Conclusion

This chapter summarises the main findings of this PhD thesis, sets out the

limitations of the studies, and outlines future work.

7.1 Summary and Assessment

In Chapter 4 Deep Dynamic Factor Models (D2FM) are introduced; this novel

class of models merges the deep learning (DL) literature on autoencoders with

that of the Econometrics on Dynamic Factor Models (DFMs). The approach

allows to estimate state space models with factor structure. Those are useful

to represent time series data generated from unobservable stochastic dynamic

common and idiosyncratic components. The framework accounts for mixed

frequencies and missing data. The empirical applications on synthetic and

macroeconomic real-time data show the potential and generality of such a

methodology. In particular, we demonstrate in a Monte Carlo study the ability

of the D2FM to effectively capture nonlinearities in the data generating process

(DGP), while still being able to show competing performances to the standard

DFM when the DGP is linear. The superior performance is confirmed on real

time macroeconomic data, where the D2FM shows improved performances

in forecasting and nowcasting US real GDP growth over the out of sample

period between beginning of 2006 and mid 2020. Moreover, it maintains some

intepretability aspects of standard DFMs. That is, while forecasting in real-time
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with non-synchronously published data1 it is useful to attribute the unexpected

data revision to the specific new piece of information released. This can be

done in the proposed framework using the same methodology adopted in DFMs,

where the so called news and impact are computed as discussed in Bańbura and

Modugno [39]. Moreover, it is possible to construct synthetic indicators and

interpret the estimated latent states as features of the business cycles. A note

of caution is however needed in regard to the factors estimated via the D2FM,

as we did not formally analyse their statistical properties, neither we discussed

ways to achieve their identification. Those topics have been well studied for

DFMs in the econometric literature and require further work to be potentially

extended to the D2FM.

In Chapter 5 a novel baseline for feature attribution methods and Shapley

values is proposed. The baseline is chosen according to the concept of fairness

and that of neutrality. A neutrality value is a parameter selected by decision-

makers, it represents the point at which their choices are determined by the

model predictions being either above or below it. Thus, the proposed baseline

is set based on a parameter that depends on the actual use of the model.

This procedure stands in contrast to how other baselines are set, i.e. without

accounting for how the model is used. The chapter introduces also the concept

of fairness which is needed to represent features fairly in their realisation space,

and given their relation to the model. This allows to take into consideration

distributional differences among the features to avoid selecting neutral baselines

that could deliver to distorted attributions because of such differences. Various

examples and empirical evidence from synthetic data and a dataset derived

from the financial domain corroborate these arguments. Nevertheless, the

approach proposed here has both computational and applicability limitations

which deserve further research. Moreover, it misses a comparison with more

recent methods such as the ones based on counter-factual explanation [see

283, 284, for example].

1A standard characteristic of real-time economic data, which features publication lag and
data revision.
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Lastly, in Chapter 6 it is discussed and evaluated an approach to combine

portfolio choice theory with Deep Learning and Deep Reinforcement Learning.

The framework allows for dynamic portfolio optimisation with higher order

moments, and nonlinear portfolio performance attribution to financial-economic

risk factors. For the latter, we adopt Shapley values and the baseline introduced

in Chapter 5 to decompose the premium of an investment strategy with respect

to economic and financial risk factors in a manner that need not be constrained

to a linear formulation. Overall, the findings of Chapter 6 support the potential

of hybrid strategies merging financial theory with machine learning for investing.

Nevertheless, further research and experiments are needed to effectively adopt

the methods discussed.

7.2 Future Work
In the future we would like to analyse more formally the statistical properties

of the estimation framework of the D2FM, and look for potential improvements.

On the applicative aspects we think it could be of interest to extend the

approach to test whether alternative data (e.g., text data, satellite images)

can better the empirical performance of the model [see 107, 51, for example].

Moreover, applications to analyse the conditional distribution of GDP growth

by combining the model with a quantile approach as in Adrian et al. [285] and

in Reichlin et al. [286] are other areas to explore.2 Additionally, imposing a

penalty in the loss to force identification of the factors is another interesting

area of research. In particular, in Bardes et al. [287] a new method called

VICReg (Variance-Invariance-Covariance Regularization) is introduced. The

method specifies a loss function which takes into consideration the distribution

of the latent states by forcing them to have zero covariance, while maintaining

a variance above a given threshold. The zero covariance term is aimed to

prevent a so called informational collapse in which the variables would be

highly correlated. This idea is borrowed from the Barlow Twins method of

2In this regard it could be interesting to consider also the framework proposed in Chen et
al. [278].
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Zbontar et al. [288], and we think it is an interesting approach for the inclusion

of a penalisation term to force identification of the factors. In the future we

would like to work on this aspect as well, including the potential of monotonic

and sign restrictions. Finally, with respect to the hyperparameter selection

strategy used, and being the model able to handle missing data, it can be

of interest to experiment different estimation methods of the generalisation

errors based on which hyperparameters are selected including those adopting

an artificial deletion of the observations, such as the one proposed by Pellegrino

[289], but also others based on pre-filtering of the models via statistical tests

as in Bergmeir et al. [115].

The new baseline proposed in Chapter 5 to compute feature attributions has

both computational and applicability limitations that require further research.

In particular, and based on our findings, the approach could be extended to

learn baselines by specifying a loss function that takes into account the concepts

of neutrality and fairness. A first attempt in this direction has been given

via the use of convex optimisation when features are Gaussian. Nevertheless,

further relaxations and generalisations are unequivocally needed to extend the

approach to more complex and general problems. Moreover, a comparison of

the approach with more recent methods from the literature, such as the ones

based on counter-factual explanation [see 283, 284, for example] is needed.

The approach discussed in Chapter 6 necessitates more research on the

algorithmic design. Indeed, more advanced and hybrid optimisation algorithms,

and (Deep) Reinforcement Learning approaches such as the one discussed in

Silver et al. [206], could benefit the framework. Additional theoretical and

empirical analysis would also be beneficial to the work. On the empirical aspect,

performing multiple evaluations on different datasets and including additional

strategies such as the ones discussed in the literature review chapter would

only serve to enhance the assessment of the methodologies. Also, evaluations

in synthetic environments with well known optimal allocation strategies could

shed light on whether the approach is able to recover the otherwise known
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best investment actions. With respect to the factor exposure, different model

specifications including additional covariates could be considered and evaluated.

Morevoer, similarly to Nakagawa et al. [136, 138] interpretable versions of the

models could be constructed and compared to ex-post explanation strategy.

We leave these areas of enquiry to future research.

Furthermore, in Appendix A it is illustrated a way to compute a full

decomposition of the statistical latent factors learned by the model introduced

in Chapter 4, and more in general of latent states of state space models

estimated via deep learning methods. Indeed, in these cases latent states are

computed as the output of a map that can be additively decomposed. These

latent states are then updated via the use of statistical filtering (e.g., the

Kalman filter). In doing so, the approach merges Shapley values with the

interpretability of the filtering process that allows for online updates of the

attributions initially computed via the Shapley values. Notwithstanding the

methodology is theoretically appealing, it misses a proper assessment which is

deferred to future work.

Finally, the combination of approaches and empirical results discussed in

this PhD thesis could allow for a unique framework to make systematic and

macroeconomic informed investment decisions, whose performance can then be

explained in relation to fundamental risk factors from the financial economic

literature [see 31, 32, 33, 34, 35, for example]. Notwithstanding here we analyse

some of these aspects, more work is unequivocally needed to effectively combine

the methods discussed, including their possible extensions and improvements,

given their limitations.



Appendix A

Appendix to Chapter 4

A.1 Deep Learning and State-Space: Shapley

Meets Filters
In this appendix section we discuss how to extend feature attribution methods

to state space models estimated via deep learning techniques. The time series

under analysis are assumed to be continuous. The key idea of the approach

is to consider the latent states as the output of an encoder network, while

the decoder represents the emission equation of a state space model. In this

way Shapley values are applied only at each re-estimation step on the encoder

network; when in production, the latent states and their explanations are

updated via the use of filters. This allows for a considerable computational

gain in a well-grounded theoretical setting, given that the computational cost

of exact Shapley values is exponential, while that of filters is polynomial. Let

us begin by reviewing common filtering techniques in State Space Models, then

move to a discussion of the core contribution, which consists of merging Shapley

values with filters.

A.1.1 State Space Models and Filtering

State space models provide a highly flexible framework to model time series data.

These models assume that the driving forces of the development over time of

the observable series need to be found in some unobservable components. Once
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the parameters of the model have been estimated, updates of the unobservable

components given the current observation are carried out in real time, as these

observations are made available to the model. This process is called filtering.

In this section we review common approaches to the optimal filtering problem,

following Haykin [290], and Durbin and Koopman [291] who we refer for further

details.

Since our focus is on Gaussian State Space models (GSSMs) with additive

noise, we start by formally introducing such models. Extensions to models

with non-Gaussian errors are possible through the use of appropriate filters

[see 290, 291, for details].

The observable or measurement equation is given by:

yt = F (at)+vt vt ∼N (0,Rt), (A.1)

with Rt being a diagonal covariance matrix and F (·) a generic function. The

state equation is given by

at = B(L)at +wt wt ∼N (0,Qt) (A.2)

where B(L) is a generic autoregressive lag polynomial, while Qt is a diagonal

covariance matrix. Additionally, wt is assumed to be uncorrelated with vt.

A.1.2 The Kalman Filter

The celebrated Kalman filter [292] provides a recursive solution to the linear

optimal filtering problem. In particular, given the following state-space model:

yt = Fat +vt vt ∼N (0,Rt) (A.3)

at = Bat−1 +wt wt ∼N (0,Qt) (A.4)

with F and B being matrices, while vt, wt and their covariances follow the

assumptions stated above. The Kalman filter works as follows [290]:
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1. Initialise â0 = E[a0], P 0 = E[(a0−E[a0])(a0−E[a0])⊤]

2. Computation for t = 1,2, . . .

(a) State estimate propagation ât|t−1 = Bât−1|t−1

(b) Error covariance propagation P t|t−1 = BP t−1|t−1B⊤ +Qt−1

(c) Kalman gain matrix Kt = P t|t−1F ⊤[FP t|t−1F ⊤ +Rt]−1

(d) State estimate update ât|t = ât|t−1 +Kt(yt|t−F ât|t−1)

(e) Error covariance update P t|t = (I−KtF )P t|t−1.

A.1.3 Nonlinear Filters
In order to extend the Kalman filter to state space models with nonlinear

transition and/or dynamics, we need to resort to approximation methods:

Extended Kalman Filters (EKFs), Unscented Kalman Filters (UKFs) and

Particle Filters (PFs). We focus on the first two, as we restrict our analysis to

GSSMs.

The EKF [293, 294] consists in carrying out a linearisation of the system

by means of a Taylor expansion around the most recent state. Since in a non

linear GSSM both F and B can be nonlinear, when performing the filtering

step we replace those matrices with an appropriate approximation, e.g., with

a first order Taylor expansion F̃t = ∂F (a)
∂a |a=at|t−1 and B̃t = ∂B(a)

∂a |a=at|t−1 . All

the rest works as in the standard Kalman filter.

The EKF achieves only a first-order accuracy; better approximation can

be achieved using a second order expansion but this would require additional

computational cost to calculate the Hessian Matrix. By way of contrast, the

UKF [295, 296, 297, 298, 299], which does not require computing derivatives,

has the same computational cost as the EKF, but delivers a third-order accuracy

for Gaussian inputs for all nonlinearities, while maintaining at least a second-

order accuracy for non-Gaussian inputs [290]. The idea behind the UKF is

to select appropriate sample points and propagate them trough the nonlinear

system, which allows to compute the posterior mean and covariance for any
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nonlinearity, with accuracy up to the aforementioned orders. This process

recalls the Gaussian quadrature; indeed, the relation between the two is shown

in Ito and Xiong [300].

A.1.4 Interpretability of the Filters

In addition to their extensively studied theoretical properties regarding the

updates of the latent states given the observables, filters allow for easy inter-

pretation, as the contribution of each observable to each of the latent states is

automatically computed during the update step by leveraging on the state-space

relations and the algebraic properties of the filtering.

Certainly, if we define the news [93] vector as yt+1|t+1−F ât+1|t, i.e., the

unexpected variation in the observable, we can directly attribute each of the

element of such a vector to the latent states through the structure of the

Kalman Gain matrix (or its approximations in the nonlinear case). In fact, the

variation in the latent state, k, attributed to observable, i, is given by:

Kk,i
t+1(yt+1|t+1−F ât+1|t)i, (A.5)

where Kk,i
t+1 is the k, i element of the matrix and (yt+1|t+1−F ât+1|t)i is the

i− th row of such news vector. For the EKF and the UKF, we need to replace

Kk,i
t+1 with its approximations [see 298, for example].

A.1.5 Merging Shapley Values with Filters
When a state space of the form A.1 - A.2 is estimated via a deep learning

approach, as in the model of Chapter 4, to fully explain the latent states with

respect to each of the observables, we need to merge a feature attribution

method with a filter. In particular, when such state-space is augmented with an

encoder for the latent states (i.e., at = G(yt)), Shapley values could be applied

to explain G(·); and then the properties of the chosen filter could be used to

attribute subsequent variations in the unobservable components.

Why we need the merge? Let us assume we are at time t < T and a

linear GSSM has been estimated with all the data up to this point in time. Now
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we will be rolling the model in production for the next {t+1, . . . ,T} periods.

Then, the first update step at t+1 is given by the following equation:

ât+1|t+1 = ât+1|t︸ ︷︷ ︸
Init

+Kt+1(yt+1|t+1−F ât+1|t)︸ ︷︷ ︸
Upd

(A.6)

where ât+1|t = B(L)G(yt), with B(L) being a lag-polynomial and G being a

neural network. When using filters we can attribute only the update part (Upd)

to each of the new observations coming into the model using equation (A.5),

while the initial part (Init) of equation (A.6) remains unattributed and hence

unexplained. Therefore, we need a methodology to decompose it.

How we do the merge? Fortunately, Shapley values and its approxi-

mations can help us to additively decompose the Init part of equation (A.6).

If we define with FADk,i(ât+1) the feature attribution decomposition of the

latent state with index k in ât+1 with respect to observable i, then at time

t+1, we have:

FADk,i(ât+1) = Bk,: Shapb(G(yt)):,i +Kk,i
t+1(yt+1|t+1−F ât+1|t)i, (A.7)

where Bk,: represents the k− th row of the matrix of the dynamics, assuming

a linear autoregressive process in B(L), while Shapb(G(yt)):,i is the Shapley

decomposition vector of all the latent states with respect to the feature (ob-

servable) i at time t, and at baseline b. Nevertheless, we still need to define

an appropriate baseline. A way to do this is to define a neutrality level on the

latent states and then use the methodology of Chapter 5 to find the baseline

value on the observable space. A natural choice for this neutrality level could

be the 0′s vector. It is noteworthy that this zero vector differs from the zero

baseline, as it is defined on the latent states, not in the observable space. This

choice is reasonable, as intuitively, when the unobservable components are at

this value, they do not have any influence on the observables. Furthermore,

these unobservable components can be seen as neurons from the neural network
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perspective, and the use of the zero value to model absence can be justified for

neurons because it signals when the neuron is dead [301].

Once the t+1 attribution has been computed, next period decompositions

can be recursively calculated from the past ones, thus requiring only a propa-

gation of the past feature attribution towards the system dynamics, and the

Upd term of equation (A.6) to be computed. The high computational cost for

calculating the Shapley values is therefore sustained only at each re-estimation

step. Indeed, at t + h with h > 1, the feature attribution decomposition of

latent state k with respect to observable i is given by:

FADk,i(ât+h) = Bk,: FAD:,i(ât+h−1)+Kk,i
t+h(yt+h|t+h−F ât+h|t+h−1)i, (A.8)

where here again in Bk,: we assume a linear autoregressive process for the

unobservable dynamics. In case the state dynamics in equation (A.2) are

nonlinear and cannot be well approximated by a linearisation, then one can

use again Shapley values to propagate the feature attribution into the dynamic

equations. Importantly, even if Shapley based attributions would need to be

used again for the dynamics, the problem has a much lower complexity, as

usually the shared states (aka common factors) in the dynamic equations are

of a lower dimension compared to the observable cardinality. In the case of the

D2FM presented in the empirical part of this thesis in Chapter 4, being the

system linear in the dynamics, a matrix multiplication as in equation (A.8) is

all we need.

A.2 Data Appendix Macroeconomic Applica-

tion

Tables A.1-A.4 reports the list of variables in the dataset. The transformation

codes (Tcode) in the tables refer to how the variables are transformed to archive

stationary. With xt, as a raw series, the transformations adopted are:
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zt =



xt if Tcode = 1

(1−L) xt if Tcode = 2

(1−L)(1−L12) xt if Tcode = 3

log xt if Tcode = 4

(1−L)log xt if Tcode = 5

(1−L)(1−L12)log xt if Tcode = 6
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Appendix B

Appendix to Chapter 5

B.1 Proofs of Propositions 1 and 2
In this section we provide proofs of Proposition 1 and 2. For the convenience of

the reader, some relevant assumptions and definitions of the paper are reviewed.

Assumptions:

A1. All activation functions are monotonic and continuous.

A2. All marginals cumulative distribution functions (CDFs) of the joint CDF

of the input features are bijective and continuous.

Definition B.1.1 (Neutrality Value). Given a model prediction ŷ and a decision

maker, we say that the value α is neutral if the decision maker’s choice is

determined by the value of ŷ being either below or above α.

Definition B.1.2 (Space of Fair Baselines). Consider a dataset in Rk, k ≥ 1,

generated by a distribution. A vector x ∈ Rk is in the space of fair baselines

(hence called a fair baseline) for a monotonic model Gθ(·) if

B̃ = {xp ∈ Rk : xp
j = C−1

j (1θj>0 ·p+1θj<0 · (1−p)), p ∈ [0,1], j = 1,2, . . . ,k},

(B.1)

where C−1
j s are inverse marginal CDFs.

Proposition B.1.1 (Existence of a Neutral Fair Baseline for SLPs). Given

an SLP Gθ(·) satisfying A1, a dataset satisfying A2, and a neutrality value
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α in the image of Gθ(·), then there exists at least a fair baseline x such that

Gθ(x) = α.

Proof. We need to prove that a ∈Gθ(B̃), where Gθ(B̃) is the image of B̃ under

Gθ. Suppose that I is the image of the SLP. We show that I ⊆Gθ(B̃), which

proves the result, since α ∈ I.

We start by showing that inf Gθ(B̃)≤ inf I and that sup Gθ(B̃)≥ sup I.

Consider vector x0 ∈ B̃ defined by x0 = {x0
j = C−1

j (1θj<0), for all j = 1,2, . . . ,k}.

So elements of x0 are the smallest possible if the coefficients are positive, and

the largest possible when they are negative. From Assumption A1, it follows

that Gθ(x0) is the smallest value that the SLP can take. Hence, Gθ(x0)≤ inf I.

Let us now take the vector x1 ∈ B̃ which is defined by: x1 = {x1
j =

C−1
j (1θj>0), for all j = 1,2, . . . ,k}. So elements of x1 are the largest possible

if the coefficients are positive, and the smallest possible when they are negative.

From assumption A1, it follows that Gθ(x1) is the largest value that the SLP

can take. Hence, Gθ(x1)≥ sup I.

Suppose that α is in the image of the SLP. Define function h : [0,1]→G(B̃)

by h(p) = Gθ(xp) = G(θ′xp) where xp ∈ B̃, i.e, xp
j = C−1

j (1θj>0 ·p+1θj<0 · (1−

p)), j = 1,2, . . . ,k. From the above argument, we have that h(0) = Gθ(x0)≤

α≤Gθ(x1) = h(1). Since Gθ(·) and C−1 are continuous functions by A1 and

A2, h is also continuous. From the intermediate value theorem, there is a

p∗ ∈ [0,1] such that h(p∗) = α, which means that Gθ(xp∗) = α.

If we replace A1 with the following more stringent assumption, the solution

is unique.

A1’. All activation functions are strictly monotonic and continuous.

Proposition B.1.2 (Uniqueness of a Neutral Fair Baseline for SLPs). Given

an SLP Gθ(·) satisfying A1’, a dataset satisfying A2, and a neutrality value

α in the image of Gθ(·), then there exists a unique fair baseline x such that

Gθ(x) = α.

Proof. The existence has been shown in the previous Proposition. We prove
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uniqueness by contradiction. Let us assume that there exists an x′ ∈ B̃ such that

Gθ(x′) = α and x′ ̸= x. This means that there exists at least an element x′
i in the

vector x′ which is different from the element xi of the vector x. There are a total

of four cases to analyse: θi > 0 and x′
i > xi, θi < 0 and x′

i > xi, θi > 0 and x′
i < xi,

θi < 0 and x′
i < xi. We analyse only the case where θi > 0 and x′

i > xi, since the

rest are fairly similar. Gθ(x′) = Gθ([x′
1, . . . ,x′

i, ...,x
′
k]) > Gθ([x′

1, ...,xi, ...,x
′
k]),

where the inequality follows from the strict monotonicity of Gθ(·), and that

all the elements of the vector x′ are kept constant except one. It is now worth

observing that if θi > 0 and x′
i > xi, then x and x′ to be in the set B̃ must be such

that x′
j ≥ xj ∀θj > 0 and x′

j ≤ xj ∀θj < 0. Therefore, Gθ(x′) > Gθ(x) = α.

B.2 Additional Analysis on the Synthetic

Dataset
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Figure B.1: Average Pearson correlation heatmap between attribution methods
over the 100 draws of the Synthetic dataset.
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Appendix to Chapter 6

C.1 Additional Experiment
In this section we compare different approaches on a dataset of weekly returns

from the U.S. stock market. In particular, we restrict the investment set to

the Standard & Poor’s 500 sectoral indices, plus the Bloomberg US Treasury

Index. The exercise is similar to the one presented in the main chapter,

however we change the frequency from daily to weekly and the investment set

by substituting the Bloomberg Barclay U.S. Aggregate Bond Index with the

Bloomberg US Treasury Index. This exercise is aimed as a robustness check of

the results presented in the main chapter, which we include in the table under

the name daily to facilitate the comparison. A little of explanation is dutifully.

In particular, the table shows that the performance metrics that are strongly

consistent among the two experiments are turnover and maximum drawdown.

The Sharpe ratio and Sortino ratio on the other side show some differences, this

becomes particularly clear when looking at the Spearman correlation between

the two out of sample evaluations. Nevertheless, the top strategy according

to those metrics confirm to be the minimum variance, with the DLPO first

second third fourth moment closely tracking, but this time at the third position

instead of the second. Moreover, among the DLPO strategies this robustness

check confirms that taking higher order moments into account when designing

reward objectives may be beneficial.
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Appendix D

Colophon

This document was set in the Times Roman typeface using LATEX and BibTEX,

composed with a text editor. The programming languages used for the em-

pirical sections are Python 3.7.5 and Julia 1.0.5. Economic data are taken

from Alfred in real time. Financial data are taken from Bloomberg and the

UCI repository [280]. The source for data regarding the financial factors is

AQR website: https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-

Equity-Factors-Daily.
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