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Abstract 

My PhD work focused on studying the domain structures and the strain fields 

inside barium titanate (BaTiO3) nanocrystals. The results on the domain 

structure study have already been published. The results on the stripe-like strain 

fields inside nanocrystals are finalized and there is a plan for publication. 

The first question my PhD work wants to address is what the domain structures 

inside BTO nanoparticles exist and how they evolve with temperature and when 

crossing the phase transition. Bragg coherent X-ray diffraction imaging (BCDI) 

experiments on nominal 200 nm size BTO nanoparticles were carried out at the 

Diamond I13-1 beamline and the Advanced Photon Source 34-ID-C beamline. 

The 90° domain walls were tracked in detail when crossing the tetragonal-cubic 

phase transition. This is presented in Chapter 3. 

Upon studying the domain structure inside BTO nanocrystals, some unexpected 

stripe-like strain fields were found. Crystals with clear facets were chosen to 

restore resolve the crystallographic direction, after which the strain field 

direction and periodicity were studied in detail. This is shown in Chapter 4. 

To understand the temperature dependence of the strain stripes, in-situ BCDI 

experiments were done at ESRF ID-01 beamline. Faceted BTO nanocrystals were 

chosen for temperature study. The strain stripes were found to be stable and 

preserved at both tetragonal and cubic phase with at elevated temperatures. This 

is illustrated in Chapter 5. 

The Finite element analysis (FEA) approach was utilized to understand the 

origins of the strain stripes. Different piezoelectric blocks were defined to 

simulate the domain structures inside a BTO crystal. 180° domain walls were 

found to give more strain stripes features than 90° domain walls in the 

simulation. This is covered in Chapter 6. 

The same patch of BTO nanocrystals were also studied using an X-ray Free-

electron Laser as a function of time delay after laser excitation.  Rather than 

seeing any significant thermal expansion effects, the diffraction peaks were 

found to move perpendicular to the momentum transfer direction.  This suggests 

a laser driven rotation of the crystal lattice, which is delayed by the aggregated 
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state of the crystals.  Internal deformations associated with crystal contacts were 

also observed. These are shown in Chapter 7. 
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Impact statement 

The structure of the domains in barium titanate (BTO) nanocrystals are 

addressed in this thesis. Bragg coherent X-ray diffraction imaging (BCDI) was 

used to probe the displacement and strain distribution inside BTO crystals. Finite 

element analysis has been used to simulate the strain patterns from different 

domain configurations. Large 90° domains with size of 100nm were located in 

one BTO nanocrystal. New understanding of the classical phase reconstruction of 

the diffraction patterns was discovered: patterns with more than one centre 

usually failed. A useful trick was found to cut and split apart the two diffraction 

patterns on the detector images, and then reconstruct the two parts separately 

before combining the real space images together. The crystal was then heated up 

and cooled down across its tetragonal-cubic phase transition temperature of 

120°C. The large 90° domains were found to come back at the same place after 

returning to the tetragonal phase from the cubic phase.  During the BCDI 

experiments, some well-faceted crystals were observed by their strongly 

modulated diffraction fringes. This allowed the crystallographic orientations to 

be determined, fully in some cases, to establish a coordinate system to interpret 

the strains. When their strain components were calculated, some unexpected 

strain stripes were found. The directions of the strain stripes are mostly along 

{100} or {110} with a period of 30nm to 50nm. These strain components were 

found to exist in both tetragonal phase at room temperature and cubic phase at 

elevated temperature.  These stripes and the conclusion that there is 

spontaneous domain formation in these 200nm crystals of BTO has never been 

seen before and may have significant impact on technology.  It is worth noting 

that commercial multilayer ceramic capacitors, the preferred choice of today's 

electronics industry with production exceeding 1012 pieces per year, use 

nanosized BTO as their dielectric.  Why the properties are enhanced by the 

nanomaterial are not fully understood at present, so the current thesis work is 

an important step towards that understanding. 
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Chapter 1. Principles of X-ray 

X-rays conform with wave-particle duality in quantum physics, where both wave 

and particle (photon) properties can be quantified.  Considering the wave 

properties, X-rays are a form of electromagnetic radiation and its frequency 

spans from 30 PHz (1012 Hz) to 30EHz (1018 Hz) in the spectrum. They obey the 

general optical laws including reflection, refraction and diffraction. When 

considering the photon properties, X-rays can interact with matter by scattering 

(either elastic or inelastic) and absorption (fluorescence, photo-electron 

emission, Auger electrons).  Important for experiments, X-rays can be counted. 

Rontgen discovered the X-ray in 1895, which earned him the first Nobel prize in 

physics in 1901. Later, Rontgen found the X-ray is produced by using high energy 

electrons to hit a material target. This is still the efficient way to produce X-ray, 

as the typical lab-based X-ray tube using electrons to hit copper anode for this 

purpose. There are two types of X-rays generated through hitting the atom: 

characteristic X-rays and bremsstrahlung. When an electron hit on an atom, it 

could knock out the electron at the inner shell. The outer shell electron would 

then fill the inner vacancy and emit X-ray radiation that is characteristic 

according to the element. This is the so-called characteristic X-ray, which was 

discovered by Barkla in 1909 and won the Nobel prize in 1917. An empirical law 

was put forward by Moseley in 1913, which describes the frequency of 

characteristic X-ray been proportional to the square of atomic number (𝑓 ∝ 𝑍2). 

Different to characteristic X-ray, Bremsstrahlung radiation doesn’t have a typical 

frequency, but rather a broad distribution. This is produced when the incoming 

electron is slowed down when hitting the atom rather than knocking out 

electron on shell. According to the energy conservation, the energy of emitted X-

ray would be the same with the energy loss due to the slowing down of electron.  

The high penetration property of X-ray was immediately exploited to take 

transmission photo for medical application after the discovery. Hongzhang Li is 

the first Chinese to take the X-ray photo, who was a Chinese diplomat visiting 

Germany at that time.  He took the X-ray photo seven month after the discovery 

of X-ray, in which he saw a bullet directly in his left face. He wrote the first 
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description of X-ray in Chinese: Clothes, flesh, blood, wood and stone are all gone 

away. The only thing left in photo are hardware and bones (凡衣服、血肉、木石

诸质，尽化烟云；所留存镜中者，惟五金类及骨殖全副而已). He called this X-

ray method “bone photography” in Chinese (照骨术). We now know that the 

photoelectric absorption of the X-ray beam is roughly proportional to the cube of 

atomic number and inverse cube of energy (τ ∝ (
𝑍

𝐸
)
3

). The harmful effect of X-

ray to human tissues was gradually found, after cases of burns, hair loss and even 

death been reported due to continuous exposure to X-ray. Therefore, the static X-

ray photo is usually performed instead of a dynamic one in modern medical 

radiography to reduce the exposure dose.  

In this chapter, the scattering process is emphasized, which is directly linked to 

our present works. 

1.1 X-ray Scattering 

1.1.1 Classical scattering theory 

Classical scattering is also termed as coherent scattering or Thomson scattering. 

As a transverse electromagnetic wave, X-ray can be diffracted to form 

constructive or destructive interferences. The only essential particle that 

interacts with the X-ray is the electron (as discussed below). Diffractions from 

other sources, such as atom, molecule, crystal or glass, can be viewed as the 

geometric and mathematical combination of the electron scattering. Different 

form factors are also developed to mathematically deduce the relations, as 

shown in below.  

(a) An electron 

The classical way to evaluate the scattering from a free electron is to put it in the 

X-ray beam and treat it as radiation source by vibration. Then the amplitude and 

intensity at a given point is formed. The intensity per unit area per unit time is an 

observable quantity and given by the Thomson scattering equation:  

𝐼𝑒 = 𝐼0𝑟0
2𝑃 (1.1) 
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𝐼0 is the intensity at electron source. 𝑃 is the polarization factor. For unpolarized 

X-ray beam, this factor is 
(1+𝑐𝑜𝑠2𝜓)

2
. 𝑟0 is the classical radius, or Thomson 

scattering length, given by: 

𝑟0 =
𝑒2

4𝜋휀0𝑚𝑐2
= 2.82 × 10−5Å  (𝑆𝐼) (1.2) 

𝑒 is the elementary charge (1.602 × 10−19 C). 𝑚 is the electron mass 

(9.109 × 10−31 kg). 휀0 is the permittivity of free space (8.854 × 10−12 F/m). 𝑐 is 

speed of light (2.998 × 108 m/s). 

The first interesting fact is that the above equations prove the electron to be the 

only essential particle for diffracting X-rays, because the scattered intensity is 

direct proportional to charge and inverse proportional to the density mass. The 

neutron has no charge, so it will not scatter the incident X-ray. The proton has 

the same charge as electron, but the density mass is 1836 times bigger, making 

its scattering intensity 18362 times smaller.  

The second interesting fact is that the Thomson scattering equation describes 

the total scattering from free electron. When consider the bounded electron in 

atom, the Thomson scattering equation still works. However, it split into 

coherent scattering part (Thomson scattering) and incoherent scattering part 

(Compton scattering). 

𝐼𝑒 = 𝐼𝑐𝑜ℎ + 𝐼𝐼𝑛𝑐𝑜ℎ = 𝐼𝑒𝑓
2 + 𝐼𝑒(1 − 𝑓2) (1.3) 

𝑓 is the scattering factor of an electron and can be expressed as a function of 

scattering vector 𝑄 at point 𝑟: 

𝑓 = ∫𝜌(𝑟)𝑒𝑖𝑄𝑟𝑑𝑣 (1.4) 

Scattering vector is defined as: 

𝑄 = 𝑘𝑖 − 𝑘𝑓 (1.5) 

Here the 𝜌(𝑟) means the electron density inside the electron cloud, which can be 

thought of as a probability distribution. ki and kf are the incident and scattered 

wave vectors. 
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(b) An atom  

The scattering from an atom with Z electrons can be viewed as a superposition of 

scattering from each electron. Therefore, the total coherent scattering can be 

expressed as: 

𝐼𝑐𝑜ℎ = ∑ 𝑓𝑗
2𝐼𝑒

𝑍

𝑗=1
= (∫𝜌𝑗(𝑟)𝑒

𝑖𝑄𝑟𝑑𝑣)
2

𝐼𝑒 (1.6) 

The sum of these scattering factor from different electrons is usually defined as 

the atomic form factor, given by 

𝑓0(𝑄) = ∑ 𝑓𝑗
𝑍

𝑗=1
= ∫𝜌𝑎(𝑟)𝑒𝑖𝑄𝑟𝑑𝑟 (1.7) 

Here the 𝜌𝑎(𝑟) means the electron density in the atom. 

(c) A unit cell 

Similarly, the scattering from a unit cell with Z atoms can be viewed as the sum 

of each atom. This will form a new factor called unit cell structure factor, given 

by: 

𝐹𝑢(𝑄) = ∑ 𝑓𝑗
0

𝑍

𝑗=1
= ∫𝜌𝑢(𝑟)𝑒𝑖𝑄𝑟𝑑𝑟 (1.8) 

Here the 𝜌𝑢(𝑟) means the electron density in unit cell. 

(d) A crystal 

The interesting story happens in the scattering of a crystal, where it has periodic 

structure. A single electron has no periodicity, so is the atomic orbitals in one 

atom. The primitive unit cell will not have periodicity according to its definition. 

The lattice vector can be defined as: 

𝑅𝑛 = 𝑛1𝑎1 + 𝑛2𝑎2 + 𝑛3𝑎3 (1.9) 

Due to the periodicity of the lattice, the scattering factor of a crystal can be 

factorized as the product of unit cell form factor and lattice sum: 

𝐹𝑐(𝑄) = ∑𝐹𝑢(𝑄)𝑒𝑖𝑄𝑟 ∑𝑒𝑖𝑄𝑅𝑛 (1.10) 
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The lattice sum is described by Bragg’s law or Laue equation next, after which 

the unit cell form factor is discussed. 

Bragg’s law is first proposed by W.H. Bragg (the father) and W.L. Bragg (the son) 

in 1913, who won the Nobel prize in 1915 for determining crystal structure 

using X-ray. Figure 1.1 shows a typical diagram for illustrating Bragg’s law. The 

incident X-ray beam is scattered by the plane of atoms. The optical path length 

difference (OPLD) for the scattering from two adjacent crystal planes is the 

function of d-spacing and incident angle. If the scattering from two adjacent 

crystal plane is in phase, or equivalently the OPLD equals to integer multiple of 

X-ray wavelength, then the constructive interference occurs and yields the 

strongest intensity. This relation is described by Bragg’s equation:  

𝐿𝑂𝑃𝐿𝐷 = 2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 (1.11) 

For fulfil this equation, there is clearly an upper limit for the X-ray wavelength: 

𝜆 < 2𝑑 (1.12)  

 

Figure 1. 1The schematic diagram to illustrate constructive diffraction condition. 
(a) Bragg geometry. (b) Laue geometry. 

(a) 

(b) 
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Bragg’s law only involves the lattice point in real space and the diffraction 

condition can be simply deduced from geometry. Therefore, it gives a clean 

image of how diffraction happens in the viewpoint of crystal plane. 

Laue deduced a similar relation between incident and diffracted X-ray beam, 

which is now termed as Laue equations. Laue also received Nobel prize in 1914 

for the discovery of X-ray diffraction by crystals, one year ahead of Bragg. (This 

Nobel prize medal was dissolved by aqua regia in World War II and recast in 

1952 using the same gold.)   

A complete derivation of Laue’s equations is shown in reference [1]. Here only a 

simple view of Laue’s equation is given. From equation in X, the scattered 

intensity from a crystal is given by the multiplication of lattice sum and unit cell 

form factor. If only the lattice sum is considered, which is given by: 

𝐹𝑙.𝑠. = ∑𝑒𝑖𝑄𝑅𝑛 (1.13) 

This equation would reach the maximum if 

𝑄 ∙ 𝑅𝑛 = 2𝜋𝑥 (𝑥 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) (1.14) 

Mathematically, a reciprocal space lattice can be generated similar to real space 

equation in: 

𝐺𝑚 = 𝑚𝑏1 + 𝑚2𝑏2 + 𝑚3𝑏3 (1.15) 

The new lattice constants are defined as: 

𝑏1 = 2𝜋
𝑎2 × 𝑎3

𝑎1 ∙ (𝑎2 × 𝑎3)
;  𝑏2 = 2𝜋

𝑎3 × 𝑎1

𝑎2 ∙ (𝑎3 × 𝑎1)
; 𝑏3 = 2𝜋

𝑎1 × 𝑎2

𝑎3 ∙ (𝑎1 × 𝑎2)
 (1.16) 

According to this definition, the real space and reciprocal space constant satisfy: 

𝑎𝑖 ∙ 𝑏𝑖 = 2𝜋 (𝑖 = 1,2,3) (1.17) 

This gives: 

𝐺𝑚 ∙ 𝑅𝑛 = 2𝜋𝑦 (𝑦 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) (1.18) 

Combing the equation and gives the famous Laue condition: 

𝑄 = 𝐺 (1.19) 
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Figure 1.b is a schematic diagram for deriving Laue equation in one dimension. 

When the optical path length difference for the two adjacent atoms are the 

integer times of X-ray wavelength, then the diffracted X-rays are in phase and 

give constructive interference: 

𝐿𝑂𝑃𝐿𝐷 = 𝑎 ∙ cos 𝛼1 − 𝑎 ∙ 𝑐𝑜𝑠𝛼0 = 𝑛𝜆 (1.20)

This equation can be expressed in vector view, which gives: 

𝑎 ∙ (𝑘𝑖 − 𝑘𝑓) = 𝑎 ∙ 𝑄 = ℎ𝜆 (1.21) 

This is the Laue equation in one dimension. The Bragg condition is a special case 

of Laue condition, where the Bragg’s law can be deduced from Laue equation. 

Combining equations and proper multiplying the two sides gives 

𝐺2 = 2𝑘𝑖 ∙ 𝐺 = −2𝑘𝑓𝐺 (1.22) 

Substituting 𝐺 with Laue equation gives the Bragg’s laws. 

1.1.2 Other scattering effects 

(a) Compton scattering 

Compton scattering is one example of incoherent scattering or inelastic 

scattering. In such case, the scattered photon has lower energy or longer 

wavelength than the incident photon. This relationship is deduced by Compton 

in 1923: 

𝜆𝑖𝑛 − 𝜆𝑜𝑢𝑡 =
ℎ

𝑚𝑒𝑐
(1 − 𝑐𝑜𝑠𝜃) (1.23) 

The Compton scattering length is defined from this equation as: 

𝑟𝑐 =
ℎ

𝑚𝑒𝑐
= 2.42 × 10−2Å (1.24) 

Sometimes the reduced the Compton scattering length is used, which involved 

replacing the Planck constant ℎ in equation with reduced Planck constant ℏ. This 

gives a value of 3.86 × 10−3 Å. 

Cross-section is a term to quantitatively describe the probability of a process 

happens during the collision of two particles. For example, the scattering cross-

section can be defined as the possibility of an incoming photon been scattered by 
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an atom. The scattering cross-section of barium element is given in Figure 1.2. At 

9 KeV, the Thomson scattering is still the major part that contribute to the total 

scattering. However, the Compton scattering cross-section exceeds Thomson 

scattering at about 100 KeV. 

 

Figure 1. 2 Cross-section of X-ray interaction with barium element. Image from 
[2]. 

(b) Debye-Waller factor 

From a lattice dynamic point of view, the actual atoms in crystal have thermal 

vibrations instead of being static at lattice node. This fluctuation can be added 

into consideration by modifying the atomic form factor. The so-called Debye-

Waller factor is usually added for compensating the thermal vibration, which 

takes the form of 𝑒−
𝑄2〈𝑢2〉

3 . 𝑄 is the scattering vector and 〈𝑢2〉 is the mean square 

displacement from the scattering center. The value of Debye-Waller factor varies 

on temperature and atomic species.  

1.2 X-ray sources and instrumentations 

1.2.1 Lab X-ray source 

Figure 1.3 shows a Rigaku Smartlab X-ray diffractometer at the UCL physics 

department. In X-ray tube, the tungsten filament first generates electrons upon 

heating. These electrons are then accelerated by electrical field towards the 

rotating copper anode. With a proper electron energy, X-ray comprising of a 

white radiation and characteristic radiations would be generated.  Different 

monochromators can be applied to select the radiation needed. For example, Ge 

monochromator can be used on the incident beam side to select only Cu 𝐾𝛼1 



9 
 

radiation, which has an energy of 8.04 KeV and a wavelength of 1.54056 Å. 

Graphite single crystal monochromator can be applied on the receiving side to 

select both Cu 𝐾𝛼1 and 𝐾𝛼2 (λ=1.54439 Å), but eliminating 𝐾𝛽 (λ=1.39222 Å) 

and most of Bremsstrahlung radiation.  The vertical divergence of 0.01° is 

reached by a combination of a parabolically bent multi-layer mirror (Gobel 

mirror) and double crystal Ge monochromator.  The horizontal divergence of 

0.5° is achieved, which is determined by Soller slits. The length limiting slits are 

used to reduce the X-ray footprint.   

 

Figure 1. 3 A photo of Rigaku X-ray diffractometer at UCL physics department. 

1.2.2 Synchrotron radiation source 

Synchrotron radiation has many unique properties comparing with lab X-ray, the 

most prominent ones being the tunability (freedom to choose the X-ray 

wavelength) and brilliance. Unlike the lab X-ray, synchrotron X-ray radiation is 

generated through the radically acceleration of relativistic electrons. There are 

approximately 70 synchrotrons in construction or in use worldwide. 

The synchrotron radiation source has several key components: electron gun; 

linear accelerator (LINAC); booster ring; storage ring and beamline hutches. 

Same as lab X-ray, the electron gun uses heated filaments to generate electrons. 

The generated electrons are injected into linear accelerator, where the electrons 

are packed in bunches and accelerated to an order of hundred million electron 

volts. For example, the LINAC in the Advanced Photon Source (APS) is designed 

to accelerate electrons to 200 MeV at 48 pulses per second.  Then these electrons 

are put into the booster ring and further accelerated to the final designed energy. 

For example, Diamond Light Source (DLS) is a medium energy synchrotron 
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working at 3 GeV. European Synchrotron Radiation Facility (ESRF) and APS 

works at 6 GeV and 7 GeV, respectively. Booster ring originally works a few times 

per day to refill the storage ring, where the electrons are kept in a closed path 

and in operation to generate X-ray. For now, most synchrotrons use top-up 

mode, in which the booster ring works more frequently or continuously to 

provide constant beam current. The closed path can be usually divided into tens 

of segments, each contacting an arc path by bending magnets and a straight path 

used for insertion devices. 

(a) Bending magnet 

A bending magnet is used to create a homogeneous magnetic field over a 

distance, which mainly used to bend the trajectory of electrons to form a closed 

loop. It can also create a pencil beam in flattened cone shape.  

First to be noted, the relativistic electrons move at a speed close to the light. The 

Lorenz factor can be expressed as 

𝛾 =
𝐸

𝑚𝑐2
= 1957𝐸 (1.25) 

, where E is the storage ring energy. Therefore, for diamond light source, the 

Lorenz factor is about 5871.  

Secondly, the relativistic Doppler effect changes the wavelength. The Doppler 

effect causes the sound wave more compact or an increase in frequency towards 

approaching the observer (red shift), comparing with a decrease in frequency 

when moving away from observer (blue shift). For the synchrotron electrons 

moving at a speed close to the speed of light, the doppler shift would modify the 

wavelength with an order of (2𝛾)−1.  

Thirdly, the Doppler effect also changes the radiation angle or the beam 

divergence. For relativistic electrons, the large Lorenz factor gives a small beam 

divergence in the order of 𝛾−1. This beam divergence defines the beam shape in 

the vertical direction. In the horizontal direction, there are electron angular 

changes which make the beam elongated horizontally.  
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Figure 1. 4 Bending magnets and insertion devices spectral. Image from [3]. 

The bending magnet offers radiation with a broad frequency but a lower 

brightness, as shown in Figure 1.4. Therefore, the bending magnets beamline is 

helpful when large energy range is favoured, or the brightness is not the priority. 

For example, the APS 11-BM, which we use to do X-ray scattering and PDF study 

of BTO nanocrystal, is a bending magnet beamline.  

(b) Insertion devices 

Insertion devices are put in the straight path of the segment in a storage ring, 

which are the characteristics of third generation synchrotrons. The X-ray 

generated by the insertion devices are several orders of magnitude brighter than 

by the bending magnets, as can be seen in Figure 1.4. The two typical insertion 

devices are wiggler and undulator, both of which are made of a stack of magnets 

arrays. In both cases, the electrons are forced to vibrate horizontally through the 

insertion devices. The X-ray generated from each pair of magnets would add up 

in the forward direction, thus enhance the flux. The difference of a wiggler and 

an undulator is the degree of electron moved from their straight path.  

For a wiggler, the electron is moved at an angle larger than the natural opening 

angle. Assuming the wiggler has N pair of magnets with same length and field, 

the generated radiations would be increased by a factor of 2N.  Because such 

electron vibration happens in horizontal direction, the angular distribution is 

also increased by a factor of 2N horizontally.  

For an undulator, the electron is moved with a degree smaller than the natural 

opening angle. In this case, the generated X-ray from each pair of magnets is in 
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phase with each other. Therefore, the brightness is no longer the adding of 

intensity, but the square, due to adding amplitude.  

(c) Extremely brilliant source (EBS) 

ESRF has gone through the upgrade for the so-called EBS.  It consists of four 

components and the key part is a new storage ring that increase the intensity by 

a factor of 100. Figure 1.5 shows diffraction counting rate using the same BTO 

nanocrystals. The diffraction counts go to nearly 200 thousand counts per 

second at the brightest pixel at ESRF ID01, while at APS 34-ID-C the value is 

about 5 thousand.  The enhanced intensity would make our measurement faster 

and increased signal-to-noise ratio.  

 

Figure 1. 5 The diffracted intensity at three different beamlines (DLS-I13, APS 
34-ID-C, ESRF ID01) using the same BTO nanocrystals. 

1.2.3 Beamline optics 

For different scientific purposes, various beamline optics could be applied. 

Monochromator can be termed as an energy filter. The coherence application of 

X-ray requires all the beam to have the same wavelength or photon energy. The 

X-ray generated from an undulator is the pink beam and need to be filtered by a 

monochromator. Both APS 34-ID-C and DLS I13-1 use the Si (111) double crystal 

monochromator (DCM). It consists of two silicon crystals setting parallel to each 

other. The incident X-ray beam is diffracted by 111 Bragg reflection of silicon, 

where the X-ray with exact wavelength will be collected at Bragg condition. A 
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second monochromator is used to both further filtering the energy and keep the 

X-ray beam to be straight. In the real case, the collimation of incident X-ray beam 

and crystal imperfection such as mosaicity would introduce the spread of X-ray 

beam, but silicon is close to perfect. The energy resolution for a typical Si (111) 

DCM is 2 × 10−4. 

As for focusing optics, because the real part of X-ray refractive index is small but 

very close to unity, it’s hard to effectively bend the X-ray beam. The focal length 

for a conventional lens would be too large to be practical. To achieve the bending 

of X-ray so as to focus the beam, various methods have been developed by either 

refraction, total external reflection or diffraction. 

(a) Compound refractive lens (CRL) 

Because one conventional lens cannot substantially bend X-ray due to refractive 

index, one way to get around is to use many lenses. The European X-ray Free 

electron Laser (XFEL) Materials Imaging and Dynamic (MID) beamline uses two 

CRLs (primary lens stack CRL-1 and secondary lens stack CRL-2) to focus the X-

ray beam. These CRLs are fabricated by drilling holes onto the beryllium block. 

The axes of these holes are coplanar, and the beryllium are used for low X-ray 

absorption. The advantage of CRL is easy alignment because it doesn’t divert the 

X-ray beam. The disadvantage is that the absorption and intensity loss. CRLs are 

used widely in XFEL, where the brilliance is strong enough to compensate the 

loss. It’s also used in synchrotrons like Diamond light source beamline I13-1.  

(b) Kirkpatrick-Baez (K-B) mirrors  

APS beamline 34-ID-C uses a pair of K-B mirrors to focus the pencil beam to 

around 600 nm in both horizontal and vertical direction [4-5]. Figure 1.6 shows a 

diagram of K-B mirror pairs with two cylindrical mirrors [6]. The X-ray beam 

comes at grazing angle and is reflected by the two mirrors placing horizontally 

and vertically, respectively. The advantage of such design including decoupling of 

vertical and horizontal focusing, small intensity loss and easily manufactured.  

(c) Parabolic/toroidal mirrors 
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Such two mirrors system can be reduced to one to minimize the length of mirror 

system. ESRF ID-09 use both parabolic and toroidal mirrors to focus the incident 

beam. Figure 1.6 shows a figure of the toroidal mirror used in ID-09, which has a 

light bending along the beam path and strong bending perpendicular to the beam 

path. However, such bending surface is hard to manufacture and often induce 

aberrations. 

(d) Fresnel zone plate (FZP) 

FZP uses diffraction instead of reflection or refraction to focus the beam and is 

widely used in photography. FZP consists of numerous circular gratings which 

works like the famous Young’s double slits experiment. The size of gratings can 

be controlled to be close to X-ray wavelength, so that the constructive 

interference can be achieved at a focal point downstream. The FZP has a good 

focal length which could go down to tens of nanometres. An order sorting 

aperture (OSA) is usually needed to define the beam after the FZP and before the 

sample. Diamond beamline I13-1 uses a 400 μm diameter FZP with 150 nm outer 

zone width and 20 μm OSA downstream [8].   

 

Figure 1. 6 (a) CRL made on diamond plate at ESRF. Image from [7] (b) KB 
mirror pairs. (c) Toroidal mirror. 

(a) (b) 

(c) 
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1.3 X-ray scattering at Rigaku Smartlab 

With the development of X-ray sources, so is the X-ray based methods and 

techniques. We are interested in using Lab-based X-ray diffractometer to 

determine the structure and quality of BaTiO3(BTO) thin film samples. 

Therefore, this section is focused on the thin film related scattering techniques: 

θ-2θ scans, rocking curve scan, small angle x-ray reflectivity scan and reciprocal 

space map. A manual for operating these scans is shown in appendix A and B.  

(a) θ-2θ Scan 

In this case, θ means the incident beam angle and 2θ means the diffracted beam 

angle. For a Rigaku Smartlab, the incident angle is ω instead. The 2θ and ω are 

moving in a symmetry manner relative to the sample stage. The offset ω angle is 

set beforehand and kept compensating the sample surface plane angle.  The 

standard epitaxial BTO thin films have tetragonal structure at room temperature 

with c axis pointing out-of-plane and a axis in-plane. Therefore, the θ-2θ scan is 

along 00L direction in reciprocal space. The two important pieces of information 

from a θ-2θ scan are the peak position and full width half maximum (FWHM), 

which correspond to the out-of-plane lattice constant and sample thickness, 

respectively. The peak position is related to the out-of-plane lattice constant via 

Bragg’s law, as shown in equation 1.11. The relation between FWHM of 

diffraction peak and sample thickness is derived in detail and shown below. 

Taking BTO thin film as an example and assuming there are N layers of 𝑑001, 

which form a certain thickness. The signal measured from the detector are the 

amplitude of X-ray, which can be derived as: 

|𝐴(𝑄)|  = |∑𝑒𝑖𝑄∙𝑟𝑗  

𝑗

| = |∑ 𝑒𝑖𝑄𝑗𝑑

𝑁−1

𝑗=0

| = |
1 − 𝑒𝑖𝑄𝑁𝑑

1 − 𝑒𝑖𝑄𝑑
| =

𝑠𝑖𝑛
𝑄𝑁𝑑

2

𝑠𝑖𝑛
𝑄𝑑
2

 (1.26) 

The amplitude will reach the maximum if the denominator of equation X equals 

to 0. This gives the condition for the peak centre position: 

𝑄1 =
2𝜋

𝑑
𝑛 (𝑛 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) (1.27) 
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The amplitude will decrease to zero if the numerator equals to 0. This gives the 

condition for the end of the peak: 

𝑄2 =
2𝜋

𝑁𝑑
𝑛 (𝑛 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) (1.28) 

Therefore, the full width half maximum of the centre peak (named ΔQ), or the 

full width of the fringes gives the sample thickness Nd by 

𝑁𝑑 =
2𝜋

𝛥𝑄
(1.29) 

Next inverse this equation to real space. Assuming the two angles at full width 

half maximum are 1 and 2, then 

𝛥𝑄 =
4𝜋

𝜆
(𝑠𝑖𝑛𝜃1 − 𝑠𝑖𝑛𝜃2) =

8𝜋

𝜆
 cos𝜃 𝑠𝑖𝑛

𝜃𝐹𝑊𝐻𝑀

2
(1.30)

Therefore, the sample thickness is given by: 

𝑁𝑑 =
𝜆

4cos𝜃 𝑠𝑖𝑛
𝜃𝐹𝑊𝐻𝑀

2

(1.31) 

This is the general equation for the sample thickness in thin film sample. In the 

limit of approaching 0, the thickness is expressed as 

𝑁𝑑 = lim
𝜃→0

𝜆

2𝜃𝐹𝑊𝐻𝑀cos𝜃
(1.32) 

This is similar to the Scherrer equation, which stated as: 

𝜏 =
𝐾𝜆

𝜃𝐹𝑊𝐻𝑀cos𝜃
(1.33) 

The Scherrer equation works for polycrystalline materials, where 𝜏 stands for 

the average grain size. K is a dimensionless shape factor to account for 

integration over a given crystal shape.  It can be used to minimize the difference 

between experiment and prediction.  

(b) Rocking curve scan  

Rocking curve scan is a scan over ω with fixed 2θ. Therefore, the rocking curve 

scan can follow H00 or 0K0 direction according to the sample stage rotation 

angle ϕ. A simple rocking curve scan perpendicular to 00L direction contains the 
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information of domain size. The domain size is the same discussed in θ-2θ scan 

above. The only difference is the direction has changed from 00L to either H00, 

0K0, or something in between. If the domain sizes are close enough and regularly 

distributed, this periodicity will also show up in a rocking curve scan as the 

fringes. 

(c) Reciprocal space map 

Reciprocal space map (RSM) is two-dimensional (2D) map instead of one-

dimensional (1D) scanning in the above two scans. Because the Rigaku Smartlab 

is equipped with 1D detector, this 2D mapping is acquired by a combination of θ-

2θ scan and rocking curve scan, either H step with L scans or L step with H scans. 

L direction contains the out-of-plane information while H scan contains the in-

plane information. Therefore, the RSM contains a combined information 

including out-of-plane lattice constant, in-plane lattice constant, in-plane domain 

periodicity, in-plane strain state.   

(d) X-ray reflectivity 

Small angle X-ray scattering is usually performed to measure the reflectivity of 

thin film sample. Due to the finite size effect, the resulting oscillations are related 

to the film thickness by: 

𝜃2 − 𝜃𝑐
2 = 𝑁2 (

𝜆

2𝑑
)
2

(1.34) 

1.4 Bragg coherent X-ray diffraction imaging 

The Coherent Diffraction Imaging (CDI) was first proposed by Sayre dating back 

to 1952 and Ian Robinson performed the first Bragg Coherent Diffraction 

Imaging (BCDI) experiment on Au nanoparticles in 1991 [9-10]. Through 20 

years development, BCDI is now a powerful X-ray technique for investigating the 

structures of nanocrystals in three dimensions on the 30 nm resolution scale 

using third generation synchrotrons.  The advantage of BCDI is its high 

sensitivity to the distribution of nanoscale strains inside the nanocrystal under 

investigation [11]. BCDI is a 3-D imaging method that is particularly valuable for 

probing the responses of individual nanosized crystal grains embedded in an in-
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situ environment, such as a polycrystalline material, a battery electrode, or a 

working catalyst particle [12-15].  

1.4.1 Prerequisites 

A BCDI experiment requires a coherent or partially coherent beam. The 

coherence of X-ray beam can be quantitatively determined by two coherence 

lengths: the longitudinal coherence length (temporal coherence length) and 

transverse coherence length (spatial coherence length) [16]. The longitudinal 

coherence length arises from the fact that the X-ray beam from the 

monochromator does not have a single wavelength, but rather a distribution 

over a range. The typical Si DCM working at (111) reflection, the wavelength 

distribution 𝛥𝜆
𝜆⁄  is about 1.3× 10−4. This results in a 500nm longitudinal 

coherence length.  The transverse coherence length is due to the X-ray source not 

being point-like, so that the incoming X-ray is not purely plane wave. For a 

coherence beamline like DLS I13, this length is larger than 30 μm. In order to 

secure the coherence of incoming X-ray beam, the sample size should be smaller 

than the coherence length.  

The other relevant length is the beam size, which can be adjusted by beam-

defining slits and focusing optics. The slits are set to equal the transverse 

coherence length, and the beam can be focussed smaller afterwards.  The sample 

size should be also smaller than the beam size in a BCDI experiment. For 

coherent optics, the focal size scales inversely with the entrance beam size, 

which can be adjusted for larger samples.  Typical JJ slits sizes and beam sizes at 

sample stage at APS 34-ID-C are given in Table 1.1. 

Table 1. 1 Horizontal and vertical slit sizes and their corresponding focus size at 
sample stage. Value measured by Wonsuk Cha. 

Horizontal slits 

(μm) 

Horizontal focus 

(nm) 
Vertical slit (μm) 

Vertical focus 

(nm) 

30 690 70 450 

25 810 60 550 

20 970 50 670 

15 1270 40 840 
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10 2500 30 960 

  20 1510 

  15 1960 

  10 3580 

 

1.4.2 Measurements and corrections 

After illumination by the coherent beam, the diffraction pattern is collected by an 

area detector at the far-field position around a Bragg peak. Generally, this is done 

by rotating the sample stage in small steps and collecting 2D diffraction patterns, 

which are then stacked into a 3D diffraction pattern. The fringes surrounding a 

Bragg diffraction peak, due to the external shape of the crystals, can be 

oversampled with respect to their spatial Shannon-Nyquist frequency [17].  

Several treatments are usually performed to raw diffraction patterns before 

feeding into the reconstruction scripts. Firstly, the white field corrections are 

needed to cancel out the variation due to the detector pixel sensitivity to the X-

ray radiation. For example, APS 34-ID-C uses ASI Quad (512x512) Timepix chips 

with GaAs absorber, which needs to be corrected using a white field.  Secondly, a 

dark field correction is done to remove the bad pixels on the detector. Thirdly, 

unwanted noise or diffractions from other crystals are cropped out.  Then the 

binning of raw data is sometimes needed to lower down the data size, so as to 

decrease the working load of phase retrieval.  Finally, zero padding can be used 

to adjust the pattern array size, which is also the size of reconstructed object 

array. 

1.4.3 Iterative phasing 

Because the detector in use only records the intensity of diffracted X-ray, which 

is the square of the amplitude, the phase information is lost in the measurement. 

To retrieve the missing phase, Sayre proposed to oversample the diffraction 

pattern at a frequency finer than 1 2𝑎⁄ , where a is the sample size [13]. As long as 

the question is overdetermined, there are two effective ways to get the phase 

back: One is through iterative phasing algorithms, which involve Fourier 

transforms between real space and reciprocal space back and forth. Figure 1.7 
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shows a typical phase retrieval loop. In this work, all the reconstructions are 

done through iterative phasing method. The other method is through machine 

learning, which does not involve Fourier transform [18].   

 

Figure 1. 7 A schematic showing of iterative phasing loop. Image remade from 
[17]. 

The iterative phasing starts with a guess support, which is an initial guess of the 

crystal shape. A prior knowledge of the sample shape could aid the convergence 

of the solution. Without prior knowledge, it is normally set to be a box with half 

the array size as a flat start. The starting support can also be a random object 

with any phase. This can be used to test the reproducibility of reconstructed 

results by vary the starting support.  The phase retrieval can also start from 

previous reconstructions or self-built support, which are used to deal with in-

situ battery data and LBCO single crystal in our previous works. 

After feeding into the loop, the initial support is transformed back and forth 

between two spaces while the constraints are applied. The reciprocal space 

constraint is the measured diffraction pattern amplitude, while keeping its 

phase. The real space constraint is where the different algorithms are applied. 

Table 1.2 listed some algorithms used in this work. Some algorithms have been 

published already [19-23]. The others were written and added into the 

reconstruction package by Jesse N. Clark. 

Table 1. 2 The descriptions of different algorithms. 

Algorithms Descriptions 



21 
 

ER [19] 𝜌𝑖+1=𝜌𝑖
′ ∙ 𝑆 

ERs 𝜌𝑖+1 = |𝜌𝑖
′ ∙ 𝑆|1/2 ∙ arg (𝜌𝑖

′ ∙ 𝑆) 

ER-AMP 𝜌𝑖+1 = |𝜌𝑖| ∙ arg(𝜌𝑖
′) 

SF [20] 𝜌𝑖+1 = (2 ∙ 𝑆 − 1) ∙ 𝜌𝑖
′ 

SF-h-ER 

Making shift of SF/ER based on iteration number. 
ER-h-SF 

ER-SF-ER 

ERSF 

GHIO 𝜌𝑖+1 = 𝜌𝑖
′ ∙ 𝑆 + (1 − 𝑆) ∙ (𝜌𝑖 − 𝛽 ∙ 𝜌𝑖

′) + 0.3 ∙ 𝑆 ∙ (𝜌𝑖
′ − 𝜌𝑖) 

HIO [19] 𝜌𝑖+1 = 𝜌𝑖
′ ∙ 𝑆 + (1 − 𝑆) ∙ (𝜌𝑖 − 𝛽 ∙ 𝜌𝑖

′) 

HIO-OR 
𝜌𝑖+1 = (1 + 𝛽 ∙ (𝜆 − 1)) ∙ 𝜌𝑖

′ + (𝛽 − 𝜆 − 𝛽 ∙ 𝜆) ∙ 𝑆 ∙ 𝜌𝑖 − 𝛽 ∙ 𝜆 ∙ 𝜌𝑖
′

+ (1 + 𝛽) ∙ 𝜆 ∙ 𝜌𝑖
′ ∙ 𝑆 

pcj-HIO 

𝜌𝑖+1 = (1 + 𝛽) ∙ 𝐽(𝜌𝑖
′, 𝑝ℎ𝑚𝑖𝑛, 𝑝ℎ𝑚𝑎𝑥) ∙ 𝑆 + 𝜌𝑖 − 𝛽 ∙ 𝜌𝑖

′

− 𝐽(𝜌𝑖, 𝑝ℎ𝑚𝑖𝑛, 𝑝ℎ𝑚𝑎𝑥) ∙ 𝑆 

𝐽(𝜌, 𝑝ℎ𝑚𝑖𝑛, 𝑝ℎ𝑚𝑎𝑥) is an operation for amplitude and phase. If 

the phase 𝑝ℎ is smaller than 𝑝ℎ𝑚𝑖𝑛, then the amplitude 𝑎𝑚𝑝 is 

written by 𝑎𝑚𝑝 ∙ 𝑐𝑜𝑠(𝑝ℎ − 𝑝ℎ𝑚𝑖𝑛) while the 𝑝ℎ would be written 

as 𝑝ℎ𝑚𝑖𝑛. If the phase 𝑝ℎ is larger than 𝑝ℎ𝑚𝑎𝑥, then the 

amplitude 𝑎𝑚𝑝 is written by 𝑎𝑚𝑝 ∙ 𝑐𝑜𝑠(𝑝ℎ − 𝑝ℎ𝑚𝑎𝑥) and 𝑝ℎ 

would be wrriten as 𝑝ℎ𝑚𝑎𝑥. Or else, the 𝑝ℎ and 𝑎𝑚𝑝 would keep 

unchanged.  

HIO-AMP 𝜌𝑖+1 = (1 + 𝛽) ∙ |𝜌𝑖| ∙ arg(𝜌𝑖
′) + 𝜌𝑖 − 𝛽 ∙ 𝜌𝑖

′ − |𝜌𝑖| ∙ arg(𝜌𝑖) 

HIOb 

𝜌𝑖+1 = (1 + 𝛽) ∙ 𝐵(𝜌𝑖
′ ∙ 𝑆, 𝑙, 𝑢) + 𝜌𝑖 − 𝛽 ∙ 𝜌𝑖

′ − 𝐵(𝜌𝑖 ∙ 𝑆, 𝑙, 𝑢) 

𝐵(𝜌, 𝑙, 𝑢) is an operation for amplitude boost. If the amplitude of 

𝜌 is between dot product of maximum amplitude with 𝑢 and 𝑙, it 

will be increased to the dot product of maximum amplitude with 

𝑢. 

HIOs 
𝜌𝑖+1 = (1 + 𝛽) ∙ |𝜌𝑖

′ ∙ 𝑆|1/2 ∙ arg(𝜌𝑖
′ ∙ 𝑆) + 𝜌𝑖 − 𝛽 ∙ 𝜌𝑖

′ − |𝜌𝑖 ∙ 𝑆|1/2

∙ arg(𝜌𝑖 ∙ 𝑆) 

HIOsr 
𝜌𝑖+1 = (1 + 𝛽) ∙ |𝜌𝑖

′ ∙ 𝑆|3/4 ∙ arg(𝜌𝑖
′ ∙ 𝑆) + 𝜌𝑖 − 𝛽 ∙ 𝜌𝑖

′ − |𝜌𝑖 ∙ 𝑆|3/4

∙ arg(𝜌𝑖 ∙ 𝑆) 
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HIOso 
Switch between HIO and HIOs. The default setting is to run one 

HIOs followed by four HIO. 

HIOd 

𝜌𝑖+1 = (1 + 𝛽) ∙ 𝐷(𝜌𝑖
′ ∙ 𝑆, 𝑝𝑜𝑤, 𝑡ℎ) + 𝜌𝑖 − 𝛽 ∙ 𝜌𝑖

′ − 𝐷(𝜌𝑖

∙ 𝑆, 𝑝𝑜𝑤, 𝑡ℎ) 

𝐷(𝜌, 𝑝𝑜𝑤, 𝑡ℎ) is an operation for amplitude. If the amplitude of 𝜌 

is larger than dot product of maximum amplitude with 𝑡ℎ, then 

the amplitude would be |𝜌 ∙ 𝑆|𝑝𝑜𝑤 ∙ arg(𝜌 ∙ 𝑆). If smaller, then the 

amplitude would be |𝜌 ∙ 𝑆|. 

HIOp 

𝜌𝑖+1 = (1 + 𝛽) ∙ 𝑃(𝜌𝑖
′ ∙ 𝑆, 𝑝𝑜𝑤, 𝑝𝑒𝑟𝑐) + 𝜌𝑖 − 𝛽 ∙ 𝜌𝑖

′ − 𝑃(𝜌𝑖

∙ 𝑆, 𝑝𝑜𝑤, 𝑝𝑒𝑟𝑐) 

𝑃(𝜌, 𝑝𝑜𝑤, 𝑝𝑒𝑟𝑐) is an operation for amplitude. It considers the 

size of the data array 𝑆𝑧. It takes the value of 𝑝𝑒𝑟𝑐 ∙ 𝑆𝑧 as the 

threshold. If the amplitude is larger than threshold, then the 

amplitude would be |𝜌 ∙ 𝑆|𝑝𝑜𝑤 ∙ arg(𝜌 ∙ 𝑆). If smaller, then the 

amplitude would be |𝜌 ∙ 𝑆|. 

HIOv 

𝜌𝑖+1 = (1 + 𝛽) ∙ 𝑉(𝜌𝑖
′ ∙ 𝑆, 𝑣𝑎𝑙) + 𝜌𝑖 − 𝛽 ∙ 𝜌𝑖

′ − 𝑉(𝜌𝑖 ∙ 𝑆, 𝑣𝑎𝑙) 

𝑉(𝜌, 𝑣𝑎𝑙) is an operation for amplitude. If the amplitude is larger 

than the dot product of maximum amplitude with 𝑣𝑎𝑙, then the 

amplitude would be set to average amplitude. Or else, the 

amplitude would be |𝜌 ∙ 𝑆|. 

RAAR [21] 𝜌𝑖+1 = 0.5 ∙ β ∙ ((2 ∙ 𝑆 − 1) ∙ (2 ∙ 𝜌𝑖
′ − 𝜌𝑖) + 𝜌𝑖) + (1 − 𝛽) ∙ 𝜌𝑖

′) 

RAARv 

𝜌𝑖+1 = 0.5 ∙ β ∙ (4 ∙ 𝐿(𝜌𝑖
′ ∙ 𝑆, 𝑙) − 2 ∙ 𝐿(𝜌𝑖 ∙ 𝑆, 𝑙) − 2 ∙ 𝜌𝑖

′ + 2 ∙ 𝜌𝑖) + (1

− 𝛽) ∙ 𝜌𝑖
′) 

𝐿(𝜌, 𝑙) is an operation for amplitude. It first normalizes 𝜌 and 

then multiple by 𝑙. Then it is rounded and normalized again.  

GRAAR 
𝜌𝑖+1 = 0.5 ∙ β ∙ ((2 ∙ 𝑆 − 1) ∙ (2 ∙ 𝜌𝑖

′ − 𝜌𝑖 + (𝜌𝑖 − 𝜌𝑖
′)) + 𝜌𝑖) + (1

− 𝛽) ∙ 𝜌𝑖
′) 

ASR [22] 𝜌𝑖+1 = 0.5 ∙ ((2 ∙ 𝑆 − 1) ∙ (2 ∙ 𝜌𝑖
′ − 𝜌𝑖) + 𝜌𝑖) 

HPR [23] 
𝜌𝑖+1 = 0.5 ∙ ((2 ∙ 𝑆 − 1) ∙ (2 ∙ 𝜌𝑖

′ − 𝜌𝑖 + (𝛽 − 1) ∙ 𝜌𝑖
′) + 𝜌𝑖 + (1 − 𝛽)

∙ 𝜌𝑖
′) 

MEM 
If it is the first iteration, then 

𝜌𝑖+1=𝜌𝑖
′ ∙ 𝑆 
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If it is not the first iteration, then 

𝜌𝑖+1 = 𝜌𝑖
′ ∙ 𝑒

−
|𝜌𝑖

′−𝜌𝑖|∙𝑆

〈|𝜌𝑖
′−𝜌𝑖|∙𝑆〉𝑚𝑎𝑥 ∙ 𝑆 

 

For illustration purpose, two ball shape crystals with radius of 16 pixels were 

built in 256×256×256 arrays. The first crystal (named Ball A) was assigned with 

zero phase inside. The second crystal (named Ball B), for comparison, assigned 

with +𝜋
2⁄  on one hemisphere and −𝜋

2⁄  phase on the other hemisphere.  The 

crystals were then fast Fourier transformed (FFT) back to the reciprocal space, 

where the phases were removed, and the amplitudes were squared to get the 

intensity. Figure 1.8 shows two crystals built and their corresponding diffracted 

intensity. 

 

 

Figure 1. 8 Two simulated ball-shape crystal are listed. (a) Ball A with no strain. 
(b) The central slice of the diffraction is shown. The diffraction pattern was got 

from FFT of crystal in (a). (c) Ball B with different strain on hemisphere is 
shown. (d) The central slice of pattern got from Crystal in (c). The colour bars in 

(a) and (c) shows the phase. 

The two typical ones in use are Error Reduction (ER) algorithm and Hybrid 

Input-Output (HIO) algorithm. In the ER algorithm, the amplitude of 

(a) (b) 

(c) (d) 
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reconstructed object is kept. The phase inside the object is also kept, but the 

amplitude and phase outside the support are set to 0. It has the advantage of fast 

convergence, but sometimes stagnates at local minima. While in the HIO 

algorithm, such amplitude and phase are decreased by a factor rather than going 

to 0. Practically, different algorithms are combined together to help avoid 

stagnation at local minima. Figure 1.9 shows one example of the error metrics 

changes through the reconstruction of the crystals in Figure 1.8. It has used a 

combination of ER and HIO algorithms for phase retrieval. Here the error metrics 

𝜒2 are defined in the reciprocal space, by comparing the measured diffraction 

pattern and the Fourier transform of the reconstructed objects: 

𝜒2 =
∑ ||𝐴𝑐𝑎𝑙𝑐(𝑖)|

2 − |𝐴𝑚𝑒𝑎𝑠(𝑖)|
2|𝑖

∑ |𝐴𝑚𝑒𝑎𝑠(𝑖)|2𝑖

(1.35) 

A similar definition can be drawn to depict the difference metrics 𝐷 between 

different reconstructions: 

𝐷 =
∑ ||𝐴𝑐𝑎𝑙𝑐1(𝑖)|

2 − |𝐴𝑐𝑎𝑙𝑐2(𝑖)|
2|𝑖

∑ |𝐴𝑐𝑎𝑙𝑐1(𝑖)|2𝑖

(1.36) 

 

Figure 1. 9 The error metrics of each iteration in a reconstruction using a 
combination of ER and HIO algorithms. The phasing starts with ER algorithm and 

triggers at iteration 10, 30, 40, 160, 201, 280. 
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The reconstruction results from other combinations of algorithms are shown in 

Table 1.3. All the reconstructions are valid solutions with a confidence related to 

the chi-square error metrics.  

Table 1. 3 The reconstructions of the crystals in Figure 1.8 using different 
combination of algorithms.  The typical 300 iterations were run with a default 

trigger [10, 30, 40, 160, 201, 280]. 

Algorithm 
Ball A Ball B 

Contour view Slice view Contour view Slice view 

ER+HIO 

Script 𝜒2 = 0.086% Script 𝜒2 = 0.175% 

    

ER+RAA
R 

Script 𝜒2 = 0.075% Script 𝜒2 = 0.39% 

    

ER+HPR 

Script 𝜒2 = 0.087% Script 𝜒2 = 0.29% 

    

ER+ASR 

Script 𝜒2 = 0.084% Script 𝜒2 = 0.15% 
  

 

 

 

Shrink-wrap (SW) can also be applied to help cropping out the low-density 

regions or noises in the reconstructed results [24]. It is a way to periodically 

update the support. One way to achieve this is transforming the support into 

reciprocal space, doing convolution with a shape function (usually gaussian 

kernel) and then transforming back to real space.  

Figure 1.10(a) shows the SW thresholds and their corresponding reconstruction 

error metrics of Ball A. The turning point at 0.39 is believed to be where the SW 
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starts to cut the crystal. Figure 1.10(b) presents the reconstruction result using a 

threshold of 0.25. Figure 1.10(c) shows the SW variation of Ball B, where the 

turning point is around 0.36. Figure 1.10(d) shows the reconstruction result of 

0.25 threshold. 

 

          

    

Figure 1. 10 (a) Error metrics variation when reconstructing Ball A using 
different SW threshold. (b) The reconstruction results of Ball A when using a 

shrink-wrap threshold of 0.25. (c) Error metrics variation when reconstructing 
Ball B using different SW threshold. (d) The reconstruction results of Ball B 

when using a shrink-wrap threshold of 0.25. 

Guided algorithms (GA) are also used in this work [25]. Instead of having one 

initial support, GA starts with several starting guess, or so-called populations. 

After each reconstruction block (called generations), it stopped and determine 

which is the best reconstruction result. The normally used criterions are chi 

square error metrics or sharpness. When the best result is determined, several 

supports are generated based on this result to feed into another generation and 

(a) (b) 

(c) (d) 
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do reconstruction again. Low resolution method is usually used in first several 

generations to help reach the global minima faster. 

The final reconstructed object is one set of the two conjugate results, as the two 

patterns with same amplitude and conjugate phase gives the same intensity. 

Therefore, the phase difference or derivative are more meaningful terms for 

discussion.  In some cases when the phase range is over 2π, a script can be 

applied to unwrap the phase, based on its continuity in 2 or 3 dimensions.  

To sum up, the phase retrieval is a case-to-case process. It works well for high-

quality diffraction patterns, but for less good patterns some parameters may 

need to be optimized. Also, because the phase retrieval is prone to give multiple 

solutions, it’s essential to always talk about the reconstructed results with their 

error metrics, usually the chi square defined above. 

1.4.4 Applications 

BCDI has the ability to probe the local displacement field and strain information 

inside the crystal with size up to 2 μm in typical beamline. It’s already been 

applied to various materials systems and brough new insights into different 

fields.  

(a) Amplitude and phase information 

For every reconstructed image, there are both amplitude and phase information 

embedded. The amplitude, or so-called Bragg density, is a depiction of the 

distribution of electron density. Therefore, it defines the crystal shape and 

morphology. It is also sensitive to some defects. The additional phase 

information is directly related to the lattice distortion as illustrated by Ian 

Robinson et al in 2009 [11].  The linear relationship between the phase and the 

displacement field is exploited to explicitly map out the displacement inside 

nanocrystals since then.  

Gold nanocrystals were widely studied partially because they have large atomic 

number and give strong diffraction single. Also, the crystal has only one element 

with a simple crystal structure. It’s a good model system to explore the ability of 

BCDI. Still, many interesting physics have been observed in these systems. Xiong 

et al studied the copper evaporation onto the dewetted gold nanoparticles and 
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carried out both spatial and temporal measurement [231]. The copper diffusion 

into the gold nanocrystal upon time was determined by observing the amplitude 

and phase map as shown in Figure 1.11. The atomic diffusion channels could also 

be seen in the amplitude map. 

 

Figure 1. 11 The reconstructed phase (left) and amplitude (right) images of Au 
nanocrystal upon diffusion of Cu atoms. The diffusion times are 0 hrs (a), 2 hrs 
(b), 4 hrs (c), 6 hrs (d), 8 hrs (e) and 10 hrs (f). The scalebar is 100nm. [231] 

(b) Probing dislocation 

Because the displacement field can be carefully measured through BCDI, the 

dislocation could be determined by fitting the displacement around low-density 

core in BCDI images with linear elastic model. Figure 1.12 shows an example of 

mapping out the movement of dislocations inside CaCO3 during growth and 

dissolution [14]. There are more dislocations forming during the growth of 

calcite crystal. However, during the dissolution, although the crystal volume 

shrinks a lot and back to the volume of initial stage, numerous dislocations still 

preserved inside.  
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Figure 1. 12 Defects network within a calcite crystal at initial stage (a), after 
growth (b) and dissolution (c, d) [14]. 

The ability to probe the dislocation was widely used in battery study. Figure 1.13 

shows an example of tracking the dislocation movement during charging of 

spinel LiNi0.5Mn1.5O4 materials. The dislocation lines were found to move around 

during charging, indicating their instability. By examining the displacement field 

around dislocation lines, their types are determined to be edge dislocation. 

 

Figure 1. 13 Dislocation movements upon charging in lithium battery. [15] 

(c) Strain mapping 

Another important direction is to precisely measure the strain fields inside 

nanocrystals by more than three non-coplanar Bragg peaks.  Figure 1.14 shows 

an example to use BCDI to study the effect of focused ion beam imaging on 

nanocrystal.  The full strain tensors of Au nanocrystal were measured and 

calculated, which is shown in Figure 1.14 (c) and (d). Combined with finite 
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element analysis shown in (e) to (g), it indicates the strain is coming from Ga+ 

implantation.  

 

Figure 1. 14 Full 3D lattice strain tensor after focused ion beam imaging. [232] 

1.5 Total scattering 

The total scattering method is used in this thesis for determining the local 

structure of crystalline materials [26]. The basis of the method is to measure or 

calculate the total scattering structure function 𝑆(𝑄), which is defined by: 

𝑆(𝑄) =
𝐼(𝑄)

[𝑏]2
(1.37) 

[𝑏] is the compositional averaged scattering amplitude of the atoms and 𝐼(𝑄) is 

the total intensity containing Bragg peaks, elastic and inelastic diffuse scattering. 

The Bragg peaks are rising from periodic long-range structure. The elastic diffuse 

scattering contains the static local structure, ranging from short-range order to 

medium-range order. The inelastic scattering contains moving atoms dynamics. 
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Other structure functions could also be defined. For example, the reduced 

structure function, F(Q), could then be defined: 

𝐹(𝑄) = 𝑄[𝑆(𝑄) − 1] (1.38) 

The atomic pair distribution 𝜌(𝑟) could be defined as:  

𝜌(𝑟) = 𝜌0𝑔(𝑟) =
1

4𝜋𝑁𝑟2
∑∑𝛿(𝑟 − 𝑟𝑢𝑣)

𝑣𝑢

(1.39) 

𝑔(𝑟) is called the atomic pair distribution function and 𝜌0 is the number density 

of atoms in the system of N atoms.  𝛿 is Dirac delta function.  

The widely used reduced pair distribution function, 𝐺(𝑟), is defined as: 

𝐺(𝑟) = 4𝜋𝑟𝜌0(𝑔(𝑟) − 1) (1.40) 

Radial distribution function could be further defined: 

𝑅(𝑟) = 4𝜋𝑟2𝜌(𝑟) = 4𝜋𝑟2𝜌0𝑔(𝑟) (1.41) 

From reduced structure function to reduced pair distribution function: 

𝐺(𝑟) =
2

𝜋
∫ 𝐹(𝑄) sin(𝑄𝑟) 𝑑𝑄

𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛

(1.42) 

From reduced pair distribution function to structure function: 

𝑆(𝑄) = 1 +
1

𝑄
∫ 𝐺(𝑟) sin(𝑄𝑟) 𝑑𝑟

∞

𝑂

(1.43) 

From reduced structure function to radial distribution function: 

𝑅(𝑟)

𝑟
=

2

𝜋
∫ 𝐹(𝑄) sin(𝑄𝑟)𝑑𝑄

∞

0

(1.44) 

All of these distribution functions have their advantages and history. From the 

simulated structure, one can calculate the distribution function and compare 

them with the experimental scattering data.  

The typical two sources to do these PDF experiments are X-ray and neutron 

sources. There are differences between neutron scattering and X-ray scattering, 

along with electron scattering.  Firstly, X-ray is an electromagnetic wave that 
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interacts with the electrons, so the intensity is strongly dependent on the atomic 

factor. Light atoms make very few contributions to the diffracted intensity in the 

presence of some heavy atoms. Neutrons is however a particle wave that 

interacts with the nuclei. This makes neutrons scattering very sensitive to light 

atoms. In this PMN system, the O will give a very strong scattered intensity in 

neutrons scattering but not X-ray scattering.  The second difference is that in X-

ray we usually use the atomic form factor to describe the electron cloud shape, 

which is dependent on Q. Such a factor and scattering intensity will decrease 

sharply at high Q. Therefore, it’s very hard for X-ray to get good quality data at 

high Q. However, the neutron doesn’t have such a high-Q limitation, so it usually 

gives very good signal and works better at high Q. However, at low-Q range, the 

neutron scattering usually suffer from the Fourier ripples or termination errors 

and sometimes give meaningless information. 
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Chapter 2. Barium titanate oxide as a ferroelectric material 

2.1 Polarization and ferroelectricity 

2.1.1 A brief history 

The understanding or even the discovery of the polarization related properties in 

materials takes a long time in history [27]. The pyroelectric phenomenon has 

been known for at least two thousand years, where it was first documented by 

the Greek philosopher Theophrastus [28-29]. The reason for this early discovery 

is that many natural materials show considerable pyroelectricity, such as 

tourmaline mineral [29]. The attempts to quantitatively study the pyroelectricity 

properties led to the discovery of piezoelectricity in 1880, when the Curie 

brothers realized the different pyroelectricity from uniform and non-uniform 

heating is caused by thermal stress [27,30]. The first ferroelectric material was 

reported in 1920, in which the polarization of Rochelle salt (NaKC4H4O6∙4H2O) 

was found to be reversible by external electric field [31]. But Rochelle salt has a 

complex structure containing four formula unit cells with 112 atoms, and it 

remained to be the only ferroelectric until the discovery of KH2PO4 (KDP) and its 

isomorphous crystals called KDP-ferroelectrics [32,33]. KDP series have a 

simpler crystal structure but involves hydrogen bond in the structure. Different 

possible arrangements of hydrogen lead to different orientation of (H2PO4) 

dipole units, so that the properties of KDP depends on the H-dynamic.  

Theories were proposed to explain the origin of their ferroelectricity and many 

considered the hydrogen bond to be the essential condition for polar instability 

to give ferroelectricity [34-36].  However, this assumption was displaced with 

the discovery barium titanate (BaTiO3, BTO) in the 1940s where no hydrogen 

bond exists in the crystal structure [37].  Due to the simplicity of its perovskite 

structure and its stability, BTO became one of the most studied ferroelectrics for 

decades. The big family of perovskite ferroelectrics also grew quickly, with 

PbTiO3 (PTO) reported in 1950 and Pb(ZrxTi1-x)O3 (PZT) discovered in 1952 

[38,39]. These materials remain to be the base materials for studying 

ferroelectricity until now.  With the growth of the ferroelectric family, so 

followed the application of ferroelectric materials. BTO, for example, is widely 

used for its superior dielectric constant in the electronics industry. Recently, the 
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ferroelectric random-access memory (FeRAM) has been developed for the low 

power usage and fast write performance. BTO is a suitable material for such 

kinds of application because it is both cheap and lead-free [40,41]. 

2.1.2 Structure origin of ferroelectricity 

Before entering a specific structure, it’s interesting to revisit the definition of 

some crystallographic terms. These terms are well documented in textbooks of 

different fields, but sometimes used in a confused manner.  

Table 2. 1 Crystallographic terms and their definitions. 

Terms Definitions [42-44] 

Crystal structure 

Often shorten to be “structure”. It’s the atomic distribution 

within a crystal. Only when neglecting all possible defects 

in the structure, should we consider the periodicity defines 

the lattice of the structure. 

Lattices 

An infinite set of geometric points (known as lattice nodes) 

that represent the translational symmetry of an ideal 

crystal. The number of possible lattices is infinite. 

Bravais lattices 

Description of geometric arrangement of lattice points, and 

therefore the translational symmetry of the crystal. There 

are 14 Bravais lattices in three dimensions: simple cubic, 

body-centred cubic, face-centred cubic, etc… 

Lattice systems 

(Lattice types) 

A grouping of lattices according to the axial system. There 

are 7 lattice systems in three dimensions: triclinic, 

monoclinic, orthorhombic, tetragonal, rhombohedral, 

hexagonal, cubic.  

Crystal systems 

A classification of lattice according to the point group. 

There are 230 unique 3-D space groups. These 

crystallographic space groups can be sorted into 7 crystal 

systems: triclinic, monoclinic, orthorhombic, tetragonal, 

trigonal, hexagonal, cubic. 
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Crystal families 

A combination of crystal systems. There are 6 crystal 

families in three dimensions: triclinic, monoclinic, 

orthorhombic, tetragonal, hexagonal, cubic. 

Geometric 

crystal class 

A classification of the symmetry groups of the external 

shape of macroscopic crystals. There are 32 geometric 

crystal classes in three dimensions. 

Arithmetic 

crystal class 

A combination of geometric crystal classes (32) and 

corresponding Bravais lattice types (14). There are 73 

arithmetic crystal classes in three dimensions. 

For example, the tetragonal structure has 7 geometric 

crystal classes: 4, 4̅, 4/𝑚, 422, 4𝑚𝑚, 4̅𝑚2, 4/𝑚𝑚𝑚; It has 

two Bravais lattice types: Primitive (𝑃) and Body centred 

(𝐼); This combines to 16 arithmetic crystal classes: 4P, 4I, 

4̅𝑃, 4̅𝐼, 4/𝑚𝑃, 4/𝑚𝐼, 422𝑃, 422𝐼, 4𝑚𝑚𝑃, 4𝑚𝑚𝐼, 

4̅2𝑚𝑃, 4̅𝑚2𝑃, 4̅𝑚2𝐼, 4̅2𝑚𝐼, 4/𝑚𝑚𝑚𝑃, 4/𝑚𝑚𝑚𝐼. 

 

Ferroelectricity is a characteristic of the crystal with two or more identical and 

spontaneous orientation states in the absence of electrical field. These 

orientation states, namely the electric polarization, can be reversed or change 

from one to another by an external electrical field. This reversibility of 

polarization is a unique feature of ferroelectricity, as all substances have 

electrostriction and could react to the field in a non-reversible manner. Of the 32 

geometric crystal classes, 11 classes are centrosymmetric with no polar 

properties, therefore appear neither ferroelectric nor piezoelectric. In the 

remaining 21 non-centrosymmetric geometric crystal classes, 20 of them exhibit 

the piezoelectric effect, that is the charge-stress coupling phenomenon. In these 

20 piezoelectric crystal classes, 10 of them have a unique polar axis with 

spontaneous polarization. Because these spontaneous polarizations are 

temperature dependent, the 10 crystal classes are termed as pyroelectric crystal 

classes. Ferroelectric crystal classes can be considered as the subgroup of 

pyroelectric classes, as all ferroelectrics show pyroelectricity. However, it is 

suggested not to solely define ferroelectricity using a purely crystallographic 
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definition because of the experimental limitations in two ways: 1) Polarization 

reversibility may not be seen even when a material is ferroelectric. For example, 

the crystal imperfections, the electric conductivities, the temperature and 

pressure all affect the reversibility of polarization. 2) Polarization reversal does 

not necessarily mean a material is a ferroelectric. For example, the polarization 

can arise from a metastable phase due to the temporary application of a 

switching field [27]. 

Perovskite ferroelectrics have a chemical formula of ABO3, where A and B are 

cations. In perovskite structure, there is a semi-empirical relationship known as 

Goldsmith factor or tolerance factor [45]. It calculates the geometry of atoms in 

cubic phase as: 

𝑡 =
𝑅𝐴 + 𝑅𝑂

√2(𝑅𝐵 + 𝑅𝑂)
(2.1) 

𝑅𝐴 and 𝑅𝐵 are the radius of A-site, B-site and oxygen ionic radii, respectively. If 

the tolerance factor is bigger than 1, it means the B-site cation is relatively 

smaller than A-site, so that it has more free space to move around in its oxygen 

octahedral cage. This smaller B-site is usually related to high dielectric or 

ferroelectric properties [46]. If tolerance factor is equal to 1, it means the A-site 

and B-site match in size perfectly. If tolerance factor is smaller than 1, it 

represents a smaller A-site relative to B-site and the A cation can move around 

its cage of oxygen neighbours. 

2.1.3 Phase transitions 

From low temperature to high temperature, most ferroelectrics would go from 

low symmetry to high symmetry lattices, although in some cases the highest 

symmetry phase is not achieved before the melting point. BTO has a perovskite 

structure, where the titanium cation sits at B site in the oxygen octahedral shell. 

The phase transition is presented in Figure 2.1(a), where it has a rhombohedral 

lattice (trigonal crystal system, R3m) at lower temperature, going into 

orthorhombic lattice (B2mm) at 203 K, and then to tetragonal lattice (P4mm) at 

278 K, and finally goes into cubic lattice (Pm3m) at 393 K [47]. The lattice 

constant changes over temperature are shown in Figure 2.1(b) [48]. 

Interestingly, there is a gap in transition temperature between heating and 



37 
 

cooling down. Such a transition delay is usually seen in glasses, where the 

disorder system needs time and activation energy to cooperate with the 

transition. While in BTO, the disorder is believed to come from the different 

alignments of spontaneous polarization.   

  

Figure 2. 1 (a) Phase transitions of BTO. Image from [47]. (b) The changes of 
lattice constant with temperature. Image from [48]. 

The ample phase transitions with different crystal systems lead to various 

properties. BTO shows ferroelectricity in rhombohedral, orthorhombic and 

tetragonal lattice systems, which are all termed as ferroelectric phases. The polar 

axes for the three ferroelectric phases are crystallographic 111, 110 and 100, 

respectively. BTO has no ferroelectricity in its cubic phase, at least globally, 

which is termed a paraelectric phase because its polarization responds linearly 

to the applied field.  

Different phase diagrams could be generated when varying one factor and 

controlling the others. Two examples are given in Figure 2.2. The first graph 

shows the phase transition temperature is decreased with the increase of 

pressure [49]. The second graph shows the changes of Curie temperature with 

in-plane strain when the BTO thin film has the c-axis pointing out-of-plane [28]. 

The solid line is the result from thermodynamic calculations, while the points 

inside the graph are experimental result. This tetragonal-cubic phase transition 

could increase to more than 800 K with a -1.7% in-plane strain. This substantial 

strain is acquired by carefully choosing the substrate lattice constant supporting 

a thin film and is hard to acquire in single crystal, where numerous mechanisms 

would happen to relax the large strain.  There are also phase diagrams for 

(a) (b) 



38 
 

domains, where different configurations of domain structures are of interest and 

mapped out [41].  

  

Figure 2. 2 General phase diagrams of BTO. (a) Experimental phase transition 
temperature as a function of pressure. The solid lines are guide for eyes. Image 

from [49] (b) Thermodynamic calculated and experimental cubic-tetragonal 
phase transition temperature (Tc) of (001) BTO thin film under biaxial in-plane 

strain. Image from [24]. The circles represent the results from reactive molecular 
beam epitaxy (MBE), while the cube represent the results from pulse-laser 
decomposition (PLD). The red colour denotes the BTO thin film grown on 

DyScO3 substrate, while the blue colour denotes the GdScO3 substrate. Images 
from [50]. 

2.1.4 Soft mode 

Microscopic models and lattice dynamics have helped to understand the nature 

of ferroelectric phase transitions. The structural phase transition is usually 

defined as being either “displacive” type and “order-disorder” type.  There is a 

longstanding discussion in the scientific literature about the relative merits of 

both models.  

(a) Displacive model 

The displacive model is straightforward, given the simplicity of perovskite ABO3 

structure. In the displacive model, the Ti4+ cation is displaced off-centre within 

the O2- anion octahedron. The phase transition occurs when this average position 

changes its symmetry. Figure 2.3 shows a typical image of how the Ti4+ 

displacement happens in BTO unit cells.  

The basis of displacive model could track back to 1950, when Slater proposed 

there is a long-range dipole force tending to destabilize the local high-symmetric 

configuration [51]. Now the model is built on the lattice dynamics, where one 

(a) (b) 
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lattice mode is considered to describe the displacive lattice instability [52].  

Generally, there are three deformations to consider: long wavelength 

homogeneous deformations (zone centre acoustic modes); long wavelength 

inhomogeneous deformations (zone centre transverse optical modes); short 

wavelength deformations (zone boundary optical modes). The long wavelength 

inhomogeneous mode involves the ionic motions of all constituent atoms, which 

is designated as the basic variable and is the so-called “soft mode” in a displacive 

phase transition.  

When getting close to the phase transition temperature 𝑇𝑐, the frequency of this 

soft mode substantially decreases. This is why it is called soft mode or freezing 

mode. Microscopically, the restoring force of vibrating positive and negative ions 

are lost or weakened when approaching the 𝑇𝑐. Therefore, the ions are displaced 

to new off-centre positions. The reducing soft mode frequency is described by 

Cochran’s law: 

𝜔𝑇𝑂
2 = 𝐶(𝑇 − 𝑇𝑐) (2.2) 

𝐶 is a constant and is 𝑇𝑐 is Curie temperature. In displacive model, the driving 

force of phase transition is the softening of the zone centre transverse optical 

mode.  

 

Figure 2. 3 Typical crystal structure of BTO. (a) Cubic phase unit cell. (b) 
Tetragonal phase unit cell with Ti4+ displaced upward. (c) Tetragonal phase unit 

cell with Ti4+ displaced downward. Image from [53]. 

(b) Order disorder model 

The order disorder model involves partially occupied sites and the symmetry of 

this occupancy. Figure 2.4 shows a typical eight-site order disorder model for 

BTO, which is proposed in 1968 by Comes [54,55]. In this model, the Ba2+ (A-

site) and oxygen can be treated as static, while the Ti4+ (B-site) has eight 
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crystallographic 111 positions to occupy.  The phase transition occurs when the 

breaking of occupational symmetry starts to happen. In an order-disorder phase 

transition, the soft mode as described in displacive model (zone centre 

transverse optical mode) does not change with temperature. However, another 

central mode describing the relaxation type excitation becomes strongly 

temperature dependent and showing damping, which can be used as a signature 

of order disorder type in spectroscopy [56]. This central mode frequency is 

linked with dielectric constant via the Debye relaxation relation. 

 

 

Figure 2. 4 Eight site model in a BTO unit cell. Image from [55] 

The phase transition in a specific ferroelectric can be one or a mixture of both 

types. For example, the ferroelectric transition in PTO is reported to be the pure 

displacive type [57]. Historically, BTO was thought to be a textbook displacive 

type ferroelectric. Now it is well accepted as a combination of displacive and 

order-disorder type material [58-60]. This is quite relevant to the local structure, 

which is discussed in detail in Chapter 2.5. 

2.1.5 Phenomenological theories 

Phenomenological calculations based on Landau-Ginzburg-Devonshire has 

proven to be useful in studying ferroelectrics, such as predicting the phase 

transitions and describing temperature dependent properties. Most of the phase 

field simulations are also implicitly based on the continuum theory underlying 

the LGD theory. It is a purely macroscopic theory equivalent to mean field theory, 

where it averages out the long-range interactions and fluctuations to reduce a 

many-body problem to a one-body problem.  
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(a) Landau theory 

Landau theory is a general theory for describing second-order phase transitions 

in 1937 but can also be extended to first-order phase transitions under external 

field as shown in later studies [61]. In Landau theory, the thermodynamic 

potential (or free energy, such as Gibbs free energy) of the system can be 

depicted as an analytic function of its order parameters, suitably defined. This 

function is then Taylor expanded in the form of different powers of order 

parameters near the phase transition temperature. This Taylor expansion only 

includes the even powers, as all the odd powers are omitted due to certain 

symmetries: 

𝐹(𝑇, 𝜂) − 𝐹0 =
1

2
𝑎(𝑇)𝜂2 +

1

4
𝑏(𝑇)𝜂4 +

1

6
𝑐(𝑇)𝜂6 + ⋯ (2.3) 

T is the temperature and η is the order parameter, which depicts the strength of 

perturbation linked to the structural change. This order parameter is 

constructed in such a way that it is non-zero in the low symmetry phase and zero 

in the high symmetry phase. 

The physical reason for this expansion is related to the soft mode described 

above. Because restoring force of a certain lattice mode becomes frozen or soft 

when approaching the phase transition, the amplitude of this mode becomes 

large enough to supress all other modes. The total energy is the sum of all lattice 

modes, as in the Debye theory. This total energy can be approximated as the 

expansion of the amplitude of just this soft mode when it becomes dominant 

[62].   

(b) Landau-Ginzburg-Devonshire theory 

Many extensions and applications of Landau theory have been proposed with 

regard to different systems. One of the famous extensions is Landau-Ginzburg 

theory, which serves as a mathematical description of superconductivity. The 

Landau theory was applied to describe ferroelectricity by Ginzburg in 1945 and 

Devonshire in 1949 independently [63]. Therefore, the developed 

phenomenological theory for ferroelectricity is called Landau-Ginzburg-
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Devonshire (LGD) theory. The crucial assumption for ferroelectrics, is to identify 

the order parameter as the polarization, thus the free energy can be written as: 

𝐹(𝑇, 𝑃) − 𝐹0(𝑇) = 𝛼1𝑃
2(𝑇) + 𝛼11𝑃

4(𝑇) + 𝛼111𝑃
6(𝑇) + ⋯− 𝐸𝑃(𝑇) (2.4) 

𝛼1 is temperature dependent, crossing zero at the phase transition, and usually 

takes the form of: 

𝛼1 =
𝑇 − 𝑇𝑐

2휀0𝐶0

(2.5) 

𝛼11 and 𝛼111 are higher-order dielectric stiffness coefficients at constant stress.  

When the electric field E=0, the polarization for the minimization of free energy 

can be calculated as 

𝑃2(𝑇) =
−𝛼11 + √𝛼11

2 − 3𝛼1𝛼111

3𝛼111

(2.6) 

Notably, this is a simple form in one dimension and considering only the 

polarization to be the order parameter. To depict a real ferroelectric system, 

more quantities need to be added [64-66]. For example, the elastic strain 

accounts for a zone-centre acoustic mode which causes the phase transition. 

However, it is not associated with the softening of polarization related zone 

centre optical mode. These factors can be added directly to the free energy 

expression and treated as secondary order parameters, because they are 

independent of the primary order parameter. If the polarization in three 

dimensions, the lattice systems with specific atoms and grain shape are treated 

in detail, then even more terms need to be considered [67,68]. In real case, 

certain modification of free energy expression is needed based on the question of 

interest.  

2.1.6 Physical Properties 

Both the soft mode theory and phenomenological LGD theory help to understand 

the properties of ferroelectric. Although the starting point is different, they do 

come to the same conclusion and show a inter connection. 

(a) Dielectric property 
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The dielectric permittivity can be directly calculated from LGD theory. If only the 

second power of polarization is considered, then the expression for free energy 

can be written as: 

𝐹(𝑇, 𝑃) − 𝐹0(𝑇) = 𝛼1𝑃
2(𝑇) − 𝐸𝑃(𝑇) (2.7) 

The minimum free energy takes place at: 

𝑃(𝑇) =
1

2𝛼1
=

휀0𝐶0

𝑇 − 𝑇𝑐
𝐸 (2.8) 

The dielectric permittivity can be calculated as: 

휀 = 휀𝑟휀0 = (1 + 𝜒)휀0 = 휀0 (1 +
𝐶0

𝑇 − 𝑇𝑐
) (2.9)  

The electric susceptibility in this equation is the famous Curie-Weiss law: 

𝜒 =
𝐶0

𝑇 − 𝑇𝑐

(2.10) 

Figure 2.5a shows an example of the dielectric constant over temperature for 

BTO, where dielectric constant reaches 4500 at room temperature and reaches 

the maximum value at the Curie point [47]. However, this value is strongly 

dependent on the grain size and other factors, as illustrated later in this Chapter. 

If the electric field is a harmonic alternating field, it can be expressed as: 

𝐸 = 𝐸0𝑒
𝑖𝜔𝑡 (2.11) 

Then the polarization is expressed as:  

𝑃 = 휀0𝜒𝐸0𝑒
𝑖𝜔𝑡 = 𝑃0𝑒

𝑖𝜔𝑡−𝜃 (2.12) 

The 𝜔 means angular frequency and theta is the phase shift. The electric 

susceptibility in this case is also frequency dependent and complex. The real part 

and imaginary parts are called dielectric dispersion and dielectric loss, 

respectively. 

The Curie-Weiss law can also be derived from the lattice dynamics point of view 

by either the displacive model or order-disorder model. Taking the displacive 
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model as an example, according to Lyddane-Sachs-Teller relation [69], the 

dielectric constants are connected to the optical phonon frequency: 

휀𝑠(𝑇)

휀∞
=

𝜔𝐿𝑂
2

𝜔𝑇𝑂
2 (𝑇)

(2.13) 

The 휀𝑠(𝑇) is static frequency of dielectric constant and 𝜔𝑇𝑂 is transverse optical 

mode frequency, both of which will change with temperature. The 휀𝑠 is the high 

frequency dielectric constant and 𝜔𝐿𝑂 is the longitudinal optical mode frequency, 

both of which can be viewed as constant over temperature. By substituting the 

equation 2.2, the Curie-Weiss law is obtained. 

Ferroelectric materials behave similarly to ferromagnets in the sense of 

hysteretic behaviour. Figure 2.5b shows the hysteresis loop of BTO at room 

temperature [70,71]. When the external electrical field is applied to the sample, 

the inner spontaneous polarization will align accordingly and become parallel to 

the field when saturated. When this external field is removed, the polarization of 

a paraelectric material would decrease to zero. However, for ferroelectric 

material, the polarization would decrease to a nonzero value. Additional negative 

field is needed in order to switch the polarization direction. This hysteresis loop 

is also time dependent. Figure 2.5c presents the hysteresis loops at different 

temperatures [70,72].  

(b) Piezoelectricity 

Piezoelectricity quantifies the interaction between stress and electric field, 

measured as the derivative of polarization with respect to stress, of which the 

𝑑33component is the most important [53]. Some good piezoelectric performance 

materials are Pb(ZrxTi1-x)O3 (PZT, 𝑑33=374 pC/N) and relaxor type single crystal 

such as (PbMg1/3Nb2/3)1-x-(PbTiO3)x (PMN-PT, 𝑑33=1500 pC/N) and 

(PbZn1/3Nb2/3)1-x-(PbTiO3)x (PZN-PT, 𝑑33=2200 pC/N) [73-76]. Single crystal 

BTO, however, has modest piezoelectricity at room temperature with 𝑑33=90 

pC/N along 001 crystal orientation, which is the polar axis in the tetragonal 

phase. A higher piezoelectricity with 𝑑33=190 pC/N can be achieved by applying 

a sufficiently large electric field along the 111 crystal orientation [77-79]. By 

heating the BTO crystal from room temperature to the tetragonal-cubic phase 
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transition temperature, the 𝑑33 value rises from 90 pC/N to nearly 350 pC/N for 

001 oriented BTO single crystals. While for 111 oriented BTO single crystals in 

the same temperature range, the 𝑑33 value decreases as temperature increases 

[78,80].  

  

 

Figure 2. 5 (a) The dielectric constant of BTO along a and c axes. Image from [47]. 
(b) BTO hysteresis loops at room temperature with high resolution. Image from 
[71]. (c) The change in BTO hysteresis loops with temperature. Image from [72]. 

Recently, exceptional high piezoelectric BTO ceramics are prepared by different 

sintering techniques or hydrothermal synthesis. The 𝑑33 value can now reach 

788 pC/N, making it a promising candidate for lead-free piezoelectric 

applications [81,82]. It’s generally believed that the grain size and the domains 

are responsible for these high piezoelectric responses, though there are 

controversial views of whether it is the domain wall or domain width that 

matters [83-86].  

Stress and strain are second rank tensors with 9 coefficients. Due to symmetry, 

only 6 of 9 coefficients are independent.  The strain, for example, is expressed as 

below: 

(a) (b) 

(c) 
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휀 = [

휀𝑥𝑥 휀𝑥𝑦 휀𝑥𝑧

휀𝑦𝑥 휀𝑦𝑦 휀𝑦𝑧

휀𝑧𝑥 휀𝑧𝑦 휀𝑧𝑧

] = [

휀𝑥𝑥 휀𝑥𝑦 휀𝑥𝑧

0 휀𝑦𝑦 휀𝑦𝑧

0 0 휀𝑧𝑧

] =

[
 
 
 
 
 
 
𝜕𝑢𝑥

𝜕𝑥

1

2
(
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
)

1

2
(
𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑥
)

0
𝜕𝑢𝑦

𝜕𝑦

1

2
(
𝜕𝑢𝑦

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑦
)

0 0
𝜕𝑢𝑧

𝜕𝑧 ]
 
 
 
 
 
 

(2.14) 

Such expression can also be written using number annotation: 

[

휀𝑥𝑥 휀𝑥𝑦 휀𝑥𝑧

0 휀𝑦𝑦 휀𝑦𝑧

0 0 휀𝑧𝑧

] ⇒

[
 
 
 
 
 
휀1

휀2

휀3
휀4

휀5

휀6]
 
 
 
 
 

(2.15) 

Stress and strain are quantitatively connected as: 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3
𝜎4

𝜎5

𝜎6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑄11 𝑄12 𝑄13

𝑄21 𝑄22 𝑄23

𝑄31 𝑄31 𝑄33

𝑄14 𝑄15 𝑄16

𝑄24 𝑄25 𝑄26

𝑄34 𝑄35 𝑄36

𝑄41 𝑄42 𝑄43

𝑄51 𝑄52 𝑄53

𝑄61 𝑄62 𝑄63

𝑄44 𝑄45 𝑄46

𝑄54 𝑄55 𝑄56

𝑄64 𝑄65 𝑄66]
 
 
 
 
 

[
 
 
 
 
 
휀1

휀2

휀3
휀4

휀5

휀6]
 
 
 
 
 

(2.16) 

where the 𝑄 matrix is the stiffness matrix. A similar reversed expression would 

link the strain with stress by compliance matrix S. The relationship is 𝑆 = 𝑄−1.   

Piezoelectricity is a third rank tensor with 27 coefficients but could only have 18 

distinct coefficients because of the symmetry of strain. Without electrical field, 

the polarization can be expressed as applied stress: 

[
𝑃1

𝑃2

𝑃3

] = [

𝑑11 𝑑12 𝑑13

𝑑21 𝑑22 𝑑23

𝑑31 𝑑32 𝑑33

𝑑14 𝑑15 𝑑16

𝑑24 𝑑25 𝑑26

𝑑34 𝑑35 𝑑36

]

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3
𝜎4

𝜎5

𝜎6]
 
 
 
 
 

(2.17) 

𝑃1, 𝑃2 and 𝑃3 are polarization along crystallographic x, y and z direction. Such 

abbreviation writing of stress tensor also simplified the piezoelectric 

coefficients, like 𝑑31 connects polarization  𝑃3 with stress tensor 𝜎1. This is the 

case where force is along x direction and the polarization is along c axis. 
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Similarly, without stress, the spontaneous strain can be express as applied 

electric field: 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3
𝜎4

𝜎5

𝜎6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑑11 𝑑21 𝑑31

𝑑12 𝑑22 𝑑32

𝑑13 𝑑23 𝑑33

𝑑14 𝑑24 𝑑34

𝑑15 𝑑25 𝑑35

𝑑16 𝑑26 𝑑36]
 
 
 
 
 

[
𝐸1

𝐸2

𝐸3

] (2.18) 

If further crystal symmetries are applied, then the independent piezoelectric 

coefficient would keep decreasing. For example, in cubic crystal lattice, all 

piezoelectric coefficients are zero. Considering the tetragonal BTO and picking 

up c-axis as the only polar axis, then the tensor matrix is simplified as: 

[
𝑃1

𝑃2

𝑃3

] = [
0 0 0
0 0 0

𝑑31 𝑑32 𝑑33

0 𝑑15 0
𝑑24 0 0
0 0 0

]

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3
𝜎4

𝜎5

𝜎6]
 
 
 
 
 

(2.19) 

Where 𝑑31=𝑑32 and 𝑑15=𝑑24.  

The physical meaning of these coefficients can be seen in Figure 2.6 [87]. 

   

Figure 2. 6 Measurements of different piezoelectric coefficient of a ceramic. (a) A 
measurement of coefficient 𝑑33. Both applied stress and polarization 

measurement are taking along Z3 axis. (b) A measurement of coefficient 𝑑31. 
Stress is applied along Z1 axis and the polarization is measured along Z3 axis. (c) 

A measurement of coefficient 𝑑15. Force direction is along Z3 axis but force 
normal is Z1 axis. The polarization is measured along Z1 axis. Image from [87]. 

2.1.7 Influencing factors 

As discussed above, the phase transition temperatures of BTO could vary a lot in 

literature, where various factors are reported to be influential. For example, the 

strain, pressure, the crystal size, and/or the perfection of the crystal could 

(a) (b) (c) 



48 
 

substantially change the transition temperature. This may take the form of 

different synthesis routes and processing techniques, which then involves defect 

chemistry, incorporation of foreign atoms, aggregation, porosity, residual stress 

and so on.  It is possible that the influence is coming through the domain 

structure of the crystal, which is affected by all these factors, and so we are 

interested to discover the cause-effect relationships.  Due to this complexity, it is 

not surprising that there are masses of scientific literature focused on this topic 

and sometimes it’s hard to compare the exact value, given that different papers 

are using different samples. However, it’s still useful to track the trend within 

each experiment, which would coincide with each other. Also, the dependent 

variables are intertwined themselves. 

Taking the tetragonal-cubic phase transition as an example, the Gibbs energy of a 

ferroelectric system is written as a series power expansion of polarization, as 

stated in LGD theory: 

𝐺 = 𝐺0 +
1

2
𝛽(𝑇 − 𝜃)𝑃2 +

1

4
ϒ𝑃4 +

1

6
𝛿𝑃6 (2.20) 

𝐺 is Gibbs energy; 𝑃 is polarization; 𝛽, ϒ and 𝛿 are phenomenological 

coefficients; 𝜃 is Curie-Weiss temperature. The tetragonal distortion can be 

quantified as tetragonality, which can be described as the square of polarization: 

𝜂 =
𝑐

𝑎
− 1 = 𝑘𝑃𝑠

2 (2.21) 

𝑐

𝑎
 is tetragonality, 𝑘 is the difference of the electrostrictive coefficients 𝑄11 − 𝑄12.  

The Curie transition temperature is also related to polarization, therefore can be 

described by tetragonality: 

𝑄

𝑇𝑐
=

𝛽

2
𝑃𝑠

2 +
1

4
(
𝜕ϒ

𝜕𝑇
)𝑃𝑠

4 =
𝛽

2𝑘
𝜂 +

1

4𝑘2
(
𝜕ϒ

𝜕𝑇
) 𝜂2 (2.22) 

𝑄 is the heat of transition and 𝑇𝑐 is the Curie temperature.  

Through these equations, it can be seen that the tetragonality (or tetragonal 

related strain), the spontaneous polarization and Curie temperature are directly 

connected for a given system.  
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The most studied factor in BTO is the size effect. The grain-size effect has been 

reported for more than 60 years, when Kniepkamp and Heywang talking about 

the dielectric properties of polycrystalline BTO [88].  This size effect has been 

under intensive studied especially after 1990, when both the preparation and 

characterization methods were well developed for studying miniaturization of 

BTO grains. From equations above, the tetragonality, the Curie temperature and 

spontaneous polarization are coupled together, therefore they will change in a 

similar manner as the size decreases.  

Tetragonality tends to show little change when the grain size is in or above 

micrometer size. When the grain size goes down to hundreds or tens of 

nanometer, the tetragonality would show a decreasing trend. Again, this 

decreasing curves with grain size varies from one study to another. Figure 2.7 

shows the tetragonality of different BTO samples. The first graph shows the 

tetragonality for BTO single crystal remains the same from 1 m down to 0.3 μm, 

when it starts to decrease [89]. The lattice system goes into cubic when the size 

is 0.12 μm. The second graph shows another study of BTO fine crystal [90]. This 

time the crystal still shows tetragonality over 1.004 when size is about 40 nm. 

The crystal goes into cubic phase suddenly when the size is 30 nm or less. What 

temperature? 

 

Figure 2. 7 The tetragonality changes with particle size. Image from [89,90]. 

Curie temperature is expected to be connected to tetragonality, as explained 

above. As the particle size decreases at a given temperature, the tetragonality is 

seen to decrease as well, so it is expected that the Curie temperature will be 

lower for smaller particles too. Figure 2.8a shows the Curie temperature changes 

(a) (b) 
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over tetragonality in BTO single crystal. When single crystal sizes go down to 

0.12 μm, the Curie temperature decreases to about 70° [90].  

 

Figure 2. 8 (a) Curie temperature differences and tetragonality difference as a 
function of grain size. Image from [61] (b) Polarization differences and Curie 
temperature differences as a function of different grain size. Image from [90]. 

Polarization also shows a decreasing tendency when the size goes down to sub 

micrometre range. Figure 2.8b shows the polarization as a function of crystal size 

and temperature. For this specific series of samples, the crystal with size of 0.4 

μm has no polarization at room temperature. When the size geos from 0.5 μm to 

2.0 μm, the polarization increases from 66000 esu/cm2 to more than 80000 

esu/cm2 [91].  

The dielectric constant of BTO is found to increase when the size goes from bulk 

down to micrometres and reaches a maximum at about 1 μm [92,93]. 

Temperature data of dielectric constant are shown in Figure 2.9 for particles of 

different sizes, decreasing from 1200 nm to 50 nm.  Smaller grain BTO particles 

have smaller dielectric constant. There are different reasons to explain the 

appearance of an optimum size, all related to the nanoscale structure. A first 

view is that there is a bigger mobility of domain walls at this particular size that 

leads to a maximum dielectric constant [93,94]. A second view is that it’s the 

twinning behaviour that determine the favourable size. When the crystal size 

decreases to micrometre, the minimization of residual strain results in a 

twinning structure becoming favourable. However, for the finest BTO crystals, 

with sizes down to hundreds of nanometres, the formation of domain wall 

becomes too costly compared to the volume transformation changes for 

transformation [95-97].  

(a) (b) 
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Figure 2. 9 The changes of dielectric constant of BTO crystals of different grain 
size with temperature. Image from [95]. 

The optimum “critical” size is thought to be the smallest size when the BTO 

particle could still preserve ferroelectricity [98]. Though the idea itself is 

controversial, there are supporting experimental results. As can be seen in the 

two examples in Figure 2.7, the critical sizes are 0.12 μm and 30 nm, 

respectively. The theoretical predicted critical length (thickness) for BTO thin 

film is 2.4 nm [99]. There are several phenomenological reasons to explain the 

appearance of critical size: 

1) Depolarization field could play a key role in this size dependent behaviour 

[100,101], unlike in the bulk crystal material, where numerous 

mechanisms exist to compensate the charge generated by polarization. 

When the crystal size keeps decreasing, it reaches a point where there is 

no way to compensate this charge.  Then the depolarization field could be 

sufficiently strong for the crystal phase to become unstable. The 

depolarization field can be described as: 

𝐸 = −
𝐿

휀0
𝑃 (2.23) 

The energy of depolarization field can be denoted as: 

𝑊 =
1

2
∫

휀

휀0
𝐿2𝑃2𝑑𝑉 (2.24) 

2) Charged defects are inevitable for chemically prepared BTO samples, 

where the hydroxyl ion could reside as defects on oxygen sites and result 

in cation vacancies for charge compensation [102,103]. This can be 

confirmed by spectroscopy, in which the narrowly spaced infrared 
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absorption bands are interpreted as the stretching mode for hydroxyl 

ions in the unit cell of tetragonal BTO [104,105]. Apparently, these 

charged defects could serve to stabilize the local polar ordering and might 

be expected to disturb the phase transition. 

3) The effect of elastic constraint could also make a play in this critical size 

effect. As described above, when the grain size decreases to sub-micron 

size, the crystals are substantially untwined due to the increasing domain 

wall energy cost. From our BCDI experiments in Chapter 3 for the nominal 

200nm BTO particles, the twin structure happens in less than one-seventh 

of the crystals. When the size goes to the limit, the transformation strain 

could be prevented even if there is a transformation driving force.  

Anyway, the reasons behind the critical size haven’t come to a consensus, which 

is one of our pursuits in the current and future studies.  

2.2 Ferroelectric domain structure 

“Domain” is a term to describe a region of crystal having the same order 

parameter. In ferroelectrics, this order parameter is spontaneous polarization. 

Before stepping into the specific domain structures, the techniques to visualize 

the domains are described first. The two most widely used techniques are 

scanning electron transmission microscopy (STEM) and piezo response force 

microscopy (PFM), both of which are good at dealing with thin film samples.  

2.2.1 Characterization techniques 

To map out the atomic polarization for thin film sample, high-angle annular 

dark-field (HAADF)-STEM is often performed, where an annular dark-field 

detector is put at high angle to measure the incoherently scattered electrons. 

Such intensity is proportional to the square of the atomic number (Z2) with good 

accuracy [106], which is why HAADF is often called “Z-contrast” TEM. Two-

dimensional (2D) gauss fitting is usually applied to determine the atom central 

position, by which the relative displacement between different types of atoms 

can be extracted. 

HAADF-STEM images of typical perovskite SrTiO3 (STO), BaTiO3 (BTO) and 

PbTiO3 (PTO) are shown in Figure 2.10. The atomic numbers for strontium, 
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barium, lead and titanium are 38, 56, 82, 22, respectively. The strontium and 

titanium atomic number are closer, so that the contrast is less obvious. Both 

atoms, as ions, show bright spots in the STEM image and the oxygen ions can also 

be visible as dark points in Figure 2.10a [107]. The polarization direction can be 

described as the titanium atom displacement relative to oxygen. 

Figure 2.10b presents the STEM image of BTO. The barium atomic number is 

twice larger than the titanium, thus barium atom appears to be much brighter 

than titanium in STEM image [108]. Although in some cases, the Ti-O columns 

can be clearly seen, but for the other conditions only barium and titanium ions 

can be identified with confidence. Therefore, it’s more natural to compare the 

displacement between barium and titanium ions. The polarization is interpreted 

as being along the direction where the titanium ion is displaced relative to 

barium ion. 

 

 

Figure 2. 10 HAADF-STEM images of classical ferroelectrics. (a) STEM image of 
STO where the polarization can be identified as parallel to titanium displacement 
to oxygen. Image from [107]. (b) STEM image of BTO, where the polarization can 

be seen as parallel to the titanium displacement with respect to barium. Image 
from [108]. (c) STEM image of PTO, where the polarization is viewed as anti-
parallel to the titanium displacement with respect to lead. Image from [109]. 

As for PTO shown in Figure 2.10c, lead atom number is nearly four times bigger 

than titanium, which make the contrast even larger [109]. In PTO, the valence s 

electrons of lead tend to form some directional bonding with oxygen p-orbital. As 

(a) (b) 

(c) 
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a result, the PbO12 cage has Pb-O bonding distances of 2.54 Å, 2.80 Å and 3.2 Å. 

Titanium is also displaced within the TiO6 octahedral cage with bonding 

distances of 1.78 Å, 1.97 Å, and 2.37 Å [110]. The polarization direction is the 

lead ion displacement direction relative to titanium.  

Gradient phase analysis (GPA) is a quantitative method to map out the 

displacement and strain field of crystal lattice based on high resolution STEM 

image. As illustrated in [111-113], GPA takes the advantages of both real-space 

and reciprocal-space information. The intensity distribution in a STEM image can 

be described as a Fourier series: 

𝐼(𝑟) = ∑|𝐻𝑔(𝑟)𝑒2𝜋𝑖𝒈∗𝒓|

𝑔

(2.25) 

𝐼(𝑟) is the intensity of the STEM image at position 𝑟. 𝑔 is the undistorted lattice 

reciprocal lattice vector, or the periodicity corresponding to the Bragg reflection. 

Practically, the operation is Fourier transform the STEM intensity image back to 

reciprocal space to get diffraction pattern. The Fourier coefficient 𝐻𝑔(𝑟) is a 

complex value where the phase is preserved in GPA. It can be viewed as the local 

Fourier component, can be obtained by Fourier filtering by: 

𝐻𝑔(𝑟) = 𝐴𝑔(𝑟)𝑒𝑖𝑃𝑔(𝒓) (2.26) 

Amplitude 𝐴𝑔(𝑟) is associated with the local contrast of lattice fringe; Phase 

𝑃𝑔(𝑟) is the lateral position of the lattice fringes. The phase 𝑃𝑔(𝑟) can be further 

deduced to describe the displacement field 𝑢(𝑟) by: 

𝑃𝑔(𝑟) = 2𝜋𝑔 ∙ 𝑢(𝑟) (2.27) 

By measuring two phase images 𝑃𝑔1(𝑟) and 𝑃𝑔2(𝑟) from two non-colinear 

reciprocal space vectors 𝑔1 and 𝑔2, the two-dimensional displacement field 

𝑢2𝐷(𝑟) can be fully determined as: 

𝒖2𝐷(𝒓) = −
1

2𝜋
(𝑃𝑔1(𝒓)𝑎1 + 𝑃𝑔2(𝒓)𝑎2) (2.28) 

𝑎1 and 𝑎2 are the real space lattice vector, as corresponding to the reciprocal 

space vector 𝑔1 and 𝑔2. If we project displacement field onto x direction 
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(𝒖2𝐷𝑥(𝒓)) and y direction (𝒖2𝐷𝑦(𝒓)), then the 2D strain tensor can be further 

deduced as:  

휀 = [
휀𝑥𝑥 휀𝑥𝑦

휀𝑦𝑥 휀𝑦𝑦
] =

[
 
 
 
 
𝜕𝒖2𝐷𝑥(𝒓)

𝜕𝑥

𝜕𝒖2𝐷𝑥(𝒓)

𝜕𝑦

𝜕𝒖2𝐷𝑦(𝒓)

𝜕𝑥

𝜕𝒖2𝐷𝑦(𝒓)

𝜕𝑦 ]
 
 
 
 

(2.29) 

Thus, the intensity distribution in a STEM image can be linked quantitatively to 

the displacement and strain field. Nowadays the GPA is a common plug-in in 

commercial TEM.  Figure 2.11 shows the GPA study of an edge dislocation in 

silicon [112].  

 

Figure 2. 11 Geometric phase analysis of an edge dislocation. (a) High resolution 
electron microscope image in 11̅0 orientation. (b) 110 lattice fringes by Fourier 

filtering. (c) 111̅ lattice fringes by Fourier filtering. (d) Phase image of  110 
lattice fringes. (e) Phase image of 111̅ lattice fringes. Image from [112]. 

Another widely used method for looking at perovskite thin films is the Piezo 

response Force Microscope (PFM). It is one of the variants of the big Scanning 

Probe Microscopy (SPM) family including Atomic Force Microscopy (AFM) and 

Scanning Tunnelling Microscopy (STM). There are clear differences among those 

techniques: AFM is a mechanical detection method, where the tip-surface force is 

measured through the mechanical motion of cantilever [114,115]. There are 

many works presenting nice surface roughness images mapped out by AFM; STM 

is a current detection method, which is sensitive to tip-bias voltage; PFM is an 

electromechanical detection method, where an electric bias is generated by 

applying a current to the tip, and surface deformation is then captured.   
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PFM is first proposed by Gruverman in 1996, before which there are already 

some works proposing the principle of PFM in AFM and STM systems [116].  The 

most basic mode of PFM is the static mode, where a direct current is applied to 

the sample surface. The field induced strain along the field direction can be 

expressed as:  

𝑍 = ±𝑑33𝑉 (2.30) 

where the domain will expand if the polar axis is along the field direction and 

contract if opposite.  

Due to poor sensitivity to the static piezo response, the static mode has limited 

used in real cases. Instead, a dynamic mode is preferred, which uses an 

alternating current to increase the sensitivity by three orders of magnitude.  This 

is now the ‘basic’ setup in commercial PFM. In such case, if the electric field is 

Vcos(t), then the first harmonic component of surface vibration (or surface piezo 

response) is measured in the form of amplitude Acos(t+). Figure 2.12 

schematically shows the working modes of PFM including the vertical PFM 

(VPFM) and the lateral PFM (LPFM) [117].  

For the VPFM, only the cantilever deflections are measured, which corresponds 

to the vertical (out-of-plane) force. Thus, the VPFM is sensitive to the 

polarization component that pointing out-of-plane. The amplitude of VPFM 

image can be expressed as 𝑑33𝑉, which is proportional to piezoelectric 

coefficient 𝑑33.  While the sign of phase in VPFM denotes the polarization 

direction of domains. The plus means the polarization is in the same direction 

with electric field, while the minus means opposite.  

For the LPFM, only the torsion of the cantilever is measured, which relates to the 

in-plane polarization. The amplitude of VPFM image is linearly related to the 

shearing piezoelectric coefficient in the form of 𝑑15𝑉. The phase also means the 

direction. To map out the whole 3D polarization distribution, two perpendicular 

LPFM measurements are required, together with one VPFM measurement.  
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Figure 2. 12 Possible movements of the cantilever due to forces acting on the tip. 
Image from [117]. 

However, in most real cases, the ferroelectric thin films are polycrystalline, 

containing domains that have different orientations. Under such condition, the 

amplitude map is coupled to all the piezoelectric coefficients that are relevant. To 

solve for the polarization in such conditions, it’s useful to set up two sets of 

coordinates: tensor in laboratory coordinates 𝑑𝑖𝑗  and crystallographic 

coordinates 𝑑𝑖𝑗
′ . They are connected with a general Euler rotation matrix (𝜃, ϕ, 

φ). For example, in tetragonal structure where the piezoelectric tensor is 

simplified in equation X.X, the response coefficient can be expressed as follows: 

𝑑33 = [(𝑑31
′ + 𝑑15

′ )𝑠𝑖𝑛2𝜃𝑐𝑜𝑠𝜃 + 𝑑33
′ 𝑐𝑜𝑠3𝜃]𝑉 (2.31) 

Again, PFM is only a qualitative method to image the domain configuration in 

thin film samples. Over decades, many advanced methods have been developed 

for better accuracy and signal-to-noise ratio (SNR). For example, in resonant 

mode, the cantilever working at a frequency close to its natural resonance can 

acquire a larger amplitude at a higher efficiency [118]. This resonance can be 

either predefined, or experimentally determined at every position before 

measurement using a feedback loop. This is the so-called Dual Amplitude 

Resonance Tracking method (DART) [117,119].  

2.2.2 Classical domain structure in ferroelectric 

The driving force of the domain formation is a pair of competing energies: the 

energy cost of the domain wall formation and the energy gain from domain 

formation [120]. The energy from domain formation 𝐸1 can be expressed as: 

𝐸1 = 𝑈𝑤 (2.32) 
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𝑈 is energy volume density (constant); 𝜎 is the energy density of domain wall 

(constant). If thin film is considered, where there is a one-dimensional size 

limitation, the wall energy density of unit area 𝐸2 can be expressed as: 

𝐸2 =
𝜎𝑑

𝑤
(2.33) 

The total energy is the sum of two terms, which is given by: 

𝐸 = 𝐸1 + 𝐸2 = 𝑈𝑤 +
𝜎𝑑

𝑤
(2.34) 

This total energy reaches the equilibrium at  

𝑑𝐸

𝑑𝑤
= 0 (2.35) 

This gives the relation: 

𝑤2 =
𝜎𝑑

𝑈
(2.36) 

Here, the 𝑤 means the domain width or domain size; the 𝑑 means the sample 

thickness in thin film sample. Kittel first proposed this square-root relation of 

domain size to thin film thickness in magnetic system, where the 𝑈 stands for 

magnetostatic energy volume density [121,122]. Mitsui and Furuichi applied this 

equation in ferroelectrics, in which the 𝑈 stands for electric energy density per 

unit volume [123]. Now this square-root relation is widely termed as Kittel’s law. 

Notably, the above equation is a simplified version of the derivation of Kittel’s 

law. If a specific system is treated, more accurate expression of 𝑈 can be formed. 

For example, Kittel’s law for 180° domain stripes can be expressed as [124]: 

𝑤2 =
𝜋3휀0(1 + √휀𝑥휀𝑧)

8.42𝑃2
 𝜎𝑑 (2.37) 

휀0 is the dielectric constant of vacuum, 휀𝑥 and 휀𝑧 are the dielectric constants 

along a and c axes, respectively.  

The Kittel’s law is derived for thin films where two dimensions are infinite but 

found to be universal in other geometries. An extension of Kittel’s law to single 
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crystal can be made with the assumption that the crystal is a cube with six 

parallel facets. This is shown as follow: 

𝑤2 =
√2𝜎

2 (
𝑈𝑥

𝑑𝑥
+

𝑈𝑦

𝑑𝑦
+

𝑈𝑧

𝑑𝑧
)

(2.38)
 

Here, the 𝑈𝑖(𝑖 = 𝑥, 𝑦, 𝑧) means the contributions of volume energy density from 

the domain facets along 𝑖 direction. The size of a domain along the 𝑖’th direction 

is denoted as 𝑑𝑖(𝑖 = 𝑥, 𝑦, 𝑧). This square-root relation could work as a guideline 

for the domain size but does not mean to be quantitative or accurate. In a real 

sample, a deviation from this square-root relation is commonly seen, where the 

sample size and shape are reported to make a big difference [125,126].  

Generally, the domain walls that are formed in ferroelectrics can be divided into 

two types: pure ferroelectric domain walls and ferroelastic domain walls. The 

pure ferroelectric domain walls separate 180° domains, where the polarizations 

between adjacent domains are anti-parallel to each other, as shown in Figure 

2.13a.  The ferroleastic domain walls are also ferroelectric but involve changes of 

elastic strain upon formation. The ferroelastic domain walls are structurally the 

same as twin boundaries, where the two adjacent domains have mirror 

symmetry near the domain wall. The types of ferroelastic domain walls are 

determined by lattice system, not the specific atoms. For the Perovskite 

tetragonal phase, only 90° ferroelastic domain is allowed; for the orthorhombic 

phase, 60°, 90° and 120° ferroelastic domains are allowed. As for rhombohedral 

phase, 71° and 109° domains can be formed. These angles are commonly used 

for naming the ferroelastic domain walls, however, the angle is approximate with 

an accuracy of ~1° because it is based on the exact lattice parameters of the 

material. In BTO for example, if the lattice constants are set to be a=3.99Å and 

c=4.03Å, then the exact ferroelastic angles are [127] 

𝛼 = 𝑎𝑟𝑐𝑡𝑟𝑎𝑛 (
𝑐

𝑎
) = 90.57°  or  𝛽 = 180° − 𝛼 = 89.43° (2.39) 

Figure 2.13b shows a sketch of 90° ferroelastic domains in tetragonal lattice. 
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Figure 2. 13 Sketches of domain wall. (a) 180° domain walls (b) 90° domain 
walls. 

In thin film samples, where the boundary conditions can be carefully tuned, the 

domain configuration in-plane and out-of-plane is of great interest and leads to 

the so-called domain engineering. This interesting topic will be discussed further 

below in our future plans section. 

2.2.3 Flux-closure domains and vortices 

Recently, there has been a trend to locate and quantify new topological 

structures in ferroelectrics, which are the equivalent of important magnetic 

analogue configurations, because these may have great potential for functional 

electronic devices [101]. Topological structures are caused by manipulation of 

local degrees of freedom (DOFs) such as lattice, charge, spin and orbit. In 

ferroelectrics, however, the spin and orbit DOFs do not make any noticeable 

contributions, so the DOFs of these systems are dominated by lattice and charge 

DOFs. These freedoms are linked with energy, where the lattice DOF is the 

competition of elastic energy, while the charge DOF consists of electrostatic 

energy and polarization gradient energy [128,129].  To form a flux-closure 

domain, theoretical works suggest the depolarization field plays a key role. 

Under large residual depolarization fields, which is equivalent to poorly screened 

charge conditions, classical polydomain are favoured, such as 90° and 180° 

domains in tetragonal BTO. If the depolarization field is too small, the material is 

effectively screened and the monodomain is favoured. Therefore, to form a 

rotational polarization domain, a proper depolarization field is required 

[130,131]. 

Although vortices have been well studied in magnetic materials, their equivalent 

polar vortices in ferroelectrics are poorly understood. Even the existence of 

(a) (b) 
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polar vortices or it’s prerequisite flux-closure domain were debatable and used 

to be a big unknown question. The initial theoretical study that supported the 

existence of flux-closure domains was published only in 2004 [130]. This used 

first-principles Monte Carlo simulation to study the polarization field in PZT 

films under a residual depolarization field and a pretty large compressive strain 

(-2.65%), as shown in Figure 2.14. Under such strict conditions, the authors 

managed to see polar vortices in the side view. In 3D, these vortices build up 

uniform lateral vortex tubes. Ivan et al. also uses ab initio simulations to study 

PZT nano disk and nanorod confined structures, in which they found vortices at 

64K [132].  

 

Figure 2. 14 Simulated polarization in PZT thin film under -2.65% compressive 
strain. Image from [130]. 

After these theoretical predictions, some indirect experimental results followed. 

For example, in 2009, BTO nanodots with self-defined stripes were reported 

using TEM, as shown in Figure 2.15 [133]. These BTO nanodots are created by 

focused ion beam (FIB) milling of a bulk single BTO crystal. The author tried to 

explain these stripe features as some hierarchical twin boundaries that oriented 

in a self-confined way. 

 

Figure 2. 15 HAADF-STEM image of BTO nanodots and a sketch for possible 
domain configuration. Image from [133] 
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Rodriguez et al reported characteristic features of PZT nanodots via PFM also in 

2009, as shown in Figure 2.16 [134]. They also build a nanodot of 7.6 nm × 2.4 

nm in size with -0.9% compressive strain and simulated their VPFM and LPFM 

image. Such resemblance between experimental results and simulation suggests 

a possibility of vortices. 

      

Figure 2. 16 The left graph is the PFM results of BTO nanodots. (a) VPFM 
amplitude image; (b) VPFM phase image; (c) LPFM amplitude image; (d) LPFM 

phase image. The right graph is the simulation results, including the polarization 
order, the VPFM amplitude and LPFM phase. Image from [134] 

In 2010, McGilly et al reported possible vortices in BTO lamellae, where two 

arrays of twin domains form a zigzag structure at interface [135]. Such a zigzag 

structure is obvious in STEM image in Figure 2.17, but it failed to show up in the 

corresponding PFM image.   

    

Figure 2. 17 The left graph shows the STEM image of the zigzag structure. The 
middle graph shows a sketch of the polarization order at interface. The right 

graph shows the PFM image. Image from [135] 

Later in 2010, the same group reported seeing flux closure domain with sizes up 

to micrometres [136]. Figure 2.18a shows the LPFM result on BTO lamella. This 

single crystal had been fully switched to a-c domains by application of sufficient 
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electrical field. After the electric field was removed, they found the domain 

structures in BTO relaxed gradually. Figure 2.18b shows LPFM of a partially 

relaxed structure, where 180° in-plane domains are forming. After relaxing the 

sample for a few hours, the structure gradually evolved into that shown in Figure 

2.18c. In two orthogonal LPFM images, four-fold flux closure domains can be 

seen.  

 

Figure 2. 18 (a) LPFM result of BTO lamella. (b) LPFM of a partially relaxed BTO 
lamella. (c) LPFM image of BTO lamella after several hours of relaxation. Image 

from [136] 

A further breakthrough came in 2011. Taking advantage of HAADF-STEM, 

directional views of flux-closure domains were obtained with sub-angstrom 

resolution. Figure 2.19 shows the TEM image of a typical flux closure domain in a 

BiFeO3 (BFO) thin film grown on TbSsO3 (TSO) substrate. BFO has an 

orthorhombic structure at room temperature, so the elastic domains are 109° 

relative to each other. Figure 2.19a shows one 109° domain. Figure 2.19b show a 

complete flux-closure domain, consisting of two 109° elastic domain walls and 

two 180° electrical domain walls [137]. Although such structures show little 

curvature of polarization except at the boundary, which is still far different from 

vortices, it is still a breakthrough to see that a flux closure domain can be formed 

by carefully selecting the materials and construction them into complex 

multidomain arrangements. A similar work is also published that year, shown in 

Figure 2.19c [138], is a three-fold vortex measured in a PZT thin film. Although in 

the title the authors called it a continuous electric dipole rotation, actually the 

only place seen to be rotating is the small block on the bottom.   

(a) (b) (c) 
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Figure 2. 19 HAADF-STEM image showing flux-closure domains. Images from 
[137,138] 

In 2015, flux-closure domains in PTO were discovered in a complex STO(10 

nm)/PTO(36 nm)/STO(3 nm)/PTO(28 nm)/GSO system [139]. The GPA of the 

thin film shows a regular distribution of out-of-plane strain tensor. Selected 

areas were chosen for mapping the atomic arrangements, shown in Figure 2.20. 

Although the authors call these “flux closure quadrants”, the flux is not closed in 

the sense that they only rotate 270° in the images. But again, finding these 

rotational domains in the PTO/STO system is already a breakthrough, which 

serves like a platform or playground in ferroelectric study.  By learning the 

possible local topological structures, it can be envisaged that general design rules 

could be elaborated to create larger configurations for specific purposes in the 

future. 

 

Figure 2. 20 Flux closure domains in PTO/STO thin film. (a) HAADF-STEM image. 
Zoom-in micrographs of box area with number 1-4 are showing at the bottom. 

(b) GPA analysis. Image from [139]. 

(a) (b) (c) 

(a) (b) 
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In 2016, a full vortex array was found in a PTO/STO superlattice, as shown in 

Figure 2.21 [140]. The two adjacent vortices are clockwise and anti-clockwise, so 

that they can share the boundary with each other. These vortex arrays appear to 

be elongated in the third dimension, suggesting the 3D structure to be vortex 

tubes. A Phase field simulation was also presented to support the experimental 

result.  

 

Figure 2. 21 HAADF-STEM image on the top and side of PTO/STO superlattice 
film. Phase field simulation is also presented. Image from [140]. 

2.2.4 Skyrmion and meron bubble 

A magnetic skyrmion describes a magnetic configuration of a chiral-lattice 

magnet with its spin directions forming a vortex-like topology.  This has drawn 

interest for potential applications such as racetrack memory. The corresponding 

structure in ferroelectrics is, however, less obvious and hard to characterize.  

Recently, polar skymion-like bubbles were experimentally confirmed in a 

PTO/STO thin film system, utilizing the lattice mismatch strain in the 

heterostructure [141-142]. Figure 2.22 shows the main result. By some pre-

knowledges from dark-field TEM, the polar skyrmion bubbles were first 

simulated in a thin film in Figure 2.22a (black box). At the centre, the polar 

direction is upward. There are two clear boundaries on two sides, where the 

vortices are formed. The polar direction rotates a total circle of 360° when going 

through this skyrmion bubble. Such a structure agrees with the experimental 

observation shown in Figure 2.22c (blue box), which is the polar order derived 

from the atomic positions in HAADF-STEM image.  The three section views of the 

simulated skymions show that at the top and bottom position of such skyrmion, 

the polarization is hedgehog-like with a Neel type domain wall. In the middle 

position, the polarization is vortex-like with a Bloch type domain wall. The 
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calculated ADF image and polar order match the TEM image as well. This class of 

topological structure is usually quantified by a “skyrmion number”, 𝑁.  Different 

definitions have been put forward based on situations, for example: 

𝑁 =
1

4𝜋
∬𝑢 ∙ (

𝜕𝑢

𝜕𝑥
×

𝜕𝑢

𝜕𝑦
)𝑑𝑥𝑑𝑦 (2.40) 

𝑢 is normalized local dipole moment. For the model building in this paper, the 

skymion number 𝑁 is +1 for all slices. 

 

Figure 2. 22 Simulated skyrmion bubbles and the experimental proof of possible 
skyrmion bubbles in PTO/STO system. Image revised from [141]. 

Notably, because STEM only measures the projection of atomic position, it 

doesn’t visualize the polar skyrmions directly.  Instead, by combination of TEM 

image and simulation model, it infers a polar skyrmion bubble structure. 

A “Meron” is considered to be half a skyrmion. The polar direction rotates 180° 

when crossing a meron bubble, which is half the magnitude of skyrmion. Wang et 

al reported the first observation of regularly distributed merons in 5nm thick 

PTO/STO thin film [143]. Figure 2.23 shows two meron bubbles with both phase 

field simulations and HAADF-STEM images. The sizes of merons are roughly 

5nm, and they appear only at the stripe walls. These merons are regularly 

distributed and the spacing between two domains along a stripe line is 8nm on 

average. Such meron arrays have also been found in other system including 

PTO/GSO and PTO/SSO. The density of merons is dependent on in-plane strain: 
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the meron and anti-meron density first increases with strain and decreases after 

reaching the peak value at about 2.25%. 

 

Figure 2. 23 Simulated meron structures and experimental observation by 
HAADF-STEM. Image from [143]. 

In this section, different works are listed to show the development and 

understanding of vortices step by step. Despite the observation of these 

hierarchical structures, the easily overlooking point is whether the structure 

inferred from the image is correct or not. Most of these results are based on 

HAADF-STEM, which only shows the projection views that is both 2D-projected 

and averaged out. All the usual caveats about TEM sample preparation and use of 

very thin specimens apply to the results. The PFM result has a significant 

resolution limit and is only a rather qualitative method. Therefore, it’s better to 

view the above results as a taste of possibilities instead of the finished textbook.  

2.3 Core-shell model 

Core-shell models are widely used in nanoparticle research.  Often composed of 

inner and outer shells of two different materials, the most general model is when 

the central core and outer shell differs in some order parameters. In BTO, there 

are at least two kinds of core-shell models that attract scientific interest. The first 

and the most studied core-shell includes a pure tetragonal BTO core and a 

chemically doped BTO shell.  This is commonly used as a multilayer ceramic 

capacitor in industry [144,145]. The growing industrial interest for 

miniaturization of electronic devices has accelerated the study in this particular 

direction.  
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The second core-shell structure was proposed by Wada and Hoshino [146-148]. 

This core-shell model does not contain any dopant but pure BTO crystal. It 

consists of an inner tetragonal core, some band of transition material and an 

outer cubic shell, as shown in Figure 2.24a. For a typical 200nm diameter BTO 

crystal, the inner tetragonal core would span more than 50nm in radius and the 

outer cubic shell occupies the last 10nm in radius, according to the model. The 

experimental proof of this model comes from X-ray powder diffraction, shown in 

Figure 2.24b. For their fine crystal sample, specially synthesized, the adjacent 

200 and 002 peaks are not sharp. There is a large amount of intensity between 

the two peaks that cannot be fitted by pure tetragonal structure using Rietveld 

refinement. These scattering data, however, agree well with the core-shell model 

proposed. We are particularly interested in this core-shell model and have 

performed a series of BCDI study on the commercial BTO nanocrystals. However, 

the XRD profile of our samples only shows two sharp peaks with a width 

corresponding to the particle size, which does not favour a core-shell model. We 

attribute this difference to the sample, where the samples from Wada’s group are 

claimed to be fine crystal with almost no defect [148]. We are tackling this 

problem on two fronts: while we are making experimental advances by learning 

how to synthesize BTO nanoparticles, we did simulations to predict the 

characteristics of core-shell model in a BCDI experiment. Figure 2.24c shows the 

simulated BTO crystal and the corresponding Bragg diffraction pattern. The 

simulated crystal has displacement field accumulated on two sides, because the 

Q-vector is set to be 110. The coherent Bragg diffraction pattern shows three 

peaks in the vicinity of each other. These outer two peaks represent the inner 

core and the outer shell, while the middle peak comes from the assumed 

transition region.  
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Figure 2. 24 (a) The sketches of core-shell model. Image from [147]. (b) XRD 
profile of BTO fine crystal from Wada’s group. Image from [148]. (c) Simulated 

image from a core-shell model and its diffraction pattern. 

2.4 Polar nanoregions 

2.4.1 Relaxor ferroelectrics 

The relaxor ferroelectrics, simply called relaxors, are ferroelectric materials that 

show dielectric relaxation in the time domain. They show several distinct 

differences from normal ferroelectrics [149]:  

(a) No well-defined Curie temperature  

(b) Strong frequency dispersion of dielectric permittivity  

(c) Frequency dependent temperature of maximum dielectric loss and 

dielectric permittivity 

For (a), the specific phase transition temperature is one of the defining 

characteristics in comparing crystals and glasses. In one interpretation for 

relaxors, the poorly defined Curie temperature means that different regions 

would transform from paraelectric phase to ferroelectric at different 

temperatures, rather than developing full long-range order. (b) and (c) describes 

the same frequency dependence, but from different points of view. Figure 2.25 

shows a typical dielectric permittivity curve of ferroelectrics and relaxors [150]. 

Ferroelectrics show a distinct anomaly as shown in Figure 2.25a. The relaxors 

can be divided into two categories according to their response to temperature, as 

shown in Figure 2.25b and c. This will be discussed in the next section. In both 

(a) (b) 
(c) 
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types, with the increasing frequency of applied field, the maximum dielectric 

permittivity decreases, while the temperature for the maximum dielectric 

permittivity increases.  

 

Figure 2. 25 Dielectric permittivity as a function of temperature. (a) First order 
ferroelectric (b) Ferroelectric with a diffuse transition. (c) Canonical relaxor. 

Image from [150]. 

All the known relaxor materials include some kinds of composition disorder. The 

most studied PMN and PMN-PT relaxors involve chemically disordered B-site 

cations [151,152]. The solid solution type BSTO, for example, has a ferroelectric 

BTO phase and paraelectric STO phase. The proper mixing of BTO and STO 

would lead to inhomogeneous ferroelectric regions embedded in paraelectric 

regions [153]. Aliovalent cation doping in both ferroelectrics and paraelectric 

could lead to relaxors, like the La-doped PTO and Bi-doped STO [154,155]. 

However, some disordered systems like PZT show no dielectric relaxation. BTO 

also shows disorder local structure and polar nanoregions or precursors in cubic 

phase, but it also has no dielectric relaxation. This is covered in Chapter 2.5.  

2.4.2 Polar nanoregions in relaxors 

Polar nanoregions (PNRs) are defined as finite-sized regions, either dynamic or 

static, with a nonzero spontaneous electrical polarization [156]. While the 

definition of PNRs is straightforward, the details depend on specific systems. It’s 

better to understand the development of polar nanoregions through the 

transitions of relaxors.  The relaxors experience a series of transformation upon 

cooling: 

(a) Paraelectric state (𝑇 > 𝑇𝐵) 
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When above the Burns temperature, 𝑇𝐵, relaxor materials are paraelectric. There 

is no evidence of any noticable static polar nanoregions in this state.  

(b) Type-I relaxor state (𝑇𝐵 > 𝑇 > 𝑇∗) 

Somewhere between the Burns temperature 𝑇𝐵 and an intermediate 

temperature 𝑇∗, the polar nanoregions start to nucleate. These polar 

nanoregions are both dynamic and have random polarized direction. This 

dynamic means the polar nanoregions could flip their direction due to thermal 

excitation.  

The Burns temperature is first seen as the deviation from a linear relation 

between optical refractive index and temperature and can be measured by 

Raman spectroscopy [157,158].  

(c) Type-II relaxor state (𝑇∗ > 𝑇 > 𝑇𝑓) 

Between the intermediate temperature 𝑇∗ and the freezing temperature 𝑇𝑓, the 

PNRs start to form larger clusters. The flipping dynamic of PNRs becomes slowed 

down, so that the static component of polarization starts to appear. The PNRs are 

considered both partially dynamic and static in this state. 

The combination of Type-I and Type-II relaxor state is called ergodic state, 

because they share some similar characteristics. The most important feature is 

that the PNRs have random distributions of polarization direction, so there is no 

preferred polarization macroscopically. 

(d) Type-III relaxor state (𝑇𝑓 > 𝑇) 

When the temperature decreases below the freezing temperature 𝑇𝑓, the relaxor 

goes into non-ergodic state. In this state, the local polarization becomes frozen. 

The local symmetry deviates from high symmetry phase, while macroscopically 

the crystal still has high symmetry. PNRs are considered to be fully static in this 

state. 

(e) Ferroelectric state (𝑇𝑐 > 𝑇) 

It should be noted that not all relaxors have this ferroelectric phase transition, in 

which case there is no 𝑇𝑐 at all. Canonical relaxors have this phase transition. One 
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important example is the well-studied PbMg1/3Nb2/3O3 (PMN). But there do exist 

some relaxors which could transform to have long range ferroelectric ordering at 

the transition temperature 𝑇𝑐. For example, the PMN-xPT (0.05<x<0.35) would 

have such a ferroelectric phase transition [159]. However, the PNRs are still 

detectable in this ferroelectric state, therefore their coexistence with polar order 

is favoured. These two kinds of polar ordering, namely the PNRs and 

ferroelectric domains, exist at different length scale and contribute to the same 

long-range ferroelectric order [160].  

The PNRs are probed and studied by a number of spectroscopic techniques such 

as diffuse X-ray and neutron scattering, EXAFS, acoustic emission and dielectric 

spectroscopy [161-165]. 

The direct observations are given by TEM and PFM. Figure 2.26a shows some 

dark field TEM results of PMN [166]. The image of PNRs and chemical ordering 

regions (CORs) are obtained by inverse Fourier transform of the TEM images. 

The size of PNRs is 15 nm~25 nm, and the size of CORs is 5 nm. Figure 2.26b 

shows another example of PMN seen by high resolution TEM at the top-left panel 

[167]. The top-right panel presents the FFT of the TEM image, and the bottom-

left panel shows the schematically the distribution of PNRs.  

     

Figure 2. 26 Left panel are the 111 reflection dark field TEM image of PMN and 
related PNR image and COR image. A sketch of the PNRs is also plotted. Image 
from [138]. Right panel shows the 001 reflection TEM image of PMN, it’s FFT 

image, a schematic diagram of Pb displacement and computer simulated image 
from FFT image. Image from [167]. 
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PFM, as illustrated in Chapter 2.21, is effective in measuring the static or 

dynamic polarization via local piezo response. An autocorrelation image could be 

further generated from the autocorrelation of PFM image: 

𝐶(𝑟1, 𝑟2) = ∑𝐷(𝑥, 𝑦)𝐷(𝑥 + 𝑟1, 𝑦 + 𝑟2)

𝑥,𝑦

(2.41) 

D(x,y) is the piezo response value at position (x,y). The shape of autocorrelation 

function provides the symmetry and regularity of the polarization [168]. 

To measure the short-range order, one way is to average over the 

autocorrelation functions in all in-plane directions should be taken and 

expressed as [169]: 

〈𝐶(𝑟)〉𝑠ℎ𝑜𝑟𝑡 = 𝜎2𝑒
−(

𝑟
〈𝜉〉

)2ℎ

(2.42) 

𝑟 is the distance from central peak. 〈𝜉〉 is the average correlation radius.  The 

exponent ℎ is a measure of the roughness of the polarization surface.  

If the long-range order is considered, its contribution can be expressed as: 

〈𝐶(𝑟)〉𝑙𝑜𝑛𝑔 = (1 − 𝜎2)𝑒
(−

𝑟
𝑟𝑐

) cos(
𝜋𝑟
𝑎

)
(2.43) 

𝑎 is the period of structure and 𝑟𝑐 is the long-range correlation length.  

Then the full autocorrelation function considering both short-range and long-

range order can be summed up: 

〈𝐶(𝑟)〉 = 〈𝐶(𝑟)〉𝑠ℎ𝑜𝑟𝑡 + 〈𝐶(𝑟)〉𝑙𝑜𝑛𝑔 = 𝜎2𝑒
−(

𝑟
〈𝜉〉

)2ℎ

+ (1 − 𝜎2)𝑒
(−

𝑟
𝑟𝑐

)cos (
𝜋𝑟
𝑎

)
(2.44) 

Figure 2.27 shows the PFM results and corresponding autocorrelation images of 

PMN, PMN-PT10 and PMN-PT20 [168,170]. PMN has small regions in the PFM 

image, and they are static for 5-20min. Using the short-range autocorrelation 

function  〈𝐶(𝑟)〉𝑠ℎ𝑜𝑟𝑡, the average correlation length is estimated to be around 

46nm. PMN-PT10 shows nanoregions in size of tens of nanometers in PFM 

image, which is larger than pure PMN. The full autocorrelation function is 

mapped out in Figure 2.27d, which shows oscillation along crystallographic 110 

direction. This indicates the short-range order is along the 110 direction. The 

short-range correlation length is fitted to be 70nm and the long-range 
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correlation length is 800nm in PMN-PT10. PMN-PT20 shows strong ferroelectric 

ordering in PFM image, while the long-range correlation length is about 2~2.5 

μm.  

 

Figure 2. 27 (a), (c) and (e) are PFM images of PMN, PMN-PT10, PMN-PT20. (b), 
(d) and (f) are corresponding autocorrelation images. Image from [168]. 

However, it should be noted that even in the same system, the size of PNRs could 

be quite distinct from different measuring techniques. Even the validity of the 

methods is not solid and raises concerns in their own fields. For example, it’s 

strange to get both PNRs and CORs from purely a dark field TEM image. As the 

TEM expert Yimei Zhu once put it, many TEM based works could published in 

good journals like Nature or Science, but they cannot publish in electron 

microscopic journals for technical reasons. Therefore, the over interpretation of 

data might also appear in this Chapter, and it is fully based on the readers to 

judge whether this is true or only a possibility.  

PNRs work well in describing the relaxor properties. For example, the dielectric 

relaxation can be explained by PNRs via the Vogel-Fulcher law: 

𝑓 = 𝑓0𝑒

𝐸𝑎

𝑘(𝑇𝑚−𝑇𝑓) (2.45) 

𝑇𝑚 is maximum dielectric permittivity temperature. 𝐸𝑎 is an activation energy. 𝑓0 

is saturation frequency.  
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To understand the formation and mechanism of PNRs in relaxors, different 

models have been proposed. Some widely used models include a compositional 

fluctuation model, a super paraelectric model and a dipole glass model.  

The compositional fluctuation model proposes the disordered hetero-valent 

cation at equivalent crystallographic position to be the compositionally 

disordered. The local compositional disorder would lead to regions with distinct 

local Curie temperature and different transition temperature. Such regions are 

called the polar nanoregions in this model.  

The super paraelectric model is an extension of the compositional model and 

resembles its magnetic counterpart super-paramagnetism. The polar regions are 

thought be embedded in a paraelectric matrix and not interacting with each 

other. These polar nanoregions are dynamic and can flip due to thermal 

excitation, which resembles a spin glass. 

2.5 Local structure 

From low temperature to high temperature, BTO goes from low symmetry to 

high symmetry, following rhombohedral, orthorhombic, tetragonal and cubic 

lattice structures, in sequence. As described in Chapter 2.4, the soft mode theory 

supports a displacive type model. However, various local structure studies have 

revealed the existence of rhombohedral local distortions in all crystal phases of 

BTO, which indicates the order-disorder component. 

Figure 2.28 shows the Pair Distribution Function (PDF) results for BTO while 

crossing the rhombohedral to orthorhombic and orthorhombic to tetragonal 

phase transitions [171]. The atomic displacement shows no noticeable difference 

in all these crystal phases. Because the PDF is only sensitive to local structure, 

different global structures could be formed by selectively choosing some of the 

eight site rhombohedral distortion directions. For example, the tetragonal could 

be formed by choosing four of the eight site directions, and the cubic phase is 

averaged out by all eight site directions. 

PDF based refinement using reverse Monte Carlo (RMC) also supports the Ti 

displacement to be zone-centred rhombohedral like. Figure 2.28c shows the 

atomic structure after refinement and their calculated diffuse scattering in the 
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planes [172]. The RMC calculation uses large supercells instead of the small 

boxes used in Rietveld refinement [173]. It refines the atomic displacement to fit 

both G(r) and S(r).  However, the work has been criticised because too many 

degrees of freedoms exist in the RMC method, so it gives an impression of the 

structure, rather than a unique answer. Bias is often introduced in the selection 

of RMC model parameters, and this could lead to different detailed results from 

the random numbers used to perform RMC. 

  

 

Figure 2.28 (a) PDF result of BTO passing through rhombohedral to 
orthorhombic phase transition. (b) PDF result of BTO going through 

orthorhombic to tetragonal phase transition.   In both cases two PDF profiles are 
superimposed and their difference is shown below. The solid line is above phase 

transition, and the dash line is below. Image from [171]. (c) A portion of 
simulation results of each phase are shown, with corresponding calculated 

diffuse scattering in the planes indicated. Image from [172]. 

X-ray absorption fine structure (XAFS) also confirms a different local structure 

relative to the global structure. The combination the K-edge Extended XAFS 

(EXAFS) of Ba K-edge and X-ray absorption near edge structure (XANES) of Ti K-

edge quantitatively support the eight-sight model. The local Ti displacement 

direction is calculated to be 11.7° away from the 111 directions towards the c 

(a) (b) 

(c) 
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axis in tetragonal phase. Such displacement of Ti from oxygen octahedral centre 

is 0.19 Å at 35 K and 0.16 Å at 750 K [174]. 

Figure 2.29 shows first-principles calculated energy as a function of Ti distortion 

relative to Ba [175]. When the soft mode distortion is small (±0.1 in image), the 

rhombohedral phase has the lowest energy of all phases, and the tetragonal 

phase is unstable. 

 

Figure 2. 29 Calculated energy as a function of soft-mode distortion in BTO. 
Image from [175]. 
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3.1 Abstract 
In this work, ferroelastic domain walls inside BaTiO3 (BTO) tetragonal 

nanocrystals are distinguished by Bragg peak position and studied with Bragg 

coherent X-ray diffraction imaging (BCDI). Convergence-related features of the 

BCDI method for strongly phased objects are reported.  A ferroelastic domain 

wall inside a BTO crystal has been tracked and imaged across the tetragonal-

cubic phase transition and proves to be reversible. The linear relationship of 

relative displacement between two twin domains with temperature is measured 

and shows a different slope for heating and cooling, while the tetragonality 

reproduces well over temperature changes in both directions. An edge 
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dislocation is also observed and found to annihilate when heating the crystal 

close to the phase transition temperature. 

3.2 Introduction 
Perovskite transition-metal oxides have been studied for decades because of 

both their broad applications and fundamental scientific questions. The 

displacement of Ti and Ba ions relative to the oxygen in unit cell leads to local 

polarization, which gives rise to exotic electrical properties such as elevated 

dielectric susceptibility, ferroelectricity and piezoelectricity [53, 128, 176, 177].  

By analogy with well-studied magnetic systems, it is believed that it is not the 

local polarization in unit cell level that directly links with these macroscopic 

electrical properties, but rather via the formation and rearrangement of 

polarized nanodomains. Therefore, the study of domain structures, preferably in 

three dimensions (3D), is important for understanding and improving these 

properties. BaTiO3 (BTO), for example, is frequently chosen as a lead-free 

functional material for both actuator and sensor applications [24, 178]. It goes 

through a series of crystal lattice systems: cubic, tetragonal, orthorhombic and 

rhombohedral upon cooling [47]. The corresponding transitions are first order 

with critical temperatures of 393 K, 278 K and 183 K, respectively, which can be 

adjusted by varying strain and sample size. The cubic-tetragonal phase transition 

temperature, for example, can be increased from 393 K to 813 K with 1.7% 

compressive strain [50] and can decrease to room temperature when the particle 

size is reduced to 3nm [179]. Recently, it was reported that the local structure 

remains locally rhombohedral throughout all phases [56, 60].  

The phase transition is also complex, demonstrating both order-disorder and 

displacive character [59,180]. From the high symmetry cubic phase to the lower 

symmetry tetragonal phase, the paraelectric ensemble breaks into ferroelectric 

domains of uniform electric polarization, driven by the minimization of the sum 

of electrostatic and elastic energy [53, 128, 176, 177]. To accommodate local 

energy landscape and strain, different types of domains could be formed by 

rotation or translation of crystal regions or domains into different locations with 

well-defined domain-wall interfaces. For example, there are 71°, 109° and 180° 

domain walls in rhombohedral BTO [181]. In tetragonal BTO, the flipping of one 
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region of a crystal along a face-diagonal leads to a ferroelectric and ferroelastic 

90° domain wall (twin boundary). While flipping along the long side of the 

tetragonal unit cell creates a ferroelectric-only 180° domain wall instead, in 

which the a-domain and c-domain are formed head-to-tail with each other [124, 

135, 182]. The domain wall is said to be continuous which means it can only end 

in other domain walls or grain boundaries [183]. There are discontinuities of 

polarization in the perpendicular direction of domain walls, where the local 

displacements would be expected to accumulate. The formation of these domains 

depends strongly on boundary conditions, such as sample shape, while the size 

of domains in thin films has a square-root dependence on thickness, known as 

the Kittel scaling law [120].   

Bragg coherent X-ray diffraction imaging (BCDI) is a synchrotron-based lens-less 

imaging method, which is well adapted to studying nanocrystals in three 

dimensions (3D).  It is capable of imaging the shape and mapping out inner 

strain without damaging the nanocrystal [11, 184, 185].  In the BCDI experiment, 

the 3D diffraction pattern is collected in reciprocal space and inverted to real 

space with advanced phase retrieval algorithms [11]. Usually, a single hkl Bragg 

peak is selected in the reciprocal lattice with a total momentum transfer vector Q 

= ha* + kb* + lc*.  In a completely general way, this gives a 3D complex image of 

the crystal, capturing both its electron density function as the complex amplitude 

signal and a projection of the distortions as the corresponding phase signal.  A 

simple linear relationship exists between the crystal displacement field u(r) and 

the observed image phase, (r) = Q•u(r) [11].  The amplitude, representing the 

average electron density, contains information about crystallinity and its 

isosurface can be used to visualize the shape of crystal.  Any local displacement 

of the unit cells of the crystal parallel to Q will change the relative phase of the 

scattering from those unit cells relative to the rest of the crystal; when this 

occurs in regions large enough to be resolved the distortion can be visualized as 

a region or domain with a measurable phase appearing in the image. When the 

phase shift exceeds 2π, a proper phase unwrapping operation is needed to 

preserve the continuity of the displacement field.   
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The BCDI technique is sensitive to defects and has the unique ability to identify 

the dislocations and grain boundaries inside crystals by their characteristic 

strain (displacement) patterns [14, 15, 186, 187]. The interpretation of the phase 

as a projection of the displacement field is analogous to the Generalized Phase 

Approximation (GPA) used to interpret Transmission Electron Microscopy 

(TEM) images [188]. There have already been several studies of BTO by BCDI 

motivated by the ability to see its important domain structures. An important 

example is the discovery of an interesting electric-field driven vortex structure 

[189-191].  Here we take advantage of the unique properties of BCDI to 

investigate the domain structure and dislocations inside BTO nanocrystals upon 

crossing the cubic-tetragonal phase transition.  In this work, we extend the BCDI 

method by considering the case of two nearby overlapping Bragg peaks, 

originating from different regions or domains of the same nanocrystal, to explore 

the structure and properties of the domain walls formed between them. 

3.3 Experimental Methods 
Commercial BTO powders with a nominal size of 200nm were diluted in a 

solution of Tetraethyl Orthosilicate (TEOS) and ethanol at a ratio of 1:75 in 

volume. This solution was then drop casted onto the silicon wafer and annealed 

in the furnace at around 973 K for 1h.  This forms an amorphous SiO2 bonding 

matrix, which is a common procedure for fixing nanoparticles on to a substrate 

in BCDI experiments, in order to avoid its movement due to beam pressure 

[192].  

Ex-situ and In-situ experiments reported in this work were performed at two 

beamlines specialized in BCDI.  At Advanced Photon Source (APS), beamline 34-

ID-C uses a Kirkpatrick-Baez (KB) mirror focusing system to match a 70×30 μm2 

spatially coherent beam at 55 m from the source to the size of the sample.  This 

gives a good signal level from 200 nm BTO nanocrystals.  At Diamond Light 

Source (DLS) beamline I-13-1, we used a 400 μm aperture 220 m from the 

source to cut out a spatially coherent beam, which was focussed by a Fresnel 

Zone Plate (FZP) to the size of the sample.  The signal level from this latter 

system was found to be at least ten times weaker.  In both cases the sample was 

rotated in the coherent, monochromatic, focussed beam and the diffraction 
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pattern was collected on a Medipix-technology area detector.  At APS, the 

detector distance was variable and for the measurement reported in this 

manuscript, we keep the detector at D=0.45 m. While at DLS, the detector was 

fixed at D=2.8 m. 

When the beam is coherent over the dimensions of the sample, its diffraction 

pattern acquires interference fringes surrounding each Bragg peak.  This 

diffraction pattern from the nanocrystal was measured in three dimensions at 

the 101 or 110 Bragg peaks by rotating the sample stage over a short range, 

typically ±0.1° to ±0.5°. This rocking curve scan is equivalent to the 2D detector 

plane sweeping across the Ewald sphere and capturing the 3D volume of 

reciprocal space around the Bragg peak [11]. The amplitude of the diffracted X-

ray is the square root of intensity, while the phase information is lost. This 

famous phase problem is solved by iterative algorithms, using the additional 

information obtained by oversampling the intensity distribution in the fringes of 

the coherent diffraction pattern surrounding the Bragg peak. In this work, a 

combination of Error-Reduction (ER) and Hybrid Input-output (HIO) algorithms 

are used to iteratively retrieve the phase until the error between the amplitude 

of the reconstruction and measured diffraction patterns decreased close to 0.1% 

[19].  

3.4 Domain walls in tetragonal BTO nanocrystals 
At room temperature, the 200 nm BTO nanocrystals have tetragonal structure, in 

which case the 90° and 180° type domain walls (DWs) are favourable because 

they are mechanically compatible with each other without crystal misfit and are 

electrically neutral. 90° type DWs separate ferroelastic and ferrolelectric 

domains, while 180° type DWs separate pure polarization domains. Figure 3.1 

shows an example of a crystal twin structure captured inside a single tetragonal 

BTO nanocrystal. Figure 3.1a and 3.1c show the diffraction patterns of the 101 

peak and the 110 peak from differently oriented tetragonal regions of the same 

crystal. The omega angle difference between the centres of mass (COM) of these 

two diffraction patterns is 0.6°. There are interference fringes crossing the entire 

reciprocal space region spanning between the two diffraction patterns centres 

seen on the area detector. Figure 3.1b shows the fringes on the detector frame at 
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the angle in the middle of the two COMs. The observation of continuous fringes is 

a clear indication that the 110 and the 101 peaks come from the same coherence 

volume in real space, so that their diffraction patterns can interfere coherently.  

This identifies them as coming from substructures of the same nanoparticle. This 

is confirmed by gradually moving the sample piezo stages transverse to the beam 

direction and seeing that the intensities of the two peaks increase and decrease 

simultaneously in a 600nm size X-ray beam. This confirms the Bragg intensities 

are coming from the same nanoparticle, for which the intensity variation is 

attributed to crystal moving in and out of the X-ray beam. 

The diffraction patterns of the two peaks were reconstructed separately. Figure 

3.1(d) is the reconstructed image from the 101 diffraction pattern in Figure 

3.1(a), where the shape is plotted as an isosurface (single 3D contour level) of 

the amplitude and the surface is color-cued with the local value of the phase.  

There are two separate domains with a 50 nm wide gap in between.  The two 

domains both have the same crystal orientation because they both contribute to 

the same 101 Bragg peak, but they have different phases (displacements, 

denoted by color in Figure 3.1(d)).  This shows that the origins of their unit cells 

are shifted relative to each other.  The average phases for the two 101 domains 

are -1.259±0.004 and 0.546±0.003 rad, respectively. Because the phase can only 

be determined modulo 2π, this phase difference corresponds to a displacement 

of 2.835*n+0.813Å between the two pieces along the Q-direction, where the n is 

an integer.  2.835 Å is the {101} d-spacing of BTO.  The missing volume in 

between the two pieces implies there must be a third object, presumably an 

inserted piece of crystal with a different orientation, filling the gap.  Figure 3.1(f), 

the reconstructed 3D image of the 110 pattern of figure 3.1(c), reveals a 50nm 

plate-shaped crystal, which is the missing part. The two reconstructed images in 

Figure 3.1(d) and 3.1(f) fit together well with each other, as shown in Figure 1e. 

We conclude that two 90° domain walls exist in the same nanoparticle, which are 

parallel in this case. The polarization direction would change across a 

ferroelastic domain wall, in the way that is illustrated in Figure 3.1(g).  
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Figure 3. 1 Ferroelastic domain walls in BaTiO3 nanocrystal at room 
temperature. (a)-(c) Diffraction patterns of a BaTiO3 nanocrystal at the angles 
indicated. The location of the 101 and 110 powder rings on the area detector is 
plotted with yellow dash lines as guides to the eye. Omega is the self-rotation 

angle of the sample stage. (d) & (f) Reconstructed images of 101 and 110 
diffraction patterns in (a) and (c), respectively, shown as isosurfaces of 

amplitude to give the shape of crystal. The colour on the shape of nanocrystal 
represents the complex phase, which can be reverted to displacement of crystal 

unit-cell origins. (e) A joint view of (d) and (f), which gives a good match in 
shape. (g) A sketch of the two parallel ferroelastic domain walls inferred from 

these data at the position indicated by a black box in (e), which shows changes in 
the polarization direction upon crossing domain wall. The Q direction is denoted, 
which is determined by the difference of the incident and diffracted X-ray beam 
wave-vectors. It denotes the Bragg reflection that was measured.  The isosurface 

plots here and in the other figures were generated using the 3D visualization 
software Paraview [193]. 

In analyzing the 3D diffraction data to obtain these BCDI reconstructions, it was 

found to be effective to arbitrarily cut clearly split diffraction peaks into two 

halves and to reconstruct the two peaks separately before reassembling them. 

The cropping of intermediary fringes between the two peaks did not seriously 

distort the resulting images, perhaps because the contribution of the fringes was 

at a low level relative to the peak centres. Further details of the influence of the 

cropping are presented in Appendix.  When the diffraction patterns of 

nanoparticle in Figures 3.1 was reconstructed without splitting, shown in Figure 
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E1, there was found to be seriously misaligned with missing volumes in both 

cases. The combined double diffraction patterns, complete with the intermediary 

fringes, should still be the Fourier transform of the complete, assembled particle, 

so we would like to understand the reasons for this reconstruction failure.  

Similar misbehaviour was reported for calculated diffraction patterns of a model 

nanocrystal containing an epitaxial interface between regions of different lattice 

constant [194].  We, therefore, undertook simulations of double diffraction 

patterns from known structures.  

3.5 Simulated BTO bicrystal nanoparticles 
Simulations were performed to test this behaviour of the reconstruction 

algorithms, which are shown in Figure 3.2. A model BTO nanoparticle, 

resembling that of Figure 3.1, with three domains was built in a 512×512×512 

array. The two domains on the top and bottom have a hemispherical shape with 

a 32 pixels radius, while the middle domain has a cylinder shape that matches 

the two hemispheres with a height of 16 pixels. The object was Fourier 

transformed to generate its diffraction pattern, whose amplitude was then 

reconstructed using the usual algorithms [11].  The diffraction pattern and 

reconstructed images are presented in Figure 3.2(a) and 3.2(e). Then the object 

was split into separate arrays for the hemispheres and the cylinder, separately 

Fourier transformed and then recombined as complex diffraction patterns to 

preserve the interference between the parts. When the two centres were the 

same, the result is shown in Figure 3.2(a), while the split peak behaviour was 

simulated offsetting the diffraction patterns before they were added together, 

using different gaps between the diffraction pattern from middle cylinder 

domain and the pattern from the two hemispheres, shown in Figure 3.2(b-d).  

The 3D diffraction patterns in Figure 3.2(a-d) were recentred to their common 

centre of mass (COM) before phase retrieval using the standard methods to give 

the images in Figure 3.2(e-h) [11].  Moving the two patterns apart from each 

other, making them misaligned from the array centre, is equivalent to 

introducing phase ramps inside each of the particle segments in real space.  

From the definition of the discrete Fourier transform, it can be seen that each 

single pixel shift in reciprocal space corresponds to a 2 phase ramp across the 
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array in real space. When the gap between two patterns was 5 pixels in Figure 

3.2(b) and 3.2(f), the reconstruction was successful: the crystal still has the full 

shape, but there is an opposite phase gradient generated introduced in the 

different domains, positive for the cylinder and negative for the hemispheres. 

When the gap was increased to 15 pixels, in Figure 3.2(c) and 3.2(g), the ramp 

becomes stronger, as expected, but the middle domain becomes misaligned and 

displaced into one side. There are missing crystal volumes inside the middle 

cylinder domain. Finally, when the gap reached 40 pixels, in Figure 3.2(d) and 

3.2(h), the middle domain becomes completely misaligned. Strong phase ramps 

and distorted density showed up in the middle cylinder domain and there is a 

phase gradient in two hemisphere domains.  

The two hemispheres are one object and give one diffraction pattern, while the 

central cylinder is the other object and gives the other diffraction pattern. The 

centres of each of these two diffraction patterns is not the centre of array. In our 

reconstruction script, the phase ramps are removed at the end of all iterations. If 

the array centre is not the centre of diffraction pattern, it would give the phase 

ramp artefact. As can be seen in Figure 3.2(h), the two hemisphere has a slow 

phase ramp, which means their diffraction pattern is close to the array centre. 

While the cylinder has a much sharper phase ramp, meaning that it’s far away 

from the array centre. 

This behaviour of the reconstruction algorithms is presently unexplained, but 

the simulation results do reproduce the experimental behaviour found in Figure 

E1.  We have nevertheless confirmed that the peak splitting is the cause of the 

apparent misalignment of reconstructed domains.  It also justifies our strategy of 

reconstructing the split peak diffraction patterns separately and manually 

overlaying the images, which also avoids removing the phase ramps, which 

would have appeared otherwise.  For the nanoparticle in Figure 1, the splitting of 

two peaks, due to twin boundary, gave separate reflections at 101 and 110. The 

peak separation in reciprocal space is of order 0.02 Å-1, which is considerably 

more than the 15 pixels needed to disrupt the correct reconstruction of the 

model ensemble nanoparticle in Figure 3.2(c). This double peak reconstruction 
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failure using standard method is also reported in simulation works, where 

different algorithms are proposed to solve this problem [194].  

 

 

Figure 3. 2 Simulation of split peak diffraction pattern reconstructions. A 
nanoparticle with three domains was used to generate a 3D diffraction pattern of 

which the central slice is shown in a 512×512 pixel array. The two peaks 
corresponding to the hemispherical sides and cylindrical centre were given an 

extra gap offsetting the two diffraction patterns by 0, 5, 15, 40 pixels from (a) to 
(d). Their reconstructed images are shown as isosurfaces colored by the image 
phase in (e) to (h), respectively. The initial object is also shown at the bottom. 

3.6 Evolution of ferroelastic domain walls under phase transition 
A 200nm BTO nanoparticle showing the twin-peak diffraction pattern was 

selected at 387.2 K.  Similar to the example in Figure 3.1, it had its two peaks 

sitting on the 101 and 110 powder rings indicating the presence of an internal 

ferroelastic domain wall. Figure 3.3 shows the BCDI reconstruction, obtained 

directly from the double peak diffraction pattern, which clearly shows a 90° 

domain wall inside. At this elevated temperature, the peaks were close enough to 

reconstruct together without requiring separating. The cross-section view in 

Figure 3.3 shows the domain wall and two separated domains. The crystal planes 

of the two domains can be said to be parallel since they both have constant phase 

inside and there is a sharp jump of the displacement field across the twin 

boundary. The phase ramps caused by splitting peak is negligible compared with 

the large phase difference caused by domain walls, as indicated by standard 

error of average displacement in appendix.  This crystal also shows a small hole 
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and spiral-shaped displacement distribution around the hole, which is an 

indication of a dislocation, whose details are discussed below.   

 

Figure 3. 3 BCDI isosurface image of a BaTiO3 nanoparticle containing two 
domains separated by a ferroelastic domain wall at 387.2K. Five orthogonal 
views and a cross-section are shown, as labelled, along with the Q vector for the 
section view. 

This nanoparticle was chosen to be tracked during heating across the tetragonal-

to-cubic phase transition temperature, nominally at 393 K. The sample was 

heated with a Boralectric ceramic heater stage, directly under the wafer, for 

improved mechanical stability. This was driven by a voltage-controlled power 

supply interfaced to EPICS/GDA. The temperature was monitored with a 

thermocouple as shown in the figure below. 

 



89 
 

Figure 3. 4 The heating setup is shown. The thermocouple was put directly onto 
the silicon wafer, which is next to the white BTO sample powder. 

Figure 3.5 shows a series of reconstructed images and corresponding slice of this 

nanoparticle bi-crystal going from tetragonal structure to cubic structure and 

back to tetragonal structure again by changing the temperature. When heating 

up the crystal before the phase transition, the shape of the crystal remains 

unchanged, but the relative displacement of the two domains (colour) becomes 

small. After heating up to the cubic structure, the two domains are seen to merge 

into a single-color shape. Now in the cubic phase, the displacement differences 

have diminished, while new regions of both tensile and compressive strain have 

appeared on the surface of the image. When the crystal is cooled down back into 

the tetragonal phase, the twin boundary comes back at the same position, so this 

transformation appears to be reversible, showing that the domain wall location 

is remembered by the nanoparticle.   

 

Figure 3. 5 Images of a BaTiO3 nanoparticle upon crossing through its tetragonal-
cubic phase transition. The top row is a series of contour views of the isosurface.  

The second row shows phase (displacement) cross-section maps taken in the 
middle of the nanocrystal, while the bottom row shows strain (a derivative of 

displacement) maps as a function of temperature. 

The measured relative displacement of the two domains during heating up and 

cooling down are shown in Figure 3.6(a) in solid line. The displacement field 

decreases when increasing the temperature and vice versa.  The standard error 

of each point is discussed in the appendix.  Close to phase transition 

temperature, there appears to be a linear relationship of displacement difference 

with temperature on both heating and cooling. However, the slope during 

cooling is -0.21, which is steeper than -0.48 while heating up.  The goodness of fit 

is discussed in the appendix. The tetragonality of this crystal during heating and 
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cooling, derived from the position of diffraction peak centre, are shown in Figure 

3.6(a) in dash line. Comparing with both, the tetragonality reproduces well. 

However, there is a clear delay in the displacement field between cooling and 

heating. This difference in slope can be thought of as a form of hysteresis, 

commonly observed in phase transitions, coupled with the experimental 

limitation of waiting a sufficient time for the structure to equilibrate at each 

temperature. To estimate the width of the domain wall, the displacement is 

plotted along a line passing vertically in Figure 3 across the twin boundary in the 

region away from the dislocation, shown in Figure 3.6(b). The width of the 

domain wall, where the sharp displacement slope could be seen, is below 30nm, 

which is the estimated spatial resolution of the image. The change of the phase 

across the step between the two crystals has a clear temperature dependence as 

the phase transition at T=393 K is approached. 

The displacement inside a domain is interpreted as the crystal distortion 

projected onto the Q vector, or crystal plane displacement determined by the 

Bragg reflection. The average displacement between the ferroelastic domains is 

not caused by the accumulation of crystal distortion, but the structure of the 

ferroelastic domain wall instead. Because our spatial resolution is the same as 

the observed width of domain wall, the structure of the domain wall cannot be 

resolved and the displacement is smeared out at the domain wall position, as 

seen in Figure 3.6(b). However, the relative displacement between the two 

domains is a good way to quantify the influence of a ferroelastic domain wall 

when the temperature changes. In this case, the relative displacement between 

the two domains is seen to increase linearly near the phase transition 

temperature. The reason for this change is not clear. There are possibilities that 

this change is coupled with the changing of domain wall width, or the local 

distortion at the domain wall becomes sharper due to the change of 

tetragonality. 
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Figure 3. 6 (a) Average displacement difference between the two domains upon 
heating and cooling are shown in solid line. Tetragonality of this crystal over 

heating and cooling are shown in dash line. (b) Line plot of displacement over 
distance across the twin boundary. 

 

Figure 3. 7 Tetragonality variations with temperature in other’s BTO samples. 
[89,90] 

For a comparison reason, Figure 3.7 listed some tetragonality changes with 

temperature in other people’s work. Their tetragonality is larger, typically more 

than 1.0024, while in our crystal the value is around 1.0012 around phase 

transition. But it should be noted that the BTO sample has very different 
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tetragonality for different samples. Also, our value is for selected single crystal, 

while the values from literatures are the average value of powders.  

3.7 Dislocation annihilation upon heating 
Figure 3.8(a) and 3.8(b) show further details of the dislocation at the centre of 

the ferroelastic domain wall inside the bi-crystal. When the temperature is 387.2 

K, the dislocation is located at the centre of crystal. The length of this dislocation 

is 178 nm. Upon heating up to 389.9 K, this dislocation is found to move to the 

left side and the length decreases to 125 nm. Further heating up to 392.6 K, 

although the crystal is still in the tetragonal phase, causes the dislocation to 

diminish again and then disappear. This dislocation does not come back during 

the cooling stage of the experiment. 

  

 

Figure 3. 8 Dislocation annihilation upon heating. (a) Reconstructed crystal 
image at 387.2 K. (left) A dislocation line through crystal is coloured. (right) A 

slice view across the dislocation line. (b) Same as (a), but temperature is 389.9 K. 
(c) displacement field plotted vs rotation angle around the low-density core. 
Both experimental results and simulated curve from linear elastic theory are 

presented. 

To identify the type of dislocation, the displacement field surrounding the low 

electron density core is plotted as a function of rotation angle in Figure 3.8(c).  

The experimental data show a roughly linear trend of crystal displacement over 
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angle superimposed with two clear modulations. This is the characteristic of an 

edge dislocation, for which is superimposed the simulated displacement field 

according to linear elastic theory (LET), with details provided in the Appendix. 

The experimental data give a reasonable match with the simulated results.  

3.8 Conclusion 
We studied the structure and arrangement of domain walls in 200 nm BTO 

nanoparticles by BCDI both at ambient temperature and across the tetragonal-

cubic phase transition temperature.  Domains and domain walls are commonly 

found in these particles, giving rise to split coherent diffraction peaks.  For 

successful BCDI reconstruction with large peak split, it was necessary to separate 

the peaks and manually reassemble the reconstructed 3D images afterwards. 

Ferroelastic domain walls were identified and characterized at room 

temperature. At temperatures close enough to the tetragonal-cubic phase 

transition, the split peaks of a particle containing a ferroelastic domain wall were 

successfully reconstructed using both peaks together. This allowed us to 

determine the sub-Ångstrom relative displacement between two domains, 

tracking its disappearance on approaching the phase transition to cubic phase 

and reappearance when cooling back to tetragonal phase. We found a linear 

relationship between the relative displacement of the two 90° domains over 

heating and cooling close to the tetragonal-cubic phase transition. The domain 

wall location was reproducible in this 200 nm BTO nanoparticle. An edge 

dislocation line was found at the centre of the twin boundary inside this crystal 

close to the transition temperature. This dislocation annihilated upon ramping 

up the temperature and did not return upon cooling.  
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Chapter 4. Polar domains in tetragonal barium titanate 

nanocrystals at room temperature 

Ferroelectric domains of roughly 100nm in size were identified in Chapter 3. 

These large ferroelectric domains have characteristic Bragg peaks on the two 

adjacent (101) and (110) powder rings.   When performing the Bragg coherent 

x-ray diffraction imaging (BCDI) experiment on a randomly oriented powder 

sample, a sub-micron focused beam was used. In such case, the co-existence of 

the two peaks on the two powder rings could be checked by moving the beam 

around the sample. If the two peaks were found to turn on and off 

simultaneously, then they were marked as coming from the same crystal. If the 

two peaks were behaving differently to the movement of the X-ray beam, then 

they were marked as coming from two separate crystals.  After going through 

more than a hundred of crystal patterns during several consecutive beamtimes 

at Advanced Photon Source (APS), the chance of finding both Bragg peaks from 

same crystal in commercial barium titanate (BTO) samples was no more than 

10%. The majority of the Bragg peaks were found to only have one peak with no 

surrounding satellites. It suggests that the ferroelectric domains of 100nm in size 

are peculiar in the commercial BTO samples. Regarding the actual status and the 

structure in those single Bragg peak crystals, we can make a few assumptions:  

(a) The majority of the crystals preserve a single domain structure. The 

whole crystals have only one polarization direction, so that a large 

amount of surface charge would be generated. 

(b) The crystals may have 180° domains, which don’t cause the splitting of 

Bragg peak between the two powder rings, which would need 90° 

domains instead.  

(c) Instead of having a rigorous single polarized domain or a number of 180° 

domains, the crystals could have small polar domains. If the domains are 

small enough or distortions of a different symmetry, it may result in the 

symmetric breaking of one crystal peak, but not necessarily breaking into 

two Bragg peaks on the two powder rings as illustrated in Chapter 3. 
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To further explore the BTO crystal structures and examine the existing 

assumptions, further detailed BCDI experiments on BTO nanocrystals were done 

at APS 34-ID-C.  During the experiment, the crystals with clear facets were being 

targeted because these allow us to retrieve the full set crystallographic directions 

from the final reconstructed images.  By mapping out the displacement field and 

the derived strains, some unexpected strain-stripes networks have been 

discovered. These stripes are understood as internal boundaries within the 

crystal. The distribution of the strain stripes and their behaviours with 

temperatures are illustrated in the rest of this Chapter and also in Chapter 5.  

Contribution statement: Jiecheng and Ian designed the experiment. Jiecheng, Ian, 

Ross, Wonsuk, Ana, Longlong have helped with the BCDI experiment. Emil 

carried out the PDF fitting to the scattering data. Jiecheng wrote the manuscript 

with the help of Ian. 

4.1 Ex-situ BCDI experiment and data processing 

4.1.1 Experimental details 

The commercial 200 nm BTO nanocrystals were suspended in ethanol solution 

with 1% Tetraethyl Orthosilicate (TEOS) before drop-casting onto silicon wafers 

and calcined at 973 K in air for 1h.  Figure 4.1 shows a scanning electron 

microscopy (SEM) image of the BTO nanoparticles before and after the TEOS 

calcining.  The crystals have sizes ranges from 100 nm to 1 μm. There is no 

noticeable change relative to the shape and size before and after the TEOS 

calcining. As shown in Figure 4.1(b), the crystals have big facets on the surface, 

but the shape is not perfect cubes.  The TEOS is intended to create a thin SiO2 

coating to stabilize the crystals, but this is not detectable in the SEM images. 

After calcining, the BTO samples were put onto the sample stage at APS 34-ID-C 

for an ex-situ BCDI experiment. The 600 nm X-ray beam, which is defined by the 

coherence-defining JJ slits and focused by the Kirkpatric-Baez (KB) mirrors, was 

selected to illuminate a small number of the crystals. The default 9 KeV energy 

was chosen for illuminating the sample. The Timepix detector was set to the 

{110} Bragg angle and placed 0.5 m away from the sample stage, not too close for 

satisfying the far-field imaging and oversampling ratio, and not too far for finding 

the diffraction of the crystals easily. The setup of the geometry is schematically 

(a) (b) 
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illustrated in Figure 4.2. The 11 crystals on the plate are the reconstructions of 

11 different BTO crystals. These crystals were not physically sitting next to each 

other as in the schematic graph but laid out for illustration. Each of these crystals 

was selected because of big facets showing up on their surface, with their actual 

position unknown in the sample. The incident beam is also only an illustration. 

During the experiment, the incidence angle on the substrate was between 3° and 

5° to have a proper X-ray footprint, not too large so that it’s hard to find crystal 

peaks, and not too small so that the crystal peaks are relatively sparse and 

isolated.  

   

Figure 4. 1 SEM image of BTO nanoparticles with a nominal size of 200nm. (a) 
Commercial BTO powders with no TEOS calcining. (b) Commercial BTO powders 

with TEOS calcining at 973 K for 1h. 

The crystal being illuminated by the X-ray beam in Figure 4.2 shows directional 

fringes. There are periodic fringes in all directions surrounding the diffraction 

centre, which contain the crystal size information in three dimensions. Several 

long tails of the fringes can also be observed, which indicates the existence of 

strong surfaces or interfaces.  The reconstructed crystal shape has four big facets 

as marked by Facet A to D in the figure. The reconstruction details and the 

reorientation of this crystal, called BTO-32, are discussed in the next section. 
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Figure 4. 2 Schematic showing of the geometry for BCDI experiment on the BTO 
nanoparticles. The three-dimensional (3D) coherent diffraction patterns of one 

isolated nanocrystal were measured at (101) reflections, which was then 
reversed to the real space image and showed four big facets on the surface. 

4.1.2 Reconstruction parameters confirmations 
The crystal with four well-defined facets in Figure 4.2 was chosen for detailed 

study of the convergence of the reconstruction. The chi-square error metrics 𝜒2 

and difference metrics 𝐷 are used for evaluating the goodness of the calculated 

diffraction of the reconstructions in agreeing with the measured intensity 

distributions. Their definitions are defined in Equation 1.35 and 1.36 in Chapter 

1. The detailed descriptions of the parameters and the algorithms used in BCDI 

reconstruction are provided in detail in Chapter 1.   

(a) Shrink-wrap evaluations 

The shrink-wrap is the support updating method as illustrated in Chapter 1 [24]. 

For this crystal reconstruction, the Gaussian smoothing function was used to 

help cropping out the noise and the artefact. There are also other methods like 

box filtering or keeping the support as constant voxels.  

Figure 4.3(a) shows how the chi-square error metrics vary with the shrink-wrap 

threshold. There is a change-of-slope turning point in this plot where the 
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threshold roughly equals to 0.23. Before the turning point, the slope is smaller, 

and it is considered that the shrink-wrap is still helping to crop out the artefact.  

After the turning point, the slope becomes larger and it is believed that the 

updated support is so strong and narrow, that it starts to cut out the volume of 

the real crystal image.   The reconstructed images with contour views and slices 

views are shown in Figure 4.3(b). There are clear noises and artefacts in the 

images when threshold equals to 0.05 and 0.1. When the threshold goes beyond 

0.25, the crystal shrinks in size and loses the real volume.  Between 0.1 and 0.25 

the images are very similar, so considered to be correct. Therefore, the shrink-

wrap with a threshold of 0.20 is used for the reconstruction of this crystal. 

   

 

  

Figure 4. 3 The reconstructions vary with the shrink-wrap thresholds. (a) Plot of 
chi-square error metrics with respect to the shrink-wrap thresholds. (b) The 
final reconstructed images using the shrink-wrap threshold from 0.05 to 0.40 
with a 0.05 step size. The first row is the iso-surface contour view coloured by 
displacement, while the second and the third rows are slices showing the two 

derivatives of displacement in lab coordinates. 

(b) 

(a) 
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(b) Algorithms evaluations 

Some typical combinations of algorithms were tested and compared. The details 

of the algorithms are listed in Chapter 1. The guided algorithm (GA) was turned 

on with a trigger of [5,180], which means that the first algorithm would go 

through 1 to 5 iterations, while the second algorithm would turn on from 6 to 

180 iterations, and then turning back to first iteration again.  

The Error Reduction (ER) + Hidden Point Removal (HPR) combinations gives 

the lowest chi-square error metrics of 1.7%. Quite a few combinations also give 

reasonable chi-square matrices around 2.0%. For example, the typical ER + 

Hybrid Input Output (HIO) gives a chi-square of 2.1%. While some combinations 

are not working well in this case. For example, the ER+HIO-AMP gives a chi-

square more than 10%.  In this Chapter, the typical ER+HIO is used for 

reconstructing the crystal.  

Table 4. 1 The chi-square error metrics of the reconstructions using different 
algorithm combinations. 

Algorithm 

combination

s 

Crystal 

𝜒2 

metric

s 

Reconstructed images 

 

Reconstructed images 

 

ER + HPR 1.7% 

  

ER + DM 1.9% 
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ER + HIOv 1.9% 

  

ER + HIOb 2.0% 

  

ER + HIOso 2.0% 

  

ER + DMr 2.0% 

  

ER + Guided 

HIO 
2.1% 

  

ER + HIO 2.1% 

  

ER + HIOsi 2.3% 
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ER + ASR 2.5% 

  

ER + RAAR 2.6% 

  

ER + RAARv 2.6% 

  

ER + HIOp 3.1% 

  

ER + GRAAR 3.6% 

  

ER + HIO-OR 3.7% 

  

ER + HIO-

AMP 

10% 

  

 

(c) GA parameters 
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The GA would run the reconstruction with defined population and generation. 

The population is the number of reconstructions run parallel to each other. The 

generation defines how many iteration blocks are run, each of which contains the 

typical 200 or 300 iteration loops.   Figure 4.4 shows some GA parameters that 

are usually adjusted for optimizing the reconstruction, including population, 

generation, low resolution method, GA return matrices, breed mode. The start 

guess is also usually used for testing the reproducibility of the final 

reconstruction.  

 

Figure 4. 4 A simplified GA flow chart is presented. 

The selection of the result after each generation is determined by the GA return 

metrics. The GA metrics that are generally used were tested and shown in Table 

4.2.  The average of iterates gives the lowest chi-square error metrics. All the 

other methods been tested also give good and very similar chi-square. The 

sharpness metric is used for reconstructing the crystal. 

Table 4. 2 Different GA return metrics and their chi-square error metrics when 
reconstructing the crystal. 

GA return 

metrics 

Crystal 

𝜒2 

error 

metric

s 

Reconstructed images 

 

Reconstructed images 
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Average 

of iterates 

2.0% 

  

Average 

of half 

iterates 

2.0% 

  

Sharpnes

s 

∑|𝜌(𝒓)|4 

2.1% 

  

Largest 

area of 

the 

support 

2.2% 

  

Chi-

square 

matrices 

𝜒2 

2.2% 

  

Total 

variation 

norm 

2.2% 

  

 

The breeding of the new starting guess is determined by the breed mode. The 

general modes were tested and shown in the Table 4.3. In the table, “a” represent 

the best population iterate determine by the GA metrics, while “b” is the current 

population iterate.  Of all the breeding mode been tested in this work, the 

“avg_ab” works the best. 
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Table 4. 3 Different breed modes and their chi-square error metrics when 
reconstructing crystals. 

Breed mode Cryst

al 𝜒2 

error 

metri

cs 

Reconstructed images 

 

Reconstructed images 

 

‘avg_ab’: 

(𝐴𝑎𝑒𝜙𝑎+𝐴𝑏𝑒𝜙𝑏)

2
 

1.6% 

  

‘max_ab’: 

〈𝐴𝑎, 𝐴𝑏〉𝑚𝑎𝑥 ∙ 𝑒
(𝜙𝑎+𝜙𝑏)

2  

1.9% 

  

‘sqrt_ab’: 

√𝐴𝑎𝑒𝜙𝑎 ∙ 𝐴𝑏𝑒𝜙𝑏  

2.0% 

  

‘sqrt_ab_pa’: 

√𝐴𝑎 ∙ 𝐴𝑏 ∙ 𝑒𝜙𝑎  

2.0% 

  

‘max_ab_pa’:

 〈𝐴𝑎, 𝐴𝑏〉𝑚𝑎𝑥 ∙ 𝑒𝜙𝑎  

2.0% 
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‘pixel_switch’: 

Random mixing 

2.0% 

  

‘avg_ab_pa’: 
(𝐴𝑎+𝐴𝑏)

2
∙

𝑒𝜙𝑎  

2.3% 

  

 

The low-resolution method starts with a low-resolution (LR) diffraction pattern 

for the iterations for the first several generations.  The LR data are obtained from 

the measured data by multiplication by a spherical function. To smooth the 

diffraction pattern, some smoothing functions could be used for constructing the 

low-resolution diffraction pattern. One big Gauss distribution is to use a single 

3D Gauss function to multiple with the diffraction pattern. The default sigma 

value is 0.1 and can be adjusted according to the array size.   Many small gauss 

distributions, on the other hand, uses many small gauss functions all through the 

data array. The default number of Gauss functions used are 20 but can be 

adjusted.  The Laplacian and sinc method are to use a Laplacian filter or a sinc 

function to smooth the image rather than Gauss filter. 

In our script, these functions are built-in already and can be added through 

‘params.GA_lres_type='gauss'; % or ‘gauss-many’, ‘laplacian’, ‘sinc’. 

By default, it is used for the first 3 generations in the total 5 generations 

reconstructions.  The last 2 generations use the original diffraction pattern for 

retrieving the details. The result from different low-resolution methods and 

without the low-resolution methods are shown in Table 4.4. For the 

reconstruction of this crystal, the low-resolution methods give much better chi-

square error metrics than without low-resolution methods. Of all the methods 

been tested, the one big gauss distribution works the best.  

Table 4. 4 Different low-resolution methods and their chi-square metrics when 
reconstructing the crystal. 
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Low 

resolution 

method 

Crystal 

𝜒2 

error 

metric

s 

Reconstructed images 

 

Reconstructed images 

 

One big 

gauss 

distribution 

1.6% 

  

Laplacian 

distribution 

1.8% 

  

Many small 

gauss 

distribution

s 

2.1% 

  

Sinc 

distribution 

2.2% 

  

No low 

resolution 

5.9% 

  

 

(d) Reproducibility evaluations  

To test the reproducibility of the reconstruction, multiple reconstructions with 

different starting points were performed.  Two general random supports were 

used for the start: The random object (RO) defines the starting image as a 
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random object with the size of the support with zero phase. The random phase 

(RP) defines the starting image as a box shape object with a size relative, 

normally 50%, to the data array. But the phase is randomly distributed from -π 

to π. The 10 RO reconstructions 10 RP reconstructions were performed for the 

crystal reconstruction. The results are shown in the Table 4.5. The relatively low 

chi-square metrics and difference metrics indicates the good reproducibility in 

the reconstruction of BTO-32.  

Table 4. 5 The chi-square metrics and difference metrics of the base 
reconstruction and 20 repeated reconstructions. The base reconstruction has a 

flat start with box-shaped object and zero phase. 10 RO reconstructions start 
with random object and zero phase. 10 RP reconstructions start with box object 

and random phase. 

Reconstruction 

Number 

Crystal 𝜒2 error metrics 

𝜒2 

Difference metrics 

𝐷 

Base 1.6% 0% 

RO 1 2.0% 2.1% 

RO 2 2.0% 2.1% 

RO 3 2.0% 2.1% 

RO 4 2.0% 2.1% 

RO 5 2.0% 2.1% 

RO 6 2.0% 2.1% 

RO 7 2.0% 2.1% 

RO 8 2.0% 2.1% 

RO 9 2.0% 2.1% 

RO 10 2.0% 2.1% 

Images of RO1 

 

 

 

 

RP 1 1.7% 1.3% 

RP 2 1.7% 1.3% 



108 
 

RP 3 1.7% 1.3% 

RP 4 1.7% 1.3% 

RP 5 1.7% 1.3% 

RP 6 1.7% 1.3% 

RP 7 1.7% 1.3% 

RP 8 1.7% 1.3% 

RP 9 1.7% 1.3% 

RP 10 1.7% 1.3% 

Images of RP1 

 

 

 

 

 

4.1.3 Reorientation of reconstructed crystal 

For a typical powder sample, all the nanocrystals are randomly distributed so 

that the X-ray beam could hit more than one crystal at a time. One might consider 

making the X-ray beam size close to the sample crystal size and carefully aligning 

a specific crystal grain into the centre position. By keeping this crystal at the 

beam centre and searching at reciprocal space, different Bragg reflections from a 

single crystal could be achieved [232, 233]. This has been achieved by others, but 

practically it was found to be necessary to isolate a crystal by manipulation or by 

clearing the surrounding area, because the “sphere of confusion” of the 

diffractometer is not good enough to remain exactly at a single location better 

than the focussed beam size. 

Experimentally, however, it’s more efficient to measure only one Bragg reflection 

of the ensemble of crystals naturally available in a powder sample. In such cases, 

without a secondary reference reflection, the crystallographic orientations are 

unknown. The only known direction is that of the Q-vector, which is determined 

by the X-ray incident and diffracted direction in experiment and denotes the 

corresponding crystallographic Bragg reflection.  
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After reconstructed the crystal with credibility, the Q direction is available in the 

final image in the lab coordinates, which is given by 

𝑸 = 𝒌𝑓 − 𝒌𝑖 (4.1) 

𝒌𝑓 = [sin 𝛿 cos 𝛾 , sin 𝛾 , cos 𝛿 cos 𝛾]; 𝒌𝑖 = [0, 0, 1] (4.2) 

The 𝒌𝑖  and 𝒌𝑓 are the direction vector of the incident and the diffracted X-ray 

beam. The 𝛿 and 𝛾 are the detector horizontal and vertical angles.  

To retrieve the correct crystallographic axes, at least two non-collinear crystal 

directions are needed.  In this work, the additional information comes from 

identifying and calibrating the angles between the facets of the crystal 

morphology.  Figure 4.5 (a) to (c) shows three orthogonal views of the BTO-32 

crystal in laboratory coordinates. Several flat facets are observed and labelled A, 

B, C and D, as shown in Figure 4.5 (d) and (e). The Q vector is also plotted, which 

is the known crystallographic (101) or (011) direction. Since, for tetragonal 

structure, (101) is equivalent to the (011) direction, so for simplicity, the Q 

vector is denoted as (101) only. 

 

Figure 4. 5 Different views of the BTO-32 crystal showing clear facets. (a)-(c) 
Three orthogonal views of the crystal shape in laboratory coordinates of the 

experiment. (d)-(e) The facets are marked with black arrows, while the Q vector 
is denoted by grey arrow. 
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In any single crystal, because of the symmetry of its unit cells, there are fewest 

surface defects along “low-index” directions and these tend to show the largest 

facets in the crystal morphology.  These facets tend to be “close-packed” with the 

least number of low-coordinated surface atoms/ions.  From low temperature to 

high temperature, BTO has rhombohedral, orthorhombic, tetragonal and cubic 

structure, respectively. All these crystal structures tend to have pseudo cubic 

{100}, {110} and {111} facets. To determine the facet coordinates, the inclined 

angles between these facets are mapped out and shown in Table 4.6. The 

reference angles between pseudo cubic {100}, {110} and {111} are also 

presented. 

Table 4. 6 Incline angles between different facets and the Q vector of the crystal. 

 A B C D Q {100} {110} {111} 

A  109.0° 54.4° 90.6° 35.6° - - - 

B -  54.7° 90.4° 144.6° - - - 

C - -  89.0° 90.0° - - - 

D - - -  90.5° - - - 

Q - - - -  - - - 

{100} - - - - - 90.0° 
45.0°/90.0°

/135.0° 
54.7°/125.3° 

{110} - - - - - - 
60.0°/90.0°

/120.0° 
35.3°/90.0°/144.7° 

{111} - - - - - - - 70.5°/109.5° 

 

Because the Q direction is 101, Facet A and B have the reference angle with Q 

between {111} and {110}.  Facet C has characteristic angle with A and B between 

{111} and {100}. If the Facet A is marked as 111, then Facet B, C, D can be 

identified as (-11-1), (010) and (10-1), respectively.  

After identifying the crystallographic direction of each facet, the rotational 

relation between the laboratory coordinates and crystallographic coordinates 

can be determined. This rotation matrix was calculated through a Matlab script 

based on the Horn’s quaternion-based method [195, 196], which is to find the 

minimum of a global factor 𝑆 defined by: 
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〈𝑆〉𝑚𝑖𝑛 = 〈∑ |𝑅 ∗ 𝐴(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) + 𝑇 − 𝐵(𝑥
𝑖

′
, 𝑦

𝑖

′
, 𝑧

𝑖

′
)|

2𝑁

𝑖=1
〉𝑚𝑖𝑛 (4.3) 

𝐴(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is the vector in new coordinates while 𝐵(𝑥
𝑖

′
, 𝑦

𝑖

′
, 𝑧

𝑖

′
) is the 

corresponding vector in original coordinates. These two are the inputs given. For 

example, we have the coordinates of Q and four facets directions for BTO-32, 

which are the input 𝐵(𝑥
𝑖

′
, 𝑦

𝑖

′
, 𝑧

𝑖

′
). The new crystallographic directions we defined, 

like (101) for Q and (111) for Facet A, are the input 𝐴(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖).   R is the possible 

rotation matrix, while T is the possible translation matrix. The global factor S is a 

sum of all the minus products from each vector. The problem is solved by finding 

the minimum S so as to get the best rotation matrix R.  The crystal is then rotated 

according to the best rotation matrix R and saved to vtk file for visualization.    

After reoriented the crystal to the new coordinates, the Cartesian X, Y and Z 

direction are assumed to be the crystallographic (100), (010) and (001) 

direction, respectively. Therefore, the three orthogonal directions are defined as 

𝑎1, 𝑎2 and 𝑎3.  

4.2 Discovery of strain stripes networks 
In this study, the structure of the interior of the crystal is of interest. To explore 

this inner information inside the crystal, different slices were taken. Figure 4.6 

shows 15 slices across the crystal. Slice 1 to 5 are the slices perpendicular to the 

crystallographic 𝑎1 direction (or called (100) direction). Slice 3 is the central 

slice across the crystal centre, while the other slices are 50nm apart from the 

adjacent slices.  Similarly, slices 6 to 10 are perpendicular to 𝑎2 direction (or 

called (010) direction), and slices 11 to 15 are perpendicular to 𝑎3 direction (or 

called (001) direction).   
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Figure 4. 6 Slices across the crystal to show the information inside. Slices 1 to 5 
are perpendicular to the crystallographic 𝑎1 direction, with a 50nm spacing. Slice 

6 to 10 and 11 to 15 are perpendicular to 𝑎2 and 𝑎3 directions, respectively. 

After selecting the proper slices, the phase images were taken and converted to 

the displacement field.  The derivatives of the displacement field were taken 

along the three crystallographic axes (𝑎1, 𝑎2, 𝑎3). Because the displacement field 

derived from the phase image is a projected value onto the Q vector, the final 

results are linear combinations of strain components shown in equations below: 

𝜕𝑢101

𝜕𝑎1
=

𝜕(𝑢100 cos 45° + 𝑢001 cos 45°)

𝜕𝑎1
=

√2

2
(휀11 + 휀31) (4.4) 

𝜕𝑢101

𝜕𝑎2
=

𝜕(𝑢100 cos 45° + 𝑢001 cos 45°)

𝜕𝑎2
=

√2

2
(휀12 + 휀32) (4.5) 

𝜕𝑢101

𝜕𝑎3
=

𝜕(𝑢100 cos 45° + 𝑢001 cos 45°)

𝜕𝑎3
=

√2

2
(휀13 + 휀33) (4.6) 

The derivatives of displacement over the crystallographic 𝑎1 and 𝑎3 directions 

contain the sum of a normal strain component and a shear strain component, 

while the derivatives over the 𝑎2 direction only contain the sum of two shear 

strain components.  
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Figure 4.7 shows the derivatives along all three directions in Slice 1 to 5. It could 

be seen that there are strain stripes roughly 45° in the derivatives along the 𝑎1 

and 𝑎3 directions, but 90° in the derivatives along the 𝑎2 direction. These strain 

stripes are distributed in all the Slices from 1 to 5, which indicates the presence 

of strain stripes all over most of the crystal volume.  

To quantify the periodicity and direction of the strain stripes, the autocorrelation 

function is used. The correlation coefficients are the measurements of the 

dependence of the two variables. The widely used Pearson correlation coefficient 

𝑟, if applying to the sample of 𝑛 measurements, has the definition: 

𝑟 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

(4.7) 

The 𝑥𝑖  and 𝑦𝑖 are the 𝑖th measurement of the sample, while the �̅� and �̅� are the 

sample means. The Pearson correlation coefficient has a value range from -1 to 1. 

The value 1 means the two variables are perfect correlated positively, and the -1 

means a perfect negative correlation. The value 0 means no correlation between 

the two. 

Different correlations could be defined from the Pearson correlation. If the two 

input samples x and y are the same sample with different delay or shifting, then 

the autocorrelation function (ACF) could be defined [197, 198]. The normalized 

one-dimensional (1D) autocorrelation function 𝑟𝐴𝐶𝐹 could be defined as the 

dependence of strain stripes to the distance as: 

𝑟𝐴𝐶𝐹−1𝐷(𝑑) =
∑ (𝑆0 − 𝑆̅)(𝑆𝑖+𝑑 − 𝑆𝑖+𝑑

̅̅ ̅̅ ̅̅ )𝐷
𝑖=1

√∑ (𝑆𝑖 − 𝑆̅)2𝐷
𝑖=1 ∑ (𝑆𝑖+𝑑 − 𝑆𝑖+𝑑

̅̅ ̅̅ ̅̅ )2𝐷
𝑖=1

(4.8)
 

The 𝑆0 and 𝑆𝑑 are the strain gradient at zero position and the position with a shift 

distance of d. The 𝑆̅ is the mean value of the strain gradient. 

Similarly, the two-dimensional (2D) autocorrelation function could also be 

defined for an image or a 2D array. For the array size of 𝑚 × 𝑛, the 2D ACF could 

be defined as: 
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𝑟𝐴𝐶𝐹−2𝐷(𝑑𝑥, 𝑑𝑦) =
∑ ∑ (𝑆(𝑖, 𝑗) − 𝑆̅)(𝑆(𝑖 + 𝑑𝑥, 𝑗 + 𝑑𝑦) − 𝑆̅)𝑛

𝑖=1
𝑚
𝑖=1

√∑ (𝑆(𝑖, 𝑗) − 𝑆̅)2𝑚
𝑖=1 ∑ (𝑆(𝑖 + 𝑑𝑥, 𝑗 + 𝑑𝑦) − 𝑆̅)

2𝑛
𝑖=1

(4.9)
 

𝑑𝑥 and 𝑑𝑦 are the movement in 𝑥 and 𝑦 direction. 𝑆(𝑖, 𝑗) is the strain gradient at 

point (𝑖, 𝑗) and 𝑆̅ is the mean value. 

Figure 4.8 shows the 2D ACF in 100 nm × 100 nm areas that cropped from the 

Slice 3.  Figure 4.8(a) shows the position of the selected region in Slice 3. Figure 

4.8(b) shows the enlarged view of strain gradient in the a1 direction. 

Correspondingly, the Figure 4.8(c) shows the 2D ACF result of this strain 

gradient distribution along the a1 direction, which is pointing out of the plane. 

There are also weak correlations along the (011) direction, which is obvious 

when observing the slice view in Figure 4.8(b). The strong correlation happens 

along the (010) and (001) directions, which is not so obvious in the slice view. 

The periods of the underlying correlations along (010) and (001) are about 50 

nm. The period along the (011) direction is about 70 nm. It’s possible the 

correlations along (010) and (001) are the origin, which results in the pattern 

seemingly along (011) direction.  

The strain gradient along a2 is shown in Figure 4.8(d) and along the a3 direction 

is shown in Figure 4.8(f). The 2D ACF for these two gradients does not show 

dependence in all two directions, as shown in Figure 4.8(e) and 4.8(g). Rather 

the gradient over a2 shows a 50 nm correlation along the (010) direction and the 

gradient along a3 shows a 65 nm correlation along the (001) direction.  
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Figure 4. 7 The Slices 1-5 are presented to show the strain gradients. The images 
listed in the same row are from the same slice. The first column is the 

displacement derivatives along the 𝑎1 direction. The second and third columns 
are the derivatives along the 𝑎2 and 𝑎3 directions, respectively. 
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Figure 4. 8 The 2D ACF is applied to the selected region in Slice 3. (a) The 
100 𝑛𝑚 × 100 𝑛𝑚 region selected for the 2D ACF. (b), (d), (f) The strain 

gradients along the 𝑎1, 𝑎2 and 𝑎3 directions. (c), (e), (g) The 2D ACF of the 
corresponding gradients. 

(a) 

(c) (b) 

(d) (e) 

(f) (g) 
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Figure 4.9 shows the derivatives along three directions in Slice 6 to10. The strain 

stripes are roughly 48° relative to (100) direction, which is within error of 45°.  

Figure 4.10 shows the corresponding 2D ACF of 100 nm × 100 nm areas in Slice 

8. The gradient over (100) direction has a dependence along (101) direction 

with a period of 30 nm. The gradient over (010) direction has correlation along 

(10-1) direction with a period of 90 nm. The gradient over (001) shows complex 

distribution in the ACF map. The strong dependence occurs at (001) and (100) 

directions with periods of 50 nm. There are also other correlations, but not as 

obvious.  

Figure 4.11 shows the derivatives over three directions in Slice 11 to 15. The 

strain stripes are roughly 50° (also within error of 45°) relative to the (100) 

direction in the derivatives along the 𝑎1 and 𝑎3 directions, but 0° in the 𝑎2 

direction. Figure 12 presents the corresponding 2D ACF. The correlation of the 

gradient along a1 is along the (100) direction and has a period of 110 nm. The 

correlation of the gradient along a2 has smaller periods, which is about 50 nm 

along the (010) direction.  The correlation for gradient over a3 has a large 

period, roughly 120 nm along the (110) direction. 
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Figure 4. 9 Slices 6-10 are presented to show the strain gradients. The images 
listed in the same row are from the same slice. The first column are the 

displacement derivatives along the 𝑎1 direction. The second and third columns 
are the derivatives along the 𝑎2 and 𝑎3 directions, respectively. 
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Figure 4. 10 The 2D ACF is applied to the selected region in Slice 8. (a) The 
100 𝑛𝑚 × 100 𝑛𝑚 region selected for the 2D ACF. (b), (d), (f) The strain 
gradients along 𝑎1, 𝑎2 and 𝑎3 directions. (c), (e), (g) The 2D ACF of the 

corresponding gradients. 

(a) 

(b) (c) 

(d) (e) 

(f) (g) 
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Figure 4. 11 Slices 11-15 are presented to show the strain gradients. Notations 
are the same as before. 
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Figure 4. 12 The 2D ACF is applied to the selected region in Slice 12. Notations 
are as before. 

(a) 

(b) (c) 

(d) (e) 

(f) (g) 
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The directions and periods of the strain gradients above are compiled together 

and shown in Table 4.7. The majority of the strain stripes are along three {100} 

directions and have periods of ~50 nm.  

Table 4. 7 The directions and periods of strain stripes shown in Figure 8, 10 and 
12. The Columns represent the periods of the strain stripes, while the rows 

represent their directions. 

 ~30 nm ~50 nm 
65~70 

nm 

90~120 

nm 

(100)  (
𝜕𝑢𝑄

𝜕𝑎3
)
𝑎1𝑎3

  (
𝜕𝑢𝑄

𝜕𝑎1
)

𝑎1𝑎2

 

(010)  (
𝜕𝑢𝑄

𝜕𝑎1
)
𝑎2𝑎3

; (
𝜕𝑢𝑄

𝜕𝑎2
)
𝑎2𝑎3

; (
𝜕𝑢𝑄

𝜕𝑎2
)

𝑎1𝑎2

   

(001)  (
𝜕𝑢𝑄

𝜕𝑎1
)
𝑎2𝑎3

; (
𝜕𝑢𝑄

𝜕𝑎3
)
𝑎1𝑎3

 (
𝜕𝑢𝑄

𝜕𝑎3
)
𝑎2𝑎3

  

(110)    (
𝜕𝑢𝑄

𝜕𝑎3
)

𝑎1𝑎2

 

(101) (
𝜕𝑢𝑄

𝜕𝑎1
)

𝑎1𝑎3

    

(10-1)    (
𝜕𝑢𝑄

𝜕𝑎2
)

𝑎1𝑎3

 

 

We interpret the strain stripes in Figure 4.7 to Figure 4.12 as polar domains or 

polar nanoregions (PNR).  The idea of PNRs is well-documented in relaxor 

ferroelectrics, where different models using PNRs have successfully explained 

the characteristic frequency-dependent properties of the relaxors [156, 166, 

199]. The definitions of PNRs are diverse for different systems and treated on a 

case-to-case basis. For example, PNRs are defined in paraelectric SrTiO3 (STO) 

thin films to be the small regions with local polarization which are observed by 

high angle annular dark field scanning transmission electron microscopy 

(HAADF-STEM) [107]. We propose the PNRs in this work are the small regions 

with tens of nanometers in size and have {100} local polarizations, which is the 

direction of inner boundaries we see most often in the experiment.  
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4.3 BTO local structure by total scattering 
There are different scientific languages to explain the origin of the electric 

polarizations, such as the change of Wannier function of the occupied band in 

quantum mechanics [200]. In the viewpoint of crystallography, the polarization 

involves the displacement of barium and titanium cation relative to the oxygen. 

For barium titanate, with a tolerance factor is 1.06, the titanium cation is the 

"loose" ion which has more space to move around in its oxygen octahedron. 

Therefore, the movement of titanium can be used to characterize the polarization 

in the unit cell level. Although both displacive and order-disorder features are 

observed in BTO, in either case, the displacement direction of the titanium cation 

from the centre of a unit cell reflects the symmetry breaking from cubic 

structure. The tetragonal lattice supports 001 displacement of the titanium 

cation, while the orthorhombic and rhombohedral lattices have 110 and 111 

additional displacements, respectively.   

The preparation methods of BTO have great impact on the final properties. For 

example, BTO nanocrystals with global structures of pure cubic, pure tetragonal 

or a mixture of cubic and tetragonal structure at room temperature could be 

made by changing the synthesis temperatures and solutions in hydrothermal 

synthesis [201-204].  Another complexity is the global structure could be very 

different to the local structure. The BTO samples with tetragonal and cubic global 

structures were found to have rhombohedral local structures [172, 173, 205]. 

The BTO samples synthesized in our lab in Brookhaven National Lab have 

tetragonal local structures, though the global structure is cubic.  

To identify the global and local structures of the commercial BTO samples used 

in this work, total scattering experiments were done at APS 11-BM.  Figure 4.13a 

shows the scattering data of these BTO samples. The clear and sharp (101) and 

(110) peaks confirm the global structure to be tetragonal. The d-spacing of the 

two Bragg reflections could be derived from the data to be 𝑑110 = 2.8244 Å and 

𝑑101 = 2.8390 Å. This corresponds to the lattice constant of 𝑎 = 3.9943 Å and 

𝑐 = 4.0354 Å, which gives a tetragonality of 1.0103. Figure 4.13b shows the 

temperature dependence of the lattice parameters in BTO nanocrystals. When 

increasing the temperature, the lattice constant a and c becomes close. Also, the 
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transition temperature for our commercial sample is well above 400 K, while the 

transition of bulk BTO crystal happens around 393 K.  

 

Figure 4. 13 X-ray diffraction data from BTO commercial samples measured at 
APS 11-BM. The X-ray wavelength is 0.4579Å. 

As discussed in Chapter 1, from the total scattering structure function 𝑆(𝑄), the 

reduced structure function 𝐹(𝑄) can be derived. Then the reduced structure 

function can be transformed into real space to get the pair distribution function 

(PDF), G(r), which is similar to the radial distribution function, 𝑅(𝑟), in giving 

the average probabilities of finding atoms at certain radius from the atom central 

position. It has the ability to probe the averaged local structure by identifying the 

nearby atom neighbour distances.   

The scattering data from the commercial BTO samples were fitted by four 

possible BTO crystal structures: cubic (Pm3̅m), tetragonal (P4mm), 

orthorhombic (Amm2) and rhombohedral (R3m) in collaboration with Emil 

Bozin at Brookhaven National Lab. The fittings of the four models in short range, 

from 0Å to 11 Å, are given in Figure 4.14(a).  The best fitting results are given by 

tetragonal P4mm model and orthorhombic Amm2 models, both gives an error of 

9.7%. The P4mm model is more symmetric than Amm2 model, so the Amm2 

model has more degrees of freedom (variables in the fit). The same error value 

indicates the extra variables of Amm2 model is actually not needed, so it 

degrades to the tetragonal model.  The other two models give relatively large 

error. The cubic Pm3̅m has an error of 14% and rhombohedral has an error of 

16%. 
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Figure 4. 14 The X-ray pair distribution function (PDF) of the same powder 
sample of BTO used throughout this work.  The data were collected at the XPD 
beamline of NSLS-II. (a) The short-range fitting of the PDF using four crystal 
structures: cubic (Pm3̅m), tetragonal (P4mm), orthorhombic (Amm2) and 

rhombohedral (R3m). (b) The long-range fitting of the scattering data using two 
crystal structures: cubic (Pm3̅m), tetragonal (P4mm). 

Figure 4.14(b) shows the fitting of the experimental scattering data to P4mm 

and Pm3̅m model in the long range, from 0 Å to 80 Å. The tetragonal P4mm 

model gives an error of 9%, while the cubic Pm3̅m gives an error of 19%. Both 

the short range and long-range fitting show that the local structure of 

commercial BTO samples is lower symmetry than cubic. The data are consistent 

(a) 

(b) 
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with the tetragonal structure identified by the (110)/(101) peak-splitting seen 

in Fig 4.13.  

For the commercial samples in use for this study, both the global and local 

structures are confirmed to be tetragonal at room temperature.  As discussed 

above, the BTO properties are sensitive to the preparation methods. In separate 

work, we have investigated other preparation methods and found cubic long-

range structure, different from the commercial BTO nanocrystals studied here, 

while the local structure appears to be always low-symmetry, consistent with 

tetragonal [206].   

In summary, ex-situ BCDI and X-ray pair distribution function experiments have 

been performed on BTO nanocrystals. Strain-stripe networks were found to 

distributed all over the crystal. The most common appearance of the strain 

stripes is along {100} directions with a period of 50 nm. Both the global and local 

structures of BTO samples were confirmed to be tetragonal.  

Regarding the three hypotheses put forward in the beginning of this Chapter, the 

existence of BTO strain stripes overrules the idea of there being a single 

polarized domain all over the crystal. The idea of small, polarized domains is 

favoured by the results instead. The exact type and arrangement of domains 

causing the stripes, like whether they are 90° or 180° domains, cannot be exactly 

distinguished, but motivates the modelling study presented in chapter 6. 
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Chapter 5. Strain stripes network behaviour in barium 

titanate nanocrystals when crossing phase transition 

To further explore the nature of the strain stripes reported in Chapter 4, in-situ 

Bragg coherent x-ray diffraction imaging (BCDI) experiments were performed on 

the selected barium titanate (BTO) crystals with ramping up temperatures at the 

European Synchrotron Radiation Facility (ESRF).  Crystals were selected with 

facets and good fringes as good candidates and then heated up in-situ to cross 

the tetragonal-cubic phase transition. 

There were two basic goals when designing the experiment. The first goal was to 

repeat the strain stripes results that was observed in the crystal studied in 

Chapter 4 to check its reproducibility.  The second one was to track the 

behaviour of those strain stripes across the tetragonal-cubic phase transition.  

Prior to performing the experiments, several hypotheses were made:  

(a) If the strain stripes exist at low temperature in the tetragonal phase but 

disappear after crossing the phase transition to cubic phase, it indicates 

the strain stripes are originated from the tetragonal lattice. Particularly, 

the strain stripes could be the domain walls in tetragonal phase, where 

the 90° and 180° domain walls are prevalent.  

(b) If the strain stripes exist at low temperature and preserve after crossing 

the phase transition, then it indicates the origin of those strain stripes 

might not be directly linked to the global tetragonal phase. There could be 

some other local structure that forms the domain walls at high 

temperature even though the global structure is cubic.  

(c) A third possibility would be that the strain stripes don’t exist at low 

temperature initially, but only appear after heating across the phase 

transition and might be preserved when returning back to low 

temperature.  Then it might indicate the annealing process play a big role 

in forming those strain stripes network. 

With clear assumptions in mind, the in-situ BCDI experiments were performed at 

ESRF ID-01 beamline. 
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5.1 Experimental details 
The commercial samples were first suspended in a tetraethyl orthosilicate 

(TEOS) and ethanol solution with a volume ratio of 1:75. The mixed solution has 

then been dropped from a pipette onto a silicon wafer and heated up to 973 K for 

2h in air.  This drop-casting procedure followed by calcining proves to be useful 

for fixing nanocrystals, which were illuminated by the nano-focused X-ray beam 

[207].  The crystals of interest are the ones with nice crystalline facets. These 

would show up whenever the diffraction patterns show clear direction flares 

coming out of the central diffraction spots.  To minimize the effort of tracking 

crystals upon subsequent heating, the samples were heated directly to 100℃ and 

kept at this temperature for searching for interesting crystals.   

Instead of using video live views to search for crystals, which is the routine in 

beamlines APS 34-ID-C and DLS I13-1, we used the well-developed K-map tool 

available at ESRF ID-01.  The users would define different ROIs on the detector, 

which are shown as the red boxes in Figure 5.1.  Then a detailed spatial mapping 

of the sample could be carried out. For example, if the beam size is 2 μm × 2 μm, 

then a 2 μm step size could be used when scanning across the sample position. 

Whenever there is diffracted intensity coming into the ROI, the sum of the 

intensity was recorded and shown in the final K-map, schematically shown in Fig 

5.1 as the red and yellow pixels in the four cubic mesh grids. If the incident angle 

is set to be low, the X-ray footprint would be large. Then the 200nm BTO crystals 

would not show up as just one pixel, but rather appearing in a few pixels of the 

K-map because of the elongated X-ray beam.  After the sample mapping, the user 

would be able to revisit only the “hot pixels” for higher signal position, where 

mostly likely there are bright crystals or a strong powder ring.  
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Figure 5. 1 The schematic drawing shows the K-map method, which is used at 
ESRF ID01 beamline. The red boxes are the ROIs chosen. After the sample mesh 

scan, each ROI would appear as an intensity in the pixel map as shown. 

During the experiment, four crystals with facets were selected and tracked upon 

heating and cooling. Among the four crystals, two crystals (Crystal A and B) had 

good diffraction fringes and were studied in detail in this Chapter.  The selected 

crystals have then been tracked while heating in 5 K steps to 433 K, which is well 

above the BTO tetragonal-cubic phase transition temperature. The crystals were 

then cooled down with the same 5 K steps. At each temperature step during 

heating and cooling, the BCDI measurements were carried out. To make sure the 

centre of the crystals is preserved, alignment scans were carried out before each 

BCDI measurement. 

ID01 furnace is used for the heating. It is a resistive heater, with the heating 

element being in contact with an alumina crucible, on top of which the sample is 

pasted. It has two thermocouples, one inside the bulk of the crucible and an 

external one which is then attached as close as possible to the sample. The 

output of the first thermocouple is feeded into a PID controller (Eurotherm) that 

regulates the power applied to the heater. The output of the second 

thermocouple is instead what is read by the beamline computer and hence what 

you get in the data. The furnace's PID parameters are calibrated using this 
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second external thermocouple, based on the environment in which it is to be 

used (air, nitrogen, ...), prior to every experiment. 

The X-ray energy was set to be 10.35 KeV, which corresponds to a wavelength of 

1.1979 Å. For the BTO commercial samples at room temperature, the (110) 

powder ring sits at 24.51° and the (101) powder ring locates at 24.39°. When 

heated up, the a and c lattice constant of BTO would become closer, and so would 

the angles of the (110) and (101) powder rings.  The two-dimensional (2D) 

Maxipix detector was placed 0.546 m away from the sample stage with a pixel 

size of 55 m. The scanning step (dth) of the rocking curve scan was chosen to 

match the crystal size. For a typical 300 nm BTO crystal, a scanning step size of 

0.02° was chosen.  The determination of step size was adjusted by the sample 

size and the detector distance. To ensure a sufficient sampling, we make sure the 

fringes are more than 2 pixels in size. For X and Y direction, this can be directly 

seen on the detector. If the fringes are smaller than 2 detector pixels (55um×2), 

then we would increase the sample detector distance. This works the same for θ 

direction, but instead, we make sure the fringes are changing smoothly rather 

than appear and disappear in the next two frames. 

Once the diffraction patterns were recorded, data processing steps were carried 

out to exploit the underlying information inside the two crystals (Crystal A and 

B). The diffractometer geometry at ESRF ID01 is the same as APS 34-ID-C, where 

the delta is the detector horizontal angle and gamma the vertical one.  

5.2 Diffraction patterns behaviours as a function of temperature 
The diffraction patterns from the two BTO crystals were first studied in 

reciprocal space directly before being inverted back to the real space images.  

5.2.1 Intensity variations 
The change of diffraction intensity is affected by many factors, which not only 

includes the crystal volumes and crystal phases, but also the alignments of the 

crystals and the flux variations of the incident beam. In this sense, the intensity is 

not a very quantitative value for the analysis.  There were some degrees of 

controls in alignment, while the crystals were being measured, and, after the 

temperature became stabilised, multiple alignment scans were performed.  

Regarding the variation of incoming X-ray beam, because each BCDI 
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measurement took more than 10min, the flux was not found to change a lot in 

such a big time-window.  The maximum intensity and the total intensity of the 

diffraction pattern of Crystal A and B were plotted as a function of temperature 

in Figure 5.2.   

For the total intensity plot, there is a qualitative trend for Crystal A. The crystal A 

has an intensity between 2 × 108 and 2.5 × 108 counts/s when heated from 373 

K to 418 K, and then dropped below 1.1 × 108 counts/s at 423 K. The intensity 

kept between 1.0 × 108 and 1.2 × 108 counts/s when further heated to 433 K 

and cooling back to 373 K.  For Crystal B, the total intensity has a little vibration, 

but there is no clear variation trend. The intensity stays between 3.6 × 107 and 

4.3 × 107 counts/s through all the heating and cooling process. 

  

 

Figure 5. 2 The diffracted intensities of Crystal A and B are plotted as a function 
of temperature. The yellow lines with round dots show the heating period, while 
the blue lines with square dots present the cooling period. (a) The peak 
(maximum) pixel intensities from Crystal A are plotted. (b) The integrated (sum) 
intensities of all pixels from Crystal A are plotted. (c) The peak pixel intensities 
from Crystal B are plotted. (d) The integrated intensities of all pixels from 
Crystal B are plotted. 

(a) (b) 

(c) (d) 
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The sharp change of intensity in Crystal A but not crystal B could come from 

structural changes. One possibility would be that Crystal A goes through phase 

transition between 418 K and 423 K upon heating. The reason why the intensity 

doesn’t come back when cooling down again suggesting that there may be a 

change of crystal structure or orientation, which is determined later in this 

section by the switching of crystal peak from the (101) powder ring to the (110) 

powder ring.   

5.2.2 Rocking curve plots 
Rocking curve plots, sometimes called the "mosaic spread", depict the intensity 

distribution, integrated across the Maxipix detector, when rotating the crystal 

across the Bragg condition. The full-width-half-maximum of crystal peaks in 

rocking curve plots could be used to determine the crystal size in one certain 

direction. This is, however, of less interest in this work as the crystal size does 

not appear to change significantly with temperature. The information of interest 

in this work is the shape of the rocking plots, which evaluates the uniformity of 

crystal structure and the degree to which it is broken into sub-domains. 

The rocking curve plots of Crystal A at each temperature during the heating and 

cooling are shown in Figure 5.3.  At some temperature points, the rocking curve 

scans have shapes with a single sharp peak, such as at 373 K before heating.  At 

other temperature points, it has a jagged multiple-peak shape, as shown at 388 K 

upon heating.  The scanning step size is 0.02° and the full-width-half-maximum 

of the peak is more than 0.1°, so the scanning is relative fine and has enough data 

points to cover the shape of the sharp peak.  There is no clear explanation why at 

some temperatures, the peak is sharp, but at other temperatures it is not.  But 

the possibilities could be the Crystal A is slightly unstable and rotates a bit 

during the theta scan. Or it could be there is structure changes happening of 

Crystal A during the heating.  

Figure 5.4 shows the rocking curve plots of Crystal B during heating and cooling. 

In comparison to the variation in Crystal A, the Crystal B always keeps a sharp 

peak shape at all temperatures.  
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Figure 5. 3 The rocking curve plots of Crystal A are presented at different 
temperatures. The plots in yellow cover the heating range from 373 K to 428 K. 

The plot in red shows the highest temperature at 433 K. The plots in blue record 
the cooling range from 428 K to 378 K. 
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Figure 5. 4 The rocking curve plots of Crystal B are presented at different 
temperatures. The plots in yellow cover the heating range from 373 K to 428 K. 

The plot in red shows the highest temperature at 433 K. The plots in blue record 
the cooling range from 428 K to 388 K. 
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5.2.3 Central diffraction patterns 

The two crystal diffraction patterns were being tracked all through the heating 

and cooling. The central slices of the diffraction patterns were plotted and shown 

in Figure 5.5 and Figure 5.6.  

Figure 5.5 presents the central slices of Crystal A. The origin of reciprocal space 

(delta and gamma angles both zero) is at the bottom-right and increasing Bragg 

angle runs from the bottom-right corner of the detector to the top-left.  The 

yellow and red dash lines are guides for the eyes, which are the powder ring 

directions of the (101) and (110) peaks of this crystal at 373 K. Multiple fringes 

with good visibility could be seen around the central spot, indicating the high 

quality of both datasets. One directional flare could be seen that coming from the 

left of the central spot, indicating the existence of one big facet.  The flare extends 

from the (101) ring position all the way to the (110) ring, which suggests there 

may be a mixture of tetragonal domain orientations within the sample.  Upon 

heating Crystal A from 373 K to 433 K, the diffraction patterns started from a 

base position and kept moving to the left of the detector when heating up. While 

cooling down, the diffraction pattern didn’t move back. Instead, it kept moving to 

the left of the detector. The starting and the ending position of the central Bragg 

peak are indicated as the yellow and red dash lines in Figure 5.5. 

This movement to the left could be understood as the Crystal A lattice satisfying 

the (101) diffraction initially. When it heated up, it goes through phase transition 

to cubic phase. When cooling back to tetragonal phase again, the c-axis doesn’t 

appear in the previous crystallographic direction, rather becoming one of the 

previous a-axis directions. Therefore, under the Bragg diffraction geometry, the 

pattern is seen to migrate from the (101) powder ring to the (110) ring during 

the heating/cooling cycle. 
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Figure 5. 5 The central diffraction patterns of crystal A are presented as a 
function of temperature.  The yellow and red dash lines are the (101) and (110) 
powder ring directions given by the detector δ and γ angles. The central position 
of Crystal A's diffraction pattern at 373 K before heating up starts at the radius of 

the yellow dash line. But its central position moves over to the red dash line at 
373 K after cooling down. 



137 
 

 

Figure 5. 6 The central diffraction patterns of the crystal B at different 
temperature are presented.  The yellow dash line stays at the central position of 

Crystal B diffraction pattern at 373 K before heating up. The dash line is assigned 
to the (110) powder ring indices, based on the behaviour of the pattern through 

heating and cooling. 

Figure 5.6 shows the central slices of Crystal B. The diffraction patterns are on 

the top-left panel of the detector. The powder ring passing through the central 

position is indicated by the yellow dash line. Upon heating up, the diffraction 

pattern is seen to move to the right on the detector and reached the farthest 

position at 433 K.  During cooling down, the pattern continuously moves back to 

the original powder ring direction. Based on the fact that the tetragonal (110) 
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powder ring is outboard (larger Q) and (101) powder ring is inboard, the yellow 

dash line is considered to be the (110) powder ring of Crystal B at 373 K. 

Contrary to Crystal A, which switched the powder ring after crossing phase 

transition, the peak of Crystal B did move back towards the original powder ring 

position. 

5.2.4 Lattice constant variations 
In the powder X-ray diffraction experiment, the averaged lattice d-spacing could 

be calculated through the averaged peak position. The same information could 

be derived from the BCDI experiment as well. By calculating the angle of centre 

of mass (COM) of the single diffraction pattern, the d-spacing of the single crystal 

could be determined. The angle of the COM of the diffraction pattern contains 

two parts: one is the detector angle, the other one is the angle from Bragg peak to 

the calibrated Beam Zero position on the detector. One general procedure to 

calculate the d-spacing of single crystal is given below: 

(a) Reading the detector δ and γ angle at each temperature step.  

(b) Calculating the 𝑸𝒙𝒚 vector on the detector plane by: 

𝑸𝒙𝒚 = (sin 𝛿 cos 𝛾 , sin 𝛾) (5.1) 

(c) Calculating the distance of Bragg peak to the Beam Zero. Beam Zero is the 

point where the X-ray beam hits at when the detector is set to 0° angle. Then 

calculating the projection of this distance onto the 𝑸𝒙𝒚 vector by: 

𝑑 =
𝛥𝒑 ∙ 𝑸𝒙𝒚

|𝑸𝒙𝒚|
=

(𝑝𝑥 − 𝑝𝑥0) ∙ sin 𝛿 cos 𝛾 + (𝑝𝑦 − 𝑝𝑦0) ∙ sin 𝛾

√(sin 𝛿 cos 𝛾)2 + (sin 𝛾)2
(5.2) 

This is schematically showing in Figure 5.7a. 

(d) Calculating the extra horizontal and vertical angle caused by the Bragg peak 

position on the detector relative to the Beam Zero position: 

𝛾+ =
𝑑 ∙ 𝑄𝑦

|𝑸𝒙𝒚|
=

(𝑝𝑥 − 𝑝𝑥0) ∙ sin 𝛿 cos 𝛾 + (𝑝𝑦 − 𝑝𝑦0) ∙ sin 𝛾

(sin 𝛿 cos 𝛾)2 + (sin 𝛾)2
sin 𝛾 (5.3) 

𝛿+ =
𝑑 ∙ 𝑄𝑥

|𝑸𝒙𝒚|
=

(𝑝𝑥 − 𝑝𝑥0) ∙ sin 𝛿 cos 𝛾 + (𝑝𝑦 − 𝑝𝑦0) ∙ sin 𝛾

(sin 𝛿 cos 𝛾)2 + (sin 𝛾)2
sin 𝛿 cos 𝛾 (5.4) 
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This is presented in Figure 5.7b. 

(e) Calculating the 2θ angle and then the d-spacing of the diffracting crystal 

planes. 

2𝜃 = cos−1(cos(𝛿 + 𝛿+) ∙ cos(𝛾 + 𝛾+)) (5.5) 

𝑑ℎ𝑘𝑙 =
𝜆

2 sin 𝜃
(5.6) 

 

 

Figure 5. 7 The illustrations show the calculation of the d-spacing of the single 
crystal from the position of the peak on the detector. 

Through the procedure above, the d-spacing of the diffracted plane in Crystal A 

and B were calculated for all temperatures, as shown in Figure 5.8.   

(a) 

(b) 
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Figure 5. 8 The d-spacing variations of Crystal A and Crystal B during heating and 
cooling are presented in (a) and (b). It should be noted that the lattice constant 

change in Crystal A is smaller than Crystal B. 

For Crystal A, the d-spacing of the diffracted crystal plane decreased a bit when 

heated from 373 K to 383 K. There was a jump in d-spacing from 383 K to 388 K, 

which is not well understood. After 393 K, the d-spacing was linearly decreased 

until 423 K, after which the d-spacing went up again at a much smaller slope. The 

turning point 423 K is considered to be near the phase transition temperature, so 

the negative slope before 423 K is caused by a decrease of tetragonality, while 

the positive slope after 423 K is the thermal expansion of the cubic lattice. When 

(a) 

(b) 
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cooling down from 433 K to 373 K℃, the d-spacing of Crystal A went down 

linearly.  

For Crystal B, the d-spacing increased linearly at a sharp slope when heated from 

373 K to 403 K. After 403 K, the d-spacing was still increasing, but at a much 

smaller slope. Therefore, the phase transition is considered to happen around 

the turning point 403 K. When cooling down from 433 K, the d-spacing 

decreased at a small slope. The turning point, indicating the phase transition, 

appears to be at 393 K. This transition temperature is about 10 K lower than the 

transition temperature during the heating, noting that the temperature 

resolution is about 5 K. Ferroelectric perovskites commonly have hysteresis 

[208]. The temperature delay of phase transition could be explained by a kinetic 

barrier, with extra energy needed for arranging the domain structure when 

going into tetragonal phase. 

There may be a few factors that contributing to the error. From the Eq. (5.6) we 

can see the resolution of wavelength λ and angle θ would matter. 

The energy resolution from the double silicon (111) crystal monochromator is 

1.3 × 10−4.  

The angle is influenced by the detector pixel size. We are calculating the centre of 

mass (COM) of the diffraction pattern rather than finding the brightest pixel. 

Therefore, our resolution should be finer than the pixel size. If taking one pixel as 

the limiting resolution, the resolution is 0.0058 deg. When approaching to 

minimum, sinx is approaching to x, so we can take 0.0058 as the resolution.  

Combining these two factors together, the propagated error is 

√(1.3 × 10−4)2 + (
0.0058

𝜃
)2. For a typical theta equals to 24.4°, the error is 0.0027. 

5.3 Strain stripes behaviours over temperatures in reconstructed crystals 

images 
After learning the behaviour of the diffraction pattern directly in the last section, 

the two crystals were then reconstructed to acquire the real space crystal images 

to further explore the strain stripes network behaviour as a function of 

temperature. 
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5.3.1 Reconstruction parameters confirmation 

The reconstruction parameters were carefully checked and confirmed on 

selected diffraction patterns before applying to all the data. An example of 

detailed checking of the parameters in two simulated crystals can be seen in the 

Appendix. Similar parameter checking of crystal BTO-32 can be found in Chapter 

4. In this section, several general reconstruction parameters were studied for 

confirming the convergence of the reconstruction.  

5.3.1.1 Shrink-wrap evaluations 

Three diffraction patterns at typical temperature points were chosen to find an 

appropriate shrink-wrap value for reconstructing all the other diffraction 

patterns. For Crystal A, the diffraction peak at 373 K upon heating, the diffraction 

peak at 433 K and the diffraction peak at 373 K during cooling were chosen. For 

these three diffraction patterns, the reconstructions were run with a shrink-

wrap value from 0 to 0.5 at a step size of 0.01. The final chi square error metrics 

were plotted as a function of shrink-wrap values, which is shown in Figure 5.9 

(a). The first thing to notice is that the chi-square values are highly reproducible 

for adjacent tests, leading to smooth curves; there is no apparent propagation of 

the random numbers used to start the reconstructions. There are two slopes 

showing in these lines. In the first slope, the chi-square error metrics stay at a 

relative low value, while in the second slope the chi-square increases sharply. 

The turning points for the three diffraction patterns are 0.16, 0.17 and 0.16, 

respectively.  Therefore, a shrink-wrap value of 0.10 was chosen for 

reconstructing all diffraction patterns of Crystal A.   

For Crystal B, the first slope for the diffractions patterns at three temperatures 

roughly end at around the threshold of 0.25. Therefore, the shrink-wrap value of 

0.15 was chosen.  
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Figure 5. 9 The line plots show the chi-square metrics variations over the shrink-
wrap values.  Three typical diffraction patterns from both Crystal A and Crystal B 

were chosen for testing and plotted in this figure. 

Another common way for reconstructing in-situ crystal data is to assume there is 

no big change in crystal shape. After optimising the support for the first 

measurement, it would then been fixed to reconstruct all the other 

measurements with the same support. In this way, all the differences between 

different measurements would goes into the reconstruction results.  In this work, 

there is no knowledge if the shape would change or not. Therefore, all the 

crystals were reconstructed separately with random start and certain shrink-

wrap value.   

5.3.1.2 Algorithms evaluations 
Different algorithm combinations were tested on the diffraction patterns from 

the two crystals. The chi-square error metrics are listed in Table 5.1. For Crystal 

A, the general combination ER plus HIO gives reasonable chi-square error 

metrics. This combination was then used for reconstructing all the 

(a) 

(b) 
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measurements of Crystal A.  For Crystal B, the ER plus RAAR gives low chi-square 

error metrics and so this was used for the reconstruction.  

Table 5. 1 The chi-square error metrics of the reconstructions using different 
algorithm combinations. The iteration-number triggers of the two algorithms 

were kept at [5,180] out of 300 iterations. 

Algorithm 

combinations 

Crystal 

A 𝜒2 

error 

metrics 

Reconstructed images 

 

Crystal 

B 𝜒2 

error 

metrics 

Reconstructed images 

 

ER+GHIO 1.6% 

 

1.2% 

 

ER+HIO 0.84% 

 

1.2% 

 

ER+HIO-

AMP 

1.0% 

 

3.0% 

 

ER+HIO-OR 3.3% 

 

1.4% 

 

ER+ASR 1.1% 

 

1.2% 
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ER+DM 0.79% 

 

1.3% 

 

ER+DMr 1.3% 

 

1.3% 

 

ER+GRAAR 3.6% 

 

1.3% 

 

ER+HPR 0.89% 

 

1.3% 

 

ER+RAAR 0.97% 

 

1.1% 

 

ER+RAARv 1.3% 

 

1.3% 

 

 

5.3.1.3 Guided-HIO (GA) parameters 

The guided-HIO method uses different decision methods for selecting the best 

result for the following iteration, as discussed in section 4.1.2.3.  The final chi-

square error metric is listed for the GA reconstruction of the two crystals in 

Table 5.2. In both Crystal A and B cases, the sharpness gives the lowest chi-

square error metrics and so was chosen for reconstructing all the measurements.  
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Table 5. 2 The chi-square error metrics using different returned metrics in GA 
reconstructions. 

GA return 

metrics 

Crystal 

A 𝜒2 

error 

metrics 

Reconstructed images 

 

Crystal 

B 𝜒2 

error 

metrics 

Reconstructed images 

 

Sharpness 

∑|𝜌(𝒓)|4 
0.84% 

 

1.1% 

 

Largest 

area of 

the 

support 

0.84% 

 

1.2% 

 

Chi-

square 

matrices 

𝜒2 

1.0% 

 

1.2% 

 

Total 

variation 

norm 

0.95% 

 

1.2% 

 

Average 

of iterates 
0.84% 

 

1.1% 

 

Average 

of half 

iterates 

1.0% 

 

1.1% 
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Different breeding modes were also tested for the two crystals in Table 5.3. For 

Crystal A, the ‘sqrt_ab_pa’ gives the lowest chi-square. In the ‘sqrt_ab_pa’ mode, 

the amplitude of the new start is the geometric mean, the square-root of the 

product of the best iterate and current iterate, while the phase is kept as that of 

the current iterate. For Crystal B, the ‘max_ab_pa’ works the best. In this breed 

mode, the phase is again kept as the current iterate, but the amplitude is 

determined by the maximum amplitude between the best and current iterates.  

Table 5. 3 The chi-square error metrics using different breeding mode in GA 
reconstructions. 

GA breeding mode 

Crystal A 𝜒2 

error 

metrics 

Reconstructed images 

 

Crystal B 

𝜒2 error 

metrics 

Reconstructed images 

 

‘sqrt_ab’: √𝐴𝑎𝑒𝜙𝑎 ∙ 𝐴𝑏𝑒𝜙𝑏  0.84% 

 

1.1% 

 

‘max_ab’: 〈𝐴𝑎, 𝐴𝑏〉𝑚𝑎𝑥 ∙

𝑒
(𝜙𝑎+𝜙𝑏)

2  
0.98% 

 

0.97% 

 

‘avg_ab’: 
(𝐴𝑎𝑒𝜙𝑎+𝐴𝑏𝑒𝜙𝑏)

2
 0.81% 

 

1.0% 

 

‘sqrt_ab_pa’: √𝐴𝑎 ∙ 𝐴𝑏 ∙

𝑒𝜙𝑎  
0.58% 

 

1.0% 
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‘max_ab_pa’: 〈𝐴𝑎 , 𝐴𝑏〉𝑚𝑎𝑥 ∙

𝑒𝜙𝑎  
0.72% 

 

0.96% 

 

‘avg_ab_pa’: 
(𝐴𝑎+𝐴𝑏)

2
∙ 𝑒𝜙𝑎  0.71% 

 

0.97% 

 

‘pixel_switch’: Random 

mixing 
0.61% 

 

0.98% 

 

 

Different "low-resolution" methods, discussed in Section 4.1.2.3, have been 

tested for the reconstruction of the two crystals. For both crystals, the one big 

Gaussian-distributed low-resolution image appears to work the best.  

Table 5. 4 The final chi-square error metrics after using different low-resolution 
methods in GA reconstructions of the two crystals. 

Low-

resolution 

method 

Crystal 

A 𝜒2 

error 

metrics 

Reconstructed images 

 

Crystal 

B 𝜒2 

error 

metrics 

Reconstructed images 

 

No low 

resolution 
1.6% 

 

1.6% 

 

One big 

Gauss 

distribution 

0.58% 

 

0.96% 
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Many small 

Gauss 

distributions 

1.7% 

 

1.7% 

 

Laplacian 

distribution 
0.92% 

 

0.97% 

 

Sinc 

distribution 
0.76% 

 

1.2% 

 

 

(d) Reproducibility evaluations  

For testing the reproducibility of the reconstruction, every measurement is 

repeatedly reconstructed 20 times with different random phase or amplitude 

values within the wide starting supports (before shrink-wrap). The chi-square 

error metrics are checked and evaluated, so as to monitor potential differences 

among the reconstructions.  Table 5.5 shows an example.  

For Crystal A, the final reconstruction has a chi-square of 0.58%. The ten random 

object reconstructions, where the starting support has a random shape but zero 

phase, give the same error metrics of 0.91%. The ten random phase 

reconstructions, where the starting support has a box shape equals to 50% the 

size of array but with random phase, giving chi-square error metrics of 0.55%. 

The differences of these 20 reconstructions relative to the final reconstruction 

are also calculated, which gives a value smaller than 0.03%. This indicates the 

differences between the 20 random reconstructions and the base reconstruction 

are trivial.  

For Crystal B, the error metrics are between 1.2% and 1.4%, which are a bit 

bigger than for Crystal A. The difference between the random reconstructions 
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and the base reconstruction ranges from 0.24% to 0.87%. These values are 

bigger than the difference in Crystal A. Given the complex nature of the 

diffraction pattern, these error and difference metrics are acceptable values.  

Although there is still some contribution from not reaching the global minimum 

best fit, we think that most of the remaining residual comes from noise in the 

data themselves.  This was one of the motivations for this experiment to use the 

ESRF's upgraded "Extremely Brilliant Source" (EBS) facilities.  Chi-square values 

below 1% have not yet been routinely achieved for data from APS, which are 

apparently still limited by counting statistics of diffraction patterns typically 10 

times weaker than from ESRF. 

Table 5. 5 The reproducibility test of the reconstructions. 

Reconstruction 

Number 

Crystal A Crystal B 

Error metrics 

𝜒2 

Difference 

metrics 

𝐷 

Error metrics 

𝜒2 

Difference 

metrics 

𝐷 

Base 0.58% 0 1.2% 0 

RO 1 0.91% 0.0091% 1.3% 0.44% 

RO 2 0.91% 0.0091% 1.3% 0.44% 

RO 3 0.91% 0.0091% 1.3% 0.44% 

RO 4 0.91% 0.0091% 1.3% 0.44% 

RO 5 0.91% 0.0091% 1.3% 0.27% 

RO 6 0.91% 0.0091% 1.3% 0.27% 

RO 7 0.91% 0.0091% 1.3% 0.27% 

RO 8 0.91% 0.0091% 1.3% 0.27% 

RO 9 0.91% 0.0091% 1.3% 0.27% 

RO 10 0.91% 0.0091% 1.3% 0.27% 

RP 1 0.55% 0.023% 1.3% 0.41% 

RP 2 0.55% 0.023% 1.3% 0.41% 

RP 3 0.55% 0.023% 1.3% 0.24% 

RP 4 0.55% 0.023% 1.4% 0.87% 

RP 5 0.55% 0.023% 1.4% 0.87% 

RP 6 0.55% 0.023% 1.4% 0.87% 
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RP 7 0.55% 0.023% 1.4% 0.87% 

RP 8 0.55% 0.023% 1.4% 0.87% 

RP 9 0.55% 0.023% 1.4% 0.87% 

RP 10 0.55% 0.023% 1.4% 0.87% 

* RO=random object reconstruction; RP=random phase reconstruction. 

5.3.2 Reorientation of the reconstructed crystals 
The method to resolve the crystallographic axis directions has been illustrated in 

Section 4.1.3 and was applied for the two crystals studied in this Chapter. Both 

the two crystals have facets, but the facets themselves were not as clear as BTO-

32, sometimes having small hills and valleys on their surfaces. The facets were 

fitted manually to get their rough plane directions in lab coordinates using 

Paraview software. Table 5.6 shows the manually fitted directions of facets in 

Crystal A. 

Table 5. 6 The fitted direction cosines of two facets of Crystal A in Lab 
coordinates. The Q direction is also listed. 

Direction Lab X component Lab Y component Lab Z component 

Facet A 0.4260 -0.6128 -0.6656 

Facet B -0.2900 -0.9080 -0.2960 

Q direction 0.7074 0.6760 -0.2064 

 

The relative angles between these facets were calculated and listed in Table 5.7. 

Crystal A was seen to migrate from the (101) powder ring to the (110) powder 

ring upon heating and cooling, so its Q direction is (110) or (101) for both the 

tetragonal and cubic phases. Facet A is nearly 61° relative to the Q direction, 

which corresponds to a {110} facet. Facet C is nearly 118° relative to the Q 

direction, which corresponds to another {110} facet. If we label Q as (110) and A 

as (1-10), then B is (0-11) or (0-1-1). In this case, c-axis can be determined as 

the perpendicular to Q vector. If we label Q as (101) and A as (10-1), then B is (0-

1-1) or (01-1). In this case, c-axis cannot be specifically identified.  

Table 5. 7 The angle between the facets and Q vector of the crystal A. The 
standard angles between {100}, {110} and {111} are also listed for reference. 
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 A B Q {100} {110} {111} 

A  61.06° 88.60°    

B   118.08°    

Q       

{100}    90.00° 
45.00°/90.00°/

135.00° 
54.74°/125.26° 

{110}    ‐ 
60.00°/90.00°/

120° 

35.26°/90.00°/

144.74° 

{111}    ‐ ‐ 70.53°/109.47° 

 

The facets and Q direction of Crystal B in lab coordinates are listed in the Table 

5.8, with their incline angles listed in Table 5.9. When taking the Q as (110), then 

facet B is (100) and A is (0-11).  

Table 5. 8 The fitted direction cosines of two facets of Crystal A. Q direction is 
also listed. 

Direction Lab X component Lab Y component Lab Z component 

Facet A -0.2032 -0.5685 -0.7972 

Facet B -0.9300 -0.0633 -0.3622 

Q direction 0.6929 0.6907 -0.2068 

 

Table 5. 9 The angle between facets and Q vector of the crystal A. The standard 
angles between {100}, {110} and {111} are also listed for reference. 

 A B Q {100} {110} {111} 

A  82.20° 111.63°    

B   47.50°    

Q       

{100}    90.00° 
45.00°/90.00°/

135.00° 
54.74°/125.26° 

{110}    ‐ 
60.00°/90.00°/

120° 

35.26°/90.00°/

144.74° 

{111}    ‐ ‐ 70.53°/109.47° 
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5.3.3 Strain stripes behaviour of Crystal A 

Of the two crystals that have been detailed reconstructed and studied, Crystal A 

is the one whose centre crossed between powder rings. During the heating and 

cooling that crossed the phase transition, the diffraction pattern moves from the 

(101) to the (110) powder ring.  After reorienting Crystal A in the calculated 

crystallographic coordinates, the derivatives of the displacement over the 

crystallographic axis were taken to get the usual strain components. The three 

orthogonal crystallographic directions are defined as 𝑎1, 𝑎2 and 𝑎3, being the 

principal (100), (010) and (001) axes, without knowing which is the c-axis.  This 

procedure is illustrated in Chapter 4.  Figure 5.10 shows the three strain 

combinations at three orthogonal slice views of the Crystal A at 100℃ before 

heating.  Strain stripes could be seen in these slices. Some stripe directions are 

marked by the white dash lines in the Figure 5.10.  For the 𝑎2-𝑎3 slices, all the 

three strain gradients show directional stripes, mostly distributed around 0° or 

110° relative to the a2 direction.  For the 𝑎1-𝑎3 slices, the strain gradients are 

clustered around 0° or 39°.  For the 𝑎1-𝑎2 slices, the strain gradients are either 0° 

or 90°.  Of all the nine views in Figure 5.10, two views in 𝑎2-𝑎3 slices, 
𝑢𝑄

𝑎2
⁄  and 

𝑢𝑄
𝑎3

⁄ , show more distributions of strain stripes and were selected for the 

temperature study.  

The strain images of crystal A were then examined during the heating and 

cooling experiment, for which the BCDI measurements were taken in 5 K 

steps. As described above, the crystal started at 373 K, was heated to 433 K, 

after which it was cooled down to 373 K again. The detailed reconstructions 

were carried out at each temperature. In order to locate the same slice 

position shown in Figure 5.10, the centre of mass (COM) of the 

reconstruction was selected as the geometric centre, and the slices were cut 

at the same distance relative to the COM. Figure 5.11 and Figure 5.12 

present pairs of reconstructed slices (at the same position) showing two 

strain gradients through all the measured temperature points. As can be 

directly seen, the strain stripes were preserved even as the crystal 

temperature reached 433 K.  From examining the d-spacing (Bragg peak 

position) of Crystal A in Section 5.2.4, the phase transition temperature had 
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been determined to be around 423 K during heating. Therefore, the local 

strain stripes are found to exist inside the crystal no matter whether the 

global phase is tetragonal or cubic.  When the crystal cooled down to 373 K, 

the strain stripes were still preserved through the phase transition.   

 

 

 

 

Figure 5. 10 The nine views of strain gradients are shown for Crystal A at 100℃ 
before heating. The first row shows the 𝑎2-𝑎3 slice, while the second and third 

rows show the 𝑎1-𝑎3 and 𝑎1-𝑎2 slices, respectively. In each row, the strain 
gradient along each 𝑎1, 𝑎2 and 𝑎3 directions are listed. The white dash lines are 

guides for the eyes, discussed in the text. 
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Figure 5. 11 Central section views of the a2-a3 slices of the strain combinations  
𝜕𝑢𝑄

𝜕𝑎2
⁄  at every temperature. The Crystal A went through heating from 373 K 

to 433 K in 5 K steps. 
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Figure 5. 12 Central section views of the a2-a3 slices of the strain combinations  
𝜕𝑢𝑄

𝜕𝑎2
⁄  at every temperature. The Crystal A went through cooling from 433K to 

373 K in 5 K steps. 

Even though the stripes are present at all temperatures their spacing and 

direction is seen to evolve. To qualitatively examine the periodicity of the strain 

stripes, the two-dimensional (2D) autocorrelation functions (ACFs) were carried 
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out, as shown in Figure 5.13 for the strain gradient over 𝑎2 and in Figure 5.14 for 

the strain gradient over 𝑎3.  

In Figure 5.13, the period is big and not well defined initially at 373 K, but 

gradually becomes clearer upon heating. At 403 K, the period is well established, 

with a strong correlation along the diagonal direction, 45° with respect to the 𝑎2 

and 𝑎3 axes. The period is roughly 25 nm. Upon further heating, the period keeps 

decreasing, coming to roughly 15 nm by 418 K. Upon further increase of the 

temperature, the period keeps the same size, but the strong directional 

correlation along 45° has faded. The crystal gradually forms correlations along 

both 45° and -45° relative to the 𝑎2 axis.  Upon cooling down, the correlation 

along 45° gradually is seen to fade away, while the correlation along -45° became 

clearer. After cooling to 413 K, the size of the period has increased to 25 nm and 

the correlation is strongly distributed along -45°. Further decreasing the 

temperature, the period increases again in size and becomes less well-defined. 



158 
 

 

Figure 5. 13 The 2D Auto Correlation Function of the strain component  
𝜕𝑢𝑄

𝜕𝑎2
⁄  

at every temperature in Figure 5.11. 

The 2D ACF over 𝑎3 direction in Figure 5.14 also shows a similar trend as seen in 

Figure 5.13. The period is poorly defined at low temperature initially but 

becomes clear when heated to 418 K, which is 10 K higher than in Figure 5.13. At 

418 K, it has a period of 15 nm and strong correlation along the 45° direction 
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relative to 𝑎2 axis, which is same as in Figure 5.13. Upon cooling, the correlation 

changes to the -45° direction as well. 

 

Figure 5. 14 The 2D Auto Correlation Function of the strain component 
𝜕𝑢𝑄

𝜕𝑎3
⁄  

at every temperature in Figure 5.11. 
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The size of projection of stripes onto 𝑎2 direction is generalized and plotted in 

Figure 5.15. The left panel shows the stripes of derivatives over a2 direction, 

which does not show much variation. The right panel shows the derivatives over 

a3 direction, which shows a decrease trend when heating up and an increase 

trend when cooling down.  

 

Figure 5. 15 The stripe size onto X direction over temperature.  

The 90° switching of the period in both views occurs at roughly the same 

temperature as the crystal switching from (101) to (110) powder ring, which 

corresponds to a 90° switching of the predominant c-axis direction in the crystal 

lattice. The nice match of the two indicates that the strain stripes are connected 

to the tetragonal structure.  This suggest the domain walls visualised by the 

strain stripe could be ferroelectric 90° domain walls. 

5.3.4 Strain stripes behaviour of Crystal B 

Crystal B initially had its diffraction peak on the tetragonal (110) powder ring 

but moved to the cubic (110) powder ring position upon heating and changed 

back to the previous powder ring upon cooling down. This indicates the crystal c-

axis direction is the same before and after the phase transformation, unlike what 

was seen for Crystal A.  Figure 5.16 shows the three slice-views of the Crystal B 

at 383 K upon heating. Each slice is presented with derivatives over three 

crystallographic directions, namely 𝑎1 to 𝑎3.  The strain stripes distributions in 

Crystal B are less pronounced than in Crystal A. Of all the nine views in Figure 

5.16, the strain component 
𝜕𝑢𝑄

𝜕𝑎3
⁄  in 𝑎2-𝑎3 slice shows the best distribution of 

horizontal stripes and inclined stripes. This view is selected for the temperature 

study. 
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Figure 5. 16 The nine views of strain gradients are shown. The first row shows 
the 𝑎2-𝑎3 slice, while the second and third rows show the 𝑎1-𝑎3 and 𝑎1-𝑎2 slices, 
respectively. In each row, the strain gradient along each 𝑎1, 𝑎2 and 𝑎3 directions 

are listed. The white dash lines are guides for the eyes. 
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Figure 5. 17 The central section view shows the strain component 
𝜕𝑢𝑄

𝜕𝑎3
⁄  at 

every temperature. Crystal B went through heating from 100℃ to 160℃, and 
then cooled down to 115℃ in 5℃ steps. 

The crystal B was heated to 433 K and then cooled down to 388 K.  The strain 

gradient on the selected slice over temperatures are shown in Figure 5.17.  

Unfortunately, the strain stripes features are hardly observable in these slice 

views.  But the strain is evolving during the heating and cooling.  The magnitude 

of the strain remains around the same all through the phase transition. Because 



163 
 

the strain would accumulate on the domain wall boundaries, the strain of same 

order suggests that there may not be much nucleation and annihilation of 

domain walls upon heating and cooling across the phase transition.  

 

Figure 5. 18 The 2D Auto Correlation Function of the strain component  
𝜕𝑢𝑄

𝜕𝑎3
⁄  

at every temperature in Figure 5.15. 

The 2D ACF of the slices in Figure 5.17 were calculated and shown in Figure 5.18. 

The periodicity is not well defined at all but some temperatures.  Upon heating, 

the Crystal B shows 50 nm periodicity along 𝑎3 direction at temperatures from 

378 K to 423 K with two peculiar points, 398 K and 413 K where the periodicity 
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was not well-defined.  From 428 K onward and cooling down, the Crystal B either 

shows periodicity along diagonal direction between 𝑎2-𝑎3 or not well-defined. 

In summary, we have observed two crystals crossing their phase transitions 

from tetragonal to cubic via heating up, and from cubic to tetragonal via cooling 

down. In both crystals, the strain components are preserved at all temperatures. 

In Crystal A, the strain stripes switched direction after heating up and cooling 

down, which indicates the strain stripes could be the 90° ferroelectric domain 

walls. 

We have measured an additional crystal through heating, but the crystal is 

smaller than Crystal A and B by a factor of 2. The reconstruction of the crystal 

turns out to be complex in shape and displacement. It also shows no obvious 

facet, which is necessary to restore the crystallographic direction.  

This chapter has shown the details of a successful experiment at ESRF to 

understand the temperature dependence of the stripe structures discovered in 

BTO nanocrystals.  In the best example, denoted Crystal A, the whole crystal is 

found to switch its c-axis direction after heating through the tetragonal-cubic 

phase transition and the stripes were seen to switch accordingly.  This is an 

indication that the stripes could correspond to internal 90° ferroelectric domain 

walls.  If so, based on the BCDI images, the domain structures are found to be still 

visible in the cubic high-temperature phase, suggesting the phase transition is 

not very distinct and that the nanocrystal retains some ferroelectric distortions 

even at the highest temperature explored. 

However, the observation of strain stripe along cannot identify the nature for 

sure. There are still many uncertainties halted around and left for future study: 

1) Statistics limitation. We only see some of the crystals having strain stripes. In 

this Chapter, for example, Crystal A has nice stripes while Crystal B does not. We 

attribute such behaviour to the complexity of the system. Even for the carefully 

grown strained thin films where the growth parameters are optimized, there are 

still regions where the domains are poorly defined.  For our hydrothermal 

synthesized nanocrystals, there is hardly any control of the boundary conditions. 

The random distributed displacement field as seen in Crystal B should be no 
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surprise. For our best example, Crystal A, the strain stripes only appeared in 

some volume inside the crystal. But that could be the only region having orderly 

distributed ferroelectric domains, while in other areas the distributions are 

random.  2) The physics behind the strain stripes.  We attribute the strain stripes 

to crystal structural reasons. We had thought about if any artefact coming into 

our calculation so as to give this stripe feature.  One possibility would be Fourier 

termination ripples.  Recently there are publications about the simulated stripes 

given by the ripples.  We cut the data in size and did multiple reconstruction test. 

To our knowledge, there is no noticeable changes in stripes.  In the future study, 

we are planning to dig into this question further.   
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Chapter 6. Finite Element Analysis Simulation 

Phase-field modelling is widely used to predict the domain switching of 

ferroelectric (and other) materials and their evolution during phase transitions 

or under external stimuli [141, 209-211].  It normally involves calculating the 

free energy function as a function of one or more order parameters [212, 213]. 

For a ferroelectric system, the polarization is a typical choice for order 

parameter. Based on the problem, different polarizations could be chosen, like 

global polarization, spontaneous polarization, or induced polarization [214-216].  

Different functional forms of theory could be explored and applied as well. In 

Section 2.1.5, the Landau-Devonshire theory is illustrated, in which the free 

energy is depicted as a function of polarization in equation 2.4. The equation 

could be further extended based on the problem. For example, strain or electric 

field could be included if that is the external stimuli and time could be added if 

time-dependence is needed.  The functional form is always non-linear, which 

specifies a length scale to any instabilities which emerge in the polarization and 

consequential strain. 

One feature of the results of phase-field modelling is that phase boundaries tend 

to be relatively diffuse and not sharp enough to represent sharp domain walls. 

Between two adjacent phases, where the order parameters are 0 and 1, the 

boundary region would have a gradient of the order parameters [217-219]. 

Phase-field modelling can focus on the evolution of microstructure without the 

need of tracking the boundary interfaces. But for our problem, the interfaces are 

believed to be the places where strain accumulated and of great interest. 

Therefore, we turned to use linear theory of piezoelectricity instead of the phase-

field modelling.  

The Finite element analysis (FEA) method was used to simulate and try to 

understand the strain stripes observed in the 200 nm BTO nanocrystals.  FEA is a 

numerical method to solve general physical and engineering problems defined 

by coupled differential equations in 3D space. This involves subdividing the 

entity into small units and solving the partial differential equations of these 

smaller units under defined underlying principles and boundary conditions.   In 

this Chapter, different geometries, domain combinations and configurations are 
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built and solved by FEA to generate strain pattern of certain boundary 

conditions. The goal is to compare the simulated strain patterns with the 

experimental results in Chapter 4&5, so as to verify which model works in an 

attempt to understand the origin of the observed strains. COMSOL Multiphysics 

is a commercial FEA software package which has the ability to solve the 

combined physics problems involving both mechanical and electrical properties, 

which are the two most interesting areas when solving ferroelectric materials.  

COMSOL provides powerful modelling editors and displays, a streamlined 

workflow and modifiable physical equations involved.  All the simulations that 

have been done in this work are through COMSOL Multiphysics. 

Contribution statement: Jiecheng conduct the simulation and wrote the 

manuscript with the guide of Ian.  

6.1 Underlying principles in simulations 

6.1.1 Elasticity 

For an elastic material, the elastic modulus is defined as the coefficient of linear 

coupling of stress and strain by δ=𝑻
𝒖⁄  (𝑻 is the stress, 𝒖 is the strain).  

Depending on the ways of measuring strain and stress as well as their directions, 

different elastic moduli can be defined. The Young’s modulus 𝐸 describes the 

tensile elasticity where the stress and strain are in the same direction.  Other 

moduli could also be defined, like bulk modulus for volume elasticity or shear 

modulus for elasticity caused by shearing stress, etc.   The Poisson’s ratio ν is a 

constant that describes the deformation when the stress and strain are 

perpendicular. 

When dealing with isotropic materials where the elasticity is the same in all 

directions, 2 elastic moduli or 1 elastic modulus plus one Poisson’s ratio, are 

sufficient to determine all the other moduli.  For orthotropic materials, in which 

the elasticity varies on the measured directions, there are 9 elastic moduli or 

constant which need to be defined. For example, one combination could be 3 

Young’s moduli (𝐸𝑥 , 𝐸𝑦, 𝐸𝑧), 3 Poisson’s ratios (𝜈𝑥, 𝜈𝑦, 𝜈𝑧) and 3 shear moduli 

(𝐺𝑥, 𝐺𝑦, 𝐺𝑧).    In this work, BTO ceramic properties at room temperature are 

considered, where it has a tetragonal structure globally. There is one c axis that 

differs from the other two equivalent a and b directions, so there are additional 
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symmetries relative to orthotropic materials. This results in 6 independent 

elastic moduli and constant, since 𝐸𝑥 = 𝐸𝑦, 𝜈𝑥=𝜈𝑦, 𝐺𝑥 = 𝐺𝑦.  

The elastic modulus is a scalar that relates the generated strain and the applied 

stress at certain direction. To relate the stress and strain tensor in vector space, 

elastic matrices are needed, strictly as a 4th-rank tensor.   For orthotropic 

materials, according to the Hooke’s law for elasticity, the stress and strain are 

linearly coupled by a compliance matrix 𝐶 or equivalently by a stiffness matrix 𝑆. 

The compliance matrix of BTO that connects the stress to strain is defined as: 

𝐶 =
𝑻

𝒖
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

𝐸𝑥
−

𝜈𝑦𝑥

𝐸𝑦
−

𝜈𝑧𝑥

𝐸𝑧

−
𝜈𝑥𝑦

𝐸𝑥

1

𝐸𝑦
−

𝜈𝑧𝑦

𝐸𝑧

−
𝜈𝑥𝑧

𝐸𝑥
−

𝜈𝑦𝑧

𝐸𝑦

1

𝐸𝑧

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1

2𝐺𝑦𝑧
0 0

0
1

2𝐺𝑧𝑥
0

0 0
1

2𝐺𝑥𝑦]
 
 
 
 
 
 
 
 
 
 
 
 
 

(6.1) 

In reverse, the stiffness matrix of BTO that connects the strain to stress, which is 

the inverse of the compliance matrix: 

𝑆 =
𝒖

𝑻
=

[
 
 
 
 
 
 
 
 
 
 

1 − 𝜈𝑦𝑧𝜈𝑧𝑦

𝐸𝑦𝐸𝑧𝛥

𝜈𝑦𝑥 + 𝜈𝑧𝑥𝜈𝑦𝑧

𝐸𝑦𝐸𝑧𝛥

𝜈𝑧𝑥 + 𝜈𝑦𝑥𝜈𝑧𝑦

𝐸𝑦𝐸𝑧𝛥

𝜈𝑥𝑦 + 𝜈𝑥𝑧𝜈𝑧𝑦

𝐸𝑧𝐸𝑥𝛥

1 − 𝜈𝑧𝑥𝜈𝑥𝑧

𝐸𝑧𝐸𝑥𝛥

𝜈𝑧𝑦 + 𝜈𝑧𝑥𝜈𝑥𝑦

𝐸𝑦𝐸𝑧𝛥

𝜈𝑥𝑧 + 𝜈𝑥𝑦𝜈𝑦𝑧

𝐸𝑥𝐸𝑦𝛥

𝜈𝑦𝑧 + 𝜈𝑥𝑧𝜈𝑦𝑥

𝐸𝑥𝐸𝑦𝛥

1 − 𝜈𝑥𝑦𝜈𝑦𝑥

𝐸𝑥𝐸𝑦𝛥

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

2𝐺𝑦𝑧 0 0

0 2𝐺𝑧𝑥 0
0 0 2𝐺𝑥𝑦]

 
 
 
 
 
 
 
 
 
 

(6.2) 

, where Δ=
1−𝜈𝑥𝑦𝜈𝑦𝑥−𝜈𝑦𝑧𝜈𝑧𝑦−𝜈𝑧𝑥𝜈𝑥𝑧−𝜈𝑥𝑦𝜈𝑦𝑧𝜈𝑧𝑥

𝐸𝑥𝐸𝑦𝐸𝑧
. 

6.1.2 Electrical properties 

BTO is a dielectric material with strong polarizations. The induced polarization 

density 𝑷 induced by the applied electric field 𝑬 is linearly related by  
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𝑷 = 휀0𝜒𝑒𝑬 = 휀0(휀𝑟 − 1)𝑬 (6.3) 

, where 휀0 is the electric permittivity of free space and has a value of 

8.854× 10−12 𝐹 ∙ 𝑚−1.  휀𝑟 is the relative permittivity of the material. 

The electric displacement 𝑫 is related to both polarization density 𝑷 and electric 

field 𝑬 by 

𝑫 = 휀0𝑬 + 𝑷 = 휀0휀𝑟𝑬 (6.4) 

For piezoelectric materials, however, the relative permittivity value also depends 

on the strain presented. The two permittivity values that generally used are at 

two extreme conditions: the free permittivity 휀𝑇 as the material is fully 

unconstrained, and the clamped permittivity 휀𝑆, when the material is fully 

constrained.   The two are linked by the piezoelectric coupling coefficient (as 

discussed next) by [220] 

휀𝑆 = 휀𝑇(1 − 𝜅2) (6.5) 

Other conditions may also change the permittivity of a piezoelectric, like electric 

field and frequency. 

6.1.3 Piezoelectricity 

Piezoelectricity connects the electric quantities with mechanical quantities. The 

direct and converse piezoelectric effect have been described in Chapter 2. 

Piezoelectric coefficients (or constants) are defined to quantitatively describe 

the interaction of electric and mechanical quantities.  

(a) Piezoelectric charge coefficient 

As shown in Figure 5.1, the piezoelectric charge coefficient has two equivalent 

definitions. It can be described as the amount strain generated per unit of 

electric field applied. It can also be defined as the amount of polarization 

generated per unit of stress applied. This coefficient has a unit of 𝐶 ∙ 𝑁−1. 

𝑑 =
𝒖

𝑬
=

𝑷

𝑻
= [

0 0 0
0 0 0

𝑑31 𝑑32 𝑑33

0 𝑑15 0
𝑑24 0 0
0 0 0

] (6.6) 

(b) Piezoelectric voltage coefficient 
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Another constant that is also widely used is piezoelectric voltage coefficient. It 

describes the amount of strain experienced per unit of electrical displacement, or 

the amount of stress experienced per unit of electric field. It has a unit of 𝐶 ∙ 𝑚−2. 

𝑔 =
𝒖

𝑫
=

𝑬

𝑻
(6.7) 

(c) Piezoelectric coupling coefficient 

The electrical and mechanical energy, which are not shown in Figure 5.1, can be 

also coupled together by a piezoelectric coupling coefficient 𝜅. This coefficient 

has the physical meaning of efficacy of energy transferred.  

In summary, Figure 6.1 shows a map of mechanical and electrical properties and 

their connections in elastic and dielectric materials, which are the interest of this 

work.  

 

Figure 6. 1 The mechanical and electrical properties that are involved in this 
simulation. The relations between the properties are linked with equations. 

6.1.4 Principal equations 
In this work, electrostatic conditions are used, where only the electric fields from 

static charges are considered, while the moving charges are omitted.  For a 

volume V in free space, the electric displacement field 𝑫 can be derived by 

Gauss’s Law: 

𝛻 ∙ 𝑫 = 𝜌𝑉 (6.8) 

, where 𝜌𝑉  is the electric charge density.  
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The electric potential, 𝛷, can be derived by Faraday’s Law: 

𝛷 = −∫ 𝑬𝑑𝒙
∞

𝑟

(6.9) 

, where 𝑬 is the electric field. 

For stress measures in stationary condition, 2nd Piola-Kirchhoff stress tensor 𝑺 is 

used to relate the forces 𝑭𝑉 and areas 𝑉 in reference configuration by: 

0 = 𝛻 ∙ 𝑺 + 𝑭𝑉 (6.10) 

6.2 Procedures 

6.2.1 Building object geometry 

Object geometries were built to form a bulk model crystal using smaller pieces 

made of primary blocks. The bulk represents the nanocrystal, while the 

constituting primary blocks represent the domains inside the nanocrystal.   The 

BTO crystals have rhombohedral, orthorhombic, tetragonal and cubic structures 

at different temperatures, all of which can be considered as pseudo cubic 

structure [70]. We are interested in modelling experimental strain patterns that 

form quadratic grids, so chose cubic shape geometries. This allows the shapes of 

domains to possibly preserve the facets of unit cells.  The cubic shape geometries 

made up of 6×6×6 primary cubes were first built as a model for simulation, as 

shown in Figure 6.2a.  

When it comes to the local structure, we note that BTO is reported to be locally 

rhombohedral in all crystal phases from both X-ray and neutron Pair 

Distribution Function (PDF) studies [172, 173, 205]. If considered as a pseudo 

cubic lattice, the rhombohedral unit cells have eight {111} directional 

polarizations. Eight {111} facets can be used to construct an octahedron in space, 

but such structures could not fill the space by themselves. Instead, {110} facets 

were used in this work to construct rhombic dodecahedron structures, as shown 

in Figure 6.2b. The structure was made up of five layers of rhombic 

dodecahedrons, which can fill the space alone and each has twelve {110} facets. 
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Figure 6. 2 Two object geometries that have been built for simulations in this 
work. (a) A cubic block with 6×6×6 primary cubes. (b) A layered bulk made up 

of 5 layers of primary rhombic dodecahedrons. 

6.2.2 Defining materials properties 
After the geometries were built in COMSOL, materials properties were then 

defined.  The choice of relevant materials properties is determined by the 

specific problems and the relevant physics involved.  Because BTO is both a 

ferroelectric and a piezoelectric material, both the mechanical and electrostatic 

properties need to be considered.  The properties of BTO vary a lot depending on 

differences in preparation methods, which leads to different sample grain sizes 

and crystalline structures [73, 221-225]. There is also a big difference between 

crystals that are poled or unpoled, in "ceramic" form or single crystal form. The 

effect of BTO nanocrystal size on their properties was a hot topic dating back to 

the 1980s, with one popular example being the dramatic dielectric constant 

enhancement with sample sizes in the 100 nm to 1 m range [226].   In this 

work, the "polycrystalline" BTO parameters are used in the COMSOL simulations, 

which appear to be close to the known properties of the commercial 200 nm BTO 

nanocrystals under investigation. These are shown in Table 6.1.  Other 

parameters were also tried during the simulation, with some additional results 

listed in the Appendix.  

Table 6. 1 BTO polycrystalline ceramics and single crystals properties that used 
in simulation [221]. 

Properties Values 

Density (𝜌) 5700 𝑘𝑔 ∙ 𝑚3 
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Compliance 

matrix (𝐶) 

[
 
 
 
 
 

9.1 −2.7 −2.9
−2.7 9.1 −2.9
−2.9 −2.9 9.5

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

22.8 0 0
0 22.8 0
0 0 23.6]

 
 
 
 
 

× 10−12[𝑃𝑎−1] 

Stiffness matrix 

(𝑆) 

[
 
 
 
 
 
15.04 6.56 6.59
6.56 15.04 6.59
6.59 6.59 14.55

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

4.39 0 0
0 4.39 0
0 0 4.24]

 
 
 
 
 

× 1010[𝑃𝑎] 

Free relative 

permittivity (휀𝑟
𝑇) 

[
1436 0 0

0 1436 0
0 0 1680

] 

Clamped relative 

permittivity (휀𝑟
𝑆) 

[
1123 0 0

0 1123 0
0 0 1256

] 

Piezoelectric 

charge 

coefficient (𝑃001) 

[
0 0 0
0 0 0

−7.9 −7.9 19.1

0 27 0
27 0 0
0 0 0

] × 10−11[𝐶 ∙ 𝑁−1] 

Piezoelectric 

voltage 

coefficient 

(𝑃𝑠001
) 

[
0 0 0
0 0 0

−4.3 −4.3 17.4

0 11.4 0
11.4 0 0
0 0 0

] [𝐶 ∙ 𝑚−2] 

 

Each primary block in Figure 6.2 was considered as a separate domain.  Inside 

the domain, all the unit cells are assumed to hold the same piezoelectric 

coefficients. Different domains are assumed to hold the same mechanical and 

electrical properties but allowed to differ in piezoelectric coefficients.  In this 

way, the domains with different piezoelectric coefficients would generate 

different charges when experiencing the same strain. Equivalently, the blocks 

would generate different strain when facing the same surface charge.  

The piezoelectric coefficients of BTO polycrystalline ceramics in Table 6.1 would 

generate a net charge in the Z direction when experiencing strain from any 

directions. These piezoelectric coefficients could be rotated 90° along X and Y 

axis to acquire the coefficients that generate net charge on the X and Y directions, 

as shown in (6.11) and (6.12).  
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𝑃100

= (
−7.90 × 10−11 −7.90 × 10−11 1.91 × 10−10

0 0 0
0 0 0

0 0 0
2.70 × 10−10 0 0

0 −2.70 × 10−10 0
) (6.11) 

 

𝑃010

= (
0 0 0

−7.90 × 10−11 −7.90 × 10−11 1.91 × 10−10

0 0 0

0 2.70 × 10−10 0
0 0 0

−2.70 × 10−10 0 0

) (6.12) 

The orientations of piezoelectric coefficients 𝑃100 and 𝑃010 are different, meaning 

that electric charge at different directions will be generated when experiencing 

same forces.  The values are the same, meaning that the magnitudes of electric 

charges generated by the same forces are also the same. The definitions of 

piezoelectric coefficients are listed in equation 2.17.  

For example, in equation 6.11, 𝑑31 = 1.91 × 10−10 𝐶 ∙ 𝑁−1, meaning that the 

crystal will generate 1.91 C charge at X direction when experience a force from Z 

direction. While in equation 6.12, 𝑑32 = 1.91 × 10−10 𝐶 ∙ 𝑁−1. When 

experiencing the same force from Z direction, it generates the 1.91 C in Y 

direction rather than X direction. 

Similarly, the {111} piezoelectric coefficients could also be derived by the 

rotation of 𝑃001. The transformed polarization matrices are shown in (6.13) to 

(6.20): 

𝑃111

= (
−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

−5.71 × 10−11 2.13 × 10−10 0
2.13 × 10−10 −5.71 × 10−11 0

−1.56 × 10−10 −1.56 × 10−10 0

) (6.13) 

𝑃−111

= (
4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

5.71 × 10−11 2.13 × 10−10 0
2.13 × 10−10 5.71 × 10−11 0

−1.56 × 10−10 1.56 × 10−10 0

) (6.14) 

𝑃1−11

= (
−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

5.71 × 10−11 2.13 × 10−10 0
2.13 × 10−10 5.71 × 10−11 0
1.56 × 10−10 −1.56 × 10−10 0

) (6.15) 
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𝑃−1−11

= (
4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

−5.71 × 10−11 2.13 × 10−10 0
2.13 × 10−10 −5.71 × 10−11 0
1.56 × 10−10 1.56 × 10−10 0

) (6.16) 

𝑃11−1

= (
−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

−2.13 × 10−10 5.71 × 10−11 0
5.71 × 10−11 −2.13 × 10−10 0

−1.56 × 10−10 −1.56 × 10−10 0

) (6.17) 

𝑃−11−1

= (
4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

2.13 × 10−10 5.71 × 10−11 0
5.71 × 10−11 2.13 × 10−10 0

−1.56 × 10−10 1.56 × 10−10 0

) (6.18) 

𝑃1−1−1

= (
−4.56 × 10−11 −4.56 × 10−11 1.10 × 10−10

4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

2.13 × 10−10 5.71 × 10−11 0
5.71 × 10−11 2.13 × 10−10 0
1.56 × 10−10 −1.56 × 10−10 0

) (6.19) 

𝑃−1−1−1

= (
4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

4.56 × 10−11 4.56 × 10−11 −1.10 × 10−10

−2.13 × 10−10 5.71 × 10−11 0
5.71 × 10−11 −2.13 × 10−10 0
1.56 × 10−10 1.56 × 10−10 0

) (6.20) 

6.2.3 Defining domains packing orders  

For the cubic cell model, both {111} and {001} cubes are utilized to construct 

different domain packing orders as shown in Figure 6.3.  To simplify the packing 

order determinations and simulations, different packing orders were 

constructed in a 2×2×2 block, which were then periodically expanded in three 

directions to form the 6×6×6 bulk.  

Four rhombohedral packing orders, which only uses {111} polarized blocks, are 

listed in Figure 6.3(b) to 6.3(e). The packing order in Figure 6.3(b) would have a 

global polarization along (001) direction. This is to simulate the local structure 

model revealed by PDF, in which the BTO crystals have a local rhombohedral 

structure but a global tetragonal lattice at room temperature [172, 173, 205]. 

The packing order in Figure 6.3(c) and (d) would have zero net polarization. 

This is to simulate a local rhombohedral structure that combine to a cubic lattice 

at elevated temperature.  Figure 6.3(e) shows an example in which the {111} 

polarizations are forming a closed loop, which resemble the vortices seen in 
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PTO/STO thin film [139, 140]. Figure 6.3(f) and 6.3(g) shows the packing order 

of 180° and 90° domains, respectively. They only involved {001} polarized 

blocks.  

 

Figure 6. 3 (a) To simplify the simulation, a 2×2×2 block of cubes was chosen 
from the 6×6×6 bulk to perform as a packing base. (b)-(e) Different 

combinations of {111} polarized cubes. (f)-(g) Two combinations using {001} 
polarized cubes. 

 

Figure 6. 4 One example that shows the packing of rhombic dodecahedrons. 
Different colours represent different properties, so that the blocks with the same 
colour have the same properties. The two adjacent blocks are restricted to have 

different properties.  Once the 1st, 2nd and 3rd blocks are determined, the 
allocation of the properties (colours) of other blocks in the model are 

determined. 

Each rhombic dodecahedron has 12 facets. Four of the eight {111} oriented 

piezoelectric coefficients, which have positive polarization along {001} direction, 

are defined to a closed-packed rhombic dodecahedron model. To satisfy the 

condition that each pair of adjacent dodecahedrons have different piezoelectric 

coefficients, the packing freedom is restricted to the first 3 dodecahedrons 
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packing order. As shown in Figure 6.4, once the 1st-3rd dodecahedrons are 

determined, the packing of the whole model is determined by translation and 

extrapolation.  

6.2.4 Meshing the grid and solving the equations 

The correct meshing of geometries should reduce the memory consumption and 

increase the accuracy and speed of the calculation. COMSOL has options for a 

"physics-controlled" mesh and a user-defined mesh available. For the physics-

controlled mesh, tetrahedral elements are used to mesh the geometry, with more 

elements at the most important regions such as the boundary or the vortex of the 

structure.  Through user-defined mesh, more freedoms are unlocked. There are 

four types of elements available in the user-defined mesh: tetrahedral, 

hexahedral, triangular prims and pyramids. Also, the choice of which domain to 

mesh finer and which to do a coarser mesh is also available. 

In this work, the default physics-controlled mesh was used with “Finer” precision 

to ensure reasonable resolution and limited calculations. The mesh has been 

built for the two geometries shown schematically in Figure 6.5. The stationary 

solver was invoked to deal with static problems with a relative tolerance 

threshold of 0.001.  

 

Figure 6. 5 Grid mesh of the geometries used in this work. 

To test if the mesh grid is sufficient, the convergence study is performed. Figure 

6.6 shows the simulation using different mesh precision. The simulated strains in 

XZ slices are shown for comparison. It could be seen that the strain distribution 

varies a bit from ‘Extremely coarse’ to ‘Coarse’. The strain patterns from ‘Coarse’ 

to ‘Extra fine’ looks the same, which indicates the solution is converged when the 
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gird is smaller than the size in ‘Coarse’. Therefore, the ‘Finer’ precision is 

sufficient enough for this study.  

 

Figure 6. 6 The simulated strain patterns from different precision of meshing 
grid. 

Of all the models that have been simulated during this work, several models gave 

results that partially match the experimental data. These are illustrated in the 

next part. 

6.3 Simulated results 

The main interest of the simulation study is to see how the cubes or 

dodecahedrons are interacting or fitting with each other, so as to give a strain 

pattern in space.  The focus of the study is the strain pattern phenomenon, rather 

than testing the theory behind it. Therefore, the boundary conditions are linearly 

adjusted to better show the strain pattern.  
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6.3.1 180° domain packing 

180° domains are widely found in tetragonal BTO crystals. The only structure 

difference between the two adjacent domains is that the Ti4+ displacement 

directions are opposite, so are the polarizations.   The domain definitions are 

shown in Figure 6.7(a) and (b), while the boundary condition is listed in Figure 

6.7(c). The simulations were then performed, and the simulated displacements 

were calculated. Figure 6.7 (d) to (f) shows three orthogonal displacement field 

in one XY slice. The displacement field in 𝑢100 is accumulated along vertical 

direction at an order of 10−12 m, which are not seen in other two displacement 

fields.   

 

Figure 6. 7 (a)&(b) The domain definitions. (c) The boundary conditions. (d) to 
(f) The simulated displacement field. 

The strain fields were calculated next from the displacement field. Figure 6.8 

presents the six strain components in one XY slice. Vertical distributed strain 

field could be seen in 
𝜕𝑢100

𝑥⁄  and 
𝜕𝑢001

𝑧⁄ , both of which are direct strain 

component.  
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Figure 6. 8 The simulated strain tensors in one XY slice are shown. 

After getting the typical strain tensors, the combination of the certain strain 

components was added up together to simulate the strain field seen in BCDI 

experiments. The equations are listed in Eq. (4.4) to Eq. (4.6) in Chapter 4. 

Figure 6.9 shows the simulated strain fields.  Of all the nine views to show the 

strain distributions, two views show vertical strain stripes, and another two 

views show horizontal strain stripes. There are another two views show strain 

stripes along the diagonal, which is 45° inclined to the X and Z direction.  The 

remaining three views have weak strain distributions.  
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Figure 6. 9 The simulated strain field are presented. 

Except the boundary conditions seen in Figure 6.7(c) where the electric potential 

is applied onto different facets than the piezoelectric blocks array direction, 

other boundary conditions were also tried. Figure 6.10 shows some boundary 

conditions and one slice on simulated strain pattern. Because the system 

involves both mechanical and electrical fields, and the place where the 

conditions are applied would make a difference. This is same in the real case, 

where the crystal is surrounded by masses of other crystals. Therefore, we tested 

different boundary conditions and only selected the best one that fit to our 

experimental data.  
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Figure 6. 10 The simulated strain patterns from different boundary conditions 
and 180° domains arrangement. 

 

6.3.2 90° domain packing 

The 90° domains are also commonly found in tetragonal BTO crystals. The 

packing orders and boundary conditions are shown in Figures 6.11(a) to (c). 

Figures 6.11(d) to (l) present the simulated results. All the three views showing 

strain gradient along the X direction have only positive strain distributions.  One 

view in the strain gradient along Y direction shows strain accumulation on the 

vertices inside the model. This gives a strain distribution close to the diagonal 

direction. The three views of strain gradient along the Z direction show diagonal, 

vertical and horizontal stripes accordingly.  
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Figure 6. 11 The domain definition, boundary condition and simulated results for 
a 90° domains packing. 

6.3.3 Rhombohedral domain packing  
The rhombohedral domains packing order in Figure6.4 is extended into the 

whole model and shown in Figure 6.12(a) to (d).  The simulation results are 

shown in Figure 6.12(g) to (o). There are two views showing vertical strain 

stripes and two others showing horizontal stripes. There are another two views 

showing strain accumulated on the boundaries of inner blocks, which resemble a 

strain distribution along the diagonal. The three views of strain gradient along 

the Z direction show only the compressive strain.  
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Figure 6. 12 The domain definition, boundary condition and simulated results for 
the rhombohedral domains defined in Figure 6.3(b). 

The extension of packing order in Figure 6.3(c) are shown in Figure 6.13(a) to 

(h). The simulated results are showing in Figure 6.13(g) to (o). There are two 

views which have horizontal strain stripes but only one view showing horizontal 

strain stripes. The diagonal distributed strain stripes exist in two of the views. All 

the views of strain gradient along Z direction have complicated strain 

distributions.  
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Figure 6. 13 The domain definition, boundary condition and simulated results for 
the rhombohedral domains defined in Figure 6.3(c). 

Figure 6.14 and 6.15 shows the simulation results from domain packing in Figure 

6.3(d) and 6.3(e). The strain distributions are rather complicated. In both cases, 

the XY views show diffuse strain distribution, while YZ views and XZ views show 

small strain stripes horizontal and vertically.  The sizes of the strain stripes are 

smaller than the block size, typically around 3nm.  
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Figure 6. 14 The domain definition, boundary condition and simulated results for 
the rhombohedral domains defined in Figure 6.3(d). 

 

Figure 6. 15 The domain definition, boundary condition and simulated results for 
the rhombohedral domains defined in Figure 6.3(e). 
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Figure 6. 16 The domain definition, boundary condition and simulated results for 
the rhombohedral domains in rhombic dodecahedron model. 

 

Figure 6. 17 The side-by-side view for comparison. The simulated results are 
from the simulation of 180 domain packing. The experimental results are from 

crystal BTO-32 presented in Chapter 4. 

Figure 6.16 presents the simulated results using the rhombic dodecahedron 

model. Four {111} polarizations are defined on the blocks as shown in Figure 
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6.16 (a) to (d).  All the nine views show a dominant distribution of compressive 

strain.  

In summary, different models have been simulated and tested in this Chapter. 

The model that best fits the results in Chapter 4 is the one containing 180° 

domain walls. For this 180° domains wall model, there are horizontal, vertical 

and diagonal strain stripes distributions, which are all seen in the strain images 

of the crystal studied in Chapter 4. It should be noted that even the best fitting 

model only partially matches the experimental results.  Figure 6.17 shows a side-

by-side view of the simulated results and experimental data. Some views have 

their strain stripe direction matched, but others are not. But the features are 

clear: there are horizontal, vertical and diagonal strain stripes all over the 

crystal. 
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Abstract: Coherent X-ray Diffraction patterns were recorded using an X-ray Free-

electron Laser illuminating Barium Titanate nanocrystals as a function of time 

delay after laser excitation.  Rather than seeing any significant thermal expansion 

effects, the diffraction peaks were found to move perpendicular to the 

momentum transfer direction.  This suggests a laser driven rotation of the crystal 

lattice, which is delayed by the aggregated state of the crystals.  Internal 

deformations associated with crystal contacts were also observed. 

Keywords: X-ray pump-probe; coherent imaging; ferroelectric oxide  

 

7.1 Introduction 

Barium Titanate, BaTiO3 (BTO), is an important ferroelectric material, which was 

first used to explain the coupling of lattice distortions with phonon mode 

softening, leading to its ferroelectric structure [246].  It has the classical phase 

diagram for a perovskite oxide material, with a cubic structure at high 

temperature, becoming tetragonal below TC = 393 K and then orthorhombic 
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below T2 = 273 K [47].  The room temperature tetragonal phase is ferroelectric 

with an electric polarization along its c-axis attributed to displacement of the 

perovskite B-site Ti4+ ion with respect to the A-site Ba2+, locally displaced 

towards the unit cell corners. 

Nanosized BTO is an important industrial material for making supercapacitors.  

BTO’s dielectric constant peaks as a function of size with a maximum around 140 

nm with a factor of three enhancement of dielectric constant resulting in a big 

improvement in capacitor performance [93].  A major industry is currently 

building up for energy storage, which is of significant interest in Energy Sciences.  

Although BTO has clear structural phase transitions, there are studies showing 

local rhombohedral distortion even in the cubic phase [56,59].  A powder 

diffraction study proposed a core-shell structure for the nanoparticles, in which 

the core is tetragonal, and the shell is cubic [147].  The dynamical aspects of this 

model could in principle explain the enhancement of dielectric constant.  

Previous experiments on pump-probe diffraction from BTO thin films at the 

Linac Coherent Light Source (LCLS) showed a small lattice expansion, but no 

direct piezoelectric response [234].  A fast sub-10 ps transient increase of the 

003 peak intensity was detected, followed by a shift of the rocking curve to lower 

angles on an acoustic response time of 15 ps.  The response indicates a lattice 

expansion of 0.04% and 0.11% in two different experiments using THz 

illumination.  The expansion was reported to be linear in fluence and attributed 

to enhanced vibrations of the Ti4+ ion, analogous to transient heating, 

subsequently relaxing on a time scale of 10 ns.   

Bragg Coherent Diffraction Imaging (BCDI) is a powerful X-ray technique for 

investigating the structures of nanocrystals in three dimensions on the 30nm 

resolution scale [192].  By using an area detector far enough from the sample, the 

fringes surrounding a Bragg diffraction peak, due to the external shape of the 

crystals, can be oversampled with respect to their spatial Shannon-Nyquist 

frequency.  Such data can be inverted to images using iterative algorithms, 

namely the Error Reduction and Hybrid Input-Output methods [19].  These 

methods depend on a well-defined spatial support function, used as the real-

space constraint, which can be provided by a “shrink-wrap” approach [24].  The 
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advantage of BCDI, which is important here, is its high sensitivity to the 

distribution of nano-scale strains inside the nanocrystal under investigation 

[235]. BCDI is a 3D imaging method that is particularly valuable for probing the 

responses of individual nano-sized crystal grains embedded in an in-situ 

environment, such as a polycrystalline material, a battery electrode or a working 

catalyst particle.  More details about Bragg coherent diffraction imaging can be 

found in other specialized reviews [11,13,17,236-240]. In this work, BCDI is 

combined with laser excitation of the samples in a pump-probe approach to 

obtain ultrafast time-resolved images of internal strain fields [221]. 

7.2 Materials and Methods 

Barium Titanate (BTO) nanocrystals were obtained commercially from Sigma-

Aldrich and were assumed to have been fabricated by hydrothermal synthesis.  

The crystals were found by Scanning Electron Microscopy (SEM) to have roughly 

spherical shapes and a size distribution cantered at 200 nm.  Crystals were drop-

cast from ethanol suspension onto a Si3N4 (SiN) window array provided by 

Silson.  The crystals were bonded to the substrate using 1% Tetraethyl 

Orthosilicate (TEOS) as an adhesive and calcined in air at 723 K [192].  No 

particular care was taken to ensure that the crystals were separated from each 

other on the substrate. They were found to be clustered together in aggregates, 

which was found to have consequences for the laser excitation described below. 

The transmission geometry was used to measure Coherent X-ray Diffraction 

patterns of the samples.  We had previously found [241] this led to slightly 

higher damage thresholds for the samples to become detached from the 

substrate by radiation pressure, at least with respect to the commonly used 

grazing incidence geometry [242].  The samples were mounted on the Huber 

diffractometer of the X-ray Pump-Probe (XPP) station of the LCLS, an X-ray Free 

Electron Laser (XFEL) at Stanford.   The 9 keV X-ray beam was focused with in-

line X-ray Compound Refractive Lenses (CRLs) and 10-15% attenuators were 

used to stay below the X-ray damage threshold, as detected by sudden loss of 

diffraction peaks.  120 Hz repetition rate was used.   2D and 3D Bragg Coherent 

Diffraction Imaging (BCDI) data at a range of delay times were collected on the 

CS-Pad detector (pixel size 110 µm) placed 1.575 m downstream of the sample 
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at 27° Bragg angle in the vertical scattering-plane geometry.  After mapping the 

general behaviour, discussed below, we selected about six nanocrystals for 

detailed BCDI measurement over 36 hours of “standard configuration” 

operations at LCLS.  

The XPP Ti-sapphire laser was synchronized with the X-ray beam via a 

motorized delay line, allowing pump-probe delays up to several nanoseconds.   

The beam came down through the hutch roof and was directed onto the sample 

by the final focusing mirror on a collinear geometry with about 2° inclination.  

Temporal overlap was calibrated with a Bi standard.  Spatial overlap was set 

with phosphor screens and checked using diffraction effects seen from the actual 

samples, as well as with some Au standard crystals [242].  The laser was used on 

the third harmonic, with wavelength 266 nm, to excite the sample above its band 

gap of 5 eV.  Manual adjustments were made initially of the time delay and the 

beam position on the sample to explore the response to the laser with a real-time 

display.  Then time-delay scans were made on aligned samples to extract 

quantitative values for the Bragg peak position on the detector to learn about the 

laser induced changes of the crystal structure.    

7.3 Results 

Previous experiments on metal nanocrystals have measured radial oscillatory 

Bragg peak movements on the detector.  These are identified as breathing modes 

of crystal vibration in which the crystal expands and contracts with a period 

given by the ratio of the speed of sound to the crystal size [23].  These vibrations 

represent the impulse response of the crystal to a short thermal pulse applied 

homogeneously throughout the crystal.  The Two Temperature Model (2TM) 

[243] is invoked to explain how the optical excitation reaches the entire 

nanocrystal faster than the sound velocity: the optical absorption is relayed by 

hot electrons which travel rapidly through the crystal before equilibrating their 

temperature with the lattice.  Both the electron transport and electron-phonon 

coupling take place on a time scale of around 1ps, significantly faster than the 

acoustic response of the crystal, for which the vibration period is consistent with 

the speed of sound in the material. 
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In this study, BTO nanocrystals have tetragonal structure at room temperature 

with lattice constants close to a=3.99 Å and c=4.01 Å. The split of (110) and 

(001) Bragg peak is 0.107° at 9 KeV, which is covered by the angle range of 

detector. We observed two clear Debye-Scherrer (DS) powder rings of spots 

corresponding to the tetragonally distorted (110) and (101) diffraction peaks.  

At different positions on the sample, peaks were found to lie along two powder 

rings separated by 0.107°, as expected. From any single shot of any area on the 

sample, we saw at least 3-4 diffraction peaks, always located on one or the other 

powder ring. The spots from individual nanocrystals were well-separated and 

the number of peaks on the outer (110) ring was roughly half the number on the 

inner (101) ring, consistent with the multiplicity.  Unexpectedly, during real-time 

monitoring of the diffraction pattern during laser excitation, we found that some 

of the diffraction spots moved around the DS ring, transverse to the scattering 

vector direction.  This motion reversed when the laser was turned off.  Some 

other spots showed a blinking behaviour, becoming less or more intense upon 

excitation.  Both the pattern movement around the DS ring and blinking are 

further explored in the time delay scanning study described in the next section. 

There were also many diffraction spots which did not respond at all to the laser, 

a behaviour we attribute to blocking of the laser by other nanocrystals within the 

clusters of crystals seen in the SEM.  No significant radial spot motion was 

detected in this real-time preliminary investigation.  

We attribute both responses to crystal rotations, as shown in Figure 7.1. We used 

a vertical scattering-plane geometry, in which the powder rings lie horizontally 

on the detector. Any vertical movement of the diffraction peaks involves 

changing of the Bragg angle. Due to the high coherence of X-ray source and small 

beam size, each crystal grain generates a separate diffraction pattern along the 

powder ring without the interference from others, so that the geometry and 

temporal changes of each individual crystal can directly attributed to its 

diffraction pattern. The transverse motion on the detector corresponds to a 

component of rotation around the forward direction, denoted as the “X-axis” in 

the figure, while the blinking corresponds to transverse rotations on or off the 

Bragg condition, denoted as the “Z-axis”.  Rotations of crystals about their third 
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axis, denoted the “Y-axis”, the scattering vector direction, would not have been 

detected.   

 

Figure 7. 1 Illustration of the set-up for the X-ray pump-probe experiment 
performed at LCLS. A 0.5m delay stage is used for making laser pulse time delays 

up to 3000ps. The wave plate is used to control the fluence of the laser pulses. 
The X, Y and Z axes of the crystal under Bragg condition are shown and the 
(110)/(101) Bragg planes are indicated schematically. Rotation of crystal 

around the X-axis causes the diffraction pattern to move in the X direction on 
detector, which is around the (110)/(101) powder ring. Rotation around the Z-
axis results in a scanning of crystal through its Bragg condition and leads to an 
intensity difference. This is the “blinking” phenomenon seen in the experiment. 
Any rotation around the Y-axis is not detected. Movements in the Y direction on 

the detector would indicate lattice expansions or contractions. 

Crystals were then selected for further investigation using two approaches.  

Time delay scans were performed after centering a selected nanocrystal in the X-

ray beam and on the maximum of its rocking curve; these allowed detailed 

measurement of the Bragg peak position on the detector with sub-pixel accuracy 

as a function of time delay. The Centre of Mass (COM) of the diffraction pattern 

was viewed as the pattern centre and was tracked over different time delay 

scans. Figure 7.2a shows the rotation angle variation of diffraction pattern centre 

from the position at the start of measurement, along the X and Y directions of the 

detector. Zone 1 and Zone 2 were acquired from different scans and combined 

together. Waterfall plots of these position changes can be seen in Figure 7.2c to 

7.2f. Figure 7.2b shows the intensity plot over different delay times. There is a 
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clear difference between Zone 1 and Zone 2. In Zone 1, the intensity is higher and 

the period of oscillation is shorter, around 100 ps. While in Zone 2, there is a 450 

ps periodic oscillation when time delay is over 1500 ps.  

 

Figure 7. 2 (a) The rotation of a (110) BTO diffraction pattern along the X and Y 
directions of the detector as a function of laser pump-probe delay. (b) Intensity 

plot of diffraction pattern for different laser-pulse delays. Zone 1 and Zone 2 
were recorded before and after a BCDI measurement. (c)-(f) Waterfall plots of 
transverse (X) and radial (Y) slices through the diffraction pattern for different 

time delays. The first (c, d) and second (e, f) rows display positions in the X and Y 
directions, respectively. 

The time scale for both X-axis and Z-axis rotations was the same, so we conclude 

it was just due to its chance orientation of the crystal around the (110) Q-vector 



196 
 

of the measurement.  There is an interesting delayed onset of the motion in 

Figure 7.2a, around 250 ps, seen on this crystal and several others.  This can be 

understood as the laser and X-ray beam are not hitting the same crystal in the 

BTO nanocrystal aggregates and acoustic coupling between them.  The randomly 

oriented individual crystals are assumed to be bonded together into aggregates 

as shown in Figure 7.3.  This sketch shows how there can be a delay between the 

X-ray diffraction signal and the laser heating. The X-ray penetration depth of 15 

μm can reach many 200 nm-sized crystals within the aggregate, while the laser is 

absorbed only by the surface layer. One crystal inside (coloured blue) is 

illuminated by the X-ray and gives rise to the diffraction and BCDI images, while 

the laser is directly heating other crystals on the front of the sample. It takes time 

for the mechanical response to the laser heating to transfer from the front side to 

the inside, which explains the time delay before the onset of the motion 

observed. To the extent that BTO is a piezoelectric material, where the laser 

excitation could lead to a piezoelectric deformation, we cannot identify whether 

the observed delay of the X-ray diffraction signal is purely thermally driven or 

whether the piezoelectric response also makes contributions. 

 

Figure 7. 3 Illustration of the time delay between laser heating and x-ray 
diffraction response. All the crystals (circles) are illuminated by the X-ray beam, 
while only the crystal colored blue is at the correct Bragg angle to give the X-ray 
diffraction signal. The laser is absorbed by the front row of crystals, colored red. 

At strategic points on these time delay scans, BCDI experiments were performed 

to map out the single crystal shape and displacement field in 3 dimensions. The 

(110) diffraction pattern from the selected crystal was first centered to 
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maximum intensity position by adjusting the sample stage. Then a series of 2D 

diffraction pattern data were taken by collecting rocking curve scans across the 

Bragg condition, with angular steps fine enough to oversample the coherent 

diffraction patterns.  These 2D datasets were stacked into 3D and then inverted 

to real-space images using iterative algorithms, alternating cycles of error 

reduction and hybrid input-output [19], using a “shrink-wrap” support [24] and 

combining with partial coherence correction [244].  The data inversion was 

carried out in the detector-pixel-angle coordinate system and then transformed 

to the laboratory coordinates in the standard way [235]. The first column of 

Figure 7.4 shows the central slice of the 3D diffraction patterns at different time 

delays, while the second and third columns shows their corresponding 

reconstructed Bragg density slice and displacement slice, respectively.  The 

displacement shown at each point in the crystal is derived from the phase of the 

complex image and given as the projection of the 3D displacement u along the Q-

vector, using the relation Φ= Q·u [239].  For a perfect single crystal, the Bragg 

density map would have only one centre in the middle and monotonically 

decrease towards the surface. In this case, however, there are several high-

density regions distributed inside the single crystal indicating a complex nature, 

as shown in second column of Figure 7.4. The displacement map is also seen to 

be changing with time delay. The crystal has a positive displaced region seen 

before the laser pump at -50 ps. After +50 ps of pump-probe delay, the positive 

displaced region diminishes, while there are negative displaced regions 

appearing at the surface, which could arise from contacts with surrounding 

crystals showing a compressive strain. When the laser pump delay reaches +500 

ps to +700 ps, a positive displaced region is showing up on the surface. Upon 

+900 ps laser delay, the positive region inside the crystal comes back. 
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Figure 7. 4 (110) diffraction patterns and their reconstructed images of the same 
BTO crystal shown in Figure 7.2 after different pump-probe delays. The first 

column shows the central slices of 3D diffraction patterns of a single crystal after 
different laser delays. The powder ring direction is horizontal as shown in the 
figure. These 3D diffraction patterns were inverted into 3D real-space images. 

The second column are slices of reconstructed Bragg density (image amplitude), 
which gives the shape and crystal ordering information. The third column are 

slices of retrieved displacement field projected along the Q-vector (shown inset 
in red). The positive and negative value represent tensile and compressive 

displacement, respectively. 
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BCDI cannot directly see the small crystal rotation as indicated in Figure 7.2 but 

is sensitive to any inhomogeneous shearing of the crystal lattice which also 

contributes to the peak motions. By directly viewing the crystal in 3D, however, 

we find both the Bragg density slices and displacement slices are complex and 

continuously changing inside a single crystal grain following laser excitation. The 

surface displacement fields are different from the centre indicating the presence 

of lattice shearing. We think these sharp dynamic changes are plausible given 

that the crystal is in close contact with other crystal grains. 

7.4 Discussion 

Our XFEL experiment clearly shows that rotations of the BTO nanocrystals are 

induced by laser excitation on a 100 ps time scale, appropriate for an acoustic 

response of the material.   An observed response time delay around 200 ps could 

be attributed to generation of acoustic waves at some distance from the part of 

the sample probed with the X-ray diffraction.  The longitudinal and transverse 

speeds of sound of BTO (in sintered ceramics) are 4800 m/s and 2400 m/s [26,], 

so the 250 ps time delay corresponds to a distance between the excitation and its 

observation of 1.2 µm or 0.6 µm.  The apparent vibration period of 450 ps would 

correspond to the breathing of a slab of nanocrystals 1.1 µm or 0.55 µm thick.  

Both these lengths are greater than the 200 nm size of the particles being 

measured with the X-rays, so we consider this represents a collective response of 

several nanocrystals bonded together into aggregates.  

 

Supplementary Materials: The following files are available online at 

www.mdpi.com/xxx/s1, Figure S1: Waterfall of diffraction pattern over different 

time delays.  
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Chapter 8. Conclusion 

The domain structures in barium titanate (BTO) nanocrystals have been the 

focus of this thesis.  Bragg coherent X-ray diffraction imaging (BCDI) was used to 

probe the displacement and strain distribution inside BTO crystals. Finite 

element analysis (FEA) has been used to simulate the strain patterns from 

different domain configurations.   

Large 90° domains with size of 100 nm were located in one BTO nanocrystal and 

studied in Chapter 3. This sample was selected because it had a characteristic 

diffraction pattern with intensity distributed on both (110) and (101) powder 

rings with strong interferences in between. The reconstruction of the diffraction 

patterns with more than one centre usually failed, as shown both experimentally 

and by simulation. The trick that was found to be useful was to cut and split 

apart the two diffraction patterns on the detector images, and then reconstruct 

the two parts separately before combining the real space images together.  The 

crystal was then heated up and cooled down across its tetragonal-cubic phase 

transition temperature of 393 K. The large 90° domains were found to come back 

at the same place after returning to the tetragonal phase from the cubic phase.  

The local structure of BTO crystals has long been discussed, as X-ray and neutron 

scattering studies have shown that the local structure could be in a low-

symmetry state like orthorhombic or rhombohedral, while the global phase 

remains still tetragonal or cubic [172, 173, 205].  To understand whether this 

ambiguity applied to our BTO commercial nanocrystals, we performed X-ray 

total scattering measurements and found that the nanocrystals were mostly 

tetragonal in both global and local structure at room temperature, presented in 

Section 4.3. The temperature dependent X-ray total scattering also shows an 

elevated phase transition temperature, compared with the values in bulk BTO. 

This is easy to rationalize as the strain in nanocrystals can be higher than bulk 

material, which leads to higher transition temperature [50].  

During the BCDI experiments, repeated several times at the 34-ID-C beamline of 

APS, some well-faceted crystals were observed by their strongly modulated 

diffraction fringes.  This allowed the crystallographic orientations to be 
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determined, fully in some cases, to establish a coordinate system to interpret the 

strains. When their strain components were calculated, some unexpected strain 

stripes were found, as presented in Section 4.2. The directions of the strain 

stripes are mostly along {100} or {110}. The two-dimensional Autocorrelation 

function (2D ACF) was calculated on the selected regions to quantitatively 

measure the stripe periods, which were distributed from 30nm to 50nm.  

To further understand the behaviour of these strain stripes, we tracked two 

faceted crystals crossing their phase transition in detail by heating and cooling.  

This experiment was at ID-01 of ESRF and described in Section 5.1.  The 

diffraction of crystal A was found to locate at the tetragonal (101) powder ring, 

with some intensity distributed on to the (110) powder ring as well. The crystal 

was then heated up to the cubic phase and cooled down to the tetragonal phase 

again. During the process, the diffraction pattern was found to move from (101) 

powder ring to (110) powder ring. This indicates a reorientation of c-axis after 

crossing the phase transition.  The BCDI reconstructions were performed for 

each temperature with a 5 K step. The slice view shows that the strain stripes 

inside the crystal also change their direction through the heating and cooling. 

This match of c-axis reorientation and strain stripe direction switching indicates 

that the strain stripes could come from the ferroelectric domain walls.  However, 

there was some residue of the stripe pattern with a different spacing and 

orientation, in the cubic phase as well; this same behaviour was recently 

reported [227]. 

The two classical ferroelectric domain-wall configurations are 90° and 180° 

walls, both of which could give a stripe-like polarization pattern as shown in 

Figure 8.1. Figure 8.1(a) shows a 180° domain-wall pattern with the c-axis 

pointing vertically. If the c-axis is switched to horizontal direction, the 

polarization pattern would also switch direction, as shown in Figure 8.1(b). 180° 

domain walls are always parallel to the c-axis, namely the crystallographic (001) 

direction. Figure 8.1(c) shows an example of 90° domain walls. The c-axis for the 

blue stripes is pointing horizontal, while for the orange stripes it is pointing 

vertical. If both blue and orange stripes change polarization direction, then the 

stripes direction could keep as the same, or it could form another domain 
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mapping as shown in Figure 8.1(d). From Figure 8.1 we can see that both 90° 

and 180° domain walls can have their polarization stripes rotating 90° if the c-

axis is switched to another a-axis direction. So, both of these ferroelectric domain 

pictures match the stripe switching seen in Crystal A in Chapter 5.   

The Crystal B is an example where the Bragg peak didn’t move across powder 

rings but coming back to the original powder ring. This is explained as the crystal 

didn’t change its c-axis direction after going to cubic and coming back to 

tetragonal structure.  

 

Figure 8. 1 Polarization patterns from 90° and 180° domain walls before and 
after switching c-axis. 

To understand the ferroelectric strain stripes observed in Crystal A, different 

models have been built in Chapter 6 to simulate them. While both 90° and 180° 

domains configuration give stripes like strain, the 180° domains model seems to 

work better. It has 6 views out of 9 views showing {001} or {110} directional 

stripes.  

However, the poor mismatch in side-by-side view also triggers the question 

whether the strain stripes are physically real or there are other mechanisms 

behind it. We are worrying about the Fourier termination ripples and the 

resulting two effects. The first one is the cropping of dataset, which gives the 

stripes parallel to the facets. As we tested this effect by playing with the 

cropping, there seem to be no change in the stripe distribution. We are still 

(a) (b) 

(c) (d) 
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looking for ways to thoroughly understand this point.   The second one being the 

aliasing of the fast Fourier transform by not having enough zero padding.  This 

will lead to the fringes being parallel to the detector edges. We noted that there 

are some simulation works describing these effects in BCDI and we also want to 

dig into this question more in the future work [248]. 

Despite the works done by us and described in this thesis, and others, there are 

still many uncertainties and mysteries about ferroelectric nanoparticles worth 

exploring in the future.  

Firstly, it would be interesting to see how the domains in nanocrystals behave 

when they react to different stimuli. We have tried temperature in this work, but 

other conditions could also be interesting. Our group is currently studying the 

domains response in BTO nanocrystals under DC electric fields (and possibly 

current) at APS 34-ID-C. In that work, the BTO nanocrystals were dropped onto a 

grid of Au electrodes with gaps. The crystals that filled the gap and connected the 

two electrodes are the ones of interest. To get more control of which crystal to 

look at, metallic coating (Pt) could be used to weld the interested crystal with the 

electrode using Focused Ion Beam (FIB).    

It could also be interesting to do it at X-ray free electron laser facility to explore 

the relation between ultra-fast laser pump and the piezoelectric response or the 

changes of strain stripes in BTO nanocrystal.  In principle, a laser couples 

exclusively with the electrons of the sample, which then couple to the ions, 

creating local charges and a response which can be seen as strain in BCDI.  In 

Chapter 7, we have done such an experiment at X-ray Pump Probe (XPP) 

beamline at the Linac Coherent Light Source (LCLS) to study the phenomenon of 

optical laser excitation of the same commercial BTO nanocrystals. Rather than 

seeing any directly interpretable piezoelectric response or strain evolution, the 

crystals were mostly found to rotate driven by the laser and the response was 

significantly delayed up to 500 ps.  This was attributed to the aggregated state of 

the BTO particles which tend to clump together on the supporting substrate 

[228]. Figure 7.3 shows the model that used to depict the observed phenomenon. 

For a future study, it would be interesting to locate a crystal with strain stripes 

inside and study how these evolve under ultra-fast laser pulse.  Since the 
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classical domain wall structure can migrate without any involvement of major 

defects (vacancies or dislocations), it could be that the strain response to the 

laser-induced electrons is extremely fast. 

Secondly, the electrical, mechanical properties and domain configurations in BTO 

vary a lot with sample preparation.  Therefore, it’s interesting to study BTO 

crystals with different preparation route and properties. One direction would be 

to study the strain distribution in polycrystalline and epitaxial BTO thin film. We 

have performed growth studies to optimize the growth-parameter window of 

BTO strained films in the UCL laboratory of Prof. Pavlo Zubko. This has been 

listed in the appendix. 

For future BCDI experiments, our plan is to use reactive ion etching (RIE) to cut 

out BTO blocks with variable sizes. Assuming the strain from lattice mismatch is 

preserved after etching, it would be interesting to explore if there is any stripe 

like feature inside and how they distribute under different strain state.  It would 

also be interesting to examine the misfit dislocations associated with the growth 

on the different substrates.  The reciprocal space maps shown in Fig I.3 indicate a 

small amount of relaxation of the in-plane lattice constant due to the misfit.  This 

is expected to appear as an array of misfit dislocations and associated local 

strains, which can be imaged with BCDI.  This has not been achieved before as far 

as we know. 

A further plan is to look at the films with Bragg ptychography, where the RIE 

step is not required.  For this, 2D scans of a coherent beam across the sample are 

made with overlapping probe positions. Because the diffraction of a thin film is 

elongated in the Q-direction perpendicular to the film, the Ewald sphere cuts 

through the diffraction measure the full 2D speckle pattern due to the in-plane 

structure [229]. In ptychography, the redundancy of data in the overlap allows a 

solution of the phase problem to yield wide-field images [230]. This should allow 

access to the structure of the misfit dislocations and associated domains of the 

BTO thin films which have been prepared on different substrates.  The domains 

are expected to appear phase shifted with respect to each other and the domain 

wall strain will be seen in the phase structure at the boundaries. 
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Appendices 

A. One set of procedures for alignment and measurement using Rigaku 

diffractometer 

1. Alignment: 

a. Control→Manual; Attenuator→Auto; All slits→0.03 mm 

b. Determining Z-axis 

Moving θ/2θ, X, Y to 0 

Scanninging Z with range: ±1mm; Steps: 0.002mm; Normal Value: -

1.78mm  

c. Determining ω-angle 

*Setting θ/2θ to 0.5° 

*Doing ω [-1°,1°] scan 

*Setting 2θ/ω to 0° 

d. Determining Z-axis again (Range: ±0.1mm; Steps: 0.002mm – half 

place) 

e. Determining Y-axis (Range: ±3mm; Steps: 0.01mm) 

f. Determining X-axis 

* Setting receiving slit to 0.3mm; Setting incidence slit to 0.5mm  

* Going to substrate Bragg angle 

(46.06° for DSO 110, 46.52° for STO, 45.52° for KTO, 45.22° for NSO) 

* Doing ω scan to adjust 

* Doing X scan with relative ±3mm 

g. Aligning Phi  

101 peak for 110 DSO [a’=3.94 Å]: Chi=44.985°, 2th=32.069°;  

101 peak for 001 STO [a=3.905 Å]: Chi=45°, 2th=32.397°; 

101 peak for 110 NSO [a’=4.010 Å]: Chi=44.885°, 2th=31.565°;   

101 peak for 001 KTO [a=3.988 Å]: Chi=45°, 2th=31.726°; 
 

2. 2θ-ω scan 

Goal: Calculating average c lattice params and total thickness of thin film 

Way: Doing 2θ-ω scan with speed: 0.5°/min, range: absolute 15°-60°. 

 

3. Rocking curve scan 

Goal: Assess the crystallinity of the sample (FWHM of a rocking curve 

peak) 

Way: Measuring intensity as a function of w (2θ fixed) 

2θ-ω goes to (001)/(002) interested film peak; ω scan in range of [-3°,3°] 

with speed: 0.5°/min, step:0.001°. 
 

4. X-ray reflectivity 

Goal: Calculating thickness of thin film 

Way: Intensity oscillations have spacings related to the film thickness 

a. Setting θ/2θ to 0.5° 
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b. Doing ω [-1°,1°] scan with speed 1°/min 

c. Doing 2θ-ω Absolute 0.1°-10°  
 

5. Reciprocal space map 

Goal: Determine periodic domain structure, relaxation effect  

Way: In tetragonal, Qx(h=k) value of substrate and grown sample is same 

means coherent (no relaxation) 

STO (103) reflection origin: 2th=77.278°, w=57.074°; 

NSO (103) reflection origin: 2th=73.6°, w=55.6°; 
 

B. One set of procedures for doing BCDI at APS 34-ID-C 

1. Optics alignment and preparation 

The alignments of optics are usually done by the beamline staff prior to the 

user operation. Taking APS 34-ID-C as an example, the optics and equipment 

inside the experiment hutch are: Filter box → Fast shutter → JJ slit → KB 

mirror → Sample Stage → Vacuum X-ray Flight Path → Detector.  In 

alignments, standard samples like Au are used. The slits and KB mirrors 

alignments can be down by scanning labx and check the intensity shape.  

For making the BCDI measurement easier, the centre of rotation is also found 

in X and Y direction and marked in confocal microscope. This can be simply 

found by rotation the sample stage (theta). If there is no confocal microscope 

available and centre of rotation is not determined before the experiment, one 

can also find it using crystal diffraction by the following steps:  

Changing theta angle a bit, then move LabX positive and negative to see the 

intensity change. If the intensity drops in both directions, then it’s in the 

centre. If it drops one side and rise the other side, then it’s misaligned and 

need to change LabY correspondingly: 

 

2. Sample mounting and set up experimental condition 

Some general condition for an in-situ BCDI experiment includes temperature, 

voltage, pressure. We have tried heating, cooling and charging/discharging 

before at both APS 34-ID-C and I-13.  
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3. Sample flattening by using camera (X-ray eye) downstream 

Aligning sample surface to be parallel to the X-ray beam. Generally, there are 
two ways to align. 

Method 1: 

(a) Set Phi=0°; Chi=90°; Theta=0°. 

(b) Move SamZ to the position that just cutting the direct beam spot. 

(c) Adjust Phi and tuning SamZ to make reflective spot and direct beam spot 
to coincide. 

(d) Move Theta to 90°. 

(e) Do (b) & (c) again, but this time adjust Chi instead of Phi. 

Method 2: 

(a) Set Phi=0°; Chi=90°; Theta=0°. 

(b) Move SamZ to the position that just cutting the direct beam spot. 

(c) Rotate Phi to completely cut direct beam spot at two side, phi1 and phi2, 

then change phi=phi1/phi2. 

(d) Move Theta to 90°. 

(e) Do (b) & (c) again, but this time adjust Chi instead of Phi 

4. Adjusting centre of rotation 

Moving the region of interest into the centre of rotation in confocal 

microscope in X and Y direction. The sample height, which is Z direction, is 
also adjusted in confocal microscope. 

5. Setting up UB matrix (optional) 

For going to multiple diffraction peaks of a single crystal, it’s useful to set up 
the UB matrix before the measurement.  This includes: 

(a) Setting incident angle by “freeze” (may need “sigtau” to free the fixed flat 

angle). 

(b) Setting up lattice constant and wavelength. 

(c) Setting up or0 and or1. 

6. Moving to designed Bragg angle and hunting for peaks. 

7. Picking up Bragg peaks and doing rocking curve scan measurement. 
 

C. Identification of dislocation in Figure 3.6 
BCDI has the ability to locate the dislocation line inside a nanoparticle and 

identify the type of dislocation line by its characteristic strain field. The 

characteristic feature of any dislocation is a low-density core in the Bragg 
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density map and a phase/displacement field around this core. A screw 

dislocation has a linear relation of displacement as a function of orientation 

angle given by [11]: 

u𝑠𝑐𝑟𝑒𝑤=
𝑏

2𝜋
* θ 

[uscrew: displacement field around screw dislocation; b: Burgers vector; θ: spiral 

angle around screw dislocation] 

An edge dislocation has linear relation plus 2 modulations given by the extra 

atomic planes [13]: 

u𝑒𝑑𝑔𝑒=
𝑏

2𝜋
*(θ+

sin(2𝜃)−cos (2𝜃)

4−4ν
+

(4ν−2)∗𝑙𝑜𝑔𝑟

4−4ν
)  

[uedge: displacement field around the edge dislocation; b: Burgers vector; θ: spiral 

angle around the edge dislocation; r: radius of the circle around the edge 

dislocation; ν: Poisson’s ratio of the material.] 

In this case, the simulated edge dislocation displacement field is plotted in figure 

3.7(c). The radial distance r is 30nm and Poisson’s ration is 0.23. The value of the 

Burgers vector is 2.83Å, which is the d-spacing of the corresponding lattice 

plane.  

D. Robustness of fringe cropping and its influence on final reconstruction  

We studied the influence of fringes between twin peaks (e.g. Figure 3.1b) on the 

quality of the final reconstruction.  
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Figure D1. Phase difference of two domains after adding different numbers of 

frames containing intermediary fringe.  

In this case, by adding more of the intermediary fringe frames into the 

reconstruction, the shape of the crystal, which is defined by Bragg density, 

remains largely unchanged.  However, the relative displacement between the 

two domains was found to increases gradually and approaches a maximum of 

0.2873 rad difference when adding all the fringes. The resolution is expected to 

improve slightly with more fringes. In this case, however, the resolution was 

found to remain around 8.4nm.  

A redrawing of Figure 3.1, after taking all the fringes into the reconstruction, is 

shown in Figure D2. 

 

Figure D2. Reconstruction of the separated Bragg peaks with all the intermediary 

fringes added to both peaks. 

 

E. Combine reconstruction of crystal in Figure 3.1 

The diffraction patterns in Figure 1 were reconstructed by separating the two 

Bragg peaks and manually merging the resulting images.  If instead, the 

reconstructions were carried out on the full data without cropping or separating 

the peaks, the results are shown in Figure E3. 
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Figure E1. Full-data reconstructed images of the nanoparticles shown in Figure 

3.1. 

 

F. Displacement field difference of the nanoparticle in Figure 3.3 

To calculate the average displacement field of each grain, the nanoparticle is split 

at its twin domain boundary, as shown in Figure F1. Because of the discontinuity 

near the twin boundary, so the volume within 30nm of the boundary is not 

counted.  The average displacement of each region and the displacement 

difference is listed in Table F1 along with its standard error. 

 

Figure F1. Splitting the nanoparticle into two regions at its twin boundary. The 

region near the twin boundary is omitted when calculating the average 

displacement of that region. 

Table F1. Measured average displacement of the grains and their difference of 

the crystal in Figure 3.3. 
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Temperature 

(K) 

Average 

displacement of 

region 2 (Å) 

Average 

displacement of 

region 1 (Å) 

Displacement 

difference (Å) 

Heating 

up 

387.2 0.381±0.001 -0.764±0.003 1.145±0.003 

389.9 0.085±0.002 -0.612±0.003 0.697±0.003 

392.6 0.105±0.002 -0.072±0.005 0.177±0.005 

Cooling 

down 

390.2 0.113±0.002 -0.055±0.008 0.167±0.008 

387.6 0.137±0.003 -0.163±0.005 0.300±0.005 

384.9 0.075±0.003 -0.347±0.003 0.423±0.003 

379.7 0.240±0.002 -0.435±0.003 0.675±0.003 

371.7 0.316±0.002 -0.726±0.002 1.042±0.002 

366.9 0.201±0.003 -0.881±0.002 1.082±0.002 

For the heating period, there is a linear relationship with slope k=-0.48±0.26 

and coefficient of determination R2=0.9982. 

For the cooling period, the linear fitting gives k=-0.21±0.10 with R2=0.9427. 

G. Slices showing displacement fields in Crystal A and B 

 

Figure G.1 The central slices of Crystal A are presented with phase. 
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Figure G.2 The central slices of Crystal B are presented with phase. 

 

 

 

H. Simulations using other parameters 
We noticed the mechanical and electrical parameters of BTO particles vary a lot 

from different preparation methods. Here we listed some simulated results from 

different BTO particles parameters.  

2nd set parameters: BTO single crystals 

Properties Values 

Density (𝜌) 6020 𝑘𝑔 ∙ 𝑚3 

Compliance 

matrix (𝐶) 

[
 
 
 
 
 

8.05 −2.35 −5.24
−2.35 8.05 −5.24
−5.24 −5.24 15.7

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

18.4 0 0
0 18.4 0
0 0 8.8]

 
 
 
 
 

× 10−12[𝑃𝑎−1] 

Stiffness matrix 

(𝑆) 

[
 
 
 
 
 
27.51 17.90 15.16
17.90 27.51 15.16
15.16 15.16 16.49

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

5.43 0 0
0 5.43 0
0 0 11.31]

 
 
 
 
 

× 1010[𝑃𝑎] 

Free relative 

permittivity (휀𝑟
𝑇) 

[
2920 0 0

0 2920 0
0 0 168

] 

Clamped relative 

permittivity (휀𝑟
𝑆) 

[
1970 0 0

0 1970 0
0 0 111

] 
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Piezoelectric 

charge 

coefficient (𝑃001) 

[
0 0 0
0 0 0

−3.45 −3.45 8.56

0 39.2 0
39.2 0 0
0 0 0

] × 10−11[𝐶 ∙ 𝑁−1] 

Piezoelectric 

voltage 

coefficient 

(𝑃𝑠001
) 

[
0 0 0
0 0 0

−2.69 −2.69 3.65

0 21.30 0
21.30 0 0

0 0 0
] [𝐶 ∙ 𝑚−2] 

 

 

Figure H.1 The domain definition, boundary condition and simulated results for a 
180° domains packing using single crystal parameters. 
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Figure H.2 The domain definition, boundary condition and simulated results for a 
90° domains packing using single crystal parameters. 

 

 

Figure H.3 The domain definition, boundary condition and simulated results for 

the rhombohedral domains defined in Figure 6.3(b).   Single crystal parameters 

are used. 
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Figure H.4 The domain definition, boundary condition and simulated results for 

the rhombohedral domains defined in Figure 6.3(c).  Single crystal parameters 

are used. 
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Figure H.5 The domain definition, boundary condition and simulated results for 

the rhombohedral domains defined in Figure 6.3(d).  Single crystal parameters 

are used. 

 

Figure H.6 The domain definition, boundary condition and simulated results for 

the rhombohedral domains defined in Figure 6.3(e). Single crystal parameters 

are used. 
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Figure H.7 The domain definition, boundary condition and simulated results for 

the rhombohedral domains in rhombic dodecahedron model using single crystal 

parameters. 

Here are the simulated results from a self-defined parameters.  

BTO Isotropic Mixed 

Properties Values 

Density (𝜌) 5890 𝑘𝑔 ∙ 𝑚3 

Compliance 

matrix (𝐶) 
[
 
 
 
 
 

15.7 −3.68 −3.68
−3.68 15.7 −3.68
−3.68 −3.68 15.7

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

8.84 0 0
0 8.84 0
0 0 8.84]

 
 
 
 
 

× 10−12[𝑃𝑎−1] 

Free relative 

permittivity (휀𝑟
𝑇) 

[
2920 0 0

0 2920 0
0 0 168

] 

Piezoelectric 

charge 

coefficient (𝑃001) 

[
0 0 0
0 0 0

−7.9 −7.9 19.1

0 27 0
27 0 0
0 0 0

] × 10−11[𝐶 ∙ 𝑁−1] 
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Figure H.8 The domain definition, boundary condition and simulated results for a 
180° domains packing using mixed parameters. 

The self-defined simulated results in Figure H.8 look interesting, but we think the 

parameters are not realistic. The simulated results from single crystal BTO 

parameters are listed from Figure H.1 to H.7. The 180 domain wall results in 

Figure H.1 seems to be similar to Figure 6.6, but with weaker strain field.  Others 

do not fit the experimental figure.  

I. Progress on barium titanate thin film growth 
Some general methods to make thin film are listed in Table I.1. Among these 

methods, molecular beam epitaxial (MBE), pulse laser decomposition (PLD) and 

sputtering are known to grow good quality films.   

Table I.1 Different physical and chemical deposition method to prepare thin 

films. 

Physical deposition Chemical deposition 

Vacuum thermal evaporation Sol-gel technique 

Electron beam evaporation Chemical bath deposition 
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Pulse laser decomposition Spray pyrolysis technique 

Arc evaporation Electroplating technique 

Molecular beam epitaxy Electroless deposition 

Ion plating evaporation 
Low pressure chemical vapor 

deposition (CVD) 

Direct current sputtering Plasma enhanced CVD 

Radio frequency sputtering Atomic layer deposition 

 

I.1 Off-axis radiofrequency magnetron sputtering 

Sputtering is a type of physical vapor decomposition. Generally, it involves 

energetic particles hitting and ejecting the target materials, which then deposit 

onto the substrate.  In this work, off-axis radiofrequency (RF) magnetron 

sputtering has been used to prepare epitaxial BaTiO3 thin film. The setup is 

developed and patented by C. B. EOM [1], while the chamber actually in use is in 

UCL and designed by Pavlo and Marios.  

Figure I.1 shows the EOS chamber that are used to deposit PbTiO3 sample in 

Pavlo’s group.  It shares similarity of regular sputtering. Upon sputtering, the gas 

valve would be open and let the Ar and O2 gas flow coming into the chamber. The 

Ar+ plasma would be attracted by the cathode and bombard the target materials, 

which then eject the materials into the chamber. These ejected atoms then flow 

to the heated substrate and deposit onto it layer by layer.  
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Figure I.1 A photo of the EOS chamber. 

There are several optimizations for the system in use to deposit oxide thin film.  

1) Off-axis geometry 

The off-axis geometry means the target materials and substrate heater stage are 

not collinear. This is to prevent the re-sputtering process caused by O2- ions. If 

the substrate is in line with the target, the O2- ions that are released from the 

target could be driven towards the substrate directly and causing defects.  In 

practice, the heater is place vertically downward, which is 90° to the target. 

2) Oscillating RF field 

The electric field is set up between target and heater stage to attract the Ar+ ion 

to hit the target materials, so as to increase the sputtering speed. An oscillating 

RF field is used instead of a direct current, which is normally used to sputter 

metals. This is because many perovskite oxide materials are insulators. An 

oscillating field can neutralize the charge built on surface due to Ar+ ion 

accumulation. Therefore, during the sputtering process, the Ar+ ions in chamber 

are attracted to the target in half of the time, and the Ar+ ions on surface are 

being repelled from the target surface in the other half.  

3) Magnetrons 

Magnetrons are put behind the target, with N side magnetrons being put at the 

centre and S side magnetrons being put at the edge. In such way, the Ar+ ions 

being repelled from the target surface would be kept around the target, so as to 

increase the sputtering rate. 

4) Pre-sputtering 

Because different element in oxide materials would have different sputtering 

yield, a pre-sputtering process is carried out before the real sputtering of making 

thin films. After pre-sputtering for a certain time, the sputtering yield of different 

element would reach an equilibrium, so as to keep the stoichiometry of the 

sputtered thin film.  

I.2 Materials 
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The target bulk materials BTO has an in-plane lattice constant a=4.006Å. A 

series of substrate materials have been used in this study to provide different 

amount of strain that applied to the sample. 

SrTiO3(STO) has cubic structure with a lattice constant of 3.905Å at room 

temperature and above. It goes through an antiferrodistortive phase transition at 

110K, in which the oxygen octahedral is rotated around the tetragonal c axis [2].  

STO is a quantum paraelectrics. It has a hypothetical ferroelectricity under Curie-

Weiss temperature of 35K, but such ferroelectric order is prevented by quantum 

fluctuation and the soft-mode frequency never become unstable [3-4].    

DyScO3 (DSO) and NdScO3 (NSO) are two types of scandates with large rare-

earth element ions, both of which have orthorhombic structure at room 

temperature. DSO has a lattice of a=5.440Å, b=5.717Å and c=7.903Å. It can be 

described as a pseudocubic lattice with a1=3.946Å and a2=3.952Å. While NSO 

has a lattice of a=5.575Å, b=5.776Å and c=8.003Å, which can be viewed as a 

pseudocubic structure with a1=4.002Å and a2=4.014Å. These two rare-earth 

scandates oxide can be grown into large single crystal and ideal for epitaxial thin 

film growth. 

KTaO3(KTO) is also a quantum paraelectric materials as STO and has a 

hypothetical ferroelectricity transition below 0K. It maintains cubic symmetry 

with a lattice constant of 3.989Å at room temperature. 

Table I.2 The lattice constant of the substrate materials in use and their misfit 

strain comparing with BTO. 

Substrate 

Materials 

Lattice constant at room 

temperature 

Misfit strain to BTO 

001 STO a1=a2=3.905Å -2.5% 

110 DSO a=3.946Å; a2=3.952Å -1.5%; -1.3% 

001 KTO a1=a2=3.989Å -0.4% 

110 NSO a1=4.002Å; a2=4.014Å -0.1%; +0.2%. 
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I.3 Parameters optimization 

In a real sputtering process, many factors are coming into effect. But there are 

only a few parameters in use to tweak the sputtering condition.  

1) RF power 

An increase in RF power would increase the sputtering rate.  

2) Ar and O2 gas flow 

O2 gas flow are important to keep the stoichiometry of sputtered thin film. 

3) Pressure 

A higher pressure would increase the sputtering rate.  

4) Substrate temperature 

 A higher substrate temperature would increase the diffusion speed and help the 

sputtered film to reach a thermal dynamically stable crystal structure. If the 

temperature is too high, the as-sputtered species would vapor again. Tweaking 

the substrate temperature is used the most in this work to find a good sputtering 

condition, because it doesn’t involve pre-sputtering process.  

In the past a year and a half, a number of sputtering parameters have been used 

to optimize the sputtered thin film. We have made some good quality films, but 

the condition seems not stable.  

Figure I.2 shows the measured and simulated θ-2θ scan of 001 peak and 002 

peak. From 001 peak, the simulation shows the lattice constant c to be 4.082Å, 

thickness to be 58 unit cells (u.c.) and RMS to be 0.007796. Similarly, the lattice 

constant is 4.092Å, thickness is 58 u.c. and RMS is 0.016867 from simulating 002 

peak. Both two reflections have well-defined sample fringes.  
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Figure I.2 Measured and simulated θ-2θ scan of one BTO//DSO film at 001 and 

002 reflections. 

  

 

Figure I.3 (a) Measured rocking curve scan on 001 and 002 reflection of the 

BTO//DSO thin film. (b) Measured and simulated reflectivity curves. (c) 

Measured 103 reciprocal space map.  

Figure I.3a shows the measured rocking curve scan at 001 and 002 peak. The 

intensity has been normalized and omega value been centred. The narrow 

distribution of the rocking curve scan indicates the sample film has a narrow 

distribution of out-of-plane lattice constant, which is a sign of high quality. Figure 

I.3b presents the measured and simulated reflectivity. The simulated curve gives 
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a thickness of 236.9Å. In comparison, the thicknesses from simulating 001 and 

002 θ-2θ scan are 236.7Å and 237.3Å, which show good consistency. Figure I.3c 

shows the RSM of the off-specular 103 peaks from substrate DSO and sample 

BTO. Both substrate and sample peak share the same in-plane reciprocal space 

index, indicating a coherent in-plane structure with same lattice constant.  The 

sample peak has a small distribution along H direction, revealing a narrow 

distribution in in-plane direction.  

Similar to BTO//DSO thin film, we have made the strained BTO//STO and 

BTO//KTO. Figure I.4 shows the theta-2theta scan and the reciprocal space map 

of the best films grown so far.  

The strained BTO//STO film has a lattice constant of 4.175Å and a thickness of 

87 u.c. with RMS of 0.0015394. The RSM shows sample peak is largely strained, 

but a little diffusion is still visible, which is a sign of imperfection in lattice 

constant distribution. Given that the BTO sample and STO substrate has a huge 

2.5% compressive strain, and the sample layer has a thickness of 363Å, it might 

be approaching the critical thickness. Future works will be carried out to 

optimize the parameters and finding the critical thickness.  

The strained BTO//KTO film has a lattice constant of 4.041Å and a thickness of 

59 u.c.. The RMS is 0.005338. The RSM presents a purely strained sample peak. 
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Figure I.4 Left column shows the measured the simulated θ-2θ scan of 

BTO//STO, BTO//KTO, respectively. The right column presents the 

corresponding RSM. 

I.4 Problems 

There are still problems with the current BTO thin film growth. The two main 

problems are the bad reproducibility and rough sample surface.  

Of the films growing so far, the film has weak tendency when tweaking the 

parameters. In some cases, even with the same parameters, it produces films of 

different qualities. Figure I.5 shows the θ-2θ scan of two films grown with 

exactly the same parameters. The second film has visible sample fringes which 

are not seen in the first film. In addition, the out-of-plane lattice constants are 

also different. 

  

Figure I.5 Measured θ-2θ scan of two BTO//DSO films grown with the same 

parameters. 

We have been testing several assumptions, but still on our way to tackle the 

issue. The first thing coming in mind is the substrate cleaning issue. Some extra 
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cleaning steps have been taken, and we plan to use microscope on every 

substrate before growth to make sure the substrates have good surface. The 

second thing we are concerned are the temperature drifting of the sample 

chamber. We have been tweaking the temperature a lot and grow one film at a 

time instead of two. The third thing we think is there could be contamination on 

the target materials due to other sputtering process.  
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