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Abstract

In this thesis we explore the near term applications of quantum computing

to Quantum Chemistry problems, with a focus on electronic structure calcu-

lations. We begin by discussing the core subroutine of near-term quantum

computing methods: the variational quantum eigensolver (VQE). By drawing

upon the literature, we discuss the relevance of the method in computing elec-

tronic structure properties, compare it to alternative conventional or quantum

methods and outline best practices. We then discuss the key limitations of

this method, namely: the exploding number of measurements required, show-

ing that parallelisation will be relevant for VQE to compete with conventional

methods; the barren plateau problem; and the management of errors through

error mitigation - we present a light touch error mitigation technique which is

used to improve the results of experiments presented later in the thesis.

From this point, we propose three methods for near term applications of

quantum computing, with a focus on limiting the requirements on quantum

resources. The first two methods concern the computation of ground state

energy. We adapt the conventional methods of complete active space self con-

sistent field (CASSCF) and energy-weighted density matrix embedding theory

(EwDMET) by integrating a VQE subroutine to compute the electronic wave-

functions from which reduced density matrices are sampled. These method
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allow recovering additional electron correlation energy for a given number of

qubits and are tested on quantum devices. The last method is focused on

computing excited electronic states and uses techniques inspired from the gen-

erative adversarial machine learning literature. It is a fully variational method,

which is shown to work on current quantum devices.
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Impact statement
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fundamental limits of conventional computation means that numerous such

problems become unsolvable beyond a certain size. From an academic research

standpoint, the thesis provides a clear curriculum for study of VQE, its best

practices as of 2022 and clear directions for impactful research question that

will need to be addressed before VQE can be considered a viable method.
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Chapter 1

Introduction and overview

Quantum computing has undergone rapid development over recent years: from

first conceptualisation in the 1980s [1, 2], and early proof of principles for

hardware in the 2000s [3–14], quantum computers can now be built with hun-

dreds of qubits [15–17]. While the technology remains in its infancy, the fast

progress of quantum hardware and the massive financial investments all over

the world have led many to assert that so-called Noisy-Intermediate Scale

Quantum (NISQ) devices [18, 19] could outperform conventional computers in

the near future [20–23]. NISQ devices are near-term quantum computers, with

a limited number of qubits, and too few physical qubits to implement robust

error correction schemes. Existing NISQ computers have already been shown

to outperform conventional computers on a limited set of problems designed

specifically to fit quantum computers’ capabilities [20–22]. Algorithms running

on these restricted devices may require only a small number of qubits, show

some degree of noise resilience, and are often cast as hybrid algorithms, where

some steps are performed on a quantum device and some on a conventional

computer. In particular, the number of operations, or quantum gates, must
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remain moderate, as the longer it takes to implement them, the more errors

are introduced into the quantum state, and the more likely it is to decohere.

Due to these restrictions, there are severe limits on the scope of algorithms

that can be considered. In particular, well-known quantum algorithms such as

Shor’s algorithm [6, 24–30] for factoring prime numbers, or Grover’s algorithm

[31–36] for unstructured search problems, are not suitable for NISQ.

In this thesis, we explore the use of a NISQ method, the Variational

Quantum Eigensolver (VQE), as a quantum subroutine for computation of

molecular properties. The VQE was originally developed by Peruzzo et al.

[37], and its theoritical framework was extended and formalised by McClean

et al. in Ref. [38]. The VQE is among the most promising examples of

NISQ algorithms. In its most general description, it aims to compute an up-

per bound for the ground-state energy of a Hamiltonian, which is generally

the first step in computing the energetic properties of molecules and mater-

ials. The study of electronic structures is a critical application for quantum

chemistry (for instance: [39–41]) and condensed matter physics (for instance:

[42, 43]). The scope of VQE is therefore very wide-ranging, being potentially

relevant for drug discovery [44, 45], material science [46] and chemical en-

gineering [47]. Conventional computational chemistry, grounded in nearly a

century of research, provides efficient methods to approximate such properties,

but it becomes intractably expensive for very accurate calculations on increas-

ingly large systems. This poses challenges in the practical application of such

methods. One of the main reasons why computational chemistry methods can

lack sufficient accuracy in molecular systems is an inadequate treatment of the

correlations between constituent electrons. These interactions between elec-

trons formally require computation that scales exponentially in the size of the

system studied (i.e. the total time it takes to implement the computation is an
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exponential function of the system size), rendering exact quantum chemistry

methods in general intractable with conventional computing. This limitation

is well studied in the literature addressing simulation of quantum computers

on conventional computers, Ref. [48] provides an excellent example.

This bottleneck is the motivation for investigating methods such as the

VQE, with the anticipation that these could one day outperform the con-

ventional computing paradigm for these problems [49, 50]. In 1982, Richard

Feynman theorised that simulating quantum systems would be most efficiently

done by controlling and manipulating a different quantum system [2]. An ar-

ray of qubits obey the laws of quantum mechanics, the same way an electronic

wavefunction does. The superposition principle [51, 52] of quantum mechanics

means that it can be exponentially costly to encode the equivalent informa-

tion on conventional devices, while it only requires a linearly growing number

of qubits. In the context of electronic structure theory [53–55] this is the

appeal of quantum computing: it offers the possibility to model and manip-

ulate quantum wavefunctions exactly, beyond what is possible with conven-

tional computing. While largely dominated by electronic structure research,

the VQE and its extensions have also been applied to several other quantum

mechanical problems which face similar scaling issues. These notably include

nuclear physics [56, 57] and nuclear structure problems [58, 59], high-energy

physics [60–62], vibrational and vibronic spectroscopy [63–68], photochemical

reaction properties predictions [69, 70], periodic systems [71–73], resolution of

non-linear Schrödinger equations [74], and computation of quantum states of

a Schwarzschild-de Sitter black hole or Kantowki-Sachs cosmology [75].

The VQE starts with an initialised qubit register. A quantum circuit is

then applied to this register to model the physics and entanglement of the elec-

tronic wavefunction. Quantum circuit refers to a pre-defined series of quantum
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operations that will be applied to the qubits [76]. The number of consequen-

tial operations in a circuit is referred to as depth. This circuit is defined by

two parts: (1) a structure, given by a set of ordered quantum gates, often

referred to as an ‘ansatz’; and (2) a set of parameters that dictates the be-

havior of some of these quantum gates. Once the quantum circuit has been

applied to the register, the state of the qubits is designed to model a trial

wavefunction. The Hamiltonian of the system studied can be measured with

respect to this wavefunction to estimate the energy. The VQE then works by

variationally optimising the parameters of the ansatz in order to minimise this

trial energy, constrained to always be higher than the exact ground state en-

ergy of the Hamiltonian by virtue of the variational principle [77–79]. For the

VQE to be tractable, it is necessary that the number of quantum operations

required to model the wavefunction is sufficiently low, imposing a relatively

compact ansatz. The VQE admits wavefunction ansätze which cannot be effi-

ciently simulated on conventional computers, indicating a possible advantage

over conventional approaches if these quantum circuits are sufficiently accur-

ate trial wavefunctions [37]. A first demonstration of the potential of these

quantum ansätze was shown in Ref. [37], where an ansatz with polynomially-

scaling depth in the size of the qubit register was constructed using principles

grounded in conventional quantum chemistry (namely, the Unitary Coupled

Cluster [37, 80, 81]). Since then, many alternatives have been proposed, with

ansätze depth scaling as low as linearly [80] in the size of the qubit register. It

must be understood however that a shallower ansatz, i.e. with fewer necessary

quantum operations, will in general cover an overall smaller span of the space

of all possible wavefunctions, and could result in lower accuracy of the ground

state energy.

Despite an enormous amount of research being conducted on VQE, the
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community remains divided on the potential of the method - several studies

pointing out that the large number of measurements required to perform the

method at scale renders it intractable [82–84]. These studies however do not

discuss in depth how much best practices can affect the overall scaling of VQE,

nor they take fully into consideration the potential for parallelisation of the

method and its implications for hardware design. The aim of this thesis is to

discuss the potential use of VQE as a subroutine for NISQ methods aiming at

computing molecular properties. As such we focus on two research axes:

• Research axis 1: Review of the current knowledge on VQE to determine

best practices, potential for bringing quantum advantage and limitations

of the method.

• Research axis 2: Development of methods for computation of relevant

molecular properties that can be implemented and tested on the current

generation of quantum computers.

1.1 Contribution and synopsis of thesis

In Chapter 2, we provide an overview of the VQE, its relationship to alternative

methods of energy computation for a molecular system. This overview is

followed by a discussion of best practices drawn upon the literature (as outlined

in Tilly et al. [85]).

In Chapter 3, we outline the key limitations of the VQE that remain to be

overcome. The first one we discuss is the exploding number of measurements

required to sample the wavefunction. Using the Chromium dimer as a case

study, we discuss the possible runtime of a single iteration of VQE assuming

best practices. From this assessment it is clear that large scale parallelisation
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will be relevant for VQE to compete with conventional methods. The second

limitation listed is the barren plateau problem, which implies that the gradients

of parameters in the ansatz may vanish exponentially in given properties of the

VQE problem. Finally, the third limitation is the ability to manage the impact

of error on the optimisation and final result of VQE. After a brief introduction

to error mitigation, we present a light-touch error mitigation method, that

while not suitable for large scale applications, offers a convenient mean to

improve results of current NISQ experiments at no computational cost.

Chapter 4 focuses on presenting two methods for recovering additional elec-

tron correlation energy at a given number of qubits, these are both adaptation

of conventional quantum chemistry methods to quantum computing. These

rely on VQE to resolve the energy of a correlated subspace of the wavefunction

in an inner loop, while using conventional methods to update the Hamilto-

nian representation in an outer loop. In order to perform these method, one

must sample the two-body reduced density matrices (RDM) from the resolved

wavefunction on the correlated subspace. We therefore first present a study

of RDM sampling on a quantum computer showing the extent to which finite

sampling noise can affect the accuracy of the result. The first method is a

quantum version of the complete active space self consistent field (CASSCF)

which allow for improving upon the Hartree-Fock one- and two-body orbitals

at each outer loop iteration, thereby providing a better representation of the

Hamiltonian. The method is tested on a quantum device, shown to converge

even with minimal error mitigation and used to correctly estimate a dipole

moment. The second method is a quantum version of the Energy weighted

Density Matrix Embedding Theory (EwDMET), and is tested on a quantum

device to compute density of states for the Bethe lattice.

In Chapter 5, we present a NISQ method for computing molecular ex-
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cited states. The focus of this method is to reduce the requirements on the

complexity of the quantum computing operations compared to previously de-

veloped methods. Using techniques based on generative adversarial machine

learning, we propose a method to generate states that would be orthogonal

to the ground state, thereby allowing to progressively learn molecular excited

states. The method, named discriminative VQE, is tested on several quantum

devices (IBM, Honeywell, and Rigetti) and shown to work for small examples

on current quantum computers.

1.2 Statement of authorship
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• Jules Tilly, Hongxiang Chen, Kanav Setia, Ying Li, Edward Grant, Le-
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tices, Physics Reports, 986, 1–128 (2022)

• Jules Tilly, PV Sriluckshmy, Akashkumar Patel, Enrico Fontana, Ivan

Rungger, Edward Grant, Robert Anderson, Jonathan Tennyson, George

H. Booth, Reduced density matrix sampling: Self-consistent embedding

and multiscale electronic structure on current generation quantum com-

puters, Phys. Rev. Research 3, 033230 (2021)

• Jules Tilly, Glenn Jones, Hongxiang Chen, Leonard Wossnig, Edward

Grant, Computation of molecular excited states on IBM quantum com-

puters using a discriminative variational quantum eigensolver, Phys.

Rev. A 102, 062425 (2020)
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Chapter 2

Variational quantum methods for

quantum chemistry

In this Chapter, we provide a formal definition of the VQE, and an appreciation

of where the algorithm is positioned compared to both conventional electronic

structure, and other quantum computing methods. Later on, we suggest some

best practices collected from the literature and a perspective on the overall

resources that could be required for the VQE to achieve quantum advantage,

as assessed in Tilly et al. [85].

2.1 A formal definition of the VQE

The VQE was first presented by Peruzzo et al. in Ref. [37] and its theoret-

ical framework was significantly extended by McClean et al. in Ref. [38]. It is

grounded in the variational principle (or the Rayleigh-Ritz functional [77–79]),

which optimises an upper bound for the lowest possible expectation value of an

observable with respect to a trial wavefunction. Namely, providing a Hamilto-
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nian Ĥ, and a trial wavefunction |ψ⟩, the ground state energy associated with

this Hamiltonian, E0, is bounded by

E0 ⩽
⟨ψ| Ĥ |ψ⟩
⟨ψ|ψ⟩

. (2.1)

The objective of the VQE is therefore to find a parameterisation of |ψ⟩, such

that the expectation value of the Hamiltonian is minimised. This expectation

value forms an upper bound for the ground state energy, and in an ideal

case should be indistinguishable from it to the level of precision desired. In

mathematical terms, we aim to find an approximation to the eigenvector |ψ⟩

of the Hermitian operator Ĥ corresponding to the lowest eigenvalue, E0.

In order to translate this minimisation task into a problem that can be

executed on a quantum computer, one must start by defining a so-called an-

satz wavefunction that can be implemented on a quantum device as a series of

quantum gates. Given that we can only perform unitary operations or meas-

urements on a quantum computer, we do this by using parameterised unitary

operations. We hence express |ψ⟩ as the application of a generic paramet-

erised unitary U(θ) to an initial state for N qubits, with θ denoting a set of

parameters taking values in (−π, π]. The qubit register is generally initialised

as |0⟩⊗N , written as |0⟩ for simplicity, although low-depth operations can be

performed for alternative initialisations before the unitary is applied. Noting

that |ψ⟩ (as well as any U(θ) |ψ⟩) is necessarily a normalised wavefunction, we

can now write the VQE optimisation problem as

EVQE = min
θ

⟨0|U †(θ)ĤU(θ) |0⟩ . (2.2)

Eq. (2.2) is also referred to as the cost function of the VQE optimisation

18



problem, a terminology inherited from the machine learning and optimisation

literature. We can continue this description by writing the Hamiltonian in a

form that is directly measurable on a quantum computer, as a weighted sum

of spin operators. Observables suitable for direct measurement on a quantum

device are tensor products of spin operators (Pauli operators). We can define

these as Pauli strings: P̂a ∈ {I,X, Y, Z}⊗N , with N the number of qubits used

to model the wavefunction. The Hamiltonian can be rewritten as

Ĥ =
P∑
a

waP̂a, (2.3)

with wa a set of weights, and P the number of Pauli strings in the Hamiltonian.

Eq. (2.2) becomes

EVQE = min
θ

P∑
a

wa ⟨0|U †(θ)P̂aU(θ) |0⟩ , (2.4)

where the hybrid nature of the VQE becomes clearly apparent: each term

EPa = ⟨0|U †(θ)P̂aU(θ) |0⟩ corresponds to the expectation value of a Pauli

string P̂a and can be computed on a quantum device, while the summation

and minimisation EV QE = minθ

∑
awaEPa is computed on a conventional

computer.

2.2 The VQE pipeline

The VQE, as presented using Eq. (2.4), can be decomposed into a number

of components, which all entail significant choices that impact the design and

overall cost of the algorithm. We refer to the layering of these different com-

ponents as the VQE pipeline. Most choices made on specific elements of this
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pipeline have significant implications on the entire VQE process. We summar-

ise the iterative process (and the main VQE loop) in Fig. 2.1 to provide a

schematic description of the algorithm and its main components. We list the

key components below and provide a brief introduction to each of them and

how they fit together:

• Hamiltonian construction and representation: The first step in

the VQE is to define the system for which we want to find the ground

state. This can be an ab initio molecular Hamiltonian for electronic

structure [86–89], a solid-state system [42, 90–92], a spin lattice model

[93], a nuclear structure problem Hamiltonian [59], or a Hamiltonian

describing any other quantum system. For each of these, one starts

with a specific geometry (or conformation) of the system, specifying for

example the distance between each atom, or the geometry of the lat-

tice. Constructing the Hamiltonian involves finding specific operators

and their weights between basis functions spanning the physical prob-

lem, where the basis functions represent the individual single-particle

degrees of freedom. Given the Hamiltonian defines the quantum observ-

able for the total energy associated with a wavefunction, the choice of

basis is critical to define the space its spans. It can have a significant im-

pact on the accuracy and cost of the final result, as the type of basis and

number of basis functions chosen both determine the size of the com-

putation required and the accuracy of the representation. In the case

of electronic structure, these different representations could include, as

examples, molecular orbitals from a prior mean-field calculation, plane-

wave functions, or local atomic functions, all representing the spatial dis-

tributions (or ‘orbitals’) for the single-particle Fock states, from which
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the many-body basis is formed [88]. Additional complexity arises when

specifically looking at electrons: following the Pauli exclusion principle

[94, 95] the wavefunction must be antisymmetric with respect to the ex-

change of two electrons. From a mathematical perspective, this means

that we must decide whether we enforce this antisymmetry through the

definition of the wavefunction or through the definition of the operators.

These are referred to (for historical reasons) respectively as first and

second quantisation [88]. In second quantisation the Hamiltonian is ex-

pressed in terms of fermionic operators, also known as creation (â†j) and

annihilation (âj) operators. These correspond to the action of adding,

or removing an electron from a given basis function with integer index j,

respectively (e.g. an orbital or a lattice site), ensuring appropriate fer-

mionic antisymmetry with respect to permutation of any two particles.

(An introduction to Hamiltonian construction and discuss the wider im-

plications of particular representation choices is presented in Sec. 3 of

Tilly et al. [85]).

• Encoding of operators: Qubit registers on quantum computers can

only measure observables expressed in a Pauli basis, due to the two-level

nature of spins: P̂a ∈ {I,X, Y, Z}⊗N , for N qubits. In first quantisation,

the operators can be directly translated into spin operators that can be

measured on quantum computers [96], as they are not used to enforce

antisymmetry of the wavefunction. In second quantisation the Hamilto-

nian is expressed as a linear combination of fermionic operators which

are defined to obey this antisymmetry relationship, unlike Pauli operat-

ors. The role of a fermionic to spin encoding is therefore to construct

observables, from Pauli operators, which maintain this relationship. A
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transformation of fermionic operators to spin operators that meets this

criterion was demonstrated a long time ago [97], and recent research has

focused on improving on this initial work. The key factors determining

the efficiency of an encoding are their Pauli weight (the maximum num-

ber of non-identity elements in a given spin operator), the number of

qubits required, and the number of Pauli strings produced. (For a list

of the most relevant encodings for second quantised Hamiltonians see

Sec. 4 of Ref. [85]). It is worth noting that for certain ansatz choices,

in particular those defined in terms of fermionic operators, the encod-

ing can have significant implications on gate depth and trainability (Sec.

3.2). Cases of encoding particles others than fermions (e.g. bosons), and

which do not require antisymmetry to be enforced are also possible and

far simpler..

• Measurement strategy and grouping: The next step in the VQE

pipeline is to determine how measurements are distributed and organised

to efficiently extract the required expectation values from the trial wave

function. In general, to achieve a precision of ϵ on the expectation value

of an operator, we are required to perform O(1/ϵ2) repetitions (usually

denoted as shots) of the circuit execution, each completed with a meas-

urement at the end [38]. The objective of the measurement strategy is

to make the number of repetitions as low as possible. Several techniques

are available to achieve this, in particular, the use of efficient weighting

of the number of measurements across the operators [98–100]. This can

be further optimised by using properties of the Lie algebra in which Pauli

strings are defined. Via processing of the encoded Pauli strings to be

measured, it is possible to identify commuting groups of operators that
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can be measured jointly, and subsequently find the measurement bases

in which all operators of a given group can be simultaneously measured

[101–103]. In order to perform this joint measurement, a short quantum

circuit must therefore be designed and applied for each group, to rotate

the measurement basis and to perform this joint measurement. Altern-

atively, because of information overlap between different Pauli strings,

one can also try to reduce the number of measurements required using

inference methods from fewer shots [104, 105] (See Sec. 5 of Ref. [85]

for details).

• Ansatz and state preparation: Once the Hamiltonian has been pre-

pared such that its expectation value can be measured on a quantum

device, we can turn to the preparation of the trial wavefunction. In

order to do this, one must decide on a structure for the parametrised

quantum circuit, denoted as ansatz. It is used to produce the trial state,

with which the Hamiltonian can be measured. Upon successful optim-

isation of the ansatz parameters, the trial state becomes a model for

the ground state wavefunction of the system studied. A wide range of

ansätze are possible, and the appropriate choice depends on the prob-

lem being addressed. The key aspects of the ansatz are its expressibil-

ity and trainability. The expressibility defines the ability of the ansatz

to span a large class of states in the Hilbert space [106, 107], defining

the maximum accuracy its approximation of relevant low-energy states

can achieve (assuming all parameters can be perfectly optimised). Its

trainability describes the practical ability of the ansatz to be optimised

using techniques tractable on quantum devices [106, 108] (related to the

total number of parameters, their linear dependence, the structure of the
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optimisation surface, and to the concept of barren plateaus [109], which

can arise when gradients almost vanish thereby preventing optimisation).

A good ansatz must be sufficiently expressive to guarantee that it can

appropriately approximate the ground state wave function, however, it

must not be so expressive that it renders the search for the target state

intractable. Another important aspect of the ansatz choice is the scaling

and complexity of its circuit depth with system size. This is particu-

larly important for near-term application of the VQE, as it determines

in great part the noise resilience of the method employed. Details about

ansatz selection are presented in Sec. 6 of Ref. [85].

• Parameter optimisation: The parameters of the ansatz used need

to be updated iteratively until convergence. In general, this requires

sampling the expectation value of the Hamiltonian several times for a

given parameter set in the ansatz in order to define an update rule for

the parameters (i.e. the updated value of the parameters is a function of

the expectation value measured). The choice of optimisation algorithm

is critical for at least three main reasons: (1) it directly impacts the

number of measurements required to complete an optimisation step, as

e.g. computing the numerical gradient of a quantum circuit can require

value estimation of the Hamiltonian with respect to several slightly mod-

ified wave functions (this is also generally true for gradient-free methods)

[110, 111]; (2) some optimisers have been designed to alleviate specific

optimisation issues, such as the barren plateau problem [112–116]; (3) it

directly impacts the number of iterations required to reach convergence

(if it allows for convergence to be reached at all) [114–116].

• Error mitigation: Quantum noise is one of the main hurdles in the
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viability of the VQE, given that the method is to be used without error

correction schemes on NISQ devices. Error mitigation aims to reduce the

impact of quantum noise through post-processing of the measurement

data (or occasionally through post-processing of the trial wave function

ahead of measurements). Error mitigation techniques vary widely in

terms of cost and benefits (see Sec. 3.3), and in general, a mix of these

can be implemented jointly to achieve the best balance.

It is worth briefly outlining the distinction between the VQE pipeline and

that of other variational quantum algorithms (VQAs) [123]. The key dis-

tinguishing feature of VQE is that it is restricted to finding the eigenstate

of a quantum observable, which is not necessarily the case of other VQAs

(such as Quantum Approximation Optimisation Algorithms [124] or the Vari-

ational Quantum Linear Solver [125, 126]). As such, the process of encoding

the Hamiltonian is specific to VQE. Similarly, while all VQAs would benefit

from efficient measurements, the nature of the observable used in VQE (of-

ten scaling polynomially in the system size) mean that efficient grouping and

measurements strategies will likely have a far greater impact on the overall

scaling of the method.

A similar distinction can be drawn with the field of machine learning using

Quantum Neural Networks (QNN) [127, 128]. While such methods can be

considered as variational algorithms, the reverse is not necessarily true. Most

VQAs, and the VQE, aim at finding the solution to a given problem from

initial inputs. Machine learning on QNN aims at abstracting, and generalising

[129], a pattern from already solved problems used as initial input. As such

the algorithmic pipeline and challenges of both methods are largely different.

In the case of QNN, one will be less concerned about the representation of the
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Figure 2.1: The VQE Pipeline - Formulas are illustrative and do not correspond
to best practices. (1) Pre-processing: (a) Hamiltonian representation: A set
of basis functions is defined for the Hamiltonian to be expressed as a quantum observ-
able of the electronic wave function; (b) Encoding: The Hamiltonian is encoded
into a set of operators that can be measured on a Quantum Computer, using the
qubit register wavefunction. To do this, fermionic operators in the Hamiltonian are
mapped to spin operators using an encoding; (c) Grouping and measurement
strategy: Operators defined in (b) are grouped in order to be measured simultan-
eously later on, usually requiring an add-on to the quantum circuit for each group in
order to rotate the measurement basis in a basis in which all operators in the group
are diagonalised. It is also the step in which we decide the measurement weighting
strategy; (d) State initialisation: Decide how the state to which the ansatz is ap-
plied is initialised. In general, the Hartree-Fock wavefunction is used [89, 117–120],
but other options are also possible - (2) The VQE loop: (a) Ansatz and trial
state preparation: Apply the ansatz to the initialised qubit register, before the
first iteration of the VQE all the parameters of the ansatz also need to be initialised
(randomly or using a specific method, e.g. Ref. [121, 122]); (b) Basis rotation
and measurement: Once the trial wave function has been prepared, it must be
rotated into the measurement basis of the operator of interest, or a diagonal basis
of a specific group of Pauli strings (c) Observable computation: The expecta-
tion value to be computed depends on the optimisation strategy used, in any case
however these are reconstituted by weighted summation on conventional hardware;
(d) Parameters update: Compute and apply updates to the ansatz parameters
and begin a new iteration of the VQE - (3) Post-processing, Error mitigation:
error mitigation is a layer of additional computation on measurement output (or
directly on the quantum state prior to measurement) aimed at reducing the impact
of quantum noise on the results.
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observable and poorly scaling measurement requirements. Instead, deciding on

the process for encoding conventional data into a quantum state (often referred

to as quantum feature map) [130, 131] will be critical in determining potential

for quantum advantage and is completely absent from the VQE pipeline.

2.3 Advantage argument, assumptions, and lim-

itations of the VQE

Quantum supremacy is achieved when algorithms running on quantum com-

puters can produce results that surpass those generated on conventional com-

puting resources in accuracy and/or resources required [132]. It was demon-

strated on a tailored sampling task by several research teams [20–23], al-

though the magnitude of the advantage has also been contested [133, 134].

Quantum advantage is in general used interchangeably with quantum suprem-

acy, however in this work we use quantum advantage to refer to an instance of

quantum supremacy where the advantage has relevant, tangible applications.

This concept can rely on theoretical scaling arguments or practical demonstra-

tions. A precise definition of the resources required and of the accuracy metrics

is required for any specific demonstration of quantum advantage, which needs

to include all overheads and initialisation requirements. Computing resources

can be defined in many different ways, including overall absolute runtime, time

scaling, memory requirements, or indeed ‘indirect’ metrics such as the finan-

cial cost of the computation or energy consumption (for a discussion on the

energy consumption of quantum computers, we recommend Ref. [135]).

The VQE allows for the probabilistic measurement of observables over cer-

tain classes of parameterised approximate wavefunctions, which can neither
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be sampled from nor have their properties computed efficiently (e.g. in poly-

nomial time) on conventional devices as the system size gets large. Of course,

this implies that the Hamiltonians studied can be written as a polynomially

growing sum of independent observables [37], as is commonly found in a num-

ber of fields such as quantum chemistry, condensed matter physics, or nuclear

physics. If these wavefunction forms, accessible via the VQE yet practically

inaccessible via conventional means, admit sufficient accuracy in their approx-

imation to the ground state, quantum advantage can be considered within

this paradigm. The argument outlined above defines a necessary condition

for the VQE to become a practically useful method for computing proper-

ties of quantum systems. It is clear from the literature, and outlined in Sec.

2.6, that under certain assumptions this condition is theoretically achievable

[37, 80, 98, 136–138].

There are however many restrictions of quantum computing that this ap-

proach does not take into account, and we therefore propose two more strin-

gent conditions. The first one is that VQE must demonstrate similar or higher

accuracy than any conventional method, but with lower computational time-

to-solution. This condition takes into account possible limitations due to hard-

ware runtime, potentially resulting in a large pre-factor for VQE computations.

In this thesis, the pre-factor refers to the multiplier applied to a scaling rule

to obtain the actual run time of the method. If the VQE has better asymp-

totic scaling than conventional methods, but a large pre-factor, this means

an advantage could only be achieved in the asymptotic regime of very large

systems (with runtime possibly too large for VQE to be realistically usable).

This would make it difficult to demonstrate quantum advantage for practical

moderately sized systems. The second condition, which is also the most strin-

gent form of quantum advantage for the VQE, is to achieve at least as good

28



accuracy, and with faster compute time, for a system of sufficient complexity

to accurately model a real problem of physical and chemical relevance. This

involves demonstrations on systems, where the approximation error in defining

the specific Hamiltonian for the original problem is of smaller magnitude than

its solution using the VQE. This could be as simple as ensuring that basis sets

are sufficiently saturated [89], or that the complexity of the interactions with

a wider system were sufficiently resolved. For instance, consider computing

the energy of a series of protein-ligand complexes (for which methods extend-

ing VQE have already been proposed [139, 140]): even if the VQE achieves

better accuracy in lower computation time, it is not guaranteed that these

accuracy gains lead to a practical advantage. For example, the accuracy gains

may still be insufficient to predict the most appropriate ligand in a physical

experiment due to the approximations in the treatment of the environment in

the Hamiltonian. Some researchers have attempted to estimate the tipping

point for quantum computing-based quantum chemistry to overtake conven-

tional methods. As one example, Elfving et al. [82] estimate the size of basis

set (and hence the number of qubits) that would be required for a tangible

quantum advantage of quantum computing based methods to lie somewhere

between 19 and 34 molecular orbitals (or twice as many spin orbitals and hence

twice as many qubits).

Despite sound theoretical arguments for the polynomial scaling of VQE

[37, 38], a number of potential limitations have been identified as well, which

could prevent the VQE from achieving quantum advantage:

• The VQE could be limited by a large pre-factor linked to the cost of

accurate observable sampling. Several studies have analyzed the over-

all cost of VQE and whether it can reach a tipping point, at which it
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becomes advantageous compared to conventional methods [82, 84, 98].

They have so far all concluded that given certain assumptions and the

current state of research surrounding VQE functionality, the algorithm

cannot outperform conventional methods within a remit of applications

considered tractable. The main bottleneck identified in these studies

(based on noiseless estimates) is the substantial number of measurements

that are required to estimate the expectation value of the Hamiltonian

using VQE (for further details see Sec. 3.1). The field of research is

fast-moving however, and much research has been devoted to efficient

operator sampling. Using the parallelisation potential of VQE (see Sec.

3.1.2) could also be a solution to this measurement problem but would

require a paradigm shift in the way quantum hardware is conceived.

• The VQE involves solving an optimisation problem. As such, to un-

derstand the true cost of implementing VQE, one needs to assess the

complexity of the optimisation process. The true cost and scaling are

dependent on the optimiser and on the optimisation landscape of the

specific problem studied. While some optimisers have been shown to

converge in polynomial time for convex cost functions, the VQE is far

from having such a favorable landscape [141, 142]. In fact, the VQE op-

timisation is shown to be NP-hard [141], which means that in the worst

possible case, finding the optimal solution to the problem is intractable.

Of course, this is to be expected as all optimisation problems can suffer

from the same issue [143]. The key open question is to know whether

VQE can be optimised heuristically in a polynomial number of itera-

tions, and converge to an approximate yet accurate enough solution, for

instances of practical relevance.
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• Even if one could show VQE would theoretically converge in a tract-

able number of iterations, this would assume that expectation values

and gradients are computed exactly. This assumption is not valid in

the context of quantum computation, and it has been shown that the

number of measurements required to accurately measure gradients could

scale exponentially in certain parameterisations of systems, due to the

barren plateau problem [109] (discussed in detail in Sec. 3.2). A number

of mitigating methods have been proposed, such as the identity block

initialisation [121] or the use of a local encoding for the Hamiltonian

[108, 144]. Nevertheless, the extent to which barren plateaus can indeed

be managed for VQE remains an open question.

• Related to both of the above, the extent to which VQE is resilient to

quantum noise is also an open question, but actively mitigating errors

will likely be unavoidable for relevant use of NISQ algorithms. Although

error mitigation methods have shown great success in improving the ac-

curacy of VQE on the current generations of quantum computers (for in-

stance [145–150]), it can significantly increase the resource requirements

of the algorithm. It is unclear whether this increase in resources is an

acceptable cost or likely to be a critical limitation in larger-scale applica-

tion of the VQE. A recent paper [151] is rather pessimistic on this point,

showing that the increase in cost is exponential when the ansatz circuit

grows deeper. Conversely, it was suggested in the early days of VQE

that variational algorithms possess inherent noise resilience since the op-

timisation can effectively adapt to the noise [38]. This resilience has

helped VQE to be more successful than other algorithms on the current

generation of quantum devices, and has been numerically demonstrated
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in small qubit simulations [152]. However, it remains unclear whether

this resilience from noise can be retained in larger quantum experiments,

where one is confronted with a more complex ansatz, with more noise

coming from the difficulty of controlling large numbers of qubits with

precision.

An important additional point to stress here is that while in theory the

exact state could in principle be spanned by a number of qubits that scales

linearly with system size, this exactness is in general forgone in VQE via the

imposed parameterisation. At this point, a strictly exact limit within a defined

Hamiltonian is only expected to be recovered with an exponential number of

variational parameters (and hence circuit depth) [153]. Therefore, to achieve

advantage, the classes of states accessible within the VQE framework must

admit superior approximations to quantum many-body systems of interest

compared to accessible conventional descriptions of quantum states, as well as

their scaling with system size. The key question regarding the realm of current

applicability of the VQE is therefore whether it can achieve higher accuracy on

at least some representative systems, with some appropriate resource metric,

compared to conventional computational chemistry methods.

2.4 VQE and conventional computational chem-

istry

The first step in any application of VQE to ab initio electronic structure is

to define the basis functions determining the resolution and representation of

the system. A common (but not required) approach to this would be to use

the molecular orbitals obtained from a prior mean-field Hartree-Fock (for a
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description of this method, see Ref. [89]) or density functional theory (DFT)

calculation [154–157] (for comprehensive reviews of DFT, see Refs. [158, 159]).

These orbitals are used to define the representation of the Hamiltonian, and

thus compute the operator weights of the resulting Pauli strings. In this way,

the VQE already relies on the techniques of conventional quantum chemistry

for its use. Furthermore, in order to clarify the challenge for quantum advant-

age, as well as the expected scope and applicability of the VQE in the context

of computational chemistry, we provide a very brief review of existing methods

in this domain.

Although exceptions exist, it should be noted that most conventional ap-

proaches for high accuracy ab initio ground-state energetic properties of mo-

lecular systems rely on wavefunction approximations, in keeping with the wave-

function approximation inherent in the VQE approach [160]. Other quantum

variables (such as densities, density matrices, or Green’s functions) can be

used, but are in general unable to reach state-of-the-art accuracy for ground

state energies [161]. As such, methods like DFT which is widely used in mater-

ial sciences, and offers a competitive cost-accuracy trade-off for large systems

are not direct competitors to VQE, due to the lack of systematic improvabil-

ity of their results. Despite some quantum algorithms for electronic structure

presenting algorithms with scalings competitive or even lower than DFT (for

example, Ref. [162]), the most likely competitors for short to medium term

applications of VQE are accurate wavefunction approaches, which can scale

as high polynomial or even exponential, but which still are able to access

comparatively large system sizes.
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2.4.1 Full Configuration Interaction

Full configuration interaction (FCI) provides the benchmark for exact repres-

entation of a quantum state for a given Hamiltonian and basis set [88, 163].

This results in the approach being in most cases intractable, with practical

limits for ab initio systems currently being 18 orbitals [164]. However, its nu-

merically exact treatment of the correlated physics ensures that it occupies a

unique and important position in quantum chemistry and electronic structure.

FCI builds the variationally optimal wavefunction as a linear superposition of

all possible configurations of electrons within the available degrees of freedom.

Whilst the inclusion of all possible configurations ensures that the final result is

invariant to the precise single-particle representation of the orbitals considered,

it is common to perform FCI in a basis of Hartree-Fock molecular orbitals to

improve the convergence rate. The Hartree-Fock method provides the vari-

ationally optimised single Slater determinant, as appropriate for closed-shell

systems [89], approximating the ground state wavefunction at the mean-field

level. In this basis, the orbitals have individual single-particle energies asso-

ciated with them, since they diagonalise the single-particle Fock matrix. The

structure of the FCI wavefunction then takes the following form, where the

configurations can be classed by the number of particle-hole excitations they

create in the reference Hartree-Fock configuration, as

|ψ⟩FCI = c0 |ψ⟩HF +
∑
ia

ciaâ
†
aâi |ψ⟩HF +

∑
ijab

cij,abâ
†
aâ

†
bâj âi |ψ⟩HF + . . . , (2.5)

where the first sum represents ‘singly-excited’ configurations where an occu-

pied spin-orbital, denoted by the indices i, j, . . . is depopulated, and a vir-
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tual spin-orbital, denoted by the indices a, b, . . . is populated (here we use

terminology corresponding to electronic structure theory, however these con-

siderations are valid for any quantum system expressed in a finite basis). This

(de)population is achieved while preserving antisymmetry of the overall wave-

function, via the use of the fermionic second quantised operators, â(†). These

number preserving excitations from the reference Hartree-Fock determinant

can be extended to double excitations (second sum) all the way up to m-fold

excitations, where m is the number of electrons. This then spans the full space

of configurations, and due to the linear parameterisation, ensures that the min-

imisation of the Ritz functional (Eq. 2.1) can be written as a diagonalisation

of the full Hamiltonian in this basis [165, 166]. Exact excited states (within

the defined basis and resulting Hamiltonian) can then also be computed as

successively higher-lying eigenvalues of the Hamiltonian matrix in this basis.

While the FCI represents the ‘ground truth’ solution for the defined com-

bination of Hamiltonian and basis set, the core aim of much of electronic struc-

ture is to truncate the complexity of this FCI solution (ideally to polynomial

scaling with system size), while minimising the loss in accuracy resulting from

this truncation [88]. It is also advantageous to have the ability to systematic-

ally relax this truncation of the approximate ansatz, allowing for improvable

results when the situation demands (for instance, see the methods described in

Ref. [160]). To this end, a large number of approximate parameterisations of

the FCI wavefunction have been explored, which differ in their accuracy, scal-

ing, functional form, and method of optimisation. Many of these approaches

have enabled chemical accuracy and beyond to be routinely reached in systems

far larger than those accessible by FCI [167–172]. The technical definition of

chemical accuracy is specifically the accuracy required to compute accurate

enthalpies (heats) of reactions, which numerically corresponds to a method
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achieving an output within 1.6 milli-Hartree (mEH) [173] of experimental res-

ults. It is widely used as a benchmark for numerical methods, although it is

worth noting that other chemical properties need higher accuracy (sometimes

by 2 to 3 orders of magnitude for instance in the case of spectroscopic proper-

ties). It is in general considered extremely difficult (or impossible) to reach for

large systems due to the approximations which are made when constructing

the model. Oftentimes computational methods aim at a correct qualitative

description of the chemical properties instead. We refer to chemical precision

as the benchmark for the precision at which the model is solved, irrelevant of

the uncertainties and approximation made when constructing the model (see

Ref. [82] for a thorough discussion of chemical accuracy vs. precision in the

context of computational chemistry).

The considerations described in devising an effective parameterisation also

largely echo the developments of ansätze for the VQE, although the functional

forms of ansätze which admit efficient evaluation on quantum devices are dif-

ferent. In the next section, we explore a few of these parameterisations which

are used on conventional devices, and how these considerations have influenced

and transferred over to the choice of ansatz developed in the context of the

VQE.

2.4.2 Efficient approximate wavefunction parameterisa-

tions for conventional computation

While the complexity of the exact FCI ansatz (Eq. 2.5) is clearly combinatorial

with the number of degrees of freedom, many accurate and more compact wave-

function forms have been established. It results in more efficient approaches

than FCI which can access larger system sizes, with only small tradeoffs in
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accuracy. As an illustration of the capabilities of state-of-the-art methods, a

recent study presents a blind test comparison of nine different methods ap-

plied to benzene on an active space of 30 electrons and 108 molecular orbitals

[160]. The root mean square deviation between the results produced by these

methods was only 1.3mEh, demonstrating a consistent and reliable level of

accuracy between these methods, expected to be close to FCI accuracy. A

similar (albeit not blind) study was conducted in Ref. [161], with applications

to transition metal systems, again showing excellent agreement between the

most accurate wavefunction methodologies in these systems.

To rationalise some of these parameterisations, an obvious first approxima-

tion to Eq. (2.5) can be made via truncation in the total number of excitations

from the reference configuration, allowing retention of the efficient linear form.

The most common of these is the configuration interaction with singles and

doubles ansatz (CISD), where only up to double excitations are retained [88].

More recent adaptive, selective or stochastic inclusion of desired configura-

tions exploit the sparsity in the optimised amplitudes, and can extend the

ansatz further in accuracy, resulting in methods such as Adaptive Sampling

CI (ASCI) [169, 174–176], Semistochastic Heat-Bath CI (SHCI) [172, 177–

182], or Full Configuration Interaction Quantum Monte Carlo [170, 183–186].

However, these truncated linear approximations can suffer from size-intensive

total energies, where the energy does not scale appropriately with respect

to the number of electrons, ensuring that the energy error per particle be-

comes increasingly large as systems grow in size [88]. Nevertheless, they can

result in excellent variational approximations to FCI for small systems. An

alternative approach is to construct a multi-linear approximation to the FCI

wavefunction, which results in the matrix product state functional form. This

form can be efficiently optimised within the density matrix renormalisation
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group (DMRG), and can also yield accurate and systematically improvable

approximations to FCI both in the case of ab initio molecular Hamiltonians

and for lattice models [167, 168, 187–196]. More broadly, the development

of tensor network theory [197, 198] and the use of matrix product states has

resulted in significant improvements of methods for the resolution of lattice

models (for instance [199, 200]). Finally, it is worth mentioning that a larger

class of approximate wavefunction ansätze are able to be optimised within the

framework of ‘Variational Monte Carlo’. In these approaches, an approximate

ansatz is chosen whose probability amplitude can be efficiently sampled at ar-

bitrary electron configurations, but where a closed-form polynomial expression

for the energy of the state is not accessible [201–203]. Within this criterion,

the parameters of the ansatz can be optimised via Monte Carlo integration of

the energy functional in a very general framework, albeit with the necessity

of controlling for stochastic errors and care in optimisation of the parameters.

Many of these considerations transfer through to the VQE.

Largely to correct for the size inconsistency in linear ansätze, the popular

coupled-cluster ansatz truncates and then exponentiates the form of Eq. (2.5).

This results in an appropriately sized consistent method, with an excellent ac-

curacy vs. cost balance [204–206]. The coupled-cluster with single, double and

perturbative triple excitations retained in the ansatz (known as CCSD(T)) is

often referred to as the ‘gold standard’ of quantum chemistry where the correl-

ations are not too strong [207], while other approximate coupled-cluster forms

suitable for stronger correlation effects have also been developed (for recent

examples, see Ref. [208, 209]). The coupled cluster is also the motivation of

the use of the unitary coupled cluster ansatz of VQE [153], where a similar

structure of exponentiated excitations based around a reference configuration

is constructed [37, 80, 81, 210–212], with modifications to ensure efficient use
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on a unitary set of quantum circuits. Similar considerations of dynamic inclu-

sion of additional excitations are also possible with the ADAPT-VQE ansatz

[213–215]. Furthermore, the Efficient Symmetry Preserving ansatz [216] looks

to ensure the ability to systematically improve its span of the FCI description

of Eq. (2.5) ensuring the preservation of symmetries inherent in its form. How-

ever, ensuring this systematic coverage of the FCI ansatz means that this form

remains exponential in the system size in a number of realistic cases, meaning

that true FCI may also be out of reach for the VQE.

An important consideration in the application of these approximate con-

ventional parameterisations is that the size of the errors is different for different

systems. Over time and use, an understanding has emerged from both theoret-

ical and numerical analysis for the domain of applicability of these approaches

and physical properties of the state which enable their accuracy, e.g. low-rank

excitations (coupled cluster), locality (DMRG) or sparsity in the state (se-

lected CI, FCIQMC). This understanding has promoted their effective use in

appropriate circumstances, and stimulated further developments to improve

their accuracy and scope. The analysis of the errors in different systems using

VQE ansatz for quantum simulation, as well as the reasons underpinning or

limiting their accuracy, is only starting to be performed, with more work ne-

cessary to fully classify and numerically investigate the approximations made

in their form [153, 217].

Overall, these established wavefunction methods based on conventional

computing (some of which are briefly described in this section) constitute the

state of the art in high-accuracy quantum chemistry, at least for the ground

state energetics. It should be stressed again that these approaches, as opposed

to FCI, constitute the ultimate benchmark on which the success of VQE should

be measured, as they represent approaches to systematically achieving chem-
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ical accuracy but with a greater efficiency than exact FCI. This constitutes

a demanding target for VQE to meet, with many decades of research in this

area. Furthermore, continuing research for other parameterisations suitable for

conventional devices, such as the rapidly emerging field of machine-learning in-

spired ansätze [203, 218–224], will continue to push the boundaries of accuracy

on conventional devices to challenge the criteria for VQE superiority.

2.5 VQE and Quantum Phase Estimation

The Quantum Phase Estimation algorithm (QPE) [225–229] provides a method

to find a given eigenvalue of a Hamiltonian from an approximated eigenstate

(ground or excited). QPE can compute an eigenvalue to a desired level of

precision with a probability proportional to how close the approximated ei-

genstate is to the true eigenstate [230]. It does so however using quantum

circuits of depths that are far beyond what is achievable in the NISQ era of

quantum computing [231]. As part of our discussion on the VQE we briefly

outline QPE and how the two compare.

2.5.1 Overview of the quantum phase estimation

A representation of the quantum circuit used to implement QPE is presented in

Fig. 2.2, and the process can be described as follows (adapting the descriptions

in Refs. [76, 96]):

• The objective of QPE, like the objective of VQE, is essentially to compute

an eigenvalue of a Hamiltonian. In the case of QPE however, the problem

presented in Eq. (2.2) is slightly reformulated. For a given Hamiltonian

Ĥ, and a given eigenstate |λj⟩ (usually the ground state: |λ0⟩), one tries
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to find a eigenvalue Ej such that:

eiĤ |λj⟩ = eiEj |λj⟩ . (2.6)

The Hamiltonian is exponentiated to obtain a unitary operator, and

without loss of generality we can write eiEj = e2πiθj , with θj the ‘phase’

QPE aims at discovering.

• The only inputs available however are the Hamiltonian, and an approx-

imation of the ground state |ψ0⟩ ∼ |λ0⟩, which can be generally expressed

in the eigenbasis of the Hamiltonian as

|ψ0⟩ =
2Nq−1∑
j=0

αj |λj⟩ , (2.7)

where Nq is the number of qubits used to represent the electronic wave-

function of the Hamiltonian (which therefore has a total of 2Nq eigen-

states).

• A register of ancilla qubits is used to map the eigenvalue sought-after, in

general to a binary number. The number of ancillas required therefore

depends on the type of implementation and desired precision (more an-

cillas mean a longer binary string, and therefore a higher precision [76]).

This ancilla register is initialised as an equally weighted superposition of

all possible state in the computational basis (all possible binary strings).

If we have a total of Na ancilla qubits, there are 2Na such basis ele-

ments. Starting from a register in state |0⟩⊗Na , a Hadamard gate (Had)

is applied to each qubit. We recall that Had |0⟩ = (|0⟩ + |1⟩)/
√
2, and

Had |1⟩ = (|0⟩− |1⟩)/
√
2. After these operations, the state of the ancilla
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register is

|ψanc⟩ =
1(√
2
)Na

2Na−1∑
x=0

|bin(x)⟩ , (2.8)

where x represents integers from 0 to 2Na − 1 and bin(x) the binary

representation of of x. When both the ground state approximation and

the ancilla register are considered together we get the total state of the

qubit register |ψtot⟩ = |ψanc⟩ ⊗ |ψ0⟩ such that

|ψtot⟩ =

 1(√
2
)Na

2Na−1∑
x=0

|bin(x)⟩

⊗

2Nq−1∑
j=0

αj |λj⟩


=

1(√
2
)Na

2Nq−1∑
j=0

2Na−1∑
x=0

αj |bin(x)⟩ ⊗ |λj⟩ . (2.9)

• In the superposition state above, there is no clear relation between an

ancilla state |bin(x)⟩ and the j-th eigenstate |λj⟩. That is, if one were

to measure the ancillas resulting in a binary number bin(x), no informa-

tion could be gained about the state of the wavefunction register which

encodes |λj⟩, and therefore no information can be gained about the as-

sociated eigenvalues. In the following, we will apply unitary gates to

this superposition state such that there is a clear one to one correspond-

ence between a measured binary number bin(x) and the eigenvector |λj⟩.

Consider the following unitary

U (k) =
(
eiĤ

)2k

, (2.10)

with k an arbitrary number for the time being. Following Eq. (2.6), if

this unitary is applied to eigenstate |λj⟩, it effectively results in a phase

e(2πiθj2
k). Now suppose that k is the index of the ancilla qubits, i.e.
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k ∈ [0, Na − 1] and that, for each k, U (k) is applied to the ground state

approximation only if the ancilla qubit of index k is in state |1⟩. This

operation can be performed by mean of a controlled unitary operation,

which applies a unitary operation subject to the value of a control qubit

[76]. For a superposition instance |bin(x)⟩ of the ancilla register, this

means that the unitary U is applied x times in total to the ground state

(consider for example the ancilla superposition |bin(5)⟩ = |101⟩, here

qubits are indexed from right to left to correspond to binary strings.

The unitary is applied for k = 0, and for k = 2, hence following Eq.

(2.10) it is applied 5 = 1 · 22 + 1 · 20 times). We obtain the state

|ψtot⟩ =
1(√
2
)Na

2Nq−1∑
j=0

2Na−1∑
x=0

e2πiθjxαj |bin(x)⟩ |λj⟩ . (2.11)

• The next step is to transfer information from each superposition in-

stance’s phase to the basis state by applying an inverse quantum Fourier

transform (QFT) to the ancilla register. QFT is a transformation from

the computation basis to the Fourier basis, mapping a single compu-

tational basis element |bin(y)⟩ to a superposition of all computational

basis elements each with different relative phase (due to the periodicity

of the phase, each relative phase is a different point on the 2π period,

with a total of 2Na different points)

QFT |bin(y)⟩ =
2Na−1∑
y=0

e2πi(xy/2
Na ) |bin(x)⟩ . (2.12)

If we set y = 2Naθi, we can observe that applying the inverse QFT to
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the ancilla register in Eq.(2.11) results in

(QFT−1⊗I⊗Nq) |ψtot⟩ =
2Nq−1∑
j=0

αj |bin(2Naθj)⟩ |λj⟩ , (2.13)

where for simplicity we have assumed 2Naθi ∈ N.

• Measuring the ancilla register in the Z basis returns the binary string

bin(2Naθi) with probability |αj|2, from which θi, and Ei can be re-

covered easily. The complete qubit register then collapses to the state

|bin(2Naθi⟩ |λj⟩.

Had . . . •

QFT−1

|0⟩⊗Nq ...
...

...

Had • . . .

Had • . . .

|ψ∼λ0⟩ U (0)) U (1) . . . U (Nq−1)

Figure 2.2: Quantum circuit for Quantum Phase Estimation

2.5.2 Discussion and comparison

Due to the ground state being measured directly in binary form in QPE, the

number of ancilla qubits required is directly related to the precision ϵ tar-

geted. Ancilla qubits provide one bit of information each, and as such, their

number scales O(1/ log2(ϵ)) in precision. The number of controlled unitaries

is doubled for each ancilla qubit, and therefore scales O(1/ϵ). These unitaries

are effectively representing the action of the Hamiltonian on a state. The core
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component of QPE is therefore efficient Hamiltonian simulation (for an over-

view of relevant methods see Ref. [47, 232]). Provided a non-restricted pool

of qubits, Babbush et al. [233] show that by engineering the correct Hamilto-

nian representation (namely, a plane wave basis in first quantisation), one can

achieve sub-linear scaling in the number of basis elements for Hamiltonian

simulation.

As mentioned above, QPE is only likely to succeed if the fidelity of the

input state to the unknown target eigenstate approaches one. In turn, this

implies that using a randomised state as input is not an option as its expected

fidelity to the target eigenstate approaches zero exponentially in the system

size, resulting in QPE becoming exponentially costly with imperfect input

state preparation [230]. Numerous methods have indeed been proposed to

prepare a good enough approximation of the target eigenstate in a tractable

manner, often grounded in conventional quantum chemistry (for example [234–

238]) or in adiabatic quantum computation (for example [229, 239, 240]).

There have been a number of successful implementations of QPE on quantum

devices [137, 241–246]. These have only been on small systems, as large scale

implementations require quantum resources which are not currently available.

In particular, large scale controlled unitaries, required for QPE, cannot be reli-

ably implemented on NISQ devices. This is also the case for the inverse QFT.

Several numerical studies have been performed to assess the complete cost

of implementing QPE on relevant systems, and estimate runtime on a fault-

tolerant quantum computer. The problem of nitrogen fixation has become a de

facto benchmark for this algorithm [247]. Reiher et al. [231] estimate that the

54 electrons, 108 spin orbitals of FeMo-co would require over O(1015) T gates,

200 millions qubits and would need to run for over a month to obtain quantitat-

ively accurate results (assuming 100 ns gate times and error threshold of 10−3).
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Berry et al. rely on qubitisation (a method which aims at transforming the

evolution operator into a quantum walk) [248] to reduce the gate requirements

to O(1011) Toffoli gates, despite an extended active space [249]. Lee et al. [250]

further improve on these results and estimate they could perform this energy

computation with four million physical qubits and under four days of runtime,

with a similar O(10−3) error threshold. There have been many resource es-

timates performed for condensed matter models (for instance [251, 252]), with

estimates as low as ∼ 500, 000 physical qubits running for a few hours to solve

a 100 site version of the Fermi-Hubbard model. Finally Elfving et al. [82]

estimate that with similar error rates, the chromium dimer (Cr2) with an act-

ive space of 52 spin orbitals and 26 electrons, would require O(107) physical

qubits running for about 110 hours. Research has progressed rapidly, and des-

pite estimated runtimes and hardware requirements which remain daunting,

offers a promising outlook for QPE, at least on targeted quantum chemistry

tasks (examples of which are suggested in Ref. [82]).

The VQE trades off the depth and number of qubits required under QPE

with a higher number of measurements and repetitions of the circuit, as well

as the constraints of an approximate ansatz for the state. As presented in

Ref. [253], QPE requires O(1) repetitions with circuit depth scaling O(1/ϵ)

in precision ϵ, VQE requires O(1/ϵ2) shots with circuit depth scaling O(1) in

precision. While many other factors affect the overall time scaling of both

methods, this point illustrates the asymptotic efficiency of QPE compared to

VQE assuming access to fault-tolerant quantum computers, but also the re-

source efficiency of VQE over QPE for NISQ-era devices. The frontier between

NISQ and fault-tolerant quantum computation is blurry, and as pointed out

by Wang et al. [253] so is the frontier between VQE and QPE. They present

an interpolation between the two algorithms, labeled Accelerated VQE (or α-
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VQE), which uses smaller scale QPE calculations as sub-routines for the VQE.

This method introduces a parameter α ∈ [0, 1] which allows tuning of the cir-

cuit depth O(1/ϵα) and number of samples O(1/ϵ2(1−α)) (one recovers the QPE

scaling if α = 1, and the VQE scaling if α = 0). In general, rather than being

mutually exclusive methods for solving an electronic structure problem, VQE

and QPE are likely to provide the most benefit when combined as complement-

ary approaches, offering algorithmic flexibility that can be adjusted depending

on the progress of quantum hardware.

It is worth noting that there exist other methods which attempt to reduce

the computing requirements of QPE and bring quantum eigensolvers closer

to being suitable to near-term devices. For example, Somma [254] proposes a

method that identifies eigenvalues of a given Hamiltonian in a time polynomial

in ϵ but only requiring a single ancilla qubit and without needing to implement

the inverse QFT.

2.6 Some suggested best practices for VQE and

their scaling assessment

In this section, we focus on combining compatible methods throughout the

VQE pipeline, which offer the most promising scaling without compromising

excessively on accuracy. The definition of a series of best practices for the

VQE may suffer from many pitfalls since there remain many open research

questions that affect the choice of optimal methods. It is also worth noting

that it is likely that a method that is optimal for one system is not for another,

and that this optimal compromise will change as quantum hardware improves.

With this in mind, we provide some suggestions for best practices on current
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devices for two broad families of systems. In particular, we can distinguish

between lattice models [42, 90, 92, 93] and ab initio molecular systems [86–

89]. These two categories usually require different encodings, measurement

strategies, and ansätze. Table 2.1 summarises the most promising VQE meth-

ods that we have identified, together with their scaling. The key distinctive

factor separating ab initio molecular systems and lattice models is that the

former makes no assumption on the range and type of interaction between the

fermionic modes (beyond it being a two-body interaction), while the latter

usually has a simplified and parameterised form which often only connects

fermionic modes following a nearest-neighbor lattice structure and/or features

a lower effective rank of interactions.

As noted in the introduction, while the majority of the literature on VQE

relates to electronic structure computation and lattice models, other applic-

ations have been proposed. Proposing best practices for these alternative

applications is challenging as the research is sparse and therefore we avoid

discussing these in this section.

Table 2.1: Summary of state of the art methods identified for the VQE for both
ab initio molecular systems and lattice models. These methods and scalings are
indicative only, as there remain a number of uncertainties with respect to their
behavior on large scale systems and in noisy environments.

Task ab initio Molecular systems Lattice models
Hamiltonian
construction

Second quantisation Second quantisation
O(n4) Hamiltonian terms and N =
O(n) qubits, with n number of basis
functions

idem

First quantisation could be advant-
ageous on some systems, but further
research is needed

idem

Continued on next page
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Table 2.1 – continued from the previous page
Task ab initio Molecular system Lattice models
Fermion to
spin encoding

Ternary tree Encoding [255] Generalised Superfast En-
coding [256]

Number of operators: O(N4), Pauli
weight O(log3(2N)),

Qubit number: N = O(nd/2);
for a regular lattice, num-
ber of operators scales
O(ND), where D is the
lattice dimension; Pauli
Weight: O(log2(d)), with
d the fermionic-interaction
graph maximum degree

Low weight encodings could result
in more resilience to barren plat-
eau [108, 144, 257], and more com-
pact ansätze, though there is at least
some suggestions that it may in-
crease impact of quantum noise [258]

idem, the Compact encoding
[259, 260] results in a lower
number of qubits for D = 2, 3
but has not yet been general-
ised to higher dimensions.

Grouping and
measurement
strategy

Decomposed interactions [103,
261]

Qubit-wise commutation
[38, 99, 101, 102, 147, 262–266]

Operators to measure reduced to
O(N); additional basis rotation cir-
cuit depth O(N/2)

Operators to measure reduced
by a scalar, Additional basis
rotation circuit depth O(1)

Full rank optimisation (in particular
its extensions) [261] seem to achieve
better overall measurement reduc-
tion for a given precision ϵ than the
basis rotation method [103], but cost
scaling remains unclear. Classical
shadows [105] have been shown in
at least one case [267] to outper-
form the scaling of decomposed in-
teractions, though further numerical
studies will be required to demon-
strate dominance.

QWC grouping benefits from
low Pauli weight encoding and
comes at virtually no cost

Ansatz k-UpCCGSD [80] Hamiltonian variational
ansatz (HVA) [98, 138]

Continued on next page
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Table 2.1 – continued from the previous page
Task ab initio Molecular system Lattice models

Circuit depth of O(kN), number of
parameters O(kN2)

Circuit depth and number of
parameters: O(kC̃), with C̃
the number of commutative
groups in the Hamiltonian (at
most O(ND) for a regular lat-
tice)

Promising scaling, and good ac-
curacy [80, 217] but uncertainty
remains for applications on large
highly correlated systems. Uncer-
tainty around k, the number of re-
petitions required. Adaptive ansätze
[213, 268, 269] may perform better,
but their scaling requires more in-
vestigation.

HVA has shown resilience to
barren plateau and efficacy on
lattice models [138]. k is the
number of repetition of the an-
staz required to reach the de-
sired accuracy.

Optimiser Trigonometric computation of
optimal parameters (e.g. inde-
pendently discovered under differ-
ent names: Sequential optimisation,
coordinate descent, RotoSolve [114,
115, 270, 271] or Fraxis [272, 273])

Simultaneous perturba-
tion stochastic approxima-
tion (SPSA) [274, 275]

Requires sampling three values for
each parameter at each step

SPSA has the advantage of re-
quiring significantly less meas-
urements to perform an optim-
isation step while likely requir-
ing more iterations.

Some indication of faster conver-
gence [115] including against SPSA
[114], but does not allow for full po-
tential for parallelisation of VQE,
and requires more values to sample
than most optimisers.

SPSA has been shown to out-
perform trigonometric resol-
ution methods on instances
of the Hubbard model [276],
and other gradient-based op-
timisers on Hubbard and hy-
drogen chains [277, 278].

Continued on next page
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Table 2.1 – continued from the previous page
Task ab initio Molecular system Lattice models
Error
mitigation
strategy

Despite a number of error mitigation
methods having been proposed and
tested [279], none has been shown
to be outperforming others so far
(see Sec. 3.3.2 for a brief discus-
sion on the main methods). A fair
comparison of the performance and
cost between different error mitig-
ation methods requires further re-
search.

idem

2.6.1 Best practices for ab initio electronic structure of

molecular systems

Hamiltonian construction: In the case of an ab initio molecular system,

the Hamiltonian representing its electronic energy landscape is initially defined

by a series of atoms and the spatial coordinates of their nuclei. The first choice

to make is the basis in which the Hamiltonian is expressed. This directly im-

pacts the number of qubits required for the implementation of VQE, which is

proportional to the number of basis functions. Since the number of qubits is

a limited resource in NISQ, we recommend using a molecular orbital basis, as

it is in general more compact for a given target accuracy (compared to, for

example, atomic or plane wave bases). Once a basis is decided upon, we must

choose whether the Hamiltonian is prepared in first quantisation (antisym-

metry maintained by the wavefunction) or second quantisation (antisymmetry

maintained by the operators). The number of qubits in first quantisation scales
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as O(m log2(n)) [226, 280], with m the number of electrons and n the number

of basis functions, against O(n) in second quantisation [97]. The former also

requires additional depth to enforce the antisymmetry of the wavefunction.

There has not been, to the best of my knowledge, a rigorous study of the

efficiency of using first quantisation in VQE. While the scaling for first quant-

isation could be advantageous in systems with few electrons and large basis

sets (e.g. if a plane wave basis is used [233]), second quantisation is generally

preferred.

Encoding: The next decision to take is that of the mapping used to trans-

form the fermionic, second quantised Hamiltonian into a weighted sum of Pauli

operators. The most relevant encodings for ab initio molecular system include

Jordan-Wigner [97], the Parity [281], Bravyi-Kitaev [281–283], and ternary

tree mappings [255]. Out of these, the most promising encoding is the tern-

ary tree mapping [255], since asymptotically it has the lowest Pauli weight

(maximum number of non-identity Pauli operators in the string), resulting in

lower circuit depth and possibly higher resilience to the barren plateau prob-

lem [108, 144]. It is however still unclear whether this lower circuit depth does

indeed result in more noise resilience, as pointed out in Ref. [258]. The result-

ing qubit Hamiltonian can also be further reduced using tapering off methods

based on symmetries [284–286].

Measurement strategy: The large number of measurements required to

sample the numerous terms in the Hamiltonian is often cited as the most det-

rimental bottleneck of VQE [82, 84, 98]. Deciding on an efficient strategy for

grouping and measuring Hamiltonian terms can go a long way in reducing

this bottleneck. The decomposed interactions methods [103, 261] provide on
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balance the most promising means to jointly measure the Hamiltonian. They

allow measuring an entire molecular Hamiltonian with O(N) groups and re-

quire additional circuit depth of O(N) to perform the necessary basis rotation,

which is usually acceptable since this scaling is equivalent or better than for

most ansätze. While it was shown that methods using grouping based on

general commutativity of Pauli strings (e.g. [102, 287]) require fewer shots to

achieve a given accuracy [261] in some numerical studies (in particular when

using the Sorted Insertion heuristic [288]), this reduction will likely not be

worth the additional circuit depth scaling O(N2) [101] required to perform

the joint measurements. It is also worth noting that among the decomposed

interactions methods, the Variance-estimate Greedy Full Rank Optimisation

[261] appears to perform best, although it requires minimisation search of de-

composition parameters. While this cost could be tractable there has been, to

the best of my knowledge, no thorough research on how it would scale on large

systems. For this reason, the Basis Rotation Group methods [103], which have

a predictable cost, is a more cautious choice currently. For additional efficien-

cies and variance reduction, one can distribute shots according to the weights

of each group in the Hamiltonian [98–100]. It is worth noting however that

the O(N) scaling in number of groups is not an ideal proxy for the scaling in

number of measurements required to achieve a given precision on observable

estimation. This is due to possible covariances arising from the joint measure-

ment of different operators [38]. Classical shadows [105] is also a promising

method for reducing measurement count in VQE and has been shown in one

study to have a better asymptotic scaling than decomposed interactions [267].

Further numerical studies will be required to establish to true performance of

classical shadows compared to grouping methods.
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Ansatz: We now have to decide on an ansatz to model the electronic wave-

function on the qubit register. Deciding on an ansatz remains challenging

because it is often unclear which is expressive and efficient enough to allow for

a good approximation of the ground state. The ansatz with the best scaling,

and some evidence for appropriate accuracy for the ground state representation

[217], is the Unitary paired Generalised Coupled Cluster Singles and Doubles

(UpCCGSD) ansatz [80]. This ansatz scales linearly with the number of qubit

O(kN), but may require to be repeated k times to reach the desired accuracy.

The scaling of required repetition of the ansatz k has been partially studied [80]

but remains uncertain for large systems. This ansatz also has the advantage

of only needing a fairly low number of parameters (O(kN2)). Adaptive an-

sätze (such as ADAPT-VQE [213], iterative Qubit Coupled Cluster [289] and

Cluster VQE [290]) are also promising, as they may provide resilience against

barren plateaus. Their main drawback is that these adaptative methods come

at the cost of selecting an operator to grow the ansatz (or Hamiltonian) and

the need to fully re-optimise the ansatz at each iteration. Numerical studies

have suggested that additional measurements may be required compared to

fixed structure ansätze [291], although further research is required to provide

an exhaustive costs and benefits analysis. That said, these methods have been

shown to remain resilient to barren plateaus [215].

Optimiser: It is challenging to systematically compare different optimisers

since no thorough large scale studies of their convergence rate have been con-

ducted. For the time being, the sequential optimisation / coordinate descent

/ Rotosolve optimiser (for simplicity, the last is used in the remainder of the

thesis) has been shown to converge significantly faster than several gradient-

based optimisers [114, 115, 270, 271]. It offers the advantage of not relying
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on any meta-parameters (such as a learning rate), which makes it a very easy

optimiser to implement. However, Rotosolve presents two significant caveats:

firstly, each iteration requires sampling three different values instead of two

for most gradient-based methods (one can avoid this overhead by finding one

of the values from the optimisation of the previous parameter, but this could

result in correlated noise); secondly, parameters must be updated sequentially,

thereby restricting the scope for parallelisation of the VQE. The Fraxis method

[272, 273] works in a similar manner and has been shown in some numerical

studies to perform at least as good as Rotosolve or even outperform it. For

the time being, given there are currently no optimisers that have been shown

to have superior convergence rates, and given it is unlikely that there will be

a sufficient number of quantum computers to fully exploit the parallelisation

potential of the VQE in the NISQ era (see Sec. 3.1.2), we propose the Roto-

solve / Fraxis optimisers over other alternatives (although it is worth noting

that the Quantum Natural Gradient [116] has been shown to perform well and

to benefit from resilience to barren plateaus [292, 293], albeit at a significant

cost [116]).

Scaling: Based on the discussion above, we can now construct a scaling es-

timate for a single iteration of the state-of-the-art VQE for ab initio molecular

systems. The overall scaling is expressed in terms of the number of quantum

gate time steps that must be performed (i.e. several gates applied on disjoint

sets of qubits can be implemented within the same time step) over all the circuit

repetitions required to perform a complete iteration. The computation of the

expectation value of a single operator at a precision ϵ requires O(1/ϵ2) repeti-

tions of the ansatz. In principle, ϵ should aim for chemical precision, generally

accepted as 1.6 mEH ≈ 10−3EH. However, it is worth noting that, in practice
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gradients may become lower than chemical precision (due to the barren plat-

eau problem for instance, described in Sec. 3.2). In this situation, estimating

gradients may require a more precise ϵ and more measurements, but it also

means that optimisation may rapidly become impossible. If the k-UpCCGSD

ansatz is chosen, this scales as O(kN), while choosing to use the decomposed

interactions requires O(N) different operators to be measured (and therefore

a gate depth of O(N) for rotation to the joint measurement basis) resulting in

a total scaling for a single estimation of the entire Hamiltonian of O(kN2/ϵ2).

There are O(kN2) parameters in the k-UpCCGSD ansatz, hence this rep-

resents the cost scaling of updating each parameter using the Rotosolve optim-

iser. As this optimiser is not parallelizable, one may prefer to use a different

method if sufficient sets of qubits are available. Overall, this gives us a total

scaling for one iteration of the VQE of O(k2N4/ϵ2) without parallelisation,

and O(kN) with full parallelisation (the circuit depth). This perfect parallel-

isation would require O(kN3/ϵ2) sets of O(N) qubits. Note that while qubits

within one set need to be entangled for the course of a single measurement,

there is no requirement for entanglement between qubits of different sets of

parallel quantum compute nodes. The sets of qubits can therefore be either

all within on one quantum computer, or else also distributed across different

separated quantum computers (see Sec. 3.1.2). It should be noted that the

precision ϵ is generally required to achieve chemical precision. However, if a

barren plateau occurs, ϵ may need to be reduced by orders of magnitude to

compute gradients accurately enough to achieve a satisfactory optimisation.

So far we have only considered the scaling of one iteration. It is still

an open research question how the number of iterations required to achieve

convergence scales with system size for the VQE. This depends on numerous

factors, including the ansatz, the optimiser used, and the system studied.
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One important point to note is that convergence tends to be rapid at the

beginning of the optimisation process, with large gradients that require only a

low number of shots to be computed accurately enough to progress. It becomes

more challenging close to the optimum, where gradients are smaller, requiring

a larger number of shots to continue the optimisation. As such the last few

iterations of the VQE are likely orders of magnitude more expensive than the

rest of the optimisation, if the algorithm is implemented efficiently.

There are other overheads that may be worth consideration in the initial

setup of the system Hamiltonian. The computation of the Hamiltonian matrix

elements generally has a polynomial scaling, while naive implementations of

Hartree-Fock scale O(n4) [294], with n the number of basis functions, and

it can be reasonably assumed that n = N for ab initio molecular systems.

Similarly, applying a decomposed interactions method to diagonalise operators

and reduce measurements requires rewriting the Hamiltonian in a different

basis [103, 261]. However, these costs only occur once at the beginning of

the VQE process, and are unlikely to be a bottleneck. Despite possibly higher

scaling than that of a VQE iteration, they are likely to have a significantly lower

pre-factor (as implemented on conventional hardware), and as such are not

likely to constrain the application of the algorithm except far in the asymptotic

realm. However, less investigated is that these joint measurement bases may

result in covariance between measurements of different Hamiltonian terms,

thereby requiring additional measurements [38, 103, 261, 288] which could

significantly affect overall cost for the VQE.
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2.6.2 Best practices for lattice models

Our suggestions for lattice models differ from their ab initio counterparts. Lat-

tice models for the most part only include terms in the Hamiltonian between

nearest-neighbors on their respective lattice, with interactions between more

distant sites significantly truncated in range. In particular, this limited degree

of connectivity of lattice models provides the option to construct mappings

with much lower Pauli weight, enabling more compact ansätze to be efficient,

though this can come at the cost of additional qubits.

Hamiltonian construction: In the case of a lattice model, the Hamiltonian

is given as a small number of empirical parameters, requiring no prior com-

putation of matrix elements. These models are generally most naturally and

efficiently expressed in terms of fermionic operators in the site representation,

where the locality of the interaction can be exploited to reduce the number of

measurements.

Encoding: There is significant literature on the fermion-to-spin mapping

for lattice models. These mappings are in general designed to minimise the

required Pauli weight of the operators for a given lattice structure. The most

important property of a lattice is the maximum degree of connectivity (co-

ordination) of the sites, denoted d. For instance, a square lattice has d = 4,

and an equivalent hypercubic lattice of dimension D has d = 2D. If one is

limited by the number of qubits available, the most appropriate mapping for

a lattice is an adaptation of the Bravyi-Kitaev mapping (based on Fenwick

trees) [295], and which has a Pauli weight scaling as O(log(v)), where v is the

minimum number of sites in any one dimension for a D = 2 lattice. It has the

advantage of reducing the Pauli weight of the operators produced, compared
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to a naive implementation of Bravyi-Kitaev on a lattice, while maintaining

the number of qubits required equal to the number of sites, n. If however the

number of qubits is not a hard constraint, the Generalised Superfast Encoding

method [256] provides a lower Pauli weight scaling of O(log2(d)) at the cost of

requiring an increased number of qubits for each site, with an overall scaling

of O(nd/2) qubits. The Compact encoding [259, 260] requires a lower num-

ber of qubits (∼ 1.5n), but has not yet been generalised for regular lattices

of more than three dimensions. Beyond their relationship to the resilience to

barren plateaus in the optimisation [108, 144, 257], the relevance of the Pauli

weight in the context of VQE is also in how it affects the choice of ansatz,

and in particular whether the ansatz is initially expressed in terms of fermi-

onic operators. If the chosen ansatz is not dependent on fermionic terms, then

Bravyi-Kiteav or Jordan-Wigner mappings are preferred. Furthermore, the

number of qubits required to represent the Hamiltonian can be reduced using

the tapering off methods based on symmetries as described Refs. [284, 285].

Grouping and measurement strategy: The number of operators in lat-

tice models scales, in general, with the number of edges of the lattice graph,

E. For example, for a hypercubic lattice of dimension D, the number of

edges, and therefore, the number of operators will scale O(nD) (though it is

worth noting that the pre-factor to this scaling may change significantly de-

pending on the encoding used). Because it is in general possible to reach low

Pauli-weight encodings for lattice models, qubit-wise commutativity (QWC)

grouping [38, 99, 101, 102, 147, 262–266] could possibly offer significant poten-

tial for reductions in the number of terms. In particular, regular grid-based

lattice models such as the Hubbard model can use QWC to reduce scaling of

the number of operators to measure to O(D), and remain independent to the
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number of lattice sites [276, 296]. It is also worth considering the fact that

ansätze for lattice models tend to be shallower, and as such, the cost of basis

rotations in methods based on general commutativity of Pauli operators could

be too significant to justify its use. As such we would therefore recommend

QWC grouping until further research is conducted.

Ansatz: Direct application of ansätze suited for ab initio molecular sys-

tems (such as Unitary Coupled Cluster, UCCSD and its extensions) have been

shown to work in practice using generalised encodings such as Jordan-Wigner

(see for instance, Ref. [297]). However, one can see that the underlying physics

motivating the ansatz is not ideally suited to strongly correlated lattice models,

requiring care to ensure that they are efficient ansatz for these systems [153].

Since these ansätze are formulated in a basis of Hartree-Fock or other mean-

field orbitals, they do not allow using some of the low-weight encodings easily

and do not enable exploitation of the low degree of connectivity of the model.

Instead, one ansatz that has been shown to be very suitable for correlated

lattice problems is the Hamiltonian variational ansatz (HVA) [98, 138]. The

ansatz leverages the more compact structure of the lattice model Hamiltonian

and is built using fermionic operators, thereby making the most of low Pauli

weight lattice encodings [256, 259, 260, 298]. HVA was also shown in [138] to

be particularly resilient to the appearance of barren plateaus in the optimisa-

tion problem. The ansatz has a depth and number of parameters scaling with

the number of commutative Pauli groups in the Hamiltonian (though it may

need to be repeated several times to account for lower expressibility compared

to UCCSD). For a regular lattice, this can result in an overall scaling that is

lower than O(nD). Extensions of HVA could also be considered for specific

systems. For instance, Fourier Transform-HVA [233] could be very efficient
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on certain models (in particular jellium in Ref. [233], which is a continuous

model, but with the Hamiltonian defined by a single parameter). Symmetry

breaking HVAs [299, 300] are also a promising avenue, and though numerical

tests from Ref. [300] show excellent fidelities of the state produced, results in

Ref. [299] show some instabilities of the ansatz. Overall, until further research

is conducted, is seems that HVA is safest and most general option for lattice

models. Finally, we have neglected consideration of adaptive ansätze, as it is

difficult to make a scaling argument for their efficiency in this domain, where

the ability to justify the inclusion of some terms over others in the ansatz is

likely to be diminished.

Optimiser: While we find that Rotosolve [114, 115, 270, 271] and Fraxis

[272, 273] are also generally supported by strong empirical evidence, the SPSA

algorithm has been shown to outperform these gradient-free methods on the

Hubbard model [276, 277] and could therefore be considered preferable. SPSA

has the great benefit of only requiring a fixed number of measurements, ir-

relevant of system size, significantly reducing the computational burden of

completing an iteration.

Scaling: Based on the above, one can make an argument for the scaling of

VQE as implemented for lattice models. The number of shots required to

achieve a precision of ϵ when computing an expectation value scales O(1/ϵ2),

with ϵ the target precision. For lattice models however, the target is usually

not chemical accuracy and instead depends on the aim of the calculation. Gen-

erally, the aim is to resolve some correlated features of the electronic structure

(e.g. predicting the parameter regimes for different phases, or response prop-

erties Ref. [301–304]). The HVA ansatz has a scaling capped by the number
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of terms in the lattice model Hamiltonian and the number of repetitions of

the ansatz k, hence O(knD). However, there may be a few caveats to this.

Since some encodings require additional qubits to reduce the Pauli weight,

they would increase the depth and the number of terms in the ansatz, while at

the same time reducing the depth per term of the ansatz due to the reduced

Pauli weight. Overall these two effects are likely to only affect the pre-factor

of the VQE, noting that this is an area of open research. This results in single

energy evaluation scaling as O(k(nD/ϵ)2).

For a regular hypercubic lattice with only at most nearest-neighbor terms in

the Hamiltonian, there are O(knD) parameters in the HVA, bringing the total

scaling of computing gradients for a lattice model VQE to O((k)2(nD)3/(ϵ)2).

This can however be considered a rather pessimistic scaling as lattice models

will oftentimes offer opportunities to exploit structural features to reduce the

number of measurements required. As mentioned above, in the case of the

Hubbard model, one can use the grid like structure to measure sets of non-

overlapping (or more broadly QWC) pauli strings concurrently reducing the

number of shots for a single energy calculation to O(D/ϵ2). Similarly, as SPSA

has O(1) scaling and has been shown to perform well on Hubbard lattices

this could reduce the overall scaling for a complete iteration of this model to

O((kn(D)2/(ϵ)2) (it is worth noting however that the use of SPSA would likely

also require additional iterations to reach convergence).

In either case, if the full parallelisation potential is exploited, this would

give a scaling of O(knD) for one iteration of the VQE. Discussions regarding

the number of iteration are identical to the considerations raised in the pre-

vious section. Similarly, while the depth of HVA scales with the number of

commutative groups in the Hamiltonian, it is not yet clear whether this would

reduce scaling below that of the number of terms O(nD).
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Chapter 3

Limits of near-term variational

quantum computing

As outlined in the previous chapter, the potential advantage of VQE remains

uncertain due to three main impediments: (1) the pre-factor to scaling, res-

ulting from the large sampling requirements of the method, (2) the barren

plateau problem, which could be worsening the number of measurements re-

quired, and (3) the mitigation and control of errors. These are discussed in

the three following sections.

3.1 Runtime estimates for VQE and the meas-

urement problem

I first present a runtime estimate for a single iteration of VQE, constructing

on the best practices outlined in the previous chapter. We then discuss the

large potential for paralellisation of measurements and discuss requirements

on hardware and outstanding research questions.
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3.1.1 Cost and runtime estimates for VQE

There have been several studies estimating the resources required to perform

VQE on a system that is too large to be accurately treated using conventional

methods. Wecker et al. [98] developped the Hamiltonian Variational Ansatz

(HVA), and presented a numerical study of the accuracy of some ansätze (the

HVA and various UCC based ansätze) and the number of repetitions required.

They also possibly unveiled the existence of the barren plateau problem ahead

of it being characterised in Ref. [109], by numerically showing that more ex-

pressive forms of UCC cannot reach the same accuracy as less expressive forms

on larger systems. They estimate that the total number of samples required

to compute the ground state energy of Fe2S2 to chemical precision (using the

STO-3G basis with n = 112 spin orbitals) is of the order O(1019), which is far

beyond what could be considered tractable. Of course, conventional methods

aiming at resolving exactly, and directly, the ground state of a n = 112 spin

orbitals Hamiltonian would also be intractable (this would equate to finding

the lowest eigenvalue of a 2112 matrix). However this does not exclude the

possibility that more refined conventional methods, accepting some approxim-

ation, could an acceptable level of accuracy on Fe2S2 (as an example, please

see Ref. [305]). The literature has progressed significantly since this 2015

study, and there are now more efficient ansätze and grouping methods that

may change this conclusion.

Kühn et al. [83] numerically assess the number of qubits and circuit depths

required for UCC based ansätze. They show that to model a medium-sized

organic molecule such as naphthalene (C10H8, with 68 electrons) would roughly

require about 800 to 1500 qubits, and a number of two-qubit gates of about

O(108) using UCCSD. This latter number may be significantly lowered if the k-
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UpCCGSD ansatz is used (assuming it can achieve the desired accuracy). They

also claim that the runtime for a VQE implementation would be impractical,

even using full parallelisation potential, without unfortunately providing more

details about how this conclusion is reached.

Gonthier et al. [84] provide what probably constitutes the most compre-

hensive study of the VQE resource requirements to date by estimating the cost

of combustion energy computation for nine organic molecules (including meth-

ane, ethanol, and propane). They provide a detailed estimate of the runtime

for one energy estimation ranging from 1.9 days for methane (CH4), which

requires 104 qubits for accurate treatment, to 71 days for ethanol (C2H6O),

which requires 260 qubits (this estimate uses a frozen natural orbital basis,

with 13 functions, i.e. 13 qubits for each electron). The analysis is rather ex-

haustive since it takes into consideration the joint measurements of Hamilto-

nian terms, and different optimisation methods.

It is worth noting that the studies mentioned above do not take into ac-

count three obstacles we listed at the beginning of this section (namely, the

complexity of the optimisation, the barren plateau problem, and the impact of

quantum noise). At the same time, Refs. [82–84] do not discuss the potential

for parallelisation (with the exception of [82] which touches upon it briefly).

For instance, the runtime estimates of 1.9 to 71 days presented in [84] can

be parallelised efficiently, although this would require a significant quantity of

qubits arranged in sets on which parallel computation can be performed, pos-

sibly resulting in a variety of new problems such as overhead communication

cost and additional quantum noise (see Sec. 3.1.2 for a discussion).

We provide our estimated runtimes for the steps in the VQE for a repres-

entative example system in Table 3.1, including the general scaling estimate

for such types of systems. The example system considered corresponds to the
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one proposed in Ref. [82], and is the ab initio computation of the chromium

dimer (Cr2) with an active space of 26 electrons in 26 molecular orbitals (52

spin orbitals and 52 qubits).

It is very difficult to estimate the pre-factor of the VQE, which would very

much be dependent on the hardware, and a detailed numerical analysis is not

within the scope of this work. To estimate the depth we compiled a 52 qubit

version of k-UpCCGD, using qiskit, assuming k = 1 and full connectivity of

the qubit register. We founnd a depth of ∼ 27, 000 timesteps, denoted L, and

170 parameters, denoted p (to illustrate the impact of the connectivity of the

qubit register, we compiled the same ansatz assuming a linear qubit register,

and found that the depth required is increased by more than tenfold). Note

that choosing k = 1 is likely insufficient [80, 217]. Gate time is assumed to

be T = 100 ns (similar to what is presented in [84], which itself refers to

Table 1 in [306]), which is better than what can currently be achieved for

superconducting qubits (∼ 500 ns), but is probably achievable over the next

few years. We assume readout and reset times are negligible compared to the

circuit runtime. The pre-factor for the number of operators (P) to measure can

easily be assumed to be 16 as each fermionic operator result in two Pauli strings

under generalised mappings, and there are four fermionic operators in each

two-body term in the Hamiltonian. Using a form of decomposed interactions

we estimate that the number of operators is ∼ 16N = 832 (we do not consider

the impact of covariances may have on the noise of the estimates, though point

out that 16 is a conservative pre-factor), and assume that the required circuit

depth for basis rotation is negligible. Finally, we set the target precision ϵ to

10−3 mEH, which is close to chemical precision (1.6 mEH) [173] and roughly

assume that S = 1/ϵ2 = 1, 000, 000 shots are used for the estimation. A

much lower number of shots would be sufficient to progress the initial part
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Table 3.1: Indicative estimates of the runtime of one iteration of the VQE making
the following assumptions: gate time: 100 ns. This assumes an active space of
26 molecular orbitals for Cr2 spanned over N = 52 qubits, and a gate runtime of
T = 100 ns. The model uses k-UpCCG SD, k = 1, targets ϵ = 10−3 mEH (using
decomposed interactions methods).

Operation Scaling Formula Runtime

Single shot O(kN) L× T 3 ms

One expectation O(kN
2

ϵ2
) L× T × P × S 25 days

Full iteration (Rotosolve) O(k
2N4

ϵ2
) L× T × P × S × 3p 35 years

Full iteration (gradient-based) O(k
2N4

ϵ2
) L× T × P × S × 2p 24 years

of the optimisation, and this high number of shots is only required in the

last iterations of a VQE close to convergence to reach chemical precision (note

however that this number of shots may need to be much higher in case of barren

plateaus). It is therefore likely that the last few iterations before convergence

are the most costly and time-consuming, largely dominating the cost. However,

despite some optimistic assumptions listed above, it is clear that the time cost

of VQE implemented on a single set of qubits remains orders of magnitude too

large to be realistically viable, pointing to the dependence of the method on

parallelisation.
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3.1.2 Parallelisation potential of the VQE

The potential for parallelisation of the VQE was already identified in the initial

paper by Peruzzo et al. [37] and subsequently mentioned in many VQE papers,

although in-depth studies are still sparse. Parallelism could however be relev-

ant for the performance of the method. Parallelism of the VQE offers a direct

way to convert runtime cost into hardware cost by splitting the shots required

onto different sets of qubits (which can be arranged in different threads on a

single quantum computer, or multiple, disconnected quantum computers). To

illustrate this point, we adapt the estimates presented in Table 3.1 assuming

that perfect parallelisation is possible, and present the results in Table 3.2.

From this analysis, it appears that parallelisation will be a critical part of

any future success of the VQE method when applied to ab initio molecular sys-

tems. The scale of benefits that can be gained from parallelisation is however

less clear with regards to lattice models, and in particular when applied to the

Hubbard model. Cai [296] provides an assessment of the possible runtime of

VQE on a Hubbard model of 50 qubits (which cannot be solved accurately on

current conventional devices) and shows that an iteration could take approx-

imately 1.7 days, or merely 10 minutes with parallelisation over 200 QPUs.

Further improvements to the implementation of HVA (proposed for instance

by Cade et al. [276]) could reduce this runtime significantly. As such, while

lattice models would likely also benefit from parallelisation, it is less likely to

be a requirement than for ab initio molecular systems. It is worth noting that

the use of parallelisation has already been shown to be less advantageous on

an implementation of the Hubbard model in a case where the SPSA optimiser

is used [307].

Considering the case of ab initio molecular systems, broad availability of
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Table 3.2: Indicative estimates of the runtime and number of quantum computers
used for one iteration of the VQE assuming perfect parallelisation of the method can
be achieved and neglecting any communication overheads - using the same assump-
tions stated in Table 3.1

Operation Time scaling Runtime Scaling sets of
qubits

Sets of 52
qubits

Single shot O(kN) 3 ms O(1) 1

One expecta-
tion

O(kN) 3 ms O(N
ϵ2
) ∼ 800× 106

Full iteration
(Rotosolve)

O(k2N3) 0.5 s O(N
ϵ2
) ∼ 2, 500× 106

Full iteration
(gradient-
based)

O(kN) 3 ms O(kN
3

ϵ2
) ∼ 280× 109
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quantum computers with increasing number of qubits could significantly speed-

up the VQE process, however there are significant caveats to that. One key

observation is that full parallelisation would require a number of quantum

computers cores (or threads) that scales O(pN4/ϵ2), with p the number of

parameters in the ansatz. This could clearly be a prohibitive number for large

computation given the current state of hardware technology, and it is possible

that fault-tolerant technology could arrive before we are able to produce such

large quantities of devices.

Even if it was possible to build large quantities of quantum computers,

there are many caveats to the potential of parallelisation for the VQE. First,

as it is the case for conventional parallel computing, parallel quantum com-

puting will suffer from communication overheads. These overheads are the

computational cost of coordinating the parallel tasks, which can include the

likes of synchronisation cost, data aggregation and communication (possibly

latency if the different sets of qubits are connected through the cloud). Second,

parallelisation could result in higher noise levels. We note two possible sources

of additional noise: (1) if parallelisation is done on multi-threaded quantum

computers, there is higher chance of cross-talk between qubits; (2) variational

algorithms are considered to be somewhat noise resilient as they can learn

the systematic biases of a given hardware [38, 152] - if the algorithm is run

on multiple quantum computers these noise resilient effects may disappear, as

systematic biases on one set of qubits, which differs on another, may no longer

be learned through the variational process.
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3.2 The barren plateau problem

Ansatz selection is a central part of the VQE pipeline. The right choice of

ansatz is critical to obtain a final solution that is close to the true state of

interest. To achieve this, it is essential to maximise the span of the ansatz

in parts of the Hilbert space that contain the solution (i.e., a state that is

sufficiently close to the desired state which globally minimises the expectation

value of the Hamiltonian). The span of possible states an ansatz can reach

is referred to as its expressibility. However, optimising a highly expressible

state could easily become intractable due to the number of parameters, the

number of iterations required for convergence, or the number of shots required

to achieve sufficient gradient accuracy to continue the optimisation. Whether

an ansatz can be optimised in a tractable manner is referred to as its trainab-

ility. In practice, it is better to choose an ansatz spanning a smaller subspace,

but remaining trainable. Designing an efficient ansatz for a given number of

qubits hence involves finding an optimal trade-off between expressibility and

trainability.

Expressibility: The expressibility of an ansatz describes its span across the

unitary space of accessible states [106, 107, 308]. One can quantify the ex-

pressibility of an ansatz by assessing the distance between the distributions of

the unitaries that can be generated by the ansatz, and the uniform distribu-

tion of unitaries in the corresponding Hilbert space [308], also known as the

Haar measure. A given ansatz is called a t-design if it is indistinguishable

from the Haar measure up to the tth moment. A 2-design ansatz can produce

any possible state in the Hilbert space considered, from any input state: it is

maximally expressive. As a side note, Hubregtsen et al. [309] also study the
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relationship between the expressibility of quantum neural networks and their

accuracy in a classification task.

More formally, one can define as U the set of unitaries accessible by an

ansatz, and U(N) the complete unitary group in which the ansatz is expressed

(with N the number of qubits it spans), such that U ⊆ U(N) [106–108, 308].

The following super operator, representing the second order difference between

the Haar measure on U(N) and the uniform distribution of U can be construc-

ted (we follow the formalism in [106]):

AU(·) :=
∫
U(n)

dµ(V )V ⊗2(·)(V †)⊗2

−
∫

U
dUU⊗2(·)(U †)⊗2, (3.1)

with dµ(V ) the volume element of the Haar measure, and dU the uniform

distribution over U, V ∈ UN and U ∈ U. If AU(Ô) → 0, then the ansatz

producing U approaches a 2-design and therefore offers maximal expressibility.

From this super-operator, one can compute a metric for expressibility of an

ansatz as

ερU := ||AU(ρ
⊗2)||2 (3.2)

εP̂U := ||AU(P̂
⊗2)||2. (3.3)

Consequently, the expressibility of an ansatz can be expressed with respect

to an initial input state (ρ), or with respect to a measurement operator (P̂ ).

Following the equations above, one can interpret that if ε = 0 the ansatz is

maximally expressive, while expressibility decreases as ε increases. Express-

ibility has also been shown to be a convenient metric for assessment of para-

meterised quantum circuits more generally [107]. In addition, several methods
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have been proposed to remove redundant parameters from quantum circuits

without decreasing expressibility [310] or reducing the set of states that can

be generated through the circuit [311].

Trainability: The trainability of an ansatz refers to the ability to find the

best set of parameters of the ansatz by (iteratively) optimising the ansatz

with respect to expectation values of the Hamiltonian in a tractable time

[106, 108]. More specifically, an ansatz is considered trainable if its expected

gradient vanishes at most polynomially as a function of the various metrics

of the problem (e.g. system size, circuit depth). On the other hand, if the

gradient vanishes exponentially, it is said to suffer from the barren plateau

problem.

A key issue that is inherent to all types of variational quantum algorithms

is the risk of vanishing gradients, either during training or as a result of a ran-

dom initialisation [109]. This refers to the risk of the cost function gradients

vanishing exponentially as a function of specific properties of the optimisation

for a problem. McClean et al. [109] provide the first formal characterisation

of this barren plateau problem (some early numerical evidence of this prob-

lem are outlined in Ref. [98], without a characterisation being provided), and

show that cost function gradients are vanishing exponentially in the number

of qubits in the quantum register when provided with random initialisation

of the circuit parameters. Even though this problem is akin to the vanish-

ing gradient problem in machine learning, it has two striking differences that

make it significantly more impactful on the prospects of variational quantum

algorithms [109]:

• The estimation of the gradients on a quantum device is essentially stochastic.

Any observable can only be measured to a certain precision, increasing
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as the inverse square root of the number of shots. If gradients are ex-

ponentially approaching zero, it means that distinguishing between a

positive and a negative gradient becomes increasingly difficult. Failing

to establish the sign of the gradient reliably transforms the optimisation

into a random walk, overall requiring an exponential number of shots to

continue optimisation.

• The barren plateau problem is dependent on the number of qubits (while

the problem is dependent on the number of layers for the vanishing gradi-

ent problem). Additional research also shows that it can be linked to

other factors specific to quantum circuits, including expressibility of the

ansatz [106], degree of entanglement of the wavefunction [122, 312], non-

locality of the wavefunction [108, 144, 313], or quantum noise [314].

Before describing key drivers of the barren plateau problem in more detail,

and potential methods to address it, it is worth briefly discussing the typ-

ical cost function landscape for single parameters in the variational quantum

eigensolver. Another problem that affects this landscape is that of ‘narrow

gorges’ (initially characterised in [108]). It refers to the fact that the local

minimum (well defined by the region starting from the end of a barren plateau

and going towards a local minimum) contracts exponentially in the number

of qubits. Interestingly, it was shown that narrow gorges and barren plateaus

always occur concurrently and can therefore be considered equivalent [315].

An alternative way to present the barren plateau problem is that it implies

the expectation value of an observable with respect to a random state concen-

trates exponentially around the mean value of that observable [109], rendering

intractable optimisation away from the mean.

In the context of the VQE, the barren plateau problem can be formally
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characterised as follows. Consider a VQE optimisation problem with cost

function:

E(θ) = ⟨ψ(θ)| Ĥ |ψ(θ)⟩ , (3.4)

with Ĥ the molecular Hamiltonian operator, and |ψ(θ)⟩ the parameterised

wave function with a vector θ of parameters. This cost function exhibits a

barren plateau if, for any θi ∈ θ and for any ϵ > 0 there is b > 1 such that:

Pr(|∂θiE(θ)| ⩾ ϵ) ⩽ O(
1

bN
), (3.5)

which is an immediate consequence of Chebyshev’s inequality and the result

from above (for the expectation value and variance) [108]. This means that

the probability of a gradient being above a certain threshold (which could

be arbitrarily small), can always be upper-bound by a number that decreases

exponentially in the system size N . It is however important to note that

while defined with respect to a cost gradient, the barren plateau problem also

affects gradient-free optimisers [312, 316] (e.g. COBYLA, Powel, Nelder-Mead,

RotoSolve). It is easy to understand, as gradient-free optimisers usually rely

on sampling the cost landscape of specific parameters. If the variance across

the landscape is too small, then it becomes impossible to accurately progress

through the optimisation step.

3.2.1 Drivers of the barren plateau problem

System size and random initialisation [109]: The barren plateau prob-

lem refers to the fact that the gradient of a cost function incorporating a

layered ansatz has an exponentially vanishing variance, and values approach-

ing zero in the number of qubits, provided ansatz parameters are initialised
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randomly. A layered ansatz for a random parameterised quantum circuit can

be described as [109]

U(θ) =
L∏
l=1

Ul(θl)Wl, (3.6)

where U(θ)l = e−iθlV̂l , with V̂l a hermitian operator, and Wl a generic non-

parameterised unitary. The cost function is as described in Eq. (3.4), taking

|ψ(θ)⟩ = U(θ) |0⟩. The gradient of this cost function with respect to any given

parameter θi can be conveniently computed as

∂θiE = i ⟨0|U †
1→(i−1)

[
V̂i, U

†
i→LĤUi→L

]
U1→(i−1) |0⟩ . (3.7)

where 1 → (i−1) represent the ansatz layers from layer index 1 to layer index

(i−1), and i→ L represent the ansatz layers from layer index i to layer index

L. From the computation of the gradient, McClean et al. [109] show that if

both U1→(i−1) and Ui→L are 2-designs, the variance of the gradient is clearly

vanishing exponentially in the system size:

Var[∂θiE] ≈
1

2(3N−1)
Tr

[
Ĥ2

]
Tr

[
ρ2
]
Tr

[
V̂ 2

]
(3.8)

Cases in which either of U1→(i−1) or Ui→L is not a 2-design are also addressed

in Ref. [109], with similar outcomes (I direct readers to this reference for a full

demonstration, as well as detailing of the rules needed to compute the expected

value of a variance over an ansatz). Further analysis conducted by Napp in

Ref. [317] shows additional analytical bounds for unstructured variational

ansätze, moving away from the layered ansatz described above.

Expressibility [106]: Holmes et al. show that trainability and expressibil-

ity of the ansatz are inversely related. In other words, the more expressive an
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ansatz is, the more prone it is to barren plateaus. This does not mean that

low-expressivity ansätze are not affected by barren plateaus, as other drivers

can otherwise trigger the problem (for instance, system size and random ini-

tialisation, as above, or a very non-local cost function [108, 144, 313]). This

observation implies that one cannot lower-bound gradients as a function of

expressibility, but they can be upper-bounded.

This is shown in Ref. [106] by extending the expression of the barren plateau

problem as explained in Ref. [109], and setting an upper bound for the variance

of the cost gradient as a function of the ansatz’ distance to a 2-design. As such,

they use the same layered ansatz template (Eq. 3.6) and resulting gradients

(Eq. 3.7). As an illustration, Ref. [106] find a generalised bound for gradient

variance as a function of expressibility (we encourage the reader to read the

finer details directly from the source material), as

Var[∂θi , E] ⩽
g(ρ, P̂ , U)

22N − 1
+ f(εP̂L , ε

ρ
R), (3.9)

where the first half of the bound corresponds to the maximally expressive

ansatz (and g(.) is a function defining a pre-factor on this expressibility, defined

in detail in Appendix E of Ref. [106]). The function f(.) is the extra bound

resulting from the expressibility (or lack thereof) of the ansatz, defined as

f(εx, εy) := 4εxεy +
2N+2(εx||P̂ ||22 + εy||ρ||22)

22N − 1
, (3.10)

and in which εP̂L (the expressibility metric for the part of the ansatz to the left of

the parameter i, where the gradient is taken with respect to the measurement

operator), and ερR (the expressibility metric for the part of the ansatz to the

right of the parameter i, where the gradient is taken with respect to the state
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density matrix), have been used as arguments. From this equation, one can

see that the gradient variance admits an upper-bound approaching O(εP̂Lε
ρ
R)

as N → ∞. As a result of the definitions in Eqns. (3.1-3.3), it shows that

high expressibility (low ε) lowers the gradient variance bound and therefore

limits the trainability of the ansatz. For further information on expressibility

of ansätze, Nakaji et al. [107] provide a study of the expressibility of the

shallow alternating layer ansatz.

Cost function non-locality: [108, 144, 313]: In Ref. [108], Cerezo et

al. show that an ansatz trained on local cost functions are more resilient

to the barren plateau problem than those trained on global cost functions.

They illustrate this point by comparing a cost function constructed around the

expectation value of a global observable: ÔG = 1−|0⟩ ⟨0|⊗N to a cost function

constructed around the expectation value of a local observable ÔL = 1 −
1
N

∑N
i |0⟩ ⟨0|i⊗1 ̸=i, the latter being local as each component of the observable

only applies to a single qubit. It is shown in particular that while alternative

layered ansätze trained on the global cost function are challenging to train

(this is not necessarily true on other types of ansätze), ansätze trained on the

local cost function are considered trainable if their depth scales logarithmically

with the circuit width (i.e. O(log(N)) or below). Cerezo et al. [108] also show

that ansätze with a scaling O(poly(log(N))) could also be either trainable

or not. Ref. [144] extend these findings to a wider range of cost functions,

and Ref. [313] demonstrated the occurrence of this phenomenon in the case of

Dissipative Perceptron-Based Quantum Neural Networks.

An important consequence for the VQE, as pointed out in [108] is that local

encodings such as Bravyi-Kitaev [281–283], ternary tree encoding [255] or Gen-

eralised Superfast Encoding [256] with lower Pauli weight, would offer more
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resilience than encodings such as Jordan-Wigner [97] which has Pauli weights

scaling of O(N)), therefore resulting in a very non-local VQE cost function.

It is also worth noting that the best known scaling for a VQE ansatz is lin-

ear (e.g. k-UpCCGSD [80], Fourier Transform-HVA [233] on some systems).

Uvarov et al. [257] compares numerically the impact of using Jordan-Wigner

compared to Bravyi-Kitaev on a Hubbard-like model and find that in this case

the latter results in gradient variance nearly one order of magnitude larger

than the former. This should be caveated by the fact that the numerical res-

ults in Ref. [257] also show that the number of layers used in the ansatz (in

this case, a symmetry preserving ansatz is used, similar to the one presented in

Ref. [136]) ultimately dominates and reduces gradient variance to a negligible

number in either case.

Noise induced barren plateau (NIBP): Wang et al. [314] show that

incorporating quantum noise in a variational optimisation can accelerate the

occurrence of barren plateaus, and additionally result in vanishing of the amp-

litude of the expectation value. Their main result is a bound on the value of

a parameters’ gradient (with notation slightly changed from Ref. [314]), as∣∣∣∣∣∂⟨Ĥ(θ)⟩
∂θi

∣∣∣∣∣ ≤ G(N)qL+1, (3.11)

where q < 1 is a parameter representing the strength of the noise model (the

lower it is, the more noise there is), G(N) ∼ O(2−αN) with α an arbitrary,

positive constant, and L represents the number of layers in the ansatz. A few

important points can be raised as a consequence of this bound [314]. First,

the noise-induced barren plateau is independent of parameter initialisation,

or locality of the cost function, meaning that some of the strategies listed in
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Sec. 3.2.2 will not work in a noisy setting. Second, this bound is conceptually

different from the previously described drivers of barren plateaus as it is a

bound on the gradient, rather than on the variance of the gradient. Rather

than the flattening optimisation landscape described previously, NIBP results

in the vanishing of the amplitude of the expectation value function and a bias

away from the minimum.

Large degrees of entanglement [122, 312]: The degree of entanglement

of the trial wavefunction has also been shown to be associated with the barren

plateau problem. In particular, Patti et al. show that one can link vanishing

gradients to the entanglement entropy [76] of the trial state wavefunction even

at low circuit depth. Ortiz Marrero et al. reach a similar conclusion by first

showing that entanglement between visible and hidden units in a Quantum

Neural Network reduces trainability. The result is then extended to unitary

networks (very much similar to UCC based ansätze) and quantum Boltzmann

machines. A final point to note is that it was also shown that higher-order

derivatives of the cost function are also affected by the barren plateau problem,

and therefore cannot be used as a means to circumvent it [318].

3.2.2 Methods to address barren plateau problem

It follows from Refs. [109] and [106] that addressing the barren plateau problem

can be done through modification of the ansatz. In particular, techniques

focusing on selectively reducing the expressibility of the ansatz, or in other

words, avoiding a 2-design (which would be the maximally expressive unitary

on a given Hilbert space) are expected to be more resilient to barren plateaus.

In the context of the VQE, this can be done by restricting the span of the
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ansatz to a section of the Hilbert space of interest. In particular, it was

shown that adaptive ansätze exhibit some resilience to the barren plateau

problems. In addition, there are optimisation methods which aim at tempering

this problem (for example Ref. [113]). Another means available to contain the

barren plateau problem is to select a local encoding with low Pauli weights,

as discussed above and explained in Ref. [108].

Some methods have also been developed specifically to address barren plat-

eaus. A first example consists of initialising ansatz parameters such that sub-

sections of the ansatz (as split when computing the gradient) do not form a

2-design, at the very least avoiding to start the optimisation process in a bar-

ren plateau [121]. Starting from the layered ansatz in Eq. (3.6), we can divide

the ansatz into K blocks of depth D (such that the total depth L = KD).

The depth D of each block considered in isolation needs to be shallow enough

to ensure that the block does not approach a 2-design. Each block Uk(θk),

parameterised by a vector θk can then be split into two parts of equal depth,

such that

Uk(θk) =

D/2−1∏
d=1

Ud(θ
k
d,1)Wd

D∏
d=D/2

Ud(θ
k
d,2)Wd, (3.12)

where θkd,1 can be initialised at random, but where θkd,2 are initialised such

that Ud(θ
k
d,2)Wd = (Ud(θ

k
d,1)Wd)

†. The result is that, for all k, before any

optimisation, we have

Uk(θk) = Ik, and U(θinit) = I. (3.13)

Grant et al. [121] show that this parameter initialisation strategy could

slow down the optimisation process of the VQE as the initial state produced

by the circuit would have no entanglement. They propose to initialise the
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qubit register with a random entangled state, using a shallow random unitary

which remains constant throughout the optimisation process. While showcas-

ing promising results on small systems, the method is however quite challen-

ging to implement in practice. Identifying a block initialisation is not directly

possible for all ansatz structures: for example it is not straightforward for

unitary coupled cluster based ansatz [37, 81, 319] without repeating some op-

erators, and it is in general not possible exactly with hardware efficient ansätze.

Nonetheless, the idea of adjusting parameter initialisation to improve re-

silience to the barren plateau problem has been extended to alternative mit-

igation techniques. In Ref. [320], Sauvage et al. propose to select optimal

initial parameters with the help of a machine learning model (FLexible Ini-

tialiser for arbitrarily-sised Parameterised quantum circuits, or FLIP). The

model is trained to identify structures of parameters that best suit specific

families of quantum circuit optimisation problems, and is numerically shown

to provide significant improvements. Similarly, Kulshrestha and Safro show

that initialising ansatz parameters by picking them from a beta distribution

reduces the impact of the barren plateau problem compared to picking them

from a uniform distribution [321]. They also show that adding perturbations

to the parameters between each optimisation step also helps in mitigating

vanishing gradients.

Several additional methods have been developed for the barren plateau in

the general case of parameterised quantum circuits. In Ref. [322], Volkoff et al.

show that one can reduce the dimensionality of the parameter space by using

spatially and temporally correlated parameterised quantum gates, resulting in

higher resilience to barren plateaus. The ansatz can also be trained layer by

layer to the same effect [323], though limitations of this method were shown

in Ref. [324]. This is somewhat akin to adaptive ansätze, but generalised to

82



any quantum neural network optimisation. Patti et al. [122] also propose

several additional mitigating methods including an alternative initialisation

strategy in which two qubit registers are initially not entangled, regularisation

on the entanglement, the addition of Langevin noise, or rotation into prefer-

ential cost function eigenbases. Sack et al. [325] showed that barren plateaus

can be partially mitigated as part of a classical shadow measurement scheme.

Wu et al. [326] propose to mitigate the impact of NIBP by defining an al-

ternative cost function with the same optimal state but without sensitivity to

vanishing gradients, by identifying and eliminating the dominant term in the

Pauli representation of the observable measured. Finally, though not directly

relevant to VQE, Pesah et al. [327] show numerically that Quantum Con-

volutional Neural Networks exhibit natural resilience to the barren plateau

problem. Similarly, Zhang et al. [290] show that Quantum Neural Networks

with tree tensor structure and step-controlled architectures have gradients that

vanish at most polynomially in the system size.

3.2.3 Comments on barren plateau in the context of the

VQE

In Ref. [106], Holmes et al. point out that the problem structure of VQE

can be used to limit the impact of barren plateaus. The features in question

include symmetries of the problem, which can be used to reduce the portion

of the Hilbert space, or physically-motivated ansätze targeting a restricted

part of the Hilbert space in which good approximations of the ground state

are expected to be. Such relevant structures are in general more difficult to

find when considering the wider field of quantum neural networks. Adopting

an initialisation strategy such as the ones presented in Refs. [121, 122, 320]
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would allow an ansatz to begin optimisation away from a barren plateau, and

as such, away the target operator mean. One could argue that given the

optimisation problem aims at finding a minimum, a reliable optimiser should

always move a state away from the mean expectation value and therefore away

from the barren plateaus regions. This point however could be invalidated by

several aspects of the optimisation process. These include the existence of

local minima, the increase in entanglement of the trial wavefunction as the

optimisation progresses, or the presence of noise which results in vanishing of

the value function amplitude.

Focusing on local encodings has been shown to provide some resilience to

barren plateaus [108, 144, 257], suggesting that using VQE on lattice mod-

els with limited dimensions could be performed relatively better than on a

molecular Hamiltonian in that respect. As pointed out in Ref. [108], ansẗze

scaling logarithmically in the system size, and measured on local observable

are resilient to barren plateaus. At this stage, however, there is no known

VQE ansatz scaling as such that also guarantees an accurate description of

the ground state.

3.3 Error mitigation and error control

NISQ and near-term quantum computation assumes that hardware does not

meet the requirements to implement error correction schemes. State of the art

error correction would require O(106) physical qubits assuming an error rate

of ϵ ∼ 10−3 [231]. Both the number of qubits and expected error rates are

far too restrictive for near term quantum devices. As such, error mitigation

places itself as a computationally more efficient alternative to error correction,

possibly accepting a cost in terms of the accuracy of the final result.
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3.3.1 Review of main error mitigation methods

In order to provide context to the use and discussion of error mitigation,

we present here a few promising techniques that have been developed in the

literature.

In the context of quantum chemical computation, a first example of error

mitigation is filtration of symmetry breaking measurements [328, 329]. This

technique was demonstrated experimentally on an implementation of VQE

[146]. This technique of course guarantees that all accepted measurements

will be in the desired symmetry subspace, preventing a significant proportion

of errors, however resulting in a potential large increase in the number of meas-

urements required [330]. It is worth noting that symmetry error mitigation

can also be implemented through mid-circuit measurements [330].

The next example of error mitigation is the family of extrapolation based

techniques. The idea is simply to infer the value of a noiseless measurements

from different noisy measurements. These method therefore rely on the abil-

ity to artificially increase the noise of the quantum device to gather further

datapoints on which the inference is based. It can be achieved for example by

re-scaling the intensity of the pulse producing quantum gates [331], by ran-

domly adding Pauli gates into the circuit (referred to as Pauli Twirling) [332],

or by adding blocks of CNOT gates [333, 334]. From the data gathered, infer-

ence of noiseless measurement can be made using a linear, polynomial, [331]

or exponential extrapolation models [335].

A final example of error mitigation that we select to present here is the

exponential error suppression [336, 337], also referred to as virtual distillation.

The idea behind this technique is that the mixed state resulting from applic-

ation of a noise channel will likely remain dominated by the noise-free state.
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By applying operations that increase the amplitude of the dominant eigen-

state in the noisy, mixed state, one can exponentially increase the likelihood

of measuring the noiseless state.

Of course, many other methods have been proposed, but scalability of error

mitigation remains under question. In Ref. [151], Takagi et al. provide a bound

regarding the capability of error mitigation schemes to reduce computation

errors as a function of the sampling overhead required for their implementation.

In their analysis, they suggest that this bound scales exponentially in circuit

depth.

3.3.2 Light touch error mitigation

To improve results from near-term experiments, we present here a light touch

error mitigation technique. The reasoning employed is similar to the method

proposed in Ref. [338]. It does not aim to provide an alternative to more

advanced error mitigation methods, but rather to provide a tool to assess the

lower bound of what error mitigation can achieve at no additional compu-

tational cost to that of a VQE. This method was initially presented as an

appendix to Ref. [149].

This light-touch technique is a simplified version of extrapolation, based on

the assumption that the impact of the circuit errors is evenly distributed on the

output state. The aim is to recover an approximation of the true expectation

value of a quantum circuit with respect to an operator, assuming a specific bias

on the output results. It is worth noting that this method primarily focus on

correcting gate and readout errors, and as such does not attempt to maintain

or restore the purity of the quantum state produced. It is not expected to be

an effective approach (when used in isolation) for mitigating errors on deep
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quantum circuits where the primary source of noise is decoherence.

We define the true (desired) expectation value of the circuit with respect

to an operator, Ô, as ⟨Ô⟩, while the measured expectation value is denoted as

⟨Ômes⟩ (and where it is assume to the operator studied only has two eigenval-

ues). The outcome of a circuit can be associated with measurement eigenvalues

±1, with the probability of measuring 1 equal to P1 = Pr(Om = 1), and with

Om referring to a single measurement of operator Ô at the end of the quantum

circuit. Similarly, we have P1 = 1 − P−1 = Pr(Om = −1). We can associate

the true expectation value with:

⟨Ô⟩ = P1 − P−1 = 2P1 − 1. (3.14)

We now assume that there is a certain probability, Perr, that at least one

gate error occurs during propagation and measurement of the quantum cir-

cuit. Any gate error changes the balance of probabilities between Pr(Om = 1)

and Pr(Om = −1). One can assume that there exists a value between ±1,

representing the expectation value of Ô given the error rate, which we de-

note ⟨Ôerr⟩. This value, as well as the probability distribution of the operator

measurements Om are unknown and cannot be recovered easily.

We can approximate the expectation value of the measured operator as

⟨Ômes⟩ = (1 − Perr)⟨Ô⟩ + Perr⟨Ôerr⟩, assuming a linear relationship between

the gate errors and effect on the expectation value. We can rewrite this as

⟨Ô⟩ = ⟨Ômeas⟩ − Perr⟨Ôerr⟩
(1− Perr)

. (3.15)

We make the further assumption on the value of ⟨Ôerr⟩ that, given a sufficiently

large number of a random circuit errors, the probability of getting either eigen-
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value when an error occurs is equal (or ⟨Ôerr⟩ = 0). This assumption is based

on two observations: (1) there is no way to tell exactly what the impact of a

gate error will be on measurement probability except that it will bias meas-

urement averages towards 0 (since the dominant probability will on average be

affected by more errors), and (2) given that the gate errors are random, these

will not result in always measuring 1 or −1, ensuring that these are the least

likely values for ⟨Ôerr⟩. It is however likely that these observations will not

always hold true in practice as some sources of error can bias measurements

towards a certain result. For instance, readout errors on some QPUs can be

biased towards a lower energy outcome [339]. Likewise, amplitude damping

noise channel can also favour a measurement outcome. While some of these

systematic biases can be learned away through the variational process [152] it

is likely that ⟨Ôerr⟩ may be significantly different from 0, in particular as the

system studied and the complexity of the ansatz grow.

This method is largely sufficient for the purpose of our experiments, and

can act as a lower bound for the benefits error mitigation can achieve with no

additional computing cost. With this approximation, and for eigenvalues ±1,

we can ignore this final term, and the expression simplifies to

⟨Ô⟩ = ⟨Ômeas⟩
(1− Perr)

, (3.16)

while for binary eigenvalues of 1 and 0, we get

⟨Ô⟩ = ⟨Ômeas⟩ − 0.5Perr

(1− Perr)
. (3.17)

In order to estimate the final bias on the true value of the operator, we have

considered the electron number operator (trace of the one-body RDM). The
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deviation from the set number of electrons in the system gives us an estimate

for the bias induced by quantum noise Perr. Given our assumptions, the bias

factor can be recovered as follows:

1

1− Perr

=
Nelec

Nmeas

, (3.18)

with Nelec the target number of electrons, and Nmeas the number of electron

measured:

Nmeas =
∑
i

γii =
∑
i

⟨ψ| â†i âi |ψ⟩ (3.19)

This comes at no extra computational cost as the one-body RDM terms

used are necessarily computed as part of the VQE process.

An alternative method would be to estimate Perr directly by computing

it through the reported gate calibration data from the QPU provider (com-

pounding the gate fidelities), but we found that in general this approach is

less reliable. This is most likely due to the fact that using this latter method

treats the bias resulting from circuit errors completely classically: it ignores

any part of the bias that could be due to the reduced purity of the quantum

state produced, which can otherwise be captured by the former method.

Results from using this method are presented and discussed throughout

Sec. 4 and Sec. 5, along with the novel methods presented in this thesis.
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Chapter 4

VQE as a solver of correlated

subspaces in multiscale methods

The VQE has been applied as a sub-routine to resolve the low-energy electronic

structure in a number of existing approaches, thereby adapting many hybrid

methods of conventional quantum chemistry methods to quantum computing.

These include a number of ‘quantum embedding’ methods, where the full space

of the problem is partitioned, with each solved at a differing level of theory.

In these, it is generally the strongly correlated low-energy partition of orbitals

that are amenable to use within a VQE solver which are then, in various

ways, coupled back to the rest of the system (potentially self-consistently) at a

lower level of theory on a classical device. These multi-resolution methods can

substantially extend the scope and applicability of the VQE, under additional

constraints arising from this choice of partitioning and coupling of the spaces.

Below, we demonstrate the feasibility of two of these self-consistent algorithms

in a unified approach applicable to both quantum chemistry and condensed

matter physics.
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In Sec. 4.1 we present a review of multi-scale embedding methods on both

conventional and quantum computers. In Sec. 4.2 we review reduced density

matrices and their sampling within QPUs as the self-consistent quantum vari-

ables in these multi-scale methods. We show that judicious grouping of com-

muting terms allows even large active space RDMs to be realistically sampled,

with the proposed groupings opening the prospect for higher-rank RDMs and

perturbative couplings to active spaces. In Sec. 4.3 we consider the complete

active space self-consistent field (CASSCF) [340, 341], an approach for the

simulation of molecular systems with strong quantum effects (such as those

encountered routinely in inorganic chemistry, systems with competing spin

states, excited states, and systems at bond-breaking geometries [342–344]). We

show application to carbon monoxide and implementation on IBM Quantum

services (IBMQ) machines, where active space wave function are optimised on

the QPU within the variational quantum eigensolver (VQE) [37]. Finally, in

section 4.4 we focus on extended bulk systems, with the strongly correlated

Bethe-Hubbard lattice considered. Specifically, we observe the QPU descrip-

tion of a local region to allow for the opening of Hubbard bands in the mater-

ial within the QPU-coupled energy-weighted density matrix embedding theory

(EwDMET) [345–347] approach. For both of these approaches, we show the

fidelity of the QPU sampling of the active space RDMs required for a fully

QPU-coupled self-consistent algorithm, and consider the scaling of sampling

operations as the active space increases in size in future applications. In partic-

ular, using a light-touch error mitigation strategy (as described in Sec. 3.3.2),

noise resulting from gate infidelities does not prevent stable convergence of the

algorithms presented in this paper.
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4.1 Embedding methods in conventional and quantum

computing

Complete active space approaches: The simplest and most widespread

approach in quantum chemistry for isolating and treating a correlated set of

low-energy degrees of freedom at a higher level of theory are the Complete

Active Space (CAS) approaches. In these, a subset of high-energy occupied

and low-energy unoccupied Hartree–Fock orbitals are considered to span the

dominant strongly correlated quantum fluctuations, and treated with an ac-

curate correlated treatment within this subspace (often full configuration in-

teraction, see Sec. 2.4.1). This subspace Hamiltonian includes the presence

of a Coulomb and exchange mean-field potential from the remaining electrons

outside this space. In this way, the active space electrons are fully correlated

within that manifold, leading to the Complete Active Space Configuration

Interaction (CAS-CI) approach [89, 348]. Furthermore, the CAS-CI can be

variationally optimised, by updating the choice of molecular orbitals defin-

ing the low-energy CAS space via single-particle unitary rotations among the

entire set of orbitals in the system. This method is generally referred to as

Complete Active Space Self-Consistent Field (CASSCF) [340, 341], or the re-

lated Multi-Configurational Self-Consistent Field (MCSCF) where the active

space is not solved at the level of full configuration interaction. The CASSCF

wavefunction can therefore be written as follows:

|ΨCASSCF⟩ = |R, c⟩ = e−R
∑
µ

cµ |µ⟩ , (4.1)

where R parameterises the single-particle unitary operator defining the rota-

tion of the active space, |µ⟩ the complete set of Slater determinants in the
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active space, and c defines the coefficients of the configurations indexed by

µ. In implementation on a quantum device, the rotation operator defining

the active space, R, can be optimised on a classical device, while the paramet-

erised description of the active space wavefunction can be sought via the VQE.

These approaches constitute the bedrock for simulation of molecular systems

with strong correlation, in particular in systems with competing spin states,

excited states, systems at bond-breaking geometries, and inorganic chemistry

[342–344]. These CAS-based approaches were initially proposed in combin-

ation with VQE as a solver for the active space in Ref. [231] and were sub-

sequently successfully demonstrated practically on quantum computers (an

example of which is presented in the following section) in Refs. [149, 349, 350],

including self-consistent optimisation of the active space.

It should be noted that in order to achieve this optimisation of the active

space, the two-body reduced density matrix of the active space is required,

which can have ramifications on the number of measurements required by the

VQE [149]. However, in strongly correlated quantum chemistry, it is generally

also important to include a description of the correlation within the orbit-

als external to the active space, generally via low-order perturbation theory,

resulting in methods such as complete active space second-order perturbation

theory (CASPT2) [351]. These however require computation of the 3-body

reduced density matrix (and potentially higher) in order to couple the active

space correlations to this perturbative treatment and are therefore considered a

daunting proposition for VQE. There is also a wider range of extensions to the

CASCI approach, including extensions to embedding with density functional

theory (DFT) description of the environment, which has also been explored

by Rossmannek et al. [352] within a VQE description of a correlated active

space. Shade et al. [353] also extend these ideas to the reduced density mat-
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rix function theory (RDMFT) and demonstrate an implementation of their

method to a Hubbard-like system on a quantum device.

Density matrix embedding theory (DMET): Similar to the active space

methods mentioned above, DMET [354, 355] aims at embedding an accurately

correlated subspace in a mean-field environment. In contrast to CAS-CI, this

‘active space’ is chosen through locality criteria, starting from a local frag-

ment space and augmenting it with the minimal number of additional orbitals

(denoted the bath space) to ensure that the active space recovers the Hartree–

Fock description, and explicitly captures quantum entanglement between the

fragment and its environment. In this way, the DMET approach can be con-

sidered as having a similar ambition to dynamical mean-field theory [356],

but cast as a static wavefunction theory (see below). In order to optimise

the mean-field state of the system, the one-body reduced density matrix is

matched between the individual fragment spaces between the correlated and

mean-field descriptions.

Integration of DMET with a VQE for the correlated subspace solver has

been the subject of several publications [357–361], and has been implemen-

ted on quantum computers with proof of principles for relevant applications

such as protein-ligand interactions for drug design [140] (with an alternative

method based on perturbation theory proposed in Ref. [139]). Energy weighted

DMET (EwDMET) which builds on DMET to improve its description of dy-

namical fluctuations for small fragment sizes (thereby moving systematically

towards a DMFT description described below) [345–347] was also tested and

implemented on a quantum device [149] (see developments in Sec. 4.4), allow-

ing quantum phase transitions to be captured which were out of the scope of

DMET. A wide range of possible alternative formulations exist for embedding
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correlated subspaces in (static) mean-field environments - especially when that

subspace is only weakly coupled to the environment, and the explicit entan-

glement between the subspace and the environment can be neglected.

Dynamical Mean-Field Theory (DMFT): DMFT again relies on a sim-

ilar embedding of a (local) correlated subspace in a mean-field environment.

However, this environment allows for local quantum fluctuations in its de-

scription, thereby including the effects of correlation in the local propagation

of particles through the environment. This effect is captured by a local self-

energy, which is the self-consistent quantum object in DMFT [356, 362]. This

necessitates a formalism built around the single-particle Green’s function (a

specific dynamical correlation function), which is the object which must be

sampled within DMFT on a quantum device. At the heart of DMFT is a

mapping from the system of interest to an impurity model, which describes

a local correlated fragment coupled to a wider non-interacting set of degrees

of freedom, denoted the ‘bath’. This impurity model can be represented in

a Hamiltonian formulation, from which the single-particle Green’s function

must be sampled, with various approaches to solve for this Green’s function

known as ‘impurity solvers’. The techniques presented earlier in this section

can be used to sample this Green’s function in either a time or frequency

domain at each iteration in the self-consistent loop. The use of quantum com-

puters as an impurity solver was proposed initially in Ref. [363] in the time

domain, but frequency domain solvers have often been more amenable to the

low-depth NISQ era. These were explored in the context of DMFT impurity

solvers in physical realisations of correlated material systems via VQE-type

parameterised algorithms in Refs. [364–367]. An alternative method to com-

pute the Green’s function over the whole energy range is based on the quantum
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subspace expansion [368].

Overall, embedding methods using the VQE as a high accuracy and scalable

solver to describe the correlations within a subspace self-consistently coupled

to a wider environment are a promising avenue to extend the applicability of

quantum computation towards practical applications. In general, they allow

for recovery of significant parts of the electron correlation energy, while avoid-

ing treatment of the full system, thereby reducing qubits number in exchange

for additional classical resources in defining the embedding, as well as a self-

consistent loop. It is worth noting that the possibilities for embedding the

VQE and more general quantum algorithms within wider multi-method and

multi-resolution hybrid schemes extends far beyond just the quantum embed-

ding methodologies presented above, and are likely to be of central importance

in the utility of quantum algorithms in molecular modeling in all contexts in

the future.

4.2 Sampling Reduced Density Matrices on a

Quantum Computer

The reduced density matrices (RDM) used in this work are not defined by

tracing out a subsystem, but rather tracing out the entire phase space of

many electrons from the full N -particle density matrix of a pure state. For a

m-body reduced density matrix, Γm, this integration over N − m electronic
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variables can be written as

Γm(x1, . . . ,xm;x
′
1, . . . ,x

′
m) = m!

(
N

m

)
× (4.2)∫

ΓN({x}N ; {x′}N)∆N
m+1dxm+1 . . . dxNdx

′
m+1dx

′
N ,

where xi represents the combined spatial and spin coordinate for electron

i, and ∆N
m+1 =

∏N
i=m+1 δ(xi − x′

i). Fortunately, these reduced-body density

matrices can be directly computed, rather than requiring tracing from higher-

rank density matrices. By projecting the electronic coordinates into a basis

set, we can define the two-body RDM as

Γijkl ≡ ⟨ψ| â†i â
†
j âlâk |ψ⟩ , (4.3)

with other rank RDMs defined equivalently, and where the indices i, j, . . . label

spin-orbital degrees of freedom, â(†)i are the fermionic annihilation (creation)

operators, and we have omitted the explicit subscript denoting the rank of the

RDM where it is obvious from the number of indices. In this example, the

partial trace down to the one-body RDM can then be written as

γik =
1

N − 1

∑
j

Γij,kj. (4.4)

Despite tracing out large numbers of degrees of freedom, these two-body RDMs

still contain all the information about a quantum system required for physical

observables of interest which depend on (up to) pairwise operators, includ-

ing the total energy. The rank of an operator defining a given observable

determines the rank of the RDM required to compute its corresponding ex-

pectation value. For example, the electric dipole moment is a one-body quant-
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ity, requiring the one-body RDM, while the Hamiltonian defining the energy

is a two-body expectation value, requiring the two-body RDM to evaluate.

Non-observable quantities of interest, such as entanglement entropies or mu-

tual information, can also in general be computed from reduced-body density

matrices [369].

Furthermore, using RDMs one can compute the probability of a given

m-electron distribution, as the diagonal of the m-RDM. The sum over this

distribution then gives the number of m-tuples of particles in the system,

which can be used as a normalisation condition, e.g. the trace of the 2-electron

distribution giving the number of pairs of electrons, as

∑
ij

Γij,ij =
N(N − 1)

2
. (4.5)

Overall, these m-RDMs have all the information about the distribution and

entanglement of m particles in a given state of an N particle system, which

rationalises their use as method-agnostic, low-rank quantities in order to couple

quantum systems described at different levels of theory.

In this work, we consider second-quantised Hamiltonians where spin sym-

metry is preserved, allowing further tracing out of spin degrees of freedom,

defining the central spin-free two-body RDM of interest as

Γpqrs ≡
∑
στ

Γpσqτ rσsτ , (4.6)

where p, q, . . . denote spatial degrees of freedom and σ, τ denote spin labels.

Further permutational symmetries can be used which reduce the number of
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Figure 4.1: Illustration of one layer of HEA as used in this work. Each layer is
composed of two rotation gates on each qubit and a ladder of entangling gates.

independent quantities to evaluate, as

Γpσqτ rσsτ = −Γpσqτ sτ rσ = Γqτpσsτ rσ = Γrσsτpσqτ , (4.7)

with time-reversal symmetry ensuring

Γpσqτ rσsτ = Γpτ̄ qσ̄rτ̄ sσ̄ . (4.8)

The resulting set of fermionic operators must be mapped to spin operat-

ors for sampling of the state on a QPU. For this, we use the Jordan-Wigner

mapping [97], though other mappings (e.g. Bravyi-Kitaev mapping [281, 282])

could be used, as long as the mapping is consistent. While each fermionic

operator will in general be mapped to several spin operators, one can find

several efficiencies to reduce this overall number of terms. We discuss scaling

of the number of terms for RDM sampling using efficient grouping methods in

Appendix A, which will be essential for scaling to larger numbers of qubits or

for the extraction of beyond two-body properties.

In order to test RDM sampling on a quantum computer, we computed

99



the one- and two-body RDMs of magnesium porphyrin after optimisation of a

hardware efficient ansatz (HEA) [262, 370] wave function using the gradient-

free RotoSolve optimiser [114, 115, 270]. Unless specified otherwise, the HEA

used in this thesis is composed of repeated layers of two rotation gates on

each qubit followed by a ladder of entangling gates, as presented in Fig. 4.1.

We use an active space restricted to 2 orbitals and 2 electrons (a 4 qubit

Hamiltonian) for this test. It is worth noting that while the HEA is con-

venient for studying small systems due to its relatively small pre-factor, it is

expected to have difficulties scaling to larger active spaces [109], where other

VQE ansätze are expected to be preferred such as the unitary coupled-cluster

[37, 80, 81, 319]. The resulting RDMs are then compared to the RDMs ob-

tained via exact methods for the same active space, and the distribution of

relative errors in the elements are shown in Fig. 4.2. We conducted this test on

a simulated QPU with different number of shots, as well as current quantum

hardware (IBMQ Athens QPU, details about each QPU used in this experi-

ment can be found in Appendix B)).

In our investigation of RDM observable sampling errors, we also considered

approaches to reliably mitigate for these errors via physically justified extra-

polation techniques. It is clear from the results of Fig. 4.2 that these can sub-

stantially ameliorate quantum noise and sampling errors. The simple extrapol-

ation technique used in this work for error mitigation is presented previously

in Sec. 3.3.2; the technique relies on a binomial distribution of independent

errors in the quantum circuit, and has the benefit of requiring no additional

measurements (for a more involved approach to extrapolation, we recommend

Ref. [335]).

This simple error mitigation technique significantly improves the overall
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Figure 4.2: Distribution of relative errors in the Frobenius norm for both QPU and
quantum emulated sampling of the RDMs, compared to exact classical calculation.
To obtain the distributions, we repeated the computation of the Frobenius norms
differences over 20 realisations of the RDMs for each number of measurements con-
sidered. On the left, results are presented for a QPU simulator (assuming perfect
qubits) and therefore displays the impact of finite sampling noise. On the right, the
results computed on IBMQ Athens (4-qubits, depth 3 HEA), with and without error
mitigation.
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accuracy of the QPU estimates, bringing it almost on par with the results of

the simulator at an equivalent number of measurements. A key question that

remains is whether the norm error presented above has a significant impact on

the ability to use these RDMs reliably within subsequent quantum chemical

calculations, where manipulation of these noisy RDMs may prevent conver-

gence or lead to unacceptable bias in desired quantities. In order to test this

we apply this sampling to a QPU-solved complete active space self-consistent

field method (computing both energetics and molecular dipole moments fol-

lowing the optimisation), as well as a QPU version of the energy-weighted

density matrix embedding theory, as examples of multi-scale approaches to al-

low quantum resources to be applied to realistic systems in electronic structure

calculations.

4.3 Quantum CASSCF

The complete active space self-consistent field (CASSCF) approach is gener-

ally the starting point in quantum chemistry for molecular systems exhibiting

stronger correlation effects, and therefore a key step in the development of

electronic structure methods suitable for quantum computation [340, 344, 371–

385]. As stated above, CASSCF is a post Hartree-Fock method in that it builds

on an already computed mean-field Hamiltonian and ground energy to recover

some of the electron correlation energy. As such it can be used as solver for

any molecular energy problems but lands itself in particular to systems with a

strongly correlated group of electrons in a limited range of orbitals. Applica-

tions are wide ranging, a few examples are presented in Ref. [386] which relate

to describing surface hopping problems and include cis-trans isomerization,

surface crossing with electron-transfer, and surface crossing with electron pair
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transfer. As such the method can find numerous applications across quantum

chemistry and condensed matter physics.

The central tenet of CASSCF is that the dominant strong quantum fluctu-

ations required to qualitatively describe an electronic system are spanned by

a small number of low-energy degrees of freedom about the chemical poten-

tial. The changes caused by explicitly considering interaction-driven virtual

excitations in this space can change the occupation and induce entanglement

of these orbitals, giving rise to correlated physics far from a mean-field de-

scription. The first step of CASSCF is therefore to partition the orbitals into

three subspaces, denoted core, active and virtual. Core orbitals are deep-

lying orbitals, which are considered to be chemically-inert and fully occupied,

while conversely, the virtual orbitals are considered high-energy states which

remain unoccupied. Together, these denote the ‘external’ space. The active

space denotes the degrees of freedom which are considered to span the dom-

inant electron correlations corresponding to low-energy virtual excitations of

the Nact electrons within it, with the full set of quantum fluctuations among

this set to be considered. No entanglement or particle/spin fluctuations are

considered between the external and active spaces. The overall CASSCF wave

function at any point can therefore be written as

|ΨCASSCF⟩ = |ψactive⟩ ⊗ det[ϕc], (4.9)

where |ψactive⟩ denotes an Nact-electron wave function spanning the active de-

grees of freedom, while det[ϕc] is a single product state over the core orbitals,

accounting for the N −Nact remaining electrons.

A key initial step for CASSCF is therefore to choose the orbitals in each

set. These are selected from an initial mean-field calculation, where to a first
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approximation, the highest-energy occupied and lowest-energy virtual orbitals

about the chemical potential are chosen as the active space. However, this

choice is often augmented with other criteria for selection of the active space,

including symmetry, locality and/or ‘chemical intuition’, with approaches for

automatic selection of this space, e.g., from quantum information arguments,

a source of recent developments [387–389]. However, it is clear that select-

ing these orbitals from an initial mean-field calculation has an inherent flaw.

The active space, designed to capture the strong correlations and dominant

entanglement between single-particle states, is chosen from a theory with no

correlations or entanglement via simple mean-field orbital energetics, which

can change substantially in the presence of electron correlation. To account

for this, a self-consistency in the choice of the active space orbitals is required

for meaningful and qualitatively accurate results in the presence of strong cor-

relation. This involves a variational optimisation of the state given in Eq. 4.9,

to account for an arbitrary mixing between all three classes of orbitals, defined

by the exponential of an anti-hermitian one-particle operator. This allows the

character of the orbitals to change, by rotating core and virtual components

into the active space in a variationally optimal way.

The CASSCF method from another perspective can be considered as an

embedding of the correlated effects of the active space into a mean-field de-

scription of its ‘environment’ (as given by the electrons in core orbitals), as

presented in Ref. [352] for quantum emulation. However, this active ‘embed-

ding region’ is chosen largely on energetic criteria, with a strictly separable

form and no entanglement with the core electrons. We contrast this with an

alternative criteria based on locality in Sec. 4.4. The limitations of the ap-

proach come from the size of the active space, which for an exact treatment

is often accepted to be 16 electrons in 16 orbitals [344], with some instances
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of computation up to 20 electrons in 20 orbitals [164]. This is due to the

exponential scaling of classical resources with respect to this size in order to

represent and optimise |ψactive⟩. Beyond this, approximate descriptions of the

active space wave function are increasingly being investigated, although all

have their limitations [176, 181, 390–393]. This active size constraint hinders

the application of CASSCF to systems with larger valence spaces, where a

small active space is not sufficient and convergence of desired properties with

respect to active size is not reached.

This limitation is a potential opportunity for NISQ computers to exhibit

a quantum advantage in this keystone method in quantum chemistry, with

the active space paradigm often being touted as a near-term prospect for

quantum computers [349, 387] (see e.g. Ref. [82] for a recent review of the

limits of classical computers in this field and the requirements for quantum

advantage). However, beyond simple analysis of gate depth and qubit number

required is the question of the practical feasibility of a robust and convergent

algorithm for the self-consistency of the full CASSCF method, which has been

demonstrated for a single orbital optimisation step without full self-consistency

in the work of Takeshita et al. [349]. In the algorithm which we use, the

coupling of the active space correlations to the orbital rotations required for

self-consistency is provided by the two-body RDM within the active space.

Therefore, the faithful sampling of this two-body RDM with sufficient fidelity

is critical for a well-behaved algorithm. This is especially important as the

orbital rotation updates involve non-linear functionals of the sampled two-

body RDM elements, meaning that we expect noise from the QPU sampling

to manifest as systematic error in the final results, even in the case that the

sampling of the underlying RDM elements is unbiased. We investigate the

two-body RDM active space sampling for this purpose on QPUs as well as the
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importance of error mitigation, by using a parameterised gate circuit as the

active space wave function optimised via the variational quantum eigensolver

(VQE). However, the use of VQE in this work could be replaced by quantum

Krylov or imaginary-time solvers suitable for NISQ devices [293, 394], as well

as quantum phase estimation algorithms when suitable devices are available.

4.3.1 Fully self-consistent algorithm

We briefly summarise the key steps of the (two-step) CASSCF approach (some-

times also described as the related multi-configurational self-consistent field

method), with more details available in Ref. [341]. We start with the second

quantised electronic Hamiltonian in a basis, as

Ĥ =
∑
ij

hij â
†
i âj +

1

2

∑
ijkl

gijklâ
†
i â

†
j âlâk + Enuc, (4.10)

where hij and gijkl are the one and two-body integrals respectively, with Enuc

the scalar nuclear repulsion. We can parameterise the orbitally-optimised

CASSCF wave function of Eq. 4.9 as

|ΨCASSCF⟩ = |R, c⟩ = e−
∑

ij Rij â
†
j âi

∑
n

cn |n⟩ , (4.11)

where the one-body matrix operator R parameterises the single-particle unit-

ary rotation operator of the molecular orbital basis (Rij = −Rji), |n⟩ the

complete set of Slater determinants spanning the active space, and c defines

the coefficients of the configurations indexed by n, spanning the selected active
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space. The full optimisation problem can then be written as

E = min
R,c

⟨R, c|H |R, c⟩
⟨R, c|R, c⟩

. (4.12)

Within the two-step algorithm, the optimisation of R and c are treated

separately and alternated, as the optimisation of R can be efficiently performed

for one-body unitary rotations on classical computers, given the knowledge of

the active space two-body RDM,

Γ2 = ⟨ψactive|â†i â
†
j âlâk|ψactive⟩. (4.13)

The optimisation of R then proceeds via construction of the gradient and

Hessian of the energy with respect to these parameters, which can then be up-

dated at modest computational expense via a quasi-second order step, accel-

erated with iterative subspace methods as implemented in the PySCF package

[341, 395, 396].

For a given rotation matrix parameterised by R, the Hamiltonian can then

be transformed into the new basis, and the Coulomb and exchange contribu-

tion from the static core electrons integrated out, resulting in an active space

Hamiltonian, Hact(R), which only spans the active space degrees of freedom.

The optimisation of this active space wave function is then amenable to im-

plementation within a VQE minimisation, as

E|R = min
θ

⟨ψactive(θ)|Hact(R) |ψactive(θ)⟩ , (4.14)

where θ denote the angles to optimise within the chosen quantum circuit para-

meters [37]. Once optimised, the 2RDM elements of the active space of Eq. 4.13

can be sampled, in order to update R in the full space, until convergence. In
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practice, convergence can be triggered in a black-box fashion over a number of

variables, such as the energy, orbital gradients, or density matrices themselves.

However in this work we run for a fixed number (ten) of orbital updates, which

is sufficient to gauge convergence and to subsequently observe the fluctuations

in the quantities of interest at this point.

4.3.2 Results

While the computational procedures for this coupled orbital optimisation are

well developed for exact or near-exact solvers in the domain of quantum chem-

istry, their utility in a fully self-consistent algorithm with a noisy quantum

computer is far from clear (although there is some relevant recent work on

noisy Monte Carlo solvers for active spaces [390, 391, 397, 398]). We there-

fore consider the CASSCF algorithm with an active space NISQ device solver,

to determine the stability of the algorithm in the presence of sampling, gate

noise, decoherence, and a parameterised quantum circuit for the state. This

allows us to understand the feasibility of this multiscale approach, and develop

practical strategies to ameliorate potential shortcomings from the noisy active

space sampling.

We apply the method to a carbon monoxide (CO) molecule in a cc-pVDZ

basis set, and at a stretched bond length of 1.54 Å. This stretching of the

multiple bond enhances the strong correlation in the electronic structure, as

the atomic-like character of the constituent atoms is increased. An active

space of two orbitals and two electrons, corresponding to the highest occupied

and lowest unoccupied molecular orbitals, is selected to capture the domin-

ant many-body entanglement in these lowest-energy quantum fluctuations. To

ensure a significant level of orbital relaxation from the self-consistent proced-
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Figure 4.3: Convergence of the energy of the CASSCF state for a 2-electron, 2-
orbital active space of Carbon Monoxide for each orbital update step. Results are
shown for a quantum simulator, on IBMQ Bogota (without error mitigation) and
on IBMQ Santiago (with error mitigation). Plot (b) focuses on the final five orbital
update cycles, showing the variation and bias in converged results, with additional
simulated results for 500 and 2,000 shots to illustrate the impact of finite sampling
noise (results for 5,000 shots are indistinguishable from those obtained with 10,000
shots and as such were not included). Error bars for QPU results on plot (b) represent
1.96 times the standard error spread of the measurement data, or the 95 % confidence
interval for the values estimated.

ure, and to test the stability of this noisy optimisation in the case of a poor

initial choice of orbitals, we can select initial orbitals (and active space) from

only a partially converged Hartree-Fock calculation. This was achieved by an

early stopping of the mean-field self-consistent field procedure after only two

updates of the Fock matrix prior to the CASSCF.

We first implemented the method on a quantum simulator with 500, 2,000,

5,000 and 10,000 shots to sample each mapped two-body RDM operator re-

quired, but in the absence of any additional noise model for the gates. For the

quantum hardware experiments, we use IBMQ Bogota and IBMQ Santiago,

which are both 5-qubit QPUs available through the the IBMQ platform, with

equivalent levels of gate fidelity (details about each QPU used in this paper

109



can be found in Appendix B). The initial calculations on IBMQ Bogota were

performed without accounting for any error mitigation, before applying the

light-touch error mitigation strategy presented in Sec. 3.3.2 on the IBMQ San-

tiago hardware to assess any improvements from this. For the QPU runs, we

use a measurement ramp-up schedule whereby the number of measurements

is increased if the output energy at a given iteration is higher than for the

previous one (which should not be the case during the optimisation). It is

capped at 8,000 shots, which is also the number of measurements used for

RDM sampling after the state is optimised.

We used the same ansatz for all experiments, built on a four-qubit, three-

layer version of the HEA [262, 370], and the same optimiser: the gradient-free

RotoSolve method [114, 115, 270, 271] . This resulted in a total of 24 vari-

ational parameters in the model. We found it unnecessary to fully converge

the ansatz each iteration, and therefore investigated varying the level of ansatz

optimisation each CASSCF step to improve efficiency. Five iterations of the

VQE were in general sufficient on the first cycle, and we then used the para-

meters obtained to initialise the ansatz for the next cycle. A single iteration of

the VQE for subsequent CASSCF steps after performing this warm start was

sufficient to fully converge in a reasonable time, and to reach good accuracy.

The results of these CASSCF optimisations are presented in Fig. 4.3.

Without error mitigation, the QPU results show significant systematic error

at convergence of ∼ 60 mEh, but nevertheless allow for a stable optimisation.

Including the error mitigation allows for significantly better results, with fluc-

tuations of less that 10 mEh from the exact CASSCF value from exact 2-step

optimisation of the same initial active space. As expected, the variance from

the QPU experiment is significantly more than the corresponding quantum

simulated results, even with error mitigation. This reflects the fact that the
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error mitigation effectively removes the bias in the sampled measurements, but

does not materially improve on the variance resulting from quantum noise. In

our quantum simulated results, we find strong convergence for any simulation

without gate noise or decoherence above 5,000 shots. Below that number, fi-

nite sampling noise prevents the algorithm reaching the sought after solution.

At 500 shots, it fails to reach under 10 mEh difference to the target state

energy on average.

We can distinguish and isolate the effects of certain errors arising from

the quantum solver on these results. Firstly, we have the systematic error in

the VQE at each iteration, including the optimisation, gate errors and ansatz

choice, which lead to a non-exact energy and state for a given set of active

orbitals. Secondly, we can consider the effect of stochastic noise in the RDM

due to a finite number of samples. This second error will lead to incorrect

orbital updates in the CASSCF macroiterations, and a loss of precision in

the final CASSCF energy due to an inability to propagate to the optimal

orbitals defining the active space and its Hamiltonian. Furthermore, since the

orbital choices in CASSCF are not linear functionals of the sampled density

matrix elements, even if the RDM elements are entirely unbiased and correct on

average, this does not preclude a systematic error entering the orbital updates

at any finite sampling.

To separate these sources of error, we can consider the exact energy of

each CASSCF iteration, but using the active space orbitals obtained at each

iteration from the noisy VQE update from the quantum solver. This eliminates

errors due to the VQE optimisation of a given active space, isolating the error

due to convergence of the non-optimal orbital rotations being found at each

step, primarily due to the inherent sampling noise of the RDMs. These results

are shown in Fig. 4.4, and show that the overwhelming majority of the error is
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arising from the bias in the VQE, while the convergence of the orbitals is highly

robust to the errors in the active space VQE description and sampling errors of

the RDMs. Even without error mitigation of the RDMs, orbital optimisation

is accurate to within 10 mEh, while the results of the simple error mitigation

in the RDMs rendered an almost exact CASSCF energy. This demonstrates

that the orbital optimisation procedure is less susceptible to the errors in the

VQE and RDM sampling than the inherent errors in the energy and wave

function optimisation for a given active space. This relative insensitivity to

the fidelty of the RDMs bodes well for larger active space calculations on QPUs

and the practicality of orbital optimisation through RDM sampling, as well as

the improvements which would transfer to this approach from improved active

space quantum algorithms [293, 394].

A key question remains as to whether this robustness is a property just of

orbital optimisation, or whether this also extends to a broader set of expect-

ation values which can be derived from the RDM sampling (other than the

energy), as these also relax due to a more faithful description of the correlated

wave function. We consider here the effect of orbital optimisation and a correl-

ated VQE wave function on the magnitude of the dipole moment of the carbon

monoxide molecule in the same active space, which can be extracted from the

sampled one-body reduced density matrix as a one-particle expectation value.

This quantity characterises the net charge distribution in the molecule, and

from symmetry constraints can be described by a vectorial quantity which must

be coincident with the carbon-oxygen bond. The magnitude of this vector is

shown in Fig. 4.5, as the active space orbitals are optimised in the presence of

the correlated VQE state.

Since the dipole moments are linear functionals of the one-body RDM, we

would expect an unbiased sampling of the RDM to give an unbiased estimate
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Figure 4.4: Convergence of the final six orbital update cycles of the CASSCF en-
ergy, obtained with the IBMQ Bogota (with no error mitigation) and IBMQ Santiago
(with error mitigation). Two series are presented for each QPU calculation: ‘VQE
energy’ results are equivalent to Fig. 4.3, while ‘Exact solution’ represent the exact
energy from the current active space, that would have been obtained if the VQE was
solved perfectly given the molecular orbitals found from the previous quantum VQE
update step.
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Figure 4.5: Convergence of the dipole moment in Debye from QPU-CASSCF as
the orbitals are optimised, both with (IBMQ Santiago) and without (IBMQ Bogota)
error mitigation, as well as quantum simulated results from an RDM sampling of
500, 2,000 and 10,000 shots. Positive dipole moments mean that the dipole moment
points towards the oxygen (i.e. the oxygen atom has net negative charge), while the
converged results flip the orientation of the dipole moment.
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of the dipole moment from the optimised VQE-CASSCF state. We find that

without error mitigation, there is still an error of ∼ 0.6D, however the error

mitigated results can effectively reduce the systematic error in the final dipole

moment completely, with fluctuations in each cycle of a similar magnitude to

the emulated values without quantum noise or decoherence with 5,000 shots.

It is also worth noting that the dipole moment of carbon monoxide is notori-

ously difficult to converge theoretically [399], hence the error with respect to

experiment of 2 Debye is to be expected for CASSCF with a minimal act-

ive space. At this point, the fluctuations in the dipole moment agree with

the magnitude of the fluctuations expected from the original density matrix

sampling experiments of Fig. 4.2, and an unbiased estimate of the exact CAS-

SCF dipole moment is obtained. We also note that the correlation and orbital

optimisation reverses the direction of the charge imbalance in this system from

the starting description.

The overall runtime of the full QPU-CASSCF calculations on IBMQ Bogota

was ∼14 QPU-hours, including 10 orbital updates (or cycles), VQE optimisa-

tion and RDM sampling. Each energy evaluation was done measuring 49

operators (see Appendix A) with 8,000 shots. Each of the 24 parameters is

sampled 3 times to implement the RotoSolve algorithm hence each inner loop

takes 8, 000 × 49 × 3 × 24 ∼ 3 × 107 shots. We performed 5 iterations in the

first cycle and 1 iteration in the subsequent 9 cycles, at the end of each cycle

the full two-body RDM are sampled to compute the final values (8, 000 × 49

shots). All together, this results in a total of ∼ 4 × 108 shots. Of course

this number of shots can be optimised further, through more efficient operator

grouping, measurement weightings and other methods. Likewise, the overall

QPU runtime is also worsened by latency from accessing the device through

the cloud, and regular device calibrations which can take a significant amount
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of time.

However, one must consider the potential for parallelisation. In this case,

all 8,000 measurements conducted on the 49 operators could have been con-

ducted in parallel, possibly reducing the overall runtime up to well under a

second. While this is not a good indication for scaling and long term viability

of the method (we encourage the reader to refer to Ref. [82] for an interesting

assessment of the scalability of VQE), it does illustrate the potential for strong

parallelisation, and corresponding error mitigation techniques, for the viability

of NISQ algorithms.

Finally, it is worth discussing the viability of extensions to CASSCF on

quantum devices. In quantum chemistry, CASSCF is rarely the end of the

story, as it neglects the contributions to expectation values arising from inter-

actions between the active space electrons and the external degrees of freedom.

These can generally be treated at a perturbative level of theory[400], cumu-

lant or energy-moment expansions [401] or via subspace expansions[349], and

are required for quantitative accuracy for predictive calculations. These per-

turbative couplings between the spaces can be computed by considering the

higher-rank RDMs in the active space. This approaches will significantly in-

crease the number of terms which must be sampled. However, large reductions

can be found with the appropriate groupings, and this is demonstrated in Ap-

pendix A, where 440,154 Pauli strings for the sampling of the four-body RDM

within 6 qubits can be reduced to only 3,182 commuting groups.
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4.4 QPU-Enhanced Energy-weighted Density Mat-

rix Embedding

The CASSCF method exploits the locality of correlation in the energy domain,

choosing and optimising a low-energy subspace for the correlated treatment.

In this section, we demonstrate the utility of a faithful QPU sampling of RDMs

in order to correlate and optimise a different subspace, which instead relies on

spatial locality. This perspective is often more useful for strongly-correlated

extended systems, where the atomic-level correlated degrees of freedom can be

isolated, and where widely used methods such as density functional theory fail

to provide accurate results [402]. These approaches fall under the umbrella

of quantum embedding or quantum cluster methods, and are amongst the

most promising for QPU-enhanced materials modelling [362, 403, 404]. We in-

vestigate the recently-developed ‘Energy-weighted Density Matrix Embedding

Theory’ (EwDMET) as a promising candidate in this direction [345–347].

The EwDMET method connects the density matrix embedding theory

(DMET) and dynamical mean-field theory (DMFT), two established approaches

in quantum embedding [356, 405, 406]. Both of these ‘parent’ approaches have

recently been adapted for use with a quantum hardware solver, as well as re-

lated embedding techniques [357–359, 363, 365, 407–410]. However, the EwD-

MET avoids a number of difficulties. Similar to DMET, it avoids any neces-

sity to compute the single-particle Green’s function of the resulting quantum

cluster problem on the QPU, which is challenging for quantum hardware, al-

though important progress is being made [411]. Instead, the method requires

a desired number of one-particle spectral moments from the subspace problem,

which can be obtained directly from the reduced density matrices of the ground
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state. The number of self-consistent spectral moments can then be systemat-

ically enlarged, to approach the complete dynamical character of DMFT as an

orthogonal polynomial expansion. The method also removes all explicit numer-

ical fitting steps, and constructs a rigorous self-consistency on these spectral

moments, systematically extending the DMET formulation and connecting it

to its fully dynamical limit. This rigorous and algebraic self-consistency en-

ables non-trivial results to be obtained even at the lowest truncation of the

spectral moment expansion. This requirement of only computing ground-state

RDMs, while at the same time benefiting from a rigorous and algebraic self-

consistency for non-trivial emergent physics makes it an ideal candidate for

combination with QPU-derived RDMs in the NISQ era. We briefly review the

salient features of EwDMET for this QPU formulation, with more details in

Ref. [347].

While EwDMET remains a fairly recent method, it focuses on similar ap-

plications to DMET which has been applied and tested in numerous studies of

condensed matter systems. For example, DMET has been used to study the

one-dimensional Hubbard model [405, 412–414], the Hubbard–Holstein model

[415], the Hubbard–Anderson model [416], the two-dimensional spin-J1–J2

model [417]. DMET has also been, in some occasions, tested on molecular en-

ergy applications such as the study of carbon polymers, boron–nitride sheets,

crystalline diamond [418] and hydrogen rings and sheets [354]. In general, the

family of methods, from DMET to DMFT, has widely been used for the study

of strongly correlated materials and metals, in particular when computation-

ally more efficient methods such as density functional theory fail.

As with all quantum cluster approaches, the algorithm begins with the

choice of a local correlated space. This could be the d−shell of a transition

metal atom, or a cluster of sites for a discrete lattice model. The EwDMET
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method then allows for an improvable and self-consistent description of the

one-particle quantum fluctuations between this fragment and its environment

[345–347]. This information is contained within the self-consistently optimised

(hole and particle) spectral moments of the fragment, defined as

T
(n)
h,αβ = ⟨Ψ| â†α(Ĥ − E0)

nâβ |Ψ⟩ , (4.15)

T
(n)
p,αβ = ⟨Ψ| âα(Ĥ − E0)

nâ†β |Ψ⟩ , (4.16)

where α, β index the degrees of freedom of this local fragment, n ≥ 0 denotes

the order of these moments, optimised up to a maximum desired value nmom,

and |Ψ⟩ is the ground state of the constructed correlated subspace. As nmom→

∞, the method exactly reproduces the effective dynamics of DMFT, recast

as a ground-state wave function theory, while systematic truncation to low

nmomwill still faithfully describe the dominant low-energy fluctuations from

the fragment into its environment. The EwDMET method rigorously maps

the full system to a subspace consisting of the chosen fragment coupled to a

‘bath’ space . The size of the bath is determined solely by the size of the

fragment and the desired number of spectral moments to capture (and the

correlated subspace is hence independent of the size of the full system). It

is this correlated subspace problem which must then be solved on the QPU

at each iteration, and the spectral moments of Eqs. 4.15 and 4.16 computed.

With these computed spectral moments from the correlated fragment space,

the one-particle description of the full system can be algebraically updated via

the addition of non-interacting auxiliary states, to ensure that the fragment

moments at the mean-field level over the full system exactly reproduce the
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correlated subspace ones. The procedure is iterated, updating the auxiliary

space and bath space of the quantum cluster problem, until convergence.

4.4.1 Infinitely coordinated Bethe-Hubbard Lattice

We apply this method to the paradigmatic Hubbard model of condensed mat-

ter physics, which describes a range of quantum phases and correlation-driven

transitions. Specifically, the limit of an infinitely-coordinated extended Bethe-

Hubbard lattice with local interactions defines our model of interest, which

has the particular feature that correlation-driven changes to all one-particle

properties are site local. This property was used to great effect to motivate

the development of DMFT, by providing a non-trivial model for which it de-

scribes an exact limit [419, 420]. The EwDMET has the same exact limit for

this model as nmom→ ∞.

The Bethe lattice can be used for numerous models, and is defined as a

graph, without loops, of infinitely many points each connected to a fixed num-

ber of neighbours. This number is usually labeled z and called the coordination

number. In this experiment, we consider a model where z → ∞ akin to the

model presented in Ref. [347]. A version of the Bethe lattice for z = 2, which

represents a simple chain, is described in Fig. 2 of Ref. [347]. An example of

a Bethe lattice for z = 4 can be found in Ref. [421].

The model can be equivalently defined in this infinite-dimensional limit via

its metallic non-interacting density of states [421], which is defined to have the

form

A(ω) =
1

2π

√
4− ω2, (4.17)

for a bandwidth of |ω| < 2. This non-interacting spectrum was fit to a single

central fragment site with 200 additional degrees of freedom, to approxim-
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ate this full spectrum to a high energy resolution [422, 423]. The interacting

Hamiltonian is then defined as resulting from the additional on-site Hubbard

interaction term, Un̂i↑n̂i↓, which is included on the fragment in the correlated

subspace Hamiltonian at each iteration. The spectral moments of this central

fragment site are then self consistently optimised, where we define the projec-

tion of the non-interacting system Hamiltonian into this cluster subspace as

hclust.

In this work, we truncate the spectral moment expansion at order nmom= 1,

defining the set of self-consistent fragment quantities. This simplifies their

computation from the VQE solution for the ground state of the cluster Hamilto-

nian at each iteration, since these n = 0 and n = 1 moments over the fragment

can be constructed from (parts of) the one- and two-body RDMs, for which

we have efficient sampling as detailed previously. For instance, the n = 1 hole

moment reduces to

T
(1)
h,00 =

∑
j∈clust

hclust0j γ0j + UΓ0000, (4.18)

where 0 denotes the fragment site index. Physically, the restriction of nmom= 1

means that the center of mass of the particle and hole spectral distributions

can be self-consistently optimised on the lattice in the presence of the local cor-

relation effects. This contrasts with DMET, where single site self-consistency

cannot change the physics of the full system from the non-interacting picture

in translationally symmetric systems, and so QPU emulations of this method

with a single fragment site are restricted to single-shot computation without

any self-consistency [357, 358, 410]. By using VQE as the solver on quantum

hardware, we can identify the ground state of the cluster Hamiltonian, and

subsequently sample the relevant RDMs to construct the required fragment

121



spectral moments. We iterate this procedure until self-consistency, which we

define to be when the sum of the squared update to the (four) parameters

defining the auxiliary states varies by an energy of less than 10−4. These self-

consistent auxiliary states consist of individual poles in a self-energy which

modifies the spectral function of the system to match the correlated local

moments from the VQE.

At this choice of spectral moment truncation, the cluster Hamiltonian con-

sists of the single fragment site and a single bath orbital, resulting in a four-

qubit system to solve at each iteration of the EwDMET method. This cluster

is solved via VQE on the QPU with the same three-layer HEA as applied in the

CASSCF section, with a Jordan-Wigner mapping to the qubit representation.

Additionally, the same error mitigation is used to control the noise inherent

in the sampling of the RDMs required to construct the fragment spectral mo-

ments. Emulated QPU simulations without noise models were also performed

for comparison to the QPU experiments of this algorithm.

4.4.2 Results

Fig. 4.6 presents results for the single-particle spectrum for the model at

self-consistency for VQE-EwDMET with nmom= 1, at a strongly correlated

limit with an on-site interaction of U = 8, which is twice the non-interacting

bandwidth of the material. Self-consistency achieves the matching of the first

two local spectral moments (Eqs. 4.15 and 4.16 for n = 0 and 1 over the

fragment site) for both the mean-field state of the whole system, and the VQE

results over the correlated cluster. At this point a spectrum can be obtained

which is consistent through these local moments, via diagonalisation of the

resulting (dynamical) mean-field, with specifics found in Ref. [347]. In brief,
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Figure 4.6: The density of states for the Hubbard model on the Bethe lattice
with infinite coordination for the EwDMET method with nmom= 1. (a) Upper
results are performed on a classical QPU simulator with finite sampling noise and
varying numbers of shots in the VQE solution to the cluster Hamiltonian at each
iteration. (b) Lower panel shows results from two QPU experiments, on IBMQ
Santiago and IBMQ Bogota, with and without error mitigation respectively, with
5,000 shots for the sampling of the required RDMs. Grey dotted lines show the
original non-interacting spectrum of the model, while the red dotted line shows the
EwDMET(nmom= 1) results with an exact solution of the cluster Hamiltonian each
iteration.
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if we note ϵp the eigenvalues of the dynamical mean-field the density of state

presented in Fig. 4.6 can be computed using the following spectral function:

A(ω) = − 1

π
Im

[∑
p

1

ω − ϵp + iη

]
, (4.19)

with η an arbitrary number close to 0 (for broadening of the spectra).

The final converged spectra are presented for an exact solver, an emulated

quantum simulation without noise but with different numbers of shots for the

sampling of the RDMs (500, 2000 and 10,000), and quantum hardware results

on IBMQ machines with and without error mitigation, with 5,000 shots for the

sampling. All calculations converge within 8 iterations as the auxiliary and

bath spaces adapt to the correlations described over the fragment site in each

VQE cluster solution, demonstrating the robustness of the self-consistency in

the presence of noise. At this level of theory, the spectrum shows significant

qualitative changes from the non-interacting spectrum. Upper and lower Hub-

bard bands develop, splitting the original density of states, with a qualitatively

correct charge gap between these bands shown. However, a small quasiparticle

peak remains at the Fermi level, showing that the metallic character of the

system is not entirely removed by the correlations, as is to be expected from

numerically exact calculations on this system such as NRG+DMFT [424].

Consistency in higher orders of the spectral moments are required to get to

a true Mott insulating state [347], which can be achieved at the expense of

an increasing size of bath space and sampling higher spectral moments (which

requires higher-body RDMs, described in Appendix A). Nevertheless, even at

this low truncation, much of the true correlated spectral density is reproduced

with significant physical correlation-driven redistribution of spectral weight

observed.
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At 10,000 shots, the emulated results without further simulated quantum

noise are are almost indistinguishable from the exact benchmark at all energies.

At lower numbers of shots, the gap between the Hubbard bands is too small,

as the variance in the sampled RDMs increases. As with the CASSCF method,

the updated auxiliary space at each iteration is a non-linear transformation

of the spectral moments (which are themselves linear functionals of the RDM

elements, as can be seen in Eqs. 4.18). The consequence of this is a systematic

error in the resulting spectral functions at convergence due to the increasing

RDM variance, rather than simply a manifestation in a noisy but unbiased

spectrum. This behavior of an underestimated gap between the Hubbard

bands is also present in the QPU results, where unmitigated results feature

unrepresentative Hubbard bands. However, the performance is once again

considerably improved with the error mitigation, with the Hubbard bands and

low-energy peak resolved to higher accuracy, suggesting the method fits well

with a QPU cluster solver, and removing the necessity for the full solution of

the fragment Green’s function at each point within a DMFT framework.

Properties of the system can also be observed from the effective self-energy

of the system, which is obtained directly from the self-consistent auxiliary

states, and allows access to quantities such as Fermi liquid parameters [347].

For the same system, Fig. 4.7 shows the imaginary part of the self energy

on the Matsubara frequency axis. The finite sampling results are seen to ap-

proach the exact results with increasing shots, with 10,000 shots reaching a

comparable performance to the exact results, with the discrepancy far more

visible in the self-energy than the original single-particle spectrum of Fig. 4.6.

The quantum hardware unmitigated results correspondingly demonstrate sig-

nificant overestimation of the resulting self-energy. Despite the fact that the

Hubbard bands are closer, these unmitigated results show a larger effective
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Figure 4.7: Converged effective on-site Matsubara self-energy for the Bethe lattice
Hubbard model with EwDMET at nmom= 1. (a) Upper plot shows results from the
quantum simulator with finite sampling of the RDM elements, compared to exact
results (infinite sampling). (b) Lower plot shows results from quantum hardware on
IBMQ Santiago and IBMQ Bogota and 5,000 shots in the RDM sampling, with and
without error mitigation in the RDM sampling respectively.
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mass and quasi-particle renormalisation at the Fermi surface from the self-

energy (a larger derivative at iω → 0), which manifests in the smaller peak in

Fig. 4.6 at that point. Error mitigated QPU self-energies are however more

in line with exact results for the method, albeit now slightly underestimated

at low-frequencies. Further improvement of the results can be obtained by

increasing the moment order (nmom) to which the dynamical quantities are all

resolved. Similar to the perturbative corrections to CASSCF however, these

will require sampling of higher-body RDMs, and is an avenue of continuing

research.

4.5 Discussion on multiscale methods

We have presented a unified approach to self-consistent coupling of quantum

and classical computational resources in quantum chemistry and condensed

matter electronic structure problems. This coupling relies on the faithful and

efficient sampling of reduced density matrices on quantum resources, where

these objects span the correlated physics of an iteratively optimised subspace

of the full system. We considered the required fidelity and sampling quality of

these density matrices for robust optimisation on current generation quantum

hardware, developing a simple but effective approach to mitigate for gate er-

rors and allow this full convergence. As well as converged energetics, we also

analysed the viability of the sampled density matrices for non-energetic quant-

ities, including the dipole moment for ab initio simulation of chemical systems,

and the self-energy and mass renormalisation of strongly correlated extended

models.

Overall, the picture is encouraging, with the self-consistent optimisation

found to be particularly robust to the presence of sampling noise on current
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generation quantum hardware. This self-consistency is found to be more reli-

able than the uncertainties resulting from the state optimisation and energy

obtained from the VQE at any single iteration. This points to a signific-

ant transfer from continuing improvements in both hardware and quantum

algorithms for state preparation on quantum devices for self-consistent ap-

proaches. These conclusions however are restricted to relatively small correl-

ated subspaces, and further work is required to understand the generality of

these conclusions as we access QPU with larger qubit capacity. Furthermore,

quantitative rather than qualitative accuracy in these application areas will

require an efficient and compact description of higher-body density matrices,

which will be the focus of future directions.
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Chapter 5

Computation of molecular excited

states

The computation of excited states is key to many processes in quantum chem-

istry and materials science, governing the dominant optical, transport and

reactive properties [425, 426]. However, it is in general a significantly more

challenging task than ground state computation, owing to the state generally

being further away from a mean-field description, as well as less straightfor-

ward optimisation to avoid the variational collapse to the ground state. Con-

ventional correlated quantum chemical approaches [427] include Equation of

Motion (EOM) coupled-cluster [428], linear response theory [429], as well as

multi-reference approaches for stronger correlation [209, 430].
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5.1 Literature review of specific methods and

experiments

Quantum computing methods can be broadly divided into two main types of

methods, those that rely on computing excited states within a subspace, and

fully variational methods relying on modification of the VQE cost function.

We briefly review the core aspects of some of these approaches below.

Quantum Subspace Expansion: The quantum subspace expansion re-

lies on finding an approximate Hamiltonian that spans a subspace of the full

Hilbert space, but whose dimension is small and grows as only a low-order

polynomial of the system size. The matrix elements of these Hamiltonians

are sampled on quantum computers, but can then be tractably diagonal-

ised on classical resources, with the higher-lying eigenvalues of these subspace

Hamiltonians approximating true eigenvalues of the system. In practice, this

approach starts with a ground state VQE calculation. From this ground state,

it is then necessary to add additional states in order to define the span of a

subspace into which the Hamiltonian can be computed. For reliable excited

states, it is necessary to ensure that this space spans the dominant low-energy

excitations of interest, as the whole spectrum will not be reproduced by con-

struction. There are different approaches to choose these low energy states

to span these relevant excitations, including approaches based on Krylov (or

Lanczos) subspaces [237, 411, 431], and low-rank excitations of the ground

state motivated by an equation-of-motion formalism [432, 433]. These ap-

proaches can also be used to yield improved ground state estimates [237, 434].

In the quantum subspace expansion based around the equation-of-motion

expansion, the resulting Hamiltonian (and overlap) matrix between these states
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can be found via high-order reduced density matrices evaluated from the

ground state, as initially proposed in Ref. [432], and subsequently implemented

on a quantum device [435]. The advantage of these methods is that they do

not require particularly deep circuits to evaluate the relevant matrix elements

of this subspace Hamiltonian. However, the quantum subspace expansion ap-

proaches can be quite sensitive to noise, while high-order density matrices can

be expensive to sample and accumulate. Furthermore, noisy (yet unbiased)

matrix elements can lead to systematic biases in eigenvalues [436, 437].

Variational approaches: An alternative approach relies on directly optim-

ising an ansatz for specific excited states, using a modified cost function, which

affords a fully variational flexibility, while maintaining orthogonality to lower-

energy states. These have the advantage of not suffering from the limitations

and biases of subspace expansion methods, but usually come at a higher cost

in terms of quantum resources, and a restriction to a specific ansatz chosen.

The simplest approach is to simply enforce symmetry constraints on the ansatz

to a different symmetry sector to the ground state, in which case orthogonal-

ity to the ground state is guaranteed for the lowest-lying excitations in each

symmetry [438]. This is however restricted to only specific excited states and

limited by the symmetry of the system studied. Another approach which was

proposed early on in the development of variational quantum algorithms (ini-

tially suggested for quantum computation in Ref. [38]), is to use the folded

spectrum Hamiltonian [439]: Ĥ ′ = (Ĥ − γ1)2, for which the ground state is

now the eigenstate of Ĥ which has an eigenvalue closest to γ. It was applied

by Liu et al. [440] as a mean to probe many-body localisation on a quantum

computer. This method however implies squaring the Hamiltonian, which can

result in a significant increase in measurements required if the operator is
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dense, and requires prior knowledge of the eigenspectrum (which is somewhat

less of a problem in the case of vibrational spectroscopy than in the case of

electronic structure computation [68]).

The subspace search VQE (SSVQE) [441] leverages the fact that a unitary

transformation between states cannot change the orthogonality of the states

it is applied to. Therefore by preparing different orthogonal input states and

training a VQE ansatz to minimise the energy of all these states at the same

time (for instance by modifying the VQE cost function to include the sum of

expectation values of the Hamiltonian with respect to each of the states, or by

creating a mixed state using ancilla qubits), one can simultaneously learn the

ground state and any number of subsequent excited states. It is likely however

that this simultaneous optimisation of the ansatz becomes increasingly more

constrained with the number of excited states desired.

Higgott et al. [442] proposed using a deflated Hamiltonian to iterat-

ively compute successive excited states (oftentimes referred to as Variational

Quantum Deflation, VQD). The algorithm works by first computing the ground

state with VQE. Once discovered, the cost function is modified to add a pen-

alty term, which corresponds to the overlap between the ground state and a

new trial wavefunction. This new trial wavefunction is then trained to minim-

ise both the expectation value of the Hamiltonian and maximise the overlap

with the lower energy states. This process can be repeated iteratively for any

number of excited states. The key challenge of this method is the computation

of the overlap term which may require a quantum cost that could be significant

for a NISQ device (i.e. a large number of SWAP gates), or possibly be subject

to additional noise (by implementing as a circuit the complex conjugate of the

ansatz used to prepare previous excited states, a method also applied in Ref.

[80]), though improvements have been proposed. For instance, Jones et al.
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[443] propose to compute the overlap term with a low depth SWAP test, and

uses variational time evolution [293]. Chan et al. [444] extend this excited

state method by merging it with ADAPT-VQE [213]. Kottmann et al. [445]

independently also proposed an adaptation of VQD to an adaptive method

which benefits from efficiency gained from gradient evaluation process presen-

ted in the same work. Wakaura and Suksomo [446] propose an adaptation

of the VQE cost function to minimise the norm of the tangent vector to the

energy rather than just the energy, dubbed Tangent-Vector VQE (TVVQE).

While this can be used for ground state energies, it is also combined with VQD

to compute excited states. While the method is shown to provide improved

accuracy compared to a UCC based VQE on simple models (Hubbard, H2,

LiH), it is reported to require a run time on average five times longer than

VQE [446].

An alternative approach is the Variance VQE method [447], which replaces

the usual cost function of VQE by minimising the variance of a Hamiltonian

with respect to a state, rather than its expectation value. The idea behind this

method is that the variance of the expectation value of a Hamiltonian must

be equal to zero if the state used to perform the measurement is an eigenstate

of that Hamiltonian (on the zero-energy variance principle, we direct readers

to Ref. [448–453]). Because all eigenstates have zero-energy variance, a simple

approach will not guarantee convergence to a low-energy state. This problem is

addressed in Ref. [447] by combining both energy and variance minimisation

in order to allow for computation of low lying excited states. Zhang et al. [454]

propose an adaptative variant of this method to computed highly excited states

of Hamiltonians. The ansatz is grown by choosing operators from a pool of

Pauli operators, akin to the method presented in Ref. [213].
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5.2 Discriminative VQE

In this section, we present an alternative variational method to compute mo-

lecular excited states (the method is published in Ref. [455]). It is closest to

the VQD proposed in Ref. [442] but uses a technique inspired from the gener-

ative machine learning literature to bypass the need to compute state overlap.

It results in computation of molecular excited states without the use of SWAP

gates, SWAP tests or circuit inversions, allowing for an implementation on

current NISQ devices.

Description of the model

The Discriminative VQE (DVQE) relies on combining an orthogonality ob-

jective with an energy minimisation objective (also named VQE objective).

At a high level, it aims at finding a state orthogonal to the ground state which

at the same time is at a minimum of the Hamiltonian energy landscape. This

will correspond to an approximation of the first excited state: the Hylleraas-

Undheim and MacDonald [456, 457] theorem implies that the energy of a state

orthogonal to the ground state (or any number of lower excitation states) acts

as an upper bound for the next eigenvalue. Rather than directly minimising

the overlap of the excited state of interest with the previous excited states

and/or the ground state (as is done for instance in [442]), this method uses

a combination of two quantum circuits working in tandem to learn paramet-

erisation angles and reproduce unknown excited states. Our technique takes

inspiration from Quantum Generative Adversarial Networks (QGAN). In a

classical Generative Adversarial Network, an initial Generator network (de-

noted by G) is trained to fake an unknown data structure by learning how to

fool a Discriminator network (denoted by D). The Discriminator is trained to
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distinguish between the generated data structure and the unknown data struc-

ture. The QGAN is an adaptation of this algorithm where the data structure

is replaced by a pure quantum state. The parameterised quantum circuit is

trained to generate an approximation of an unknown pure state [458, 459].

In this case however, the logic of the QGAN is reversed. Instead of trying

to fool the Discriminator, the Generator learns to create a state which makes

it as easy as possible for the Discriminator to distinguish between a known

quantum state (for instance, a simulated ground state) and the generated

state. In effect, the Generator is identical to the ansatz circuit used for the

VQE, although with different parameters. Borrowing from the QGAN logic,

one can see that this change would result in producing a state which is as easily

distinguishable from the known state as possible. In classical problems, this

approach rarely makes sense. In quantum problems however, a state which

has no overlap with a given reference state will be in the latter’s orthogonality

space. There are an infinite number of physically meaningful orthogonal states

to a given quantum state. The VQE objective is used to guide the learning of

the Generator towards a single orthogonal state. A state which is orthogonal

to the ground state and at the same time minimises the energy of the entire

orthogonal subspace must be the first excited state.

With this in mind, we believe the method proposed here offers the following

advantages:

1. It is decisively NISQ friendly, requiring only rotation gates, entangling

gates, and only one additional qubit compared to a VQE.

2. The orthogonality objectives rely on single qubit measurements, reducing

exposure to read-out errors, and does not require computation of overlap

terms which have been recognised as challenging for NISQ devices ([442]).
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3. The method used to enforce orthogonality does not require perfect op-

timisation and therefore offers some resilience to quantum noise.

4. The excited state is directly and variationally minimised, rather than

being inferred through non-linear postprocessing (as it is the case for

example in analytic continuation of imaginary time or in subspace di-

agonalisation). This in turn reduces exposure to systematic bias in the

estimation result.

5. Unlike some of methods outline above (in particular methods based on

subspace expansion and its extention), the classical overhead is minimal

and scales identically to the classical overhead of the VQE.

First consider a series of pure states ρsi= |si⟩ ⟨si|, with i∈[0, n− 1] repres-

enting adequate approximations of the ground and first n− 1 excited states of

a Hamiltonian H. It is assumed that we have a pre-trained quantum circuit

that can produce these states using indexed parameters θi (which can be ob-

tained using the VQE and previous iterations of this algorithm). We are now

looking for a way to determine the n state: ρsn= |sn⟩ ⟨sn|.

For this, consider a state ρg generated through a parameterised quantum

circuit applied to an initial state |0⟩ ⟨0|⊗d, and which is initiated as state

ρn−1. We denote this Generator circuit as G(θ), with parameters θ. We have

ρg=G(θ) |0⟩ ⟨0|G†(θ).

Consider a Discriminator quantum circuit labelled D(ϕ), which is tasked

with distinguishing between any of the known states and the output of the

Generator. In order to accomplish this task, it takes as input either any of the

known states, or ρg, randomly but with equal probability. It is followed by a

Positive Operator Value Measurement (POVM). Because of the discriminative

objective of the circuit, we can limit the required POVM outcome to only two
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Figure 5.1: Discriminative VQE (DVQE) quantum circuit for computation of state
n. The HEA is built using repeated layers composed of two rotation gates followed
by entangling gates between nearest neighbour qubits, as described in [370] and
illustrated in Fig. 4.1

.

elements: 0 if the Discriminator identifies one of the known states, and 1 if it

identifies the generated state. We can therefore map the POVM to a single

ancilla qubit, also input to the Discriminator (see quantum circuit: Fig. 5.1).

We define P0 as the projector of the circuit output state onto the zero state of

the ancilla qubit.

Based on this, and considering that the Generator cost function must also

take into consideration the energy minimisation objective we can define two

subsequent cost functions that need to be minimised iteratively, for the Gen-

erator first and the Discriminator second. At optimum, the Generator cost

function converges to the energy of the nth excited state:

C(n)
gen(θ) = ⟨0|G†(θ)HG(θ) |0⟩

+ γTr[P0D(ϕ)(ρg ⊗ |0⟩ ⟨0|)D†(ϕ)], (5.1)
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C
(n)
disc(ϕ) = Tr[P0D(ϕ)(ρg ⊗ |0⟩ ⟨0|)D†(ϕ)]

−
∑
n

Tr[P0D(ϕ)(ρsi ⊗ |0⟩ ⟨0|)D†(ϕ)]. (5.2)

We added a weighting factor γ to the Generator cost function. This is to

guarantee that the minimum of the optimisation problem is indeed the state

of index n. For this, we must have γ > (n + 1)(En − E0). The derivation for

the cost functions, convergence demonstration and explanation for the γ factor

can be found in the following sections (Sections 5.2 and 5.2.1, respectively).

We can find a suitable γ for all states by computing the maximum energy,

running a VQE on the inverse Hamiltonian (for which the lowest eigenvalue is

the highest eigenvalue of the original Hamiltonian) and taking the difference

between the lowest energy state and the highest energy state.

It is worth noting that the Generator cost function is identical for any

excitation level, while a term is added to the Discriminator at each new level

of excitation calculated (one for each level of excitation). Therefore, there is

a linear increase in the number of terms to be calculated with the number of

excited states.

Derivation of the value functions

Consider an application of the DVQE circuit in which only the ancilla qubit is

measured. The methodology to derive the DVQE value function is analogous

to that developed for the QGAN in [459]. We note ρg the output state of the

Generator and ρsi the excited state of index i. Similarly, we note the state

of all qubits after the DVQE circuit ρDg for the generated state, and ρDsi for

any state i ∈ [0, n − 1]. Recalling that D(ϕ) is the operator resulting from

the Discriminator circuit, G(θ) is the operator resulting from the Generator
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circuit (we omit the ϕ and θ in the notation), that ρg = G |0⟩ ⟨0|⊗dG†, and

that ρsi represent any known energy state of the molecule, we have:

ρDg = D(ρg ⊗ |0⟩ ⟨0|)D†, (5.3)

ρDsi = D(ρsi ⊗ |0⟩ ⟨0|)D†, (5.4)

where one can observe that an ancilla qubit has been added, the necessity of

which is explained later on.

The Discriminator therefore outputs a mixture ρDmix
= p(g)ρDg+

∑
i p(si)ρDsi

,

with p(g) and p(si) the probabilities of presenting the generated or any state

si to the Discriminator. We conduct a POVM on the output state, with

projectors Pb, with b indexing the possible measurement outcomes such that∑
b Pb = 1. Each possible measurement outcome Pb, can occur with a probab-

ility p(b) = Tr[PbρDmix
], following Born's rule. The Discriminator can either

be right and the POVM identifies correctly the input state, or the Discrim-

inator can be wrong and the POVM identifies the incorrect input state. The

process through which the POVM identifies the input state is referred to as

the decision rule.

Following Bayes’ theorem, this decision rule should select the index b which

maximises the posterior probability, or argmaxx∈{g,si}p(x|b). It has been shown

that this decision function (Bayes’ decision function) has the lowest probability

of error of any possible decision function [460].

Our value function is built in order for the Discriminator to minimise the

probability of error on a given measurement outcome. The probability of the

measurement resulting in a correct decision is maxx∈{g,si}p(x|b). Therefore,

using Bayes’ decision function, the probability of error when observing any
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element of the set {Pb}, can be written as:

perr({Pb}) =
∑
b

(1−max
x

p(x|b))p(b)

=
∑
b

min
x
p(x|b)p(b).

This equality is verified as the classification decision is done only over

two possible categories: the Discriminator identifies a generated state g or

the Discriminator identifies any of the known states si. We therefore have

1 − maxx p(x|b) = minx p(x|b). Given that by Bayes’ formula p(x|b)p(b) =

p(b|x)p(x):

perr({Pb}) =
∑
b

min
x
p(b|x)p(x)

=
∑
b

min
x

Tr[Pbρx]p(x). (5.5)

The objective function for the Discriminator being to minimise the prob-

ability of error for any given outcome obtained, it can be described by

p∗err = min
{b}

perr({Pb}), (5.6)

where {Pb} represents the set of projectors corresponding to all possible meas-

urement outcomes.

In this algorithm, we want the Discriminator to distinguish a generated

state from any known state ρsi . Therefore, the outcome of the POVM corres-

ponds to the following: 0 is mapped to all the known states (ρsi); 1 is mapped

to the generated state (ρg).

Noting p(g) and p(si) the probabilities of the generated state and of any
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known state being presented to the Discriminator, the objective function is

given by:

p∗err = min
{P0,P1}

(p(0|g)p(g) +
∑
i

p(1|si)p(si))

= min
{P0,P1}

(Tr[P0ρDg]p(g) +
∑
i

Tr[P1ρDsi ]p(si))

= min
{P0}

(Tr[P0ρDg]p(g) +
∑
i

Tr[(1 − P0)ρDsi ]p(si))

= min
{P0}

(Tr[P0ρDg]p(g)−
∑
i

Tr[P0ρDsi ]p(si)) +
∑
i

p(si). (5.7)

However this is also dependent on the action of the Generator. The objective

of the Generator is minP ∗
err w.r.t. ρg. Incorporating this objective in the

equation above we get the following shared objective function:

min
{ρg}

min
{P0}

(Tr[P0ρDg]p(g)−
∑
i

Tr[P0ρDsi ]p(si)) +
∑
i

p(si). (5.8)

Due to the discriminative objective of the circuit, we can limit the required

POVM outcome to only two elements: 0 if the Discriminator identifies the

original state, and 1 if it identifies the generated state. We can map the

POVM to a single ancilla qubit also input to the Discriminator. In the case

we have Pb = 1⊗d ⊗ |b⟩ ⟨b| , b ∈ [0, 1]. Re-writing the state as the output of the

quantum circuit we obtain the value function min{θ}min{ϕ} V (θ, ϕ). Discarding
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the parameterisation indices θ and ϕ we therefore aim to minimise

V (θ, ϕ) = Tr
[
P0D(ρg ⊗ |0⟩ ⟨0|)D†] p(g)

−
n−1∑
i=0

Tr
[
P0D(ρsi ⊗ |0⟩ ⟨0|)D†] p(si)

+
n−1∑
i=0

p(si). (5.9)

The above value function is sufficient for the Generator to find at least one

state belonging to the space orthogonal to all known states. However it does

not guarantee that the state generated is ρsn . In order to do so, we can add a

VQE objective to the value function, whereby the Generator will also aim at

finding a state which then minimises the expectation value of the Hamiltonian.

Preemptively, we note that the weighting between both objectives is important

in making sure the value function does converge to the desired excited state.

In order to parameterise this weighting, we introduce a factor γ the value

of which is discussed in the following section. Re-writing the value function

accordingly, we get

V (θ, ϕ) = ⟨0|G†HG |0⟩

+ γ
[
Tr[P0D(ρg ⊗ |0⟩ ⟨0|)D†] p(g)

− γ
n−1∑
i=0

Tr
[
P0D(ρsi ⊗ |0⟩ ⟨0|)D†] p(si)

+ γ

n−1∑
i=0

p(si). (5.10)

All together, by grouping the terms of the value function dependent on θ

and the terms of the value function dependent on ϕ, we find the cost functions
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of the Generator and of the Discriminator which have already been outlined

in Section 5.2:

C(n)
gen(θ) = ⟨0|G†(θ)HG(θ) |0⟩

+ γTr[P0D(ϕ)(ρg ⊗ |0⟩ ⟨0|)D†(ϕ)], (5.11)

C
(n)
disc(ϕ) = Tr[P0D(ϕ)(ρg ⊗ |0⟩ ⟨0|)D†(ϕ)]

−
∑
n

Tr[P0D(ϕ)(ρsi ⊗ |0⟩ ⟨0|)D†(ϕ))]. (5.12)

5.2.1 Convergence demonstration

In this section, we demonstrate that one can find the correct eigenstate and

eigenenergy using the value functions above, and we show how the γ factor is

derived. The following demonstration assumes that the ansatz for the Gen-

erator can approximate any eigenstate of the Hamiltonian studied and that

the ansatz for the Discriminator can approximate general unitaries, at least to

the extent that it needs to distinguish between the known eigenstates and any

unknown states. It is also assumed that both ansätze can be trained to their

respective optima.

Consider a generic state |ψ⟩ =
∑d−1

i=0 αi |si⟩ such that |ψ⟩ = G(θ) |0⟩ (re-

calling that d refers to the dimension of the system, and n refers to the excited

state searched). We use this state in the value function derived in equation

5.10 (discarding θ and ϕ for readability):
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V = ⟨ψ|H |ψ⟩ (5.13)

+ γTr
[
P0D(|ψ⟩ ⟨ψ| ⊗ |0⟩ ⟨0|)D†] p(g)

− γ
n−1∑
i=0

Tr
[
P0[D(|si⟩ ⟨si| ⊗ |0⟩ ⟨0|)D†] p(si)

+ γ
n−1∑
i=0

p(si).

The energy states |si⟩ form an eigenbasis for the molecular Hamiltonian

which can be written in the form H =
∑

iEi |si⟩ ⟨si|. We have ⟨si|H |si⟩ = Ei,

and we can re-write the above equation as

V =
d−1∑
i=0

|αi|2Ei (5.14)

+ γTr

[
P0D(

d−1∑
i=0

d−1∑
j=0

αiα
∗
j |si⟩ ⟨sj| ⊗ |0⟩ ⟨0|)D†

]
p(g)

− γ
n−1∑
i=0

Tr
[
P0D(|si⟩ ⟨si| ⊗ |0⟩ ⟨0|)D†] p(si)

+ γ
n−1∑
i=0

p(si).

To simplify the writing, we set p(g) and all p(si) to be equiprobable, such

that p(g) = p(si) = 1
n+1

(as we use n known states |si⟩ plus the generated

state) and use the following short-hands:

Ki =
1

n+ 1
Tr

[
P0D(|si⟩ ⟨si| ⊗ |0⟩ ⟨0|)D†] (5.15)

and
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ki =
1

n+ 1
Tr

[
P0D(

d−1∑
j ̸=i

αiα
∗
j |si⟩ ⟨sj| ⊗ |0⟩ ⟨0|)D†

]
, (5.16)

such that we now have:

V =
d−1∑
i=0

|αi|2(Ei + γKi) +
d−1∑
i=0

γki (5.17)

− γ
n−1∑
i=0

Ki +
nγ

n+ 1
.

From here, we can see that the choice of set of parameters θ, for the Gener-

ator, affect the values of the terms αi (and therefore, also the terms ki) while

the choice of set of parameters ϕ, for the Discriminator, affect the values of the

terms Ki and ki. Both Generator and Discriminator are trained to minimise

this value function, and it is clear that, as a result of the terms ki, both need

to be trained for a meaningful minimum to be found.

It is important that the Discriminator is deep enough to be able to perform

the classification between generated state and known states, we assume there-

after that it is the case. One can note that while some of the Ki have both

positive and negative factors in the value function (namely for i ∈ [0, n− 1]),

the ki all have positive factors. The terms ki should go to 0 when the Discrim-

inator is optimised. A similar argument can be made for the terms Ki such

that i ∈ [n, d− 1].

Here it is worth noting that these terms are in general not accessible to the

user given the states |si⟩ for i ∈ [n, d − 1] are not known. However this does

not prevent the convergence described above to occur during optimisation.

When the Generator is subsequently optimised, the value of the terms
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ki may increase as the αi terms are updated. Subsequent updates of the

Discriminator will bring these values back to 0. This implies that Generator

and Discriminator will need to be updated iteratively for the DVQE to work.

To simplify the demonstration, we assume that the terms ki are sufficiently

close to 0 so that we can ignore them in the following. We have

V =
d−1∑
i=0

|αi|2(Ei + γKi)− γ

n−1∑
i=0

Ki +
nγ

n+ 1
. (5.18)

We now consider the case of optimising the Generator in the context of

Eq. 5.18, that is finding a minimum for this equation by only modifying the

αi terms and recalling that
∑

i |αi|2 = 1. Because the terms Ei + γKi can

be ordered from smallest to largest, optimising the Generator is equivalent

to finding an index p ∈ [0, d − 1] such that Ep + γKp < Ei + γKi for all

i ∈ [0, d− 1] \ p. In this case, αp converges to 1.

In order to see that this index p should equate to n consider the ideal

case in which the Discriminator is fully optimised and in which all Ki with

i ∈ [0, n− 1] are equal to 1
n+1

. The last two terms in the Eq. 5.18 cancel each

other and we obtain a simplified value function

V =
d−1∑
i=0

|αi|2(Ei + γKi), (5.19)

which can be re-written as

V =
d−1∑
i=n

|αi|2(Ei + γKi) +
n−1∑
i=0

|αi|2(Ei + γKi). (5.20)

Eq. (5.20) is important to understand how the algorithm behaves in a

noisy environment, where the Discriminator cannot be fully optimised. How-
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ever before discussing this, let us consider the case where the Discriminator

perfectly succeeds at its task rendering Ki =
1

n+1
for i ∈ [0, n− 1] and Ki = 0

for i ∈ [n, d− 1]. We now have

V =
d−1∑
i=n

|αi|2(Ei) +
n−1∑
i=0

|αi|2(Ei +
γ

n+ 1
). (5.21)

Once again, the action of optimising the Generator will result in one of the

αi being equal to 1, and the others to 0. To make sure that it is αn we must

have En < E0 +
γ

n+1
or, the γ factor, weighting the VQE and orthogonality

objectives in the value function must obey

γ > (n+ 1)(En − E0). (5.22)

In a more general case, considering equation 5.21, for the state n to be the

lowest energy of the value function, it must be that (En + γKn+1) is lower

than (Ei + γKi) for any i between 0 and d − 1 except n. Therefore, given

that together the Discriminator and the Generator push Ki towards 0 for i

greater or equal to n and towards 1 for i lower than n then it is possible for

the algorithm to converge to the right state given a large enough γ factor even

if the Discriminator is not fully optimised. This is a particular advantage for

NISQ computers where full optimisation of the Discriminator and Generator

may be impossible due to circuit and read-out errors creating an optimisation

barrier.

I noticed however that in the case of a noisy QPU, using a γ factor that is

too high may result in the algorithm converging to the wrong value. That is

because noise can prevent convergence to 0 of the ki terms. If the Discriminator

fails to bring close to 0 the term kn, it may be that the minimum of the value
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function is reached when more than one α term is non-zero.

It is worth noting that the term nγ
n+1

at the end of the value function has

no impact on the optimisation (as it has a null gradient in all parameters of

the function). We could discard it and find the same optimal point. The

value function at optimal point would be different but we would still find the

eigenstate and eigenenergy.

5.2.2 Simulation and error propagation analysis

Simulations: In order to test our algorithm, we first simulated the excit-

ation levels of the 2-qubit H2 Hamiltonian obtained using the Bravyi-Kitaev

transformation in the STO-3G basis (results presented in FIG. 5.2). We used

an optimisation cycle of three iterations for the Discriminator followed by

three iterations of the Generator, repeated iteratively until convergence. For

this test, we use successive layers of the HEA, as illustrated in Fig. 4.1, each

layer being composed of two rotations (one on the Y axis and one on the X

axis) on each qubit, followed by a ladder of entangling gates. This results in

a total of 8 parameters. The Discriminator is composed of three such lay-

ers (applied on 3 qubits and hence 18 parameters) for the first excited state

and four such layers for the second and third excited state (hence 24 para-

meters). The algorithm first computes the ground state using the VQE and

continues to determine the first excited state. Each subsequent excited state is

computed iteratively once convergence has been reached on the previous one.

Typically, a precision of 10−3 Hartree is achieved within 20 iterations of the

model using the Rprop optimiser [461]. I tested the algorithm on a 4-qubit

version of the LiH Hamiltoninan, using the process detailed in Ref. [262] to

build the Hamiltonians, and computing excitations until the 6th excited state.
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Figure 5.2: Dissociation curves for H2 Hamiltonian using DVQE simulation and
exact solver. Dotted lines represent ground and three excited states - all error to
targets for this test are under 1 milliHartree

We initially used a depth of four for the generator and of six to eight for the

discriminator to model the ground state and the first three excited states of

LiH. Unlike the ansatz we used for H2, we added rotations on the Z axis for

each layers of the HEA as it resulted in overall significantly better accuracy.

We achieved a precision of at least 1 mEhon average across bond distances for

all excited states with maximum single error of 2.5 mEh. This is offering an

initial test of the scalability of the method, showing precision is maintained

on a larger system. To increase the expressiveness of the ansatz we added

two layers to the generator to each subsequent energy state following the third

state. Similarly, we increased depth of the discriminator by two layers for each

subsequent energy state. While the initial depth is not sufficient for compu-

tation of higher excited states, further research will be necessary to determine

the optimal ansatz both for the generator and the discriminator.

149



Figure 5.3: Dissociation curves for LiH Hamiltonian using DVQE simulation and
exact solver. Dotted lines represent ground and six excited states. Errors are on
average below 1 mEh, with a few exceptions up to 2.5 mEh

Error propagation analysis: In this section, we discuss the accuracy of the

DVQE simulation when applied to LiH. On average, we find that convergence

is reached within a 10−3 accuracy for all excitation levels with some outliers

in higher excited states.

Figure 5.4 shows an increase in the magnitude of errors after ground and

first excitation. It is worth nothing that we present average absolute error in

this figure. In some cases, in particular for higher excited states, the DVQE

converges slightly below the target value as a result of previous states not being

perfectly orthogonal. These ‘overshoots’ errors however tend to be lower than

‘undershoot’ errors, resulting in higher excited states having better accuracy

than some of the previous ones (e.g. second or fourth excited states). Addi-

tionally, it appears that most of the reduction in accuracy in higher excited

states is driven by a higher frequency of outliers (instances where accuracy
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Figure 5.4: Average absolute error by excitation level over bond distances 0.7 to
2.7 (step 0.2)

is below 10−3). This is particularly visible when considering the third and

fourth excited states in Fig. 5.5. Large outliers are followed by low error

overshoots in the following excited state. There are a number of reasons that

could explains these outliers. First, this could be a result of our parameter

initialisation strategy: we perform a warm start using the parameters of the

nearest bond distance. While this reduces the number of iterations required,

it could in some instances initialise the modeled wavefunction close to a local

minimum, preventing convergence to the target value. Second, it could be

that the ansatz is not expressive enough for certain bond distances (intuit-

ively one can think that molecules with relatively higher bond distances have

more entangled electrons). One factor that supports this second point is that

we were able to increase average accuracy from the order of 10 to 1 mEhat

bond distance 2.3 Angstrom by increasing the ansatz for the generator by one
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Figure 5.5: Complete set of errors by level of excitation and bond distance - Errors
to target are in Hartree
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layer.

5.2.3 Implementation on NISQ devices

Implementation on IBMQ: In order to test the algorithm’s resilience to

errors, we implemented our algorithm on IBMQ London and Vigo Quantum

Processing Units (QPUs) for the H2, two-qubit Hamiltonian (results presen-

ted in FIG. 5.6). Instead of using Rprop, we used the Rotosolve algorithm

for which convergence is reached significantly faster [115] at the expense of

not being parallelizable. Read-out errors are mitigated using the IBMQ Qiskit

Ignis tool (described later on in this section). We computed both ground state

through VQE and first state using DVQE. We found that both achieved about

10 mEhaccuracy.

Computing the second excited state would have required an additional layer

for the Discriminator and as a result more involved error mitigation to obtain

an accurate result. Similarly, a higher accuracy would require stronger error

mitigation methods or lower circuit error rates. In particular we estimated

that, given the depth of circuits used and based on the data provided by

IBMQ, our circuit error on runs of the Generator was about 2% on all QPUs

and of roughly 8% on runs of the full DVQE (Generator plus Discriminator).

Running an algorithm on a QPU remains computationally costly. We fo-

cused on minimising the number of single instruction requests to the QPU

required to run the algorithm to an appropriate level of convergence. Each

of our instruction requests covers the Rotosolve optimisation of one angle for

either the Generator or the Discriminator. It includes requests to conduct

estimation (through a given number of measurements, or shots) of the three
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Figure 5.6: Dissociation curves for H2 Hamiltonian using DVQE on IBMQ London,
Ourense and Vigo and exact solver. Dotted lines represent ground and first excited
state. Errors are within an average of 6 mEhfor the ground state, and 8 mEhfor the
first excited state. Errors from ground and first excited states are mitigated using
the technique presented in Sec. 3.3.2

expectation value terms required to complete a Rotosolve iteration.

Given the H2 Hamiltonian on two qubits, we used a circuit of depth 2 for

the Generator and of depth 3 for the Discriminator, with each layer composed

of two rotation gates (RX and RY ) and an entangling gate. Hence we had

to optimise 8 parameters for the Generator, and 18 for the Discriminator.

The benefits of further depth could be studied but given our objective of

minimising the number of calls to the QPUs we have not attempted anything

further outside of simulation. For each bond distance, we use 2 iterations of

the Generator and 2 iterations of the Discriminator for each iteration of the

DVQE, and a total of 4 iterations of the DVQE resulting in a total of 208

separate calls to the QPU for each point (in addition to what was required
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to compute the ground state, usually 2 iterations of the VQE, which has the

same depth as the Generator, hence 18 calls).

This optimisation schedule was used only for calculating the energy values

at a bond distance of 0.741. For other bond distances, we performed a warm

start by using the θ and ϕ parameters learnt at distance 0.741 as a starting

point for our optimisation process. In all cases, one iteration of the VQE

and one iteration of the DVQE was sufficient to reach convergence (although

more were required to show convergence). In addition, it is worth noting that

as the efficacy of the Discriminator is resilient to noise, it is also resilient to

small changes in the bond distance. In particular, we noticed that we did not

need to re-train the Discriminator in most cases in order to reach convergence.

This however may not be true when studying more complex systems and when

attempting to achieve higher accuracy (for instance by increasing the number

of measurements beyond 8, 000).

In order to reduce the number of shots conducted, we used a ramping-up

schedule for the circuit estimate. The first few iterations of the circuit are

done with a low numbers of shots, and the final iteration of the DVQE was

done using 8, 000 measurements. Energies are then calculated using the final

θ obtained and using repeated 8, 000 shots run to obtain an average.

It is worth noting that while we used Rotosolve for the implementation

on a QPU, we used Rprop for the simulation. There are good reasons to

think that this algorithm will be more relevant on a multi-core QPU than on

a single QPU with a large number of qubits. Multi-core QPUs could offer

tremendous opportunities for parallelisation. Because calculations of angles

under Rotosolve are co-dependent on each other, it offers less parallelisation

than gradient-based methods such as Rprop where all angle gradients can be

calculated in parallel. Whether Rotosolve or gradient-based methods will be
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Bond distance QPU Energy Exact DVQE
0.491 Ourense Ground -1.047 -1.025

First -0.046 -0.045
0.741 London Ground -1.137 -1.129

First -0.532 -0.519
0.991 Vigo Ground -1.103 -1.108

First -0.741 -0.728
1.241 Vigo Ground -1.048 -1.040

First -0.840 -0.832
1.491 Vigo Ground -0.999 -0.991

First -0.889 -0.880
1.741 Vigo Ground -0.967 -0.964

First -0.913 -0.908
1.991 Ourense Ground -0.949 -0.943

First -0.924 -0.919

Table 5.1: Detailed results of DVQE runs on IBMQ - values given are average of
the last round of Rotosolve iteration (all in Hartree)

more efficient remains to be seen, however as long as QPUs are single core, Ro-

tosolve will likely perform better for actual QPU runs, while Rprop (and other

gradient-based methods) will be significantly more efficient for simulations.

Errors on the measurement results were mitigated using the IBM Qiskit

Ignis error mitigation tool. The process is described here briefly. One first

measures the quantum computer prepared in each of the 2n computational

basis, where n is the number of qubits. This could be easily achieved with

quantum circuits using Pauli X gates and measurements. Using the meas-

urement outcomes of the 2n circuits, one could construct an estimate of the

matrix M defined element-wise as:

Mi,j = Probability{measured state i|prepared in state j}

i, j ∈ {0, 1, · · · 2n − 1}
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Then, one would like to apply the inverse of M to the measurement out-

comes in the experiments. This is achieved by solving the following optimisa-

tion problem:

x = argminX |Y −MX|, subject to
∑
i

Xi =
∑
i

Yi

where Y is the vector of raw measurement outcome and x is the vector of

error mitigated measurement outcome. In the ith position of each vector is

the number of occurrence of the measurement outcome in state i. The vector

norm is defined as |v| = v · v.

The detailed results obtained are presented in table 5.1. The simulations

were conducted using a TensorFlow backend simulator, while the actual tests

on QPUs used a Qiskit backend linked to IBMQ.

Implementation on Rigetti’s Aspen-4 QPU: In order the implement

the DVQE onto Rigetti’s Aspen-4, we ported the code to Pyquil which is Ri-

getti’s development package and API to access their machines. The DVQE was

implemented on the same molecular problem as for the IBMQ implementation:

H2 using the Bravyi-Kitaev symmetry conserving mapping and thus fitting on

2-qubits. Aspen-4 being a transmon qubits QPU it has similar speed as IBMQ

QPUs, albeit with slightly lower gate fidelities. The results of the implement-

ation, without and with error mitigation are presented in figures 5.7 and 5.8

respectively.

In addition to a simple DVQE implementation test, we also tried to run

half the measurements on Aspen-4 and half the measurements on Aspen-7.

Parallelisation is key to long term viability of variational algorithms such as
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8

Figure 5.7: DVQE results on Rigetti’s Aspen-4 QPU, Ground state energy at
the top and first state energy at the bottom as a function of RotoSolve iterations.
Without error mitigation

VQE and therefore it is interesting to assess the implication of running an

algorithms on two different QPU cores in parallel.

While there is a clear improvement in algorithm runtime (See Figure 5.9)

we found that the overall level of errors was higher than on either of the two

QPU separately. While one could expect that running systematic errors of

both QPUs would cancel each others, we can provide a provisional hypothesis

as to why that is not the case. It is known that variational algorithms are

particularly good at ‘learning out’ systematic biases [313]: the parameters

found as optimal will necessarily take into account the systematic biases of

QPU on which it is implemented. Parallel implementation fails at learning

out these systematic biases and as such results in higher overall error than
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Figure 5.8: DVQE results on Rigetti’s Aspen-4 QPU, Ground state energy at the
top and first state energy at the bottom as a function of RotoSolve iterations. With
error mitigation

on either QPU. Further tests, across different machines, would be required

to test this hypothesis, however it points out to the fact that error mitigation

techniques specific to parallelisation are likely to be required before VQE could

be shown to exhibit a quantum advantage.

Implementation on Honeywell’s HS0 QPU: Honeywell’s latest QPU is

an ion-trap based core with 6 qubits, and a reported quantum volume of 64 [16]

(making it the QPU with highest quantum volume at time of writing, although

IBM recently announced a similar performance on one of their superconducting

QPU. For a definition of Quantum Volume see Ref. [462]). That said, with

ion-trap QPUs being several orders of magnitude slower than superconducting

qubits, implementing DVQE fully on this device would not have been possible
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Figure 5.9: Run time for one VQE-RotoSolver iteration on Rigetti’s Aspen-4,
Aspen-7 and with parallel run. As expected, overall time of the parallel run is
identical that that of the slowest QPU on half the measurements

in the time that was allocated.

Instead, the model was pre-trained to the optimal parameters classically,

and then implemented on machine for one iteration at ground state level and

one iteration at first excited state level to verify if the machine can maintain

the optimal parameters.

As the QPU showcases much higher fidelities than those of IBM or Rigetti,

we used both a 2-qubit and a 4-qubit version of the H2 Hamiltonian. The

larger number of qubits also required increased circuit depth. Due to the slow

gate time of ion-trap QPUs, we were only able to compute one data point for

each model, with and without error mitigation.

For the 2-qubit model, we obtained an accuracy to target of 98.6% for the

ground state and 96.6% for the first excited state, without error mitigation

(While the ground state is comparable with the results obtained on IBMQ,

the first excited state is slightly better, as IBMQ’s equivalent test return 93.2%
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accuracy to target). With error mitigation (as presented in Sec. 3.3.2), these

results are improved to 99.9% for the ground state and 99.6% for the first

excited state.

For the 4-qubit model, we obtained an accuracy of 94.6% for the ground

state and 89.4% for the first excited state, without error mitigation. This

illustrates clearly the impact of only a few additional entangling gates on the

overall level of errors. With error mitigation, these results are significantly

improved to 99.6% for the ground state and 93.3% for the first excited state.
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Conclusion

In the introduction we presented two research axes for this thesis:

• Research axis 1: Review of the current knowledge on VQE to determine

best practices, potential for bringing quantum advantage and limitations

of the method.

• Research axis 2: Development of methods for computation of relevant

molecular properties that can be implemented and tested on the current

generation of quantum computers.

On research axis 1: While the VQE remains among the most promising

NISQ methods, we have seen that several significant hurdles remain to be ad-

dressed before a quantum advantage can even be considered (Sec. 3, Ref. [85]).

These relate both to theoretical, algorithmic research and the way quantum

hardware is developing. The three most significant obstacles that will need to

be overcome are the exploding number of measurements, barren plateaus, and

mitigation of errors.

As previously discussed, the number of measurements required to conduct

VQE optimisation is astonishingly large, even when taking into account the

significant scaling benefits brought by Pauli terms grouping or measurement

inference methods such as classical shadows[82–85]. Large scale parallelisation
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so far appears as the most suitable to overcome this large pre-factor. How-

ever there are three areas of future research that will need to be investigated

before knowing whether this approach is reliable. Firstly, the benefits of par-

allelisation may be limited by the communication overhead of gathering and

processing the large amount of data produced by the quantum devices. These

hidden computing costs could significantly reduce the scaling potential of par-

allel quantum computation. Secondly, variational algorithms have been shown

be reliably learn the systemic biases (e.g. rotation gates overshoot) from the

quantum devices they are executed on, thereby offering some noise resilience

[38, 152]. While executing a variational algorithm on several devices could

result in biases from random errors, the resilience to systematic bias could be

significantly reduced. Finally, quantum hardware providers have been largely

focused on targeting developing systems for fault-tolerant quantum computa-

tion (FTQC). While FTQC methods benefit from obtaining the largest number

of qubits subject to a given noise model, NISQ methods benefit from obtaining

the lowest possible error rate for a given number of qubits. Similarly, while

one could parallelise computation on a single chip (multi-thread), it is unlikely

to perform as well as on different chips (multi-core) due to the impact of noise

resulting from cross-talk between qubits. These three points will likely be

required areas of research to determine the future applicability of VQE.

Regarding the barren plateau problem, many mitigations strategies have

been proposed but none has been thoroughly tested at large scales. This

is understandable given the challenge of simulating a VQE for more than a

dozen qubits, however this raises the question of whether the barren plateau

problem has been solved. This claim has been made in several studies, and

most notably in the literature surrounding adaptive ansätze [213, 214, 268],

where it has been numerically shown that gradients do not vanish in the system
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size as long as the ansatz is built progressively [215].

Finally, no error mitigation technique has, so far, been shown to be scalable.

In Sec. 3.3.2 we presented a simple error mitigation technique for small exper-

iments on quantum devices. While this method will not be suitable to achieve

accurate results on realistic applications of VQE, it illustrates the degree of

predictability of the bias induced by quantum errors. Extrapolation methods

directly target this predictability but are thought to be unscalable [151]. In

that respect one could suppose that a machine learning system aiming to learn

the specific bias for a given quantum chip, and any circuit execution could be

trained based a wide range of random circuit fragments and measurements.

On research axis 2: As part of this thesis, we presented three methods for

computation of molecular properties and demonstrated their implementation

on current quantum devices. The first two methods use multiscale embedding

to reduce the number of qubits (and thereby the depth of the circuit) required

to compute ground energy at a given level of accuracy (Sec. 4, Ref. [149]).

This is achieved through forcing optimisation of the Hamiltonian itself through

conventional methods. The last method aims to bypass the need for swap gates

and circuit inversion to variationally compute molecular excited states (Sec.

5, Ref. [455]).

A first point to note is that all these methods were successful in reaching

appropriate accuracy in small systems, but all require at least some light touch

error mitigation, echoing the previously raised comments about the fact that

further research on error mitigation is a requirement for NISQ methods to be

viable. A second, and final point to note is that current techniques used as part

of VQE largely ignores the potential to efficiently remove some of the burden

placed on quantum resources. A final remark on the overall computational

cost of VQE is worth raising. The vast majority of the research in the field

164



is focused on the simple divide between sampling observables on the quantum

computer. It is very likely that a future relevant application of VQE will

require a more insightful split between quantum and conventional resources.

Several avenues have already been proposed in this respect. For instance,

Stenger et al. [463] propose to partially solve a many-body Hamiltonian on

a conventional computer before performing a quantum based VQE. Okada

et al. [464] alternatively show how one can perform a classical optimisation

of the VQE for local-interaction states, leaving quantum sampling only for

measurement of global quantities. Methods of Hamiltonian dressing such as

ClusterVQE [465] work differently but aim at the same objective by absorbing

in the Hamiltonian parts of the ansatz that are prone to quantum noise and

worse gate scaling.
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Appendix A

Operator groupings for RDM

element sampling

At most, sixteen Pauli strings result from each two-body fermionic operator.

While this implies polynomial scaling (O(n4)) in the number of terms that need

to be measured on the quantum computer, the total number of measurements

can be further improved upon by using commutative features of the Pauli

strings. In particular, Pauli strings that commute can be measured jointly.

There are two main ways to approach commutativity: qubit-wise commutation

(QWC) and General Commutation (GC) of the operators. For QWC, we group

two Pauli strings together if each operator in the first Pauli string commutes

with the operator of corresponding index in the second Pauli string. GC is

more general, and allows grouping of Pauli strings as long as they generally

commute (for a review of Pauli strings commutation rules, we recommend:

[38, 101, 102]). In this appendix, we study the scaling of measuring RDM

using GC grouping for use in future research. These grouping strategies tend

to be computationally expensive. However the final set of non-commuting
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Figure A.1: Number of unique fermionic operators, corresponding set of unique
Pauli strings (under Jordan-Wigner mapping), and commutative groups to be meas-
ured in order to compute all elements of the one-body (dotted line) and two-body
RDM (solid line), for up to 16 orbitals (32 qubits). The groups were found via the
Largest-degree First Coloring (LDFC) algorithm.

Pauli strings required to measure a given rank of RDM will be identical and

agnostic to the details of the Hamiltonian for a given number of orbitals.

As a result, once an optimal set of terms is established, it can be used for

all systems, in a similar fashion to the energy measurement for a VQE problem

of a given size (which is equivalent to the two-body RDM).

We present in Fig. A.1 the number of commutative groups constructed

for the one- and two-body RDMs as a function of the number of molecular

orbitals in the active space (where each molecular orbital is mapped to two

qubits). Our results are similar to those found previously in the literature (see

for instance Ref. [401]), showing a significant reduction in dimensionality and
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scaling of independant observable measurements as the active space increases

in size. This results in a reduction of over two orders of magnitude for the

number of terms to be sampled in a 16 orbital active space, with this factor

increasing for larger active spaces. We present these numbers in Tab. A.1.

In addition, we also present the groups for three- and four-body RDMs, up

to 6 orbitals (Tab. A.2), as an investigation into the future feasibility of

extended coupling schemes between the quantum region and environment such

as multi-reference perturbative or subspace expansion approaches [349, 391,

400]. Finding these groups for the higher-body RDMs for larger numbers

of orbitals became too computationally demanding for the current algorithm

given our resources at time of writing. One point of note is that the symmetries

used in Eqs. 4.6-4.8, combined with the Jordan-Wigner mapping, ensure that

the one-body RDM only relies on half of the wave function (the same half of all

Pauli strings required are identities, rendering half of the qubits used obsolete

in the sampling). This feature can be used to easily sample the energy of any

tensor product state or one-body RDM functional [148].

It is worth noting that grouping of terms may entail additional costs.

Firstly, the joint measurements of Pauli operators results in a covariance

between terms, potentially increasing the overall variance of the observable

expectation values. In exceptional cases, this can even increase the total num-

ber of samples required for a given fidelity [38]. In general however, we should

expect a reduction in number of measurements necessary for a given precision

[101]. Secondly, joint measurements of Pauli strings groups require additional

circuit depth to rotate the measurement basis appropriately. This additional

circuit scales O(N2), with N the number of qubits [101], and therefore should

be considered small on larger gate depth circuits (by comparison, the General-

ised Unitary Coupled Cluster Ansatz scales O(N3) in depth. See for instance
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Ref. [80]). In the case of current generation QPUs however, this additional

circuit length (largely composed of entangling gates) results in quantum noise

that would arguably out-weigh the benefits obtained from reduction of finite

sampling noise from operator joint measurements. For this reason, while this

reduction in terms to sample is a promising feature for longer-term viability of

density matrix sampling, we are unlikely to benefit from this for small qubit

arrays on current generation QPUs, and therefore leave the use of operator

grouping in actual experiments for future work.

We present below further details on the approach we have used to group

operators, as presented in Fig. A.1. In order to find these groupings, we require

a graph of commutative relationships between all the Pauli strings required

to measure the elements of the RDMs. To find a low number of groups of

fully connected sub-graphs, we employed the Largest-Degree First Coloring

(LDFC) algorithm (similar to what is proposed in [102]), a graph coloring

heuristic. As an example for an alternative to the LDFC algorithm, one can

start by grouping Pauli strings according to the frequency of identity operators

in the string (as done, for instance in [401]).

The steps required to complete grouping of Pauli terms (using LDFC),

joint measurements and measurement results aggregation are outlined at a

high level below. For a more detailed description, we recommend Ref. [101].

• Initialisation: From the list of Pauli terms that require grouping, define

a graph G(V, e), with V the vertices, corresponding to each Pauli oper-

ator, and e the edges representing anti-commuting relationship between

Pauli operators.

• LDFC step 1: Rank the elements of V according to their degree, i.e.

number of edges they are connected to. Colors are represented by in-
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Active orbitals 2 4 6 8

Fermionic operators 3 10 21 36
One-body RDM JW 6 28 66 120

JW-Groups 3 9 13 17

Fermionic operators 11 157 786 2,486
Two-body RDM JW 49 910 4,983 16,468

JW-Groups 5 70 227 497

Active orbitals 10 12 14 16

Fermionic operators 55 78 105 136
One-body RDM JW 190 276 378 496

JW-Groups 21 27 31 36

Fermionic operators 6,085 12,651 23,492 40,156
Two-body RDM JW 41,325 87,354 164,115 282,968

JW-Groups 853 1,342 1,928 2,601

Table A.1: Number of unique Pauli strings to be measured once grouped in order
to sample all elements of the one- and two-body RDMs, as the number of (spatial)
orbitals in the active space is enlarged. These numbers represent the terms in a direct
Jordan-Wigner mapping (JW) and grouping of commuting terms from a Largest-
degree First Coloring algorithm (JW-Groups).
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Active orbitals 4 6

Fermionic operators 610 8,400
Three-body RDM JW 4,928 71,742

JW-Groups 189 2,049

Fermionic operators 939 40,065
Four-body RDM JW 11,425 440,154

JW-Groups 163 3,182

Table A.2: Number of unique Pauli strings to be measured once grouped in order
to sample all elements of the three- and four-body RDMs, as the number of (spatial)
orbitals in the active space is enlarged. These numbers represent the terms in a direct
Jordan-Wigner mapping (JW) and grouping of commuting terms from a Largest-
degree First Coloring algorithm (JW-Groups).

tegers, the color of each vertex is initialised to 0 (unallocated).

• LDFC step 2: First allocate the color 1 to the element of V with

the highest degree. Continue by allocating to the next element of V

the lowest color that is not already attributed to one of its neighbours.

Iterate likewise until all vertices have a color.

• Joint-measurement basis identification: The groups have now been

defined. From each group, identify a basis (multiplicative), from which

all the other elements of the groups can be computed. The basis size

should be N , with N the number of qubits.

• Joint-measurement circuit construction: Once a basis is identified,

construct the circuit required for joint measurements of the operators

(following for instance the instructions set in Ref. [101], aiming to map
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each of the operators in the basis to a single qubit Z-operator measure-

ment.

• Reconciliation: From the results of the measurement, reconstruct the

expectation value of each element in each group that can then be used

to compute the one- and two-body RDMs.
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Appendix B

IBM QPU lattice structures and

additional information

In this appendix, we present additional information about the IBM QPU used

during the experiment. The information provided below is sourced from IBMQ

Experience reported calibration of the machines at time of running the exper-

iment and may change slightly over time.

B.1 Lattice structures

IBMQ Bogota, Santiago and Athens are all 5-qubit QPUs, following IBM’s

Canary r3 processor type, with reported quantum volume of 32 [466]. The

lattice structure, as well as the qubits used are presented in Fig. B.1, B.2, B.3

respectively.
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Figure B.1: IBMQ Bogota lattice structure and qubits used for experiments. This
QPU was used to compute CASSCF and EwDMET with error mitigation.

Figure B.2: IBMQ Santiago lattice structure and qubits used for experiments.
This QPU was used to compute CASSCF and EwDMET without error mitigation.

B.2 Calibration information

The information presented in Table B.1 summarises the calibration data of the

QPU used. It is directly taken from the IBMQ Experience Portal and may

change over time as IBM re-calibrates the processors.
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Figure B.3: IBMQ Athens lattice structure and qubits used for experiments. This
QPU was used to compute the RDM sampling studies presented in Fig. 4.2, with
and without error mitigation

QPU Bogota Santiago Athens

Single-qubit Pauli-X error 2.95e-4 4.55e-4 4.16e-4
Qubit frequency (GHz) 4.89 4.78 5.094
Two-qubit gate error 1.40e-2 1.22e-2 1.043e-2

Two-qubit Gate time (ns) 536.89 408.89 346.67
Read-out length (ns) 5048.89 4017.78 3022.22

Read-out error 3.77e-2 1.82e-2 1.82e-2

Table B.1: Selected calibration metrics from IBMQ experience. These values are
averaged for all qubits / connections and taken at a point in time near the experiment
was run. They may change over time.
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