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Abstract 

Archaeological object identifications have been traditionally undertaken through a 

comparative methodology where each artefact is identified through a subjective, 

interpretative act by a professional. Regarding palaeoenvironmental remains, this 

comparative methodology is given boundaries by using reference materials and codified 

sets of rules, but subjectivity is nevertheless present. The problem with this traditional 

archaeological methodology is that higher level of subjectivity in the identification of 

artefacts leads to inaccuracies, which then increases the potential for Type I and Type II 

errors in the testing of hypotheses. Reducing the subjectivity of archaeological 

identifications would improve the statistical power of archaeological analyses, which 

would subsequently lead to more impactful research. In this thesis, it is shown that the 

level of subjectivity in palaeoenvironmental research can be reduced by applying deep 

learning convolutional neural networks within an image recognition framework. The 

primary aim of the presented research is therefore to further the on-going paradigm 

shift in archaeology towards model-based object identifications, particularly within the 

realm of palaeoenvironmental remains. Although this thesis focuses on the 

identification of pollen grains and animal bones, with the latter being restricted to the 

astragalus of sheep and goats, there are wider implications for archaeology as these 

methods can easily be extended beyond pollen and animal remains. The previously 

published POLEN23E dataset is used as the pilot study of applying deep learning in pollen 

grain classification. In contrast, an image dataset of modern bones was compiled for the 

classification of sheep and goat astragali due to a complete lack of available bone image 

datasets and a double blind study with inexperienced and experienced 

zooarchaeologists was performed to have a benchmark to which image recognition 

models can be compared. In both classification tasks, the presented models outperform 

all previous formal modelling methods and only the best human analysts match the 

performance of the deep learning model in the sheep and goat astragalus separation 

task. Throughout the thesis, there is a specific focus on increasing trust in the models 

through the visualization of the models’ decision making and avenues of improvements 

to Grad-CAM are explored. This thesis makes an explicit case for the phasing out of the 

comparative methods in favour of a formal modelling framework within archaeology, 

especially in palaeoenvironmental object identification.   
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Impact statement 

The importance of this thesis is that it lays the groundwork for using image 

recognition in the identification of palaeoenvironmental remains in an archaeological 

context. Currently, effectively all archaeological objects are identified by human experts 

who relay their research and cultural biases onto the interpretations of the objects. This 

reliance on human analysts results in research with low replicability and high inaccuracy 

because subjectivity is so prominent. This thesis calls for an overhaul of archaeological 

scientists’ approaches towards the objects themselves and an explicit argument is made 

for the acceleration of the on-going paradigm shift towards using classification and 

identification models instead of relying on experts. In doing so, we can apply strict 

boundaries between classes of objects, decreasing subjectivity and the rate of 

misidentifications, which will then improve the statistical power of archaeological 

analyses. In zooarchaeology, the application of strict boundaries means the removal of 

ambiguous classes such as Ovis/Capra or Bos/Bison which are rather uninformative on 

their own. With more statistically powerful analyses comes more impactful research as 

archaeologists can make stronger claims about their assemblages. As the computational 

cost of applying deep learning models decreases and the available datasets increase in 

size, these models can be applied to larger samples than is currently possible with the 

limited time and funding available to researchers. Another benefit of using modelling 

approaches is that they allow for the external inspection of individual classifications, 

which is currently impossible, and thus makes archaeological research more replicable.  

Regarding the benefits outside of academia, it is foreseen that a shift to compiling 2D 

and 3D imaging datasets and the adoption of modelling approaches in the identification 

process would eventually lead to mobile phone software with the capability of 

identifying archaeological objects, which would undoubtedly be hugely popular among 

the general population. Such tools could be used to enhance museum visitors’ 

experiences as well as be used during walks in the countryside to gain further insights 

about the landscape. Mobile applications could also be used as teaching tools for 

volunteers and students. Furthermore, using identification software at commercial 

archaeological sites during the excavation would speed up the excavation-to-publication 

process as the post-excavation inspection of the material would be streamlined. This 

would have a knock-on effect for faster completion of construction projects that may 
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have a large impact on the quality of life for locals. Unfortunately these are not 

immediate impacts as there is a distinct lack of available imaging data, although suitable 

data is becoming increasingly available. 
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Chapter I. Introduction 

“For years we have been attempting to describe bone fragments and their 
surface modifications as numbers on a database, when in reality the problem 
has always been one of image. Zooarchaeologists will undoubtedly benefit 
as image analysis software becomes increasingly powerful and user-
friendly.”  

- Abe et al. (2002, p. 661) 

 Background 

In this thesis, archaeological research is considered to be the science of minimizing 

the information entropy of the noisy archaeological record to uncover the past peoples’ 

and cultures’ behavioural patterns. Taking this information viewpoint, the tasks of 

classifying and identifying archaeological objects are crucial for structuring the corpus 

of excavated materials into useful datasets. When the data is well-structured, further 

qualitative and quantitative analyses can be undertaken to produce the insights and 

interpretations that archaeologists truly care about. Classification of objects has been at 

the very core of archaeological research since the inception of the discipline and it 

specifically concerns the act of dividing “a collection of objects into disjoint and 

exhaustive classes … [and it] … needs to be rigorous, consistent, and replicable” (Read, 

2018, p. 1). On the other hand, the task of classifying a range of objects is separate from 

the act of identification, which is the default action in many fields, including 

zooarchaeology, ecology, and other evolutionary subjects. When performing 

identifications, the core idea is to place an unidentified object into a known group given 

its properties, such as when telling the species of a bone or pollen grain based on their 

morphology (Lyman, 2019). In other words, classification is the act of grouping or 

separating objects based on their properties, whereas identification is placing an object 

into a group given its properties. However, these definitions do not translate directly to 

definitions used in machine learning. In machine learning identifications are produced 

by prediction algorithms that tend to produce prediction probabilities for all classes in 

the training data, from which the top-k classes are selected as the final predictions. By 

selecting the top-1 prediction, the machine learning classifier produces the estimate of 

the class (e.g. species) with the highest probability given some input data (e.g. an image 

of a pollen grain) and this top-1 prediction can be considered to be equal to an 

identification in the sense used by archaeologists and taxonomists (See Fig. 1 in 
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Wäldchen and Mäder, 2018). However, to produce classifications in the archaeological 

sense of the term through machine learning, it is actually necessary to use clustering 

algorithms such as k-means clustering. Because of this difference in terminologies 

between machine learning and archaeology and taxonomy, the term ‘classification’ is 

used when discussing machine learning, the term ‘identification’ is used when referring 

to archaeological processes, and the term ‘archaeological classification’ is used when it 

is necessary to differentiate archaeological clustering from machine learning clustering, 

such as when typology is touched upon. 

Given that archaeological objects from a single site may number in their hundreds of 

thousands or in some special cases even millions, the majority of archaeological projects 

only process some small sample of the entire assemblage. There is also the very real lack 

of researchers with the required skills to conduct efficient, consistent, and accurate 

object identifications, at least in the UK (Aitchison et al., 2021). Considering that 

archaeologists may have to deal with a large number of sites, each with a potentially 

large number of objects, speed has become an important, but unaddressed factor in the 

identification of archaeological remains. Moreover, if the archaeological classification or 

identification of objects is inaccurate, the researcher risks making wrong conclusions by 

either finding causal relationships where there are none or not finding them where they 

should be. These misinformed or missed causal relationships may be compounded in 

meta-analyses if there is a systematic or observer-independent error in the 

archaeological classification methodology, although larger sample sizes are likely to help 

mitigate erroneous identifications when there are no systematic errors. Regardless of 

the presence of systematic errors, archaeological misclassification and misidentification 

will always at the very least add unnecessary and, to an extent, avoidable noise to 

analyses. Reducing noise in the data leads to statistically more powerful results, which 

would allow archaeologists to draw stronger conclusions. 

Consistency in applying methodologies is similarly important in archaeology since the 

replication aspect of the scientific protocol is reliant on it. By applying comparative 

methods of identification with the help of guides and reference materials, both inter- 

and intra-observer consistency are less robust since one simply has to change the 

reference materials or guides to make an analysis inconsistent. This may happen without 

the researcher ever realising it: a lost reference item or an old typological guide can be 
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replaced with a new one and different researchers may have access to different 

reference materials. Using different versions of the same reference guide may be 

enough to introduce some level of systematic errors, albeit that the effect may not be 

noticeable nor significant.  

Errors in identification may have many different origins, many of which have subjectivity 

as the common denominator. For instance, there may exist several guides with varying 

instructions to help researchers identify certain archaeological objects, leading to a 

confusion about which category an object should be put and what criteria this decision 

should be based on. In addition, the large amount of archaeological objects in the world 

means that many objects may have never been identified to an adequate level of 

certainty, either due to lack of reference samples, researchers’ personal abilities such as 

their level of expertise, lack of quality assessment and quality control, or the many 

different categories one can place a unique, unidentified object (Beck and Jones, 1989; 

Fisher, 2015).  

This uncertainty in the identification of archaeological objects is exacerbated by factors 

external to the analyst as well, including stagnation of development in morphological 

identification processes, which has resulted in the speed of archaeological 

identifications remaining near constant when other parts of the archaeological research 

process have become more efficient. In other words, the quantity of excavated material 

has increased exponentially over time, but as archaeologists still largely depend on 

human ability to identify archaeological objects given their morphological 

characteristics, the identification process remains one of the most time-consuming parts 

of archaeological research. Combine this with the lack of centralised knowledge base for 

the identifications and the lack of experts with access to adequate resources and the 

result is that many museums and warehouses are full of archaeological objects that have 

rarely if ever been studied. The objects in some collections may also be poorly 

documented and in some cases difficult to gain access to, either due to gatekeeping 

custodians of the materials, bureaucratic processes, lost items, or simply the geographic 

distance between the researcher and the specimens.  

Even if accepting the shortcomings in analyst performance as inevitable and considering 

them as something that can be mitigated through training, there still exists the problem 

of lack of time to conduct identification tasks. This lack of time leads to the possibility 
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that the materials may perish in storage through mould, vermin, war, or accidents like 

flooding or fires before they are studied, as in the recent case of Brazil’s Museu Nacional 

(Kury et al., 2018). Analysts themselves are not exempt from being sources of damage 

to objects, since manual data collection results in wear and tear of objects as clumsiness 

results in minute chips, grease from human fingers can react with the object’s surface, 

and DNA and other contaminants may be inadvertently introduced.  

Taking these various sources of challenges in archaeological research into account, it is 

comforting that researchers are able to find causal relationships and discern behavioural 

patterns of past peoples and cultures. Moving forward, it is imperative that automation 

is introduced to alleviate the pressured environment in which archaeological research is 

undertaken. By adopting automated processes in object identification – and assuming 

that it is done correctly – the identification process has the potential to become more 

fluid, more reliable, more affordable, faster, and easier to reproduce and evaluate by 

peers. The process of automation has to start from the collection of the data however, 

and this thesis makes the case in favour of digital image collection, which provides a 

good balance between speed, morphological accuracy, and required storage space. 

Apart from faster, more consistent, and more accurate identification, the benefit of 

photographing the objects for identification then includes the preservation of the object 

in a digital format as well as slightly lowered risk of damage from handling, especially if 

these digital versions become the primary source of data for subsequent studies. 

Automated identification approaches are likely to be more affordable than employing 

experts, as they enable processing more objects in less time, and experts’ input may be 

more effectively used elsewhere in the analytical process.  

In the following sections, the subjective nature of many areas of archaeological research 

are reviewed by collating evidence from blind studies. It is then turned to evaluate the 

psychological reasons of subjectivity in analysts conducting visual identification tasks. As 

this thesis is not meant as a research into policy, external factors affecting identification 

are not reviewed in any more detail than they already have been. The rest of this chapter 

includes the customary sections for the aims, objectives, research questions, and 

limitations of this thesis, as well as a chapter outline. 
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 Error and subjectivity in archaeology 

In addition to the seemingly eternal discussion about the metaphysical biases in the 

archaeological paradigms of processualism and post-processualism (e.g. Dunnell, 1978; 

Clark and Lindly, 2008), archaeological literature on the sources of error and bias usually 

place the blame on factors such as taphonomy (Surovell et al., 2009; Fernández-Jalvo et 

al., 2011; Shipman, 2015), site formation processes (Schiffer, 1983; Domínguez-Rodrigo 

et al., 2014), data retrieval methodology (Meadow, 1980; Orton, 2000), and 

measurement error (Fish, 1976, 1978; Lyman and VanPool, 2009). Human ability, 

however, has often been neglected in these discussions or their error rate is otherwise 

accepted as necessary, possibly because of the performance of the analyst being so 

central to archaeology. 

Over 50 years of archaeological blind studies has resulted in a corpus of literature 

demonstrating that archaeological analyses are subjective (i.e. reliant on and limited by 

the analysts’ research histories and abilities), at least when considering zooarchaeology 

(Blumenschine et al., 1996; Gobalet, 2001; Pickering et al., 2006; Lyman and VanPool, 

2009; Zeder and Lapham, 2010; Greenlee and Dunnell, 2010; Domínguez-Rodrigo, 2012; 

Atici et al., 2013; Lloveras et al., 2014; Welker et al., 2015b; Nims and Butler, 2017; Twiss 

et al., 2017; Giovas et al., 2017; Morin et al., 2017; Lau and Whitcher Kansa, 2018; Pilaar 

Birch et al., 2019; Prendergast et al., 2019), human osteology (Kouchi and Koizumi, 1985; 

Lovejoy et al., 1985b, 1985a; Adams and Byrd, 2002; Klales et al., 2012; Smith and Boaks, 

2014), lithic studies (Dibble and Bernard, 1980; Young and Bamforth, 1990; Lindgren, 

1998; Gnaden and Holdaway, 2000; Rugg and Mullane, 2001; Lyman and VanPool, 2009; 

Driscoll, 2011; Heilen and Altschul, 2013; Proffitt and de la Torre, 2014; Agam and 

Wilson, 2019; Fasser et al., 2019; Ruck et al., 2019), microwear and residue analyses 

(Keeley and Newcomer, 1977; Odell and Odell-Vereecken, 1980; Knutsson and Hope, 

1984; Unrath et al., 1986; Newcomer et al., 1986; Shea, 1987; Bamforth, 1988; Pritchard 

Parker and Torres, 1998; Hardy and Garufi, 1998; Wadley et al., 2004; Rots et al., 2006, 

2016; Lombard and Wadley, 2007; Hamon and Plisson, 2008; Monnier et al., 2012; Hayes 

et al., 2017), remote sensing (Mason, 1968; Hunt and Sadr, 2014), pottery identification 

(Fish, 1978; Swarthout and Dulaney, 1982; Whittaker et al., 1998; Heilen and Altschul, 

2013; Pawlowicz and Downum, 2021), phytolith research (Pearsall et al., 2003), 

mineralogy (Rawlins et al., 2006), and palynology (Pedersen and Moseholm, 1993; 
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Mander et al., 2014) – effectively covering all of the main constituents of the discipline 

involving comparative object identification and archaeological classification. This 

subjectivity problem in archaeology is not limited to the overall comparative 

identification of objects, but it also affects the identification of features within the 

materials in question, which then directly impacts how the analysts record the ratio (and 

interval), ordinal, and nominal data because the interpretation of the precise location of 

the features is left to the analysts (Fish, 1978; Kouchi and Koizumi, 1985; Gnaden and 

Holdaway, 2000; Adams and Byrd, 2002; Smith and Boaks, 2014). The rate at which blind 

studies have been conducted in the past two decades has intensified and it is now clear 

that most researchers should be aware of the limitations of comparative and subjective 

methods, specifically showing that archaeologists are not all equally equipped to 

undertake the task of identification and archaeological classification. This is most 

tangibly visible in that it is increasingly common to report inter- and/or intra-observer 

error estimates based on repeated measurements in publications (e.g. Zedda et al., 

2017; Pöllath et al., 2018). 

One example of archaeology where an entire analytical process can be affected by 

subjectivity is stone tool identification, starting with the sorting of the tools into raw 

material types. Agam and Wilson (2019) showed that more experienced analysts are 

more consistent in their grouping of flint objects into flint types, while Proffitt and de la 

Torre (2014) discovered that inter-observer variation introduced substantial errors 

when classifying stone tools into tool types even for tools made of raw materials like 

chert and basalt that make it relatively easy to discern the features on the tools. To 

demonstrate how misidentification can lead to wrong conclusions about human 

behaviour, one can turn to Ruck et al. (2019), who studied how analysts identify 

handedness in flintknappers by analysing various features of stone tools. In this study, 

the authors concluded that not only were the features on flakes unreliable predictors of 

handedness, but that the analysts were also inconsistent in their application of the 

criteria, despite two of the five analysts reportedly having 40 years of experience in lithic 

analysis. 

Similar problems have been reported in other sub-disciplines of archaeology as well, 

including bioarchaeology. For instance, Lloveras et al. (2014) found the degree of leporid 

bone surface modification by digestion to be hard to grade because of the associated 
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high inter-observer variation, with only 51% of the 245 designations by 25 participants 

being correct. In turn, Domínguez-Rodrigo et al. (2017) found that only four of the 14 

variables used in analysing cut marks on bones caused by flint flakes were valid, as 

measured by consensus between eleven taphonomists. While it has been argued that 

bone surface modifications such as carnivore teeth, hammerstone percussion, and 

metal knife cut marks are discernible from one another as 17 novices achieved 85.9% 

accuracy and two experts achieved 100% accuracy (Blumenschine et al., 1996), this 

study did not take the whole breadth of bone surface modifications into account nor did 

it look at cases where multiple surface modifications were in superposition. Inter- and 

intra-analyst errors have similarly been identified in the tasks of sexing and aging of 

human skeletal remains, experience being key to performance (Lovejoy et al., 1985b, 

1985a; Klales et al., 2012). Despite the variability in accuracies achieved with these 

sexing and aging techniques, they have nonetheless been accepted as valid and are 

widely applied, particularly those of Lovejoy et al. (1985b, 1985a). 

The task of identifying animal bones to species has been known to be subject to the 

same analyst errors as other sub-disciplines. These issues were first discussed in 

zooarchaeology by Driver (1992), who drew comparisons between zooarchaeological 

identification and artefact typology, but raised the important point that typological 

types are not related to each other, nor are they fixed but under constant revision, 

whereas the binomial nomenclature used in zooarchaeology relies on our ability to infer 

genetic relationships from bone morphology. Wolverton (2013, p. 383) furthers this 

argument by stating that taxonomic designations can be thought of as causal claims 

because morphological similarity between a studied sample and a reference sample is 

used to “infer that the evolutionary biology of that species or genus caused the 

morphological similarity, thus producing a valid identification”. Thus, while typologies 

are inherently subjective and entirely human constructs, bones are not and species are 

possible to infer from them quite reliably. Yet, it has been empirically demonstrated that 

different zooarchaeologists create different species assemblages from the same sample, 

as in the case of fish remains in a blind study conducted by Gobalet (2001). Moreover, 

in a study by Giovas et al. (2017), two analysts were given the species identifications of 

a fish bone assemblage and were asked to create environmental reconstructions and 

interpretations. The analysts produced two quantitatively incomparable analyses where 
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the differences in environmental reconstructions became less obvious only with 

decreased taxonomic and environmental specificity. 

Fish are not the only animals that have been subjected to zooarchaeological blind 

studies, as Zeder and Lapham (2010) explored the reliability of identification in sheep 

and goat postcranial remains through a blind test. The authors selected distal humerus, 

proximal and distal radius, distal tibia, distal metapodia, astragalus, calcaneus, and first 

and second phalanxes as the blind study’s bones of contention. The six analysts had 

varying levels of experience and attempted to identify the specimens to either sheep, 

goat, or the ambiguous sheep/goat category if they could not reliably identify it to either 

of the other two categories (Zeder and Lapham, 2010). The performance of the six 

analysts varied both in terms of the bone being identified as well as between analysts 

with some analysts being better at identifying goats than sheep and others better at 

identifying sheep, all the while the more experienced analysts performed better than 

the rest. Excluding the specimens identified as sheep/goat from the computations, the 

two experts managed a mean accuracy of 93.35%. In addition to sheep and goat 

postcranial remains, the reliability of identifying sheep and goat from their mandibles 

and mandibular teeth using morphological criteria has also been assessed, with 

complete mandibles more likely to be placed in the ambiguous sheep/goat category 

than if only some teeth were considered (Zeder and Pilaar, 2010). More recently, seven 

zooarchaeologists with at least MA/MSc level qualifications were asked to identify 

images of equid teeth to horses, hemiones, hydruntines or a general ‘equid’ category 

using a standard instruction sheet, but their level of agreement was found to be only 

‘fair’ according to Fleiss’ kappa test (Twiss et al., 2017). Blind studies concerning 

zooarchaeological materials – including those briefly dealt with here – are discussed 

further in Chapter V. 

1.2.1. Analyst experience 

Where data about analyst experience was taken into account, nearly all of the studies 

agreed that more experienced analysts are more consistent and/or more accurate in the 

task at hand (Swarthout and Dulaney, 1982; Kouchi and Koizumi, 1985; Newcomer et 

al., 1986; Blumenschine et al., 1996; Whittaker et al., 1998; Adams and Byrd, 2002; 

Pearsall et al., 2003; Zeder and Lapham, 2010; Driscoll, 2011; Domínguez-Rodrigo, 2012; 

Klales et al., 2012; Lloveras et al., 2014; Agam and Wilson, 2019), which underlines the 



9 
 

significance of practical training in archaeology. One exception is that of Morin et al. 

(2017), who state that of those participants who completed the task of tallying the 

Number of Identified Specimens and Minimum Number of Elements in their blind study, 

the most inexperienced analyst produced the lowest error rate, but spent longer than 

the others in conducting the experiment. Similarly, the least experienced analyst in 

Zeder and Lapham's (2010) blind study on the identification of sheep and goat bones 

had the lowest difference in error rates between the two classes, suggesting that they 

were applying the methodology more consistently than the others.  

In a study on analyst performance in palynology, Mander et al. (2014) – who grouped 

the analysts as novices, intermediates, experts, and professionals – note that two of the 

three most experienced analysts (professionals) performed worse than the analysts with 

intermediate experience and the third professional performed worse than the two 

experts. While this result suggests that experience is not relevant at the task of 

identifying pollen grains from scanning electron microscopy images, it may alternatively 

imply that years spent in the profession does not equate to expertise nor even 

experience, particularly if the analyst’s role has not included frequent pollen 

identification. Thus, experience and expertise should not be measured solely in years in 

the profession or level of education, but potentially also in tasks completed. This point 

was already argued by Gobalet (2001), in whose opinion the analysts’ experience 

(doctoral degrees and circa 50 years of collective professional experience between the 

four analysts) did not make their identifications of fish remains any more trustworthy 

than those with less experience and that more blind tests with samples from known 

species should be performed.  

Consistency and accuracy discrepancies between analysts of varying levels of experience 

is sometimes limited when applying metrics (Dibble and Bernard, 1980; Kouchi and 

Koizumi, 1985; Smith and Boaks, 2014), but this may be task dependent as Adams and 

Byrd (2002) found statistically significant differences between experience levels in 

taking various measurements of the human skeleton. Likewise, the analysts of different 

levels of experience were all able to accurately identify different types of marks on 

modern bones in Blumenschine et al.'s (1996) study, but these marks were very distinct 

and no differentiation of analyst ability by the type of bone surface modification was 

given. Interestingly, Blumenschine et al. (1996) mentions that those novices with higher 
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motivation to succeed in zooarchaeology (as measured by course performance) scored 

higher than the rest. In tasks where the error rate is high for all participants or the 

analyst agreement is low, such as when classifying quartz artefacts (Driscoll, 2011), 

identifying the attributes and variables related to refitting lithic (especially quartzite) 

materials (Proffitt and de la Torre, 2014) or identifying the handedness of the lithic 

knapper (Ruck et al., 2019, although see Rugg and Mullane, 2001), the gap between 

experience levels is similarly limited. Thus, experience does not tend to be of importance 

when the task is either easy or intrinsically very hard to solve consistently, and the 

analyst’s motivation may be of importance. It can further be argued that even if 

experienced practitioners were able to achieve above average accuracy and consistency 

in a task, it would not necessarily equate to their performance being adequate if the 

performance across all analysts is low. Thus, using the most experienced analysts’ 

performance as a baseline is not always warranted in agreement analyses and instead 

such studies should have a ground-truth category to which all analysts are compared.  

1.2.2. Hierarchies of error 

Driscoll's (2011) experiment involving quartz artefact identification is very interesting 

in that it shows that as quartz tools are described in more detail, the analyst error 

propagates through different levels of detail, making detailed analyses of quartz 

artefacts almost entirely science fiction with success rates lower than guessing regarding 

some features. Likewise, increasing level of detail is an issue in use-wear and residue 

analyses, with only the used surface being reasonably consistently identified (Monnier 

et al., 2012; Hayes et al., 2017), although Rots et al. (2016) report only about 50% 

accuracy even in this task.  

There are similar data hierarchies in zooarchaeological identification as well. For 

instance, sheep/goat identifications can be considered a correct identification at a 

higher hierarchical level than the species level sheep and goat identifications, and 

therefore it is the species level details that may be questioned, especially when the 

species identification is based on a small fragment of bone. Likewise, trying to separate 

the breeds within species would be an even lower level in this identification hierarchy 

and therefore represents a harder problem than species separation, particularly if done 

without adequate information on breeding and genetics. However, Driver (1992) argues 

that more experienced analysts are less likely to differentiate between two closely 
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related species, one example pair being sheep and goat, not because of lack of ability, 

but because more experienced analysts are more sensitive about their own level of 

confidence.  

1.2.3. Quality Assurance in zooarchaeology 

The general issue of inter- and intra-observer variation in identification accuracy as 

well as consistency has left zooarchaeology open to critique. In their opening remarks in 

the paper on data quality in zooarchaeological faunal identifications, Wolverton (2013, 

p. 381) called for “discipline-wide standards for zooarchaeological lab work” to counter 

such criticisms. They propose that this standardisation should take the form of quality 

assurance procedures including quality control and quality assessment. By quality 

control, it is meant that laboratories need to produce a pragmatic set of steps and rules 

to ensure good quality research, while quality assessment is the process of verifying that 

these steps are indeed adequate. Among their many arguments favouring quality 

assurance in zooarchaeology, Wolverton (2013) suggests using statistical tests and 

random sampling along with a second analyst to assess the primary analyst’s 

identifications. While this approach is logical, they do not make recommendations to 

mitigate the inter-observer variation and, in Wolverton's (2013) opinion, it is enough to 

acknowledge the analyst’s level of experience and accept that different levels of 

experience produce varying levels of detail in the identifications.  

Instead of accepting the variation in analysts’ abilities, additional proficiency testing 

within and across institutions could be used to control for inaccuracies and 

inconsistencies along with random sampling and statistics. Proficiency testing is part of 

quality assessment and, for instance, a normal part of aerobiological laboratories’ work 

(Sikoparija et al., 2017). Proficiency testing was omitted by Wolverton (2013), possibly 

because the problem with quality assessment approach is its reliance on testing and 

resampling which is time-consuming and logistically difficult, especially for 

archaeological assemblages. For instance, some bones may be far too large or fragile to 

be transferred between laboratories in a cost-effective and timely manner, and a lot of 

archaeologists have a temporal or a geographic specialism, meaning that there cannot 

be just one simple standardised test. Thus, archaeologists have historically opted to rely 

on knowledge sharing, where huge amount of effort is expended to describe objects in 

detail and to offer ‘standards’, with a distinct emphasis on trusting that fellow 



12 
 

researchers are able to adequately make use of such descriptions. No such trust is 

warranted, as shown above, yet only a few recent studies (Nims and Butler, 2017; Lau 

and Whitcher Kansa, 2018) have employed more than one analyst in the analysis of 

zooarchaeological assemblages in order to follow the quality assurance guidelines 

suggested by Wolverton (2013). The studies by Nims and Butler (2017) and Lau and 

Whitcher Kansa (2018) act as yet more case studies demonstrating inter-analyst 

variation in archaeology. Furthermore, Fisher's (2015) reanalysis of the 

zooarchaeological assemblage of the Coldwater site in south-eastern California 

demonstrates an important example of when a regional synthesis can make flawed 

conclusions based on the influence of a single site. Fisher (2015) shows that Hildebrandt 

and McGuire's (2002) arguments are affected by the method of reporting the number 

of identified specimens for artiodactyls, which was inconsistent with the other sites from 

the region. Fisher (2015) then argues that zooarchaeological analyses cannot always be 

taken at face value due to such inconsistencies. Moreover, explicit tests of standards, 

guides, reference materials and the like are also almost entirely lacking, beyond the 

initial publication of such comparative methodologies. 

Although quality assurance seems like a reasonable approach to mitigate the errors 

arising from using comparative methods, they cannot completely remove subjectivity 

from zooarchaeological analyses for as long as species identification relies entirely on 

human analysts. In other words, as long as the measuring device is inaccurate and 

inconsistent, the measurement will reflect that. In fact, requiring multiple analysts to 

undertake the same study has the effect of using more resources whilst providing an 

average estimate of the assemblage’s species distribution. While this is a standard 

practice for machine learning algorithms and even leads to state-of-the-art results, 

human analyst resources would be best used in an analytical rather than an 

identification capacity. Although there exist such techniques as ZooMS and aDNA to 

identify species from even tiny bone fragments, these methods are also unfortunately 

destructive and require a certain level of preservation, especially of collagen. 

Furthermore, there are no lab-based tests one can make to definitely say that cultural 

objects belong to a typological group. Pollen grain identification is an interesting edge 

case in that their morphology is related to the species, but there are no reliable 

identification techniques beyond visual, morphological assessment, although DNA has 

been used in a limited number of studies (Keller et al., 2015; Bell et al., 2016). Therefore, 
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the alternative put forward in this thesis is that of image recognition methodology, 

which has the potential to solve many of the core issues mentioned. 

 Cognitive sources of error in analysts 

The above sections suggest that there are cognitive differences in analysts’ abilities 

to connect complex object shapes to a collectively defined concept such as the concept 

of a species, and that there are objects which are universally difficult for analysts to 

identify, such as the faunal remains of sheep and goats. As previous sections show, 

archaeologists are increasingly aware of this inter- and intra-analyst variation. However, 

the best solution offered to remove subjectivity from archaeological analyses thus far 

has been to either develop destructive and time-consuming laboratory-based 

techniques such as ZooMS, aDNA, and geometric morphometrics or employ more 

experts and thus make the identification process even less cost-effective. Yet, employing 

more experts does not remove the subjectivity inherent in the identification process, 

since the process still depends on human sensory experience. To gauge why 

identifications based on human sensory experience are consistently found lacking in 

consistency and accuracy, it is important to explore the cognitive causes of variation. In 

their study of human analyst accuracy and consistency in the task of pollen 

identification, Mander et al. (2014) pointed out that memory, fatigue and boredom, 

recency effect, and expectation bias all have an impact on human analyst performance. 

In the following paragraphs, these aspects of human sensory experience are looked at 

in relation to human identification tasks. 

1.3.1. Memory 

Miller (1956) defined memory as the psychological phenomenon of information 

storage. The literature on this subject area is vast, complex and entirely outside of the 

expertise of the present author and the following discussion is likely to lack nuance. 

However, some broad outlines of its impact on the human analyst can be made. This 

brief overview focuses on visual memory because archaeological identifications and 

classifications are based on visual abduction (Shelley, 1996), which is a form of reasoning 

that consists of the visual recognition of the significance, the shape, and the structure 

of the objects, as well as explaining the objects’ functionality through analogical 

inference. 
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The debate on the limits of human visual working memory is multifaceted and estimates 

of its capacity have changed over time. However, the consensus seems to be that the 

short-term capacity of human visual working memory varies between individuals from 

one and half to six objects, with an average individual holding three to four objects in 

memory simultaneously even when these objects vary in features like colour and 

orientation (Cowan, 2000; Vogel et al., 2001; Vogel and Machizawa, 2004; Vogel and 

Awh, 2008; Luck and Vogel, 2013). Visual working memory is considered to be 

constructive in the sense that humans take advantage of ensemble statistics of a scene 

by combining various levels of abstractions (e.g. colour and size) into categories of 

objects (Brady and Alvarez, 2011). As more objects are added to the visual scene, the 

performance of human visual working memory declines. In contrast to the item-limited 

model in which discrimination performance between visual objects begins to degrade 

only once some threshold of objects has been exceeded, Bays and Husain (2008) found 

evidence in favour of a process where the visual working memory has a limited capacity 

and declines proportionally to the number of objects in the visual scene. However, this 

is a contentious issue and arguments against Bays and Husain's (2008) work were 

presented by Cowan and Rouder (2009) and further countered by Bays and Husain 

(2009). 

Regarding long term memory, humans have been shown to be able to remember a large 

number of pictures by Standing (1973), who first showed five participants 10,000 images 

over a five day period (2,000 images a day) and then asked them to recognise the 

pictures. Although the recognition test was done immediately after the fifth learning 

session, the experiment resulted in a mean error of 27.2% and an estimated retention 

of 6,600 images. Since Standing (1973) also conducted a study with only 4,000 images, 

but the recognition test was done 1.5 days after the last learning session and therefore 

limiting the biasing factor of the most recent images being memorised on the same day 

as the recognition test was taken, this smaller study may provide a better approximation 

of human long term memory. In this case, the participant mean error rate was 30.2% 

and an estimated retention was 2,490 images. Furthermore, Konkle et al. (2010) found 

that long-term memory performs more poorly if a category of objects contains a varied 

set of samples, resulting in a drop of 6 percentage points from 89% recognition accuracy 

when each category was represented by a single example to 83% accuracy when there 

were 16 different examples in each category. This finding corroborates the argument 
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that human analysts relying on their vision in identification tasks would be more easily 

confused if they were presented with similar but separate categories whose populations 

are highly varied. One such example is the population variances of sheep and goat 

bones. 

The mechanisms behind memory loss have been similarly debated over several decades. 

Some have attributed memory loss to decay, in which information retained in the brain 

‘disintegrates’ if the neural connections are not maintained (Brown, 1958), or to 

interference, where various objects held in memory ‘collide’ or get ‘tangled’ by 

interfering with each other (Keppel and Underwood, 1962). The interference has been 

claimed as the cause for over-writing of earlier memories for instance (Keppel and 

Underwood, 1962). More recently, it has been suggested that decay and interference 

both have a role in memory loss (Altmann and Gray, 2002). Finally, false memories are 

relatively common and people may mistakenly believe that some imagined event has 

taken place (Gonsalves and Paller, 2000). 

From this brief overview, it is evident that both short-term and long-term memory have 

a large part to play in an analyst’s object identification performance, since they both 

vary between individuals. Thus, it is reasonable to say that not all experts are equally 

equipped to perform a given identification task. However, the gap that exists between 

individuals can be shortened by practice, as it has been demonstrated that rehearsing 

and testing improve memory performance (Whitten II and Bjork, 1977).  

1.3.2. Recency effect and expectation bias 

Recency effect is the phenomenon in which more recently processed objects are 

more likely to be recalled (Körner and Gilchrist, 2007). With regards to recency effect, it 

is a particularly pertinent phenomenon for expert identifiers whose materials change 

continuously or who do not have access to a comprehensive reference collection. The 

identification of species from animal bones is a perfect example because most 

universities, museums and other institutions do not hold reference specimens of all 

species nor do all reference collections hold specimens of the same species. The species 

that are in the collections are usually not all represented by several individuals and each 

reference collection holds specimens from different individuals, leading to a 

morphological variation between the reference collections that researchers use in 

different institutions. The reliance on reference collections is complicated by the fact 
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that animal bones change throughout the individual’s life. Moreover, bone morphology 

is impacted by the individual’s sex, available nutrition, the physical attributes of the local 

environment, domestication processes, and pathologies. Therefore, an analyst is likely 

to be biased towards identifying the species that they are more familiar with and have 

seen most recently, especially if they do not have the experience or the required 

reference materials to make an adequate comparison. 

Recency effect is related to expectation bias, which occurs when an individual has some 

expectation about the outcome of an event. As an example of expectation bias, 

zooarchaeologists often know the culture, time, and geographic area from which the 

assemblage derives from, so they have an expectation of what species they may 

encounter. This expectation makes it harder for the analyst to identify unexpected 

bones, a point already made by Driver (1992). 

1.3.3. Fatigue and boredom 

Fatigue and boredom are physical states often encountered by anyone who partakes 

in repetitive tasks. Tasks that demand high cognitive presence lead to fatigue which 

results in decreased attention (Boksem et al., 2005; Helton and Russell, 2011), while 

cognitive under-load causes boredom, which exhibits itself as the failure to engage with 

a task that is too simple (Danckert and Merrifield, 2018). Regarding expert analysts who 

have trained for years to be efficient and accurate identifiers in their specialist subjects, 

boredom is less likely to be a factor. Instead, fatigue is often present in archaeological 

classification and identification tasks due to the required level of focus and it may be the 

more common reason for misidentifications in archaeology. 

 Aims 

The main aim of this thesis is to further a paradigm shift in palaeoenvironmental 

archaeology so that identifications are eventually dealt with by computational processes 

and models rather than human analysts in order to have more consistent and more 

readily reproducible results. One should take the body of work presented in this thesis 

as an assessment of the capabilities of automated identification of palaeoenvironmental 

remains, wherein the variance of the species’ morphologies is contained in the 

mathematical and computational structures of deep learning convolutional neural 

networks instead of in reference collections or guides. This thesis therefore aims to 
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demonstrate that deep learning models extend the comparative methodologies used by 

human experts rather than abstracts the process, since the frame of reference used by 

deep learning models are the variances for each class in the training data, which is 

similar to the process human analysts go through when producing archaeological 

identifications, as archaeologists have traditionally tended to rely on a combination of a 

small set of reference samples, descriptions that may oversimplify the morphological 

variance, and their learnt knowledge of morphological variation. Thus, deep learning 

models can help with formalising the archaeological identification process. Although this 

paradigm shift and deep learning in general cannot fully remove errors and biases, at 

least the accuracy and confidence are known, the models can be applied consistently, 

and the errors can be estimated. Likewise, class biases can be estimated and taken into 

account to a large extent. This overarching aim can be achieved by showing that applying 

deep learning convolutional neural networks in the identification of 

palaeoenvironmentally relevant biological remains is achievable and results in highly 

accurate and trustworthy models.  

 Objectives 

To accomplish the main aim of furthering a paradigm shift in the identification of 

palaeoenvironmental objects, the resulting models need to solve the difficult problem 

of identifying palaeoenvironmental remains at least as well as humans and it needs to 

be done in a way that instils trust. Thus, the main objective of this project is to test the 

ability of deep learning convolutional neural networks to differentiate between similar 

and archaeologically interesting categories, namely various pollen grains and sheep and 

goat astragali. Although automated pollen identification with deep learning and 

convolutional neural networks has been done previously (Khanzhina et al., 2018, 2022; 

Sevillano and Aznarte, 2018; de Geus et al., 2019; Sevillano et al., 2020), these studies 

have not attempted to verify the regions of focus for their models. Identifying the 

species from bones has only been done previously by Miele et al. (2020), but this study 

applied deep learning to rodent teeth, which the authors themselves demonstrated as 

easy to differentiate using geometric morphometrics. 

In the first instance, a pollen image dataset is identified and used to train several CNN 

algorithms, with the aim of achieving state-of-the-art results for that dataset. The pollen 

case study was chosen as a pilot study due to the absence of available archaeologically 
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relevant image datasets where the labels are not derived from modern cultural 

assignments or typologies, meaning that the labels of the pollen dataset are ground-

truth labels which are not likely to be subject to changes at a later date. Furthermore, 

there are existing publications on the chosen pollen dataset, which creates a context for 

the present research. Using the pollen dataset, several deep learning models were 

trained and the output was evaluated both quantitatively and qualitatively. Taking into 

account the lessons learnt from this pollen identification chapter, the methodology was 

then applied to a zooarchaeological problem and further improved upon. 

As there are no available image datasets that focus solely on osseous remains, a suitable 

bone image dataset must first be collected. The species included in the dataset should 

be those that are relatively widespread and well-studied and the element should be one 

that is well-preserved in the archaeological record. For this reason, sheep and goat 

astragali have been selected as the subjects of the data collection. A series of deep 

learning models were then trained and evaluated both quantitatively and qualitatively. 

To support the conclusions drawn from this study, a baseline of human analyst 

performance was established for the bone image dataset through an online blind study. 

This blind study allowed the direct comparison of human and CNN model performances 

both in terms of the locations of interest in the images as well as various performance 

metrics.  

 Research questions 

Considering the aim of furthering a paradigm shift in the identification of 

palaeoenvironmental objects by showing that computational models can achieve a level 

of performance similar or better than human analysts, it is necessary to deconstruct the 

research into specific hypotheses. These hypotheses are to be answered in Chapter VI 

with reference to the findings of the core chapters (Chapter III - Chapter V) of this thesis. 

It is first of all hypothesised that by applying state-of-the-art deep learning methods (e.g. 

ensemble modelling, early stopping, and different hyperparameter search techniques) 

and creating models using a variety of neural network architectures, it is possible to find 

models capable of classifying pollen grains and animal bones from images at least as 

well as expert humans. As deep learning has previously been applied in pollen grain 

classification, it is hypothesised that the explored state-of-the-art methods and 

architectures result in more accurate models than those in previously published studies. 
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As there are no previous studies – aside from Miele et al. (2020) – that have explored 

animal bone classification using deep learning, it is hypothesised that finding a model to 

classify sheep and goat astragali from images is possible and that it can achieve expert 

human performance in this task. Since recent studies applying deep learning in 

archaeological problems have often omitted verifying that their models make the right 

decisions for the right reasons, it is further hypothesised that the models’ regions of 

focus resulting from saliency mapping methods follow human expectations and that the 

features most relevant to the CNN models would be identifiable from the visualizations. 

This hypothesis is approached from a qualitative standpoint and the advantages and 

limitations of visualization of deep learning model decision-making are discussed in 

Chapter VI. Finally, although not a hypothesis, this study also makes practical 

suggestions to improve future archaeological deep learning applications. 

 Significance 

In addition to this thesis being the first study to attempt classifying images of sheep 

and goat bones to species using deep learning convolutional neural networks, the 

significance of this work goes beyond the topics of identification of pollen and animal 

bones as it makes an explicit argument as to why deep learning should be more widely 

adopted in archaeological identification. The arguments in this thesis are in line with 

those of Huggett (2022, p.286), who goes even further by stating that archaeologists 

cannot “claim that specific aspects of the archaeological taskscape are in some way un-

computable or un-automatable because experience suggests that this again is primarily 

a question of time: for example, the kinds of robotic devices used in archaeology today 

would have been seen as science fiction some forty years ago.” Should the thesis be 

successful in its argumentation and applications of image recognition algorithms 

become more widely accepted in archaeological practice, the resulting paradigm shift 

has the potential for a lasting impact on archaeology. It is not claimed that this thesis is 

the start of the paradigm shift – rather it fits in with the already existing modelling 

paradigm – which has thus far mainly concerned archaeological remote sensing (see 

section 2.8) – by extending it to the identification of palaeoenvironmental remains. 
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 Limitations 

The main limitation of the presented work is that the training data input to the 

developed models are from modern specimens. However, ground-truth labels for 

archaeological samples are difficult and expensive to obtain as one would have to apply 

additional methods such as ZooMS or aDNA to do so. Furthermore, such methods are 

not widely available for pollen as pollen identification relies on comparative visual 

methods, although DNA barcoding is possible, but not widely performed (Keller et al., 

2015; Bell et al., 2016). Because it is well known that bioarchaeological remains are 

subject to various taphonomic issues and that the past animal species may be more 

varied physiologically than their modern equivalents, this study excludes some sources 

of morphological variation. For instance, any pathologies in osseous remains can be a 

severe hindrance for image recognition algorithms as choosing which pathological 

bones to include in the training set could be difficult considering their often unique 

appearance. Similarly, applying an image recognition algorithm trained with complete 

objects is likely to fail when applied to fragmented remains. Thus, such cases have to be 

treated with caution, but are not engaged with in this thesis, apart from brief occlusion 

and ablation studies presented in Appendix 11 and Appendix 13, respectively.  

The presented study cannot cover all possible pollen grain types or animals and their 

elements, but instead focuses on a few selected datasets. The requirement for physically 

visiting institutions to photograph the specimens to create an archaeologically relevant 

bone image dataset sets limits to how many species and elements can be included. As 

no pollen image data is collected in the course of this thesis, the datasets available at 

the beginning of the project set limits on which pollen grain types are included. The 

pollen image dataset is not a subject of a blind study because it is treated as a pilot study 

aiming to develop and benchmark the deep learning methodology. The pollen dataset 

has been used in a previous blind study where the analysts were complete novices 

(Gonçalves et al., 2016). However, when comparing machine learning algorithms to 

humans in problems where the human analysts possess in depth domain knowledge, an 

ideal blind study should include mainly experts rather than novices. The blind study 

presented in Chapter V was designed to do just that. Yet, the blind study on sheep and 

goat astragali is also limited in that the participants are anonymous and follow-up 

studies are therefore not possible, all participants were shown only a sample of all of 
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the astragali, and the study was executed online on images rather than in person using 

real bones. 

 Chapter outline 

This chapter has outlined the basic premise for the present study – it has been shown 

that subjectivity is a uniquely unaddressed issue in archaeology that has been widely 

accepted and tolerated, and for which no practical and object-type agnostic solutions 

have thus far been proposed. Subjectivity is readily identifiable from the many 

archaeological blind studies which reveal that analysts’ performances vary widely 

depending on the task at hand. There are both internal and external reasons as to why 

subjectivity is so prevalent in archaeology, namely innate cognitive differences and 

environmental factors such as the available reference guides and materials. Thus, 

archaeology requires a standardised automated method for object identification and 

classification. As deep learning research has taken great strides in the past decade in this 

domain, it is an obvious starting point. The basics of deep learning convolutional neural 

networks and the application of deep learning in archaeology are explored in Chapter II, 

with a separate section on trust in deep learning models. While the second chapter 

cannot possibly cover the whole subject of deep learning, it is hoped that it will at least 

provide the reader with the underlying knowledge to follow the rest of the thesis.  

In Chapter III, results of a pilot study on utilising deep learning convolutional neural 

networks in palynology are presented. In this chapter, the past attempts of automated 

palynology are discussed. It is then shown how using modern deep learning can improve 

the pollen identification tasks and how visualization of the deep learning model’s 

classification decisions is integral to one’s trust in these models. In Chapter IV, this same 

methodology is applied to the problem of separating sheep and goat astragali, with 

some key changes to the methodology. For instance, the sheep and goat astragali 

differentiation problem is approached from a multi-view stance where all parts of a 

bone are seen by the model at once. Sheep and goats are commonly known to be 

difficult to separate through comparative methodologies, so this problem should prove 

to be a difficult test for deep learning. The Chapter IV is accompanied by a set of auxiliary 

post-hoc tests that are presented in Appendix 9 - Appendix 13. These tests were 

necessary to explore the performance issues in the Grad-CAM technique used to 

visualize the deep learning model’s decision making and show the model’s robustness 
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to perturbations and missing data. Although important, these tests had to be presented 

as appendices due to the lack of space.  

To provide a benchmark to which to compare the deep learning algorithms’ 

performances, the bone image data was presented to zooarchaeologists in a double 

blind study. This blind study is presented in Chapter V, with extensive statistical analyses 

showing how the participants’ choice of reference materials and experience have an 

impact on their performance. With this in mind, the abilities of human analyst and deep 

learning model are compared both quantitatively and qualitatively. The blind study also 

provides evidence in favour of substituting the ambiguous sheep/goat categories with 

self-reported confidence scores. The discussion and future directions are presented in 

Chapter VI, where all of the research questions from section 1.6 are answered with 

respect to the findings of the thesis.  
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Chapter II. Literature review: deep convolutional 
neural networks, trust, and machine 
learning in archaeology 

 Introduction 

In recent years, machine learning has seen a multitude of use cases with the number 

of different applications increasing consistently. From self-driving cars (Bojarski et al., 

2016) and the inevitable future of deep fake news (Blitz, 2018) to archaeological 

applications, such as human stature estimation from long bones (Czibula et al., 2016) 

and predicting and detecting archaeological site locations (Oonk and Spijker, 2015; 

Caspari and Crespo, 2019), the uses of machine learning seem endless – as long as there 

is data. In a modern deep learning Artificial Intelligence ecosystem, it is this need for 

data that is imperative.  

For the uninitiated, the terms machine learning and AI system may seem synonymous – 

in truth, it would be better to consider machine learning a subset of AI. The term 

machine learning alone may seem ominous and mysterious, but fortunately it is much 

more approachable than many realise. In a seminal paper that has been dubbed as the 

beginning of machine learning, Samuel (1959, p.211) implicitly defined machine learning 

as a system behaving “in a way which, if done by human beings or animals, would be 

described as involving the process of learning.” In turn, Goodfellow et al. (2016) defined 

the AI systems’ capability to infer their own knowledge from patterns extracted from 

raw data as machine learning. While both definitions are descriptive of what is meant 

by machine learning, it may be helpful to think of machine learning as a piece of software 

to gain a better understanding of how it works. Taking this view as a starting point, 

Mitchell (1997, p.2) narrows machine learning from a system-wide concept to an 

algorithm-level by stating that a “computer program is said to learn from experience E 

with respect to some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E.” Following these three 

definitions, it can be said that an algorithm is a machine learning algorithm if, and only 

if, data are being input into an algorithm that then actively modifies some of its own 

parameters and that these modifications improve the performance of the algorithm in 

the long term, as measured by some metric such as prediction accuracy.  
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In general, the aim of applying machine learning algorithms is to discover and exploit 

patterns in data in order to optimize a function that can best resolve the problem at 

hand (Jordan and Mitchell, 2015). These algorithms come in a few different types: 

unsupervised, supervised, semi-supervised, and reinforcement learning. The differences 

between the types are not trivial, as each of them is used to solve different problems 

with the format of input and output data being potentially different (Goodfellow et al., 

2016). For instance, supervised learning is typically the best choice for problems with 

labelled data such as classification tasks, unsupervised learning performs well in tasks 

requiring the grouping of data, semi-supervised learning is often used to create labels 

for an unlabelled portion of data from the labelled portion, and reinforcement learning 

allows the creation of policies from the interaction of agents and their environment.  

Supervised learning requires data such as image pixel data or text to be labelled before 

training the model, which helps the algorithm to become better at generalizing a 

predicted outcome for data outside of the training set. This prior knowledge of labels is 

particularly relevant for tasks where images, or components therein, need to be 

categorized. The research presented in this thesis falls under supervised learning tasks. 

As for unsupervised learning, no pre-training labelling of data will occur and unlike in 

supervised learning, the outputs may not make sense immediately as the user must 

decide whether the results are comprehensible (Alom et al., 2018). For instance, k-

means clustering and Principal Components Analysis – both commonly used techniques 

in archaeology – are examples of unsupervised learning algorithms that learn a 

representation of the original input by reducing it to a lower dimensionality (Goodfellow 

et al., 2016; Papageorgiou, 2018; VanDerwarker and Marcoux, 2018). Yet, a human must 

interpret the lower dimensional output from unsupervised learning techniques for the 

result to be meaningful. Semi-supervised learning on the other hand is a technique 

where some of the input data are provided labels and others are not, and the labels are 

learnt for those input data that are unlabelled, which will in turn expand the original 

dataset and the process can be run until the classification results and/or newly assigned 

labels are satisfactory (Klassen et al., 2018). In reinforcement learning, the algorithm 

may have been given either completely or partially pre-labelled data similar to 

supervised learning (Alom et al., 2018). However, unlike supervised and semi-supervised 

learning, reinforcement learning algorithms work in an environment by comparing its 

present state’s performance to its performance in a past state without human 
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intervention, linking its previous state to its current one and deciding how the inputs in 

the next iteration will be modified (Schmidhuber, 2015). In other words, reinforcement 

learning adapts its behaviour through trial and error by reacting to a reward signal 

received from its environment (Schmidhuber, 2015; Goodfellow et al., 2016; Alom et al., 

2018). Reinforcement learning and agent-based modelling can both be used to optimize 

agent’s behaviour in complex environments (Dayan and Niv, 2008; Osoba et al., 2020; 

Romanowska et al., 2021). Reinforcement learning can therefore be used in place of 

traditional agent-based models in archaeology, the benefit of which is that it is not 

necessary to hard-code the agent’s behaviour as it learns its behaviours from the 

environment and applying reinforcement learning has the potential to minimize the 

influence of the researcher’s pre-conceived ideas about the behaviour of these agents 

(Dayan and Niv, 2008). 

This thesis focuses on using supervised deep convolutional neural network algorithms 

in classification tasks. While there are many other machine learning algorithms that are 

appropriate for classification, such as support vector machines (Pisner and Schnyer, 

2019), linear and logistic regression (LaValley, 2008; Hope, 2020; Marquand and Kia, 

2020), naïve Bayes (Frank et al., 2000), linear discriminant analysis (Riffenburgh, 1957), 

decision trees (Kingsford and Salzberg, 2008; Kotsiantis, 2013), and k-nearest 

neighbours (Laaksonen and Oja, 1996), recent algorithms based on convolutional neural 

networks have dominated computer vision benchmarking such as the ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) since 2012 due to their powerful and 

efficient feature extraction capabilities in multi-dimensional space (Deng et al., 2009; 

Russakovsky et al., 2015; Sze et al., 2017). In the classic ILSVRC benchmarking, the 

performance is measured by three different error rates on the model’s ability to classify 

images belonging to 1,000 different classes: top-5, top-1, and hierarchical (Russakovsky 

et al., 2015). Top-5 error rate refers to the rate at which the classifier correctly identifies 

the object in the image in its five best answers, while top-1 error rate is the rate at which 

the correct object is the first answer (Russakovsky et al., 2015). The intuition behind the 

hierarchical error rate is that mistaking the identities of two very similar objects, such as 

two breeds of dogs, is more permissible than confusing a cat for a dog (Russakovsky et 

al., 2015). Top-1 error rate (i.e. accuracy) is used throughout this thesis as the primary 

measure of success alongside other measures due to its unambiguous interpretation. 
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Supervised deep convolutional neural networks have been enormously successful in the 

ILSVRC, with improvements in top-5 error rates reported at regular intervals: AlexNet 

reached 16.4% in 2012 (Krizhevsky et al., 2012); Clarifia 14.8% in 2013 (Zeiler and Fergus, 

2014); VGG-16 managed 6.8% in 2014 (Simonyan and Zisserman, 2015); and GoogLeNet-

19 achieved 6.67% also in 2014 (Szegedy et al., 2015a). In 2015, an ensemble of ResNet 

networks reached an error rate of 3.57%, which is lower than the 5% error rate for 

humans for the ImageNet dataset (He et al., 2015; Russakovsky et al., 2015). Currently, 

the model with the lowest top-5 error rate for this benchmark is Florence-CoSwin-H, 

which reached an accuracy of 99.02% through the combination of Transformers (a type 

of deep learning model that consumes sequential data) and convolutional neural 

networks (Yuan et al., 2021). Florence is defined as a foundation model for computer 

vision, meaning that it generalizes well to many different tasks within the domain of 

computer vision, including classification, object detection, image-text retrieval and 

other tasks (Yuan et al., 2021). Combining convolutional neural networks with 

Transformers has seen further improvements recently, with even the ILSVRC top-1 error 

rate for CoAtNet-7 being 14% without extra training data and as low as 9.12% with extra 

training data (Dai et al., 2021). However, pre-trained versions of these state-of-the-art 

models are not widely available for repurposing and, for instance, re-creating the 

Florence-CoSwin-H model is prohibitive due to the training time being excessive at 10 

days of training on 512 Nvidia A-100 GPUs (Yuan et al., 2021). Such resources are not 

available for the present research and therefore the models trained in the following 

chapters are limited to models pre-trained on the ImageNet dataset and released as part 

of the TensorFlow and Keras frameworks (Chollet, 2015; Abadi et al., 2016b, 2016a). 

These models are used in a transfer learning setting, where the parameters of the pre-

trained models and the final classifying layer are adjusted to match the requirements of 

the presented problems. 

Supervised deep convolutional neural networks are therefore the logical starting point 

for the present thesis, as the aim is to train models capable of classifying 

palaeoenvironmental remains from photographs. This chapter is not meant as an 

exhaustive literature review on the concepts of machine learning and the various 

different neural network structures such as Bayesian neural networks. Moreover, formal 

mathematical definitions of models and approaches are avoided where possible to keep 

the text as beginner-friendly as possible. The focus here is solely on deep learning 
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convolutional neural networks, regularization techniques, trust, and recent machine 

learning applications in archaeology. The concepts chosen to be included in this chapter 

are those that are either the most relevant to the thesis or very common in machine 

learning literature. For instance, the convolutional neural network architectures 

discussed in section 2.6 are those that are also used in Chapter III and Chapter IV, 

whereas techniques like dropout, parameter pruning, parameter norm penalties and 

some of the ensemble methods are not used, but are included as they are important 

and commonly used. The purpose of this chapter is therefore mainly to provide an 

introduction to the methods used in the thesis, but also to show that there are many 

other techniques that future archaeological projects can and should consider as part of 

the model building exercise. 

  A gentle introduction to neural networks 

While the concept of computational neural network was inspired by biological neural 

networks, some consider it a misconception to think that computational neural 

networks resemble biological neural networks or even act as simple models of the brain 

(Chollet, 2018). However, others like Hasson et al. (2020) have recently come to consider 

biological neural networks and artificial neural networks (ANNs) as belonging to the 

same family of over-parameterized direct fit models (see section 2.4). In general, neural 

networks are layered representations of data, with each consecutive layer revealing 

something intrinsic about the data in more detail and consequently making the original 

data more abstract to humans the deeper in the network one looks (Chollet, 2018). Thus, 

neural networks are often considered by non-experts to be black boxes regarding the 

interpretation of their resulting models. The term ‘black box’ is a misnomer because it 

implies that their working is entirely unknowable, whereas these models can be 

understood if one is familiar with machine learning terminology, model architectures, 

and has access to the source code and the weights (Elton, 2020), although these 

prerequisites may be asking too much from the end-user of a model.  

Neural network algorithms are often represented as computational graphs, which make 

it easier to convey information about the operation and architecture of a neural network 

than using formulas alone. In graph theory, each operation is a node or vertex, each edge 

(signified by an arrow or a line from one node to another) is the output from the last 

node applied to the next, and the algorithm as a whole is a graph (Xu and Bao, 2002; 
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Sporns, 2003; Scarselli et al., 2009). In the context of neural networks, a node is called a 

neuron and the values exchanged between layers of neurons are represented as scalars, 

vectors, matrices, or tensors depending on the complexity of the neural network and 

the data it is modelling. Typically, a ‘deep’ neural network is one which consists of an 

input, output, and any number of hidden layers that exist between the input and output 

layers (Figure II-1), and where a layer consists of one or more neurons. In layer-based 

neural networks, each layer is formed of conceptually parallel neurons and each neuron 

in a layer is connected to either all or some of the neurons in the layers before and after 

by edges. As the neurons in the first layer receive an input and become activated, each 

of the input neurons propagate the signal forward to all of the neurons in the next layer, 

which repeat this process of signal reception, activation, and firing until the final layer is 

reached (Schmidhuber, 2015; Sze et al., 2017).  

Another way to think about neural networks is as nested or sequential functions, where 

each neuron consists of two functions: pre-activation and activation. In the pre-

activation function the incoming signals from all of the neurons in the previous layer are 

assigned weights and a bias, the total of which is added together. The output of this pre-

activation function is then passed to an activation function that determines the strength 

Figure II-1. Example feedforward neural network where the y input is a vector of length i, the network has two 

hidden layers, and the output represents a binary classifier. 
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of the signal passed to the next layer. Each neuron in a fully-connected hidden layer has 

as many weights as there are inputs to it and each activation has its own bias. The most 

popular activation functions are sigmoid, hyperbolic tangent, and Rectified Linear Unit 

(ReLU) and they all behave differently regarding the input and output values 

(Goodfellow et al., 2016). For instance, the value passed forward by ReLU to the next 

layer is either zero or the input to the ReLU function itself, whichever is higher.  

At the beginning of the training, the weights and biases for all layers are initialized 

randomly and they are modified once an estimate of error has been computed after a 

full pass of the activations through the network. As the forward propagated signal 

reaches the output layer, there are a few choices as to how to compute the error (also 

known as the loss or cost). The choice of the output unit in the final layer depends on 

the problem domain (e.g. classification versus regression) and it therefore affects the 

choice of loss function (Goodfellow et al., 2016). The usual choices for the neural 

network output units include linear, sigmoid, and softmax functions. While the purpose 

of these units is to provide a prediction (e.g. which class has the highest probability of 

being represented by the inputs according to the trained model), the loss function 

provides an estimate of the error between the ideal solution and the predicted solution 

(Goodfellow et al., 2016; Sze et al., 2017).  

To make this model a learning model, it must be modified in some way to provide a 

better answer next time. To do this, the errors are backpropagated through a gradient 

descent optimization algorithm, which adjusts the weights and biases in the neurons in 

order to minimize the error given by the loss function (Rumelhart et al., 1986a; Ruder, 

2016; Sze et al., 2017). An intuitive explanation of gradient descent is that gradient 

descent follows “the direction of the slope of the surface created by the objective 

function downhill until we reach a valley” (Ruder, 2016, p.1). Computationally, gradient 

descent backpropagation is an efficient way of computing the derivative of the loss 

function with respect to the weights and biases of the network and it utilises the chain 

rule of differentiation from calculus (Sze et al., 2017). Backpropagation therefore 

enables computing the effect of each weight on the loss and the weights are modified 

accordingly (Sze et al., 2017). The specific choice of the backpropagation algorithm is a 

model design hyperparameter that the model designer must make. This process of 

iteratively training the weights and biases may repeat until some stopping signal is 
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reached. The stopping signal may be a length of time, number of training epochs or 

steps, a satisfactory level of error or some other performance metric – which stopping 

signal to choose is an area of active research (Coleman et al., 2019; Forouzesh and 

Thiran, 2021; Gong, 2021). There are many variations of this basic neural network 

structure, but the most common one used in an image classification task is the 

convolutional neural network, the functioning of which is explored next.  

 Thrown in the deep end: deep learning convolutional neural 
networks in image classification tasks 

Today’s convolutional neural networks are often said to derive from Fukushima's 

(1980) Neocognitron neural network, to which LeCun et al. (1989, 1990, 1998) applied 

backpropagation (Rumelhart et al., 1986a, 1986b) and convolution. With the 

combination of max-pooling (Weng et al., 1992), vast datasets (e.g. ImageNet by Deng 

et al., 2009), the development of graphical processing units capable of processing tens 

of millions of parameters at a time, and influenced by Cireşan et al.'s (2011) model 

architecture, Krizhevsky et al.'s (2012) AlexNet convolutional neural network became a 

then state-of-the-art model in image recognition.  

2.3.1. 3D convolution operation 

In general, convolutional neural networks are hierarchical neural networks that 

include at least one convolutional layer. A convolutional layer is a layer where the input 

from the previous layer is mapped by a set of filters to identify features of the input 

signal that are then passed forward to succeeding layers (Lee et al., 2017; Sze et al., 

2017). The output of a convolutional layer with n filters is n number of output feature 

maps, each of which may identify a separate structure in the original input signal. In 

other words, given an input image, a set of filters is applied to that image to produce a 

set of output images (feature maps) that each show the features in the image that 

correspond to a given filter. Each of these filters are x by z sized matrices (kernels) the 

values of which are the weights that are trained and learnt by the model (Goodfellow et 

al., 2016). Thus, by learning the good values in many filters in many convolutional layers, 

the algorithm can begin to learn the most pertinent features of the input feature maps 

– the original input image is also considered to be a feature map and thus feature map 

is a more general term.  
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Many filters are typically represented as a stack, the depth of which is conveyed by the 

number of filters also known as the number of channels (e.g. the colours red, green, and 

blue in a normal RGB image) – this stack is sometimes called a 3D filter (Sze et al., 2017). 

The filters in a given layer are applied to the input feature maps from the previous layer 

by conceptually superimposing the two and multiplying each of the filter’s values with 

the corresponding values of the input feature map in a local region, which is also known 

as the receptive field (Sze et al., 2017). By summing the resulting values across all 

channels of the input feature map, a single output feature map is calculated for the filter 

in that local region (Sze et al., 2017). This output feature map is a linear transformation 

of the input image, but by applying an activation function to each of the cells of the 

output feature map, the transformation becomes non-linear (Goodfellow et al., 2016; 

Sze et al., 2017).  

Figure II-2. Convolution in neural networks. The top half is a graphical representation of the multidimensional 

convolution process, while the bottom half shows the process for a filter with one input feature map, resulting in one 

output feature map. 
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Batch normalization is often applied after the convolution operation and before the non-

linear activation function (e.g. Cai et al., 2020), which has the effect of normalizing the 

input distribution that would otherwise change in every training step and would slow 

down the learning process (Ioffe and Szegedy, 2015a, 2015b; Sze et al., 2017). Thus, 

using batch normalization dramatically increases the speed of learning. To further 

reduce the computational overhead, pooling is often applied to the receptive field, so 

that for an x by z sized filter the result is not a matrix in that local region, but a scalar. 

The different activation functions, batch normalization, and pooling methods are 

discussed in their respective sections below.  

As the filter traverses across the input feature map according to some length of stride 

until the feature map is fully covered, this movement results in the output feature map 

being smaller than the input feature map, unless adequate padding is added to retain 

the original dimensions (Dumoulin and Visin, 2018). In this context, stride defines how 

many pixels are skipped between the filters’ movements, with for instance stride of one 

meaning that the filters are applied on every pixel and a stride of two meaning that every 

other pixel is skipped. The initial placement of the filter is such that the whole filter fits 

inside the input feature map and applying padding to the input feature map allows the 

alignment of the filter with the padded input feature map so that the filters’ travels 

match the number of columns in the input feature map. The choice of whether to use 

padding, the number of filters, the size of the filter matrices, the length of stride and the 

number of convolutional and other layers are all model hyperparameters that are 

decided by the model’s designer. This complex convolution process is shown graphically 

in Figure II-2. 

Dilated convolution and transposed convolution operations have also been used in 

convolutional neural networks, with the former operation having the benefit of 

aggregating information from larger receptive fields without the loss of resolution or 

coverage, while the latter are mainly used for creating representations going the 

opposite direction of a convolution such as when upsampling (i.e. increasing the width 

and height dimensions) a feature map (Yu and Koltun, 2016; Dumoulin and Visin, 2018). 

Dilated convolution was originally termed atrous convolution (a term derived from à 

trous algorithm) and it works by adapting a rate hyperparameter k to enlarge the filters’ 

field of view and, in effect, dilate the receptive field (Papandreou et al., 2015; Chen et 
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al., 2018). For instance, a dilated convolution with a kernel size 3x3xn and a dilation rate 

of two would actually have a 5x5xn receptive field that has zeros in every other column 

and every other row – the rows and columns with zeros increases as the dilation rate 

increases and dilated convolution is the same as normal convolution when dilation rate 

is one (Papandreou et al., 2015; Chen et al., 2018). Regarding transposed convolution 

(also known as deconvolution), consider the following: the convolution operation works 

by multiplying each feature map with a filter, resulting in an output feature map. The 

deconvolution operation then is such that it decomposes the same output feature map 

into the filters (which are parameters shared by all images) and feature maps (latent 

variables unique to each image) as shown in Zeiler et al. (2011). More recently, depth-

wise separable convolutions have been found to be very useful in reducing the number 

of parameters in a neural network, leading to lightweight models that are possible to 

run on mobile phones and edge devices (Chollet, 2017; Kaiser et al., 2017; Sandler et al., 

2018). It is notable that the state-of-the-art neural network CoAtNet-7 also used depth-

wise separable convolutions, albeit combined with Transformers (Dai et al., 2021). 

Unlike normal convolution discussed above, the depth-wise separable convolutional 

filters are applied to distinct channels of input feature maps – and hence the 

convolutions are separable – and stacked to produce the output feature maps. In slightly 

more formal terms, a spatial convolution is performed for each input feature map 

independently and then followed by a pointwise convolution (i.e. 1x1xn, where n is the 

number of feature maps) across all feature maps (Chollet, 2017; Kaiser et al., 2017). This 

adds another level of granularity in controlling the information flow in the neural 

network. 

2.3.2. Activation functions 

A non-linear transformation is applied after the convolution operation through 

something called an activation function. The reason to apply a non-linear function is to 

avoid making the model a simple linear function of its input – using only linear functions 

the model would only be able to learn linear relationships which means that deeper 

neural networks would not benefit from the depth as the composition of many linear 

transformations is a linear transformation (Bishop, 2006; Chollet, 2018). There are 

several different activation functions (Laudani et al. (2015) mention 18 excluding ReLU 

and more have been developed since), of which ReLU (Jarrett et al., 2009; Nair and 
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Hinton, 2010) has emerged as the most common choice. One of ReLU’s properties is that 

it is a piecewise linear function, where zero or negative values are output as zero and 

positive values are returned as they are; this makes it fast to optimize with gradient-

based methods (Goodfellow et al., 2016). More formally, ReLU is defined as 

𝑅𝑒𝐿𝑈(𝑥)  =  𝑚𝑎𝑥(0, 𝑥). 

Prior to the prevalence of using ReLU, sigmoid and hyperbolic tangent were the 

preferred choices (Isa et al., 2010). Sigmoid activation function is defined as  

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)  =  
1

1 + 𝑒−𝑥
 

and the hyperbolic tangent function is defined as 

𝑡𝑎𝑛ℎ(𝑥)  =  
2

1 + 𝑒−2𝑥
− 1. 

The use of both sigmoid and hyperbolic tangent activation functions is discouraged due 

to their tendency to saturate to a high value when x is very positive and to a low value 

when x is very negative (Goodfellow et al., 2016). The saturation of the activation may 

result in vanishing gradients, which means that the gradient values become so small that 

the weights barely change in future updates (Goodfellow et al., 2016). 

2.3.3. Batch normalization 

Prior to the introduction of batch normalization, deep neural networks suffered from 

a phenomenon in which each layer’s inputs changed their distribution as the parameters 

of the previous layers changed during training (Ioffe and Szegedy, 2015a, 2015b). Batch 

normalization was specifically designed to counteract this phenomenon that Ioffe and 

Szegedy (2015a, 2015b) called internal covariate shift. Batch normalization is a 

regularization technique that is applied as part of the neural network structure, typically 

after the convolution operation and before the activation function. It works by 

normalizing, scaling, and shifting each training mini-batch, resulting in the reduction of 

internal covariate shift. According to Ioffe and Szegedy (2015b), batch normalization 

reduces the gradients’ dependence on the magnitude of the parameters or their initial 

values, as well as reducing the need for dropout (see section 2.4.5). First, the mini-batch 

mean 𝜇𝐵 is computed: 
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𝜇𝐵  =  
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

, 

where m is the size of mini-batch and 𝑥𝑖  is the ith activation x. This is then followed by 

computing the mini-batch variance 𝜎𝐵
2: 

𝜎𝐵
2  =  

1

𝑚
∑(𝑥𝑖  −  𝜇𝐵)

2

𝑚

𝑖=1

. 

With both mean and variance computed, the normalized activation is computed by  

�̂�𝑖  =  
𝑥𝑖  −  𝜇𝐵

√𝜎𝐵
2  +  𝜀

, 

where 𝜀 is a small constant, whose purpose is to provide numerical stability. Finally, the 

activations need to be shifted and scaled by shifting (γ) and scaling (β) parameters learnt 

during training to get the final batch normalized activations 𝑦𝑖:  

𝑦𝑖  =  𝛾�̂�𝑖  +  𝛽. 

2.3.4. Pooling 

Pooling is an important step that takes place after the activation function and makes 

the model more robust against translation variance (Goodfellow et al., 2016). In other 

words, since the inputs from different images vary in terms of where the object of 

interest is in the image, it is beneficial if the model learns to be invariant to the shift in 

the object’s position. In pooling, the kernel slides across the input feature map and pools 

the values in the receptive field using some pre-determined operation and outputs a 

single value. For instance, using max-pooling (Weng et al., 1992) with a kernel of a size 

3x3 and starting at the top left corner of the input feature map, the max-pooling 

operation would look at that top left corner and output the highest value that it can find 

in that local, 3x3 sized region. This pooling operation may also take the form of 

averaging, where the output value is simply the average value within that pooling kernel, 

weighted average based on the distance from the central pixel, the L2 norm of the 

kernel, or some other operation (Goodfellow et al., 2016). Global pooling operations are 

special versions of the pooling operation in which the receptive field of the pooling 

operation is equal to the width and height of the input feature map and these global 

pooling operations are often used at the end of a neural network in place of a fully-

connected layer and, as such, their values are often the inputs to a softmax activation 
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function (Lin et al., 2014). As with convolution, the size of the pooling kernel, the length 

of stride, and whether to use padding are determined by the designer. In a related but 

different approach, Springenberg et al. (2015) introduced a fully convolutional neural 

network, in which a convolution operation replaced the pooling layer. 

2.3.5. Classification 

In an image classification task, the final classification is usually made using a softmax 

function, which is paired with cross-entropy loss that is then used by the 

backpropagation algorithm to adjust the weights. The expression for softmax is 

softmax(x)i  =  
exp(xi)

∑ exp(xk)k
. 

Here, xi is an unnormalized log probability and the denominator of the softmax function 

is the sum of all pre-activations in this output layer. The softmax expression ensures 

that: 1) each output class has a value of more than 0; and 2) the sum of outputs equals 

one (Dunne and Campbell, 1997). These two conditions are sufficient for representing 

the probability of class membership for all classes for a given sample. Softmax is the 

generalization of the sigmoid function to a multiclass problem and cross-entropy loss is 

seen as the natural companion to softmax (Dunne and Campbell, 1997). Cross-entropy 

loss 𝐽 for discrete distributions is defined as 

𝐽 =  ∑Pilog(softmax(xi))

i

, 

where P is the vector of the target labels expressed as a one-hot vector, the softmax(xi) 

is the prediction vector, and i is the index of the class. The cross-entropy 𝐽 is then the 

sum of the multiplication of log prediction and the correct answer for all classes; as only 

the correct answer is given a value of one in the one-hot vector P, all wrong predictions 

are zeroed and only the softmax prediction for the correct class makes a contribution to 

the loss. The total cost of the loss function is computed for the entire training dataset 

by  

𝐸(𝑃, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)) =  −
1

𝑁
∑∑Pi𝑙𝑜𝑔(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖))

𝑀

𝑖=1

𝑁

𝑗=1

. 

Here, 𝐸 is the cost function, N is the total number of samples in the training set, and M 

is the number of classes. Cross-entropy loss is commonly chosen due to its fast 
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convergence and excellent performance as measured by accuracy (Martinez and 

Stiefelhagen, 2018). Although cross-entropy loss is theoretically a calibrated loss, it has 

been shown that as model accuracy improves, its calibration becomes worse, meaning 

that the model becomes over-confident (Guo et al., 2017; Martinez and Stiefelhagen, 

2018). 

Other loss functions exist, namely KL divergence, hinge loss, squared hinge loss, mean 

squared error, mean squared logarithmic error, mean absolute error, binary cross-

entropy, and sparse cross-entropy. Most of these loss functions are used in binary or 

regression problems, with only KL divergence and sparse cross-entropy being useful in 

a multiclass classification problem. Sparse cross-entropy is the same as cross-entropy 

presented above, with the exception that the labels do not have to be represented as a 

one-hot vector but as integers. KL divergence is usually used in computing the difference 

between two probability distributions (Goodfellow et al., 2016). 

2.3.6. Gradient descent and its optimization 

Gradient descent is an integral part of today’s neural networks as it forms the basis 

for updating the neural network’s parameters through backpropagation. Gradient 

descent determines the new values for the weights and biases in the neural network in 

order to minimize the loss function. Rumelhart et al. (1986a) provide a more detailed, 

mathematical background to the way in which backpropagation works. According to 

Ruder (2016), there are three variants of gradient descent and they differ by the number 

of samples used in one gradient update: 1) batch gradient descent uses the entire 

training set for a single update and thus presents a problem in that large datasets do not 

fit in the computer’s memory whilst also being relatively slow for smaller datasets; 2) 

stochastic gradient descent (SGD) updates the parameters of the model for every 

training sample, which results in faster training and high variance in the output of the 

loss function, but it may also result in the training being noisier and in higher degree of 

randomness; and 3) mini-batch gradient descent represents a  balance between the two 

as the model’s parameters are updated using a typically small portion of the training 

data for each update, thus enabling smoother curve for the loss function and potentially 

faster convergence. In general, modern gradient descent algorithms employ some 

version of mini-batch gradient descent, which computes the model’s new parameters 𝜃 

as 
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𝜃 =  θ −  η ∙  ∇θ𝐽(θ; 𝑥
(i: i+n);  𝑦(i: i+n)), 

where η is the learning rate, ∇θ𝐽(θ; 𝑥
(i: i+n); 𝑦(i: i+n)) is the gradient of the loss function 

𝐽 with respect to the parameters 𝜃 given a mini-batch from i to i + n for both the input 

data 𝑥 and their corresponding labels 𝑦 (Ruder, 2016). The parameter n defines the 

batch size. If i is a random training sample and n is one, then the above expression would 

be equal to SGD. If i is the first training sample and n is equal to the size of the training 

set, then the above expression would correspond to batch gradient descent. The batch 

size itself has been found to be important with larger batches converging to sharp 

minimums, whereas using small batches results in flat minimums – the sharp minimums 

on the objective function have been empirically observed to not generalize as well 

(Keskar et al., 2016). 

However, plateaus (regions where the errors are the same and therefore their gradients 

are zero), saddle points (regions where the gradient descent optimization algorithm is 

at a local minimum in one dimension and at a local maximum in another dimension), 

and cliff edges (regions of sharp non-linearities that may cause exploding gradients) are 

known to affect the backpropagation process negatively and even to the extent that it 

may fail (Goodfellow et al., 2016). To combat these and other issues, several different 

gradient descent optimization algorithms have been formulated, including SGD with 

Momentum, Adam, Adagrad, Adadelta, Nesterov accelerated gradient, RMSprop, 

Adamax, and Nadam, among others (Rumelhart et al., 1986b; Qian, 1999; Duchi et al., 

2011; Tieleman and Hinton, 2012; Zeiler, 2012; Karkanas and Goldberg, 2013; Sutskever 

et al., 2013; Kingma and Ba, 2014; Dozat, 2016; Ruder, 2016). There is no one 

optimization algorithm that works best in all situations, but Adam is conventionally 

considered a good first guess (Ruder, 2016). 

 Regularization techniques for improving deep learning 
models’ generalization 

Proper use of modern deep learning convolutional neural networks depends on the 

understanding of a vast range of concepts that often make sense only when discussed 

in relation to their impact on the neural network’s learning process and performance. In 

general, each of the following concepts aims to make deep learning models better at 

generalizing either by stabilizing the learning process or by adapting the model to the 

noise in the data. In other words, the aim of regularization is to avoid over- or 
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underfitting the model to the data. Overfitting (Figure II-3C) is a common problem 

encountered in models. According to Hawkins (2004), an overfit model utilises more 

parameters or applies procedures that are too complicated for the problem, which 

results in the violation of Occam’s Razor, or the principle of parsimony. In neural 

networks, overfitting is often identified when the training accuracy of the model far 

outperforms the testing or validation accuracy, which is a result of the model estimates 

having high variance and low bias associated with high model complexity or 

overparameterization (Ghojogh and Crowley, 2019). In contrast, the main symptom of 

underfitting (Figure II-3A) is poor training and validation accuracy, which can be 

explained by the model estimates having low variance, high bias and the model being of 

low complexity (Ghojogh and Crowley, 2019). Underfitting can be prevented by choosing 

a model family that fits the problem domain well or by choosing a highly flexible model. 

To prevent overfitting, one needs to increase the model’s ability to generalize (Nowlan 

and Hinton, 1992). 

In addition to overfitting, there is a second category of overparameterization that 

Hasson et al. (2020) defined as direct fit (Figure II-3D). In contrast to the concepts of 

overfitting and underfitting, direct fit models can achieve the performance of an ideally 

fit (Figure II-3B) model by directly fitting the model to the data through the combination 

of overparameterization and interpolation within the training dataset. Yet, direct fit 

models differ from ideally fit models in that they fail to extrapolate beyond the training 

data in the same way as an ideally fit model (Figure II-3E, Hasson et al., 2020). While 

overfit models memorize all of the training points, they do not align to the underlying 

data structure and vary wildly in the regions between the training points (Hasson et al., 

2020). Direct fit models avoid this explosive overfitting through regularization that 

optimizes its alignment to the training data so that the model can apply interpolation 

within the variance of the training data (Hasson et al., 2020). Such a theoretical model 

is demonstrated in Figure II-3F and Figure II-3G. In their indirectly related experiments, 

Srinivas and Fleuret (2021) also found that adding an explicit score-matching regularizer 

(see Hyvärinen, 2005) to the cross-entropy loss function helps the class-conditional 

model to better align with the ground-truth data distribution, resulting in highly 

structured and explanatory input-gradients that are easier to interpret. This alignment 

between the model’s parameters and the training data is therefore key to regularization. 
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Hasson et al. (2020) draw a parallelism between the configuration of biological and 

artificial neural networks by arguing that biological neural networks are also 

overparameterized and interpolating rather than extrapolating, except for those 

functions that are hardwired and have low neural plasticity, such as vision. Such an 

approach to deep learning models is radical and suggests that generalization beyond the 

variation expressed in the training dataset is simply not possible with current deep 

learning models – it also refutes the need for interpretation of these models as direct fit 

models only interpolate between a large number of local features, meaning that their 

ability to extract high level features is questionable in the first place (Elton, 2020; Hasson 

et al., 2020). Therefore, as long as deep learning models have enough training data, they 

can accurately classify images in the test data if the features of the test data come from 

the same population as the features in the training data. The topic of interpretation is 

discussed further in section 2.7.  

According to Goodfellow et al. (2016, p.117), “any modification we make to a learning 

algorithm that is intended to reduce its generalization error but not its training error” 

can be placed under the umbrella term of regularization. Kukačka et al. (2017) argued 

Figure II-3. Graphic representation of underfit, overfit, ideal fit, and direct fit models. A) An underfit model; B) ideally 

fit model; C) overfit model; D) direct fit model; E) extrapolation capability built-into an ideally fit model; F) 

interpolation capability built-into an overparameterized direct fit model; G) an example in which directly fit model 

would fail on the five samples within the extrapolation zone but works perfectly fine on those samples within the 

interpolation zone. Taken from Hasson et al. (2020, p.419). Figure reuse rights gained through RightsLink/Elsevier on 

10/1/2022. 
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that this definition could be expanded to techniques that reduce both generalization 

and training error. Thus, regularization may be applied via data, the network 

architecture, the error function, the regularization term, or via optimization of the error 

function (Kukačka et al., 2017). The most commonly encountered techniques that help 

with generalizing a neural network’s learning include changing the neural network’s 

architectural structure such as the depth and types of layers (e.g. Franco et al., 2005), 

parameter pruning (Reed, 1993), weight-sharing (LeCun et al., 1989a; Nowlan and 

Hinton, 1992), weight decay and other parameter norm penalties (Krogh and Hertz, 

1991), and dropout, which is a sophisticated method of training a model that represents 

a joint prediction over many models simultaneously (Hinton et al., 2012). These 

regularization techniques are discussed in sections 2.4.1 – 2.4.3 and 2.4.5. 

Besides the model design, the learning algorithm can be made to generalize better by 

using data augmentation, ensemble models and related techniques, and early stopping. 

Data augmentation (see section 2.4.6) involves the process of transforming the input 

data in a way that increases the variance for each class and it typically also increases the 

size of the training set and reduces the model overfitting (Shorten and Khoshgoftaar, 

2019). Ensemble models (section 2.4.4) are formed of many individual models and their 

often superior performance derives from the fact that they all learn different features 

and possibly fit to different data distributions given different subsets of training data 

(Dietterich, 2000). Early stopping (section 2.4.7) consists of stopping the training process 

at the point where the validation performance begins to decrease (Morgan and Bourlad, 

1990). The different types of optimization algorithms and activation functions may 

similarly be classified as regularization techniques. Furthermore, batch normalization, 

convolutional layers, and pooling techniques are also used to improve generalization; 

these concepts were dealt with in section 2.3 and are not discussed here. Instead, the 

focus in the following sections is on the other techniques mentioned above as applied 

to modern deep learning, although covering all different techniques and their variations 

is outside the scope of this chapter. Likewise, the different neural network architectures’ 

impact on generalization is too vast to cover here, although a brief overview of the 

neural network architectures used in the later chapters of this thesis is given in section 

2.6.  
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2.4.1. Parameter pruning 

Parameter pruning techniques such as Optimal Brain Damage (LeCun et al., 1989b) 

and Optimal Brain Surgeon (Hassibi and Stork, 1992) were originally used to avoid 

training models with too many parameters; by removing redundant weights, it was 

thought that better generalization ensued, fewer training examples were needed, and 

that the learning was sped up. However, the theoretical problem of poor generalization 

that comes with having too many parameters is not always observable in practice 

(Caruana et al., 2001; Franco et al., 2005). In fact, modern deep neural networks perform 

better with larger datasets in general and they therefore depend on having huge 

amounts of parameters, with for example the language model GPT-3 consisting of 175 

billion parameters (Floridi and Chiriatti, 2020). As these huge models still retain some 

redundant weights (albeit without a significant negative impact on performance), 

parameter pruning in contemporary deep learning literature is not discussed in relation 

to enabling generalization, but as a way to reduce the size of the model without affecting 

the prediction accuracy negatively, which leads to reduced storage and memory 

requirements as well as increased learning speed (Cheng et al., 2018). As a consequence, 

the resulting smaller and lighter model will be faster to use in real world applications. 

One way in which this can be achieved in the realm of convolutional layers is through 

depth-wise separable convolutions, which factorise a standard convolution to two 

different convolutions: a depth-wise convolution and a pointwise convolution (Howard 

et al., 2017). While in normal convolution many filters are applied across the three 

dimensional volume of the input feature map, depth-wise convolution applies a filter 

per channel (Howard et al., 2017). As depth-wise convolutions do not create new 

features, it is necessary to add a point-wise (1x1xn) convolution to generate them 

(Howard et al., 2017). By breaking the convolution into its constituent parts, the 

computational complexity is reduced with only a marginal loss in classification 

performance. This factorisation of convolutions is also an integral part of the Inception 

module discussed in section 2.6.1. 

2.4.2. Weight-sharing 

Weight-sharing is a form of parameter reuse and, as its name suggests, it is a 

technique in which neurons share the same weight, thereby reducing the number of 

weights that need to be learnt. Weight-sharing is effectively built into convolutional 



43 
 

layers and is therefore a vital part of modern deep neural networks; each of the output 

feature maps in a normal convolutional layer is constructed from the same filter passing 

over the input feature maps, and since the filter consists of the weights, the weights are 

shared by the output feature maps (Sze et al., 2017). According to Kukačka et al. (2017, 

p.8), weight-sharing in convolutional layers “does not merely reduce the number of 

weights that need to be learned; it also encodes the prior knowledge about the shift-

equivariance and locality of feature extraction.” Weight-sharing is therefore key to the 

success of CNNs because it speeds up training and enables the model’s output to 

become invariant to translations and distortions of the input image (Bishop, 2006; 

Kukačka et al., 2017). 

2.4.3. Parameter norm penalties 

As the model’s ability to generalize depends on the balance between the complexity 

of the model and the information in the training set (Krogh and Hertz, 1991), cost 

function regularization techniques have been created to punish the model’s 

performance for excessive complexity. Thus, by adding a penalty to the model’s cost 

function it is aimed to ensure that the model strives for parsimony. Various 

regularization penalties have been proposed, but L1 and L2 are the most common ones, 

particularly for regression. L2 regularization is called Ridge Regression in statistics, with 

its other common names being Tikhonov regularization or weight decay, the latter of 

which is more common in machine learning literature (Goodfellow et al., 2016). Given a 

cost function J(𝑤;  𝒙, y), a regularized cost function Ĵ is defined as: 

Ĵ(𝑤;  𝒙, y)  =  J(𝑤;  𝒙, y)  +  𝜆Ω(𝑤), 

where 𝑤 is a vector of weights, x is the input vector, y is the sample label, and the 𝜆 term 

is pre-determined and controls how strongly we prefer smaller weights (Goodfellow et 

al., 2016). In L2 weight decay, Ω(𝑤) is a regularizer that takes the form 𝑤𝑇𝑤, whereas 

in L1 norm the Ω(𝑤) is the sum of absolute values of the individual weights (Goodfellow 

et al., 2016). By applying weight decay, the scale of the weights is reduced in order to 

reduce the noise in the gradients (Krogh and Hertz, 1991; Zhang et al., 2018). L1 norm 

on the other hand produces a more sparse result in the sense that some weights may 

be zero, which in turn suggests that these connections are redundant (Goodfellow et al., 

2016). As Loshchilov and Hutter (2019) found that L2 weight decay does not perform 

well on Adam optimizer, they suggested that reducing the learning rate by a constant 
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factor (i.e. multiplying the learning rate by a constant <1) will result in a similar effect to 

weight decay. The relationship between learning rate and weight decay was further 

shown in Zhang et al.'s (2018) experiments, who note that the regularization effect of 

weight decay is mainly present in layers with batch normalization even though weight 

decay is meaningless for batch normalization. Note that only weights were discussed 

here, as the bias term requires less data for a good fit, although the regularizer can be 

used to adjust all parameters of the model (Goodfellow et al., 2016).  

2.4.4. Ensemble methods 

According to Dietterich (2000), a learning algorithm outputs a classifier, which is a 

hypothesis about the true function f. An ensemble model is any model made up of a set 

of classifiers whose predictions are combined in some way (Opitz and Maclin, 1999). 

Ensemble models have been found to perform, on average, better than the individual 

models that are part of the ensemble mostly because different models often make 

different mistakes (Lee et al., 2015; Goodfellow et al., 2016). By combining many 

classifiers’ predictions, the generalization error of the ensemble model is reduced as 

each member model represents a sample of the overall variance of the population. The 

combination of models into an ensemble model can take various forms, with linear, 

product, and voting combinations being the most prevalent choices for predictive 

models (Brown, 2017). Linear and product combinations are useful when the model 

outputs are real-valued numbers, while voting is relevant when outputting class labels 

(Brown, 2017). In all three methods of forming ensembles, the individual member 

models of the ensemble may be given different weights. For instance, Tian et al. (2019) 

weighted each classifier in a voting ensemble by the confidence values for each class so 

that the final prediction from the ensemble model had the highest average confidence. 

When multiple classifiers are combined together, most of the performance gains come 

from the first few classifiers (Opitz and Maclin, 1999). It has been additionally shown 

that ideal ensembles should comprise of highly accurate individual classifiers that 

disagree with each other as much as possible (Krogh and Vedelsby, 1995; Opitz and 

Shavlik, 1996a, 1996b). Going beyond combining several predictive models through 

arithmetic functions, the common techniques of bagging, boosting, and mixture of 

experts ensemble methods are briefly discussed. The performances of ensemble models 

are not typically reported for machine learning benchmarks as it is commonly 
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understood that they fare better than individual models (for a rare example, see He et 

al., 2016a). Because of the superior performance of ensemble models, combined with 

the fact that the final model performance is imperative for real world, scientific 

applications, ensemble methods are used in model creation in the following chapters. 

2.4.4.1. Bagging 

Bagging is an acronym for bootstrap aggregating and it is a common way to create 

ensemble models (Breiman, 1996). In bagging, the individual models of the ensemble 

are trained with a different training set that is created by sampling the original dataset 

with replacement (Brown, 2017). Given an original dataset of size N, the new training 

dataset of a partner model is also of size N, but some of the samples are duplicated and 

the probability that any given sample is not included in the new dataset is 𝑝 =

 (1 − 
1

𝑁
)𝑁 (Goodfellow et al., 2016; Brown, 2017). According to Breiman (1996, 1998), 

bagging works well for unstable procedures in which small changes in the training data 

or the model’s construction may have a large impact on the classifier’s performance, 

such as neural networks.  

2.4.4.2. Boosting  

Boosting is a general method used to improve any learning algorithm’s accuracy, even 

if the learning algorithm is only slightly better than random guessing (Freund and 

Schapire, 1996). The best known boosting algorithm, AdaBoost (short for adaptive 

boosting), works by identifying the misclassified samples, placing more emphasis on 

these harder samples to create a new training set, which is then used to train new 

models that are added to create an ensemble model (Brown, 2017). Boosting is related 

to bagging in that both are methods of constructing training sets from which to train a 

model (Schwenk and Bengio, 2000). 

2.4.4.3. Mixture of experts 

Mixture of experts (Jacobs et al., 1991) differs from bagging and boosting in that the 

training data is not necessarily re-sampled or otherwise changed. Instead, the problem 

space is divided stochastically into smaller subspaces with each model specializing on 

the problem within that subspace (Masoudnia and Ebrahimpour, 2014). By using a 

gating network learnt during training to control the flow of information through the 
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entire algorithm, a more precise answer can be arrived at (Yuksel et al., 2012; Masoudnia 

and Ebrahimpour, 2014).  

2.4.5. Dropout 

Hinton et al. (2012) introduced dropout as a mechanism to combat overfitting in deep 

neural networks and many variants have since been developed (Labach et al., 2019). The 

premise for this technique is that while training a neural network, the neurons may learn 

to co-evolve so that groups of neurons fire together, but they only fire because the other 

neurons in the group are doing so. Thus, these neurons do not learn their own features, 

but rather copy the behaviour of other neurons. If the features that cause co-evolved 

groups of neurons to fire are missing in a test input, the end result is that the final model 

cannot accurately predict the class of the input. By stopping some fraction X of the 

neurons in a layer L with a probability P from activating during training and then 

returning the full model structure in the testing phase, the probability of these co-

evolved neuron groups existing is reduced significantly. Dropout is often compared to 

bagging – a technique in which multiple instances of the model are trained and their 

arithmetic average is employed in inference – because Hinton et al. (2012) observed 

that randomly dropping neurons results in a large number of possible neural networks 

and dropout implicitly computes a geometric mean of all of these possible networks 

(Ghojogh and Crowley, 2019; Labach et al., 2019). In practice, using both dropout and 

batch normalization in the same neural network has been observed to show no 

improvements and even to produce detrimental effects for the performance of the 

network due to unstable shift in the signal variance caused by dropout (Li et al., 2019). 

However, Cai et al. (2020) argue that this conflict between dropout and batch 

normalization is attributable to the misplacement of dropout within the convolutional 

neural network structure and that correct placement of dropout before the convolution 

operation (which is then followed by batch normalization and a non-linear activation 

function) can reduce the shift in signal variance. 

2.4.6. Data augmentation 

Another common regularization technique in modern machine learning is data 

augmentation, some of the earliest applications of which include those of Simard et al. 

(1992, 1993) and Yaeger et al. (1997), who rotated and warped image data to increase 

the training data variance, respectively. Data augmentation today is used to increase the 
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size of the training dataset by applying label-preserving transformations. Wong et al. 

(2016) show that data augmentation is an effective technique for improving the 

performance of a deep learning CNN classification system if the original sample size is 

small, although they also argue that more real data is much better than more 

augmented data. There are several different types of data augmentation, including 

affine transformation (reflection, scaling, rotation, and shearing), cropping, and elastic 

distortion introduced by Simard et al. (2003). Recent advances in Generative Adversarial 

Networks (GANs) mean that separate neural networks may be trained to create entirely 

new images (Goodfellow et al., 2014; Antoniou et al., 2017), although Keskar et al. 

(2016) did not find that data augmentations produced with GAN-models improved the 

generalization of the model.  

2.4.7. Early stopping 

Early stopping is simply the act of stopping the training process before the 

predetermined end of the training cycle if it is considered that the model has stopped 

improving (Prechelt, 2012). The most difficult part of applying this technique is 

estimating a good cut-off point for the learning process since it is possible that stopping 

the training too early may result in the model finding only a local rather than global 

minimum, thus not fully reaching its potential. In contrast, leaving the early stopping too 

late risks overfitting. What makes it easier to apply this technique is that modern 

machine learning packages provide methods to return the trained neural network’s 

weights to the state in which the model had the highest performance or the lowest loss. 

Most often the metric used in the decision of what state to return the model to is the 

model loss on the validation set, but one could also use validation accuracy. Using 

training loss or accuracy in this context is not ideal as they do not allow the assessment 

of generalization. Prechelt (2012) specifies three criteria that help with applying early 

stopping: 1) stopping once validation loss reaches a pre-set threshold; 2) using the 

quotient of the validation loss and progress, where progress is defined as the number of 

training epochs; and 3) stopping when validation error has increased over k number of 

epochs. Early stopping is widely used due to its simplicity, effectiveness and the 

structure that it provides to the training process. However, using early stopping does 

not guarantee better fit models than an arbitrary choice of training length, especially if 

the model designer decides to make many guesses and try different training lengths. 
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2.4.8. Cross-validation 

Cross-validation is in the family of Monte Carlo methods for resampling data (Berrar, 

2019). It is used to provide an estimate of a model’s ability to generalize by dividing the 

original data into training and testing portions. The simplest case of testing a model’s 

ability to generalize is done by portioning a random hold-out sample (usually 10-30%) 

from the training set and letting the model train on the rest (Berrar, 2019). This method 

is also known as validation (Arlot and Celisse, 2010). Validation can be extended to k-

folds, so that the whole dataset is randomly divided into test and train set pairs k times 

(Berrar, 2019). In this strategy, the samples in the test set are never in the training set 

for any given testing-training set pair, but because the original dataset is randomly 

sampled k times, some samples may end up being in either test or training sets in all k 

folds (Berrar, 2019). K-fold random subsampling is also limited by the use of relatively 

large test set sizes, which can result in a highly pessimistic estimate of the model’s 

generalization (Diamantidis et al., 2000). These shortcomings can be overcome by a 

more structured approach in which the data is first divided into approximately equal 

sized k-folds and each fold is then used as the test set, while the rest of the folds form a 

single training set (Diamantidis et al., 2000; Berrar, 2019). This division of the data is 

called k-fold cross-validation and it is considered the standard for modern machine 

learning. With k-fold cross-validation, the data is often stratified, by which it is meant 

that each class is represented in each fold in the same proportion as in the whole dataset 

(Diamantidis et al., 2000; Arlot and Celisse, 2010). The extreme case of leave-one-out 

cross-validation takes one sample as the test case and uses the N-1 (N being the dataset 

size) sample as the training set, repeating the training process N times (Berrar, 2019). 

While leave-one-out cross-validation provides the ideal training conditions for a model 

in that the training set size is maximized, the downside is the extremely long 

computational time. To measure the difference in generalization ability between the 

training folds in k-fold cross-validation, it is standard practice to extract a test sample 

from the entire sample prior to splitting the data into k folds. Hold-out test set is also 

applicable when using cross-validation to evaluate the hyperparameter tuning process.  

 Hyperparameter tuning 

Training a convolutional neural network in a supervised learning setting is akin to 

automatically finding the best set of parameters of a highly-complex function to 



49 
 

accurately predict the label of the input data. However, there are often additional 

parameters called hyperparameters that are not learnt by the model, but which must 

be chosen prior to training. The number and type of layers and nodes, the choice of 

activation functions, and the method of kernel initialization and regularization within 

the nodes are among the many hyperparameters that may be defined when creating a 

new architecture. Other hyperparameters may be used to define the rate of change for 

the model’s parameters during training, as well as the length of the training and when 

to stop. These training related hyperparameters are nontrivial, since they control 

whether the gradient descent optimizer has enough momentum to pass saddle points, 

avoid cliff edges and exploding gradients, and if it can reach the global minimum. In 

hyperparameter optimization, the aim is to discover the optimal set of hyperparameters 

that minimize the generalization error for the machine learning algorithm (Hinz et al., 

2018).  

2.5.1. Hyperparameter search 

There are several hyperparameters that are known to affect a model’s learning ability 

(see Domhan et al., 2015). With more hyperparameters, the dimensionality of the 

hyperparameter search space increases and can quickly become overwhelming for a 

human expert. Various methods have been developed to combat the complexity of 

selecting the right hyperparameters, including grid search, random search, and Bayesian 

optimization. In using grid search, each combination of hyperparameters is used once 

for training the learning algorithm and the best set of hyperparameters can be 

determined only after the complete training process has finished. As this approach can 

be time consuming, random search (Figure II-4) has been found to be as good or better 

than grid search given equal computational resources (Bergstra and Bengio, 2012). This 

is possible because random search is not confined by a grid, allowing random search to 

look for combinations of hyperparameters in a larger space. However, if the search 

space is too large, random search may take a long time to find the optimal 

hyperparameters. Thus, applying some boundaries to the hyperparameter search space 

is usually necessary. Given that random search is likely to also waste resources by 

exploring the hyperparameter space where there is no benefit to be found, it would be 

better to estimate the model objective function itself and direct the hyperparameter 

search towards the regions where a black box response function evaluates to a minimum 
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or a maximum of some metric (e.g. accuracy or error) when given a set of 

hyperparameters.  

This is where Bayesian optimization comes in. The purpose of Bayesian optimization is 

to automate the searching of the hyperparameters that maximize the accuracy (or 

minimize the error rate) of the model. Alternatives to Bayesian optimization in this 

AutoML context mainly include Probabilistic Matrix Factorization and evolutionary 

algorithms such as Differential Evolution (Schmidt et al., 2019). With Bayesian 

optimization, it is possible to estimate the shape of the function space by running the 

learning algorithm many times with varying sets of hyperparameters and using the 

response metrics from all previous runs as an estimate of the black box function (Jones 

et al., 1998). In other words, the black box function is observed through its outputs, and 

the model that allows this approximation is called a surrogate model (Shahriari et al., 

2016; Diaz et al., 2017). The surrogate model maps the hyperparameter choices (also 

known as design variables) to the classifier’s responses and produces a probabilistic 

measure of the unknown object function that is then used by an acquisition function to 

find the next set of hyperparameters for testing (Shahriari et al., 2016; Hebbal et al., 

2021). The more times the learning algorithm is run, the better the surrogate model’s 

estimate of the black box function becomes, allowing the hyperparameter optimization 

to iteratively choose better hyperparameters. Thus, Bayesian optimization begins as a 

stochastic process but becomes better at modelling the black box function and 

Figure II-4. Comparison of grid search and random search strategies. Nine trials using grid search explores only three 

distinct values of the important parameter, whereas nine trials with random search strategy results in nine different 

values of the important parameter being explored. Taken from Bergstra and Bengio (2012, p.284). 
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eventually gives an estimate of the optimal hyperparameters for the learning model. 

However, there is a need for balance in exploring untested regions of the 

hyperparameter space and exploiting the surrogate model because over-reliance on the 

surrogate model results in sampling only a small area of the hyperparameter space, 

while continuous exploration of the hyperparameter space would make the use of the 

surrogate model redundant as the hyperparameter search would resemble random 

search and would only end after reaching some forced limit (Shahriari et al., 2016). 

This estimation of the black box function (e.g. the learning algorithm) is done with the 

help of a prior distribution over the black box function and an acquisition function that 

uses the posterior distribution in determining the next hyperparameter settings (Brochu 

et al., 2010; Snoek et al., 2012). There are various distributions that can be used as 

priors, but the most commonly chosen prior distribution is Gaussian process, which is 

the generalization of the Gaussian probability distribution to a function (Rasmussen and 

Williams, 2006). Probability of Improvement (PI), Expected Improvement (EI), or the 

Gaussian Process Upper Confidence Bound (GP UCB) utility functions are usually used as 

the acquisition functions (Snoek et al., 2012). As mentioned, the role of acquisition 

function is to indicate the next set of hyperparameters to test. As their names suggest, 

the PI aims to maximize the probability of improving the black box function’s 

performance in terms of the evaluating metric at next point, while EI aims to do this by 

maximizing the expected improvement, meaning that in addition to considering the 

probability of improvement, EI algorithm also takes the magnitude of improvement into 

account (Brochu et al., 2010; Snoek et al., 2012). GP UCB on the other hand exploits the 

confidence bounds to maximize or minimize regret (i.e. the difference between what 

could have been achieved and what was achieved) during the optimization (Snoek et al., 

2012). For more details on Gaussian process and Bayesian optimization, particularly the 

formulae, please see Rasmussen and Williams (2006) and Brochu et al. (2010). 

The final choice of optimal hyperparameters depends on the black box function being 

modelled, the set of hyperparameters and their boundaries, as well as the data that is 

input into the learning algorithm, meaning that each problem domain has its own 

hyperparameter space (Bergstra and Bengio, 2012). For instance, the hyperparameters 

for the problem of classifying images of pollen grains cannot be optimized without the 

images of pollen grains. Similarly, the Bayesian optimization algorithm would have to be 
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run again if the neural network structure were to be altered. However, although the 

hyperparameter search space may be large (i.e. there may be dozens of different 

hyperparameters that require optimization), it has been found that often only a few of 

these hyperparameters have a significant impact on the model’s overall performance 

(Bergstra and Bengio, 2012).  

 Modern convolutional neural network architectures 

This section concerns the design of some of the most commonly used deep learning 

convolutional neural network architectures. Specifically, it is the innovations brought by 

those CNNs in the task of image classification that are the focus, as it is impossible to 

fully explore all architectures in this limited space. The discussion is further limited to 

the deep learning CNNs used in the following chapters.  

2.6.1. GoogLeNet’s Inception module 

Compared to its contemporaries, GoogLeNet model was highly successful in terms of 

the top-5 classification accuracy on the ILSVRC benchmark whilst having far fewer 

trainable parameters than other models (Szegedy et al., 2015a). For instance, 

GoogLeNet outperforms VGG-19 even though it has 22 layers and only five million 

parameters, while VGG-19 has 19 layers and 144 million parameters (Simonyan and 

Zisserman, 2015; Szegedy et al., 2015a). GoogLeNet succeeded in this feat by employing 

successive Inception modules (Figure II-5) that each reduce the dimensionality of the 

input features by assuming that spatially neighbouring activations are highly correlated 

(Szegedy et al., 2015a, 2015b).  

Each Inception module is formed of several convolution filters with different sized 

kernels (1x1, 3x3, 5x5) and a pooling operation that are applied on the same input 

feature map separately and then concatenated to form an output feature map (Szegedy 

et al., 2015a). Each convolution is followed by ReLU, although not depicted in Figure II-5. 

This simple version (Figure II-5a) was subsequently improved by first aggregating filters 

depth-wise with 1x1 convolutions (Figure II-5b) followed by the application of 

convolutions with larger kernels (e.g. 3x3 and 5x5), with the consequence that training 

is sped up and the number of parameters is reduced without the loss of localization 

(Szegedy et al., 2015a). Note how this process is very similar to depth-wise separable 

convolutions, but in reverse (Howard et al., 2017). In Inception V2, the main change is 
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the introduction of batch normalization (Ioffe and Szegedy, 2015b). In Inception V3 

(originally termed Inception V2, but later considered to be V3 by Szegedy et al., 2016), 

the concept of breaking larger convolutions into a series of smaller convolutions is taken 

as the main premise with the implication that computational complexity is reduced 

(Szegedy et al., 2015b). For instance, using two 3x3 convolutions in series is theoretically 

2.78 times less expensive computationally than a single 5x5 convolution while still 

producing the same feature maps (Szegedy et al., 2015b). Furthermore, applying a 3x1 

convolution followed by 1x3 convolution and then concatenating the results is 33% 

cheaper than one 3x3 convolution even though the resulting feature maps would be 

Figure II-5. Examples of Inception modules. a) Simple Inception V1 module; b) improved Inception module in 

Inception V1. Taken from Szegedy et al. (2015a, p.4). © 2015 IEEE. 
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equal (Szegedy et al., 2015b). However, this asymmetric convolution was not found to 

be very successful for early layers (Szegedy et al., 2015b). These dimensionality reducing 

series of convolutions are applied in parallel to form a variety of Inception modules in 

Inception V3 – there is no single Inception module that could be considered ‘correct’. 

Indeed, Inception V4 introduces yet another version of the Inception network that uses 

three types of Inception modules and two reduction modules, the latter of which act as 

links between the Inception modules due to the reduction in the Inception modules’ 

input feature map sizes (Szegedy et al., 2016). 

2.6.2. Residual learning with ResNets 

According to Srivastava et al. (2015), depth of neural networks is crucial to their 

success. Before deep residual learning, one of the biggest issues with deep neural 

networks was that deeper networks were harder to train than shallower ones, as more 

layers meant that the training accuracy became saturated and quickly began to degrade 

(He et al., 2015, 2016b, 2016a). The cause of this degradation was not identified as 

overfitting, but rather the depth of the network itself (He et al., 2015, 2016b, 2016a). In 

practice, this meant that there was little reason to employ as deep a neural network as 

possible, since the gains of introducing more parameters in the form of more layers 

Figure II-6. Left: original residual block in ResNet V1. Right: re-defined residual block in ResNet V2. On both sides the 

grey arrow is the identity function and the weight-BN-ReLU part is the non-linear function. Taken from He et al. 

(2016a, p.631). Figure reuse rights gained through RightsLink/Springer Nature on 5/1/2022. 
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would be either minimal or even harmful to the training process. As a solution, both 

Srivastava et al. (2015) and He et al. (2015, 2016a, 2016b) argued that maximising 

information flow through the network is imperative for deeper networks to be 

attainable. However, Srivastava et al.'s (2015) Highway Networks have not become 

popular, while He et al.'s (2015, 2016a, 2016b) Residual Networks (ResNets) are now 

built into many machine learning libraries.  

The introduction of residual blocks allows building deeper neural networks without the 

degradation of training accuracy, since the input signal is given two paths that it should 

go through, after which the two parts are summed: 1) a non-linear function; and 2) a 

shortcut identity function, which is simply a copy of the signal itself. The non-linear 

function was originally defined as having two weight layers (convolutions) with batch 

normalization and a ReLU activation function in between, with the second weight layer 

being followed by another batch normalization layer. He et al. (2016a) reformulated this 

original residual block (ResNet V1) so that the non-linear function now consisted of two 

sequential parts that each include a batch normalization, then a ReLU, and finally a 

weight layer as seen in Figure II-6, allowing further improvements in the classification 

accuracy as well as an even deeper network architecture. If a dropout layer is also 

included, it should come after ReLU and before the convolution (Cai et al., 2020). Finally, 

Inception-ResNet V1 and V2 combine the dimensionality reduction from Inception 

module with that of the residual block from ResNets by replacing the non-linear function 

with an Inception module while retaining the shortcut identity function (Szegedy et al., 

2016).  

2.6.3. DenseNets 

DenseNets aim to solve the same problem as ResNets, namely, the maximization of 

information flow between layers. It does so by connecting the feature maps from all 

previous layers to the current layer (Figure II-7). In contrast to ResNets, the connection 

between layers is not summation, but rather the features are combined through 

concatenation (G. Huang et al., 2017; Huang et al., 2019). Counter-intuitively, this 

method of connecting the layers results in fewer parameters in the network as 

redundant feature maps are not relearnt and each new layer adds only a relatively small 

number of new filters that result in a small addition of new feature maps (G. Huang et 

al., 2017). Therefore, while each layer in ResNets has its own weights, in DenseNets each 
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layer shares most of its weights with previous layers and only adds a little bit of new 

information. As a result, DenseNets do not only have a better parameter efficiency and 

flow of information and gradients than ResNets, but dense connections also have a 

regularizing effect that reduces overfitting with small training set sizes (G. Huang et al., 

2017; Huang et al., 2019).  

Because the connections between densely connected layers involve concatenation, 

down-sampling the size of the feature maps – which is essential for CNNs – is not 

possible (G. Huang et al., 2017). For this reason DenseNet consists of several dense 

blocks with a Transition Layer in between the blocks that consists of a batch 

normalization, a 1x1 convolutional, and a 2x2 average pooling layer (G. Huang et al., 

2017). This Transition Layer can also be used as a compression layer by multiplying the 

dense block’s output feature maps by a compression factor θ, where 0 <  𝜃 ≤ 1 (G. 

Huang et al., 2017). Another important concept associated with DenseNets is growth 

rate k, which is essentially just the number of feature maps (G. Huang et al., 2017). It is 

called the growth rate because each subsequent layer within a dense block increases in 

size as it receives all of the features from previous layers within the block. In other 

Figure II-7. An example DenseNet block with five layers and a growth rate of k = 4. The feature maps from each layer 

are connected to the feature maps in the following layers, significantly reducing the number of learnt parameters. 

Taken from Huang et al. (2019, p.1). © 2019 IEEE. 
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words, the jth layer in a block has 𝑘0 + 𝑘 × (𝑗 − 1) feature maps, with 𝑘0 being the 

dense block’s number of input feature maps (G. Huang et al., 2017). 

2.6.4. Xception 

Xception was introduced as an interpretation of the Inception network. The idea 

behind Xception is that normal convolution aims to learn the spatial correlations in three 

dimensions, but as this is an expensive operation, the convolution can be separated into 

two different convolutions – one for width and height dimensions and a second one for 

depth. This depthwise separable convolution is much less computationally expensive 

than a normal convolution in the same way as applying two smaller convolutions of size 

1 x n and n x 1 after each other is less expensive than one larger convolution of size n x 

n, as discussed in the section 2.6.1 on the Inception module. Furthermore, Chollet (2017) 

recognised that the Inception module can be simplified to the extent that it resembles 

depthwise separable convolution, with two exceptions: 1) depthwise separable 

convolutions first perform channel-wise convolution and then 1x1 convolution for the 

depth dimension, while Inception performs the latter first; and 2) the channel-wise and 

depthwise convolutions within the Inception module are followed by ReLU, while no 

non-linear activation functions are applied in depthwise separable convolution. 

Xception model with marginally fewer parameters than Inception V3 performed slightly 

better on the ILSVRC ImageNet benchmark and significantly better on the JFT dataset 

(Chollet, 2017). 

2.6.5. NASNet 

With NASNet, it is not the architecture of the model that is of interest, but the way in 

which the architecture was designed. Instead of hardcoding their ideas of an ideal CNN 

architecture, the creators of NASNet used reinforcement learning to learn a CNN 

architecture that is optimized for CIFAR-10 image dataset and then applied the learnt 

architecture to train a model on the ImageNet dataset (Zoph et al., 2018). The Neural 

Architectural Search (NAS) strategy is composed of a controller recurrent neural 

network that predicts an architecture A with a probability of p, which is subsequently 

trained on CIFAR-10 and produces a validation accuracy R (Zoph et al., 2018). The 

recurrent neural network is then updated by scaling the gradients of p by R (Zoph et al., 

2018). However, the authors did not fully automate the construction of NASNet, but 

rather allowed the reinforcement learning strategy to construct the Normal and 
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Reduction Cells that they then stacked manually. The Normal Cell is a convolutional cell 

that returns a feature map of the same dimensions as the input, while the Reduction 

Cell reduces the height and width by a factor of two (Zoph et al., 2018). The architectures 

of the best Normal and Reduction Cells found by the reinforcement strategy are 

depicted in Figure II-8. The authors additionally introduced a new type of dropout 

technique called ScheduledDropPath, which works by dropping a path between 

operations within a cell with linearly increased probability as the training goes on (Zoph 

et al., 2018). Note how separable convolutions are again used in both Normal and 

Reduction cells in Figure II-8. 

 Trust and visualizing the learnt 

As the use of deep learning has become more mainstream, so have the concerns 

about its so-called black box nature. To counter these concerns, researchers have 

developed ways to unravel the mystery surrounding neural networks, mainly by 

introducing different techniques to visualize the weights and gradients of the neural 

network model. The main purpose of visualizing the convolutional neural network’s 

classification choices is therefore to generate trust in the model. Trust in one’s models 

is paramount to all statistical models and this is perhaps even more pertinent to deep 

learning, as semantically, learning implies understanding, which in turn implies that the 

model should be able to explain what it has learnt or the learnt knowledge should 

Figure II-8. Normal and Reduction Cells found by the reinforcement learning strategy for NASNet-A network. Sep = 

separable convolution; max = max pooling; avg = average pooling; concat = concatenation. Taken from Zoph et al. 

(2018, p. 8701). © 2018 IEEE. 
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otherwise be possible to be extracted from the model. It has been previously noted that 

relying solely on performance metrics may be misleading, since CNN classifications of 

objects in images may be based on contextual evidence rather than the presence of the 

object itself (Lapuschkin et al., 2019). Such models are termed ‘Clever Hans’ models, 

referring to the horse of Mr. Von Osten that was thought to know how to count with its 

hooves, but who instead gave its answers based on its instructor’s mannerisms (Pfungst, 

1911). In order to validate that one’s image classifier is not a Clever Hans-type model, 

some form of visual inspection and external validation is necessary. For instance, it is 

important to verify that a pollen image classifier does not base its prediction on the 

inclusions and noise in the prepared slide but on the pollen grain itself. The specific form 

of visual validation depends on the problem, level of detail required, and one’s position 

in the explanations versus interpretations debate. 

2.7.1. Explainable versus interpretable models 

The deep learning field is currently undergoing a discussion on the utility and futility 

of creating explainable or interpretable models in order to instil trust in them (e.g. Gilpin 

et al., 2018; Rudin, 2019; Chen et al., 2020; Elton, 2020; Hasson et al., 2020). 

Unfortunately this conversation suffers from confusion around the terminology, 

especially regarding what is considered explainable and what is interpretable. For 

instance, while Elton (2020) understands explainable and interpretable to be 

synonymous terms, Montavon et al. (2018) find nuance in the terms in that the concepts 

learnt by a model are interpretable but the model’s decisions are explainable. Gilpin et 

al. (2018) argue that explainability of a model is more important than interpretability 

because explainable models are inherently interpretable, but the reverse is not 

necessarily true. In contrast, Rudin (2019) calls for a stop to explanations in favour of 

inherently interpretable models and more specifically that the approximations of the 

model predictions should not be called ‘explanations’. Elton (2020) in turn argues that 

‘meta-level explanation’ is already present for all deep learning models as they can be 

understood through the combination of training data, network architecture, learning 

rules and the objective function. Meta-level explanation is a very unsatisfactory concept 

for those who want to find insights to a problem through the use of CNNs, since the 

model definition itself is considered the explanation – meta-level explanation quickly 

becomes a circular argument and is not beneficial to the discussion. This confusion 
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around the terminology is not a purely academic concern because in the context of Right 

to Explanation legislation (e.g. EU’s GDPR) different levels of explanations about the 

model’s decisions or model functionality may have different legal properties (Kim and 

Routledge, 2018). 

Rudin (2019) gave a few reasons for why the ‘explanation’ paradigm of deep learning 

models will result in misleading decisions, including that explanations cannot be fully 

faithful to the computations of a model because then the explanation would be all that 

is needed, and that explanations leave out too much detail to make sense – for instance, 

saliency heatmaps based on just one class leave out information about the other classes. 

Rudin (2019) additionally criticized the use of black box models in that they do not 

enable transparent judgement of the input parameters on which the model makes 

decisions, human error is likely to be present in complex decision pathways, and 

troubleshooting a black box is very difficult. However, Rudin (2019) discussed these 

issues mainly in the context of high-stakes decisions such as prison sentencing – 

archaeological identifications are highly unlikely to be classified as high-stakes decisions 

and explanation techniques are likely to be viable. Rudin (2019) specifically used saliency 

visualizations as an example of ‘explanations gone bad’ – this critique is further 

discussed in Chapter III, where corrective measures are introduced to provide better 

saliency maps through Grad-CAM (discussed below). 

To keep this section somewhat succinct, the main corpus of the explainable versus 

interpretable model debate centres around how the proponents of the two paradigms 

approach deep learning. When discussing deep learning convolutional neural networks 

and image classification, the proponents of interpretable and explainable models use 

visualizations in a differing manner in communicating the model’s areas of attention. On 

the one hand, those who call for interpretable models argue that human 

understandable concepts should be part of the output (Rudin, 2019; Chen et al., 2020). 

For example, when an image classifier returns a class (say, a cat), it should also output 

some estimate of how much the different concepts that make up the predicted class 

(such as eyes, whiskers, ears and fur) contribute to the final classification. On the other 

hand, explanations are post-hoc analyses of the activations and/or gradients of the 

model that localize the object within the image. Interpretable models can also localize 

objects, but they may additionally localize each concept within the input image and they 
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may provide more information on the relationships between the concepts and the final 

output (Zhou et al., 2018).  

2.7.2. Visualizations of CNNs 

There are many ways to visually inspect deep learning models. Some methods, 

namely Activation Maximization methods (for a review on these methods, see Nguyen 

et al., 2019), focus solely on the visualization of the features learnt by convolutional 

layers (Yosinski et al., 2015; Olah et al., 2017). The aim of Activation Maximization 

methods is to find input patterns such as images that maximize the model response for 

some quantity of interest such as the activation of a neuron or some larger spatial area 

(Montavon et al., 2018; Nguyen et al., 2019). The visualizations made with Activation 

Maximization methods tend to be abstractions and require interpretations themselves 

(Montavon et al., 2018), but they may be helpful in understanding the concepts learnt 

by a model which have been argued as being important if one wants to build a readily 

interpretable deep learning model (Rudin, 2019; Chen et al., 2020). Thus, there appears 

to be a philosophical link between Activation Maximization, latent concepts learnt by 

the model, and the interpretable deep learning paradigm (sensu Rudin, 2019). In 

contrast, there is a range of post-hoc visualization methods that aim to explain the 

model’s decisions, not what was learnt by the model (Montavon et al., 2018). These 

post-hoc methods utilize gradients and/or activations by: 1) modifying the input image; 

2) training separate networks or specific saliency masks; or 3) taking advantage of 

backpropagation. Such methods are often classed together as saliency maps. Activation 

Maximization methods are not of interest here as one can easily argue that they do not 

build trust in the model since they generally do not separate context from the object of 

interest. Thus, the following review focuses on concept-based visualizations and saliency 

mapping techniques. 

2.7.3. Concept-based visualization 

In an answer to the explainable AI paradigm, Kim et al. (2018) introduced Testing with 

Concept Activation Vectors (TCAV) which quantifies the model prediction’s sensitivity to 

a causal concept. In their work, Kim et al. (2018) define CAV as a vector in the direction 

of the activations of a concept’s set of examples. For example, for a model that can 

recognize zebras, one may wish to know how much the concept of stripes influenced 

the model in its classification. By taking some set of images that exemplify ‘stripes’ and 
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another set of images not containing stripes, and then training a binary classifier to 

separate the model’s activations of striped objects from non-striped objects, a linear 

CAV for the concept of stripes can be created through the use of directional derivatives 

(Kim et al., 2018). In this way, the conceptual sensitivity of the class of zebras to the 

concept of stripes can be computed for a given layer of the neural network. This is done 

for all inputs of a class to produce a single conceptual sensitivity value for TCAV. 

However, it is not guaranteed that the learnt CAV is meaningful, since the chosen set of 

images that exemplify stripes may be flawed. For this reason the authors resorted to 

training the CAVs over 500 training runs. Ghorbani et al. (2019b) used TCAV in their 

formulation of Automatic Concept-based Explanations, in which input images are 

segmented and those segments are used as concepts and clustered. 

Other concept-based visualization techniques have since been proposed, including 

Interpretable Basis Decomposition (Zhou et al., 2018), which combines concept vectors 

with Grad-CAM (discussed further in section 2.7.4). In this approach, the classification 

result of an input image is explained by decomposing it into smaller parts and providing 

their contribution to the final classification as a percentage (Figure II-9). The authors 

admit that their method is limited by the range of concepts included in the dataset on 

which the binary concept classifiers are trained, which results in residual concepts 

explaining the majority of most classifications (Zhou et al., 2018). Such a result takes us 

Figure II-9. Interpretable Basis Decomposition example. The concepts (right) associated with the predicted class (left) 

are visualized through CAM. Note that the residual concepts heatmap most closely resembles the whole image CAM 

heatmap. Taken from Zhou et al. (2018, p.123). Figure reuse rights gained through RightsLink/Springer Nature on 

13/1/2022. 
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no closer to fully interpretable models since the majority of test images should be 

deemed uninterpretable. Even with a vast number of trained concepts, there is no 

guarantee that a neural network would not rely on some set of concepts 

incomprehensible to a human (Zhou et al., 2018).  

Recently, Chen et al. (2020) introduced concept whitening, which the authors argue as 

making the neural network more interpretable by training the network not just to 

correctly identify the object, but also constrain the network in the latent space to learn 

a set of concepts that explain the object. While the other concept vector techniques 

mentioned above assume that the latent space of a neural network allows for its post-

hoc analysis and portioning into concepts, Chen et al. (2020) contend that this 

assumption is not warranted and that it is necessary to explicitly train the model to use 

the latent concepts. Concept whitening approach has the downside that the training 

procedure requires alternating the optimization of the classifier objective function and 

an additional objective function responsible for the alignment of the concepts to the 

classes in the latent space (Chen et al., 2020). The concept whitening technique can be 

used as a replacement for batch normalization, but effective training also relies on 

collecting a set of relevant concepts for each image.  

2.7.3.1. Issues with concepts 

The main downside for all concept-based techniques is that a list of relevant concepts 

could be very difficult to collect as it requires manual labelling by humans who tend to 

have varying views on what is relevant. A further problem with concepts is that 

ambiguous concepts that combine many ideas (e.g. sofa bed) may not separate well in 

latent space because they are inherently correlated – this is true also for concepts such 

as sky and plane, as mentioned by Chen et al. (2020). Another very real problem is that 

concepts are not language-agnostic – certain concepts simply do not translate well and 

there is a chance that minority languages can become even more marginalised in the 

world of artificial intelligence. Furthermore, technical challenges in the image collection 

may be an obstacle in using concept-based visualizations, with for example microscopy 

images not having enough resolution to allow for easy and clear partitioning of pollen 

grains into concepts beyond ‘grain’ and ‘background’, which leaves out important 

features like ornamentation and aperture. Concept-based visualizations are also likely 

to fail in the case of concepts that are not easy to visualize, such as wind or words 
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describing actions. Another problem one may come across is that human expert 

identifications could be based on misconceptions and a concept-based visualization 

would thus be inherently flawed as it would simply encode human biases. It can 

therefore be argued that relying on concepts as interpretations of the neural network’s 

behaviour is simply adding another level of complexity without getting any closer to 

trustworthy models. 

2.7.4. Saliency maps 

In this thesis, concepts are not collected as it is a time-consuming task and concepts 

are also not viable for the tasks presented in the following chapters due to their 

unavailability and the nature of the tasks being such that the concepts’ corresponding 

features are difficult to identify. Thus, the main interest is in post-hoc explanations of 

individual samples through saliency maps. Saliency maps can be divided further into 

perturbation-based and backpropagation-based methods (Shrikumar et al., 2017a; Y. 

Wang et al., 2020). Within the perturbation-based methods there are the forward-

propagating techniques that involve iteratively changing the input image by either 

occluding parts of the image with a unicolour rectangle (Zeiler and Fergus, 2014) or by 

replacing a more complex segment with the average colour of the scene (Zhou et al., 

2015). One can collectively term these as Occlusion Sensitivity techniques, following a 

term used by Zeiler and Fergus (2014). These approaches are slow, however, requiring 

several runs for the same input image to produce a single saliency map. Alternative 

techniques reliant on perturbations are the techniques of Real Time Saliency (Dabkowski 

and Gal, 2017), Local Interpretable Model-agnostic Explanations (LIME) (Tulio Ribeiro et 

al., 2016), Meaningful Perturbation (Fong and Vedaldi, 2017), and Hierarchical 

Attribution Fusion (Y. Wang et al., 2020), all of which either require training an auxiliary 

network as in the case of Real Time Saliency or explicitly learning saliency masks 

alongside the classifications. Using an auxiliary network is undesirable because now one 

needs to interpret two models rather than just one, while learning masks requires some 

explanation of how these masks were created, taking us back to the problem of meta-

explanations. 

In contrast, backpropagation-based methods that rely on the gradient and/or the 

activations can perform saliency mapping in a single pass and without explicit training. 

However, there are several techniques from which to choose and many of which have 
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either been critiqued or been shown to approximate to some simpler method. For 

instance, using Deconvnet as a technique to visualize neural network activations was 

introduced by Zeiler and Fergus (2014). In this visualization context, Deconvnets work 

by attaching a deconvolutional layer to every convolutional layer to create a continuous 

path from the output back to the input pixels. To examine an activation in a 

convolutional layer, all other activations are set to zero and the feature map of interest 

is passed as input to the corresponding Deconvnet layer, resulting in a visualization of 

the activations within the convolutional layer. Simonyan et al. (2014) showed that 

instead of using such a complex structure, one can simply compute the gradient of the 

neuron activity with respect to the layer’s input to produce an equivalent or similar 

visualization, with the main difference being how the backward pass through ReLU is 

handled. The original Deconvnet method was further built upon by the Guided 

Backpropagation method in that it combines Deconvnet’s method of backward 

propagation with normal backpropagation, preventing the backward flow of negative 

gradients (Springenberg et al., 2015).  

Similarly, Layer-wise Relevance Propagation (LRP) introduced by Bach et al., (2015) was 

argued by Shrikumar et al. (2017b) to be equivalent to multiplying the activation of a 

neuron with the gradient of the activation in the final layer with respect to the neuron 

in question. LRP is therefore equivalent to a method in which the input signal is 

multiplied by the Simple Gradient method of Simonyan et al. (2014) and this simpler 

method is termed Input*Gradient. Shrikumar et al. (2017a, 2017b) further noted that 

Input*Gradient (and therefore also LRP) implicitly uses a zero-valued reference image in 

producing a saliency visualization. Shrikumar et al. (2017a, 2017b) went on to introduce 

DeepLIFT, which explicitly uses a reference image to first produce baseline activations 

and gradients for a given class and to which all subsequent images of that class would 

be compared. It was later shown that LRP, Input*Gradient, and DeepLIFT are very highly 

correlated and likely to produce similar visualizations (Ancona et al., 2018). Such 

reference image methods are problematic because they depend on the choice of 

reference image, which can be very difficult to find since an ideal reference image would 

be the most central image in a population of images that all capture some object. Such 

an ideal image is unlikely to exist and even if it did, locating this ideal reference would 

be difficult.  
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It has further been argued that LRP and DeepLIFT are not implementation invariant, 

meaning that when given two models with different network structures that produce 

exactly the same outputs for any given inputs, LRP and DeepLIFT would produce varying 

saliency maps (Sundararajan et al., 2017). To avoid implementation variance as well as 

issues in sensitivity – which in this case is defined such that if two very similar images 

differing in one feature are predicted to belong to different classes, the differing feature 

should be given non-zero importance in the saliency map – Integrated Gradients method 

was introduced (Sundararajan et al., 2017). In Sundararajan et al.'s (2017) opinion, most 

gradient-based techniques do not satisfy the sensitivity criterion because the input 

image is flattened, resulting in zero gradients and causing gradient-based saliency maps 

to highlight irrelevant features in the input images. The authors of Integrated Gradients 

stated that for a baseline (e.g. black) image and an input image, integrated gradients are 

defined as the path integral of the gradients on the straight line path from the baseline 

to the input (Sundararajan et al., 2017). In practical terms, Integrated Gradients involves 

perturbing the original input image and passing it through the model several times and 

computing the gradients for each pass to measure the relationship between the 

perturbed features and the model prediction. These gradients are then integrated 

through Riemann approximation to arrive at the pixels with the largest impact on the 

prediction score.  

These three techniques (LRP, DeepLIFT, and Integrated Gradients) all attempt to address 

the problem of an important feature with locally small derivatives saturating the class 

activation function (Smilkov et al., 2017). Most methods that use gradients in the 

creation of saliency maps also suffer from noise that may be linked to sharp fluctuations 

in the derivative of the class activation function (Smilkov et al., 2017). To address this 

issue, Smilkov et al. (2017) propose a method called SmoothGrad, which wraps around 

the saliency method of choice and adds varying amounts of Gaussian noise to the input 

images and then averages the outputs into a single heatmap, producing visually less 

noisy saliency maps. 

Like LRP, DeepLIFT, and Integrated Gradients, Deep Taylor Decomposition (DTD) and 

Pattern Attribution also aim to decompose the relevance in the output (e.g. class score 

in softmax) into contributions from the individual inputs (Kindermans et al., 2017; 

Montavon et al., 2017). DTD is claimed to achieve this decomposition by approaching 
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each neuron as a separate function to which Taylor decomposition is applied in order to 

arrive at the distribution of contributions (Montavon et al., 2017). However, DTD 

depends on the choice of a root point, which is defined for each neuron separately such 

that the neuron’s vector of weights multiplied by the root point should equal zero 

(Montavon et al., 2017). There may be several root points and choosing the best one 

may be difficult. However, Pattern Attribution and LRP may both function as root point 

estimators for DTD (Kindermans et al., 2017, 2019). 

In addition to the already mentioned techniques, there is a whole family of Class 

Activation Mapping (CAM) techniques that highlight objects based on the feature map 

activations, including the eponymous technique of CAM (Zhou et al., 2016), Grad-CAM 

(Selvaraju et al., 2017a, 2017b, 2019), Grad-CAM++ (Chattopadhay et al., 2018), XGrad-

CAM or axiom-based Grad-CAM (Fu et al., 2020), Median-Pooling Grad-CAM (Song et 

al., 2021), LayerCAM (Jiang et al., 2021), Eigen-CAM (Muhammad and Yeasin, 2020), 

Score-CAM (H. Wang et al., 2020b), Ablation-CAM (Desai and Ramaswamy, 2020), and 

smooth Score-CAM known as SS-CAM (H. Wang et al., 2020a). In general, CAM 

techniques are similar to the methods already mentioned, but they have some special 

characteristics. For instance, they are not generally able to identify individual influential 

pixels in the input image, but rather highlight larger areas in the saliency maps (Figure 

II-10), although it has been suggested that Grad-CAM or Grad-CAM++ can be combined 

with Guided Backpropagation to achieve pixel-level attributions (Selvaraju et al., 2017a, 

2017b, 2019; Chattopadhay et al., 2018). Of all CAM methods, Grad-CAM appears to 

have gained the widest use (e.g. Kim and Kim, 2020; Panwar et al., 2020; Zhao et al., 

Figure II-10. Example images for Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, and SS-CAM. Taken 

from H. Wang et al. (2020a, p.4). 
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2021) due to the simplicity of implementing it and the speed at which it produces class 

discriminative saliency maps. 

Zhou et al.'s (2016) original CAM is often not used because it is overly restrictive in that 

it requires a global average pooling layer to be present immediately before the class 

activation function and a linear classifier needs to be retrained for each class. To 

overcome these issues, Grad-CAM was introduced as a more general technique that can 

be applied to problem domains beyond image classification, such as image captioning 

or visual question answering, irrespective of the presence of a pooling layer before the 

class activation function (Selvaraju et al., 2017a, 2017b, 2019). Grad-CAM works through 

the elementwise multiplication of the forward feature map activations of a 

convolutional layer and the gradients of the class score with respect to the feature maps 

in question. Normally, it is the feature maps of the last convolutional layer that are used 

in this fashion. However, Chattopadhay et al. (2018) noted that multiple occurrences of 

the same object may not be highlighted by Grad-CAM. To remedy this, Chattopadhay et 

al.'s (2018) Grad-CAM++ uses second order derivatives to obtain the gradient weights, 

which adds further computational complexity. According to Fu et al. (2020) Grad-CAM++ 

performs poorly as a class-discriminator and therefore loses one of the most attractive 

qualities about Grad-CAM. Median-pooling Grad-CAM improves on Grad-CAM++ by 

taking the median of the gradients and therefore reduces the computational complexity 

(Song et al., 2021). Techniques like Ablation-CAM and Eigen-CAM remove gradients 

from the computation entirely with Ablation-CAM resorting to modifying the forward 

activations while Eigen-CAM relies on principal components to detect the relevant 

information in the activations (Desai and Ramaswamy, 2020; Muhammad and Yeasin, 

2020). In turn, LayerCAM extends CAM methods from the final convolutional layer to 

lower levels as it combines the activations in these layers to form a single heatmap, and 

Score-CAM and its smooth version SS-CAM take an alternative approach in that they 

perturb the input image with the activations of a chosen convolutional layer (H. Wang 

et al., 2020b, 2020a; Jiang et al., 2021). SS-CAM was partly inspired by SmoothGrad and 

differs from Score-CAM mainly by the fact that the activations or the input image is 

smoothed through Gaussian noise. 
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2.7.4.1. Issues with saliency maps 

Many of the methods mentioned so far suffer from one problem or another. 

Perturbation methods are slow and computationally more complex than methods that 

require a single forward and a potential backward pass, while gradients are noisy and 

prone to vanishing. The computational complexity of some methods is clearly a problem 

when speed in decision making is valuable, while inaccurate, incomplete or non-class 

discriminative saliency maps are an even bigger problem for high-stakes decisions. 

Additionally, saliency methods tend to explain the model’s behaviour for one input 

image with respect to one class, resulting in incomplete explanations. To extract further 

explanatory information from the model, one therefore has to use several input images 

and find the model’s explanations for each image with respect to all classes. It would be 

highly desirable to have a saliency method that can extract the model’s behaviour 

without the need for iterative probing of the model’s decision. Readily interpretable 

models have an upper hand over post-hoc saliency methods in this respect, but as 

mentioned, concept-based solutions have their own unique problems. Thus, it may be 

that it is not possible to define the best visualization technique for all tasks and that the 

ideal visualization technique is actually task dependent.  

Finally, it has been shown that Gradient*Input, Integrated Gradients, and DTD are 

unreliable visualization techniques; when an inconsequential shift is added to the input 

image, these methods were found to be sensitive to the change (Kindermans et al., 

2019). In contrast, Deconvnet, Guided-Backpropagation, PatternNet and raw gradients 

were not found to be sensitive to constant shifts in inputs (Kindermans et al., 2019). 

However, Guided-Backpropagation and Deconvnet perform partial image recovery 

rather than produce any meaningful insights about the performance of the model (Nie 

et al., 2018). In fact, Adebayo et al. (2018) argue that any gradient method that involves 

multiplying the input image with the gradient will approximate the input, leading to 

failure in saliency visualization as the resulting saliency map functions as an edge 

detector. In addition, Ghorbani et al. (2019a) discovered that adversarial attacks can be 

performed in a way that change the focus of the saliency map to an object of different 

class without changing the class prediction. Srinivas and Fleuret (2021) on the other 

hand argue that softmax logit gradient-based saliency methods should not be used for 

the interpretation of the model unless the model objective function is regularized 

through score-matching or gradient-norm since the input-gradients of these models are 
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better aligned to the ground-truth training data. Furthermore, Srinivas and Fleuret 

(2019) point out that saliency maps are too restrictive since they do not take both the 

weights and the bias term into account as the bias term is often ignored altogether. 

Grad-CAM-type saliency techniques relying on gradients are not prone to simply 

recovering the input image because they do not compute the gradient from the output 

to the input image. Grad-CAM in particular has the attractive qualities of being simple 

to implement and fast to process images, resulting in its popularity as the go-to saliency 

mapping method. Grad-CAM also produces class discriminating heatmaps that allow the 

verification of the model’s focus on the object of interest, although relying on Grad-CAM 

for high-stakes decisions or tasks that require granular visualizations may be 

questionable. Grad-CAM is further discussed in Chapter III, where its class discriminative 

performance is improved and it is used on ensemble models.  

 Recent applications of machine learning in archaeology 

Machine learning has been increasingly used in archaeology in the last few years, but 

only a handful of studies have applied deep convolutional neural networks to solve 

archaeological identification problems. Instead, many of the archaeological studies 

applying deep learning focus on remote sensing and site prospection, which is perhaps 

unsurprising given that geospatial data is relatively widely available and those who 

process geospatial data already possess the foundational technical skills required to 

apply complex deep learning algorithms. Geospatial data is also systematically coded 

and produced in large quantities, as noted by Bickler (2021). The progress in the use of 

AI in geospatial context has even led to the spawning of archaeological AI tech start-ups 

such as ArchAI Ltd. Although increasingly common in subjects related to archaeology 

such as archiving, natural language processing applications are considered to be out of 

scope for this section. 

Various types of machine learning models have been harnessed to locate and predict 

the presence of archaeological sites from LiDAR data (Guyot et al., 2018; Kazimi et al., 

2018; Caspari and Crespo, 2019; Due Trier et al., 2019; Lambers et al., 2019; Verschoof-

van der Vaart and Lambers, 2019; Soroush et al., 2020) and satellite imagery (Caspari 

and Crespo, 2019; Orengo et al., 2020) in different parts of the world, while drones 

combined with machine learning algorithms have been used to create detailed maps of 

archaeological structures that rely on the identification of individual stones in the 
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Mongolian desert environment (Monna et al., 2020). Orengo and Garcia-Molsosa (2019) 

took advantage of a drone to automate pedestrian field survey, capturing images of the 

surface from which orthophotomosaics were created. These orthophotomosaics were 

then segmented using a Random Forest algorithm to locate sherds of pottery in the 

images, which allowed the authors to create accurate maps displaying the dispersal and 

density of potsherds in their study areas (Orengo and Garcia-Molsosa, 2019).  

The geochemical signals of soils and sediments have also been subjected to learning 

algorithms, namely k-nearest neighbours, support vector machines, and artificial neural 

networks, to predict the presence of archaeological sites (Oonk and Spijker, 2015), 

whereas classifying the porosity types in photomicrographs of archaeological thin 

sections has been found to be a suitable problem domain for deep learning CNNs (Arnay 

et al., 2021). Furthermore, the interpretation of ground-penetrating radar signals have 

been improved through machine learning algorithms (Kim et al., 2019; Green, 2020; 

Travassos et al., 2021) and Guyot et al. (2021) tested which type of topographic 

visualization technique achieved the best segmentation result of LiDAR data when using 

a Mask R-CNN machine learning algorithm. Recently, a machine learning ensemble 

model was used to detect looting of heritage sites from satellite images (El-Hajj, 2021). 

The few archaeologically relevant object identification tasks in which deep learning has 

been used mainly involve categorizing pottery sherds (Benhabiles and Tabia, 2017; 

Chetouani et al., 2018, 2020; Cintas et al., 2019; Itkin et al., 2019; Pawlowicz and 

Downum, 2021), statues (Gansell et al., 2014; Canul-Ku et al., 2019), and, although only 

outside the archaeological framework, pollen (Gonçalves et al., 2016; Daood et al., 2017; 

Daood, 2018; Khanzhina et al., 2018; Sevillano and Aznarte, 2018; de Geus et al., 2019; 

Astolfi et al., 2020; Sevillano et al., 2020). The use of machine learning methods has 

gained some interest in lithic tool research, too, although the approaches taken do not 

necessarily fall under deep learning. Naïve Bayes was used in classifying Paleoindian 

fluted projectile points from their landmark-semilandmark and image pixel data 

(MacLeod, 2018), and both Nash and Prewitt (2016) and Grove and Blinkhorn (2020) 

used ANNs to create lithic classifiers based on typological information. In an attempt to 

create a more general archaeological object identifier, Resler et al. (2021) used pre-

trained deep learning CNNs in training a classifier capable of predicting the time period 

of the object from an image and created a query tool to detect culturally similar 
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archaeological communities. Furthermore, the estimation of temperature of 

archaeological remains that were heated in antiquity seems to be of interest to some 

researchers, as Agam et al. (2021) used linear support vector machines and ANNs to 

estimate the temperatures of heated flint artefacts and Wärmländer et al. (2019) 

created a predictive model of the temperatures of heated bones with the help of k-

nearest neighbours.  

Although machine learning algorithms such as Genetic Algorithm for Rule Set 

Propagation (GARP), Maximum Entropy (MaxEnt), general additive model (GAM), and 

gradient boosting model (GBM) have seen many uses in contemporary and historical 

species ecological niche modelling (e.g. Banks et al., 2013; Ray et al., 2018; Chala et al., 

2019), the use of machine learning – and deep learning in particular – in the domain of 

osteoarchaeology has been more sporadic. The few examples one can provide relate to 

bone surface modifications (Domínguez-Rodrigo and Baquedano, 2018; Byeon et al., 

2019; Cifuentes-Alcobendas and Domínguez-Rodrigo, 2019, 2021; Domínguez-Rodrigo, 

2019; Domínguez-Rodrigo et al., 2020; Jiménez-García et al., 2020; Courtenay et al., 

2021), tracking human remains trade (Huffer and Graham, 2018), and osteometrics 

(Czibula et al., 2016; Curate et al., 2017; Monson et al., 2018; Knecht et al., 2021; Garvin 

et al., 2022). In the case of bone surface modifications, deep learning convolutional 

neural networks – propelled largely by the work of Manuel Domínguez-Rodrigo – has 

emerged as the method of choice due to the visual nature of the task. As in other 

disciplines, Grad-CAM has emerged as the visualization technique of choice in the few 

archaeological deep learning studies aiming to explain their models’ decisions 

(Pawlowicz and Downum, 2021), especially in bone surface modification (Byeon et al., 

2019; Cifuentes-Alcobendas and Domínguez-Rodrigo, 2019; Jiménez-García et al., 2020).  

Regarding osteometrics, Czibula et al. (2016) employed ANNs and genetic algorithms to 

create stature prediction models, Monson et al. (2018) relied on linear discriminant 

analysis, support vector machines, and random forest techniques in classifying the 

dentitions of extant apes, and Garvin et al. (2022) created a forensic tool to provide 

species identifications for humans and 27 non-human species from metric 

measurements with the help of classification and regression decision trees. While 

Curate et al. (2017) focused on sex estimation of a person from femoral measurements 

through the use of support vector machines and reduced error pruning trees, Knecht et 
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al. (2021) applied support vector machines and artificial neural networks to establish sex 

from the measurements of the greater sciatic notch. Because these two-dimensional 

metric measurements produce only crude approximations of the entire morphology of 

a bone, Imaizumi et al. (2020) and Lam (2020) both applied machine learning to 

determine the sex from 3D models of human skulls. Imaizumi et al. (2020) combined 

support vector machines and principal components analysis in their analysis of CT-scans, 

whereas Lam (2020) exploited structured-light scanning to collect the 3D point data 

which they used as the input to Qi et al.'s (2017) PointNet. In a study that balances the 

speed of metric data acquisition and the morphological coverage of the specimen that 

one can achieve with higher dimensional data, photographs of the ilium of infant 

individuals were used as input to deep learning algorithms (VGG-16 and ResNet-50) to 

produce sex estimation classifiers that matched human expert ability (Fernández Ortega 

et al., 2021). In turn, MacLeod and Kolska Horwitz (2020) used LeNet-5 in the 

classification task of sexing wolf crania and achieved perfect attribution accuracy in a 

leave-one-out jackknife procedure. However, apart from an unpublished bioRxiv pre-

print study in which three species of rodents were separated on the basis of images of 

their teeth (Miele et al., 2020), deep learning has not been applied in the problem 

domain of classifying animal bones to species. Instead, studies aiming to discriminate 

between species have traditionally applied metric data, classical statistics, and 

morphometrics (Andjelković et al., 2016; Janssens et al., 2016, 2019; Davis, 2017; 

Haruda, 2017; Salvagno and Albarella, 2017; Zedda et al., 2017). Indeed, there are entire 

journals dedicated to this topic, such as Zoomorphology and Journal of Morphology. 

It should be clear from this brief review that deep learning CNNs are becoming 

increasingly common in archaeology, with majority of the publications employing these 

methods having been published after 2018. As such a new acquaintance to 

archaeologists, it is no surprise that some of the published papers present teething 

technical problems. For instance, many studies forgo the cross-validation process and 

settle for a single test-training set split due to the seemingly small size of their dataset 

(Arnay et al., 2021; Domínguez-Rodrigo et al., 2021; Resler et al., 2021) or the 

hyperparameter optimization process is either performed manually or skipped 

altogether by simply choosing a set of hyperparameters (Chetouani et al., 2020; Miele 

et al., 2020; Fernández Ortega et al., 2021). While these methodological choices can be 

forgiven, they do not represent best practice; not optimizing the hyperparameters leads 
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to the models potentially not finding the global optimum and not using cross-validation 

makes it difficult to judge how well the models generalise.  

However, what cannot be justified from a theoretical perspective is the use of 

typological classes or data in the construction of a supervised classifier. The problem 

with using supervised machine learning with typologically labelled data is that the 

assigned labels are inherently wrong (or at best, unreliable) since they represent modern 

categorical constructs and therefore embed modern biases into the classes. 

Furthermore, typologies have the tendency to change over time without a change in 

terminology (see Whittaker et al., 1998), meaning that typologies are not time-invariant, 

unlike metrics, chemical analyses, and other true scientific methods. It is for this reason 

that one should not place much trust in the results of Pawlowicz and Downum (2021), 

Nash and Prewitt (2016), or Grove and Blinkhorn (2020). This does not mean that one 

cannot study lithics or other cultural remains with the help of deep learning. On the 

contrary, these studies likely improved because of the use of deep learning, but they 

nonetheless should have implemented unsupervised learning to place the items into 

groups to remove the human bias that comes with typology, and only then perhaps 

created a separate classifier based on these new groups if needed. The problem of 

changing labels and embedded biases are not present in the identification of modern 

biological remains, at least not to the same extent, even though the concept of species 

has been debated over many decades (Mayr, 1942; Simpson, 1951; Wiley, 1978; 

Wheeler and Meier, 2000; Hausdorf, 2011; Fišer et al., 2018).  

In applying image recognition to archaeological identification tasks, a multitude of 

problems can be solved. If an object is photographed from all aspect or a 3D model is 

used, the entire morphology of the object is taken an advantage of – albeit the 

dimensionality is reduced to two dimensions in photography – not just specific points as 

is the case when utilising more traditional methods such as morphological assessment, 

morphometrics and geometric morphometrics. The problem of reference mimicry (i.e. 

the variance of the reference population’s traits being reflected in the variance of the 

traits in the target population) can also be mitigated since deep neural network models 

can be retrained with the information from completely new populations, including 

archaeological ones (Millard, 2006; Wolfhagen and Price, 2017). Importantly, entirely 

artificial examples that simulate fragmentation in archaeological assemblages may be 
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introduced through data augmentation techniques like style transfer using Generative 

Adversarial Networks (see Domínguez-Rodrigo et al., 2021; Khanzhina et al., 2022), 

removing the disjunct between modern and archaeological populations. These 

fragmentation augmentations may be produced from 3D models and mapped to 2D 

images or 3D models, or fragmented objects may be photographed and these patterns 

may then be transferred to images of complete objects using GANs to create an even 

more extensive dataset of images of fragmented objects. In computer vision, this latter 

process is called image-to-image translation and it is an active area of research (for an 

overview, see Pang et al., 2022). Furthermore, deep learning modelling approach is a 

probabilistic one, allowing each specimen to be assigned a probability of class 

membership – using Bayesian Neural Networks the model could be made explicitly 

Bayesian. Other benefits of using machine learning include quick and cheap inference, 

although model may be expensive. Likewise, the results of deep learning models are 

easily reproduced by transferring the model shape and the trained weights from one 

computer to another and these models can be applied anywhere given the availability 

of electricity and a computer. 

Another important aspect of using deep learning often missing in archaeological studies 

is that of trust. Although Grad-CAM has been used in archaeology, it is not very 

meaningful to see a heatmap overlaid on an image when the heatmap is created on the 

basis of just the predicted class. Instead, for a given input image, it is necessary to apply 

Grad-CAM (or any other class discriminating saliency visualization technique) with 

respect to all classes, not just the predicted class. The visualizations of the attention 

heatmaps could be limited to just the classifier’s top-k predicted classes as well. This 

approach would then show that the same features highlighted by the predicted class are 

not highlighted in the incorrect classes, which has the potential to increase or decrease 

one’s trust in the published models. Using visualization techniques is therefore a must 

for any research with a visual aspect to it, such as those studies that deal with 

identifications of artefacts, biological entities, or features of objects through images or 

3D data. Regarding site prospection and remote sensing, one can only place trust in a 

deep learning model predicting the location of archaeological sites after a significant 

portion of the predicted sites have been physically visited, which is obviously a lengthy 

process. For an ideal study, hyperparameter tuning, under- and over-fitting, adequate 

data splitting into training, validation and test sets, model performance, and the model’s 



76 
 

trustworthiness should all be well described. One should not forgo any of these 

constituents in the experiment design without a good reason, as they enable easier 

evaluation of the model and the training process, leading to better performing models. 

 Conclusion 

This chapter works as a literature review of modern deep learning convolutional 

neural networks, showing how they work, what current techniques one can employ, and 

why trust in the models matters. It should be evident to the reader that it is impossible 

to fully cover all topics under the umbrella term of deep learning or even within the 

domain of convolutional neural networks in such a limited space, particularly given that 

many more advanced writers struggle to fit even the basics in one textbook. The main 

insight from this review is that although deep learning models appear extremely 

complex from the outside, bordering on intelligent, they can be intuitively understood 

as a series of chained functions that each feed the following function and receive 

feedback from the final function. Alternatively, one can think of deep learning models 

as interpolating models that are able to efficiently condense vast amounts of data and 

align their weights to match the underlying training data. All of this is done in a portable 

format through a formalized neural network structure of which there are an infinite 

variety and only a few of which have been trained, published and become 

commonplace. The merits of many visualization techniques and their contribution to the 

user’s trust in the model was also explored at length, the conclusion being that there is 

no single existing visualization technique that fits every problem. The final section of this 

chapter focused on recent machine learning applications within archaeology, showing 

that archaeology as a discipline is increasingly adopting deep learning and that there is 

room for improvement in terms of applying best practices. As discussed, the 

classification of images of palaeoenvironmental remains through deep learning has not 

fully taken hold yet and the following chapters aim to correct this.  
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Chapter III. Pilot study: implementing deep 
convolutional neural networks on 
POLEN23E image dataset 

 Introduction 

Since its inception, palynology has been applied in various fields of research, including 

archaeology, forensic science, ecology, climate change studies, allergy research, oil 

exploration, and honey typing (Allen et al., 2008; Holt et al., 2011). In general, pollen 

analysis follows a methodology in which pollen and spores are sampled from air, water, 

soils, sediments, cave calcite deposits, or ice cores, after which the samples are cleaned 

from residues and contaminants and subsequently prepared for microscopy (Lowe and 

Walker, 2015). As the sample preparation varies based on the medium from which 

pollen is extracted and the equipment used to do so, palynological sample preparation 

cannot be succinctly outlined here. However, see Frenz and Guthrie (2001) for an 

example method of aeropalynological sampling and Bernhardt and Willard (2015) for 

isolating pollen from sedimentary samples. Regardless of the exact methodology, the 

initial sample preparation is followed by the identification of pollen, which has long been 

a laborious process in which experts manually identify and count individual pollen grains 

(Lowe and Walker, 2015). 

Although palynology has become a very useful tool for many fields over the last century, 

some issues and potential for improvement have been identified. These problems 

include the need for larger pollen counts and better determination to species rather 

than genus level to attain higher confidence, less subjectivity to gain better accuracy, 

finer geographical and temporal resolution for better climatic models, as well as faster 

identification to process the growing number of samples that all of the above 

improvements would bring about (Stillman and Flenley, 1996). Pollen counting is 

especially problematic, since total pollen counts normally range from 150 to 500 grains 

and can take up to ten hours to complete for a single slide (Stillman and Flenley, 1996). 

According to Weng et al. (2006), normal pollen counts often fail to account for rare, 

environmentally diagnostic species, as well as species with lower pollen yields. Weng et 

al. (2006) estimate that for rare taxa with 0.1% frequency in a theoretical sample, the 

pollen grain count must be more than one thousand if one aims to reach better than 

80% detection probability. Moreover, Weng et al. (2006) assert that if one counts only 
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300 grains, taxa with lower than 1% frequency in this theoretical sample are only 

encountered by chance. 

3.1.1. Morphological variation and human ability 

The most common features employed in pollen identification are overall shape, size, 

texture, ornamentation, and aperture. However, as pollen exine (the outer wall) is made 

of sporopollenin (Brooks and Shaw, 1968), a flexible polymer, the size and shape of 

pollen grains can vary by ±15% within species (Martin, 1959; Salgado Labouriau et al., 

1965; Li et al., 2004). While the molecular mechanism and other possible causes that 

give rise to the patterning of exine morphology (i.e. the ornamentation and texture) 

remains elusive (Ariizumi and Toriyama, 2011), the variation in pollen grain size is 

currently thought to result from the changes in the amount of water content inside the 

grain (Pacini et al., 2006; Ejsmond et al., 2011). The shape of the grain is affected by 

desiccation as well, with at least some pollen being able to fold onto themselves with 

increased desiccation and thus drastically changing their shape from spheroid to oblong 

Figure III-1. Process and examples of harmomegathy. A) Responding to changes in humidity by folding allows partial 

dehydration of the cellular material and prevents complete desiccation. B) Structure of a typical tricolpate (tri-

aperturate) pollen grain. C – F) SEM images of C) monosulcate; D) tricolpate; E) inaperturate; and F) monoporate 

pollen grains in their hydrated and folded states. Scale bar is 20 µm. Figure and caption adapted from Katifori et al. 

(2010, p. 7636). Figure reuse rights gained by default for non-commercial and educational use through PNAS. 
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in a process called harmomegathy (Katifori et al., 2010). As shown in Figure III-1, 

different pollen types respond to desiccation in a different manner, which further 

complicates the matter. In addition, the shape of different types of pollen vary 

significantly depending on the mounting media and treatment that the pollen has gone 

through for microscopy, leading to certain species being more easily identifiable with 

10% KOH solution pre-treatment and others with acetolysis pre-treatment (Praglowski, 

1970), although many treatments can be applied on the same sample (see figure 14.2 in 

Bernhardt and Willard, 2015). These differences in mounting treatment are important 

as they may lead to visual cues for machine learning algorithms. Furthermore, the pollen 

of certain taxa such as Viola are heteromorphic, meaning that pollen grains from the 

same plant differ in their aperture number (Nadot et al., 2000). Mignot et al.'s (1994) 

survey of 186 angiosperm species found that this was the case in over 32% of studied 

plants. With this inter- and intraspecific variation in pollen morphology in mind, 

manually choosing the correct features to be utilised by an algorithm to correctly 

identify individual pollen grains seems extremely difficult. 

For the same reason, it is not surprising that Mander et al. (2014) were able to show 

that expert humans are also prone to misidentifying pollen, even from scanning electron 

microscopy (SEM) images. In their study, nine analysts of varying skill-level attempted 

to identify ten SEM images of each of the 12 species of grass pollen in two rounds, 

including some duplicates. The analysts were asked to self-identify to one of four groups 

based on the amount of time spent identifying microscopic object through morphology 

– these groups were novice, intermediate, expert, and professional. The last two 

categories were differentiated on the basis of holding a PhD in a subject where they 

identified microscopic objects through morphology, with professionals being those who 

do have a PhD. The analysts (two novices, two intermediate-skilled, two experts, and 

three professionals) were given a training set that contained five images of each pollen 

type. The whole cohort managed an average of 72.87% correct classification rate (CCR), 

the non-novice analysts achieved 78.39%, and the two experts averaged 87.70% 

between themselves. Notably, analyst experience was not entirely correlated with 

identification accuracy, as two of the three professionals performed worse than the two 

intermediate-skilled analysts. Furthermore, the analysts’ consistency ranged widely 

from 32.5% to 87.5% between the two rounds. In comparison, Mander et al. (2013) used 
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two computer vision techniques to achieve 77.5% and 85.8% classification accuracy 

using a bigger dataset of 20 SEM images of the same 12 species of grass pollen.  

3.1.2. Automation in pollen classification 

As recent years have seen the publication of deep learning algorithms capable of very 

high accuracies in pollen classification (Daood et al., 2017; Khanzhina et al., 2018; 

Sevillano and Aznarte, 2018; Sevillano et al., 2020), it is possible that the problem of 

automated pollen classification was previously approached from the wrong angle. Such 

past approaches often focused on discriminating the pollen grains based on manually 

defined specific features, with for example Holt et al.'s (2011) system utilising 43 

different numeric features combined with a neural network approach following Zhang 

et al.'s (2004) methodology. However, modern machine learning techniques have been 

developed to automatically extract and learn features from images, thus removing the 

need for manual feature selection. Because deep learning convolutional neural 

networks have been shown to be excellent in pollen classification in recent research 

(Daood et al., 2017; Khanzhina et al., 2018; Sevillano and Aznarte, 2018; Sevillano et al., 

2020), only deep learning CNNs are considered here. Given the relatively short history 

of applying deep learning to pollen classification and judging from the accuracies 

reported, it is probable that the performance of these algorithms has not yet peaked in 

this problem domain. 

As with many techniques, it has been argued that automation will revolutionise 

palynology (e.g. Langford et al., 1990; Stillman and Flenley, 1996; Li et al., 2004; Treloar 

et al., 2004; Zhang et al., 2004; Allen et al., 2008; Holt and Bennett, 2014), but its 

implementation has proven to be more difficult than anticipated. The first documented 

suggestion of automating pollen identification has been attributed to Flenley (1968), 

who pointed out many of the problems with manual pollen identification discussed 

above. However, due to lack of computing power at the time, it was not until Langford 

(1988) applied statistical and image-processing techniques to SEM pollen grain images 

to analyse pollen texture features that automated image-based pollen identification 

began to take root. While a few attempts had been made between Flenley's (1968) and 

Langford's (1988) publications, most notably by Witte (1988) and Mirkin and 

Bagdasaryan (1972), they were found lacking in accuracy and consistency. The latter 

used Fourier series in conjunction with holography to produce two holograms of the 
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same grain in a method that reached 93% similarity – far from satisfactory when 

considering that the comparison was between two holograms of the same object 

(Stillman and Flenley, 1996, citing Mirkin and Bagdasaryan, 1972). Witte (1988) on the 

other hand used PCA to discriminate distinct looking pollen grains based on their shapes, 

but again could not achieve accuracy higher than 68% after excluding outliers and only 

33% when including outliers. In contrast, the SEM method of identifying pollen grains 

based on their textures achieved 94.3% accuracy for six pollen taxa (Langford et al., 

1990). In their attempt to extend Langford et al.'s (1990) research to 12 taxa, Treloar 

(1993) realised that Fisher’s linear discriminant function did not perform well enough at 

discriminating more taxa and opted for an artificial neural network approach. Treloar 

(1993) also rejected SEM as the optimal tool for capturing images, mainly because of the 

cost and slowness of the method. 

After this initial breakthrough, many attempts (see Table III-1) at automating pollen 

identification from images have been made, but Lowe and Walker (2015, p. 185) argued 

that “these have yet to generate reliable procedures for routine use”, although this 

stance is quickly becoming untenable. One reason to be sceptical about automation in 

pollen identification may be that many studies generally try to classify fewer than twenty 

species of pollen (see Table 2 in Holt and Bennett, 2014), whereas many 

palaeoenvironmental studies aim to distinguish pollen grains of more than twenty or 

thirty genera (e.g. Guiot, 1990; Müller et al., 2003; Malkiewicz, 2010). In fact, Stillman 

and Flenley (1996) suggest that a useful automation system should realistically be able 

to identify 40 different pollen taxa. With new deep learning applications, there has also 

been a proliferation of studies that use increasingly larger datasets: Barbosa Gonçalves 

et al. (2016), Gutierrez Arias et al. (2017) and Sevillano and Aznarte (2018) used the 

same POLEN23E dataset consisting of 23 pollen grain types; Daood et al. (2017) looked 

at 30 different taxa; De Geus et al. (2019) compiled and tested the largest pollen grain 

type dataset with 134 different grain types; Sevillano et al. (2020) tested their 

methodology from Sevillano and Aznarte (2018) on a dataset of 46 pollen types collected 

with Holt et al.'s (2011) Classifynder system; and Astolfi et al. (2020) applied a range of 

deep learning models on a dataset of 73 pollen grain types. 

In addition to many pre-deep learning studies not attempting to identify a large enough 

variety of pollen grains, complete systems have also mostly failed to deliver.   
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Table III-1. List of selected studies on image-based pollen identification. Microscopy techniques: SEM = scanning 

electron microscopy; LM = light microscopy. Pre-processing: HSV = Hue, Saturation, Value; DA = Data augmentation. 

Feature extraction: CST = Colour, Shape, and Texture; BOW = Bag of Words; DCT = Discrete Cosine Transformation; 

LBP = Local Binary Patterns; ACC = Auto Colour Correlograms; WLD = Weber’s Local Descriptor; Conv = Convolutions. 

Classifiers: MLP = Multilayer perceptron with backpropagation; LD = Linear Discriminant; SMO = Sequential Minimal 

Optimization; C-SVC = C-Support Vector Classification; J48 = a decision tree-based classifier; KNN = k-nearest 

neighbours; CNN = Convolutional Neural Network; PCA = Principal Components Analysis; CMV = Class Majority 

Voting; AS = Adding Scores; SVM = Support Vector Machine; RF = Random Forest; LR = Logistic Regression; SAGAN = 

Self-attention generative adversarial network. 
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Table III-1 continued. List of selected studies on image-based pollen identification. Microscopy techniques: SEM = 

scanning electron microscopy; LM = light microscopy. Pre-processing: HSV = Hue, Saturation, Value; DA = Data 

augmentation. Feature extraction: CST = Colour, Shape, and Texture; BOW = Bag of Words; DCT = Discrete Cosine 

Transformation; LBP = Local Binary Patterns; ACC = Auto Colour Correlograms; WLD = Weber’s Local Descriptor; 

Conv = Convolutions. Classifiers: MLP = Multilayer perceptron with backpropagation; LD = Linear Discriminant; SMO 

= Sequential Minimal Optimization; C-SVC = C-Support Vector Classification; J48 = a decision tree-based classifier; 

KNN = k-nearest neighbours; CNN = Convolutional Neural Network; PCA = Principal Components Analysis; CMV = 

Class Majority Voting; AS = Adding Scores; SVM = Support Vector Machine; RF = Random Forest; LR = Logistic 

Regression; SAGAN = Self-attention generative adversarial network. 
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Table III-1 continued. List of selected studies on image-based pollen identification. Microscopy techniques: SEM = 

scanning electron microscopy; LM = light microscopy. Pre-processing: HSV = Hue, Saturation, Value; DA = Data 

augmentation. Feature extraction: CST = Colour, Shape, and Texture; BOW = Bag of Words; DCT = Discrete Cosine 

Transformation; LBP = Local Binary Patterns; ACC = Auto Colour Correlograms; WLD = Weber’s Local Descriptor; 

Conv = Convolutions. Classifiers: MLP = Multilayer perceptron with backpropagation; LD = Linear Discriminant; SMO 

= Sequential Minimal Optimization; C-SVC = C-Support Vector Classification; J48 = a decision tree-based classifier; 

KNN = k-nearest neighbours; CNN = Convolutional Neural Network; PCA = Principal Components Analysis; CMV = 

Class Majority Voting; AS = Adding Scores; SVM = Support Vector Machine; RF = Random Forest; LR = Logistic 

Regression; SAGAN = Self-attention generative adversarial network. 



85 
 

Allen et al. (2008) presented a complete automated microscopic system, which 

managed 90% accuracy on only three grass pollen types and could not achieve higher 

identification rates than humans on six different pollen types. Holt et al. (2011) 

presented a slightly upgraded version of the same product, but even with user-assisted 

counts, the system only managed to equal human experts in identifying and counting 

pollen grains, although an analysis-of-variance test showed human and machine counts 

to be different at 95% confidence level. The authors argue that the reason for this 

difference is that their system did not manage to count pollen grains that had clumped 

together, whereas experts could, therefore reinforcing the argument that their 

automated system of pollen identification and counting did not work at an acceptable 

level. Recently, this system was used by Sevillano et al. (2020) to capture images of 46 

different pollen grain types and the original neural network classifier was replaced by a 

deep learning CNN, reaching a reported average of 97.86% (± 0.252) validation accuracy 

in a ten-fold cross-validation. However, no separate test set was used to evaluate their 

model and the Classifynder system still relies on prepared microscopic slides. A system 

produced by a company called Pollen Sense is an exception in this regard. The Pollen 

Sense system detects airborne particles continuously and uses machine learning to 

classify silicate and mould particles as well as sixteen different types of pollen grain1, but 

its accuracy has not been published and it is limited to airborne pollen, rendering it 

unusable for palaeoenvironmental research. Finally, Wu et al.'s (2018) ingeniously 

engineered mobile bioaerosol sensing device was only designed to identify five different 

types of pollen grains and dust particles.  

3.1.2.1. A critical approach to state-of-the-art 

While a widely accepted complete system may seem far-fetched at present, it is 

encouraging that several recent studies have reported excellent results in the task of 

classifying pollen grains. Although neural networks have been used in pollen 

identification before (Treloar, 1993; Li and Flenley, 1999; Li et al., 2004; Zhang et al., 

2004), deep learning CNNs have only recently been implemented (Daood et al., 2017; 

Khanzhina et al., 2018; Sevillano and Aznarte, 2018; de Geus et al., 2019; Astolfi et al., 

 
1 The list of species on 27 March 2019 included Taxodium distichum, Quercus rubra, Populus deltoides, 
Fraxinus americana, Betula pendula, Ulmus americana, Alnus rubra, Morus alba, Lolium perenne, Salix 
nigra, Carya illinoinensis, Acer negundo, Pinus strobus, Poa pratensis, Olea Europa, Celtis occidentalis. 
Source: https://pollensense.com/faq/ 
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2020). Yet, perhaps due to the relative novelty of the technique, some of these studies 

are lacking in rigour in their reporting of results and testing methods. For instance, 

Daood et al. (2017) do not describe how their data was split, whether they included 

augmented images in the test set, nor did they explain why they initialised some of the 

layers’ weights using their previous model, which they had already trained with the 

same set of images. This final observation is especially concerning, since including 

images that were used for training their first model in the test set of their second model 

would result in their second model already containing knowledge about these images 

before training and thus overfit the model to the data. This overfitting can be observed 

in their Figure 2, where after approximately five epochs the testing error stabilises and 

training error continues to decrease. The additional issue of including images 

augmented by simple rotations in the test set leads to artificially elevated accuracies 

because a slightly altered representation of these test images will have been learnt by 

the neural network in training, and the model will essentially be testing whether it can 

remember and rotate them. This same issue is present in Khanzhina et al.'s (2018) 

research as well, as they augment classes with poor representation in their original 

dataset, but do not clarify whether they were included in the test set. They also do not 

make it clear whether their accuracies are based on the testing or training. Thus, it is 

difficult to accept Daood et al.'s (2017) and Khanzhina et al.'s (2018) results. 

Very similar issues remain in Khanzhina et al.'s (2022) more recent study, in which the 

models (apart from the baseline model) presented were pre-trained using images that 

were generated with StyleGAN and Self-attention GAN models, respectively. As these 

GAN models were trained with the same images as the final classifier, it is likely that the 

GAN models capture the variance of the dataset and implant it in the generated images. 

If the entire pollen image dataset was used as training data for the GAN model, this 

methodology becomes problematic because any classifier trained with images 

generated through GAN would also contain a representation of the test set and the 

classifier trained on these generated images would have some (albeit possibly distorted) 

knowledge of the individual items in the test set. Such an information leakage from the 

test set to the model means that the classifier is not a true measure of out-of-sample 

performance. However, the authors of the paper do not make it clear whether the data 

used for training the GAN models was separate from training the classifiers. 

Furthermore, the examples of the GAN generated images (see figure 5 in Khanzhina et 
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al., 2022) strongly indicate that at least some of the classes (e.g. Corylus) are separated 

on the basis of the colour of the images, which is caused by the slide preparation 

methodology. This observation then seriously questions the reliability of their classifiers 

since it has not been shown that the classification is based on the pollen grain itself, but 

rather the noise caused by the slide preparation.  

De Geus et al.'s (2019) research appears impressive at first, especially considering their 

reported accuracy of 96.24% on 134 pollen grain types. In their case, the main problem 

is not the methods of analysis, but like Khanzhina et al. (2022), their use of images of 

pollen grains that were mounted on different media for microscopy resulted in the 

image background colours being reflective of the type of pollen preparation 

methodology. Thus, the resulting model may not classify the images based on the grain’s 

features, but instead based on the background colour. For instance, de Geus et al.'s 

(2019) Figure 1 depicts examples of all classes with Mimosa arenosa standing out with 

its distinct blue hue. Another issue present in their study relates to their division of the 

data. De Geus et al. (2019) divided their dataset into 10% test set, 10% validation set, 

and 80% training set with data augmentation. Because the number of images for each 

pollen grain type ranges between 11 and 47, a correct classification for a given type may 

be achieved with just one test image, assuming the 10% test set size applies to all classes. 

When a test set size is so small, random results are more likely for a given pollen grain 

type and it becomes harder to verify that their model generalises well. Instead, their 

results would have been more robust had they run their analysis many times and for 

example presented the average performance for different train-test splits using cross-

validation. Nonetheless, it is intriguing that de Geus et al. (2019) found the smallest 

neural network architecture (DenseNet) to perform the best, because the common 

consensus has been that deeper and more complex architectures should perform better. 

3.1.2.2. POLEN23E 

The POLEN23E dataset consists of 805 images – 35 images of each of the 23 pollen 

grain types (Figure III-2) as collected from the anthers of the plants (Gonçalves et al., 

2016). Out of all of the available pollen image datasets, POLEN23E dataset (published by 

Gonçalves et al., 2016) is the only one evaluated in more than one publication (Viertel 

and König, 2022) and a blind study of non-expert human performance on this dataset 

has been performed. These two characteristics make POLEN23E a natural starting point 
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for a pilot study. The 34 non-expert humans achieved a median accuracy of 67% with a 

variance in accuracy from 9% to 92% between the hardest and the easiest pollen taxa 

(Gonçalves et al., 2016). Gonçalves et al.'s (2016) best supervised learning model that 

used C-support vector classification reached 64% accuracy, whereas Gutierrez Arias et 

al.'s (2017) majority voting ensemble of support vector machine, random forest, and 

logistic regression models reached 79% accuracy. Recently, Sevillano and Aznarte (2018) 

claimed to have achieved an average 96-97% correct classification rate (CCR or accuracy) 

Figure III-2. A random sample of images of each of the 23 pollen species in POLEN23E dataset. 
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on the 23 taxa from the POLEN23E dataset. Sevillano and Aznarte (2018) achieved their 

result by using a deep learning CNN called AlexNet, which is made of five convolutional 

layers and three fully-connected layers (Krizhevsky et al., 2012). Sevillano and Aznarte 

(2018) utilised ten-fold cross-validation by taking three test images from each pollen 

class on every fold, and their Figures 6-8 appear to indicate that they validate their 

model on 30 out of 35 images for each class. Furthermore, Sevillano and Aznarte (2018) 

resorted to creating 15 augmented images for one class (Anadenanthera colubrina) as 

they thought it was not present in the original dataset released by Barbosa Gonçalves et 

al. (2016). However, all original images are available when each class is downloaded 

separately2. 

Sevillano and Aznarte (2018) report that their accuracy for setup A is 96.6247 ± 1.1107%, 

for setup B it is 96.1529 ± 1.2089%, and for setup C it is 97.2273 ± 0.9%. Although 

Sevillano and Aznarte (2018, p.10) report “averages of the cross-validation results for 

the correct classification rate (CCR), precision, recall, and F-score”, it was noticed that 

calculating these metrics from their confusion matrices resulted in significant 

inconsistencies. Assuming that the confusion matrices are accurate (a reasonable 

assumption as they record simple counts) then recomputing the derived metrics gives 

the following accuracies from the confusion matrices: 90.73% for Sevillano and Aznarte's 

(2018) setup A, 90.15% for setup B, and 92.90% for setup C (Table III-2). Similarly, 

calculating the precision, recall, and F1-score also suggest weaker performance than 

originally reported. Sevillano and Aznarte (2018) state that their setup A achieves a 

precision of 0.9366 ± 0.021 (recalculated: 0.9125), setup B reaches 0.9275 ± 0.0229 

(recalculated: 0.9046), and setup C manages 0.9477 ± 0.017 (recalculated: 0.9314), all 

of which are higher than what can be calculated from their respective confusion 

matrices (Table III-2). Recall for setup A is reported as 0.9955 ± 0.0016 (recalculated: 

0.9072), 0.9949 ± 0.002 for setup B (recalculated: 0.9014), and 0.9964 ± 0.0014 for setup 

C (recalculated: 0.9290), all of which are considerably higher than those recalculated in 

Table III-2. Finally, the F1-score follows along the same lines with setup A being reported 

as being as high as 0.9592 ± 0.0137 (recalculated: 0.9099), setup B F1-score reaching 

0.9541 ± 0.0151 (recalculated: 0.9030), and setup C is at 0.9669 ± 0.0115 (recalculated: 

0.9302). Personal communication with the authors did not clarify the issue. 

 
2 Available from: https://figshare.com/articles/POLEN23E/1525086 
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3.1.3. Aims and objectives 

This research is divided into two phases, both of which take transfer learning as the 

starting point. In transfer learning, the starting weights and biases are transferred from 

a pre-trained neural network to a new neural network so that the new model may be 

trained in shorter span of time on a new, potentially smaller dataset with different 

classes (Pratt et al., 1991; Pan and Yang, 2010). In the first phase, the aim is to apply 

feature extraction from various neural networks to achieve state-of-the-art accuracy for 

the POLEN23E dataset published by Barbosa Gonçalves et al. (2016). Phase 1 therefore 

takes a similar approach to Sevillano and Aznarte's (2018) setup B, which also takes 

advantage of feature extraction in transfer learning. More precisely, it is hypothesised 

that higher accuracy than Sevillano and Aznarte's (2018) AlexNet methodology can be 

achieved by testing different neural network architectures. With feature extraction, only 

the last few layers require full training, which means that the convolutional filters in the 

lower layers may have been trained on images that do not reflect the morphology seen 

in pollen grains, potentially resulting in lower accuracy. However, while feature 

extraction usually means that the weights and biases in all layers apart from the top 

fully-connected layers are untrainable, Sevillano and Aznarte (2018) applied a small 

learning rate (0.0001) to the lower layers and a high learning rate (0.2) to the top three 

layers. In Phase 1 of the present study, a more traditional feature extraction approach 

is adopted and the weights of all layers apart from the top two fully-connected layers 

are frozen.  

The purpose of the second phase is to improve the Phase 1 results by applying fine-

tuning in transfer learning, ensemble modelling, and using a wider variety of neural 

network architectures. Phase 2 of this study thus takes the approach of fine-tuning, in 

which the weights and biases of all layers are allowed to relearn features from the pollen 

image training data. Moreover, Sevillano and Aznarte's (2018) approach of relying on 

 Correct 
classifications 

Total 
classifications 

CCR Precision Recall F1-score 

Setup A 626 690 90,72% 0.9125 0.9072 0.9099 

Setup B 622 690 90,14% 0.9046 0.9014 0.9030 

Setup C 641 690 92,90% 0.9314 0.9290 0.9302 

Table III-2. Recalculated performance metrics for the three test setups from Sevillano and Aznarte's (2018) study. 

The correct classifications are the sums of diagonal counts in from Sevillano and Aznarte's (2018) figures 6-8, while 

total classifications are the sums of all cells in each respective matrix. 



91 
 

10-fold cross-validation without an entirely separate test set does not allow for 

evaluation between folds due to the lack of test set. Thus, while in Phase 1 of this study 

the data is divided in a similar way to Sevillano and Aznarte's (2018), the data in Phase 

2 is split into training, validation, and test sets, whilst also applying early stopping to get 

the best possible results. In Phase 2, the models created for each fold are further 

combined into ensemble models that are shown to perform better than individual folds. 

As one of the major problems with recent publications of pollen image recognition is the 

lack of evidence regarding the models’ areas of attention, the best model’s attention 

regarding the test images are visualized using the Grad-CAM technique (Selvaraju et al., 

2017a, 2019). To the best of the present author’s knowledge, Grad-CAM has not 

previously been applied in the domain of pollen classification and this work is the first 

to expand Grad-CAM to ensemble models. 

At the time when the research was conducted, there were only very few palynological 

studies that had applied deep learning models and none that used as many models as in 

Phase 2. The introduction to this chapter has detailed the limitations of those studies 

and Phases 1 and 2 are the author’s attempts to correct those issues. Moreover, using 

several different neural network architectures is justified on the basis that each dataset 

needs to be tested separately on each neural network architecture as the hypothesis 

space (and therefore the solution) will depend on both the model architecture and data. 

 Materials and Methods 

As mentioned, the dataset used in this chapter is the POLEN23E dataset, which 

consists of 35 images for each of the 23 classes of pollen grain. All of the differences 

between the two phases are set out in Table III-3. Both phases take advantage of 

TensorFlow machine learning framework (Abadi et al., 2016b, 2016a) in a transfer 

learning setting and the code is implemented in Python (Python Software Foundation, 

2016). In Phase 1, ResNet-50 V2 (He et al., 2015, 2016b), ResNet-152 V2 (He et al., 2015, 

2016b), Inception V3 (Szegedy et al., 2015b), and Inception ResNet V2 (Szegedy et al., 

2016) were used as base neural networks. In Phase 2, ResNet-101 V2 (He et al., 2015, 

2016b), DenseNet-121, DenseNet-169, DenseNet-201 (G. Huang et al., 2017), Xception 

(Chollet, 2017), and NASNet-Large (Zoph et al., 2018) architectures were also included. 
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 Phase 1 Phase 2 

TF version 1.7 2.0 

Python 3.6 3.7 

Base models ResNet-50 V2, ResNet-152 V2, 
Inception V3, Inception ResNet V2. 

ResNet-50 V2, ResNet-101 V2, ResNet-152 
V2, Inception V3, Inception ResNet V2, 
DenseNet-121, DenseNet-169, DenseNet-
201, Xception, NASNet-Large. 

Weight training 
regime 

Feature extraction for last dense 
layer and softmax classifier (i.e. 
frozen weights in all but the last 
two layers). 

Fine-tuning weights in all layers. 

Search strategy Grid search + manual search. Grid search. 

Hyperparameters 
used 

Batch sizes: 50, 100, 150 

Learning rates: 0.01, 0.025, 0.05, 
0.1, 0.2 

Epochs: 50, 150, 300, 500 

Optimizer: Stochastic gradient 
descent 

 

Manual search: 

Various batch sizes, learning rates, 
and epochs. The optimizer was 
Adam. 

Batch sizes: 8, 16, 32, 64 

Learning rates: 0.001, 0.005, 0.01, 0.02, 0.03, 
0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 

Epochs: variable 

Optimizer: Stochastic gradient descent 

Division of data 10-fold cross-validation, with each 
of the folds used as the test fold 
once (no validation data). Five folds 
with 92 and five folds with 69 
images. 

115 image test set, the rest divided into even 
folds for 10-fold cross-validation. Models 
created based on how the training performs 
on the validation set and the final 
performance scores taken from the test set. 

Training length The training stops when the process 
has gone through the pre-
determined number of epochs.  

The training stops if the validation loss did 
not improve in the last five epochs or if the 
training takes 100 epochs. 

Computer Home PC with Ryzen 1700x CPU, 
16GB RAM, NVIDIA GTX 1080 GPU. 

UCL’s Myriad HPC, using either Nvidia Tesla 
P100 or V100, the latter being more capable 
of the two. 

Model evaluation Average accuracy, and unweighted 
means of precision, recall, and F1-
score across all folds based on a test 
set. 

Average accuracy, unweighted means of 
precision, recall, and F1-score across all folds 
for the test set and validation sets. Also, 
individual accuracy, unweighted means of 
precision, recall and F1-score for test sets and 
ensemble models. 

Pre-processing Pixel values were normalised to 
range [0, 1]. Images were scaled to 
224*224 for ResNet V2 models and 
to 299*299 pixels for Inception V3 
and Inception ResNet V2 neural 
networks. This resulted in distortion 
in nearly all images. 

For Inception V3, Inception ResNet V2, 
NASNet, Xception, ResNet-50, ResNet-101, 
and ResNet-152 models the pixel values 
were scaled to [-1, 1], sample-wise. For the 
DenseNet architectures the pixel values were 
scaled to [0, 1] and each colour channel 
normalized with respect to the ImageNet 
dataset. For Xception, Inception V3, and 
Inception ResNet V2 networks the images 
were scaled to size 299*299, NASNet-Large 
to 331*331 and all other networks to 
224*224 pixels.  

Table III-3. The settings for both phases of analysis. 



93 
 

3.2.1. Hyperparameter search strategies 

As the architectures are fixed in the present study with only their learnt parameters 

changing, the hyperparameters modified here refer to the length and speed of training. 

These hyperparameters are batch size, learning rate, the number of epochs or steps 

required to train a model, and the choice of gradient descent optimizer. Manual search 

was done in Phase 1 but omitted in Phase 2 due to the limited success and because more 

hyperparameters were included in the grid search in Phase 2, making the search grid 

tighter. For a more in-depth discussion on hyperparameters, see section 2.5. 

3.2.2. Model metrics 

All models in both phases were evaluated by calculating the following metrics from 

the resulting classifications, but the specific images included in the confusion matrices 

are different in the two phases, mainly because of the differing strategies of dividing 

data into training, validation, and test sets. These differing methods of dividing the data 

are detailed in the methods for both respective phases. The terms CCR and accuracy are 

used interchangeably in the text. CCR is calculated as follows  

𝐶𝐶𝑅 = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 , 

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. 

As this is a multiclass problem, a sample is considered to be true positive only when the 

predicted class is the correct class. False positives are those samples whose true label is 

not our desired class, but that are nonetheless predicted as such. In contrast, false 

negatives are those samples that really are part of the desired class, but which are 

predicted not to belong to it. Finally, true negatives are the samples whose true labels 

are not the same as our desired class and the predicted label is not our desired class. 

Precision, recall and F1-scores are reported as the unweighted mean of all classes. 

Precision, or the positive predictive value, is calculated using the formula 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . 

Recall (also known as sensitivity or true positive rate) is calculated from 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . 

The final metric, F1-score, is calculated by 
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𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 . 

F1-score is often used to compare models that have differing precision and recall, as it 

may be difficult to judge whether a model with high precision and low recall is better 

than a model with high recall and low precision without a metric such as F1-score 

(Daskalaki et al., 2006). Thus, F1-score is a better metric than accuracy for evaluating 

datasets with large size differences between classes, which is not the case here. 

Nonetheless, it is used to decide which model is best when accuracy alone is not 

sufficient. 

3.2.3. Phase 1: feature extraction 

3.2.3.1. Model selection 

All of the transferred weights for the utilised neural network architectures were 

downloaded from TensorFlow Hub, which is Google’s platform for sharing trained neural 

networks. The pre-trained models’ final two layers were retrained to reflect the 

different and reduced number of classes in the POLEN23E dataset, as the original neural 

networks were trained on ImageNet dataset that includes one thousand classes (Deng 

et al., 2009). A new fully connected layer and a softmax layer were added to the pre-

trained models to facilitate transfer learning with feature extraction, which means that 

the weights in the base neural networks were frozen. 

The neural network models tested are the 152-layer and 50-layer versions of ResNet V2 

(He et al., 2015, 2016b), Inception ResNet V2 (Szegedy et al., 2016), and Inception V3 

(Szegedy et al., 2015b). The input size of images for the ResNet V2 models are 224x224 

pixels while for Inception ResNet V2 and Inception V3 models the input sizes are 

299x299 pixels. These image sizes result in distortion in most of the images. The RGB 

values of the images are all normalized to range [0, 1] and no other pre-processing was 

performed. These models were chosen for their (or a version of theirs) excellent 

performance in the ImageNet Large Scale Visual Recognition Challenge (Russakovsky et 

al., 2015). No training speed tests were done as these models’ performances have been 

analysed by Huang et al. (2017), although they analysed 101-layer ResNet instead of the 

two versions of ResNet employed here and the Inception V2 model instead of Inception 

V3. Inception V2 was found to be slightly faster in terms of GPU time than the ResNet 

and Inception ResNet models. Speed analyses are also relative and real speeds depend 
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on the computer hardware and the efficiency of the written code and the programming 

language.  

3.2.3.2. Grid search hyperparameter estimation 

To limit the number of total models produced, the only hyperparameters tuned are 

the batch size, number of epochs, and the learning rate. The batch sizes (number of 

samples used for training a neural network in each step) used were 50, 100, and 150. It 

was decided to run the training for 50, 150, 300, and 500 epochs. The different learning 

rates applied were 0.2, 0.1, 0.05, 0.025, and 0.01. Stochastic gradient descent optimizer 

was utilised to minimize the cross entropy loss. 

3.2.3.3. Manual search 

Adam optimizer (Kingma and Ba, 2014) is considered by Ruder (2016) as the best 

overall gradient descent optimization algorithm and therefore it may be the most 

straightforward route to improving the models. Thus, the grid search results for each of 

the pre-trained neural networks were attempted to be improved upon by utilising Adam 

optimizer and manually changing the other hyperparameters. One of the Adam 

optimizer’s hyperparameters, epsilon, was changed for Inception V3 and Inception 

ResNet V2 neural networks to 0.1 from the default 1e-8, because TensorFlow’s user 

guidance provides instructions to change the epsilon hyperparameter to 0.1 or 1.0 if 

using Inception V33 and in preliminary testing on sample data it was noticed that it also 

improved the performance of Inception ResNet models. The results of the manual 

search strategy are described in a separate section following the grid search results in 

Phase 1. No minimum or maximum number of tests for each network were adhered to, 

but the aim was to run as many ten-fold cross-validations as needed until it was thought 

that the maximum accuracy was reached for that particular network architecture. Thus, 

the number of tests differs between architectures. 

3.2.3.4. A note on the use of the term ‘epoch’ 

In Phase 1, the term epoch is simply a mathematical tool used to calculate how many 

training steps were needed for each batch size so that the number of steps was not 

completely arbitrary. For instance, for a batch of size 50 and training lasting 50 epochs, 

 
3 see https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer 
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the number of steps was calculated by dividing the whole dataset size (805) by the batch 

size, the result of which is rounded up and then multiplied by the number of epochs. 

Since the sample of data used in each training step was randomly picked from the entire 

pool of training data, the use of the term epoch in Phase 1 differs from the usual 

definition of an epoch, in which one epoch consists of the entire training set having been 

processed once. For example, a training set of size 80 and batch size 20 would 

traditionally require four steps to complete an epoch and all samples would be seen by 

the learning algorithm once. However, in the Phase 1 method, the four steps may not 

have processed all 80 items in the training set as it would have simply drawn four 

batches with 20 random samples in each batch, resulting in some samples not having 

been seen by the algorithm. In fact, in this example there is only a 9.375% probability 

that each of the four batches are unique sets. This unconventional definition was chosen 

due to its easier implementation with the code made available by the TensorFlow team4. 

The difference in definitions is unlikely to impact the results, as all trained models in 

Phase 1 were treated uniformly. Moreover, as one step represents one update of the 

learning algorithm’s weights by the gradient descent optimization based on all of the 

images in a batch, the biasing effect of the few samples that are seen more often than 

others is likely to be negligible and may only reduce the model’s ability to generalize. 

Furthermore, with more steps and larger batch sizes this biasing effect is reduced as the 

learning algorithm is more likely to see all training samples in a more even manner. The 

term epoch is used in the conventional way in Phase 2. For clarity, both steps and epochs 

are reported in Appendix 2 and Appendix 3, which detail the Phase 1 results. 

3.2.3.5. Model evaluation 

Stratified ten-fold cross-validation (Kohavi, 1995) was used to ensure that each class 

is equally represented in all folds – five of the folds contain three images from each class 

and the other five folds contain four images from each class. Each combination of 

hyperparameter values was evaluated using ten-fold cross-validation, resulting in a total 

of 240 ten-fold cross- validation tests and 2,400 models in the grid search strategy. As 

there are four different neural network architectures, each architecture is represented 

by 60 different ten-fold cross-validation results. The process of evaluating each ten-fold   

 
4 https://github.com/tensorflow/hub/blob/master/examples/image_retraining/retrain.py 
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Figure III-3. Schema for Phase 1 model evaluation. 
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cross-validation model is schematised in Figure III-3. Because each of the ten folds in the 

ten-fold cross-validation is in effect its own model, the confusion matrices are created 

by concatenating the results from each cross-validation into a single composite 

confusion matrix. The reader must bear in mind that CCR, precision, recall, and F1-scores 

are all derived from these composite confusion matrices in Phase 1. The confusion 

matrices are only shown for the best ten-fold cross-validation models from each neural 

network, as judged from CCR and F1-score. 

3.2.4. Phase 2: fine-tuning 

As previously noted, fine-tuning is used here to improve the results from Phase 1. In 

Phase 2, the transferred weights for the utilised neural network architectures were 

downloaded from TensorFlow Keras API (Chollet, 2015), which has been integrated into 

TensorFlow 2. All neural network base models had been pre-trained with ImageNet 

dataset, as in Phase 1, and a new fully connected layer and a softmax classifier layer 

were added to reflect the 23 classes in the POLEN23E dataset just like in Phase 1. 

However, in Phase 2, the weights in all layers were fine-tuned, not just the weights in 

the last two layers. 

3.2.4.1. Model selection and pre-processing 

Prior to the training, the images were scaled to 224 by 224 pixels, 299 by 299 pixels 

and to 331 by 331 pixels since different neural network architectures require different 

sized images for optimal learning. The images were also pre-processed in a varying 

manner depending on the neural network: Inception V3, Inception ResNet V2, NASNet, 

Xception, ResNet-50 V2, ResNet-101 V2, and ResNet-152 V2 models require that the 

input pixel values are normalized to [-1, 1], sample-wise, while all three DenseNet 

architectures required pre-processing the input pixel values to [0, 1] and normalizing 

each channel with respect to the ImageNet dataset. In addition to the neural network 

architectures already mentioned in the Phase 1 model selection section, the ResNet-101 

V2 (He et al., 2015, 2016b), DenseNet-121, DenseNet-169, DenseNet-201 (G. Huang et 

al., 2017), Xception (Chollet, 2017), and NASNet-Large (Zoph et al., 2018) networks were 

used. The ResNet-101 V2 and DenseNet models require image sizes of 224 by 224 pixels 

by default, while the default for Xception is 299 by 299 pixels and for NASNet-Large it is 

331 by 331. The ResNet-101 V2 was added to have a broader coverage of the ResNet 

family of neural network architectures and DenseNet networks were included due to 
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the recent publication of de Geus et al.'s (2019) promising results, where their neural 

network model based on the DenseNet architecture achieved slightly better results than 

ResNet architecture in classifying images of pollen grains. VGG16 was initially tested as 

well, but all results were either very poor or the training process did not finish and these 

tests are not included here. Xception and NASNet-Large architectures were included for 

completeness and as an exploratory measure. 

3.2.4.2. Grid search 

Only grid hyperparameter search was used due to the limited usefulness of manual 

search in Phase 1. The two hyperparameters completely controlled for were the batch 

size {8, 16, 32, 64} and learning rate {0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 

0.08, 0.09, 0.1}. The number of epochs was controlled by adopting an early stopping 

mechanism, in which the training was forced to stop if the validation loss had not 

improved in the last five consecutive epochs. The maximum number of epochs was set 

to 100. The backpropagation algorithm utilised was stochastic gradient descent. In total, 

48 different hyperparameter combinations were tested for each neural network 

architecture, resulting in 480 ten-fold cross-validation tests. 

3.2.4.3. Model evaluation 

The dataset was divided into test and training sets, the former of which contained 

five randomly selected images from each of the 23 classes, totalling 115 images. The rest 

of the images (N=690) were included in the training set and they were evenly divided 

into ten cross-validation folds, so that each fold contained three images of each class. In 

training the models, one of the folds acted as the validation set, while the other nine 

were used as training data. By using each fold as the validation set once, the training 

process results in ten different models for any given set of hyperparameters. The 

performance of each of the ten folds were individually evaluated with the test set.  

3.2.4.4. Ensemble models 

The resulting models from the different folds were also used to create weighted 

average probability ensemble models. Experiments made by Lee et al. (2015) show that 

an ensemble formed of independently trained models perform better than an ensemble 

model that explicitly aims to optimize the mean of the ensemble, justifying the present 

approach. In this voting strategy, each model produces a vector of prediction 
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probabilities 𝑐 =  [ŷ1, ŷ2, . . . , ŷ𝑗] for every test image, where ŷ𝑗 is the prediction 

probability for the jth class given by the classifier and ŷ satisfies the following conditions: 

ŷ ∈  ℝ, 0 ≤  ŷ ≤  1, and ∑ ŷ𝑗
𝐽
𝑗 =  1. The probabilities are averaged class-wise across 

all models that form the ensemble model and the class with the highest average 

probability is chosen as the ensemble’s prediction. Thus, given 𝑁 models that each 

produces a vector of probabilities 𝑐, with 𝑐𝑛 being the vector of probabilities for the nth 

model, we can sum all models’ probabilities: 

�̅�  =  
1

𝑁
∑𝑐𝑛

𝑁

𝑛=1

, 

where �̅� is the final prediction vector containing the average probabilities for all classes. 

In the present case, the length of the vector �̅� is 23 for each test image, matching the 

number of pollen grain types. The final prediction 𝑐 ̂ given by the ensemble model is: 

𝑐 ̂ = 𝑎𝑟𝑔𝑚𝑎𝑥(�̅�). 

By incrementally adding a trained model after each evaluated fold into the ensemble 

model, each complete evaluation of one hyperparameter configuration resulted in nine 

different ensemble models, where the number of individual partner models ranges from 

two to ten. The order in which the models were added was always the same and each 

of the folds always contained the same images. This was ensured by transforming the 

image data into byte format and importing each fold into the neural network as separate 

TFRecord files, which is a special file format for TensorFlow data. For each of the ten 

folds, the metrics were calculated for the validation set and the test set separately. For 

the ensemble models, the metrics were computed after each new partner model was 

added. The training schema is depicted in Figure III-4.  

3.2.4.5. Visualization and trust in model predictions 

Although models may produce highly accurate predictions, the reader and the user 

must be convinced that the predictions are based on real attributes present in the 

image. Metrics alone do not tell us which features of the image the model uses in its 

classifications, and for this, visualizations of the test set images based on the model’s 

parameters are required. Grad-CAM or Gradient-weighted Class Activation Mapping has 

recently been proposed as a solution to this problem (Selvaraju et al., 2017b, 2017a, 

2019). Grad-CAM is the generalized version of Class Activation Mapping (CAM), which is   
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Figure III-4. Schema for Phase 2 model evaluation. The result is nine ensemble models, since the first “ensemble” 

model is just the same as the first model created from the first fold.  
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limited in its functionality to neural networks where a Global Average Pooling layer is 

the penultimate layer (Zhou et al., 2016).  

According to Selvaraju et al. (2019, p.346), “Grad-CAM can help detect and remove 

biases in datasets, which is important not just for better generalization, but also for fair 

and ethical outcomes as more algorithmic decisions are made in society.” In short, Grad- 

CAM shows which parts of the image are the most important to the classification by 

creating a heatmap consisting of the elementwise multiplication of the forward feature 

map activations in the last convolutional layer and the backward gradients from the 

selected class’s score in softmax to the feature maps of the last convolutional layer, with 

higher forward activations carrying more weight in the classification and higher 

backward gradients representing the pixels that need to change the least to affect the 

classification the most. The resulting heatmap is then upsampled using bilinear 

interpolation to match the resolution of the input image (Selvaraju et al., 2019). 

Overlaying the original image with the resulting heatmap makes it possible to visualize 

which parts of the input image are the most important for the neural network model’s 

classification. Feeding the test images to the trained model and creating the Grad-CAM 

visualizations for each of them allows the evaluation of whether or not the model is 

focusing on the objects and not the background in its classifications.  

The selected class based on which the Grad-CAM heatmap is created may be the 

predicted class, the true class, or any other class of interest, although most often the 

class of interest is the predicted class, since the purpose of using Grad-CAM is to unravel 

the model’s areas of focus in its prediction. However, the purpose of using Grad-CAM 

may change based on the situation – in evaluating a model’s performance during 

production it may be more desirable to compare the visualizations of true class and the 

predicted class to better grasp which parts of the image the model is focusing on, while 

the true class is typically not available at deployment and so a deployed model may only 

provide the predicted class’s heatmap for the user to investigate and ascertain that the 

correct region of the image is being utilised in the classification. 

Grad-CAM is formally defined as 

𝐿𝑐 =  𝑅𝑒𝐿𝑈(∑𝛼𝑘
𝑐

𝑘

𝐴𝑘), 



103 
 

where 𝛼𝑘
𝑐  are the neuron importance weights that capture the importance of feature 

map k for class c, and 𝐴𝑘 are the feature map activations of a convolutional layer. The 

neuron importance weights 𝛼𝑘
𝑐  are computed by  

𝑎𝑘
𝑐 =

1

𝑍
∑∑

𝑗𝑖

⏞      
𝐺𝐴𝑃

𝜕𝑦𝑐

𝜕𝐴𝑖,𝑗
𝑘

⏟
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 𝑣𝑖𝑎 
𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝

, 

where GAP refers to Global Average Pooling operation and 
𝜕𝑦𝑐

𝜕𝐴𝑖,𝑗
𝑘  is the gradient of the 

score for class c with respect to feature map activations 𝐴𝑘. For more details, please 

refer to Selvaraju et al. (2017b, 2017a, 2019).  

The Grad-CAM technique has also come under some criticism. For instance, Grad-CAM 

may only provide a partial explanation of the image classification by highlighting smaller, 

incomplete regions of the objects, which may not be enough for users to trust the model 

(Desai and Ramaswamy, 2020). Similarly, Grad-CAM cannot be used to localize multiple 

occurrences of the same object in one image and it is liable to vanishing gradients, which 

can lead to a noisy visualization (Desai and Ramaswamy, 2020; H. Wang et al., 2020a). 

Recently, several variations of CAM have been published to address these issues, 

including Grad-CAM++ (Chattopadhay et al., 2018), Score-CAM (H. Wang et al., 2020b), 

SS-CAM (H. Wang et al., 2020a), and Ablation-CAM (Desai and Ramaswamy, 2020). 

Score-CAM, SS-CAM, and Ablation-CAM methods differ from the original CAM and Grad-

CAM visualization methods in that they avoid using gradients when creating the 

visualizations, whereas Grad-CAM++ generalizes Grad-CAM to multiple objects in the 

same image through the use of second order derivatives. Although these techniques are 

promising, not all of them are fully peer-reviewed and Grad-CAM is still considered 

state-of-the-art in its task domain. Moreover, Adebayo et al. (2018) devised sanity 

checks for a range of saliency mapping techniques and found that Grad-CAM is 

dependent on the model’s parameters and the labels that the model was trained on, 

but that Guided Grad-CAM – Grad-CAM fused with Guided Backpropagation 

(Springenberg et al., 2015) via elementwise multiplication – was not. This dependency 

on the model’s parameters and labels is important since it ensures that the final 

heatmap tells us something about the features that the model has learnt. Without this 
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dependency, the heatmap would simply be a transformation (e.g. an edge detector) of 

the input image without any insights to the functioning of the model.  

Finally, Rudin (2019) has argued that simply knowing the region of the model’s attention 

does not reveal what the model does with the information from that part of the image, 

to the detriment that the saliency maps of vastly different classes could overlap 

significantly and the explanation why the model classified an input image the way it did 

is the same for the different classes. In the example that Rudin (2019) provides (Figure 

III-5), the saliency maps of the classes ‘Siberian husky’ and ‘transverse flute’ occupy the 

same region, implying that the model thinks that a Siberian husky and a transverse flute 

contain the same information. However, this argument is problematic because in the 

case of Grad-CAM, the magnitude of the forward activations and the backward gradients 

matter. In other words, the magnitude of the values in the heatmap for the class 

‘Siberian husky’ may be ten or hundred times larger than for ‘transverse flute’, meaning 

that the fact that ‘transverse flute’ class is activated for this particular input image may 

have vanishing significance overall. If these saliency maps were normalized across all 

classes, it is likely that the ‘transverse flute’ class would not have been highlighted at all.  

To fix this issue of differences in magnitudes, it is proposed here that Grad-CAM may be 

improved by creating these heatmaps for all classes and then normalizing them by 

dividing each of them with the maximum value found across the Grad-CAM heatmaps 

of all classes. This maximum value is likely to come from the heatmap of the predicted 

class. Thus, given a set of classes C =  {𝑐, … , c𝑛}, we create a set of Grad-CAM heatmaps 

H =  {𝐿𝑐, … , 𝐿𝑐𝑛} and find the maximum value in each of those heatmaps: 𝐻𝑚𝑎𝑥 =

 {max(𝐿𝑐), … ,max(𝐿𝑐𝑛)}. From here, we can find the highest scalar across all Grad-CAM 

Figure III-5. Saliency maps for two vastly different classes of the same image may highlight the same area, but this 

depiction does not take into account that the difference in magnitudes may be enough to zero out the false, 

'transverse flute' class. Image taken from Rudin (2019, p.209), who in turn credits the image to Chaofen Chen of 

Duke University. Figure reuse rights gained through RightsLink/Springer Nature on 5/1/2022. 
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heatmaps by simply taking 𝑔 =  𝑚𝑎𝑥(𝐻𝑚𝑎𝑥), which we can use as the normalizing 

factor, giving us a normalized Grad-CAM: 

𝐿�̃�  =  
𝐿𝑐

𝑔
∗  255. 

Here, 255 is used to scale the resulting normalized heatmap to range [0, 255], thus giving 

a maximum pixel value of 255 in the Grad-CAM heatmap with the most importance to 

the model. Unfortunately, this raises the computational issue of having to find the 

maximum value of the Grad-CAM heatmap for all classes, which means that for a model 

with 1,000 classes, it is necessary to create 1,000 Grad-CAM heatmaps for every test 

image. Instead, it may be best to limit the search of 𝑔 to some fraction of the classes, 

such as those classes with the highest prediction probabilities, since these are likely to 

have higher values in the resulting Grad-CAM heatmaps. To avoid having to create Grad-

CAM heatmaps for many classes, it is also possible to replace g with 1 − 𝑘, where 𝑘 is 

the class probability. In doing so, the Grad-CAM heatmaps for all classes are implicitly 

normalized. Because the current problem deals with 23 classes, there is no need to apply 

a limit on the number of classes for which the heatmaps are created nor to use class 

confidence score as an implicit form of normalization since the computation for the 

whole process is over in minutes for the entire test set. This class-normalized Grad-CAM 

is useful in an initial inspection of the model’s areas of attention and once it is 

ascertained that a model does what is expected, one may choose to use either the 

unnormalized Grad-CAM or the normalized Grad-CAM visualizations. An example of 

how this proposed method improves Grad-CAM visualizations is given in Appendix 1. 

As the problem of localizing multiple occurrences of the same object does not affect the 

POLEN23E dataset (since every image only represents one grain), Grad-CAM rather than 

Grad-CAM++ is employed in this chapter. Using Grad-CAM is certainly better than having 

no visualization, and not using any visualization techniques would leave the evaluation 

of the models’ performances open to criticism about which regions of the images the 

classifications were based on.  

3.2.4.6. Visualizing ensemble models with Grad-CAM 

The Grad-CAM visualizations must be done to each partner of an ensemble model 

separately, although the produced heatmaps can be averaged to provide an 

approximated signal of what the ensemble decision was based on. The averaging itself 
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may be done by taking the simple average of all partner models’ class activation 

heatmaps. In this instance, the ensemble Grad-CAM heatmap is created as a simple 

mean of the heatmaps from N number of partner models in an ensemble model, and 

the heatmap is defined as  

�̅�𝑐  =
1

𝑁
∑𝐿𝑐𝑛
𝑁

𝑛=1

. 

Another way to approach the averaging of the heatmaps is by first weighting them by 

the partner model’s probability for the class of interest and then dividing the heatmap 

by the sum of all partner models’ probabilities. As each ensemble partner model is likely 

to produce different class predictions, each individual heatmap must be created based 

on the class that the whole ensemble model agreed as the most likely. In other words, 

the target class is the one that the ensemble model predicted. The heatmaps from 

individual partner models are not normalized across the classes because only the 

predicted class is taken into account and the probability weighting may be seen as 

implicit normalization. With probability weighting, the heatmaps are added together 

after dividing each of them by the associated models’ prediction scores for the class in 

question. The benefit of weighting the heatmap for each partner model in this way is 

that the less confident models are given less weight in the final heatmap, which is not 

the case in the simple average. In this thesis, the ensemble model Grad-CAM 

visualizations are averaged using the weighted probability approach because the 

reported ensemble prediction scores are also weighted by probability scores from each 

partner model. In the case where the partner models’ heatmaps are weighted by the 

partner models’ class probabilities, the equation becomes 

�̅�𝑐 =
∑ 𝑤𝑛𝑐𝐿𝑛𝑐𝑁
𝑛=1

∑ 𝑤𝑛𝑐𝑁
𝑛=1

 

where 𝑤𝑛𝑐 is the nth partner model’s probability for the target class c, which is the same 

as 𝑐 ̂ defined in section 3.2.4.4.  
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 Results 

3.3.1. Phase 1: feature extraction results 

3.3.1.1. Grid search results 

As Sevillano and Aznarte (2018) report their confusion matrices as a concatenation 

of all ten-folds, a similar approach is taken in Phase 1. A composite confusion matrix in 

the following text thus refers to the concatenation of the results on the validation sets 

across all ten folds. The average performance of all ResNet-50 V2 ten-fold cross-

validation models show that it is the best performing network architecture with an 

average accuracy of 91.49% (N=60 different hyperparameter combinations), whereas 

ResNet-152 V2 achieves an average accuracy of 90.57% (N=60). The two ResNet 

networks are followed by Inception V3 with an average accuracy of 90.10% (N=60) and 

Inception ResNet V2 manages an average of 89.07% (N=60). Kruskal-Wallis H (Kruskal 

and Wallis, 1952) test (df = 3, H = 118.4588, p = 1.66e-25) followed by Dunn’s post-hoc 

test (Table III-4) confirms that the results of the four architectures have statistically 

different accuracies (except between ResNet-152 V2 and Inception V3) and thus do not 

perform equally well on the POLEN23E dataset. The F1-score, recall, precision, and 

accuracy for all ten-fold cross-validation models for each neural network are given in 

Appendix 2, while Figure III-6 enables a quick comparison of the different architectures 

based on the average test set accuracies for all ten-fold cross-validation models.  

Three Inception V3 and four ResNet-50 V2 ten-fold cross-validation models have several 

combinations of hyperparameters that achieved the same high accuracy and further 

comparison using the F1-score as the deciding metric is necessary before delving into 

detail. Comparing the F1-scores between the ten-fold cross-validation models using the 

same ResNet-50 network architecture, the model with a batch size of 50 and that was 

run for 300 epochs at a learning rate of 0.01 is only slightly better than the other three   

Table III-4. Dunn’s post-hoc test demonstrating that the four neural networks are statistically different in terms of 

their accuracies. The values are Bonferroni corrected p-values and significantly (α < 0.05) different pairs are 

highlighted in grey. 

Post-hoc Dunn’s test 

 ResNet-50 V2 ResNet-152 V2 Inception V3 Inception ResNet V2 

ResNet-50 V2 1 7.15e-08 9.91e-14 4.68e-25 
ResNet-152 V2 7.15e-08 1 0.2901 9.12e-06 

Inception V3 9.91e-14 0.2901 1 0.0276 
Inception ResNet V2 4.68e-25 9.12e-06 0.0276 1 
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ResNet-50 ten-fold cross-validation models that also reached 92.55% average accuracy. 

For the Inception architecture, F1-scores are slightly better for two of the three ten-fold 

cross-validation models that achieved an accuracy of 91.18%. However, the recall 

between these two models are the same, and thereby the best model is chosen based 

on the marginally higher precision metric. In this case, the best Inception model has the 

hyperparameters of 50 for batch size, 500 epochs, and a learning rate of 0.1. It is notable 

that the best performing ten-fold cross-validation models for all architectures (see 

Appendix 2) have a better F1-score than the models from Sevillano and Aznarte's (2018) 

setups A and B, but not setup C (cf. Table III-2). 

Investigating the best performing ten-fold cross-validation models of the four networks 

more closely makes it possible to distinguish patterns in how the different neural 

networks classified the pollen images. From Figure III-7, it may be noted that the best 

ResNet-50 model achieves high average accuracy despite having the smallest proportion 

of pollen types that were correctly classified 100% of the time. Thus, this model skews 

towards classifying a lot of pollen types at a high accuracy, but rarely manages to classify 

all specimens of a given pollen grain type. Although this skew to higher accuracies is 

Figure III-7. Bar chart showing the number of pollen grain types correctly classified by the best 10-fold cross-

validation model for each of the four neural networks as organised by the number of correctly classified images.  
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clearly desirable, the peak of the skew is not at the point where all 35 images are 

correctly classified for a given pollen type, suggesting that the features transferred from 

the pre-trained neural network are not yet optimal for the present problem domain. 

Table III-5 compiles the number of correct identifications for the best ten-fold cross-

validation models for all pollen grain types, showing that the best ResNet-50 model 

correctly classified more pollen grain images than other neural networks whilst also 

having the smallest standard deviation. This observation gives weight to the idea that 

the ResNet-50 model generalizes better than the best Inception, Inception ResNet and 

ResNet-152 models, which are biased towards classifying certain grain types. This 

pattern can be more easily noted from the composite confusion matrices which are 

detailed next. 

 

Number of correct identifications in grid search 

Pollen type ResNet-152 ResNet-50 Inception ResNet Inception Mean 

Anadenanthera colubrina 34 34 33 33 33.5 

Arecaceae 31 31 31 29 30.5 

Arrabidaea florida 32 33 32 33 32.5 

Cecropia pachystachya 33 34 33 34 33.5 

Chromolaena laevigata 34 35 35 33 34.25 

Combretum discolour 35 34 35 33 34.25 

Croton urucurana 35 34 34 34 34.25 

Dipteryx alata 28 30 28 26 28 

Eucalyptus 33 33 33 34 33.25 

Faramea 32 32 29 28 30.25 

Hyptis 33 34 35 33 33.75 

Mabea fistulifera 35 34 33 35 34.25 

Matayba guianensis 28 28 27 28 27.75 

Mimosa somnians 31 34 33 35 33.25 

Myrcia 32 30 32 31 31.25 

Protium heptaphyllum 31 30 29 31 30.25 

Qualea multiflora 31 32 29 29 30.25 

Schinus terebintifolius 32 31 29 28 30 

Senegalia plumosa 34 34 35 35 34.5 

Serjania laruotteana 34 34 35 34 34.25 

Syagrus 31 31 31 33 31.5 

Tridax procumbens 35 34 35 35 34.75 

Urochloa decumbens 27 29 29 30 28.75 

Mean 32.22 32.39 31.96 31.91 32.12 

SD 2.30 1.99 2.62 2.75 2.40 

Table III-5. The number of correct identifications in grid search for the best performing 10-fold cross-validation 

models. 
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3.3.1.1.1. ResNet-152 V2 

The best hyperparameters for the 152-layer ResNet neural network proved to be 100 

for batch size, 300 epochs, and 0.1 for learning rate. The best model reached an average 

correct classification rate of 92.05% over the ten-fold cross-validation. The confusion 

matrix (Figure III-8) for this model shows that it performs particularly poorly in classifying 

Urochloa decumbens and Dipteryx alata, which were both misclassified as six other 

pollen grain types. Mimosa somnians had the most misclassifications to any one pollen 

grain type with four images classified as Cecropia pachystachya. Combretum discolor, 

Croton urucurana, Mabea fistulifera, and Tridax procumbens were correctly classified in 

all cases. 

3.3.1.1.2. ResNet-50 V2 

The 50-layer ResNet V2 architecture was the best architecture out of the four 

networks included in the analysis, as measured by average accuracy. The best set of 

Figure III-8. Composite confusion matrix constructed from the ten-fold cross-validation results of ResNet-152 

network’s best hyperparameters using grid search strategy. 
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hyperparameters for this model consists of batch size 50, 300 epochs, and a learning 

rate of 0.01, although three other hyperparameter combinations reached the same level 

of accuracy (Appendix 2). These settings allowed the ten-fold cross-validation model to 

reach an average accuracy of 92.55%. From the confusion matrix (Figure III-9), it is 

evident that Urochloa decumbens and Matayba guianensis were more difficult for 

ResNet-50 to classify than other pollen grain types. Urochloa decumbens was again 

mistaken for six other pollen grain types, but only once to each type. Matayba 

guianensis was misclassified as five other pollen grain types, including twice as 

Eucalyptus and twice as Combretum discolor. Similarly, three images of Syagrus pollen 

grains were misclassified as Arecaceae. All images of Chromolaena laevigata were 

classified with 100% accuracy.  

Figure III-9. Composite confusion matrix constructed from the ten-fold cross-validation results of ResNet-50 

network’s best hyperparameters using grid search strategy. 
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3.3.1.1.3. Inception ResNet V2 

The best hyperparameter combination resulted in an average CCR of 91.30% across 

the ten-fold cross-validation. The network was trained with a batch size 50 for 300 

epochs at a learning rate of 0.2. The best Inception ResNet model (Figure III-10) found 

Matayba guianensis particularly challenging as only 27 images were correctly classified. 

Across the ten folds of the cross-validated model, four images of Dipteryx alata were 

misclassified as Qualea multiflora and four images of Matayba guianensis were 

misattributed to Eucalyptus. In contrast, Chromolaena laevigata, Combretum discolor, 

Hyptis, Senegalia plumosa, Serjania laruotteana and Tridax procumbens were easy for 

the Inception ResNet network, as all 35 images were correctly recognised.  

3.3.1.1.4. Inception V3 

The best Inception ten-fold cross-validation model achieved an average of 91.18% 

CCR by using a batch size of 50, training time of 500 epochs, and a learning rate of 0.1. 

Figure III-10. Composite confusion matrix constructed from the ten-fold cross-validation results of Inception ResNet 

network’s best hyperparameters using grid search strategy. 
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Images of Dipteryx alata were particularly difficult for this cross-validated model to 

classify with just 26 having been correctly classified. The model misclassified four of the 

images of Dipteryx alata as Qualea multiflora. The composite confusion matrix (Figure 

III-11) also reveals that Faramea and Matayba quianensis pollen grains were difficult for 

the model as they were confused with six other pollen grain types. Images of Mabea 

fistulifera, Mimosa somnians, Senegalia plumosa, and Tridax procumbens images were 

all correctly classified. 

3.3.1.2.  Manual search results 

The Kruskal-Wallis H test was not repeated for the manual search results since the 

number of different models varies considerably between neural network architectures 

and the reason for conducting it in the first place was to get a handle on whether there 

are systematic performance differences between neural network architectures when 

their weights are frozen. In the manual search strategy, the accuracy and F1-score did  

Figure III-11. Composite confusion matrix constructed from the ten-fold cross-validation results of Inception 

network’s best hyperparameters using grid search strategy. 
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not improve for all neural networks with Adam optimiser, as shown in Appendix 3. Adam 

optimizer (Kingma and Ba, 2014) was chosen because stochastic gradient descent may 

get stuck in saddle points rather than local minima, while Adam is less likely to be 

affected by this issue whilst also converging faster (Ruder, 2016). However, this change 

did help the ResNet-50 V2 ten-fold cross-validation performance to improve 

considerably from 92.55% to 93.79%, which is better than the accuracy that Sevillano 

and Aznarte (2018) achieved in their Setup C (when compared to recomputed accuracies 

in Table III-2). In total, just seven different hyperparameter settings were tested for 

ResNet-152 and Inception networks, while 12 different manual hyperparameter tests 

were performed with ResNet-50. In contrast, 36 different hyperparameter settings were 

used in the attempts to improve Inception ResNet V2 from the grid search strategy, but 

without success. Table III-6 shows that the best ResNet-50 V2 ten-fold cross-validation 

Number of correct identifications in manual search 

Pollen type ResNet-152 ResNet-50 Inception ResNet Inception Mean 

Anadenanthera colubrina 34 34 33 33 33.5 

Arecaceae 30 32 31 28 30.25 

Arrabidaea florida 32 33 33 33 32.75 

Cecropia pachystachya 31 33 32 34 32.5 

Chromolaena laevigata 34 35 34 34 34.25 

Combretum discolour 34 35 35 33 34.25 

Croton urucurana 35 34 34 34 34.25 

Dipteryx alata 28 30 29 27 28.5 

Eucalyptus 33 32 33 34 33 

Faramea 31 31 29 29 30 

Hyptis 33 34 33 33 33.25 

Mabea fistulifera 35 34 33 35 34.25 

Matayba guianensis 28 29 28 28 28.25 

Mimosa somnians 33 35 33 35 34 

Myrcia 32 34 30 32 32 

Protium heptaphyllum 32 30 32 32 31.5 

Qualea multiflora 32 31 30 29 30.5 

Schinus terebintifolius 32 32 29 28 30.25 

Senegalia plumosa 35 35 35 35 35 

Serjania laruotteana 34 34 34 34 34 

Syagrus 32 33 31 32 32 

Tridax procumbens 35 35 35 35 35 

Urochloa decumbens 28 30 29 30 29.25 

Mean 32.30 32.83 31.96 32.04 32.28 

SD 2.20 1.90 2.20 2.65 2.25 

Table III-6. The number of correct identifications in manual search for the best performing 10-fold cross-validation 

models. 
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model has higher mean and lower standard deviation in terms of number of correct 

identifications across all pollen grain types as was the case when using grid search 

strategy, whereas the ten-fold cross-validated Inception ResNet V2 model has the 

lowest mean. Inception V3 has the highest standard deviation, on the other hand, 

signalling that it is more biased towards correct classifications of some classes than the 

other models. 

3.3.1.2.1. ResNet-152 V2 

The improvement in average accuracy with manual search strategy was rather limited 

for ResNet-152 network, as it increased from 92.05% to 92.30%. This result was achieved 

by changing the gradient descent optimiser to Adam optimiser, setting the learning rate 

to 0.0005, and running it for 500 epochs with a batch size of 100. This resulted in an 

improvement in the classification of Mimosa somnians, Protium heptaphyllum, Qualea 

multiflora, Syagrus, and Urochloa decumbens (Figure III-12). However, it also decreased 

Figure III-12. Composite confusion matrix constructed from the ten-fold cross-validation results of ResNet-152 

network’s best hyperparameters using manual search strategy. 
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the correct classification rate in Arecaceae, Cecropia pachystachya, Combretum discolor, 

and Faramea. Croton urucurana, Mabea fistulifera, Senegalia plumosa, and Tridax 

procumbens were correctly classified every time. Five images of Dipteryx alata were 

misclassified as Qualea multiflora and seven images of Urochloa decumbens were 

incorrectly classified to five other grain types. 

3.3.1.2.2. ResNet-50 V2 

The Adam optimised ResNet-50 ten-fold cross-validation model proved to be better 

than the best grid search result with an average CCR of 93.79% (Figure III-13). This 

performance increase was achieved by doubling the number of epochs from the 

previous best model with 500 epochs to 1,000 and by keeping the batch size at 50. The 

reason for doubling the number of epochs was that the better performing ResNet-50 

ten-fold cross-validation models in the grid search were trained with 300 or 500 epochs 

and it was thought that perhaps the learning process had not yet reached its peak. The 

learning rate for the Adam optimizer was set to 0.0005. Compared to the results of grid 

Figure III-13. Composite confusion matrix constructed from the ten-fold cross-validation results of ResNet-50 

network’s best hyperparameters using manual search strategy. 
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search strategy, which achieved 100% CCR for only one pollen grain type, the manual 

search hyperparameters for ResNet-50 model reached 100% CCR in five pollen grain 

types: Chromolaena laevigata, Combretum discolor, Mimosa somnians, Senegalia 

plumosa and Tridax procumbens. Overall, the results improved in Arecaceae, 

Compretum discolor, Matayba guianensis, Mimosa somnians, Myrcia, Schinus 

terebinthifolius, Senegalia plumosa, Syagrus, Tridax procumbens, and Urochloa 

decumbens. However, this improvement came at the expense of decreased 

classification accuracy for Eucalyptus, Faramea, and Qualea multiflora pollen grains. 

Matayba guianensis was misclassified as Eucalyptus on four occasions and Urochloa 

decumbens had the largest range of grain types that it was confused with (four different 

grain types). 

3.3.1.2.3. Inception ResNet V2 

The accuracy calculated from the composite confusion matrix (Figure III-14) of the 

ten-fold cross-validation for Inception ResNet network using Adam optimizer did not 

Figure III-14. Composite confusion matrix constructed from the ten-fold cross-validation results of Inception ResNet 

network’s best hyperparameters using manual search strategy. 



119 
 

improve compared to the grid search strategy but reached the same 91.30% average 

accuracy. In fact, four different hyperparameter settings resulted in this level of accuracy 

(Appendix 3). However, compared to the grid search strategy, this result was achieved 

by running the analysis for only 30 epochs compared to the 300 used in grid search and 

with a smaller batch size of 25. The learning rate was set at 0.2. Compared to the best 

Inception ResNet model in grid hyperparameter search strategy, this manual model 

manages to correctly identify all images of fewer pollen grain types, with the former 

managing six pollen grain types and the latter only three (Combretum discolor, Senegalia 

plumosa, and Tridax procumbens). The ten-fold cross-validation model found using 

manual hyperparameter selection is better at classifying images of Arrabidea florida, 

Dipteryx alata, Matayba guianensis, Protium heptaphyllum, and Qualea multiflora. 

Conversely, it performs worse when attempting to classify Cecropia pachystachya, 

Chromolaena laevigata, Hyptis, Myrcia, and Serjania laruotteana. Notably, Matayba 

guianensis was misclassified as Eucalyptus on four occasions and Urochloa decumbens 

had the largest range of different pollen types (five) that it was confused with.  

3.3.1.2.4. Inception V3 

The Inception V3 neural network performed slightly better with Adam optimizer. The 

best hyperparameter settings were found to be 100 for batch size, 1,000 epochs, and a 

learning rate of 0.05. This resulted in an average accuracy of 91.55% across the ten-fold 

cross-validation as calculated from the composite confusion matrix (Figure III-15). In 

terms of classification performance of individual pollen grain types, four types were 

correctly classified in all cases. These types – Mabea fistulifera, Mimosa somnians, 

Senegalia plumosa, and Tridax procumbens – are the same ones as in the best Inception 

model using the hyperparameters from grid search. Yet, the manual selection achieved 

better results with regards to classifying Chromolaena laevigata, Dipteryx alata, 

Faramea, Myrcia, and Protium heptaphyllum pollen grains. This current model also 

performed worse than the model trained through grid search in the classification of 

Arecaceae and Syagrus pollen grains, and particularly poorly in classifying Dipteryx alata, 

which it managed to correctly classify in 27 cases. 



120 
 

3.3.2. Phase 2: fine-tuning results 

The Phase 2 results focus on the best performing cross-validation models and the in-

depth comparison of different neural network architectures is omitted. All of the 

NASNet-Large models trained with a batch size of 64 failed to finish, so they have been 

omitted from results. In this section, the cross-validated models’ performances based 

on test set scores are averaged across all ten folds (Figure III-16) and this data has been 

tabulated in Appendix 4. This differs from Phase 1 in that the test set always contained 

the same images, whereas the test sets in Phase 1 were different in each fold both in 

terms of the images that they contained and the sizes of the test sets (either 69 or 92 

images). In essence, the Phase 2 approach is simplified and repeatable and therefore a 

more reliable indicator of the neural networks’ performances.  

The results in Phase 2 are significantly better than Phase 1 results, with the best ten-fold 

average accuracy being 97.83% for DenseNet-169, which was trained with batch size 16 

and learning rate of 0.02 (Table III-7). In fact, a total of 27 different neural network 

Figure III-15. Composite confusion matrix constructed from the ten-fold cross-validation results of Inception 

network’s best hyperparameters using manual search strategy. 
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configurations achieved an average accuracy above 97%, while 81 configurations 

reached an accuracy of 96% or higher. Of those 27 neural network configurations that 

achieved over 97% accuracy, only four were not based on the DenseNet architecture, 

but rather they were different configurations of Inception ResNet V2 architecture. It is 

interesting to note that all DenseNet type neural networks perform poorly with higher 

learning rates and NASNet-Large performs relatively poorly overall but benefits from 

smaller batch sizes (Figure III-16). Xception, Inception V3, Inception ResNet V2, and 

ResNet type neural networks perform near identically in that they all benefit from larger 

batch sizes, while the learning rate seems to have only limited impact on the final 

average accuracy (Figure III-16). It is possible that the poor performance of NASNet-

Large architecture is due to not covering large enough hyperparameter space, 

considering that its performance improves with smaller batch size. Another way of 

evaluating the performance of Phase 2 results is by looking at the ten-fold average 

validation accuracy. This evaluation method again shows that DenseNet architecture is 

the best performing architecture type, with two different configurations of DenseNet-

169 managing an average accuracy of 96.96% over the ten cross-validation folds and 

outperforming the results in Phase 1. The model trained with batch size 16 and learning 

rate of 0.02 is the same one that achieved the highest average accuracy on the test set. 

The ensemble modelling approach, where predictions from multiple folds are 

incorporated into a single final prediction, was similarly successful. Out of the 4,212 

ensemble models, 298 achieved an accuracy better than 99%, but only three of which 

achieved 100% accuracy (Table III-7). These three ensemble models were based on 

DenseNet-121, Inception V3, and Inception ResNet V2 architectures. It is possible that   

 Neural net 
N first 
folds 

Batch 
size 

Learning 
rate Prec. Rec. F1 Acc. 

Ensemble 
test set 
score 

DenseNet-121 3 32 0.04 1.0000 1.0000 1.0000 100.00% 

Inception V3 9 8 0.04 1.0000 1.0000 1.0000 100.00% 

Inception 
ResNet V2 

2 16 0.005 1.0000 1.0000 1.0000 100.00% 

10-fold avg. 
test set 
score 

DenseNet-169 10 16 0.02 0.9817 0.9783 0.9779 97.83% 

10-fold avg. 
validation 
set score 

DenseNet-169 10 8 0.02 0.9765 0.9696 0.9690 96.96% 

DenseNet-169 10 16 0.02 0.9769 0.9696 0.9689 96.96% 

Table III-7. Best performing neural network configurations for ensemble models, ten-fold average for test set, and 

ten-fold average for validation set, as discussed in text. The models involved in further evaluation have been shaded 

in grey.  
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these three ensemble models represent statistical outliers, however, because the 

difference in achieving over 99% and 100% accuracy is getting one image prediction 

correct. This result implies that a larger and more challenging dataset should be used in 

the future. Nonetheless, the ensemble model with the fewest partner models and 

highest accuracy is chosen for further inspection as it is a natural candidate for further 

study. This model is Inception ResNet V2 with two partner models, batch size 16, and 

learning rate of 0.005. 

Considering the above results, the following evaluation of these models focuses on the 

best Inception ResNet V2 ensemble model with two partner models, as well as the best 

ten-fold cross-validation model based on validation and test metrics, which is the 

DenseNet-169 model trained with batch size 16 and learning rate of 0.02. Furthermore, 

fold five of DenseNet-169 is chosen for further visual inspection as the representative 

fold of the DenseNet-169 ten-fold cross-validation model. This is done to show that the 

model is unlikely to make decisions based on the context of the images and rather uses 

the pollen grains themselves.   

3.3.2.1. Evaluating the DenseNet-169 cross-validated model 

The normalized confusion matrices for test set (Figure III-17) and validation sets 

(Figure III-18) give slightly differing views of which pollen types are difficult for this cross-

validated model to classify. However, these two confusion matrices are constructed 

differently, with the confusion matrix for the test set results being based on the same 

set of images that has been evaluated ten times, while the confusion matrix for the 

validation sets is based on ten different sets of data. Therefore, differing results are to 

be expected and these two confusion matrices need to be interpreted differently. 

Although both confusion matrices represent generalization error, the one based on the 

test set shows the average generalization error of all ten folds of the cross-validation 

and contains less variance, while the normalized confusion matrix based on validation 

data has more variance. The test set confusion matrix may be more faithful about the 

biases embedded in the ten-fold cross-validated model on average because all folds 

were evaluated on the same data. 
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3.3.2.2. Relationship of test set and validation set confusion matrices 

The normalized test set confusion matrix (Figure III-17) shows which classes are 

particularly difficult in the test dataset, with Qualea multiflora and Syagrus being 

overrepresented in the misclassifications and Cecropia pachystachya, Combretum 

discolor, Dipteryx alata, Hyptis, and Myrcia also containing some difficult images. This 

bias to misclassify Qualea multiflora and Syagrus is mainly due to one image of Qualea 

multiflora being classified as Dipteryx alata and one Syagrus image as Arecacae by six of 

the ten folds. All of the other images were at most misclassified by two of the ten folds. 

In contrast, the normalized confusion matrix from validation data is more directly 

comparable to Sevillano and Aznarte's (2018) confusion matrices, as they depict the 

same number (30) of classifications for each class. However, any direct comparison 

between the validation results presented here and Sevillano and Aznarte's (2018) 

Figure III-17. Normalized confusion matrix for the best DenseNet-169 model built from the evaluation of the test set 

against the ten models that resulted from the 10-fold cross-validation. The values have been normalized to between 

0 and 1. 
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models’ performances in the classification of each pollen type is not possible, since it is 

not known which images Sevillano and Aznarte (2018) used in their cross-validation 

folds. Even so, the presented DenseNet-169 model’s performance is state-of-the-art, 

with both ten-fold average test and validation accuracies being better than any previous 

model.  

Ideally, a model would behave in the exact same way for a test set as for a validation 

set. However, this is not observed for the two confusion matrices presented in Figure 

III-17 and Figure III-18. Instead, there are more misclassifications in the validation set 

than for the test set, which may indicate that the test set may include images of the 

pollen grains that were, on average, easier than the images in the validation set. For 

instance, while images of Urochloa decumbens included in the validation sets were 

relatively difficult to classify in many folds, the five test images of Urochloa decumbens 

were nonetheless always correctly classified in each fold. Thus, it may be said that even 

Figure III-18. Normalized confusion matrix for the best DenseNet-169 model built from the evaluation of the 

validation sets during the 10-fold cross-validation training. The values have been normalized to between 0 and 1. 



126 
 

though the validation results suggest that the ten-fold cross-validation model did not 

learn an appropriate representation of the Urochloa decumbens, the result from the test 

set shows that the ten-fold cross-validation model generalizes adequately. In contrast, 

Syagrus and Qualea multiflora were both relatively accurately classified in validation, 

but not in the test phase. It may therefore be argued that when the ten-fold cross-

validated model is evaluated based on the validation set, it falsely suggests that the 

model is, on average, a good classifier of Syagrus and Qualea multiflora, when in reality 

the training set did not include large enough samples of images of these two pollen grain 

types to cover the species variation, leading to some of the individual folds learning a 

wrong representation of these two pollen grain types and therefore misclassify the test 

images. Alternatively, the test images of Syagrus and Qualea multiflora may be 

exceedingly hard to classify, a fact that was touched upon in the first paragraph of this 

section. Fortunately, judging from the performance of the ensemble models, the fact 

that some, but not all, folds learn the appropriate representations is enough to get an 

excellent ensemble model that can overcome the bad representations learnt in other 

folds. 

3.3.2.3. Grad-CAM evaluation of DenseNet-169 fold five 

The test set confusion matrix for the DenseNet-169 fold five is shown in Figure III-19 

and the training and validation accuracies and losses over time for this training fold are 

depicted in Figure III-20 and Figure III-21, respectively. It is interesting to note that the 

test accuracy (100%) is higher than the validation accuracy (95.65%) for this fold. 

However, this difference may simply be the result of randomness inherent in the sample 

of training data in this fold and the analytical value of the difference is limited. In the 

end, the perfect accuracy in the test set, the low validation loss, and the utilisation of 

early stopping all point toward a fold that has not been over- or underfit.  

More important than the performance of this specific fold, the Grad-CAM visualizations 

are presented in Figure III-22. In these visualizations, each image included in the test set 

is subjected to the Grad-CAM algorithm, which results in a heatmap whose pixel values 

represent the importance of the image’s corresponding region to the classifier. These 

images show that the fold correctly focuses on the pollen grains and not their 

backgrounds, although the test images 2, 3 and 5 of Mimosa somnians raise some 

doubts. The images of Mimosa somnians are particularly interesting as the model 
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focuses on four points along the edge of the pollen grain. It is not possible to say with 

certainty why the model focuses on the edges of only Mimosa somnians images, but an 

educated guess may be made based on the images included in the POLEN23E dataset. 

Compared to other pollen grain types, the images of Mimosa somnians appear blurred, 

the dimensions of the images (in pixels) are some of the smallest within the whole 

dataset (although this is not represented in Figure III 22 due to scaling), and they seem 

to have the least feature rich morphology as these pollen grains are mostly transparent 

and blend to the background, leaving only the edges available for the neural network. 

In the original publication of the POLEN23E dataset, the diameter of Mimosa somnians 

is shown to be sub-10 μm, while the second smallest pollen grain type, Cecropia 

pachystachya, is twice the size of Mimosa somnians, and most of the rest of the 

graintypes are again nearly twice the size of Cecropia pachystachya (see Gonçalves et 

al., 2016: Fig. 1). Furthermore, it is interesting to note that the Grad-CAM visualizations 

of particularly Anadenanthera colubrina and Senegalia plumosa – two visually very 

similar pollen grain types – appear to give more importance to the centre of the grains   

Figure III-19. Test set confusion matrix for the DenseNet-169 fold five. 
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Figure III-20. Development of training and validation accuracies for DenseNet-169 fold five. 

Figure III-21. Development of training and validation losses for the DenseNet-169 fold five. 
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Figure III-22. All test images, their normalized Grad-CAM heatmaps, and the heatmaps overlaid on top of the test 

images for DenseNet-169 fold five. The darker red areas of the heatmaps show the areas of the image that were the 

most important in the model’s prediction. 
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in the classification. This suggests that the classifier focuses primarily on texture rather 

than the overall shape and it may have been necessitated by the presence of 

morphologically similar pollen grain types. Finally, it is of note that for the test image 2 

of Cecropia pachystachya, test image 1 of Faramea, and to some extent the test images 

1 and 4 of Dipteryx alata and Urochloa decumbens, respectively, the focus in the 

classification is on the edges of the pollen grain. 

3.3.2.1. Evaluating the best ensemble model (Inception ResNet V2) 

The Inception ResNet V2 ensemble model consists of the first two folds resulting from 

the ten-fold cross-validation where the batch size was 16 and the learning rate was set 

to 0.005. Individually, the first of the two partner models reached an accuracy of 94.78% 

(precision: 0.9536; recall: 0.9478; F1-score: 0.9483), while the second partner model 

achieved 99.13% accuracy (precision: 0.9928; recall: 0.9913; F1-score: 0.9912). The 

probability averaged ensemble model of the two folds has 100% accuracy on the test 

set and its confusion matrix is shown in Figure III-23. The confusion matrices based on 

Figure III-23. Test set confusion matrix for the Inception ResNet V2 2-fold ensemble model. 



131 
 

the test set images for the individual folds are shown in Figure III-24 and Figure III-25, 

while the confusion matrices based on the validation sets for these two folds are 

depicted in Figure III-26 and Figure III-27. The development of the training and validation 

losses and accuracies for both folds are displayed in Figure III-28 - Figure III-31. 

In Figure III-32, the original input images, their Grad-CAM heatmaps, and the Grad-CAM 

heatmaps overlaid on the original input images are displayed. In this Grad-CAM 

visualization, the test images 1 and 3 of Cecropia pachystachya raise some questions. In 

the Cecropia pachystachya test image 1 the regions of high importance are in four 

distinct areas, namely the top left and right corners and on two locations within the 

pollen grain. In the test image 3, the highly activated area is solely in the top left corner 

and outside of the actual pollen grain. Although both of these images were correctly 

classified by the ensemble model, at least the classification for the test image 3 should 

be deemed to be correctly identified on false grounds. The test image 1 is easier to 

accept as a correct classification based on the fact that the ensemble model assigned an 

average probability of 92.98% that the image indeed represents Cecropia pachystachya. 

Figure III-24. Test set confusion matrix for the Inception ResNet V2 fold 1 model. 
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In contrast, the test image 3 was only given 13.54% average probability that it depicts 

Cecropia pachystachya. This insight gives credence to the idea that it was pure chance 

that this particular ensemble achieved 100% CCR and that the other two ensemble 

models that classified all test images with perfect accuracy may also have been simply 

luckier than the other 295 ensembles that managed over 99% accuracy.  

The Grad-CAM heatmaps suggest that the Inception ResNet V2 ensemble did not 

experience the same problem of focusing on four points along the edges of Mimosa 

somnians pollen grains as the DenseNet-169 fold five did. Instead, the ensemble model 

seems to suffer from the heatmap ‘bleeding’ to the edges of the image in all Mimosa 

somnians test images, which may either be a problem with Grad-CAM technique itself 

or a consequence of the size of the images, as mentioned previously. Furthermore, 

compared to the DenseNet-169 fold five Grad-CAM heatmaps, the ensemble Grad-CAM 

heatmaps are seemingly sharper than the DenseNet-169 fold five Grad-CAM heatmaps, 

which enables better identification of specific regions of importance in many cases, such 

Figure III-25. Test set confusion matrix for the Inception ResNet V2 fold 2 model. 
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as the edges of the test image 3 of Matayba guianensis in Figure III-32. That said, the 

same features are not highlighted in different images, suggesting that the ensemble 

model utilises a variety of features for these 23 pollen grain types which translates to 

excellent overall generalization ability. 

 Discussion 

The results presented above show that convolutional neural networks, despite their 

specific architecture, are excellent in the task of classifying pollen grains. The trained 

convolutional neural network models are better at classifying the images in POLEN23E 

dataset when the weights in the pre-trained base neural network are fine-tuned, as 

opposed to freezing the weights and only employing the pre-trained neural network in 

feature extraction mode. There are also some differences between the pre-trained 

neural network architectures and how well they can be expected to perform when 

presented a particular type of pollen grain. This behaviour becomes more obvious when 

comparing the Grad-CAM visualizations of different models. 

Figure III-26. Validation set confusion matrix for the Inception ResNet V2 fold 1 model. 
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The results regarding the best performing ten-fold cross-validation models presented 

here are better than those reached by Sevillano and Aznarte (2018). While their best 

model reached an accuracy of 92.9% (cf. Table III-2), the best ten-fold cross-validation 

model presented in Phase 1 achieved a CCR of 93.79%, the best ten-fold cross-validation 

average for the test set in Phase 2 reached 97.83%, the best ten-fold cross-validation 

average for the validation set in Phase 2 was 96.96%, and the three best ensemble 

models evaluated on the test set reached 100% accuracies in Phase 2. Because only 

three ensemble models managed 100% accuracy and an additional 295 ensemble 

models achieved an accuracy over 99%, it is possible that the best three ensemble 

models are statistical outliers and only reached their level of accuracy through chance. 

The difference between achieving over 99% and 100% accuracy is the misclassification 

of a single image in the test set and it is likely that in a real-world setup the models that 

reached 100% accuracy and those that reached above 99% accuracy would function 

nearly identically. It is thus perceivable that the ensemble model presented in the 

previous section is simply lucky, especially considering that the test image 3 of Cecropia  

Figure III-27. Validation set confusion matrix for the Inception ResNet V2 fold 2 model. 
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Figure III-29. Development of training and validation losses for the Inception ResNet V2 fold 2 model. 

Figure III-28. Development of training and validation losses for the Inception ResNet V2 fold 1 model. 
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Figure III-30. Development of training and validation accuracies for the Inception ResNet V2 fold 1 model. 

Figure III-31. Development of training and validation accuracies for the Inception ResNet V2 fold 2 model. 
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Figure III-32. All test images, their probability weighted Grad-CAM heatmaps, and the heatmaps overlaid on top of 

the test images for the Inception ResNet V2 ensemble. The darker red areas of the heatmaps show the areas of the 

image that were the most important in the model’s prediction. 
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pachystachya was correctly classified through the presence of a remnant particle in the 

background, as shown by Grad-CAM, and with low overall confidence. Furthermore, it 

must be noted that because the neural network training process contains an element of 

randomness, repeating the ten-fold cross-validation for any given test setup does not 

always guarantee the exact same accuracy. However, a trained neural network model 

can be tested independently, therefore making the experiment results verifiable. 

Concerning the different hyperparameter search strategies used in Phase 1, employing 

a manual search strategy in conjunction with grid search appears to be an adequate 

approach, but it does present some problems. For instance, the total time spent running 

all the models must be measured in weeks, not just hours or days, and manual search 

suffers from relying on the user’s intuition of what the correct hyperparameters are. In 

a sense, manual search is a method in which the researcher takes the role of learning 

the best hyperparameters while the machine learning algorithm learns the objective 

function and the two exist in a feedback loop; this is not a very efficient process because 

humans are not particularly good at estimating how one parameter affects another, 

especially when the relationship is non-linear and involves dozens of parameters. It is 

also difficult to estimate where to start with manual search, but even harder to decide 

when to stop. This is particularly pertinent to the manual hyperparameter search results 

of Inception ResNet V2 network in Phase 1, which ended up requiring three times as 

many attempts as the manual search for ResNet-50 and yielded no improvement. 

Fortunately, better analytical techniques of finding hyperparameters, such as Bayesian 

optimization (Snoek et al., 2012) and randomised search (Bergstra and Bengio, 2012), 

are available and should be used in future studies. Bayesian optimization in particular 

would be useful as its purpose is to replace the human in the hyperparameter-objective 

function feedback loop. 

Over the course of the Phase 1 experiments, it became evident that feature extraction, 

manual hyperparameter search strategy, not employing an early stopping mechanism, 

and not having proper visualizations of the black box function’s attention was 

unsatisfactory, highlighting the problems with previous studies on the POLEN23E 

dataset. It was further thought that applying ensemble models would improve the 

classification performance. Thus, Phase 2 was developed to take advantage of fine-

tuning, early stopping, ensemble modelling, and a concerted effort was made to 
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ascertain that the trained neural networks truly made their predictions based on the 

pollen grains and not based on some incidental variable such as the method of mounting 

the pollen grain or other particles visible in the image.  

The results in Phase 2 in conjunction with de Geus et al.'s (2019) points towards 

DenseNet architecture being particularly well suited to classifying pollen. As in de Geus 

et al.'s (2019) work, DenseNet architecture achieved higher accuracy than ResNet in the 

fine-tuning approach and fine-tuning was found to be better than feature extraction 

overall. However, de Geus et al. (2019) did not attempt to understand their model any 

further and they did not show that their good results were not influenced by their data 

collection strategy, which was said to include many different methods of mounting the 

pollen with varying pollen colouring techniques. Similarly, Sevillano and Aznarte (2018) 

and Khanzhina et al. (2022) both omit a visual evaluation of their models. Sevillano et al. 

(2020) on the other hand evaluated their model based on selected filters activated by 

one image, excluding a lot of information about the learnt features. Therefore, Grad-

CAM visualizations were created for the DenseNet-169 fold five and the Inception 

ResNet V2 ensemble model. 

Using Grad-CAM visualizations it was shown that the DenseNet-169 fold five focused 

solely on the pollen grains. In contrast, the Grad-CAM visualization of the evaluated 

Inception ResNet V2 ensemble model showed that highly accurate models can make 

mistakes even when correctly classifying an image. This was demonstrated by the fact 

that the ensemble model had a low average confidence for the test image 3 of Cecropia 

pachystachya and the Grad-CAM heatmap does not align with the pollen grain. This is 

somewhat disconcerting as many models pass without proper scrutiny of what 

information the classification is based on. Therefore, a question of what makes a reliable 

classification must be raised – is high probability, correctly focusing on the depicted 

object, a combination of these two factors or some other factor what makes a 

classification reliable? Answering this question is beyond the scope of this chapter and 

it should be revisited in future work. However, what can be said is that Grad-CAM 

heatmaps of ensemble models are qualitatively slightly sharper than those made from 

single folds. Finally, in Appendix 1 it was established that normalizing heatmaps removes 

noise from unimportant classes when creating Grad-CAM visualizations, enabling more 
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faithful spatial explanations of the model’s classifications, and thus furthering the use of 

Grad-CAM. 

3.4.1. Moving forward 

Moving beyond manual extraction of pollen grains’ features is imperative if 

palynology is to become automated. Relying on scientists to analytically choose the 

correct features is too time-consuming and difficult considering the intra- and 

interspecific variation in pollen grain morphology. This issue is even bigger for fossil 

pollen since they are more prone to deformations than modern pollen and ground-truth 

labels may not be available. When ground-truth labels are not available, a problem must 

be approached from a different perspective. For instance, using unsupervised machine 

learning to create groups of pollen grains that are morphologically similar and then using 

a classifier to place new images to these learnt categories would remove the 

dependence on ground-truth labels.  

Researchers’ time would also be well spent on configuring new imaging techniques for 

higher quality images and new ways of removing desiccation, deformations, and 

background noise in images as biasing factors in pollen classification. While this study 

shows that many different CNN models can achieve good classification accuracies for 

POLEN23E dataset, it has not shown that any of the models will be useful in practice for 

an automated system because these issues are unaddressed. Although the excellent 

results in Phase 2 were achieved despite the small dataset size, the limited variation 

within the POLEN23E dataset also remains an issue. For instance, the dataset does not 

include any images showing pollen clumping and for a pollen image dataset to be useful 

in an archaeological setting, it should also include many examples of broken pollen 

grains, although this latter problem could be overcome to an extent with data 

augmentation. Automatic image instance segmentation could help with pollen clumping 

as well as enable faster processing of microscope slides as the segments could be 

processed in parallel. Including auxiliary data such as the size of the pollen grain or even 

the level of magnification as a proxy to the size of the pollen grain could help create a 

more robust system. This suggestion is especially pertinent to the improvement of the 

Classifynder system, which already collects auxiliary information along with images of 

the pollen grains (Holt et al., 2011; Sevillano et al., 2020). Finally, it is likely that 

classifying pollen from SEM or laser scanning confocal microscopy images would 
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produce even better results than LM images. This is because of the higher level of detail 

in these images, which allows for easier differentiation of pollen grain types. However, 

using such images introduces further complications such as cost, speed, and training of 

users. 

 Conclusion 

The aim of the Phase 1 of this study was to partially replicate a previous study by 

Sevillano and Aznarte (2018) and to find out whether newer, state-of-the-art neural 

network architectures perform better than the AlexNet architecture on Gonçalves et 

al.'s (2016) POLEN23E dataset. The aim of the Phase 2 was to improve upon the previous 

methods and correct some mistakes made in Phase 1, such as validate the model 

classifications through Grad-CAM. The results in both Phase 1 and 2 exceed Sevillano 

and Aznarte's (2018) accuracy of 92.9% (cf. Table III-2). As the best ten-fold average 

accuracy on the test set in Phase 2 is 97.83%, the results also beat Sevillano and 

Aznarte's (2018) originally reported accuracy of 97.23%. Moreover, Phase 2 

demonstrated that by combining early stopping, ensemble modelling, and fine-tuning, 

it is relatively easy to train an ensemble model capable of above 99% classification 

accuracy on the test set, even without data augmentation. This outcome exceeds the 

accuracies of previous studies on this dataset and indicates that more difficult datasets 

are required to test the limits of deep learning in the domain of pollen grain 

classification. 

Although this study has shown that it is possible for convolutional neural networks to 

achieve a very high accuracy on a specific dataset in the classification of pollen grains, a 

real-world test showing that human expert level performance has been achieved is still 

lacking. Such a study should incorporate the most common pollen grain types for the 

region from which the expert palynologists come from and test their ability in a blind 

study. Some reasons for the sustained scepticism of models equalling expert human 

performance revolve around the type and quantity of data used in generating models, 

but also the techniques used in the post-hoc evaluation of the classifier, namely the lack 

of trust that the predictions are made for the right reasons. This study has shown that 

by using visualization techniques such as Grad-CAM, it is possible to untangle the black 

box nature of CNNs and partially instil trust in one’s models. This furthers palynologists’ 

ability to take an advantage of deep learning since integrating such a method to an 
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automated system would provide a quick way of ascertaining that the model is doing 

what is intended. Regarding the use of deep learning convolutional neural networks in 

the identification of pollen in archaeology, this has not yet been attempted, although 

some studies have looked at fossil pollen identification (Bourel et al., 2020; Romero et 

al., 2020), possibly because automated pollen identification is still at the validation 

stage. Moreover, larger datasets with realistic archaeological samples are needed and 

the samples should also go through better processes of either removal of deformed 

pollen grains and debris and/or de- or rehydration of desiccated grains to normalise the 

sample. If this is not possible, then the classification algorithms should be trained to 

identify pollen grains that are not intact and classify them as such, similarly to what 

Bourel et al. (2020) have done. 
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Chapter IV. Differentiating sheep and goat astragali 
using deep learning convolutional neural 
network 

 Introduction 

The bones of sheep Ovis aries and goat Capra hircus have long been considered to be 

so difficult to separate using morphological criteria that Noddle (1974, p. 195) called the 

problem “legendary”. First comparisons of subspecies of Ovis and Capra were published 

already in 1891 (Cornevin and Lesbre, 1891), setting the precedent for future studies 

that aimed to find distinguishing features for the two species. In relation to this problem, 

an early attempt by Lawrence (1951) failed to find good post-cranial skeletal 

characteristics to aid in the two species’ identification, but they claimed to have found 

many differences between the mule deer Odocoileus hemionus, the pronghorn 

Antilocapra americana, and the domesticated sheep/goats in the United States. In turn, 

Gromova (1953)5 compared several species of Capra and Ovis in a meticulous metric and 

morphological study, pointing out differences in various features of the skull, vertebral 

column (including the sacrum), scapula, humerus, radius, ulna, pelvis, femur, tibia, 

astragalus, calcaneus, navicular-cuboid, metapodials, and phalanges using especially 

Capra aegagrus and Ovis orientalis as examples in the illustrations. Soon after, 

Hildebrand (1955) published their research in which they admit that they did not 

discover any characteristics that separate all domestic sheep from all domestic goats, 

but they did claim to be able to separate deer from sheep and goats. They focused on 

scapula, humerus, radius, ulna, metacarpal, pelvis, femur, tibia, metatarsal, sacrum, 

atlas, and axis in a study that mixed morphometrics and morphological description. Yet, 

it was not until Boessneck et al.'s (1964; an English summary by Boessneck, 1969) 

extensive publication that an anatomically informed set of criteria for separating sheep 

and goat was widely available in the western world, although their work only focused 

on criteria to differentiate adult individuals. The exclusion of young individuals may be 

attributed to the fact that their epiphyses are unfused, articular surfaces are less 

defined, and muscle insertion areas are yet to develop properly (Payne, 1985). It must 

also be noted that Boessneck's (1969) abbreviated English version of Boessneck et al.'s 

(1964) original study did not explore horn cores, mandible, teeth, carpal bones, patella, 

 
5 The cited publication is in Russian and only a general gist of the research could be inferred. 
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and the smaller tarsal bones, even though they were included in the German original to 

an extent6. Similarly, Boessneck (1969) limited their analysis of vertebrae to the atlas 

and the axis cervical bones, but in the original publication the whole vertebral column 

was treated. 

It is therefore understandable that in the over half a century since Boessneck et al.'s 

(1964) study, several other pieces of research have looked at various anatomical parts 

of domestic sheep and goat through the lens of morphology. Schramm (1967) identified 

morphological differences in the skull, atlas, axis, scapula, humerus, metapodia, and 

pelvis, while tibia could only be differentiated through morphometrics. Kratochvil (1969) 

looked at the distal tibia in high detail since it was dismissed by Boessneck et al. (1964; 

Boessneck, 1969) as uninformative, and Prummel and Frisch (1986) aimed to refine and 

simplify the morphological criteria pertaining to the skull, scapula, humerus, radius, 

ulna, metapodials, femur, tibia, calcaneus, and astragalus. Helmer and Rocheteau (1994) 

have also provided a detailed guide to separating sheep, goat, chamois, roe deer, and 

gazelle from their scapula and humerus with the apparent intention to expand their 

research to other parts of the skeleton, although this research was never published. 

Recently, Zedda et al. (2017) described differences in the femoral morphology and 

verified them in a blind study in which the fourteen participants achieved an average 

accuracy of 91.3% for sheep and 90% for goats. 

Furthermore, Payne (1985) showed that it is possible to distinguish lambs and kids from 

their mandibular teeth whilst still taking the dental wear into account, but their 

methodology requires the presence of premolars and molars in the mandible and only 

applies to juveniles. Subsequently, Helmer (2000) and Halstead et al. (2002) published 

morphological criteria to discriminate the premolars and molars of adult individuals as 

well, allowing the construction of a complete mortality profile for the whole sheep and 

goat populations from just the mandibles. More recently, Greenfield and Arnold (2008) 

extended Payne's (1973, 1985) tooth wear-based aging methodology to apply to North 

American sheep and goat populations, although this applicability is unsurprising 

considering that all domestic goat and sheep populations in North and South America 

ultimately derive particularly from European (especially in North America), and to a 

lesser extent from African and Asian breeds that were imported in the centuries after 

 
6 The references to Boessneck et al.’s study herein are based on the English summary. 
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the beginning of colonization of the Americas by Europeans (Rodero et al., 1992; Kijas 

et al., 2009; Blackburn et al., 2011). However, there is a genetic disparity between 

European, African, and Asian breeds of sheep and goat and these populations would 

benefit from comparative osteological studies (Naderi et al., 2007; Kijas et al., 2009), 

particularly as Badenhorst (2006) mentions that certain morphological criteria defined 

by Boessneck et al. (1964) do not apply to southern African sheep and goat breeds.  

Indeed, recent studies have demonstrated the variance between domestic and non-

domestic individuals as well as between modern and ancient populations of the same 

species. For instance, Pöllath et al. (2019) argue that modern wild sheep from northern 

Iran are smaller than modern domestic Marsch and Karakul sheep, as well as smaller 

than sheep from the Pre-Pottery Neolithic B sites of Göbekli Tepe and Gusir Höyük. 

Likewise, Pöllath et al. (2018) showed that the sheep from these two Neolithic sites 

differ in shape from the modern Karakul sheep as shown through geometric 

morphometrics. In addition to the variance relating to the geographic region, breed, and 

temporal place of animals, it has long been known that intraspecies variation in bone 

morphology can be caused by age, sex and castration, and nutrition (Noddle, 1974; 

Davis, 1996, 2000; Zeder, 2006). There is perhaps no better study that shows these 

effects for sheep than that of Popkin et al. (2012, p.1791), who ‘demonstrated that 

sheep bone growth is a nuanced process dependant on skeletal element, axes of growth, 

area of growth, nutrition, sex and castration.” For instance, it was shown that low 

nutrition results in slower growth rate and a prolonged period of growth, females reach 

their maximum growth potential faster than castrates and males, and males continue to 

grow post-fusion especially in breadth (Popkin et al., 2012). When taking nutrition into 

account, females were always smaller than males and castrates and bone growth was 

not found to be consistent across the skeleton (Popkin et al., 2012). However, as is 

discussed in section 4.1.4, the astragalus is less affected by these causes of variance than 

most other bones. 

In the following sections, a brief overview of what reliable identification of sheep and 

goat bones would mean for archaeology is given before critically examining the 

morphological criteria for differentiating sheep and goats, with a specific focus on the 

astragalus. Following this, morphometrics and other more resource-intensive methods 

are reviewed, before turning to the benefits of the suggested methodology.  
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4.1.1. What could be answered by reliable identification 

The archaeological relevance of a reliable method of distinguishing sheep and goat 

bones comes from the two species’ different economic values to those who exploited 

them (Payne, 1973). Both species have their own environmental niches in which they 

thrive, so they require different management strategies and enable answering questions 

about the local environment (Redding, 1981). Sheep graze grass or roughage and prefer 

higher-quality portions of the plants, while goats prefer browse over grass and grass 

over legumes as they tend to select highly digestible portions of grasses, woody or 

stemmy browse, and flowers, fruits, and leaves (Rankins Jr and Pugh, 2012). Sheep 

perform better in flat, improved, monoculture pastures, while goats prefer rough or 

rocky pastures (Rankins Jr and Pugh, 2012). The two species are exploited for different 

products today, although this may not have been true in the past and their utility likely 

varied across regions: sheep are primarily exploited for their wool, meat, and pelt, with 

milk being of lesser value, while goats are mainly kept for their meat, milk, and skin 

(Payne, 1973). It must be noted that certain sheep breeds do not produce wool, but hair 

(Badenhorst, 2018), and that sheep and goat are often herded together in modern 

African contexts to the extent that the Boran and Somali of East Africa refer to sheep 

and goats with a common name (Dahl and Hjort, 1976). Interestingly, a recent study put 

Figure IV-1. Distribution and timings of domestication for sheep, goats, pigs, and cattle in years BP. Taken from 

Zeder (2008a, p. 11598). Copyright (2008) National Academy of Sciences. 
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forward the argument that sheep were managed in varying manners depending on the 

region and cultural group in early Neolithic European contexts, whereas no strong 

conclusions could be drawn regarding goat management strategies due to small sample 

sizes (Gillis et al., 2022). This study further argued that dairy husbandry and preference 

for young meat was prevalent in southern European Neolithic, especially in relation to 

sheep, while both sheep and goat were sources of meat rather than milk. Therefore, as 

put by Zeder and Pilaar (2010, p. 225), being able to accurately distinguish the remains 

of sheep and goats is “an essential step in the construction of species-level harvest 

profiles capable of detecting these different economic strategies.” The ability to 

differentiate the two species is particularly important because of their position as the 

first animals to be domesticated in the Fertile Crescent (Zeder, 2008). The approximate 

timings and areas where they were first domesticated are shown in Figure IV-1.  

4.1.2. Critical view of the reliability of morphological criteria in 
differentiating sheep and goats 

Morphological characterisation of sheep and goat skeletal elements have had their 

share of critique and certain identification criteria have been rejected by assessments 

and blind studies. For instance, Zeder and Pilaar (2010) assessed the reliability of 

mandibles and mandibular teeth in the identification process, arguing that the 

permanent first molar and deciduous fourth premolar are particularly indistinct 

elements. Using an archaeological sample from two sites in Sudan as their test sample 

(and thus lacking true ground-truth labels, making the results questionable), Gillis et al. 

(2011) found that the species is more reliably identified from sheep deciduous teeth 

than from adult premolars or molars, with molars being slightly more reliable than 

premolars. In contrast, they found that goat premolars were more reliably identified as 

coming from goats than molars, but deciduous teeth were again the most reliable.  

Recently, Jeanjean et al. (2022) claimed that when analysed through geometric 

morphometrics, sheep and goat can also be differentiated based on the size and shape 

of their third lower molars and mandibles. According to Badenhorst (2006), the medial 

distal humerus facet is not a useful feature in separating southern African sheep and 

goats. Species identification based on distal tibia is also considered very difficult as 

shown by Zeder and Lapham (2010) and Wolfhagen and Price (2017), although this was 

already noted by Boessneck et al. (1964; Boessneck, 1969). However, Salvagno and 

Albarella (2017) were able to achieve 86.4% correct identification rate (leave-one-out 
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cross-validation) for the distal tibia by measuring a ratio of the depth of medial and 

lateral sides of the distal end of the tibia, basing their research on morphological criteria 

defined by Kratochvil (1969) and Prummel and Frisch (1986). However, the decision 

boundary is not explicit as there is a significant overlap between the species. The 

difficulty of distinguishing each species from archaeological assemblages has a 

precedent as well, as Pilaar Birch et al. (2019) compared morphological identifications 

of caprine mandibles to ZooMS (Zooarcheology by Mass Spectrometry) and aDNA 

techniques, while Prendergast et al. (2019) compared the species assignments of 79 

morphologically identified caprine teeth and postcranial specimens to the species 

assignments by ZooMS and stable isotope. Both studies, along with other archaeological 

blind studies, are discussed in more detail in Chapter V. 

In the next two sections, two different studies that assessed the applicability of 

morphological criteria are discussed. The first study by Clutton-Brock et al. (1990) 

utilised Boessneck et al.'s (1964) criteria and identified sets of features to be more 

informative than individual criteria. The second study by Zeder and Lapham (2010) relied 

upon sets of features in the identification. Both Clutton-Brock et al. (1990) and Zeder 

and Lapham (2010) found some morphological criteria to be more informative than 

others.  

4.1.2.1. Morphological criteria applied to the Soay sheep from Hirta, St 
Kilda, Scotland 

In their research on the applicability of Boessneck et al.'s (1964) criteria to 

differentiating sheep and goats, Clutton-Brock et al. (1990) assessed a small sample of 

feral goats from Holy Island, Arran, in Scotland and Soay sheep – a distinct relict 

domestic sheep breed with great resemblance to the Corsican and Sardinian mouflon – 

from Hirta, St Kilda, in Scotland (Clutton-Brock et al., 2004). They assessed various 

features of the skull, mandible, atlas, axis, scapula, humerus, radius, ulna, pelvis, femur, 

tibia, fibula, patella, astragalus, calcaneum, metapodials, and phalanges, and discovered 

that only few reliable features could be verified, although sets of features are diagnostic 

(Clutton-Brock et al., 1990). The assessed sheep bones were part of a semi-random 

collection containing 47 skeletons that were selected from 224 dead sheep after heavy 

mortality in the winter of 1978-79, over a thousand individual elements picked up 

randomly on the island, and two one-year old castrate skeletons (Clutton-Brock et al., 
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1990). The sample of goat bones included seven skeletons, but unfortunately the scores 

were not published and thus only the applicability of the morphological criteria to Soay 

sheep can be explored further (Clutton-Brock et al., 1990). The criteria for all of the 

features assessed by Clutton-Brock et al. (1990) and referred to in the next paragraph 

are listed in Appendix 5. 

For the assessed Soay sheep skulls, all of the ten features were more sheep-like or 

intermediate in appearance, with only a few skulls showing some goat-like features 

(Clutton-Brock et al., 1990). In contrast, the vertical and horizontal angle of the 

mandibular ramus was more goat-like for all but one specimen, which was intermediate, 

while the ventral margin of the horizontal ramus was mostly sheep-like or intermediate 

(Clutton-Brock et al., 1990). The three assessed features of the atlas in the Soay sheep 

population showed a mix of sheep-like and goat-like elements, but the five features of 

the axis were largely attributed to sheep-like with few intermediate specimens (Clutton-

Brock et al., 1990). All five features of the scapula and the six features of the humerus 

were mostly sheep-like, with a few intermediate and even fewer goat-like specimens 

(Clutton-Brock et al., 1990). The four features of the radius and ulna were again mostly 

sheep-like in Clutton-Brock et al.'s (1990) assessment, but there were more 

intermediate specimens when assessing the fusion of the shafts of radius and ulna and 

the convexity of the medial edge of olecranon process of ulna. For the pelvis, Clutton-

Brock et al. (1990) focused mainly on how well the features separate males, females and 

castrates, but they also show that the absence of a notch on the anterior, dorsal border 

of obturator foramen is a prominently sheep-like feature in the Soay population apart 

from one individual with intermediate appearance on this feature. For the femur (four 

features), tibia (one feature), patella (one feature), astragalus (one feature), and 

calcaneus (two features), none of the specimens indicated any goat-like features, but 

some intermediate specimens were present (Clutton-Brock et al., 1990). Regarding the 

metacarpals, two specimens were found to have goat-like features in their angle of the 

verticilli of the distal condyles, and the specimens were mostly intermediate with 

regards to the presence of synovial pits on the proximal articular surface (Clutton-Brock 

et al., 1990). For the majority of the assessed metatarsals, these same two features were 

sheep-like (Clutton-Brock et al., 1990). For the first phalanx, second phalanx and the 

hoof core, most assessed specimens were sheep-like in their features with a few 

intermediate and even fewer goat-like specimens (Clutton-Brock et al., 1990). The first  
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Clutton-Brock et al.’s summary of problematic features 

Skull 

The distinctive Y-shape of the frontal-parietal suture is not seen in one skull; 
the lambdoid suture is not straight but is intermediate in several skulls; and 
the temporal fossae are not convincingly wide apart in four skulls. 

Scapula 

The presence of a pecten on the posterior margin should be diagnostic of 
sheep; while no Soay scapulae are allocated as goat-like, four bones are 
intermediate. 

Humerus 

Usually regarded as a particularly distinctive bone for each species; at the 
proximal end the lateral tuberosity should be broad and upright but three 
castrates are equivocal; the nutrient foramen should be at the back of the 
shaft but several are in the goat-like position on the side and two are 
intermediate; at the distal end the rounded epicondyle is usually considered 
to be one of the best sheep-like characters but two bones are intermediate. 

Radius and 
ulna 

These bones are usually unfused in the sheep and fused at the proximal 
ends of the shafts in the goat, but this distinction does not hold for a 
considerable number of the Soay elements one of which is fused and several 
are intermediate; the little ledge on the lateral border of the proximal end of 
the radius should be a diagnostic feature of sheep but it is absent in one 
bone. 

Pelvis 
The obdurator foramen should have no notch at its anterior end in the sheep 
but there is a slight notch in one Soay specimen. 

Femur 

The greater trochanter on the proximal epiphysis usually has a flat top and a 
square edge in the sheep but a few Soays are intermediate between sheep 
and goat for this character. 

Astragalus 

In the sheep the medial articular ridge should be only a weakly-developed 
bump but in five bones it is pointed enough for them to be classed as 
intermediate. 

Calcaneum 
The articular facets are said to be separate in the sheep but a number of the 
Soay elements exhibit some degree of fusion. 

Metapodial 
bones 

The verticilli on the distal condyles are expected to be parallel to each other 
in the sheep while in the goat the medial verticillus diverges, but in one Soay 
this character is goat-like and in a number it is intermediate. 

Phalanx 1 

The shape of this element is usually quite distinctive in the sheep and goat 
but in the Soays the discrimination is not clear-cut for several of the 
characters, which may be due to the particularly active life of these sheep. 

Phalanx 2 

The best character for discrimination is the symmetry of the posterior side of 
the distal condyle and this does apply well in the Soays except for two 
intermediates. 

Phalanx 3 (hoof 
core) 

The distinctive features noted by Boessneck, the rounded dorsal edge and 
the development of the extensor process are not found in the Soays while the 
convex lateral edge is compromised by one intermediate hoof core. 

Table IV-1. Clutton-Brock et al.'s (1990, p. 41-42) summary of the features that present a problem in the 

discrimination of sheep and goats, as found in the Soay population. The descriptions are direct quotes. 
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phalanx was the only one that showed goat-like features in some of the specimens, but 

only in the shape of the lateral edge below proximal articular surface (Clutton-Brock et 

al., 1990).  

Clutton-Brock et al.'s (1990) summary of the problematic features is presented in Table 

IV-1 and the only individual characteristics that they identified as pertaining to sheep 

are: 1) the presence of lacrimal fossa in the skull; 2) presence of a transverse canal in 

vertebra; 3) the concave anterior margin of scapula; 4) the femur head forms a 

continuum at the proximal end with the saddle and the distal end lacks synovial pits; 5) 

the lack of synovial pit in the proximal end of the metatarsal or its presence as a single 

circular hole; and 6) the concave profile of the hoof core to the medial edge of the sole. 

None of these individual features relate to the astragalus. Considering this summary and 

the above description, it is interesting to note that majority of the features do not 

explicitly indicate that all of the known sheep are truly sheep. If archaeological 

fragments of bones happened to show only the indistinguishable or the intermediate 

features, these specimens could easily be misidentified. Therefore, in determining the 

species membership for sheep and goat bones, it is more appropriate to assess feature 

sets rather than base conclusions on individual features.  

4.1.2.2. Morphological criteria applied as feature sets 

In a more recent assessment of the reliability of the identification criteria for sheep 

and goat post-cranial remains (distal humerus, proximal and distal radius, distal tibia, 

distal metapodials, astragalus, calcaneus, and the first and second phalanges), Zeder and 

Lapham (2010) applied a method where many criteria were used in conjunction with 

each other. Zeder and Lapham (2010) argued that many of the individual criteria are 

very consistent in general, although all elements vary in their identification reliability – 

they found that 21 of the 34 individual criteria (across all elements) provided correct 

identifications in more than 90% of the time for both species, while eight criteria were 

able to do so in less than 85% of the time for either species. However, Zeder and 

Lapham's (2010) reported percentages of correct identifications are inflated by the 

exclusion of samples that the analysts identified as sheep/goat from the total number 

of specimens. These sheep/goat identifications cannot be considered to be correct at 

the same hierarchical level as sheep or goat assignments, but they are correct 

identifications at the caprine level of the taxonomic hierarchy. Sheep/goat is therefore,  
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Zeder and Lapham’s results (Table 3) recomputed 

Goats 

 Criterion # % O/C # O/C % Correct # Correct 
% Corr w/ O/C 

in total 

Humerus 

1 46 8.7 4 95.2 40 86.96 

2 46 6.5 3 90.7 39 84.78 

3 46 21.7 10 63.9 23 50.00 

4 45 4.4 2 95.4 41 91.11 

Radius (P) 

1 47 17 8 97.4 38 80.85 

2 47 0 0 95.7 45 95.74 

3 47 4.3 2 91.1 41 87.23 

4 47 12.8 6 87.8 36 76.60 

Radius (D) 
1 46 0 0 97.8 45 97.83 

2 46 8.7 4 100 42 91.30 

Tibia 

1 44 9.1 4 85 34 77.27 

2 43 11.6 5 92.1 35 81.40 

3 42 19.1 8 94.1 32 76.19 

Metacarpal 

1 47 2.1 1 100 46 97.87 

2 47 2.1 1 100 46 97.87 

3 46 10.9 5 95.1 39 84.78 

Metatarsal 

1 47 0 0 97.9 46 97.87 

2 47 23.4 11 97.2 35 74.47 

3 46 4.4 2 97.7 43 93.48 

4 47 6.4 3 68.2 30 63.83 

Astragalus 

1 44 0 0 100 44 100.00 

2 46 4.4 2 95.5 42 91.30 

3 46 4.4 2 95.5 42 91.30 

4 46 8.7 4 92.9 39 84.78 

Calcaneus 

1 46 0 0 93.5 43 93.48 

2 46 2.2 1 97.8 44 95.65 

3 46 2.2 1 91.1 41 89.13 

4 45 13.3 6 84.6 33 73.33 

1st phalanx 

1 85 7.1 6 88.6 70 82.35 

2 86 8.1 7 98.7 78 90.70 

3 83 12.1 10 93.2 68 81.93 

4 87 8.1 7 100 80 91.95 

2nd phalanx 
1 61 8.2 5 92.9 52 85.25 

2 61 9.8 6 94.6 52 85.25 

Table IV-2. Zeder and Lapham's (2010) table 3 showing the performance of the individual criteria for sheep and 

goats recomputed. The columns shaded in grey were added by the present author. In the original table, the % 

Correct column was computed as the percentage of those specimens that were not identified as O/C. In this table, 

the column # O/C is first computed by multiplying the # column with the % O/C column. The result is subtracted from 

the total number of specimens and this is multiplied by the reported % Correct to get the # Correct column. The last 

column, % Corr w/ O/C in total, shows the percentage of correct identifications when the O/C identifications are 

included in the total. 
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Zeder and Lapham’s results (Table 3) recomputed 

Sheep 

 Criterion # % O/C # O/C % Correct # Correct 
% Corr w/ O/C 

in total 

Humerus 

1 80 5 4 94.7 72 90.00 

2 79 7.6 6 93.2 68 86.08 

3 80 10 8 91.7 66 82.50 

4 80 11.3 9 90.1 64 80.00 

Radius (P) 

1 79 7.6 6 89 65 82.28 

2 81 7.4 6 89.3 67 82.72 

3 81 3.7 3 97.4 76 93.83 

4 80 13.8 11 94.2 65 81.25 

Radius (D) 
1 80 3.8 3 94.8 73 91.25 

2 78 10.3 8 82.9 58 74.36 

Tibia 

1 77 11.7 9 73.5 50 64.94 

2 77 18.2 14 84.1 53 68.83 

3 66 18.2 12 96.3 52 78.79 

Metacarpal 

1 80 0 0 98.8 79 98.75 

2 80 16.3 13 94 63 78.75 

3 80 3.8 3 97.4 75 93.75 

Metatarsal 

1 79 0 0 97.5 77 97.47 

2 78 6.4 5 98.6 72 92.31 

3 79 3.8 3 97.4 74 93.67 

4 80 7.5 6 96 71 88.75 

Astragalus 

1 78 6.4 5 75.3 55 70.51 

2 78 6.4 5 87.7 64 82.05 

3 77 6.5 5 97.2 70 90.91 

4 78 12.8 10 92.7 63 80.77 

Calcaneus 

1 78 6.4 5 94.5 69 88.46 

2 78 9 7 97.2 69 88.46 

3 77 7.8 6 91.6 65 84.42 

4 78 5.9 5 89.3 66 84.62 

1st phalanx 

1 148 8.1 12 99.3 135 91.22 

2 146 15.1 22 94.4 117 80.14 

3 150 10.7 16 94.8 127 84.67 

4 148 21.6 32 90.5 105 70.95 

2nd phalanx 
1 84 10.7 9 78.7 59 70.24 

2 80 15 12 91.2 62 77.50 

Table IV-2 continued. Zeder and Lapham's (2010) table 3 showing the performance of the individual criteria for 

sheep and goats recomputed. The columns shaded in grey were added by the present author. In the original table, 

the % Correct column was computed as the percentage of those specimens that were not identified as O/C. In this 

table, the column # O/C is first computed by multiplying the # column with the % O/C column. The result is 

subtracted from the total number of specimens and this is multiplied by the reported % Correct to get the # Correct 

column. The last column, % Corr w/ O/C in total, shows the percentage of correct identifications when the O/C 

identifications are included in the total. 
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at best, a reject category signifying the failure to perform an accurate identification, 

although the traditional reject category in zooarchaeology is the unidentified or 

indeterminate class. Thus, recomputing the percentages of correct identifications by 

using the total number of specimens (including sheep/goat identifications), the 

performance drops dramatically (Table IV-2). Now, only five of the individual criteria 

retain their ability to achieve over 90% identification accuracy for both species and 25 

of the criteria have an accuracy below 85% for either of the species. This would not be 

such a big problem if the rank order of the different criteria remained the same, but 

unfortunately this is not the case either and the rest of the Zeder and Lapham's (2010) 

study is affected by this as they later remove the weakest criterion (which depends on 

how you look at the data) in their interpretation of the results. 

In applying these criteria as feature sets, they were used to identify each element as 

either sheep or goat by counting which species matched more criteria. In the case of a 

tie, the bone was assigned as sheep/goat and each criterion was also possible to be 

marked as sheep/goat if it did not match the given definition for either species (Zeder 

and Lapham, 2010). However, while this method allows the analyst to assign each bone 

to either sheep or goat according to all of the defined criteria, it does not specify when 

a specimen should be marked as ambiguous sheep/goat. Yet, in reporting their results, 

Zeder and Lapham (2010) mention that they assigned bones to this nebulous category 

for a given characteristic when the bone did not clearly fit in either sheep or goat 

category. Although for instance in the case of the astragalus each bone is assessed for 

four criteria (Figure IV-2), such a lack of instructions about when to assign a bone as an 

indeterminate species for a given criterion does not improve one’s confidence in the 

methodology, especially as analysts will have different breakpoints at which they define 

a morphological feature to be emblematic of a particular species. This is also evident in 

Prendergast et al.'s (2019) research, who found that the two analysts applying Zeder and 

Lapham's (2010) method only agreed 75% of the time for the individual criteria for 

postcranial remains. Wolfhagen and Price (2017, p.628) came to a nearly identical 

conclusion, saying that “[d]espite both of us having several years' experience using the 

Zeder and Lapham (2010) traits and reviewing them together on reference specimens, 

one author listed a trait as “goat-like” and the other listed it as “sheep-like” 15% 

(64/434) of the time.” 
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Zeder and Lapham’s results (Table 5) recomputed 

Species Element Criteria # % O/C # O/C* % Corr # Corr* 
% Corr w/ 

O/C in total* 

G
o

a
ts

 

Humerus 
All 46 19.6 9 100 37 80.43 

W/out the poorest 46 4.4 2 100 44 95.65 

Radius (P) 
All 46 8.7 4 97.6 41 89.13 

W/out the poorest 46 2.2 1 95.6 43 93.48 

Radius (D) 
All 46 8.7 4 100 42 91.30 

W/out the poorest 46 0 0 97.8 45 97.83 

Tibia 
All 44 13.6 6 94.7 36 81.82 

W/out the poorest 44 27.3 12 100 32 72.73 

Metacarpal* All 47 0 0 100 47 100.00 

Metatarsal 
All 47 12.8 6 100 41 87.23 

W/out the poorest 47 4.3 2 100 45 95.74 

Astragalus 
All 46 2.2 1 100 45 97.83 

W/out the poorest 46 2.2 1 100 45 97.83 

Calcaneus 
All 46 8.7 4 97.6 41 89.13 

W/out the poorest 46 2.2 1 95.6 43 93.48 

1st phalanx 
All 87 12.6 11 100 76 87.36 

W/out the poorest 87 6.9 6 100 81 93.10 

2nd phalanx 
All 61 16.4 10 98 50 81.97 

W/out the poorest 61 9.8 6 94.6 52 85.25 

S
h

e
e
p

 

Humerus 
All 80 13.6 11 100 69 86.25 

W/out the poorest 81 3.7 3 97.4 76 93.83 

Radius (P) 
All 81 12.4 10 97.2 69 85.19 

W/out the poorest 81 6.2 5 94.7 72 88.89 

Radius (D) 
All 80 27.5 22 96.6 56 70.00 

W/out the poorest 80 3.6 3 94.8 73 91.25 

Tibia 
All 77 18.2 14 90.5 57 74.03 

W/out the poorest 79 38 30 98 48 60.76 

Metacarpal* All 80 3.4 3 98.7 76 95.00 

Metatarsal 
All 81 3.7 3 100 78 96.30 

W/out the poorest 81 1.2 1 97.5 78 96.30 

Astragalus 
All 78 15.4 12 97 64 82.05 

W/out the poorest 78 5.1 4 97.3 72 92.31 

Calcaneus 
All 79 8.9 7 98.6 71 89.87 

W/out the poorest 79 7.6 6 98.6 72 91.14 

1st phalanx 
All 150 15.3 23 100 127 84.67 

W/out the poorest 150 14 21 99.2 128 85.33 

2nd phalanx 
All 85 32.9 28 93 53 62.35 

W/out the poorest 80 15 12 91.2 62 77.50 

Table IV-3. Zeder and Lapham's (2010) table 5 recomputed, showing the performance of the combined criteria for 

sheep and goats. The columns shaded in grey were added by the present author. In the original table, the % Corr 

column was computed as the percentage of those specimens that were not identified as O/C. In this table, the 

column # O/C is first computed by multiplying the # column with the % O/C column. The result is subtracted from the 

total number of specimens and this is multiplied by the reported % Corr to get the # Corr column. The last column, % 

Corr w/ O/C in total, shows the percentage of correct identifications when the O/C identifications are included in the 

total. *) Metacarpal criteria were all deemed equal by Zeder and Lapham (2010) and thus there is no ‘W/out the 

poorest’ row. 
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Because of the lack of specificity in instructions, we arrive at the next problem of 

applying multiple morphological criteria: the compounding error. In Zeder and Lapham's 

(2010) interpretation of their data, the rate of correct identifications and the proportion 

of sheep/goat identifications decreases if fewer, but better criteria are employed 

(compare the All and W/out the poorest rows for % Corr column in Table IV-3). Yet, if 

sheep/goat identifications are included in the total number specimens to calculate the 

rate of correct identifications, the accuracy actually increases if the poorest criteria is 

dropped (compare the All and W/out the poorest rows for the % Corr w/ O/C in total 

column in Table IV-3). This then means that the more criteria are used, the worse the 

Figure IV-2. Sheep Ovis and goat Capra astragalus morphological identification criteria as presented in Zeder and 

Lapham (2010, p.2893). Figure reuse rights gained through RightsLink/Elsevier on 4/12/2020. 
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identification accuracy is, which is in direct opposition to what Zeder and Lapham (2010) 

argued (compare % Corr and % Corr w/ O/C in total columns in Table IV-3). The one 

element for which this observation does not hold is tibia, because for tibia the poorest 

criterion also resulted in the most ambiguous identifications. Thus, while Zeder and 

Lapham (2010, p. 2893) claim that “the accuracy rate for both sheep and goats was over 

95%” for eight of the ten elements, the alternative method of computing the accuracy 

(% Corr w/ O/C in total column in Table IV-3) only supports this claim for the metacarpal 

and the metatarsal if the worst performing criterion is not taken into account. However, 

it must be noted that for four other elements (humerus, distal radius, astragalus, and 

calcaneus), Zeder and Lapham's (2010) methodology achieves over 90% accuracy when 

the poorest criteria are excluded even when including sheep/goat identifications in the 

total number of answers.  

It may then be asked what level of accuracy is acceptable, when is using sheep/goat 

category beneficial, and do we prefer confidence in the individual species assignments 

more than statistical power of the analysis? These questions relate to a trade-off 

between accuracy and sample size, a trade-off in which zooarchaeologists use the 

ambiguous species categories as analytical ‘bins’ where they dispose of difficult 

specimens to improve the overall accuracy whilst decreasing the statistical power of the 

analysis as their datasets become smaller. Unbiased identifications would be particularly 

useful where individual specimen identifications are necessary for specialists analyses 

and estimating the sheep to goat ratio. Yet, Zeder and Lapham's (2010) study leaves 

another big question mark – can analysts apply comparative methodology consistently 

and in a way that can be reproduced by others? 

There is significant evidence to suggest that they cannot. In addition to the two recent 

studies briefly mentioned above (Wolfhagen and Price, 2017; Prendergast et al., 2019), 

which found the application of the methodology inconsistent, Zeder and Lapham (2010) 

themselves published results of a blind study that corroborates this view. In this blind 

study – discussed in more detail in Chapter V – the authors describe how the six 

participants’ (including themselves) identifications varied in consistency and accuracy, 

and there are also occasional deviations from the described methodology, including by 

the authors. Furthermore, although the study participants were instructed to follow the 

defined criteria, it is possible that they were in fact subconsciously utilising 
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morphological signals that are related to the criteria, but not actually defined as part of 

them. This process is best termed as ‘information leakage’ between features of the bone 

and is likely to play a role in the confusion of features as goat- or sheep-like. 

Unfortunately, post-hoc verification of this statement is not possible and a separate 

study on how well analysts follow instructions would be required. One way to test this 

would be to show the analysts varying proportions of the parts of the bone that are 

described in the criteria. Finally, although Zeder and Lapham's (2010) study shows that 

combining various morphological criteria of different post-cranial remains may be quite 

reliably used to separate sheep and goat, inter-analyst variation dictates that the 

identification criteria are not applied objectively, resulting in the observed performance 

discrepancy between analysts. 

4.1.2.3. Morphological criteria for the identification of sheep and goat 
astragalus 

Over the years, the astragalus has been the subject of various studies in which the 

authors have tried to pinpoint which parts of the bone’s morphology are more 

prominent in sheep and which are more apparent in goats (Gromova, 1953; Boessneck 

et al., 1964; Boessneck, 1969; Prummel and Frisch, 1986; Zeder and Lapham, 2010; 

Gudea and Stan, 2012). Boessneck (1969), did not consider the differences in sheep and 

goat astragali to be definite, with many of the described features occurring in both 

species in some form (see Table IV-4). This lack of certainty is reflected in the choice of 

describing features of the astragalus in one species with respect to the other species. 

This is evident in Boessneck's (1969) use of terms such as “more obtusely”, “heavier”, 

and “usually more strongly”, all of which imply that there exists a spectrum of variation 

and that the morphological criteria cannot be used as a catch-all because there is an 

overlap in the variation of the bone for the two species. Thus, these wordings imply that 

there exists a reference specimen to which both sheep and goats can be compared to, 

as otherwise for example the term “more strongly” has nothing to be referred to – in 

other words, how can a bone be “more” or “less” of something if the point of 

comparison is not defined? 

The natural reference point when comparing sheep and goats is the other species’ 

theoretical morphological mean, the definition of which is difficult because this point 

would not be fixed over time due to evolutionary processes and human involvement in  
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animal management. As this theoretical mean is not available, we are instead led to 

believe that the theoretical mean to which Boessneck (1969) implicitly refers is, in fact, 

the mean of the sample that they had access to. According to Boessneck et al. (1964), 

their postcranial sample included 82 goats and 125 sheep7. Of the 82 goats used in the 

postcranial sample, 42 derived from European breeds, 18 from Asian breeds, 16 from 

African breeds, and six from mixed breeds. For sheep, the sample distribution is more 

Euro-centric, with 109 sheep deriving from European breeds, seven from Asian breeds, 

seven from African breeds, one is a dwarf sheep without any details and the last one is 

 
7 There is some unclarity about the number of sheep, as the authors say the total for sheep is 120, but 
counting the number of sheep that were listed by breed we arrive at 125. 

Differences in sheep and goat astragali according to Boessneck et al. 

Main feature Description 

As a whole Goats are "built on slenderer lines". 

The trochlea or 
lateral articular 
ridge w.r.t the 

head 

In some goats, this feature is inclined slightly medially with respect to the 
head. 

In sheep and some goats, this feature stands on top of the head without an 
angle, making the two species indistinguishable. 

The projection of 
the proximo-

plantar angle of 
the medial 

articular ridge of 
the trochlea 

Usually more strongly developed in sheep than goats. 

More strongly developed in males than females (presumably for both 
species). 

May be completely absent in female goats or accompanies the plantar end 
of the ridge as a narrow ledge. 

In male sheep and exceptionally in goats, the projection juts out plantarly 
and medially as a lobe. 

Female sheep and male goats lie between these extremes, as do the less 
extremely developed male sheep and female goats (i.e. only the extremes 

are somewhat useful). 

Medial aspect of 
the trochlea 

In medial aspect, the projecting lobe usually develops towards the proximal 
end in sheep, whereas in goats the lobe develops towards the plantar side. 

In sheep, this part appears 'heavier' than the head of the astragalus. 

Distal end of the 
medial articular 

ridge 

Goats have a sharp ridge that usually stands obliquely and which protrudes 
dorsally and medially between the trochlea and the head. 

In sheep, this feature is placed more obtusely (i.e. not point or in an acute 
angle) and horizontally. 

However, variation occurs in this bone as well. 

Articular surface 
for the calcaneus 

On the plantar side, the feature goes up higher proximally-medially in a 
plantar direction in sheep. 

The medial edge of this feature usually projects noticeably over the lateral 
edge in sheep. 

In goats, both the medial and lateral edge project roughly equally in a 
plantar direction. 

In sheep, a pad or a thickish connecting piece runs from the medial edge to 
the plantar lobe of the medial articular ridge. 

In goats, either no thick connection or a mere indication of one between the 
medial edge to the plantar lobe is present. 

Table IV-4. Boessneck's (1969) description of sheep and goat astragalus differences and similarities. 
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listed as ‘four-horned sheep’. Based on the differences in the geographic origin for the 

sheep and goat breeds, it is plausible that the morphological criteria described by 

Boessneck (1969) reflect differences in geographic regions to some extent, although this 

is likely to only explain a part of the variation between the two species. This argument 

is supported by Pöllath et al. (2019), who, in discussing wild and domesticated sheep 

astragali, conclude that the size and shape of astragalus reflect the respective 

population’s geography, chronology, and genetics, and by Badenhorst (2006), who 

specifies the medial distal humeri facet as being of little use in separating southern 

African populations of sheep and goat. Irrespective of the questions that may be raised 

about Boessneck et al.'s (1964; Boessneck, 1969) sample selection, the described 

morphological criteria for the astragalus should be seen more as a guide than definite 

truth. This argument is further corroborated by Fernandez's (2001) extensive study that 

attempted to find morphological criteria to separate chamois, ibex, roe deer, and the 

two domestic species by quantifying the strength of specific features of bones across 

dozens of individuals – for the astragalus, none of the criteria were conclusively able to 

separate all sheep and goats as the species variation always overlapped, but some 

features were often stronger in one species than the other. For instance: 1) the medial 

inclination of the proximal trochlea with respect to the distal trochlea was found to be 

oblique in 50% of the goats and parallel in 93% of sheep; 2) the medial and lateral sides 

of the proximal trochlea are approximately the same length in 24% of the sheep and in 

93% of goats the lateral side of the proximal trochlea reaches noticeably higher than the 

medial side; and 3) the shape of the often cited projecting lobe in the medial aspect of 

the trochlea was found to be very pointed in 66% of goats and slightly angular in 68% of 

sheep (Fernandez, 2001). Although these features are certainly not the only ones with 

marked differences, they appear to be the ones with the lowest overlap in their 

intermediate and extreme forms.  

Finally, the morphological criteria provided by Prummel and Frisch (1986) also relies on 

comparing sheep and goats and there is an overlap between theirs and Boessneck's 

(1969) criteria in terms of the locations of diagnostic parts. However, there is some 

divergence in the two criteria in that Prummel and Frisch (1986) argue that the distal 

end of the medial articular ridge is more pronounced in goats than in sheep, whereas 

Boessneck (1969) omits references to the size of this feature. Prummel and Frisch (1986) 

also contend that the proximo-plantar projection ends in a point in goats, and in sheep 
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they describe it as auriculate to rectangular in shape. In contrast, Boessneck (1969) 

describes a significant overlap in the shape of this part of the bone depending on 

whether the person is dealing with females or males of goats or sheep – female sheep 

and male goats appear to lie between the extremes in terms of the shape of this 

projection, but bizarrely, Boessneck (1969) says that so do the less extremely developed 

male sheep and female goats. In other words, female and male sheep and female and 

male goats all show overlapping variation in terms of the proximo-plantar projection 

according to Boessneck (1969), apart from the extreme forms. This is in contrast to Zeder 

and Lapham's (2010) study, who found the proximo-plantar projection to be the most 

reliable in the identification of sheep and goat astragali. Therefore, the only sensible 

conclusion is that because different analysts deal with different populations when 

creating their morphological criteria, they will find different features to be more useful 

than others. This inconsistency is not possible to control for when using descriptive 

morphological criteria because the archaeological population is rarely if ever known by 

the researcher, underlining the difficulty of creating a consistent, objective method that 

relies solely on human ability to apply comparative morphological methods. Such 

endeavours in zooarchaeology in general should thus be treated with caution and any 

new methods should be devised with the help of new data and an explicit consideration 

given to the population and sample variances. This consideration applies to both 

zooarchaeology and machine learning. 

4.1.3. Alternatives to purely morphological identification 

As the issue of the two species’ separation using purely morphological descriptions 

inferred from analysts’ experience has not been wholly successful, various publications 

have sought new ways of approaching it. Buitenhuis (1995) took a statistical approach 

to separating sheep and goats from their scapulae by combining morphometrics and 

categorical morphological features and then using Principal Components Analysis and 

Canonical Discriminant Analysis to create distinct groups, resulting in a good degree of 

separation. In a similar approach, Salvagno and Albarella (2017) and Salvagno (2020) 

propose a morphometric method to distinguish sheep from goats for the most common 

bones (horncore, scapula, humerus, radius, ulna, tibia, metacarpal, metatarsal, 

astragalus, calcaneus, and third phalanx). Manual measurements of the astragalus 

(Figure IV-3) have provided a consistent identification score, reaching 86.9% in leave-
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one-out cross-validation and 89% accuracy overall in Salvagno and Albarella's (2017) 

study. Their method involves measuring various parts of each element and finding the 

best biometric indices in a discriminant analysis. In addition to Salvagno and Albarella's 

(2017) work, Davis (2016, 2017), too, has recently identified diagnostic ratios of 

measurements that provide a relatively clear separation of sheep and goat astragali. In 

another recent study, Wolfhagen and Price (2017) argued for a probabilistic approach in 

which each bone is first individually assessed using Zeder and Lapham's (2010) 

methodology and then a probability of it being a sheep or a goat is calculated using 

Bayesian statistics. For the astragalus, Wolfhagen and Price (2017) report an ‘average 

classification inaccuracy’ of 4%, which is slightly better than the 5% error rate that Zeder 

and Lapham's (2010) reported for the original method. Although their approach is 

Figure IV-3. Goat astragalus viewed from six different aspects with the usual measurements marked. Dl = greatest 

depth of the lateral half; GLm = greatest length of the medial half; GLl = greatest length of the lateral half; BpT = 

smallest breadth of the plantar trochlea; H = height of the central constriction (minimum length). BpT and H are 

measurements introduced by Salvagno and Albarella (2017), the others are from von den Driesch (1976). 
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commendable, Wolfhagen and Price (2017) admit that it is limited by ‘reference 

mimicry’, where the assumption is that both the test and training samples come from 

the same distribution, which is unlikely to be the case in archaeological studies.  

In addition to these studies, various researchers have applied two-dimensional metric 

analysis to distinguish sheep and goat metacarpals and metatarsals (Payne, 1969; 

Rowley-Conwy, 1998), petrosal bone (Mallet and Guadelli, 2013; Mallet et al., 2019), 

and femur (Zedda et al., 2017), while others have applied two- and three-dimensional 

geometric morphometrics to identify sheep and goats (Haruda, 2017; Haruda et al., 

2019) and to separate domestic and wild counterparts of sheep from their astragali 

(Pöllath et al., 2018, 2019) with varying results. The benefit of using geometric 

morphometrics over traditional metric measurements is the holistic approach to bone 

morphology, allowing the separation of size and shape data, the preservation of spatial 

relationship between points of measurement, and the fact that these measurements 

are easier to visualize (Hallgrímsson et al., 2008; Haruda, 2017). The main issue with 

geometric morphometrics is that it is normally applied by manually measuring points on 

the three-dimensional volume of the bone. The researcher then has to spend an 

inordinate amount of time to fully capture the morphology of a single specimen, making 

geometric morphometrics a rather slow method. To make matters worse, this process 

is often repeated to ensure the accuracy and precision of the measurements 

(Hallgrímsson et al., 2008). Researchers therefore tend to rely on a limited number of 

landmarks and semi-landmarks, which leads to the loss of information regarding the 

bone shape through estimation. However, with the proliferation of 3D scanning 

techniques and data, it is now possible to apply geometric morphometric statistics to 

full bone morphologies (Herzlinger et al., 2017; Otárola-Castillo et al., 2018). 

Beyond the application of geometric morphometrics, other laboratory-based 

techniques have also been developed to identify animal species. Grine et al. (1986) 

applied Canonical Discriminant Analysis to measurements of sheep and goat dental 

ultrastructures, reaching 95% correct identification rate, but this technique has rarely 

been applied due to its destructive nature and the need for SEM, making it a costly 

method, both in time and money. In a similar fashion, Greenlee and Dunnell (2010) 

claimed that bone microstructure may be used to identify animals to species, but their 

argumentation has a fundamental weakness due to the circularity evident in their blind 
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test, where they verify their technique on morphologically identified archaeological 

bones and on only four modern specimens from two known species (human and pig). 

Although Zedda et al. (2017) got statistically significant results in terms of the 

differences in the maximum diameters of osteons and Haversian canals between sheep 

and goats, many questions still remain about the usefulness of bone microstructure in 

species identification, particularly its cumbersome nature. 

Isotopes, proteomics, and DNA are far more promising and have all seen their uses in 

the last three decades in the identification of archaeological animal remains. Balasse 

and Ambrose (2005), whilst describing new morphological identification criteria for 

sheep and goat premolars and molars, aimed to create a stable carbon isotope-based 

technique to differentiate sheep and goats in C4 grassland environments. Although this 

technique produced meaningful results, its application to archaeological contexts is 

limited as it requires knowledge about the landscape and availability of plant matter for 

sheep and goats, and it may therefore be affected by husbandry practices (Buckley et 

al., 2010). 

Prendergast et al.'s (2019) application of the carbon isotope technique alongside ZooMS 

and traditional morphological studies by two analysts on an archaeological assemblage 

shows that it is possible to segregate the two species using carbon isotopes given the 

right conditions, although there are some differences when compared to ZooMS. In 

contrast, ZooMS has emerged as an exciting new technique in the last decade, enabling 

the resolution of ancient taxonomic relationships (Welker et al., 2015a; Cappellini et al., 

2019) as well as the identification of known species (Buckley et al., 2009, 2010; Collins 

et al., 2010; Welker et al., 2015b). In fact, one of the earliest uses of protein peptide 

mass fingerprinting was to distinguish sheep and goat bones from Domuztepe, a 

Neolithic site in Turkey (Buckley et al., 2010). ZooMS has an advantage over DNA in 

terms of cost and speed. Yet, just like DNA, relying on ancient proteins has its caveats. 

ZooMS requires adequate preservation for the technique to work – a problem that is 

present particularly in specimens from arid and hot regions (Pöllath et al., 2019). Since 

the conception of the ancient DNA (aDNA) technique (Pääbo, 1989), it has been utilised 

in an increasing manner with its application becoming cheaper and the analyses ever 

more detailed and reliable. Ancient DNA has been developed to the point that it has 

become possible to extract Neanderthal and Denisovan DNA even from cave sediments 
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(Slon et al., 2017). Although most news headlines focus on discoveries of how related or 

unrelated modern humans are with extinct hominins (e.g. Green et al., 2006; Meyer et 

al., 2012; Prüfer et al., 2014), studies utilising aDNA have also opened new avenues for 

zooarchaeological and palaeontological research (e.g. Lorenzen et al., 2011; Lagerholm 

et al., 2014; Pilaar Birch et al., 2019).  

Apart from traditional metric analyses and geometric morphometrics, the 

aforementioned laboratory-based techniques are destructive, they may be too costly 

for smaller institutions, private companies and research students, they cannot be quickly 

conducted in the field, and they are relatively slow when compared to comparative 

osteology or even morphometric studies, especially if the samples need to be sent to 

other institutions for analysis. Despite their popularity and usefulness, there are not yet 

enough aDNA and ZooMS laboratories with adequate equipment, resources, and 

technically skilled staff to fully analyse zooarchaeological assemblages nor are these 

techniques cost-effective enough to allow such studies. Moreover, distinguishing the 

domestic sheep and goat from their wild and feral counterparts can only be done by 

analysing the shape of the bones, as genetics and proteomics will always lag behind the 

impact from changes in nutrition, behaviour, and mobility. Thus, assessing 

morphological shape is sometimes the only clue for species identification. 

4.1.4. Why astragalus? 

The astragalus was chosen as the subject of this study because it tends to survive well 

in the archaeological record due to its density and lack of marrow and meat, which 

means that humans have relatively few reasons to manipulate the bone beyond using it 

as a gaming piece (Gilmour, 1997; Koerper and Whitney-Desautels, 1999; Holmgren, 

2004; Sydykov et al., 2015). The astragalus starts ossifying 80 days after copulation in 

sheep (Harris, 1937) and it is fully fused by the time of birth in both sheep and goat 

(Rajtová, 1974). While the astragalus is a poor sex and castration discriminator – at least 

in terms of its size – for sheep, it does continue to grow in length, breadth, and width 

until around 9 months after birth (Popkin et al., 2012; Pöllath et al., 2018). Appositional 

growth in breadth may also continue throughout a sheep’s lifetime, but the size of the 

astragalus has not been linked to nutrition (Popkin et al., 2012). Unfortunately, the 

above information mainly pertains to sheep and the present author has not been able 

to verify its correctness for goats due to lack of studies. Considering these factors, it may 
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be cautiously concluded that the astragalus is resistant to variation caused by external 

factors and its shape should therefore mainly relate to the underlying genetics. It is clear 

that more studies about the development of goat astragalus (and goats in general) are 

needed. 

4.1.5. Aims and objectives 

The task of identifying animal bones has traditionally been approached through 

comparative methods and mainly aided by human eye, but the manual nature is not the 

only weakness of comparative osteology. Comparative methods are ultimately limited 

by the number of available specimens of each species to the person or group defining 

the criteria, as well as by the morphological diversity of the populations from which the 

specimens derive. Considering that the collective accuracy in the identification of 

astragali for the six analysts taking part in Zeder and Lapham's (2010: Table 12) blind 

study was 96% when excluding sheep/goat identifications from the total number of 

identifications and 92% when including sheep/goat identifications in the total, it is 

hypothesised that the accuracy would improve if the diagnostic criteria were created 

from a larger population and with the help of computer vision, which would allow for 

further expansion of the population at any point. 

All of the studies in the previous sections suggest that there are minute morphological 

differences in the bones of the two species which may simply be too small for humans 

to easily see, but which can be taken an advantage of by measurements. It is similarly 

possible that these subtle changes in the morphological properties of the bones, such as 

small differences in overall proportions, are in fact used by analysts – particularly the 

most experienced analysts – subconsciously in their comparative assessments. 

Moreover, it may be that more experienced analysts are better at the mental statistics 

based on these minute features when identifying specimens, as differences in the 

cognitive processes of novices and experts have been noted in various problem domains 

(Schenk et al., 1998).  

It is therefore the aim of this chapter to test the hypothesis that an even more accurate 

and quicker method than the benchmark results of Zeder and Lapham (2010) to 

distinguish sheep and goat astragali can be obtained by applying deep learning 

convolutional neural networks. In general, deep neural networks aim to solve 

classification problems in multidimensional space, where the classification is based on a 



167 
 

hyperplane decision boundary that divides the features into classes (Noble, 2006). In 

traditional methods this decision boundary is limited in the number of utilised 

dimensions (e.g. one-dimensional in bivariate statistics) or the boundary is fuzzy (e.g. 

subjective comparative assessment). The main downside of deep learning neural 

networks is that the interpretation of which parts of the image are used in the 

classification is complicated, but methods of disentangling this information have been 

developed. Thus, the secondary aim is to explore the final model’s regions of focus by 

using Grad-CAM (Selvaraju et al., 2019). It is hypothesised that this methodology 

highlights features in the images that are consistent with human intuition. Images are 

preferred over 3D models in this problem domain, as they are faster to capture and 

process and take less storage space. 3D models also do not always come with textures, 

so sampling them for synthetic two-dimensional images for the present purposes would 

not be guaranteed to be successful. However, with LiDAR sensors becoming more 

common in consumer devices such as mobile phones and tablets, and storage 

consistently becoming cheaper, future studies may benefit from applying 3D models to 

future proof their applications. 

 Materials and Methods  

4.2.1. Specimens 

Prior to collecting the photographs of the astragali the intended focus of this study 

was solely on European breeds of sheep and goat that were older than six months and 

no restrictions were set on the sex and castration, although the aim was to collect an 

even balance of males and females for each species. However, due to a lack of available 

specimens, this aim was not fully realised and reasons for this are detailed in the 

following paragraphs. In total, 100 modern sheep (Nmales = 32; Ncastrates = 19; Nfemales = 47; 

Nunknown = 2) and 93 modern goat (Nmales = 18; Ncastrates = 8; Nfemales = 25; Nunknown = 42) 

astragali were photographed (Appendix 6). All individuals were known species from 

modern herds. One of the goat astragali has been removed from final dataset because 

it was accidentally photographed from five different views only. Another goat astragalus 

specimen was excluded from the final dataset due to the bone having gone through 

some taphonomic process that had tarnished the bone to the extent that it did not stand 

out from the black background cloth in the photographs. In order to include this 

specimen, it would have had to go through a significantly different set of image 
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processing steps, which would have possibly made it easier for the neural network to 

identify. 

Many of the photographed sheep astragali originate from the Sheep Project (Popkin et 

al., 2012) and all of them come from Historic England’s collection. Various breeds of 

sheep deriving from different regions were included to avoid completely biasing the 

sheep specimens to a single source. With the exception of three specimens, the sheep 

astragali come with excellent information about their age, sex, and breed. In contrast, 

65 of all goat specimens were lacking information either about its breed, age, or sex, 

and the images had to be collected from various institutions, including Sheffield 

University’s zooarchaeological reference collection, Historic England, and National 

Museum Cardiff’s Noddle collection. The main reason for the lack of details about the 

goat specimens is that most of them are from feral individuals and not from controlled 

experiments. The age, sex, and breed data for goats from National Museum Cardiff was 

gathered by combining the data inside the storage boxes and information provided by 

Noddle (1974), who estimated the feral goats’ ages from their annual horn rings and the 

estimated month of birth. Because of the lack of goat specimens available, both right 

and left side astragali were photographed if they were present. For sheep, only one side 

was photographed and the left side was preferred if both sides were present. The few 

right-side sheep astragali were included as part of an effort to increase the diversity of 

the sheep images. The gap in quality of information about the available specimens for 

the two species is significant. 

The European geographic limits set for the astragali was not followed for goat breeds 

because information about the breeds was available for only a limited number of all 

samples. Moreover, only three samples (a Damascus goat, Dwarf African goat, and 

possibly Capra aegagrus) could be classed as outliers and if they were morphologically 

different from other goat specimens, the neural network performance should reflect 

this. While sex, breed, and age do affect the morphology of bones to an extent, age and 

sex should mainly impact the size of the astragali but, again, information about sex and 

age was not readily available for goats. Note however that juvenile astragali tend to have 

a more porous surface texture which may be an additional distraction for both humans 

and deep learning models. Because systematic studies detailing how breed, age, and sex 

affect the size of the astragalus have not been conducted for goats and there is a lack of 
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details about the goat specimens included in this study, limiting the data according to 

the original restrictions would have rendered the current study unfeasible. Instead, this 

limitation of the study is acknowledged and the size variation is accounted for by 

processing the images in such a way that size should not be an issue. The image 

processing is detailed in the section 4.2.2.3. Although the dataset is far from ideal and 

further work should go into developing a project for goats in the vein of the Sheep 

Project, the present study nonetheless utilises the only available image dataset on sheep 

and goat astragali.  

4.2.2. Image dataset creation 

4.2.2.1. Photography settings 

The images were taken under semi-controlled conditions using Nikon D7500 fitted 

with a Nikon 50mm f1.8 G AF-S lens and a 12mm extension tube. The photography 

details are shown in Table IV-5. The lens was fitted with a K&FConcept ring flash to 

illuminate the bones in an even manner, although this resulted in some of the more 

polished bones reflecting the flash. In general, this was not an issue though and other 

lighting options would have been harder to implement considering the mix of 

photography locations. Although varying lighting conditions at different locations may 

have had an impact on the quality of the images, this is not apparent by eye when 

comparing the photographs between sessions. All images were taken with an f-stop of 

10.0 and a shutter speed of 1/250. The ISO was set to 80 to minimize the noise, the lens 

was focused as close as possible, and white balance was set to Auto to compensate for 

the varying lighting conditions. The ring flash speed was set to 1/128th of a second for 

both the left- and right-hand side. All images were saved as RAW files. 

4.2.2.2. Capture process 

The astragali were inserted into a C-shaped holding foam covered with a black cloth. 

The camera was fixed in position at one end of a rail, while the foam-stand and the bone 

held by the stand were placed at the other end of the rail with a plasticine counterweight 

to balance the rig (Figure IV-4). The end of the rail with the bone and its stand was 

controlled with a dial to move the stand a few millimetres backwards or forwards to 

regain focus every time the bone was changed or rotated. As the camera was connected 

to a laptop through USB, it was possible to preview the image on the bigger screen of 
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the laptop in digiCamControl version 2.1.2 (Istvan, 2019) to ascertain that the image was 

approximately in focus – this was done by enlarging the live view image by 100% and 

using the dial on the macro slide. Coupled with a strict pattern of rotating the bones – 

the dorsal side was photographed first, followed by medial, plantar, lateral, proximal, 

and finally distal view – digiCamControl was integral in enabling speedy naming and 

organisation of the images for further processing later on. The selected methodology 

ensured that the camera was not moved and the focus ring was not touched once 

photography had commenced for each session. Each bone was photographed from all 

six different aspects and the foam support acted as a clamp to keep the bone in place.  

Although the views and the bones should in theory be approximately the same distance 

from the camera, the manual nature of switching the bones and changing the views 

means that the images are inherently different. This manual chore also introduces 

variation such as tilting and positional shift in the placement of the bone in the two-

dimensional plane of the image. Finally, even a minor shake of the camera at the wrong 

time introduces blurriness and positional shift of the bone in the image that was not 

possible to account for. However, all of these effects should be random in nature, thus 

affecting each image with a similar probability. 

4.2.2.3. Image post-processing 

The captured RAW images were further processed in RawTherapee 5.7 (Horváth et 

al., 2019) in order to batch process the white balance normalization across all images. 

The white balance was set to Auto on all images and this helped clear some of the most 

obvious bright spots resulting from bone dust that were present in the black cloth. The 

images were then exported as 8-bit PNG files. JPG file format was not chosen due to it 

being a lossy format, where artefacts can be introduced when saving images from the 

Photography settings 

Camera Nikon D7500 

Lens Nikon 50mm f1.8 G AF-S with a 12 mm extension tube 

Flash gun K&FConcept ring flash 

Flash speed 1/128th of a second on both sides 

F-stop 10.0 

ISO 80 

Shutter speed 1/250 

White balance Auto 

Table IV-5. Photography settings used in this study. 



171 
 

RAW format. Because the cloth covering the foam-stand had the tendency to gather 

small bone particles and because the cloth itself has a pattern that may give clues to a 

neural network, the PNG images required further processing.  

An automated method for finding the outline of the bone was employed in this step of 

the process. This method involved applying a minor binary threshold, where only the 

grayscale pixel intensities above 10 were kept. The contours of the largest component 

in the threshold binary image was found and used as the outline of the bone. Once the 

outline of the bone was found, the area inside the contours was filled with white pixels 

and a 15x15 median blur filter was applied to this filled region to reduce the noise 

around its edges, creating a mask with smooth rather than abrupt edges. This smooth 

mask was then overlaid on the original image and the pixel values outside of the masked 

area in the original image were set to zero. The original image was then cropped with a 

padding of ten pixels in all directions from the masked area. Because the automated 

method did not perfectly outline all bones and the platform or the cloth were partly 

visible in some of the resulting images, all of the images were manually inspected for 

any remaining background noise. The remaining noisy regions were manually painted 

Figure IV-4. The setup for taking photos of the astragali.  
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black and cropped in GIMP 2.10.6 (The GIMP Development Team, 2019) so that the 

borders were all ten pixels from the bone. While the described process was undertaken 

in the present analysis, the main point of it was to remove the background and isolate 

the photographed bone. Any other method that can achieve the same result would be 

acceptable. 

As most of the astragali derive from a left side of the animal, the images of the right side 

astragali had to be flipped so that all images represent left side. Photos of dorsal, 

plantar, medial, and lateral views were flipped along the vertical axis, while photos of 

proximal and distal views were flipped along the horizontal axis.  

The final stage of the image processing was to remove the most obvious size differences 

between individuals. This was achieved by first calculating a ratio of the desired image 

size (512 px x 512 px) and the input image’s longest edge and then multiplying the width 

and height of the original image by the ratio. Because the desired end result is a square 

image with a width and height of 512 pixels, variable padding at the top, bottom, left 

and right sides of the image were added to each resized image, as necessary. In the 

resulting images, the bone is enlarged in distal and proximal views compared to the bone 

seen in other views. However, this should not have any consequences for the neural 

network training process since all bones were treated equally.  

Figure IV-5. Model structure for the classification of sheep and goat astragali. Each view was assigned a copy of the 

same pre-trained base neural network to create six branches. Their outputs (max-pooling layers) were concatenated, 

passed through a dense layer and a single two-class softmax classifier was used. 



173 
 

4.2.3. Deep learning convolutional neural network training regime 

The basic model design is such that each of the six images for a given astragalus is 

passed to its own pre-trained neural network (Figure IV-5). The choice of using a branch 

for each view was made to increase the amount of information available to the model. 

The last layer of each pre-trained branch is a global max-pooling layer, which are 

concatenated and the resulting weights are passed to a two-class softmax classifier. 

Although the task is a binary classification task, softmax generalizes binary sigmoid 

classifier to a multi-class problem and softmax can therefore be used in place of a binary 

classifier (Dunne and Campbell, 1997). The pre-trained neural networks tested as base 

neural networks are DenseNet-121, DenseNet-169, DenseNet-201 (G. Huang et al., 

2017), ResNet-50 V2, ResNet-101 V2, ResNet-152 V2 (He et al., 2015, 2016b, 2016a), 

Inception V3 (Szegedy et al., 2015b), Inception ResNet V2 (Szegedy et al., 2016), and 

Xception (Chollet, 2017). It is common to use many different architectures to have 

higher chances of finding an accurate model (e.g. de Geus et al., 2019). Each of these 

base neural networks were pre-trained on the ImageNet dataset (Deng et al., 2009). The 

images were pre-processed in the same way as in Phase 2 of Chapter III: 1) images to 

models using DenseNets as their base network were scaled to 224 by 224 pixels, the 

pixel values were pre-processed to the range [0, 1], and each channel was normalized 

with respect to the ImageNet dataset; 2) the input images to ResNet-50 V2, ResNet-101 

V2, and ResNet-152 V2 models were also scaled to 224 by 224 pixels, but the pixel values 

were normalized to [-1, 1] sample-wise; and 3) the input images to Inception V3, 

Inception ResNet V2, and Xception models were scaled to 299 by 299 pixels and the pixel 

values were normalized to [-1, 1] sample-wise. All analyses were done in Python 3.7 

(Python Software Foundation, 2018) and the models were trained with TensorFlow 2.3.0 

machine learning package (Abadi et al., 2016a, 2016b). Scikit-optimize 0.8.1 (Head et al., 

2020) was used for Bayesian hyperparameter optimization discussed below. UCL’s 

Myriad HPC was used for both the Bayesian hyperparameter optimization and training 

the final models, just as in Phase 2 of Chapter III. 

4.2.3.1. Bayesian hyperparameter optimization 

Here, only three hyperparameters influencing the model convergence properties are 

tuned: learning rate, batch size, and the choice of optimizer for the neural network 

training. Although the choice of base pre-trained neural network is also a 
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hyperparameter, it was opted to run Bayesian optimization (see section 2.5.1) for each 

of the base networks separately because of restrictions on available continuous 

computational time on UCL’s Myriad HPC for a single process. The upper and lower 

bounds for the learning rate are 0.1 and 0.00001, respectively. The choice of batch size 

was limited to between one and four, while the neural network optimizers included 

were Adagrad (Duchi et al., 2011), RMSprop (Tieleman and Hinton, 2012), Adam (Kingma 

and Ba, 2014), and stochastic gradient descent (SGD).  

In the present implementation of Bayesian optimization, Gaussian process was used as 

the prior and the Expected Improvement was chosen as the acquisition function. 

Gaussian process is a typical choice due to its flexibility and tractability, while Expected 

Improvement is better behaved as the choice of acquisition function than Probability of 

Improvement and it is not dependent on yet another tuning parameter like GP UCB 

(Snoek et al., 2012). Due to the computational cost of applying Bayesian optimization to 

the large neural network models used here, the following constraints were applied to 

find the estimated hyperparameters within a reasonable timeframe: 1) hyperparameter 

optimization was limited to the first five folds and therefore the mean accuracy of the 

cross-validation was calculated from these folds; 2) the number of epochs for each fold 

was limited to five; 3) the training of a given fold was stopped immediately if the 

validation loss at the end of the epoch was extremely large (i.e. over 10,000); 4) the 

hyperparameter optimization was stopped if the current hyperparameters being tested 

were the same as the hyperparameters in the previous state, implying that the Bayesian 

optimization was not able to improve; and 4) the evaluation of the neural network was 

based on the validation set. Given these constraints, the chosen optimization strategy is 

only an estimate of the best hyperparameters for the final ten-fold cross-validation 

training. Furthermore, as EI aims to minimize an objective function, the output of the 

objective function in this case is the mean classification error over five folds of the deep 

neural network. The maximum number of different combinations of hyperparameter 

settings explored in the hyperparameter search space was set to 50. 

4.2.3.2. Model training and evaluation 

In training the final models for each neural network architecture, the maximum 

number of epochs was set to 100 for each fold and learning rate, batch size, and the 

optimizer were chosen based on the above Bayesian optimization strategy. To avoid 
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overfitting, training was stopped early if the best (lowest) validation loss did not occur 

in the five previous epochs and the model performance was evaluated at the point of 

lowest validation loss. The image dataset was divided into test and training sets, with 

the training set further divided into ten folds for ten-fold cross-validation. Training, 

testing, and validation sets each include a varying number of bones: the test set contains 

12 bones for both species, eight training folds have eight goat and nine sheep bones, 

one fold has eight bones of both species, and another fold has seven goat and eight 

sheep bones. Each of the folds was used as a validation set once while the other folds 

were combined as the training set. The model performances were evaluated using 

accuracy, precision, recall, and F1-score defined in section 3.2.2. Because of the uneven 

distribution of species in each fold, the metrics for the validation sets are weighted by 

the number of bones in each class. The metrics across the ten folds are then computed 

using simple means and thus, only average performance throughout the ten folds 

matters. The test set performance was evaluated after training each fold and probability 

weighted ensemble models were created additively in the same way as in Phase 2 in 

Chapter III. The ten-fold cross-validation results for the test set are simple averages.  

Figure IV-6. Training schema. The number of goat and sheep image sets in each validation set is shown on the top 

row of the cross-validation matrix. 
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Figure IV-6 shows the training schema starting from the division of data. The test set 

items are listed in Table IV-6. 

4.2.3.3. Gradient Class Activation Maps 

Gradient Class Activation Maps, or Grad-CAMs (Selvaraju et al., 2019), are used here 

to explore which features were important in the class prediction. Considering that Grad-

CAM was originally designed to be used for post-hoc analysis of single CNN models, the 

present neural network model adds two layers of complexity: 1) the architecture has six 

input views instead of one; and 2) the final model consists of an ensemble of models. 

This first problem is tackled in the next section by normalizing the Grad-CAMs across the 

Test set specimens 

Shorthand Specimen Catalogue ID 

Goat 1 Sheffield 94 R 0094 

Goat 2 Cardiff 25 L Z1988.112.004.25 

Goat 3 Cardiff 78 L Z1988.112.004.78 

Goat 4 Cardiff 73 R Z1988.112.004.73 

Goat 5 Cardiff 1 R Z1988.112.004.01 

Goat 6 Sheffield 0784 L 0784 

Goat 7 Portsmouth 1631 L 1631 

Goat 8 Sheffield 1581 L 1581 

Goat 9 Portsmouth 45 R 45 

Goat 10 Sheffield 8080 R 8080 

Goat 11 Cardiff 23 L Z1988.112.004.23 

Goat 12 Cardiff 18 R Z1988.112.004.18 

Sheep 1 Portsmouth 3647 L 3647 

Sheep 2 Portsmouth 3612 L 3612 

Sheep 3 Portsmouth 3539 L 3539 

Sheep 4 Portsmouth 1589 R 1589 

Sheep 5 Portsmouth 3538 L 3538 

Sheep 6 Portsmouth 3080 L 3080 

Sheep 7 Portsmouth 3665 L 3665 

Sheep 8 Portsmouth 3534 L 3534 

Sheep 9 Portsmouth 3564 L 3564 

Sheep 10 Portsmouth 3071 L 3071 

Sheep 11 Portsmouth 3141 L 3141 

Sheep 12 Portsmouth 2969 L 2969 

Table IV-6. Test set specimens. The specimen column can be related to the specimens in Appendix 6 as follows: the 

place name in the Specimen column refers to the Collection column in Appendix 6, the number that follows the place 

name is the ID except for bones from Cardiff for which the number refers to the number after the last period in the 

Catalogue ID column in Appendix 6, and L and R reflect the side of the animal the bone comes from. 
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branches of the model, while the second problem is solved by applying probability 

weighted ensemble Grad-CAMs. 

4.2.3.3.1. Branch normalized Grad-CAMs 

As each view of the bone is passed through its own branch of the neural network that 

was trained in parallel with the other branches corresponding to the other views, the 

Grad-CAM heatmaps must be created for each of the six different branches. Each of 

these six different branches has its own final convolutional layer, but all branches share 

one softmax classifier. Let 𝐵 =  {𝑑𝑖𝑠𝑡𝑎𝑙, 𝑑𝑜𝑟𝑠𝑎𝑙, 𝑙𝑎𝑡𝑒𝑟𝑎𝑙,𝑚𝑒𝑑𝑖𝑎𝑙, 𝑝𝑙𝑎𝑛𝑡𝑎𝑟, 𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙}, 

where each entry refers to a distinct view of the astragalus and also to its corresponding 

branch of the neural network shown in Figure IV-5. Thus, given a Grad-CAM heatmap: 

𝐿branch ∈ B
𝑐 =  𝑅𝑒𝐿𝑈(∑𝛼𝑘

𝑐

𝑘

𝐴𝑘), 

where 𝐿branch ∈ B
𝑐  is the heatmap for class c of a branch in 𝐵, 𝐴𝑘 are the activations of 

the feature map k in that branch, and 𝛼𝑘
𝑐  are the global-average pooled gradients flowing 

from class c to feature map k (also interpreted as neuron importance weights, see 

Selvaraju et al., 2019 for more details), it is possible to create an individual Grad-CAM 

heatmap for each branch of the network by iteratively selecting the last convolutional 

layer of each branch and changing which set of feature maps 𝐴𝑏𝑟𝑎𝑛𝑐ℎ ∈ 𝐵
𝑘  are used in 

computing the heatmap. The class c is the predicted class and it is the same for all 

branches. 

The Grad-CAM visualizations resulting from this algorithm do not tell which view of the 

astragalus was the most important in the classification. Instead, they describe areas of 

the given view that have the highest activations and do not account for the magnitude 

of the derivatives nor the forward activations in feature maps with respect to the other 

views. To gain an insight about which views were the most significant in the final 

classification, it is possible to exploit the knowledge that higher values in the forward 

feature maps 𝐴𝑏𝑟𝑎𝑛𝑐ℎ ∈ 𝐵
𝑘  yield more significance in the final classification, while higher 

neuron importance weights 𝛼𝑘
𝑐  signify which pixels in 𝐴𝑏𝑟𝑎𝑛𝑐ℎ ∈ 𝐵

𝑘  need to be changed 

the least to affect the score the most, with positive importance weights having been 

argued as implying that increasing the pixel intensity in these locations has a positive 

influence over the class score (Chattopadhay et al., 2018). To visualize the most 
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important areas across all views it is necessary to find the highest value across all six 

heatmaps 𝐿branch ∈ B
𝑐  and normalize all of them to the same range. Therefore, let  

zbranch ∈ B  =  𝑚𝑎𝑥(𝐿branch ∈ B
𝑐 ), and 

x =  𝑚𝑎𝑥({zdistal, zdorsal, zlateral, zmedial, zplantar, zproximal}), 

where zbranch ∈ B is the highest value of a given branch’s heatmap and x is a scalar 

representing the global maximum across all six Grad-CAM heatmaps. By normalizing the 

six heatmaps of the same astragalus to a global range [0, 255], it is possible to visualize 

the branches by their importance to the final classification. This is done by  

𝐿�̃� = 
𝐿𝑐

𝑥
∗  255. 

Intuitively, this approach treats the six different views as a single composite view of the 

whole bone and the most important pixels across all six input images are highlighted. 

This approach is identical to the normalization introduced in Chapter III, but unlike in 

Chapter III, the normalization is necessary here to accommodate the neural network 

structure. Furthermore, in Chapter III the normalization was done to express the 

importance the model gave to different classes, whereas we are here concerned with 

the impact of different branches of the network and thus the different views of the 

bone. 

4.2.3.3.2. Probability weighted ensemble Grad-CAMs 

The second layer of complexity in applying Grad-CAMs derives from the use of an 

ensemble of similar classifiers with each classifier having been trained on separate 

subsets of the training data. As each member of the ensemble produces its own Grad-

CAM heatmaps, they need to be combined in some way to visualize the overall influence 

of each pixel to the classification. Although it is possible to create probability weighted 

ensemble Grad-CAMs from the unnormalized heatmaps for each branch, the ensemble 

Grad-CAM visualization would not contain much useful information, since it would not 

encode which view of the bone was the most useful on average. Thus, by using the 

branch normalized 𝐿�̃�  heatmaps for each view, the ensemble Grad-CAM is able to 

discern whether different folds used the same views or if each fold provides additional 

information to the ensemble model. If each fold utilised the same views in the 
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classification, the expectation is that only that view would provide activations in the 

ensemble Grad-CAM. In Chapter III, ensemble Grad-CAMs were defined as  

�̅�𝑐 =
∑ 𝑤𝑛𝑐𝐿𝑛𝑐𝑁
𝑛=1

∑ 𝑤𝑛𝑐𝑁
𝑛=1

, 

where N is the number of ensemble models and c is the predicted class, but this 

definition is changed slightly with the branch normalization: 

𝐿𝑏𝑟𝑎𝑛𝑐ℎ∈𝐵
𝑐

=
∑ 𝑤𝑛𝑐𝐿𝑛�̃�𝑁
𝑛=1

∑ 𝑤𝑛𝑐𝑁
𝑛=1

. 

Here, 𝐿𝑛�̃�  is the nth partner model’s branch normalized Grad-CAM heatmap and 𝑤𝑛𝑐 is 

that partner model’s prediction probability for the class c. 

 Results 

4.3.1. Hyperparameter selection 

 The optimal hyperparameters for each neural network architecture resulting from 

the Bayesian hyperparameter optimization are listed in Table IV-7. The Bayesian 

optimization convergence times for the different architectures vary and only Inception 

V3, Xception, and ResNet-101 V2 architectures explored the hyperparameter search 

space for the maximum of 50 iterations (Figure IV-7). The hyperparameter search ended 

before 30 iterations for most of the architectures. Figure IV-7 also shows that the 

hyperparameter optimization for ResNet-50 V2 was not as successful as it was for the 

other architectures – this is reflected in the performance of the ten-fold averages as 

shown in Table IV-8. All DenseNet architectures and ResNet-101 V2 converged in fewer 

Optimal hyperparameters from Bayesian optimization 

Architecture Batch size Learning rate Optimizer 

DenseNet-121 1 0.0248 Adagrad 

DenseNet-169 1 1.00E-05 Adam 

DenseNet-201 2 0.0001 SGD 

ResNet-50 V2 1 1.00E-05 Adam 

ResNet-101 V2 2 0.0048 Adagrad 

ResNet-152 V2 4 1.93e-05 Adam 

Inception ResNet V2 1 0.0228 Adagrad 

Inception V3 4 0.0022 SGD 

Xception 4 0.0098 Adagrad 

Table IV-7. Optimal hyperparameter settings from Bayesian hyperparameter optimization for all neural network 

architectures. 
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than 20 iterations, although the Bayesian optimization for DesneNet-121, ResNet-152 

V2, and ResNet-101 V2 continued to explore new regions of the hyperparameter space 

for a significant number of iterations after convergence. In contrast, Xception took the 

most iterations to reach its final state – given more iterations, it is possible that its final 

state could have been lower, resulting in better training and testing performance.  

Partial dependence plots for all architectures are shown in Appendix 7, displaying the 

different regions of hyperparameter space that were explored. Partial dependence plots 

were suggested first by Friedman (2001), who noted that while individual or even two 

variables of a function can be easily visualized, higher-dimensional functions are difficult 

to visualize. Partial dependence plots are therefore useful when one wants to “view the 

partial dependence of the approximation �̂�(𝑥) on selected small subsets of the input 

variables” (Friedman, 2001, p.1219). The partial dependence plots are interesting as 

they dispel some prior beliefs. For instance, prior to utilising Bayesian optimization, the 

present author was under the impression that higher batch size should automatically 

result in a better classification performance. However, this is only true for Inception V3, 

Figure IV-7. Bayesian hyperparameter optimization convergence plot for all nine neural network architectures. The y-

axis is the five-fold mean classification error and x-axis shows the Bayesian optimization iteration. 



181 
 

Xception, and ResNet- 152 V2 architectures. Similarly, these plots show that Adam, 

Adagrad, and SGD backpropagation algorithms are chosen in nearly equal manner as the 

best option, although Adagrad is slightly more common than the other two. This means 

that choosing the optimal backpropagation algorithm is architecture and problem 

specific, and no generally accepted best backpropagation algorithm can be claimed to 

exist, at least for this problem domain. 

4.3.2. Classification results  

The best ten-fold mean accuracy for the test set is 95.42% reached by Inception V3, 

followed by 89.58% accuracy for Xception and 88.75% for ResNet-152 V2 (Table IV-8). 

The best ten-fold mean accuracy for the validation sets is 100% for Inception V3, 97.61% 

for ResNet-152 V2, and 97.57% for Xception. ResNet-50 V2, ResNet-101 V2, and 

DenseNet-169 architectures performed the worst in both test and validation sets, with 

ResNet-50 V2 performing worse than guessing in both test and validation sets. 

DenseNet-121, DenseNet-201 and Inception ResNet V2 architectures resulted in 

relatively good models. Inception V3 test and validation results indicate that it performs 

Table IV-8. Mean test set and validation set 10-fold cross-validation results for all architectures. 

10-fold performances for validation and test sets 

Mean 10-fold cross-validation for test set 

Architecture Precision Recall F1-score Accuracy 

DenseNet-121 0.8898 0.8708 0.8673 87.08% 

DenseNet-169 0.6161 0.6042 0.5862 60.42% 

DenseNet-201 0.8980 0.8792 0.8773 87.92% 

Inception V3 0.9603 0.9542 0.9538 95.42% 

Inception ResNet V2 0.8361 0.7917 0.7770 79.17% 

ResNet-101 V2 0.4839 0.6125 0.5097 61.25% 

ResNet-152 V2 0.8964 0.8875 0.8869 88.75% 

ResNet-50 V2 0.3825 0.3958 0.3772 39.58% 

Xception 0.9158 0.8958 0.8940 89.58% 

Mean 10-fold cross-validation for validation sets 

Architecture Precision Recall F1-score Accuracy 

DenseNet-121 0.9228 0.9161 0.9150 91.61% 

DenseNet-169 0.7309 0.7134 0.7038 71.34% 

DenseNet-201 0.9637 0.9581 0.9578 95.81% 

Inception V3 1.0000 1.0000 1.0000 100.00% 

Inception ResNet V2 0.8815 0.8702 0.8675 87.02% 

ResNet-101 V2 0.5617 0.6441 0.5385 65.00% 

ResNet-152 V2 0.9798 0.9761 0.9760 97.61% 

ResNet-50 V2 0.4253 0.4332 0.4089 43.32% 

Xception 0.9795 0.9757 0.9755 97.57% 
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at a higher level of accuracy than the morphological measurement technique used by 

Salvagno and Albarella (2017), which reached 86.9% accuracy in leave-one-out cross-

validation and 89% overall. Other models, including DenseNet-121, DenseNet-201, 

ResNet-152 V2, and Xception also managed to match the performance of Salvagno and 

Albarella's (2017) technique. 

Regarding the ensemble models, 55 of the 81 different ensemble model configurations 

reached an accuracy of over 91% and 25 reached an accuracy of 95.83% (Table IV-9). For 

a model to reach an accuracy of over 95% means that it classified at most one bone out 

of the 24 test bones incorrectly and to reach over 91% accuracy allows two bones to be 

misclassified. Eight Inception V3, seven DenseNet-121, five DenseNet-201, three 

Inception ResNet V2, and two ResNet-101 V2 ensemble models were able to predict the 

correct class with >95% accuracy. It is interesting to note that even though the models 

Best ensemble model performances 

Architecture N folds in ensemble Precision Recall F1-score Accuracy 

DenseNet-121 2 0.9615 0.9583 0.9583 95.83% 

DenseNet-121 3 0.9615 0.9583 0.9583 95.83% 

DenseNet-121 4 0.9615 0.9583 0.9583 95.83% 

DenseNet-121 7 0.9615 0.9583 0.9583 95.83% 

DenseNet-121 8 0.9615 0.9583 0.9583 95.83% 

DenseNet-121 9 0.9615 0.9583 0.9583 95.83% 

DenseNet-121 10 0.9615 0.9583 0.9583 95.83% 

DenseNet-201 3 0.9615 0.9583 0.9583 95.83% 

DenseNet-201 4 0.9615 0.9583 0.9583 95.83% 

DenseNet-201 5 0.9615 0.9583 0.9583 95.83% 

DenseNet-201 6 0.9615 0.9583 0.9583 95.83% 

DenseNet-201 7 0.9615 0.9583 0.9583 95.83% 

Inception ResNet V2 2 0.9615 0.9583 0.9583 95.83% 

Inception ResNet V2 4 0.9615 0.9583 0.9583 95.83% 

Inception ResNet V2 5 0.9615 0.9583 0.9583 95.83% 

Inception V3 2 0.9615 0.9583 0.9583 95.83% 

Inception V3 3 0.9615 0.9583 0.9583 95.83% 

Inception V3 4 0.9615 0.9583 0.9583 95.83% 

Inception V3 6 0.9615 0.9583 0.9583 95.83% 

Inception V3 7 0.9615 0.9583 0.9583 95.83% 

Inception V3 8 0.9615 0.9583 0.9583 95.83% 

Inception V3 9 0.9615 0.9583 0.9583 95.83% 

Inception V3 10 0.9615 0.9583 0.9583 95.83% 

ResNet-101 V2 2 0.9615 0.9583 0.9583 95.83% 

ResNet-101 V2 3 0.9615 0.9583 0.9583 95.83% 

Table IV-9. 25 best performing ensemble models sorted alphabetically and by the number of folds.  
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based on ResNet-101 V2 performed poorly on average, the ensemble model consisting 

of the first two or three folds still produced good results. However, the performance in 

the following folds drops to 50% accuracy and this is reflected in the drop in 

performance in the following ensembles as well. This is possibly due to the Bayesian 

hyperparameter optimization having been optimized for the first five folds – if the 

optimization had been done based on the average performance of all ten folds, it may 

be that the final ten-fold ensemble model would have performed much better. 

Considering the validation and test set ten-fold averages and the ensemble model 

performances, Inception V3 is inspected further. 

4.3.3. Inception V3 performance 

The change in training and validation accuracies and loss values across epochs for all 

ten folds are shown in Figure IV-8. This graph shows that none of the folds have been 

noticeably over- or underfit as overfitting would be evident if the training accuracy was 

significantly higher than the validation accuracy and underfitting can be ruled out based 

on the excellent performance in all folds, although the epoch to epoch improvement in 

validation accuracies are noticeably more uneven in many of the folds compared to the 

training accuracies. This is particularly true for fold four. Looking at the normalized (Ngoats 

= 120, Nsheep = 120, Ntotal = 240) ten-fold confusion matrix for the test set (Figure IV-9), it 

is immediately obvious that the model is slightly biased towards classifying images of 

goats; not a single goat bone was misclassified as sheep in any of the folds, while 9.17% 

of sheep bones were classified as goats, giving an overall mean classification accuracy of 

95.42%. This bias may be visible in the Grad-CAM visualizations. 

4.3.4. Grad-CAM visualizations 

There are two main reasons to visualize the resulting models. The first reason is to 

ensure that the model did not learn to classify the bones based on the catalogue 

numbers that are often written on the bones or some other systematic artifact present 

in the images. The second reason to visualize these classifications is to see if the model 

has learnt to focus on some specific features of the bones – these features can be either 

known to analysts or be completely new. If such features are identified in the 

visualizations, then these features would also provide an additional justification to using 

the model. However, inability by the model to identify systematic features does not 

invalidate the model, since it could tell that each bone is classified on its own merit and  
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that the model has learnt some latent variation within which each class falls. In other 

words, the model may simply be basing its classifications on various relevant features, 

each of which may be different and dependent on the features visible in the input image. 

Here, both unnormalized and normalized visualizations are created for folds three and 

four, which are the worst and best folds in the ten-fold cross-validation, respectively. 

Selecting two folds for inspection allows a limited look at the variation between the 

different folds’ areas of attention. Folds eight or nine could have been chosen instead 

of fold four, as the test set classification accuracy for them is also 100%. In addition, to 

get a grasp of the classification decisions in the ensemble model, a branch normalized 

ensemble Grad-CAM heatmap is created. The Grad-CAM heatmaps for all ten individual 

folds are shown in Appendix 8.  

Figure IV-9. Normalized 10-fold test set confusion matrix. Each bone in the test set was evaluated by the ten folds, 

resulting in 120 evaluations of both goat and sheep astragali. 
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4.3.4.1. Observations on the activations in folds 3 and 4 

The unnormalized Grad-CAM visualizations of the test images passed through the 

fold three (Figure IV-10) show that the written labels in the plantar and proximal views 

of the Sheep 1, 2, 5, 7, 8, and 9 are given at least some weight in the final classification. 

In addition, the written labels in the proximal view of the Sheep 3 and, to an extent, the 

medial view of the Sheep 12 are also highlighted. Although the written labels clearly play 

a role in the classification of some bones as sheep in fold three, this is not true for the 

goat bones, suggesting that the written label is not the foremost information impacting 

the classification. In the unnormalized Grad-CAM for fold four (Figure IV-11), the 

classifications are unaffected by the written labels apart from the written label in the 

medial view of the Sheep 12.  

In contrast, the branch normalized heatmaps for folds three and four (Figure IV-12 and 

Figure IV-13) show that the written labels on the bones are not the highest activated 

regions in either fold. Instead, the view that most often contains the areas of highest 

importance to the classifier in fold three is the plantar view for goat astragali and the 

dorsal view for the sheep astragali. Interestingly, the focus in the plantar view of the 

goat astragali is on the proximal end of the bone and the proximo-plantar projecting 

lobe in particular. This part of the bone is also highlighted in the dorsal view of most of 

the sheep astragali, suggesting that the classification to either sheep or goat is made on 

the complex relationship of different views of this particular part of astragalus, although 

any definite conclusions cannot be drawn solely based on a visual assessment. For fold 

four, the picture changes a little. The plantar view (and the proximo-plantar projecting 

lobe) of the goat astragali is the most commonly activated view, although other views 

are also activated. When the bone is classified as sheep, the distal view often contains 

the region of the highest importance. However, the highlighted region in the distal view 

again mostly reflects the proximo-plantar projecting lobe that is very slightly visible in 

the background. The projecting lobe is similarly highlighted in seven of the 12 proximal 

views of the sheep bones. However, the fact that the highlighted regions in the branch 

normalized heatmaps are in the corners may indicate that Grad-CAM is not functioning 

properly. This is more likely than the alternative, which is that the model is not 

functioning properly given the accuracy score. 

 



187 
 

 

 

 

  

Figure IV-10. Inception V3 fold 3 unnormalized Grad-CAM visualizations. 
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Figure IV-11. Inception V3 fold 4 unnormalized Grad-CAM visualizations 
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Figure IV-12. Inception V3 fold 3 branch normalized Grad-CAM visualizations. 
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Figure IV-13. Inception V3 fold 4 branch normalized Grad-CAM visualizations. 
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4.3.4.2. Observations on the activations in the ten-fold ensemble model 

Different views of the bones are highlighted in the branch normalized ten-fold 

probability averaged ensemble Grad-CAMs in Figure IV-14, showing that the different 

folds provide additional information to the overall ensemble model. This is as expected, 

since all folds were trained on slightly different data, which results in variation in the 

areas of importance and therefore also in variation regarding which views are 

highlighted in different folds. This was demonstrated in Figure IV-12 and Figure IV-13 for 

folds three and four (see Appendix 8 for all folds). Thus, the ten-fold ensemble model 

can be thought of as encoding information from all folds in its classifications and the 

information regarding the importance of different views across the ten folds is compiled 

in Figure IV-14.  

Excluding Sheep 4 that was misclassified as goat by the ensemble model, the areas of 

focus in the probability averaged ensemble Grad-CAM heatmaps (Figure IV-14) are quite 

consistent. Regarding the sheep test images, the ensemble model focuses on the 

corners of the images, while for goat bones the focus is mainly on the bone. This 

difference in areas of importance between the two species is particularly clear in the 

lateral and dorsal views. For distal view, the proximo-plantar projecting lobe is 

highlighted in the background in sheep, while for goat bones the highlighted regions are 

top left and top right corners as well as the dorsal side of distal articular facet. In plantar 

view, the proximo-plantar projecting lobe is highlighted in goats, but only secondarily so 

in sheep. As for the medial view, the projecting lobe does not appear to be of importance 

to the ensemble model for either species, implying that the shape (i.e. bulbous or 

angular in sheep versus pointy in goats) of the proximo-plantar projecting lobe is not 

very discriminatory given this model on the 24 test images. Instead, the medial view has 

the least consistent heatmaps in terms of the areas of activations with different parts of 

the image being highlighted depending on which astragalus one observes. Finally, it may 

be argued that written labels are highlighted in the proximal view for sheep. However, 

the labels are not highlighted in the plantar view, so it is unlikely that the written label 

is the most important piece of information for the classifier.  
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Figure IV-14. Inception V3 10-fold ensemble branch normalized Grad-CAM visualizations. 
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4.3.5. Post-hoc analyses of Grad-CAM heatmaps and the model 

Considering the observed patterns, namely the fact that the activations occur in the 

corners of particularly the sheep bones in the Grad-CAM heatmaps based on individual 

folds (Appendix 8) as well as the ensemble model (Figure IV-14), and that the areas of 

focus in the corners of some views may be interpreted as relating to the proximo-plantar 

projecting lobe, further analyses are necessary to investigate the reliability of Grad-CAM 

heatmaps. The ensemble model’s potential use of the written label that is present in the 

proximal view of the sheep bones is similarly of concern. Moreover, as discussed in 

section 2.7 of Chapter II, interpreting saliency maps can be ambiguous and there are no 

guarantees that saliency maps are not affected by noisy signals in the model, which may 

result in unimportant regions like the corners being highlighted by Grad-CAM. 

Therefore, four different post-hoc hypothesis tests are executed to further improve the 

understanding of the model and a detailed justification for each hypothesis is given in 

the subsequent text.  

The first of these hypothesis tests concerns the idea that the cause of the noisy signals 

and therefore the focus in the corners of the Grad-CAM heatmaps is the extreme 

backpropagation gradients in regions with little variation (e.g. the background). Two 

different experiments are performed to test this first hypothesis as it is considered the 

most likely explanation. The second hypothesis aims to test the validity of the 

importance of the highly activated regions in the corners of the images through 

occlusions. The third hypothesis test is performed to investigate the impact of the 

position of the bone and the assumption that the activated regions in the heatmaps 

reflect distance from the edges of the images. Finally, the fourth hypothesis test was 

designed to explore the importance of the different views for the model. The four 

hypotheses and their respective null hypotheses are: 

H1: vanishing gradients cause Grad-CAMs to focus on corners. 

H1-null: vanishing gradients is not the cause of Grad-CAMs focus on corners. 

H2: occluding the corners of the images where the proximo-plantar projecting lobe is 

present has a larger impact on the classification accuracy than if other corners are 

occluded. 



194 
 

H2-null: occluding the corners of the images where the proximo-plantar projecting lobe 

is present does not have any bigger impact on the classification accuracy than if other 

corners are occluded. 

H3: vertically shifting sheep bones higher in the images and goat bones lower reduces 

the model’s classification accuracy. 

H3-null: vertically shifting sheep bones higher in the images and goat bones lower does 

not reduce the model’s classification accuracy.  

H4: changing which views are shown to the model does not impact the model’s 

classification accuracy.  

H4-null: changing which views are shown to the model impacts the model’s 

classification accuracy. 

4.3.5.1. Vanishing gradients 

The first hypothesis regards vanishing gradients as being the culprit for the Grad-

CAM’s focus in the corners. Vanishing gradients (or alternatively, saturating neurons) 

means that the gradients of the loss function are very small for parameter values nearby 

the current value, which may result in gradient signals being dominated by noise in 

regions with little variability such as the background in the used images. It is suspected 

that Grad-CAM picks up the noisy gradient signals that flow from the class score to the 

final convolutional layer, which are subsequently amplified and highlighted in the 

corresponding pixels. This leads the Grad-CAM algorithm to reflect non-informative 

features of the input image and results in the failure of Grad-CAM. This hypothesis ties 

in with the argument that Grad-CAM does not provide faithful explanations because of 

vanishing gradients when the model’s classifications are highly confident (Desai and 

Ramaswamy, 2020), which is the case for most of the classifications in the present 

model. Considering that the current classifier is a highly confident classifier, this 

hypothesis can be tested in two ways: 1) the model’s robustness to changes in pixel 

values in previously flat regions should improve when tuning the classifier to be less 

confident in its classifications, which can be achieved by applying noise to the training 

data while training a new model; or 2) by directly measuring the values of the gradients 

from the loss function to the final convolutional layer’s activation maps during training 
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at regular intervals, which may indicate that the model gradients are beginning to vanish 

and approach zero.  

4.3.5.1.1. First experiment 

The specific methods and results of the first experiment of the hypothesis that 

gradients are vanishing is provided in Appendix 9. The result of this test is that although 

the new model became significantly less confident in its classifications after applying 

noise to the training images, the Grad-CAMs did not improve – instead, the heatmaps 

highlight the corners in the images of both species, whilst also performing worse in 

classification when judged by the ten-fold averages for the test and validation sets. 

Because adding noise to the training images does not improve the Grad-CAM 

localization, the result of this experiment is that the null hypothesis that vanishing 

gradients is not the cause of Grad-CAMs focus on corners cannot be rejected and other 

possible explanations have to be explored.  

4.3.5.1.2. Second experiment 

In the second experiment, the gradients and activations are measured and inspected 

directly by saving these values after each training epoch. Doing so allows the direct 

observation of the evolution of the gradients and activations, which then facilitates the 

evaluation of whether the gradients are vanishing. As in the first experiment, a new 

model is trained, but this time using the same hyperparameters as in the original model 

presented in this chapter and without any additional modifications. The results 

presented in Appendix 10 indicate that after an initial spike in the magnitude of 

gradients, the mean and variance of the gradients averaged across the 12 goat test 

specimens approach zero as the training progresses. This same pattern was not noted 

for sheep test specimens, for which the corner focus was more prominent than for goat 

specimens.  

However, it was further observed that the mean forward activations for both sheep and 

goat bones are negative and approach zero, while the mean gradients are either positive 

or negative. This observation led to the consideration that perhaps the forward 

activations and backpropagated gradients have opposite signs in the same spatial 

region, which – after multiplication and summation – could lead to a heatmap 

dominated by negative values. Because Grad-CAM then relies on ReLU, these negative 
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values are zeroed in the heatmap before upsampling is applied. Thus, the Grad-CAM 

algorithm could result in the removal of relevant information from the final heatmap 

when using signed gradients. The solution is to use absolute gradients as the neuron 

importance weights, which is justified on the basis that it is the magnitude of the neuron 

importance weight that is more important than its sign (Srinivas and Fleuret, 2019). 

In the study presented in Appendix 10, it is demonstrated that the normal practice of 

relying on the signed gradients leads to failure in Grad-CAM, at least in this specific 

instance. Using absolute gradients ensures that the saliency map is created based on 

maximum amount of information in the layer and a visual comparison of the signed 

gradient (Appendix figure 34 - Appendix figure 43) and absolute gradient (Appendix 

figure 50 - Appendix figure 59) Grad-CAM heatmaps shows that using absolute valued 

gradients in creating the Grad-CAM heatmaps improves the localization of the heatmaps 

significantly, in the sense that the highly activated regions of the heatmaps overlie the 

bones in all views and in a consistent manner. However, just because the absolute 

gradient Grad-CAM heatmaps better correlate with the placement of the bones does 

not equate to more truthful saliency maps. Instead, this model may have learnt to use 

corners as the main differentiator of the two species, which could be better reflected in 

the signed gradient Grad-CAM heatmaps. Yet, similar corner focusing artefacts are also 

present in the signed gradient Grad-CAM heatmaps of other models such as the models 

presented in Chapter III (see the unnormalized heatmaps in Appendix 1), which means 

that this behaviour is not isolated to the present discussion. Moreover, the very high 

accuracy of the model as well as the limited impact of corner occlusions (discussed 

below) applied to the regions indicated as salient by the signed gradient Grad-CAM 

makes it implausible that the model would rely on irrelevant features such as the corners 

in its classifications.  

Furthermore, the argument that absolute gradient Grad-CAM is better than signed 

gradient Grad-CAM in terms of object localization is in line with the authors of Grad-

CAM who also had experimented with absolute gradients and found it to result in better 

localization performance than signed gradients, but they do not discuss using it any 

further (Selvaraju et al., 2019). It is possible that Selvaraju et al. (2019) opted to use 

signed gradients because absolute gradients removes the desirable property of class 

discrimination, but this property can be reintroduced by normalizing the heatmaps 
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across the different classes following the normalization process introduced in Chapter 

III.  

Therefore, it is concluded that vanishing gradients do not appear to be the root cause of 

the corners being highlighted in Grad-CAM heatmaps, but rather the use of signed 

gradients. Figure IV-15 displays the branch normalized ten-fold Inception V3 ensemble 

Grad-CAM heatmaps using absolute gradients, showing that the classifications made by 

the ensemble model are based on the bone and that much of the noise from signed 

Grad-CAM heatmaps has been removed. 

4.3.5.2. Occluding proximo-plantar projecting lobe 

The second hypothesis is that occluding the corners of the images where the 

proximo-plantar projecting lobe is present has a larger impact on the classification 

accuracy than if other corners are occluded. This hypothesis was formulated as it was 

thought that the proximo-plantar projecting lobe highlighted in the Grad-CAM 

heatmaps is truly important, and it thus aims to answer the question of whether 

occluding the projecting lobe has a significant impact on the ensemble model’s 

classification accuracy. This hypothesis can be tested by presenting the model 

augmented test images where the corners of the images that concern the projecting 

lobe are occluded, much in the same way as was done by Fu et al. (2018). If the model 

performed worse when the projecting lobe is not visible than when some other corners 

are covered, this test would strengthen the argument that the proximo-plantar 

projecting lobe is of high importance to the model. This analysis is done in Appendix 11, 

where it is demonstrated that occluding the corners of the proximo-plantar projecting 

lobe does not affect the classification accuracy more than if the opposite corners are 

occluded. However, the ensemble model’s mean confidence is affected more by 

occluding the proximo-plantar projecting lobe than by occluding the opposite corner. As 

the effect of occlusion is limited to mean confidence, this suggests that the present 

model draws information from the corner of the proximo-plantar projecting lobe and 

potentially the proximo-plantar lobe itself to provide more confident decisions, but the 

model is still able to provide accurate predictions even when the proximo-plantar 

projecting lobe is occluded due to the model having access to other informative regions. 

The test sets Sheep 10 and Sheep 11 are especially affected by the occlusions as they 

were identified as the only samples for which the model’s predictions switched from  
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Figure IV-15. Inception V3 10-fold ensemble branch normalized Grad-CAM visualizations using absolute gradients as 

neuron importance weights. 
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sheep to goat. Furthermore, the ensemble model correctly classifies goat astragali 

regardless of the occlusion size and the accuracy of classifying sheep astragali is affected 

more by larger occlusions. This observation along with the higher mean confidence in 

classifying the goat images furthers the argument made in section 4.3.3 that the model 

is biased towards classifying goat astragali. This result is also in line with the result 

reached in the previous section since the highlighted corners appear to be of minor 

importance to the model, indicating that the signed Grad-CAM heatmaps are not very 

reliable in this specific instance. 

4.3.5.3. Vertical shift 

The third hypothesis is that vertically shifting sheep bones higher in the images and 

goat bones lower reduces the model’s classification accuracy. This hypothesis considers 

the Grad-CAM heatmap activations to be caused by the neural network’s learnt ability 

to ‘count’ the distance between the bone and the edges of the image. The difference 

between sheep and goat images in the mean distance of the bone from the edge of the 

image is approximately six pixels, but this minor difference may be enough for the 

ensemble model to separate the two species. Thus, in Appendix 12, another study 

utilising augmented test images is presented, in which the sheep bones were moved 

down and the goat bones were moved up by small amounts to see if the vertical position 

of the bone inside the image affects the model’s classification accuracy. The bones were 

moved vertically by four, six, eight, and ten pixels, and in a final test they were moved 

to the edge of the image. From the Grad-CAM images of the final test (Appendix figure 

79), it becomes evident that the proximo-plantar projection may be of importance when 

classifying a bone as a sheep, with the Grad-CAM heatmap visibly dropping down along 

with the bones in distal, dorsal, lateral, and medial views. However, while moving the 

bones did affect the classification accuracy negatively in a statistically significant 

manner, the classification of only two bones of sheep astragali changed from sheep to 

goat. These bones are Sheep 10 and Sheep 11, which are the same ones that were 

identified in the occlusion test as being more sensitive to changes.  

Considering that Sheep 4, Sheep 10, and Sheep 11 are the only sheep bones for which 

no labels are visible, it is somewhat concerning that the ensemble model’s classification 

of these bones are impacted more than the rest. Since Sheep 10 and Sheep 11 are 

sensitive to occlusions and vertical movement, it could be assumed that Sheep 10 and 
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Sheep 11 were correctly classified only by chance and that the ensemble model is not 

very confident in its classification of these bones. The latter assumption appears to be 

correct when considering the ensemble model’s confidences for these two bones, with 

the confidence for Sheep 10 being 82.33% and 92.01% for Sheep 11, when the average 

confidence for all sheep bones is 96.94%. In turn, Sheep 4 is consistently misclassified 

by the model as a goat and the ten-fold ensemble model confidence for it is 90.42%. 

Observing Figure IV-15, the labels are highlighted in many different views for both 

species, but it cannot be easily said which view is the most important. Thus, a final 

hypothesis test is required to find out which of the views the model is the most reliant 

upon. This test will help in finding out whether the views with labels (mainly plantar 

view) are the most important. 

4.3.5.4. View combinations 

The fourth hypothesis is that changing which views are shown to the model does not 

impact the model’s classification accuracy. In this final hypothesis test, the trained 

ensemble model is presented with every possible combination of the views for all 24 

test set astragali, apart from two combinations: 1) the baseline of presenting all views; 

and 2) not showing any views. This test is designed to answer which views contain the 

most information to the model. If the model is able to accurately classify the sheep 

bones even when it is not presented with the views in which the written labels are 

present, then it would suggest that the labels are not as significant as suggested by the 

two previous hypothesis tests. This analysis is presented in Appendix 13, where it is 

demonstrated that the model is at its most confident in classifying sheep astragali when 

the proximal view is presented to the model, but the sheep mean confidence for 

proximal view is not significantly higher than for dorsal or plantar views. This apparent 

confidence does not translate into better overall accuracy, as the model is more 

accurate (Appendix table 13) when plantar view is included than when lateral, medial, 

or proximal views are present, with the difference between plantar and distal and dorsal 

views not being statistically significant. Likewise, the model’s accuracy in classifying 

sheep astragali is highest with the presence of the plantar view, although this is not 

statistically different from dorsal view. Therefore the three views with the most 

influence on the ensemble model’s accuracy were concluded to be plantar, dorsal, and 

proximal view. 
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Furthermore, it was found that the ensemble model is able to reach the baseline 

accuracy of 95.83% even when presented with as few as three different views (distal, 

dorsal, and plantar), but the model’s accuracy and mean confidence is higher on average 

as more views are used as inputs as shown in the Appendix table 14. The ensemble 

model’s mean accuracy drops to 88.54% (average of 20 different combinations) when 

three views are shown, meaning that the model is quite robust against missing views. 

The observation that the model achieves better accuracies as more views are made 

available to it suggests that all views add further information to the model, but that 

there are differences in terms of which views are important for which species. For 

instance, the model’s mean confidence when classifying a given goat bone is lowest 

when the distal view is shown and highest when plantar view is present, while the 

model’s mean confidence in classifying sheep bones is lowest when lateral view is 

present and highest when proximal view is used.  

Although the plantar view and possibly the written label that is visible on the plantar 

view of many test specimens increases the model’s accuracy in classifying sheep bones, 

the model is not dependent upon this information and is able to generalize to unknown 

bones regardless of this information. The fact that the proximal view increases the 

model’s confidence the most suggests that the shape of the proximal trochlea is 

important in the differentiation of sheep and goat astragali. Therefore, the conclusion 

of this hypothesis test is that the null hypothesis that changing which views are shown 

to the model impacts the model’s classification accuracy cannot be rejected. 

Furthermore, the result of this hypothesis test corroborates the previous finding that 

the model is biased towards classifying goats, as dropping views had no impact on the 

model’s classification accuracy for goats. Such a result indicates that the model’s default 

answer is that the presented images represent a goat bone, but as more information is 

offered to the model, it is able to change its classification to sheep. This behaviour is not 

desirable because anything that represents neither sheep nor goat would always be 

identified as goat. This behaviour can be combated for instance by using classifiers with 

rejection capabilities (Condessa et al., 2017). 

 Discussion 

The results presented above are multifaceted and provide an insight to the inner 

workings of the Inception V3 ensemble model. Bayesian hyperparameter search was 
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used to find the optimal hyperparameters to train the model. This hyperparameter 

search strategy proved to be successful and fast. The ten-fold average for the validation 

sets was 100% and 95.42% for the test set, and the ten-fold Inception V3 ensemble 

model is a similarly accurate classifier with an accuracy of 95.83% on the test set. This 

ensemble model performs at a similar accuracy to humans when comparing the test set 

results to the six analysts’ average for identifying sheep and goat astragali in Zeder and 

Lapham's (2010) blind study or to Wolfhagen and Price's (2017) probabilistic application 

of the same method, and better than Salvagno and Albarella's (2017) methodology that 

was based on a statistical analysis of metric measurements.  

It was essential to find out the model’s areas of focus in the test images and this was 

done by inspecting the Grad-CAM visualizations of the folds three and four (although 

the visualizations of the other folds are in Appendix 8), as well as for the ten-fold 

ensemble model. To further show which of the views may have been of most importance 

to the model, the Grad-CAM heatmaps were normalized so that the six different views 

were thought of as one view of the entire bone rather than six separate views. This 

technique extends Grad-CAM to branched, multi-view neural networks. 

Observing the Grad-CAM heatmaps of the ensemble model and the individual folds 

made it evident that there are differences in the way the ensemble model classifies 

sheep and goat astragali. The areas of attention were more often in the corners in the 

bones classified as sheep and the presence of proximo-plantar projecting lobe in the 

background was identified as a possible cause in the distal view. For those bones 

classified as goats, the Grad-CAM heatmap correlated more closely with the presence 

of the entire bone in the image. In plantar view, the model’s attention in goat 

classifications was noted as being again on the proximo-plantar projecting lobe. In 

addition, the corner of the proximal view images where the written labels were located 

on the sheep bones were often highlighted, which is potentially harmful in terms of the 

model’s ability to generalize. These issues regarding the behaviour of Grad-CAM raised 

some questions and four different post-hoc hypothesis tests were conducted in an 

attempt to answer them. 

4.4.1. Post-hoc hypothesis tests 

Regarding the first hypothesis, it is divided into two different experiments. In the first 

experiment, a new Inception V3 ensemble model was trained by using artificially noisy 
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training images. This was done as it was thought that vanishing gradients could have 

been the reason for the Grad-CAM heatmaps to focus on the corners of the images, as 

these are the flattest regions of the images where the neurons could easily become 

saturated and where any changes in pixel intensity could cause cliff edges in gradients. 

It was expected that by adding greyscale noise throughout the images, vanishing 

gradients would be eliminated as the flat regions would now be noisy but non-

informative, and the Grad-CAM heatmaps would more clearly focus on the entire bones 

for both sheep and goat images. However, the Grad-CAM heatmaps only became worse 

with more noise in the training images and it is likely that vanishing gradients was not 

an issue, although it could not be ruled out entirely.  

Because of this uncertainty, a second experiment was conducted to answer this same 

hypothesis. In this case, a new model was again trained, but this time the model’s state 

was saved after each epoch and the magnitude of the gradients and activations were 

measured. Using these measurements, and particularly the development of gradients 

over time, it was thought that vanishing gradients would be evident by the mean and 

variance of the gradients approaching zero. This was indeed observed for goat 

specimens, but not for sheep. Since the Grad-CAM heatmaps of sheep specimens were 

noted as being more prone to highlighting corners, it was again concluded that vanishing 

gradients does not appear to be the main cause. However, it was found that using signed 

gradients has a detrimental effect on the quality of Grad-CAM heatmaps and using 

absolute gradients as the neuron importance weights produces qualitatively much 

better results. Yet, using absolute gradients removes the important property of class 

discrimination from Grad-CAM, although this property can be reintroduced by 

normalizing the Grad-CAM heatmaps across classes.  

The second hypothesis set out to answer whether occluding the proximo-plantar 

projecting lobe would have a negative impact on the model’s accuracy, as it was thought 

that if the Grad-CAM heatmaps focused on relevant features in the image, then 

removing these features should lower the model’s accuracy. It was found that occluding 

this feature does have a larger impact on the model’s mean confidence than when an 

opposite corner of the image is occluded. However, the occlusion does not affect the 

model’s accuracy since the model clearly finds enough information in other features and 

views to provide accurate classifications. This result can be interpreted as corroborating 
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the finding that Grad-CAM heatmaps created using signed gradients results in false 

heatmaps. 

Considering the new information gained from conducting the occlusion experiment, 

another possible reason for the Grad-CAM localization in the corners was hypothesised 

to be the model’s learnt ability to ‘count’ the distance of the bone from the edges of the 

images, meaning that if the bones were to be moved vertically inside the image, the 

model’s accuracy would suffer. This hypothesis was answered in the third hypothesis 

test, where it became clear that the impact of vertically shifting the bones inside the 

images does affect the model’s classification accuracy, but vertically moving the sheep 

astragali to touch the bottom edge of the image showed that in the distal, dorsal, lateral, 

and medial views, the Grad-CAM heatmap highlights the proximo-plantar projecting 

lobe of the sheep astragali. The model also retained its focus on the goat bones when 

they were moved higher inside the images. Thus, the vertical position of the bone in the 

image is not thought to have a significant impact on the Grad-CAM heatmaps, but it does 

affect the model’s accuracy. 

The fact that vertical movement and occlusion both resulted in the same test image sets 

(Sheep 4, Sheep 10, and Sheep 11) to be misclassified raised the question of whether 

the model uses the written label visible on most of the sheep astragali as a discriminator. 

In the fourth and final hypothesis test, it was shown that by iteratively replacing views 

with blank, zero-valued (black) images, the ensemble model’s accuracy and mean 

confidence were affected more by the removal of plantar view than when other views 

were replaced by the black dummy image. Dorsal and proximal views were found to be 

the next most important views to the model. Furthermore, this test showed that the 

model gains additional information from all views, although lateral and medial views 

were the least impactful in terms of accuracy and confidence. Finally, even though the 

label written on the bone is prominently visible on several images of the plantar view, 

the model can achieve high accuracy without this view and is not dependent on the 

information from plantar view. 

These four hypothesis tests reveal that the ensemble model is somewhat robust to 

occlusions and vertical shifts in the position of the bones as well as perturbations 

regarding which views are shown to it. Training future models could benefit from being 

presented images augmented with occlusions, positional shifts, and missing views to 
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further improve the model’s robustness. It is also argued that using absolute gradients 

is more relevant as neuron importance weights than signed gradients when using Grad-

CAM. As the use of absolute gradient Grad-CAM methodology results in qualitatively 

very different heatmaps compared to signed gradient Grad-CAM, the interpretation of 

the Grad-CAM heatmaps in section 4.3.4 regarding the ensemble model’s and the 

individual folds’ use of features and views cannot be taken at face value. Instead, all that 

can be said about the contribution of specific features is that the highlighted features in 

Figure IV-15 are very similar for the two species. The one exception is the qualitative 

difference in the shape of the heatmap for the proximal view, which for sheep is more 

diagonal, suggesting that the proportion and position of the lateral and medial sides of 

the proximal trochlea could indicate a difference between the two species. The presence 

of proximal view was also found to result in the highest mean confidence in classifying 

sheep, indicating its importance to the ensemble model.  

Considering the above results together, it is argued that the reason for the corners being 

highlighted in some of the Grad-CAM images is because Grad-CAM does not seem to 

function as expected and the post-hoc hypothesis tests call into question the validity of 

Grad-CAM approach when using signed gradients. If the aim of using Grad-CAM is to 

ensure that the model is focusing on the object in the image and not the background, it 

is clear that absolute gradients result in heatmaps that correlate better with the target 

object and are more consistent across test specimens. In contrast, to definitively identify 

which features of the images of both species are used by the model is difficult. For 

instance, looking at the Grad-CAM visualizations of the goat bones in Figure IV-14, it 

could be argued that the medial articular ridge in dorsal view and the shape of the distal 

articular surface form part of the model’s reasoning for a goat classification, but Figure 

IV-15 undermines the importance of these features. It is therefore evident that a more 

reliable saliency mapping technique would be needed to truly appreciate the influence 

of specific features in a given layer to the classifier. Thus, if the aim is to identify which 

features of the object are the most relevant for the classifier, it may be best to apply 

some other technique such as Occlusion Sensitivity, in which the test image is iteratively 

occluded by some small greyscale region and the model’s confidence is then measured 

and mapped to a heatmap (Zeiler and Fergus, 2014). However, this method relies on the 

input image being occluded, not the activations in a given layer. One alternative that 

performs occlusion on activations is Ablation-CAM (Desai and Ramaswamy, 2020). 



206 
 

4.4.2. Model caveats 

It is suspected that the differences in the model’s confidence scores for the two 

species results from poor calibration of the neural network model – this calibration issue 

has been identified by Guo et al. (2017) as affecting modern deep learning neural 

networks in particular, but for which they also recommend temperature scaling of the 

softmax function as a fix. Guo et al. (2017) note that temperature scaling should not 

affect the model’s accuracy. Temperature scaling is the same technique used in 

knowledge distillation of large ensemble models into smaller, less cumbersome models 

by Hinton et al. (2015). Temperature scaling thus relates to the main downside of 

applying the model trained for this chapter in a real-life scenario, which is that using the 

full ten-fold ensemble model is quite cumbersome even for a powerful modern PC. 

Fortunately, knowledge distillation of ensemble models enables creating lighter models 

that are equally or even more performant than the cumbersome model through a 

special transfer learning in which the ensemble model is the teacher and the 

compressed model is the student (Hinton et al., 2015; Walawalkar et al., 2020). Another 

downside for the present model is that it is limited mainly to modern European sheep 

and goats and further research is needed to ascertain of its application to archaeological 

assemblages. Testing the model’s utility in archaeology would require a large enough 

assemblage of sheep and goat astragali to be first photographed and then sampled for 

ZooMS or aDNA. Unfortunately, such a test is beyond the timeframe of this thesis. 

Moreover, the present study would benefit from a blind study where experts are asked 

to identify the species from the same images as the ones used by the trained model. 

This is done in the next chapter. 

 Conclusion 

This study acts as a proof of concept for utilising deep learning convolutional neural 

networks in the classification of animal bones to species, as well as extending Grad-CAM 

to a multi-view neural network. It was subsequently demonstrated that the presented 

methodology results in higher accuracy than previous computational and metric 

methods. The presented model also achieved an accuracy comparable to human 

analysts in Zeder and Lapham's (2010) study. This in itself is significant, as the deep 

learning model’s outputs are consistent and predictable, whereas humans may change 

their identification even when given the exact same evidence. The model trained for this 
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chapter acts as a sheep and goat astragalus discriminator, where the model’s default 

answer is that the test images represent a goat but given enough additional information 

the classification can change to sheep. Assessing factors such as breed, development, 

nutrition, and age differences on the robustness of CNN models has to be done in further 

studies as the dataset size does not lend itself to such analyses. 

The applied method enabled the simultaneous use of the entire bone in the 

classification task, allowing the classifier to make better informed decisions without the 

need for measurements. It is also easy to see how taking six photographs of a single 

bone could be streamlined in a workflow where a large number of bones are processed 

simultaneously. This process can be further sped up by using a limited number of views 

with the trade-off of reduced accuracy and confidence. Development of further models 

able to classify a wider range of taxa should gather pace as the resources saved would 

be significant.  

Yet, efficiency and accuracy are not the sole factors when deciding on a methodology – 

trust in the process is of very high importance in science. Instilling trust in the models is 

difficult due to problems with using current post-hoc methods such as Grad-CAM in 

interpreting the model’s reasons for classifications. Grad-CAM visualizations are difficult 

to interpret, and complex ensemble models such as the one trained for this chapter may 

obscure the interpretability of the model even further. Moreover, Grad-CAM cannot 

give a definite answer to the question of what is the difference between sheep and goat 

astragalus morphology because each CNN model would produce slightly different result 

as can be seen when comparing the Grad-CAM images of separate folds for the same 

neural network architecture. Therefore, a move away from post-hoc explanation of a 

deep learning model’s behaviour is recommended in favour of fully interpretable 

models. However, it is not recommended that concept-based interpretable models are 

used either, as they are limited by the concepts themselves, which may introduce 

hidden biases. 

This model could be used in the future to identify sheep and goat astragali and to explore 

the consistency of human ability to identify these bones from archaeological contexts, 

especially if applied together with ZooMS or DNA. The recent trend in zooarchaeology 

to adopt quality control in the identification process (Wolverton, 2013; Nims and Butler, 

2017; Lau and Whitcher Kansa, 2018) results in slower assemblage processing because 
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quality control often requires two or more experts to work in unison and thus increases 

the human workload. Instead, it is suggested that deep learning convolutional neural 

network models could take the place of the second analyst to achieve the same 

confidence in the classifications without occupying two analysts in the same task.  

Finally, it is quite possible that using images will not be adequate when classifying 

fragmented bones and that 3D models of the bones are required. Fortunately, using 3D 

models instead of images as inputs to a convolutional neural network is trivial and can 

be overcome given enough 3D data. It is envisioned that future models will use 3D 

models for those bones that are identifiable, the smallest fragments are identified 

through ZooMS, and the future zooarchaeologists may focus their energy only on the 

comparative identification of the rare specimens and bones that are hard to identify due 

to preservation issues. For deep learning models to be adopted more widely, it will be 

necessary to demonstrate their success on fragmented bones and apply them to a far 

wider range of species and elements. Furthermore, any future model or system should 

flag low confidence specimens and approach classifications in a hierarchical fashion 

similar to how zooarchaeologists approach identifications.  
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Chapter V. Bones of contention: a double blind 
study of analysts’ ability to identify sheep 
and goat astragali from images and a 
comparison to a deep learning CNN 

 Introduction 

Several zooarchaeological blind studies have been published since the start of the 

new millennium. The topics of these blind studies are varied, but they can be roughly 

divided into studies that aim to: 1) compare laboratory-based techniques and human 

experts (Greenlee and Dunnell, 2010; Welker et al., 2015b; Pilaar Birch et al., 2019; 

Prendergast et al., 2019); 2) explore analysts’ interpretations and methodological 

decision making (Gobalet, 2001; Atici et al., 2013; Giovas et al., 2017); 3) assess 

reproducibility of published criteria (Zeder and Lapham, 2010; Twiss et al., 2017); 4) 

assess the reproducibility of an assemblage (Nims and Butler, 2017; Lau and Whitcher 

Kansa, 2018); 5) assess the reproducibility of the identification of some features 

(Blumenschine et al., 1996; Lloveras et al., 2014); 6) analyse the application of metrics 

(Lyman and VanPool, 2009); or 7) analyse the impact of fragmentation (Pickering et al., 

2006; Domínguez-Rodrigo, 2012; Morin et al., 2017).  

Regarding the comparison of laboratory techniques and human experts, the motivation 

of these studies has been either to validate a new technique (Greenlee and Dunnell, 

2010) or explore the agreement between human analysts and the new techniques 

(Welker et al., 2015b; Pilaar Birch et al., 2019; Prendergast et al., 2019). When the bones 

derive from archaeological contexts the validity of the assessment of a new technique 

is easy to call into question since the ground-truth labels come from the experts’ 

subjective, comparative identifications, such as in the case of Greenlee and Dunnell's 

(2010) and Haruda's (2017) research. When exploring agreement between ZooMS and 

humans through blind studies, ZooMS is often able to provide more detailed and 

accurate species identifications than human analysts and the level of agreement 

between the two is not always great (Welker et al., 2015b; Prendergast et al., 2019; 

Culley et al., 2021; Janzen et al., 2021).  

In terms of analysts’ ability to apply published criteria to separate sheep and goats, there 

is a noticeable inter-analyst variance even though analysts are generally able to follow 

the guidelines (Zeder and Lapham, 2010). However, this is not the case in identifying 
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equid remains from their teeth based on the published criteria, with analyst agreement 

described as ‘fair’ in Fleiss’ kappa measure of inter-observer agreement, which may 

suggest that the problem is with the criteria, not the analysts (Twiss et al., 2017). More 

importantly, zooarchaeologists do not create similar species lists when given the same 

assemblage (Gobalet, 2001; Lau and Whitcher Kansa, 2018) nor do they interpret the 

same dataset in a similar manner (Atici et al., 2013; Giovas et al., 2017), although 

reassessment of faunal assemblages has shown that it is possible to at least be 

consistent in the use of one’s identification protocol (Nims and Butler, 2017).  

Depending on the nature of the task, individual features on bones can be either easy or 

hard to identify by analysts. As an example of an easy task, separating knife cuts, 

hammerstone percussion, carnivore teeth, and scraping marks on modern bones was 

accurately done by essentially all motivated analysts in Blumenschine et al.'s (1996) 

study. In contrast, grading the intensity of digestion damage (five grades: null, light, 

moderate, heavy, and extreme) on leporid bones is very difficult, with only 51% of the 

245 assignments being correct and the analyst accuracy varying from 80% to 10% 

(Lloveras et al., 2014). This difficulty would have been compounded by the fact that the 

class boundaries may be harder for people to distinguish given digestion damage is a 

continuous variable. Moreover, fragmentation causes a significant drop in analyst 

accuracy when trying to identify the element, as halved bones were correctly identified 

97.9% of time to one of six elements (humerus, radius, metacarpal, femur, tibia, or 

metatarsal), quartered bones 58.3% of the time, and the smallest fragments (one eight 

of a bone) 47.9% of the time in a study by Pickering et al. (2006). Similarly, it is harder 

for analysts of different skill-level to produce equivalent NISP tallies than it is to produce 

equivalent MNI or MNE tallies due to fragmentation (Domínguez-Rodrigo, 2012; Morin 

et al., 2017). It is therefore reasonable to suggest that fragmentation is likely to affect 

species level identifications as well. 

5.1.1. Analyst performance in identifying sheep and goat 

Four published studies deal directly with human ability to identify sheep and goat 

bones, two of which approach it by using laboratory-based techniques as a comparison 

to humans (Pilaar Birch et al., 2019; Prendergast et al., 2019) while the third uses 

modern bones as the baseline information (Zeder and Lapham, 2010). The fourth study, 

by Zeder and Pilaar (2010), additionally assesses the dental criteria of sheep and goats 
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using modern specimens. The two studies employing laboratory-based techniques are 

agreement analyses rather than strict analyses of analyst ability, since it is not 

guaranteed that ZooMS provides an accurate species-level identification due to 

preservation and contamination issues. For instance, it has been shown that storing 

bones in a plastic bag results in proteins being pulled out of the bones through 

triboelectric effect, which is the same mechanism by which non-destructive ZooMS 

works and re-use of plastic bags may introduce contamination (McGrath et al., 2019; 

Martisius et al., 2020). To date no published studies have tested ZooMS technique’s 

capability of detecting the species from known modern samples (which introduce the 

extra complication of a multitude of other proteins present; D. Orton, pers. comm.), 

although the agreement between mtDNA and ZooMS has been shown for a small sample 

of archaeological fish bones (Korzow Richter et al., 2020) and in cases where both DNA 

and ZooMS were successfully extracted from bone artefacts (von Holstein et al., 2014; 

McGrath et al., 2019). It is therefore considered reasonable to use ZooMS or DNA results 

as ground-truth labels to which to compare human performance. 

5.1.1.1. Teeth and mandibles 

In the first of these case studies, Pilaar Birch et al. (2019) subjected 15 mandibles 

from the Neolithic site of Ulucak, Turkey, to aDNA, ZooMS, and morphological 

examinations. Using morphological criteria, the human analyst identified five of those 

fifteen mandibles as sheep/goat, three as goat, and the rest as sheep. While aDNA 

extraction was not successful, the authors were able to identify all of the sheep/goat 

specimens as sheep using ZooMS. Moreover, ZooMS analysis disagreed with the human 

identifications on two occasions; one specimen morphologically identified as a goat was 

identified as a sheep and another specimen morphologically identified as a sheep was 

in fact a goat, resulting in a maximum accuracy of 80 percent for the morphological 

assessment. This accuracy is, however, an overestimation since the analyst was not able 

to identify five of the mandibles. By tabulating the true and false positives and negatives 

of the ten morphologically identified mandibles (Table V-1) and using ZooMS results as 

 TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 6 2 1 1 80.00% 85.71% 85.71% 85.71% 

Goat 2 6 1 1 80.00% 66.67% 66.67% 66.67% 

Table V-1. Breakdown of true positive (TP), true negative (TN), false negative (FN), and false positive (FP) values for 

sheep and goat mandibles identified in Pilaar Birch et al.’s (2019) study, along with the performance metrics. 
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the ground-truth, it is demonstrated that the analyst in this specific case is biased in 

precision (specificity) and recall (sensitivity or probability of detection) towards 

identifying sheep over goats. Although the sample size is tiny, this signals that there may 

be a systematic identification bias towards the identification of sheep over goats in the 

applied morphological criteria for sheep and goat mandibles. This finding is supported 

by Zeder and Pilaar (2010), who found that goat teeth and mandibles were more likely 

to be incorrectly identified than those of sheep. 

5.1.1.2. Post-cranial remains 

In another recent study, a sample of 79 caprine specimens from the Neolithic site of 

Luxmanda, Tanzania, were subjected to a morphological study by two analysts, a ZooMS 

study, and a stable isotope analysis (Prendergast et al., 2019). The sample consisted of 

43 teeth, 17 astragali, ten distal metapodia, six first (proximal) phalanges, and three 

humeri. Two sampled teeth had duplicate ZooMS samples taken from the mandibles 

they were attached to, but the mandibles were not part of the morphological study. 

What makes this study particularly interesting is that the two analysts applied the 

methodology outlined by Zeder and Lapham (2010) for postcranial remains and Zeder 

and Pilaar's (2010) methodology for teeth. Prendergast et al. (2019) found that when 

both analysts specified a species, they agreed 86% of the time, but the agreement for 

individual criteria was 75% for postcranial remains and 76% for teeth. Yet, for 33% of 

the sample the analysts were not in agreement about the indeterminate nature of the 

specimen, which Prendergast et al. (2019) say demonstrates the differences in the 

analysts’ confidence and/or interpretation of the morphological criteria. More 

importantly, their data is an example of the accuracy of Zeder and Lapham's (2010) 

approach in comparison to ZooMS. 

Ignoring the dental samples in Prendergast et al. (2019) data, we are left with 36 

samples, of which 22 contained enough collagen for an accurate ZooMS result (Table 

V-2). For eight of these specimens, both analysts were in agreement with ZooMS and for 

14 specimens at least one of the analysts was in agreement with ZooMS. However, in 

only one case did both analysts provide an identification that was not in agreement with 

ZooMS, while on seven occasions both analysts thought the specimen was 

indeterminate. Table V-3 and Table V-4 display the confusion matrices and the 

performance scores calculated from the confusion matrices for both analysts separately  
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as well as when both analysts were in agreement. In these tables, as in Table V-1, the 

ZooMS result is taken as the ground-truth and specimens marked as indeterminate have 

been left out. Table V-2 – Table V-4 demonstrate how different analysts achieve 

different levels of accuracies when applying a seemingly systematic comparative 

method for morphological identification, but also that many analysts working together 

can achieve more reliable results than individuals, even if one is more experienced than 

the other, as was reported to be the case between analysts 1 and 2 in terms of 

identifying domestic archaeofaunas (Prendergast et al., 2019). Moreover, both analysts 

were better at identifying goats than sheep, which is in line with Zeder and Lapham's 

(2010) study, who found goat postcranial remains to be more readily identifiable with 

the given criteria. It is noteworthy that for mandibular remains, the reverse is true (see 

section 5.1.1.1). 

 

 

Specimens for which ZooMS results were available 

Manchester Lab Code RAPT Catalogue # Element A1 A2 ZooMS 

MP17 1353 Astragalus Capra Capra Capra 

MP18 1354 Astragalus Capra Capra Capra 

MP19 1355 Astragalus Indet. Indet. Ovis 

MP24 1360 Astragalus Indet. Indet. Capra 

MP28 1364 Astragalus Ovis Capra Capra 

MP29 1365 Astragalus Ovis Ovis Ovis 

MP30 1366 Astragalus Capra Capra Capra 

MP31 1367 Astragalus Capra Ovis Capra 

MP32 1368 Humerus Capra Indet. Capra 

MP33 1369 Humerus Indet. Indet. Ovis 

MP34 1370 Humerus Capra Capra Ovis 

MP37 1373 Distal metapodial Indet. Indet. Ovis 

MP39 1375 Distal metapodial Indet. Indet. Ovis 

MP40 1376 Distal metapodial Ovis Ovis Ovis 

MP41 1377 Distal metapodial Capra Capra Capra 

MP42 1378 Distal metapodial Ovis Indet. Ovis 

MP43 1379 Distal metapodial Indet. Indet. Ovis 

MP45 1381 First proximal phalanx Ovis Ovis Ovis 

MP46 1382 First proximal phalanx Capra Capra Capra 

MP47 1383 First proximal phalanx Indet. Indet. Capra 

MP48 1384 First proximal phalanx Ovis Indet. Ovis 

MP49 1385 First proximal phalanx Ovis Indet. Ovis 

Table V-2. The 22 specimens from Prendergast et al. (2019) for which ZooMS was successful. Data from Prendergast 

et al. (2019) supplementary material. A1 and A2 refer to analysts 1 and 2, respectively. RAPT refers to Research on 

the Archaeology of Pastoralism Project. 
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5.1.1.2.1. Astragalus 

In Zeder and Lapham's (2010) blind 

study, six analysts of varying skill levels 

tried to identify 20 specimens (ten from 

each species) of several elements using 

their methodology, although not every 

analyst attempted to identify all elements 

included in the study. The analysts were asked to identify the specimen’s species by 

using a set of criteria with each criteria having the option of being either sheep, goat, or 

sheep/goat, but as discussed below the results are not so straightforward. 

In general, the analysts’ performances varied quite widely: 1) analysts 1 and 2, who were 

the authors of the article, performed better than the rest of the analysts, but not 

consistently as both were better at identifying elements of one species; 2) analyst 3 

achieved similar accuracy to analyst 4, but analyst 4 had the highest correct 

identification rate for goat specimens and the lowest rate for sheep, whilst also 

Confusion matrices 

  A1 prediction 

  Sheep Goat 

True 
Sheep 6 1 

Goat 1 7 

    

  A2 prediction 

  Sheep Goat 

True 
Sheep 3 1 

Goat 1 6 

    

  A1 + A2 prediction 

  Sheep Goat 

True 
Sheep 3 1 

Goat 0 5 

Table V-3. Confusion matrices for analysts 1 and 2, as 

well as a joint confusion matrix which only takes into 

account the specimens that both analysts agreed 

upon. Specimens marked as indeterminate were not 

included in these counts. 

Table V-4. Breakdown of true positive (TP), true negative (TN), false negative (FN), and false positive (FP) values for 

sheep and goat specimens included in Prendergast et al. (2019) for analysts 1 and 2, as well as the specimens they 

agreed on. 

Performance metrics for analysts based on the 22 specimens  

(see Table V-2) 

A1 

 TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 6 7 1 1 86.67% 85.71% 85.71% 85.71% 

Goat 7 6 1 1 86.67% 87.50% 87.50% 87.50% 

          

          

A2 

 TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 3 6 1 1 81.82% 75.00% 75.00% 75.00% 

Goat 6 3 1 1 81.82% 85.71% 85.71% 85.71% 

          

          

A1+A2 

 TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 3 5 1 0 88.89% 100.00% 75.00% 85.71% 

Goat 5 3 0 1 88.89% 83.33% 100.00% 90.91% 
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attempting to identify the fewest specimens overall; 3) analyst 5 achieved consistently 

low accuracies for each species; and 4) analyst 6, who was mentioned as having had very 

little experience, performed relatively well, but attempted to identify only two 

specimens more than analyst 4. Regarding the identification of sheep and goat astragali 

in Zeder and Lapham's (2010) test, the average accuracy across the analysts was 94.74% 

(excluding ambiguous sheep/goat assignments from the total number of 

identifications), albeit that analyst 3 did not attempt to identify any of the astragali. In 

the following paragraph, the information derives from the Supplementary Table 4 made 

available by Zeder and Lapham (2010). 

The average accuracy for the two expert analysts was exactly the same as the average 

for the three less experienced analysts in the identification of astragali (Table V-5). 

However, there are two astragali for which the analyst 1 assigned all four criteria as 

either goat or sheep/goat, but the final assignment was still set as sheep, while analyst 

2 identified one goat astragalus as goat even though they thought three of the four 

criteria resembled sheep. In addition, on four occasions the analysts assigned a 

specimen as sheep/goat when the majority of criteria would have enabled a more 

accurate species assignment, although the assignment would have been wrong in three 

of those four decisions. As the analysts were given the option to assign a species 

Astragalus identifications from analyst decision 

All analysts 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 41 49 5 0 94.74% 100.00% 89.13% 94.25% 

Goat 49 41 0 5 94.74% 90.74% 100.00% 95.15% 

                  

Analysts 1 and 2 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 17 19 2 0 94.74% 100.00% 89.47% 94.44% 

Goat 19 17 0 2 94.74% 90.48% 100.00% 95.00% 

                  

Analysts 4, 5 and 6 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 24 30 3 0 94.74% 100.00% 88.89% 94.12% 

Goat 30 24 0 3 94.74% 90.91% 100.00% 95.24% 

Table V-5. Analyst performance for all astragalus identifications in Zeder and Lapham's (2010) blind study. The true 

positive, true negative, false negative, and false positive derive from the analysts' final decision which may differ 

from majority rule of the different criteria. Analysts 1 and 2 are the authors of the study. 
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identification not solely based on the criteria, the participants do not consistently 

adhere to the methodology and only selectively agree with the criteria. Had the 

participants strictly followed the criteria, the accuracy for all analysts would have 

decreased from 94.74% to 89.36% (Table V-6). Thus, the participants in Zeder and 

Lapham's (2010) study should be assessed based on the final species assignments they 

made, as well as the identifications calculated from the criteria. In Table V-6, the final 

species identification is based on the majority rule of the criteria – any draws were 

assigned as sheep/goat and specimens with sheep/goat assignment were not taken into 

account in Table V-5 and Table V-6. Table V-5 and Table V-6 make it clear that the two 

experienced analysts (analysts 1 and 2) overrule the species identification suggested by 

the majority of the criteria more often than other analysts, at least for astragalus. It 

therefore shows that even experienced analysts do not follow or trust descriptive 

criteria consistently, even if it is their own criteria.  

5.1.2. Aims and objectives 

The purpose of this blind study is to provide a baseline measure to which to compare 

the deep learning convolutional neural network model discussed in Chapter IV. Using 

human performance as the baseline measure is a common practice in model 

performance evaluation. As the images used in training the model derive from known 

Astragalus identifications from criteria 

All analysts 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 37 47 9 1 89.36% 97.37% 80.43% 88.10% 

Goat 47 37 1 9 89.36% 83.93% 97.92% 90.38% 

                  

Analysts 1 and 2 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 15 17 4 1 86.49% 93.75% 78.95% 85.71% 

Goat 17 15 1 4 86.49% 80.95% 94.44% 87.18% 

                  

Analysts 4, 5 and 6 

  TP TN FN FP Accuracy Precision Recall F1-score 

Sheep 22 30 5 0 91.23% 100.00% 81.48% 89.80% 

Goat 30 22 0 5 91.23% 85.71% 100.00% 92.31% 

Table V-6. Analyst performance for all astragalus identifications in Zeder and Lapham's (2010) blind study. The true 

positive, true negative, false negative, and false positive derive from the analysts' decision on individual criteria and 

were computed based on majority rule. Analysts 1 and 2 are the authors of the study. 
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modern animals, it will also be easy to judge analyst competence. There are two studies 

in which human expert and deep learning model performances have been compared in 

the task of identifying archaeological remains. The first one of these dealt with 

archaeological pottery, for which ground-truth classes are not known (Pawlowicz and 

Downum, 2021) and in the second study the authors asked the experts to identify 

images of archaeological objects to an imprecise time period (Resler et al., 2021). These 

studies have unreasonable expectations since ground-truth classes must be known for 

a blind study and most archaeologists are not familiar or trained to identify artefacts of 

all time periods. 

In addition to forming a baseline performance measure, the present study also aims to 

test the efficacy of different reference materials in the identification of sheep and goat 

astragali. Likewise, studies of analysts’ spatial attention are completely lacking in the 

discussion of archaeological identifications and therefore exploring which parts of the 

astragalus the analysts focus on is important, as it is possible that expert analysts are 

using regions outside of the descriptions of criteria. Finally, it is aimed to show that 

ambiguous sheep/goat identifications are not only unnecessary, but that they also 

conceal important information about the identification process. This is tested by 

replacing the sheep/goat category with forced binary identification alongside a self-

reported confidence score and analysing how the analysts’ accuracy changes with 

increasing confidence. These aims are accompanied by and accomplished through a 

series of statistical tests on analyst performance, use of reference materials, confidence, 

speed, and specimen difficulty.  

 Materials and Methods 

5.2.1. Participant data collection 

The blind study took place from 23 June 2020 until 31 December 2020 and it was 

hosted online at www.sheepgoat.co.uk. The request to participate in the study was first 

sent to UCL zooarchaeology PhD students in a piloting phase and then circulated to the 

wider zooarchaeological community from 6 July 2020. All responses from the initial UCL 

PhD student cohort are retained in the data as no problems were encountered. In total, 

104 participants started the study, 44 went on to provide identifications and drawings, 

but only 39 analysts of varying skill levels finished it. Those 39 analysts are the research 

subjects here. All analysts were fully anonymous and the presented bones were selected 



218 
 

randomly from a pool of 184 sets of sheep and goat astragali. This pool of astragali is a 

subset of the processed images used in Chapter IV to create the neural network models 

– astragali with written information indicating the species of the bone were removed so 

that the blind study participants were not able to use that information. Due to picking 

the presented bones in a random manner, one of the astragali was not shown to any of 

the analysts. The study was granted ethics approval on 15 June 2020 by UCL Institute of 

Archaeology Ethics Committee. The Ethics Approval Reference is 2020.020.  

5.2.1.1. Website organization 

As the participants landed on the website, they were confronted first by information 

about the study and then asked to move on to the next page where they were given 

specific information about the tasks. Prior to providing any information and after 

continuing from the task information page, the participants had to consent to eleven 

different statements about participating in the study as required by UCL ethics guidance. 

On the following page, the participants were asked to fill a pre-test questionnaire to gain 

an understanding about their experience and the reference materials they were going 

to use during the identification task. Before starting the identification and drawing task, 

the participants were shown more detailed instructions about how to complete them. 

Each respondent was then shown 30 sets of images of astragali, with each set being first 

shown in an identification task page, immediately followed by another page where the 

participants were tasked with painting on the images of the bones the areas that they 

used to identify the species. After completing the identification and drawing tasks 30 

times, the analysts were asked to provide feedback on the test, after which they were 

able to see statistics about their accuracy as well as confidence. The participants were 

always able to access the task specific instructions as well as delete any information at 

any point during the study, even once they had seen their results. The specific questions, 

their help texts, and choices to all questions in the pre-test and post-test questionnaires 

are listed in Appendix 14, along with the eleven statements the participants had to agree 

to. An example of the identification and drawing tasks is given in Appendix 15. The entity 

relationship diagram of the database is presented in Appendix 16. 

5.2.1.2. Measuring expertise 

According to social expectation hypothesis, society and experts expect that 

qualifications, track record, and experience (in years in profession) dictate experts’ 
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performance, although research suggests that these factors are poor predictors of 

performance in a test (Burgman et al., 2011). Instead of using one simple measure of 

expertise, this study measures expertise through a statistical analysis of range of 

questions. The participants were asked what their highest level of zooarchaeological 

qualification is, how many zooarchaeological assemblages they have worked on in the 

last five years, and on average how many hours per week they have spent analysing 

zooarchaeological remains in the last five years. These questions were chosen because: 

1) qualifications are a direct analogue to perceived expertise and they provide a baseline 

expectation of how well an analyst should perform, although further qualifications do 

not necessarily indicate better test performance (Burgman et al., 2011); 2) working on 

more assemblages is assumed to result in the analyst having seen a larger range of faunal 

materials, which provides the analyst a larger mental reference population; and 3) 

spending more time performing zooarchaeological identifications is assumed to indicate 

continued practice, which is strongly correlated with skill (Ericsson and Lehmann, 1996). 

In hindsight, it would have been beneficial to additionally ask the participants how much 

time they dedicate to deliberately improving their identification skills and how varied 

their research histories are, as the aforementioned assumptions that the number of 

assemblages reflects a larger mental reference population and that spending more time 

performing zooarchaeological identification tasks implies rehearsing and honing one’s 

skills may not hold. The choice of asking specifically about the last five years was made 

as domain knowledge is likely to fade if it is not practiced (Endsley and Kiris, 1995) and 

some participants may have been more active more than five years ago. The five year 

cut-off point was an arbitrary choice. 

As the identification task is about identifying sheep and goat astragali, the participants 

were further asked whether they are specialised in the identification of land mammals 

and if they have been involved in any studies involving the separation of sheep and goat 

and therefore consider themselves to have specialist experience in this subject matter. 

The participants were given the option to choose ‘Not applicable’ (NA) for the questions 

about land mammal specialism and the expertise on sheep and goat separation. The 

participants were given instructions about when to choose NA for these two questions 

– for land mammal specialism, the participants were instructed to select NA if they did 

not have any zooarchaeological qualifications, and for experience in sheep and goat 

separation they were asked to select NA if they selected ‘No’ for land mammal 
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specialism. The NA option seems to have been misunderstood as the only person who 

chose NA as an option for land mammal specialism said that they have MA/MSc level 

qualification in zooarchaeology, while only two of the six participants who said that they 

did not consider themselves as specialised in the identification of land mammals chose 

NA for the question about experience in sheep and goat separation. To remove this issue 

of instruction misinterpretation and given the low analytical value of NA in this instance, 

all NA values are interpreted as ‘No’ in all of the analyses. 

5.2.1.3. Reference materials 

Considering that the analysts were encouraged to utilise any reference materials that 

they thought would be helpful, five additional questions were asked regarding their 

reference aides. These questions asked whether the participant was going to use 

physical reference specimens, reference photographs, reference sketches, reference 3D 

models, and whether they were going to be consulting any reference texts. The options 

to the first four of these questions were ‘No’, ‘Only sheep astragalus’, ‘Only goat 

astragalus’, and ‘Both’. The options for the final question regarding the reference texts 

included ‘Boessneck et al. 1964 or Boessneck 1969’, ‘Prummel & Frisch 1986’, ‘Zeder & 

Lapham 2010’, 'Some other description', and ‘None’.   

5.2.1.4. Classification task 

Each participant was shown ten sets of both sheep and goat images, with each set 

showing the astragalus from all six aspects. These 20 sets were picked at random from 

the entire pool of 184 image sets, with the author of this study also not being aware of 

which bones were selected, making the study a double blind test. In addition to the 20 

unique sets, each participant was shown further five goat and five sheep bones that 

were again picked at random from the original set of 20 astragali. The bones were shown 

in a semi-random order, making sure that the same bone was not shown immediately 

after it was shown the first time. The participants were told that they will be shown 30 

sets of images of astragali, but they were not told that ten of these would be repeats. 

Concealing the fact that the participants will be shown repeats was necessary to avoid 

attempts to memorise the bones and to get a fair measure of analyst consistency. 

Furthermore, motivation was not measured, but it is very likely that the participants 

were all highly motivated as they were given the option to delete their responses at any 

stage.  
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For each bone, the participants were asked to decide whether it came from a sheep or 

a goat and provide a self-estimate of their confidence in their decision on a sliding scale 

from ‘Guess’ to ‘Absolutely certain’. In numerical terms ‘Guess’ was set to 1 and 

‘Absolutely certain’ was 100, with the default value at 51. The participants were 

additionally asked if they remember having seen the bone in person, the idea being that 

some participants from Sheffield University, National Museum Cardiff, or Historic 

England could be so familiar with their reference materials or collections that they could 

recognise their specimens from images. In only one case did a participant (Analyst 95) 

claim to have remembered seeing the specimen in question; their confidence for this 

bone was ‘Absolutely certain’ and their identification was also correct. This specific 

identification is therefore not taken into account in the analyses. Furthermore, there 

was a glitch in Analyst 29’s entries, for whom there are 29 identifications and 31 

drawings. Therefore, only those drawings that have a corresponding identification are 

included for Analyst 29.  

Each identification was timed by starting the clock as soon as the page loaded and it was 

stopped once the participant advanced to the next page. The measured response speed 

is not a measure of reaction time as it contains further participant actions including 

providing self-reported confidence and whether the person remembers having seen the 

specimen. Therefore, the measured speed has the potential to have a low signal-to-

noise ratio. 

5.2.1.5. Drawing task 

Following the identification task, the participants were taken to a page to draw on 

the images of the bones they just identified to gather information about the 

participants’ areas of attention in the identification process. For this task, the analysts 

were asked to provide solid, filled-in areas or draw along the edges – circling areas was 

discouraged, as it was to be understood as highlighting an edge. The purpose of only 

providing filled-in areas was that it would be easier to combine all analysts’ drawings 

into a single heatmap, with circled areas losing the meaning in the process. The analysts 

were given the option to resize the paint brush and erase as they wished. 
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5.2.2. Data analysis 

The Results section is divided into a series of sub-sections, the first one involving the 

impact of the width of the browser window, followed by analyst expertise grouping. 

These expertise groups are used in following analyses to uncover any differences 

between levels of expertise for the tested variable. In addition to the section on 

expertise group assignment, the sub-sections of the Results aim to evaluate analyst 

performance, analyst consistency, the impact of reference materials, analyst 

confidence, the relationship between speed and analyst performance, the difficulty of 

the specimens, and finally, the analyst performance is compared to that of the Inception 

V3 model from Chapter IV. The specific statistical techniques and the reasons for using 

them are detailed for the most part in their respective sections within the Results with 

some exceptions. The following sections therefore mainly concern the questions being 

answered.  

5.2.2.1. Impact of different devices 

In addition to asking the participants’ consent to taking part, the width of the browser 

window (in pixels) was recorded. The reason for doing so is that the study was designed 

to be viewed on a browser window with a minimum width of 1,586 pixels so that the 

images were viewed in the intended order. Note that pixels vary in physical size between 

devices, so the physical size of the images seen would have varied between participants. 

Only nine of those analysts who completed the study accessed the website using a 

browser window with at least the recommended number of pixels, so it is possible that 

their results may differ from the other 30 analysts. Thus, it is tested whether the 

accuracies of those with an adequately wide browser window are significantly different 

from those who did not have a large enough browser window. This test allows ruling out 

browser window size as a confounding factor.  

5.2.2.2. Grouping the analysts by expertise 

Before analysing the data further, the analysts are grouped through the combination 

of Principal Components Analysis (PCA) and K-medoids techniques that are applied to 

the participants’ answers to the expertise questions. Using the answers to the five 

questions outlined in the section 5.2.1.2, and assuming that the answers represent 

Likert-like interval data with equal distances, principal components are computed (Abdi 
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and Williams, 2010). Prior to applying PCA, each column is centred around zero and 

scaled to unit variance due to each question having varying number of options. The 

number of principal components used as input to K-medoids is chosen based on how 

many principal components cumulatively explain over 80% of the variance. By applying 

K-medoids clustering method on the most important principal components the analysts 

are placed into groups consisting of analysts of similar skill-level. K-medoids was chosen 

as the clustering method since it is more robust to noise and outliers than K-means 

because the cluster centres in K-medoids are the most centrally located objects instead 

of the mean of the objects within that cluster as in K-means (Zhang and Couloigner, 

2005). The number of K-medoid clusters is chosen through the evaluation of three 

different metrics: sum of squared distances (the elbow method), Calinski-Harabasz 

index, and silhouette score.  

5.2.2.3. Analyst performance 

The summary statistics of analyst performance are provided for each analyst and by 

group. The main question being answered is whether the overall accuracy or the 

accuracy for either species varies between the expertise groups. It is hypothesised that 

there is a significant difference between expertise groups, with more experienced 

analysts being more accurate.  

5.2.2.4. Analyst consistency 

Analyst consistency was measured via test re-test approach. This corresponds to 

comparing whether the analyst’s answer in the first test (the 20 independent astragali) 

and the second test (subset of 10 from the 20 astragali) for a given specimen are the 

same, regardless of whether the answer is correct. The hypothesis for this analysis is 

that there is a significant difference in consistency between expertise groups, with more 

experienced analysts being more consistent. This measure of consistency is further 

complemented by the comparison of analyst accuracies in test and re-test stages for the 

subset of specimens that were included in both test and re-test.  

5.2.2.5. Impact of reference materials 

The collected data on reference material usage should help in understanding whether 

access to different types of reference materials is a factor in analyst performance or not. 

The specific questions aimed to answer include: 1) is analyst performance affected by 
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the use of different media (i.e. physical specimens, photographs, sketches, 3D models, 

and reference texts); and 2) is there a difference in how the various text reference 

sources impact analyst accuracy. It is acknowledged that to directly measure the impact 

of different types of reference materials it would be better to ask analysts to identify 

the same set of bones using varying types of reference materials in separate sessions, 

whilst also having a separate control group, but this was not possible within the research 

timeframe nor was it thought possible to find a large enough cohort to participate in 

such a study.  

5.2.2.5.1. GLMM 

The reference material data is further analysed using a generalized linear mixed 

effects model (GLMM), which can incorporate the impact of sources of random variation 

such as the differences in the analysts’ abilities and the difficulty of the specimens within 

the statistical model. The different types of reference materials were tested as fixed 

effects, whereas participants and the bones were used as random effects in varying 

ways. In addition, specimen species was included in some of the models as a fixed effect 

that acted as a slope for the analyst random effect, which means that the species works 

as a source of variance for each analyst. More details on the implementation of GLMM 

in the analysis of reference materials are provided in section 5.3.5.1. Section 5.2.3 gives 

a more general overview of GLMM. Although further research will be needed to provide 

a more accurate assessment of which reference materials provide the best results, this 

analysis can be taken as the first indication of the potential impact of reference materials 

on analyst accuracy and reliability.  

5.2.2.6. Self-reported confidence 

By measuring the self-reported confidence for each identification it is aimed to 

answer whether: 1) confidence correlates with correct answers; 2) more experienced 

analysts are more confident; and 3) confidence varies between species. The hypothesis 

for the first of these questions is that there is a correlation between a correct answer 

and confidence. The second hypothesis is that more experienced analysts are more 

confident than those with less experience. Finally, it is hypothesised that analysts are 

systematically more confident about identifying sheep than goat specimens. One 

justification for this last hypothesis is that available zooarchaeological literature on 

sheep bones and their development is more extensive than for goats, with no large scale 
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studies of the development of modern goat osseous remains being known to the present 

author. 

5.2.2.7. Response speed 

Although the measured response speed has a potentially low signal-to-noise ratio, it 

is hypothesised that the response times are longer for correct answers due to analysts 

making better informed decisions as they compare the test specimen to their reference 

materials. The null hypothesis is that there is no positive rank correlation between 

response time and correct answer. In addition, more confident answers are 

hypothesised as being given faster than unconfident answers, and a negative correlation 

is therefore expected between confidence and speed. 

5.2.2.8. Specimen difficulty 

An analysis of item difficulty is conducted to further understand the impact of the 

different specimens. This analysis is performed by computing the Difficulty (or Facility) 

Index for each item, which allows for separating the difficult and easy items. The 

Difficulty Index for each specimen is computed by dividing the number of correct 

responses by the total number of responses for that specimen. The Difficulty Index is 

sometimes also called Facility Index, which should be familiar to most teachers, and it is 

counterintuitively interpreted such that the lower the Difficulty Index, the harder the 

specimen. This analysis includes a comparison between species as it is hypothesised that 

the Difficulty Index for sheep is higher (i.e. easier) than for goats. It is similarly tested 

whether the Difficulty Index is significantly different for any of the analyst experience 

groups. The following statistical analyses involve the correlation between Difficulty 

Index and response time and between Difficulty Index and confidence. It is hypothesised 

that higher Difficulty Index (easier specimens) results in lower response times and higher 

confidence, with the null hypothesis for both tests being that there is no such 

relationship.  

The statistical testing of specimen difficulty is followed by a qualitative analysis using 

the analyst attention areas of the hardest and the easiest sheep and goat specimens. 

The primary aim of this analysis is to find out whether there are systematic differences 

or similarities in the morphologies of the easiest and the hardest specimens of both 
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species that could possibly explain why human analysts misidentified some bones but 

not others. 

5.2.2.9. Comparing analysts and the CNN model 

The performances of the analysts and the ten-fold ensemble Inception V3 model 

introduced in Chapter IV are first compared through the usual metrics of accuracy, 

precision, recall, and F1-score. However, this comparison presents some problems. For 

instance, three of the 24 astragali in the CNN test set were not included in the blind 

study because they happened to have the species label written on them. In addition, 

one astragalus that was part of the CNN test set and included in the blind study was not 

analysed by any of the participants because of the random sample selection process for 

the human analysts. Using the other 20 astragali that were included in the CNN test set 

leads to a slight class imbalance (9 goats, 11 sheep), but this is considered an acceptable 

level of imbalance that is unlikely to lead to significant differences between species, at 

least not beyond the differences that may have already been present. The imbalance 

can also be corrected for by calculating the weighted averages for the performance 

metrics. 

In addition to the class imbalance, another problem introduced by this comparison is 

that the astragali included in the CNN test set may have been disproportionately easy to 

identify. Thus, to evaluate and minimize the impact of the easiness of the samples on 

the difference in accuracies between human experts and the CNN model, a two-step 

approach is taken. First, the performance metrics of the analysts are computed for just 

the 20 shared astragali to provide an apples-to-apples comparison of mean analyst 

performance and CNN model performance. Second, a statistical analysis is performed 

with the aim of showing that the difficulty of the 20 CNN test set specimens is not 

significantly different from that of the rest of the specimens seen by human analysts. 

The explicit null hypothesis in this test is that the distribution of Difficulty Indices of the 

20 specimen test set is not significantly different from the distribution of Difficulty 

Indices for the other 163 specimens seen by analysts. 

5.2.2.9.1. GLMM 

These analyses are complimented by a GLMM in which the test set classifications for 

all ten cross-validation folds are included alongside the analysts’ identifications, 
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effectively adding ten new (artificial) analysts to the dataset. It was chosen to include 

separate folds rather than the ensemble model classifications as including only the 

ensemble model classifications would not provide enough statistical power to 

differentiate humans and the neural network. In other words, it is easier to differentiate 

CNN and humans when the 39 human analysts are compared to ten CNN models rather 

than to just one. This is justifiable on the basis that each cross-validation fold was trained 

using a different subset of the image dataset, which is a training process that results in 

each fold having slightly different means and variances for the representations of the 

sheep and goat astragali. The training process for each fold is assumed to be roughly 

similar to the process that each human expert go through when learning their own 

understanding about the population means and variances for the morphologies of sheep 

and goat astragali.  

The classifications of all 24 test specimens by the CNN models are included alongside all 

of the identifications by the analysts. Here, the fixed effects of interest are ‘Analyst Type’ 

(CNN and human) and analyst group, with the ten CNN folds being added as a new group 

alongside the human expertise groups. Participants and the bones were used as random 

effects in a similar fashion to what was done with reference materials. The species of 

the bone was used as a fixed effect and as the slope for the participant (including the 

CNN folds) random effect. More details on the implementation of GLMM in the 

comparison of human and CNN performances are provided in section 5.3.9.1. Section 

5.2.3 gives a more general overview of GLMM. 

5.2.2.9.2. Attention areas 

The human analyst attention areas were collected via their own drawings 

immediately after they had completed the identification of that bone. These attention 

areas are compared to the branch normalized Grad-CAM images of the ten-fold 

Inception V3 ensemble model. The comparison is made on a qualitative basis, with both 

the analyst drawings and the Grad-CAM heatmaps being averaged per species by aspect. 

Each heatmap is thus a matrix of pixel intensities. Formally, let species 𝑆 = 𝑠ℎ𝑒𝑒𝑝, 𝑔𝑜𝑎𝑡 

and view 𝑉 = 𝑑𝑖𝑠𝑡𝑎𝑙, 𝑑𝑜𝑟𝑠𝑎𝑙, 𝑙𝑎𝑡𝑒𝑟𝑎𝑙,𝑚𝑒𝑑𝑖𝑎𝑙, 𝑝𝑙𝑎𝑛𝑡𝑎𝑟, 𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙. For each species 

𝑠 ∈ 𝑆 and each view 𝑣 ∈ 𝑉, the average species and view specific heatmap of the analyst 

attention areas is given by 
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𝑁
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, 

where N is the number of drawings for the vth view of the sth species. 

5.2.3. Generalized linear mixed effects models 

Generalized linear mixed effects models merge the properties of two common 

statistical techniques, linear mixed models (LMM) and generalized linear models (GLM, 

Bolker et al., 2009). GLMM differs from GLM in that it adopts the use of random effects 

from LMM, but it also differs from LMM and resembles GLM in that it involves the use 

of link functions to model non-normal data (Bolker et al., 2009; Stroup, 2013). In fact, 

Stroup (2013) argues that LMM, GLM, and even linear regression models are simply 

special cases of GLMM. Using a generalized linear mixed effects model is preferred over 

GLM and LMM in cases where the dependent variable is non-normal and it is reasonable 

to expect random variation beyond that explained by the independent variables. 

Common examples of sources of random variation are the subjects and the test items, 

which is the case in the present blind study.  

In a mixed effects model, fixed effects and random effects are both explanatory 

variables and their parameters are evaluated through maximum likelihood estimation 

(Bolker et al., 2009). However, the purpose of random effects is to incorporate variance 

between the clusters of random effects and each cluster has its own standard deviation 

of variation (Agresti, 2002; Bolker et al., 2009). In the presented models, the clusters are 

the individual analysts and the specimens. These clusters are crossed, meaning that each 

specimen may have been seen by multiple analysts (Agresti, 2002; Baayen et al., 2008; 

Bolker et al., 2009; Barr et al., 2013). Additionally, each analyst’s ability also varies by 

the species of specimen and thus the species is used as the slope for the participant 

random effect. In practice, models using random effects have random intercepts for 

each cluster (i.e. each analyst and each specimen) and each cluster may also have its 

own slope (which is determined by some grouping variable, such as species within 

analyst). The distribution of the random effects is typically assumed to be Gaussian, but 

non-Gaussian random effects have also been suggested (Lee and Nelder, 1996, 2006). 

The variance distributions for random effects have to be estimated using maximum 

likelihood estimation because directly measuring them is very difficult. For more details 
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on GLMMs, one should consult Agresti (2002) or Stroup (2013). In addition, Bolker et al. 

(2009) provide a practical guide.  

5.2.3.1. Technical definition 

The following example model borrows the notation from Barr et al. (2013) who 

discussed linear mixed models in the context of crossed models. This notation is adapted 

to match GLMM. For GLMMs, a link function 𝑔(∙) must be chosen, which provides a non-

linear relationship between the observation and the predictors. In the present case, the 

chosen link function is the logit link which is suitable for dealing with binary data such 

as when modelling whether an identification is correct or incorrect. A theoretical GLMM 

consisting of a binary response variable 𝑌𝑠𝑖, fixed effect X and two random effects 

(Subject and Item) with a slope of X varying within Subject is defined as 

𝑔−1(𝐸(𝑌𝑠𝑖|𝑆0𝑠, 𝑆1𝑠, 𝐼0𝑖)) = 𝛽0 + 𝑆0𝑠 + 𝐼0𝑖 + (𝛽1 + 𝑆1𝑠)𝑋𝑖 + 𝑒𝑠𝑖 , 

𝑔−1(∙) =  inverse of 𝑙𝑜𝑔𝑖𝑡(∙) link function, 

𝐸(𝑌𝑠𝑖|𝑆0𝑠, 𝑆1𝑠, 𝐼0𝑖) = expected value of 𝑌𝑠𝑖  conditional on 𝑆0𝑠, 𝑆1𝑠, 𝑎𝑛𝑑 𝐼0𝑖, 

𝑌𝑠𝑖  = response for analyst s for item i, 

𝑋𝑖 = predictor variable for item i, with X representing the category (e.g. 1 = sheep, 0 = 

goat), 

𝑆0𝑠 = intercept for the sth analyst, 

𝑆1𝑠 = slope for sth analyst, 

𝐼0𝑖 = intercept for ith item, 

𝛽0 = overall intercept, 

𝛽1 = overall slope. 

𝛽0, 𝛽1, 𝑆0𝑠, 𝑆1𝑠 and 𝐼0𝑖 are unknown model parameters that are modelled via maximum 

likelihood estimation. Given 𝜏00
2  (= random intercept variance for Subjects), 𝜏11

2  (= 

random slope variance for Subjects), 𝜌𝜏00
2 𝜏11

2  (= intercept-slope covariance for Subjects), 

and 𝜔00
2  (= random intercept variance for Items), the variance distributions for the 

random effects and the random error are 

(𝑆0𝑠, 𝑆1𝑠)~Ν(0, [
𝜏00
2 𝜌𝜏00𝜏11

𝜌𝜏00𝜏11 𝜏11
2 ]), 
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𝐼0𝑖 ~ 𝑁(0, 𝜔00
2 ), 

𝑒𝑠𝑖 ~ 𝑁(0, 𝜎
2). 

These random effect variances tell us how much Subjects and Items vary around the 

overall intercept. 

5.2.3.2. Finding best fit GLMM 

Linear mixed effects models where the analyst accuracy is the dependent variable 

are not suitable for the present problems due to the impracticality of modelling the 

random effect of the specimens. Instead of using analyst accuracy, the correctness of 

the answer (1 = correct, 0 incorrect) is used as the dependent variable, and because the 

response variable is a binary variable, it is necessary to use GLMM. The benefit of using 

GLMM is that random effects are applied to individuals independently and they can be 

applied to unbalanced experimental designs such as is the case here (Bolker et al., 2009; 

Moscatelli et al., 2012).  

First step in finding the best fit GLMM is to confirm that including random effects 

(analysts and specimens) makes sense. To do so, a baseline generalized linear model 

(GLM) that does not include any random variables is fitted, followed by a series of 

GLMMs with varying combinations of random effects structures. The inclusion of a 

random effect is judged based on whether the GLMM improves upon the baseline GLM, 

the significance of which is tested through Likelihood Ratio Tests (LRT). The best random 

effects structures are selected on the basis of the lowest Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), and negative log likelihood. Once the best 

random effects structure is found (and it becomes the null model), the fixed effects are 

included in the model iteratively and LRT is performed to see if these fixed effects added 

information to the best random effects model. In other words, this test checks whether 

the fixed effects add any information beyond what is already explained by the best 

random effects model. If the added fixed effect violates the assumption that there is no 

multicollinearity, the model is ignored. The different levels of the fixed effects are 

compared through estimated marginal means (least-squares means) where necessary. 

In estimated marginal means the mean for each level is computed separately (Lenth, 

2016). For instance, given a fixed effect ‘Species’ with two levels (sheep and goat), the 

estimated marginal means would be computed for both sheep and goat, enabling a 

comparison between the two species. 
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The models are created using the lme4 package (Bates et al., 2015) in R version 4.1.1. (R 

Core Team, 2021). The parameters of the models are estimated by maximum likelihood 

function (Laplace approximation) and optimized with BOBYQA (Bound Optimization BY 

Quadratic Approximation). Multicollinearity is evaluated based on VIF (Variance 

Inflation Factor), for which values above 5 are here considered as above a critical 

threshold, although lower and higher thresholds are common (see Zuur et al., 2010; 

Thompson et al., 2017). Further post-hoc analyses are conducted using the emmeans 

package which allows the investigation of the predictor variables’ different levels 

through contrast z-tests and plots of the estimated marginal means (Lenth et al., 2021). 

Because the response values are binary, over- and underdispersion are unidentifiable 

for the presented models (Kain et al., 2015). 

 Results 

5.3.1. Impact of different devices 

In the first instance, a brief test of whether the browser window width affected the 

analyst accuracy was executed. The analyst accuracy of those with wide (N=9, 

W=0.9097, p = 0.3136) or narrow browser windows (N=30, W=0.9595, p=0.3005) did not 

violate the assumption of normality in Shapiro-Wilk test for normality. Furthermore, the 

two groups’ variances are assumed to be equal as neither F-test (F=0.9438, p=0.497) nor 

Levene’s test for equality of variance (W=0.0165, p=0.8986) were able to reject the null 

hypothesis that the two samples’ means have equal variance. Thus, using Student’s T-

test, we arrive at the conclusion that the two groups’ accuracy distributions are not 

significantly different (T= -0.0111, p=0.9912, Degrees of Freedom=37). It is therefore 

reasonable to assume that a wider browser window did not have a notably positive 

impact on the analysts’ performance and all analysts can be assessed together or further 

divided into groups on the basis of their expertise.  

5.3.2. Grouping the analysts by expertise 

5.3.2.1. Analyst expertise 

The analyst expertise is summarised in Table V-7 and itemised for each analyst in 

Table V-8. Regarding the participant qualifications, four participants said they had 

obtained BA/BSc level qualification in zooarchaeology, 17 participants had obtained 

MA/MSc qualification, and another 17 had completed PhD studies. One person said they 
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had no qualifications. All of the respondents had some experience of dealing with 

zooarchaeological remains, as all of the respondents had experience with analysing at 

least one assemblage in the last five years; 23 analysts had experience with between 

one to ten assemblages, ten had been involved in analysing 10-20 assemblages, three 

analysts had worked on 20-30 assemblages, one participant reported 30-40 worked 

assemblages, another one said 40-50 assemblages, and the final participant estimated 

that they had worked on over 50 assemblages in the last five years.  

Majority (23) of the analysts spent less than 10 hours a week on average in the last five 

years on analysing zooarchaeological remains, nine participants estimated 10-20 hours 

per week, four said 20-30 hours, and three analysts were in full-time employment as 

zooarchaeologists, meaning that they spent more than 30 hours per week on identifying 

zooarchaeological remains. Perhaps surprisingly, 11 of the 17 analysts with a PhD spent 

less than 10 hours a week on average in the past five years analysing zooarchaeological 

remains, which could be a result of other tasks consuming their time. Regarding the 

question of whether the analysts considered themselves to be specialised in the 

identification of land mammals, 32 analysts responded with ‘Yes’ and seven said ‘No’. 

As for sheep/goat separation experience, 25 analysts said that they had at least some 

experience in separating the two species and 14 analysts said ‘No’. 

Count of analysts by levels of expertise 

Highest degree 

 None BA/BSc MA/MSc PhD   

No of analysts 1 4 17 17   

  

# Assemblages  

 1-10 10-20 20-30 30-40 40-50 >50 

No of analysts 23 10 3 1 1 1 

  

Hours per week 

 <10 10-20 20-30 Full time   

No of analysts 23 9 4 3   

  

 Land mammal specialist Sheep/goat experience 

 Yes No  Yes No  

No of analysts 32 7  25 14  

Table V-7. Summary of analysts’ expertise. 
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5.3.2.2. Grouping the analysts 

The PCA resulted in the first three principal components explaining approximately 

82.95% of variance among the 39 analysts (Figure V-1A). These three components were 

then used as inputs to K-medoids, which divided the analysts into four groups based on 

Calinski-Harabasz index (Figure V-1B) and sum of squared distances elbow method 

(Figure V-1C), while Silhouette coefficient resulted in two clusters (Figure V-1D). 

However, the difference in the Silhouette coefficients of two and four clusters is small. 

The sum of squared distances metric was evaluated based on the elbow method, which 

shows a clear elbow at four clusters. On the basis of this clustering analysis, the analysts 

are divided into four groups. The group membership for each analyst is indicated in 

Table V-8. 

The groups are interpreted as follows: Group 1 includes full-time or near full-time 

professionals, as suggested by the number of assemblages each has worked on in the 

last five years and the number of hours spent on a weekly basis in identification tasks;  

Figure V-1. Analyst expertise groupings. A) Scree plot of explained variance for all principal components in PCA. B) 

Calinski-Harabasz index score for K-medoids based on the three first principal components. C) Sum of squared 

distance score for K-medoids based on the three first principal components. D) Silhouette score for K-medoids based 

on the three first principal components. The ideal number of clusters for the three different methods (B, C, and D) is 

based on the highest score and indicated with the vertical dashed line. 
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Analyst expertise groups 

 Analyst Group Qual. # Assemblages 
Hours per 

week 
Land mammal 

specialist 
Sheep/goat 
experience 

P
ro

fe
s
s
io

n
a

ls
 

3 1 MA/MSc 20-30 10-20 Yes Yes 

10 1 PhD 20-30 10-20 Yes Yes 

51 1 PhD 40-50 20-30 Yes Yes 

61 1 PhD 10-20 20-30 Yes Yes 

67 1 MA/MSc >50 20-30 Yes Yes 

68 1 MA/MSc 30-40 Full time Yes No 

71 1 PhD 10-20 Full time Yes Yes 

84 1 MA/MSc 10-20 Full time Yes Yes 

N
o
v
ic

e
s
 

1 2 BA/BSc 1-10 <10 No No 

11 2 MA/MSc 1-10 <10 Yes No 

26 2 BA/BSc 1-10 <10 No No 

29 2 BA/BSc 1-10 10-20 Yes No 

44 2 MA/MSc 1-10 <10 Yes No 

47 2 PhD 1-10 <10 No No 

56 2 PhD 1-10 <10 No No 

58 2 BA/BSc 1-10 <10 No No 

60 2 None 1-10 <10 No No 

65 2 MA/MSc 1-10 <10 Yes No 

66 2 MA/MSc 1-10 <10 Yes No 

96 2 MA/MSc 1-10 20-30 No No 

P
o
s
tg

ra
d
u
a
te

s
 

2 3 MA/MSc 1-10 <10 Yes Yes 

4 3 MA/MSc 1-10 10-20 Yes Yes 

69 3 MA/MSc 1-10 10-20 Yes Yes 

82 3 MA/MSc 10-20 <10 Yes Yes 

95 3 MA/MSc 1-10 10-20 Yes Yes 

99 3 MA/MSc 1-10 10-20 Yes Yes 

100 3 MA/MSc 1-10 <10 Yes Yes 

104 3 MA/MSc 20-30 <10 Yes Yes 

D
o
c
to

ra
te

s
 

18 4 PhD 10-20 10-20 Yes Yes 

36 4 PhD 10-20 <10 Yes No 

37 4 PhD 1-10 <10 Yes Yes 

43 4 PhD 10-20 <10 Yes Yes 

46 4 PhD 1-10 <10 Yes Yes 

48 4 PhD 10-20 <10 Yes Yes 

53 4 PhD 10-20 <10 Yes Yes 

62 4 PhD 1-10 <10 Yes Yes 

81 4 PhD 1-10 10-20 Yes Yes 

83 4 PhD 1-10 <10 Yes Yes 

103 4 PhD 10-20 <10 Yes Yes 

Table V-8. Pre-test survey answers for the 39 analysts regarding experience in zooarchaeological analysis. The group 

variable refers to the analyst’s assigned group in section 5.3.2.2. 
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Group 2 consists of novices in terms of their experience of land mammal identification, 

sheep and goat separation, and, for some, zooarchaeology in general; Group 3 is an 

intermediate group of workers with experience in land mammal and sheep and goat 

separation – they all have postgraduate degrees with some experience in identifying 

sheep and goats, and they are therefore classed as postgraduates; and Group 4 are 

specialists in the identification of land mammals, including sheep and goat separation, 

and they hold doctorate degrees, but they do not spend as much time on identification 

tasks as those in Group 1. The order of expected performance for the groups, from worst 

to best, is: Group 2, Group 3, Group 4, Group 1. 

5.3.3. Analyst performance 

None of the analysts were able to correctly identify all samples, but four analysts 

correctly identified 29 of the 30 sets of astragali that were shown to them. Three of 

these analysts are in Group 4 and the fourth analyst is a member of Group 3. The worst 

performing individual is Analyst 68 in Group 1, whose accuracy (53.33%) is 

indistinguishable from chance. The individual performance metrics are presented in 

Table V-9. The mean accuracy for the whole cohort is 81.15% ± 10.80% and the median 

is 83.33%. The mean accuracy for Group 1 is 77.08% ± 11.88% with a median of 80.00%, 

for Group 2 it is 77.13% ± 9.43% and its median is 73.33%, for Group 3 the mean accuracy 

is 82.82% ± 6.65% and the median is 81.67%, while for Group 4 the mean accuracy is 

87.27% ± 11.82% and the median is 93.33%. The boxplots in Figure V-2 show that Group 

4 analysts are far better at identifying the bones – especially sheep astragali – than 

analysts in other groups. Group 4 mean accuracy is brought down by analysts 62 and 81, 

the former of whom identified all but four specimens as sheep. Concerning precision, 

the overall mean is 82.47% ± 10.34% with a median of 83.48%, while for recall the mean 

is 81.15% ± 10.79% and the median is 83.33%. The mean F1-score for all analysts is 

80.83% ± 11.17% and the median is 82.86%. The group means and medians for precision, 

recall and F1-score are presented in Table V-10 and are not itemised here; it suffices to 

say that the pattern for the groups is the same regarding precision, recall, and F1-score 

as it is for accuracy. The analysts’ mean precision, recall, and F1-scores were calculated 

by first computing them for each species and then averaging between the species.  

More interestingly, there are differences in the analysts’ means and medians in the 

identification accuracy of sheep and goat astragalus. When considering all analysts, the   
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Table V-9. Performance metrics for all analysts based on 30 identifications. Note that Precision, Recall, and F1-scores 

for both species are the means of the two species.  

Analyst performances 
 

 Both species (mean) Sheep Goat 
 Analyst Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 

P
ro

fe
s
s
io

n
a
ls

 

3 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 

10 83.33% 87.50% 83.33% 82.86% 100.00% 75.00% 100.00% 85.71% 66.67% 100.00% 66.67% 80.00% 

51 76.67% 77.78% 76.67% 76.43% 66.67% 83.33% 66.67% 74.07% 86.67% 72.22% 86.67% 78.79% 

61 80.00% 85.71% 80.00% 79.17% 100.00% 71.43% 100.00% 83.33% 60.00% 100.00% 60.00% 75.00% 

67 90.00% 90.18% 90.00% 89.99% 93.33% 87.50% 93.33% 90.32% 86.67% 92.86% 86.67% 89.66% 

68 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 53.33% 

71 80.00% 80.54% 80.00% 79.91% 86.67% 76.47% 86.67% 81.25% 73.33% 84.62% 73.33% 78.57% 

84 86.67% 87.33% 86.67% 86.61% 80.00% 92.31% 80.00% 85.71% 93.33% 82.35% 93.33% 87.50% 

N
o

v
ic

e
s
 

1 86.67% 87.33% 86.67% 86.61% 93.33% 82.35% 93.33% 87.50% 80.00% 92.31% 80.00% 85.71% 

11 70.00% 75.57% 70.00% 68.27% 93.33% 63.64% 93.33% 75.68% 46.67% 87.50% 46.67% 60.87% 

26 70.00% 70.09% 70.00% 69.97% 66.67% 71.43% 66.67% 68.97% 73.33% 68.75% 73.33% 70.97% 

29 65.52% 65.87% 65.71% 65.48% 71.43% 62.50% 71.43% 66.67% 60.00% 69.23% 60.00% 64.29% 

44 86.67% 87.33% 86.67% 86.61% 80.00% 92.31% 80.00% 85.71% 93.33% 82.35% 93.33% 87.50% 

47 73.33% 73.76% 73.33% 73.21% 66.67% 76.92% 66.67% 71.43% 80.00% 70.59% 80.00% 75.00% 

56 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 

58 70.00% 72.50% 70.00% 69.14% 86.67% 65.00% 86.67% 74.29% 53.33% 80.00% 53.33% 64.00% 

60 73.33% 73.76% 73.33% 73.21% 80.00% 70.59% 80.00% 75.00% 66.67% 76.92% 66.67% 71.43% 

65 76.67% 77.78% 76.67% 76.43% 86.67% 72.22% 86.67% 78.79% 66.67% 83.33% 66.67% 74.07% 

66 90.00% 91.67% 90.00% 89.90% 80.00% 100.00% 80.00% 88.89% 100.00% 83.33% 100.00% 90.91% 

96 70.00% 70.09% 70.00% 69.97% 73.33% 68.75% 73.33% 70.97% 66.67% 71.43% 66.67% 68.97% 

P
o

s
tg

ra
d

u
a

te
s
 

2 96.67% 96.88% 96.67% 96.66% 100.00% 93.75% 100.00% 96.77% 93.33% 100.00% 93.33% 96.55% 

4 86.67% 87.33% 86.67% 86.61% 80.00% 92.31% 80.00% 85.71% 93.33% 82.35% 93.33% 87.50% 

69 83.33% 83.48% 83.33% 83.31% 86.67% 81.25% 86.67% 83.87% 80.00% 85.71% 80.00% 82.76% 

82 80.00% 80.54% 80.00% 79.91% 73.33% 84.62% 73.33% 78.57% 86.67% 76.47% 86.67% 81.25% 

95 75.86% 75.96% 75.71% 75.75% 80.00% 75.00% 80.00% 77.42% 71.43% 76.92% 71.43% 74.07% 

99 76.67% 76.79% 76.67% 76.64% 73.33% 78.57% 73.33% 75.86% 80.00% 75.00% 80.00% 77.42% 

100 83.33% 83.48% 83.33% 83.31% 80.00% 85.71% 80.00% 82.76% 86.67% 81.25% 86.67% 83.87% 

104 80.00% 80.54% 80.00% 79.91% 86.67% 76.47% 86.67% 81.25% 73.33% 84.62% 73.33% 78.57% 

D
o

c
to

ra
te

s
 

18 93.33% 94.12% 93.33% 93.30% 100.00% 88.24% 100.00% 93.75% 86.67% 100.00% 86.67% 92.86% 

36 96.67% 96.88% 96.67% 96.66% 100.00% 93.75% 100.00% 96.77% 93.33% 100.00% 93.33% 96.55% 

37 96.67% 96.88% 96.67% 96.66% 93.33% 100.00% 93.33% 96.55% 100.00% 93.75% 100.00% 96.77% 

43 86.67% 89.47% 86.67% 86.43% 100.00% 78.95% 100.00% 88.24% 73.33% 100.00% 73.33% 84.62% 

46 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 93.33% 

48 83.33% 84.72% 83.33% 83.16% 93.33% 77.78% 93.33% 84.85% 73.33% 91.67% 73.33% 81.48% 

53 93.33% 94.12% 93.33% 93.30% 100.00% 88.24% 100.00% 93.75% 86.67% 100.00% 86.67% 92.86% 

62 63.33% 78.85% 63.33% 57.64% 100.00% 57.69% 100.00% 73.17% 26.67% 100.00% 26.67% 42.11% 

81 66.67% 67.94% 66.67% 66.06% 53.33% 72.73% 53.33% 61.54% 80.00% 63.16% 80.00% 70.59% 

83 90.00% 90.18% 90.00% 89.99% 93.33% 87.50% 93.33% 90.32% 86.67% 92.86% 86.67% 89.66% 

103 96.67% 96.88% 96.67% 96.66% 100.00% 93.75% 100.00% 96.77% 93.33% 100.00% 93.33% 96.55% 
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mean accuracy for sheep is 84.74% ± 13.29% and the mean for goat is 77.56% ± 15.95%. 

The median for sheep is 86.67% and for goat it is 80.00%. The F1-scores for the two 

species, however, reveal that the difference is not as stark: the mean F1-score for sheep 

is 81.77% ± 10.52%, whereas for goat it is 79.90% ± 12.60%. The median F1-score for 

sheep is 83.33% and for goat it is 81.25%. Considering this between-species difference, 

a formal statistical test is necessary. Because the sheep and goat accuracies for all 

analysts were found to violate normal distribution in Shapiro-Wilk test (Table V-11), 

Mann-Whitney U test was performed, which indicates that overall, analysts are more 

accurate when identifying sheep versus goat astragali (U = 965.0, p = 0.0393, N = 39). 

Cohen’s d effect size (0.4892) for this test indicates a moderate effect, where Cohen’s d 

values of 0.15, 0.36, and 0.65 represent the thresholds (based on empirical evidence) 

for small, medium, and large effect sizes, respectively (Lovakov and Agadullina, 2021). 

Means and medians by expertise group for both species 

Overall 

 Accuracy Precision Recall F1-score 

Mean (± SD) 81.15% (± 10.80%) 
82.47% (± 
10.34%) 

81.15% (± 10.79%) 80.83% (± 11.17%) 

Median 83.33% 83.48% 83.33% 82.86% 
     

Group 1 

 Accuracy Precision Recall F1-score 

Mean (± SD) 77.08% (± 11.88%) 
78.63% (± 
12.68%) 

77.08% (± 11.88%) 76.87% (± 11.81%) 

Median 80.00% 83.13% 80.00% 79.54% 
     

Group 2 

 Accuracy Precision Recall F1-score 

Mean (± SD) 77.13% (± 9.43%) 78.26% (± 9.24%) 77.14% (± 9.40%) 76.84% (± 9.61%) 

Median 73.33% 74.67% 73.33% 73.21% 
     

Group 3 

 Accuracy Precision Recall F1-score 

Mean (± SD) 82.82% (± 6.65%) 83.12% (± 6.68%) 82.80% (± 6.67%) 82.76% (± 6.67%) 

Median 81.67% 82.01% 81.67% 81.61% 
     

Group 4 

 Accuracy Precision Recall F1-score 

Mean (± SD) 87.27% (± 11.82%) 89.40% (± 9.07%) 87.27% (± 11.82%) 86.65% (± 13.12%) 

Median 93.33% 93.33% 93.33% 93.30% 

Table V-10. Performance metrics across all analysts and for the four groups. 
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5.3.3.1. Between-groups differences in accuracy 

As for the group-wise accuracy when identifying sheep astragali, Group 1 has a mean 

of 80.83% ± 17.25%, Group 2 achieved a mean of 80.95% ± 9.93%, Group 3 mean is 

82.50% ± 8.68%, and Group 4 has the highest mean of 93.33% ± 13.66%. The medians 

for sheep astragali for Group 1, Group 2, Group 3, and Group 4 are 83.34%, 80.00%, 

80.00%, and 100.00%, respectively. With regards to goat astragalus, Group 1 mean 

accuracy is 73.33% ± 14.25%, Group 2 mean is 73.33% ± 16.57%, Group 3 achieved a 

mean of 83.09% ± 8.33%, and Group 4 mean is 81.21% ± 19.96%. The medians for the 

four groups for goat astragalus accuracy are 70.00%, 70.00%, 83.34%, and 86.67%, 

respectively. Again, the two species’ precision, recall, and F1-score metrics for the 

different groups are not restated here but are shown in Table V-12. The key takeaway 

from these metrics is that Group 4 outperforms other groups in overall and sheep 

astragalus accuracy, while Group 3 has the highest mean accuracy for goats, although 

Group 4 median is higher than Group 3 median regarding goat bone identification 

accuracy.  

Yet, statistical tests are required to show that these differences in overall accuracy, 

sheep accuracy, and goat accuracy are significant. In all three cases the accuracies of 

Group 4 analysts did not satisfy the assumption of normality in Shapiro-Wilk test (Table 

V-11). When the variables were transformed using Box-Cox power transformation, the 

groups did not satisfy equality of variance in Levene’s test (W = 8.2307, p = 0.0003). Had 

the group sizes been somewhat similar, this shortcoming could have been overlooked 

and one-way ANOVA used. Using other transformations such as logit, log, and square 

root did not result in the data satisfying the assumption of normality in Shapiro-Wilk test 

either. Therefore, the statistical test used here is Kruskal-Wallis H test (Kruskal and 

Wallis, 1952) to compare if at least one group’s ranks dominate one other group. 

Shapiro-Wilk test for normality for accuracy 
 Accuracy Sheep accuracy Goat accuracy 
 N W p W p W p 

Overall 39 0.95911 0.1665 0.90581 0.0033 0.92088 0.0093 

Group 1 8 0.89195 0.2440 0.92196 0.4459 0.93753 0.5870 

Group 2 12 0.86348 0.0541 0.90530 0.1856 0.96024 0.7872 

Group 3 8 0.88284 0.2005 0.87754 0.1784 0.91860 0.4186 

Group 4 11 0.77146 0.0040 0.52396 0.0000 0.73547 0.0013 

Table V-11. Shapiro-Wilk test for normality for accuracy, accuracy for sheep bones, and for accuracy for goat bones. 

Non-normal results highlighted in grey. 
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For overall accuracy between groups, this test did not result in a statistically significant 

result when α < 0.05, meaning that there are no groups that dominate at least one other 

group (df = 3, H = 7.0575, p = 0.0701). Similarly, the test was not statistically significant 

for the accuracy in identifying goat astragalus (df = 3, H = 4.4727, p = 0.2147), but it was 

statistically significant for sheep astragalus (df = 3, H = 9.7208, p = 0.0211). To further 

understand which groups are statistically different, Dunn’s test with Bonferroni 

correction is undertaken as recommended as the post-hoc test after Kruskal-Wallis test 

(Dunn, 1964; Dinno, 2015). This test reveals that the only two groups that are statistically 

significantly different are Group 2 and Group 4 with p = 0.0269 (Group 1 and Group 4: p 

= 0.1876; Group 3 and Group 4: p = 0.1296; for all other group comparisons: p = 1). 

Means and medians by expertise groups for each species 

Overall 

 Sheep 
accuracy 

Goat 
accuracy 

Sheep 
precision 

Goat 
precision 

Sheep recall 
Goat  
recall 

Sheep  
F1-score 

Goat  
F1-score 

Mean (± 
SD) 

84.74%  
(± 13.29%) 

77.56%  
(± 15.95%) 

80.12%  
(± 11.75%) 

84.83%  
(± 12.27%) 

84.74% 
(± 13.29%) 

77.56%  
(± 15.95%) 

81.77%  
(± 10.52%) 

79.90%  
(± 12.60%) 

Median 86.67% 80.00% 78.95% 84.62% 86.67% 80.00% 83.33% 81.25% 

          

Group 1 

 Sheep 
accuracy 

Goat 
accuracy 

Sheep 
precision 

Goat 
precision 

Sheep recall 
Goat  
recall 

Sheep  
F1-score 

Goat  
F1-score 

Mean (± 
SD) 

80.83% 
(± 17.25%) 

73.33%  
(± 14.25%) 

75.76%  
(± 12.39%) 

81.51%  
(± 16.58%) 

80.83%  
(± 17.25%) 

73.33% 
(± 14.25%) 

77.55% 
(± 12.31%) 

76.19%  
(± 11.66%) 

Median 83.34% 70.00% 75.74% 83.49% 83.34% 70.00% 82.29% 78.68% 

          

Group 2 

 Sheep 
accuracy 

Goat 
accuracy 

Sheep 
precision 

Goat 
precision 

Sheep recall 
Goat 
recall 

Sheep  
F1-score 

Goat  
F1-score 

Mean (± 
SD) 

80.95%  
(± 9.93%) 

73.33%  
(± 16.57%) 

76.59% 
(± 12.62%) 

79.92%  
(± 8.67%) 

80.95% 
(± 9.93%) 

73.33%  
(± 16.57%) 

78.10%  
(± 8.71%) 

75.59%  
(± 11.11%) 

Median 80.00% 70.00% 71.83% 81.18% 80.00% 70.00% 75.34% 72.75% 

          

Group 3 

 Sheep 
accuracy 

Goat 
accuracy 

Sheep 
precision 

Goat 
precision 

Sheep recall 
Goat 
recall 

Sheep  
F1-score 

Goat  
F1-score 

Mean (± 
SD) 

82.50% 
(± 8.68%) 

83.09%  
(± 8.33%) 

83.46% 
(± 6.97%) 

82.79% 
(± 7.98%) 

82.50%  
(± 8.68%) 

83.09% 
(± 8.33%) 

82.78% 
(± 6.57%) 

82.75%  
(± 6.95%) 

Median 80.00% 83.34% 82.94% 81.80% 80.00% 83.34% 82.01% 82.01% 

          

Group 4 

 Sheep 
accuracy 

Goat 
accuracy 

Sheep 
precision 

Goat 
precision 

Sheep recall 
Goat  
recall 

Sheep  
F1-score 

Goat  
F1-score 

Mean (± 
SD) 

93.33%  
(± 13.66%) 

81.21%  
(± 19.96%) 

84.72%  
(± 12.08%) 

94.07% 
(± 10.84%) 

93.33%  
(± 13.66%) 

81.21% 
(± 19.96%) 

88.09% 
(± 11.21%) 

85.22% 
(± 16.37%) 

Median 100.00% 86.67% 88.24% 100.00% 100.00% 86.67% 93.33% 92.86% 

Table V-12. Performance metrics for all analysts and the four groups with respect to sheep and goat astragali. 
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In other words, Group 4 has statistically significantly higher accuracy in identifying sheep 

than Group 2, but for overall and goat accuracies there are no statistical difference 

between any of the groups. Yet, Figure V-2 strongly suggests that there are differences 

between groups, particularly considering Group 4’s higher mean and median accuracies. 

It is therefore probable that the number of participants is simply not large enough to 

provide a significant result in a rank-based statistical test, even though the difference is 

quite apparent in numeric terms. Thus, although this study does not find evidence 

supporting analyst experience as having a positive effect on analyst performance, a 

larger study would likely produce more granularity on the impact of experience on 

analyst accuracy.  

 

 

Consistency 

Group Mean SD 

Overall 86.41% 14.78% 

Group 1 90.00% 7.56% 

Group 2 80.00% 20.00% 

Group 3 82.50% 14.88% 

Group 4 93.64% 8.09% 

Table V-13.  Mean consistency for the analysts based on 10 specimens. 

Figure V-3. Bland-Altman plot of accuracies for test and re-test. The number of specimens in both tests is ten. The 

densities are based on kernel density estimate with the bandwidth smoothing adjusted down from 1 to 0.6, which 

helped with isolating the outliers in the graph. 
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5.3.4. Analyst consistency 

 While the overall consistency across all analysts is 86.41%, Groups 1 and 4 are more 

consistent in their identifications than Groups 2 and 3 (Table V-13). The overall score 

indicates a good, but not excellent consistency among the analysts. It is also clear that 

the more experienced analysts are seemingly more consistent, but to confirm this 

observation requires testing. When testing for normality in consistency for all groups 

using Shapiro-Wilk test, Group 4 was found not to satisfy the assumption of normality 

(Table V-14) and Box-Cox power transformation was attempted to correct the group 

consistency scores, but without success. Kruskal-Wallis H test was therefore used to see 

if there are any groups that are dominant, but this test did not find any statistically 

significant differences in analyst consistency between groups (df = 3, H = 4.4148, p = 

0.22). However, the sample size of analysts for each group may again be the reason why 

significant results were not reached in this test, much the same way as for the analysis 

of accuracy in the previous section. 

Plotting the differences between the test and re-test accuracies against the mean 

accuracy of the two attempts for all analysts allows the exploration of the relationship 

between consistency and accuracy. This relationship is graphed in the Bland-Altman plot 

(Figure V-3) for the four groups, in which only the ten specimens included in both test 

and re-test are taken into consideration for each analyst, showing that the differences 

in accuracies between the two attempts for Groups 2 and 3 are larger than for Groups 

1 and 4, with Group 4 analysts being particularly consistent whilst also having the best 

accuracy. Group 1 analysts are more consistent than analysts in Groups 2 and 3, but 

Group 1 analysts’ distribution of accuracies is not very different from those of Groups 2 

and 3. Thus, although it is not possible to demonstrate statistically significant differences 

in consistency and accuracy for the four groups, possibly due to small group sizes, it is 

Shapiro-Wilk test for normality for 
consistency 

Group N W p 

Group 1 8 0.84891 0.0929 

Group 2 12 0.88632 0.1057 

Group 3 8 0.91981 0.4283 

Group 4 11 0.75439 0.0024 

Table V-14. Shapiro-Wilk test for normality for consistency. Non-normal results highlighted in grey. 
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evident that the pattern of better consistency and higher accuracy for more experienced 

analysts is present, since Groups 1 and 4 have higher mean consistency scores. 

5.3.5. Impact of reference materials 

Table V-15 itemises the analysts’ reference material usage. It is immediately obvious 

that none of the analysts relied solely on goat astragalus as a reference in any of the 

media, but seven analysts did rely solely on sheep astragalus. When goat astragalus was 

utilised as a reference, it was used alongside sheep astragalus. Only two participants had 

a physical specimen of both sheep and goat astragalus available to them during the 

study, while seven others had access to a sheep astragalus. Regarding photographic 

references, two participants resorted to using an image of a sheep astragalus and 13 

participants had images of both species. As for sketches, 15 analysts used drawings of 

both species, while two participants had access to 3D models of both species. In 

addition, 15 analysts did not take advantage of physical specimens, photographs, 

sketches, or 3D models. Only four participants did not use any type of reference material 

during the test. The number of analysts that used each type of reference material is 

summarised in Table V-16.  

Exploring the analysts’ use of reference materials group-wise shows that there are some 

patterns (Table V-17 and Figure V-4): Group 1 analysts rely more on physical reference 

specimens than analysts in other groups, Group 3 members use many different types of  

Figure V-4. A bar plot of analysts' number of used reference resources. 
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reference materials and, like Group 2, they utilise particularly images and sketches as 

reference materials. Group 4 consists of analysts who do not rely on many types of 

reference materials. In terms of the different types of reference texts (Table V-18), 

Group 2 analysts prefer consulting Zeder and Lapham's (2010) publication more than 

analysts in other groups, while the same is true for Group 3 members with regards to  

  

Reference material use by analyst 

Analyst Group 
Reference 
specimen 

Reference 
images 

Reference 
sketches 

Reference 
model 

Reference texts 

3 1 Sheep Both No No Zeder & Lapham 

10 1 No No No No None 

51 1 No No No No Other 

61 1 Sheep Both Both Both Zeder & Lapham 

67 1 Sheep No No No Zeder & Lapham 

68 1 Sheep Sheep Both No Boessneck 

71 1 Sheep No No No Zeder & Lapham 

84 1 No No No No None 

1 2 No Both Both No Zeder & Lapham 

11 2 No Both No No Zeder & Lapham 

26 2 No No Both No Zeder & Lapham 

29 2 Sheep Sheep No No Zeder & Lapham 

44 2 No Both No No None 

47 2 No No Both No Zeder & Lapham 

56 2 No No Both No Boessneck 

58 2 No Both No No None 

60 2 No No Both No Zeder & Lapham 

65 2 Sheep No No No Zeder & Lapham 

66 2 No No No No Zeder & Lapham 

96 2 No No No No Zeder & Lapham 

2 3 No Both Both No Boessneck 

4 3 No Both Both No Boessneck 

69 3 Both Both Both No Other 

82 3 No No No No Zeder & Lapham 

95 3 No Both Both No Other 

99 3 No Both Both Both Zeder & Lapham 

100 3 No No Both No Boessneck 

104 3 Both Both Both No Boessneck 

18 4 No No No No Zeder & Lapham 

36 4 No No No No Boessneck 

37 4 No No Both No Zeder & Lapham 

43 4 No No No No Zeder & Lapham 

46 4 No No No No None 

48 4 No No No No Zeder & Lapham 

53 4 No No No No Other 

62 4 No Both No No None 

81 4 No No No No Zeder & Lapham 

83 4 No No No No None 

103 4 No No No No Boessneck 

Table V-15. Reference materials used by the analysts. 
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Boessneck et al. (1964) or Boessneck (1969). Group 1 and Group 4 analysts are less likely 

to use reference texts than analysts in the other two groups. 

  

  

Table V-16. Counts of analysts for each level of all reference materials. 

Count of analysts by reference material level 

Reference specimen 
 Sheep Goat Both None  

No of analysts 7 0 2 30  

      

Reference images 
 Sheep Goat Both None  

No of analysts 2 0 13 24  

      

Reference sketches 
 Sheep Goat Both None  

No of analysts 0 0 15 24  

      

Reference model 
 Sheep Goat Both None  

No of analysts 0 0 2 37  

      

Reference texts 
 Zeder & Lapham Boessneck Prummel & Frisch Other None 

No of analysts 20 8 0 4 7 

Number of analysts using reference materials 
 Group 1 Group 2 Group 3 Group 4 

Reference specimen 5 2 2 0 

Reference images 3 5 6 1 

Reference sketches 2 5 7 1 

Reference model 1 0 1 0 

Reference texts 6 10 8 8 
     

Percentage of analysts (within group) 
 Group 1 Group 2 Group 3 Group 4 

Reference specimen 62.50% 16.67% 25.00% 0.00% 

Reference images 37.50% 41.67% 75.00% 9.09% 

Reference sketches 25.00% 41.67% 87.50% 9.09% 

Reference model 12.50% 0.00% 12.50% 0.00% 

Reference texts 75.00% 83.33% 100.00% 72.73% 

Table V-17. Summary of groups' use of reference materials. 
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5.3.5.1. Modelling the impact of reference materials with GLMM 

Choosing the best model is an iterative process in which independent variables are 

added to the previous model and kept based on whether the new model improved the 

previous model, as evaluated through LRT. Here, this model selection process is 

structured such that the best fit random effects structure is found first, followed by the 

inclusion of the fixed effects in subsequent models. 

5.3.5.1.1. Random effects structure 

Four different random effect combinations were considered in the process of finding 

the best random effects structure. Both random intercepts (Analyst, and Specimen) 

improved upon the baseline GLM model in a significant manner, as shown through 

Likelihood Ratio Tests (Table V-19). Including Species (‘Goat’ = 0, ‘Sheep’ = 1) as a slope 

within Analyst further improved the model, resulting in the lowest AIC, BIC, and negative 

log likelihood metrics for the Null 4 null model, which represents a crossed random 

effects structure (sensu Baayen et al., 2008). However, the experiment is not a fully 

crossed experiment as not all analysts provided an answer to all possible specimens. The 

usefulness of Species slope within Analyst can be explained by the perceived differences 

in analysts’ abilities to separate the two species. 

5.3.5.1.2.  Model fitting with fixed effects 

Because the analysts did not use all reference materials in a uniform manner (see 

Table V-15), it is necessary to reformat the levels for all reference materials, which also 

Number of analysts using reference texts 
 Zeder & Lapham Boessneck Prummel & Frisch Other None 

Group 1 4 1 0 1 2 

Group 2 9 1 0 0 2 

Group 3 2 4 0 2 0 

Group 4 5 2 0 1 3 
      

Percentage of analysts (within group) 
 Zeder & Lapham Boessneck Prummel & Frisch Other None 

Group 1 50.00% 12.50% 0.00% 12.50% 25.00% 

Group 2 75.00% 8.33% 0.00% 0.00% 16.67% 

Group 3 25.00% 50.00% 0.00% 25.00% 0.00% 

Group 4 45.45% 18.18% 0.00% 9.09% 27.27% 

Table V-18. Summary of groups' use of reference texts. 
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helps to simplify the analysis. Thus, the levels for reference specimens, reference 

photographs, and reference sketches were simplified to either ‘Yes’ (= 1) or ‘No’ (= 0), 

depending on whether or not the analyst had used these reference resources. Reference 

3D model usage was so infrequent (only two analysts) that this variable was not included 

in the analyses. For reference texts, there are four levels (‘None’ = 0, ‘Boessneck’ = 1, 

‘Other’ = 2, ‘Zeder and Lapham’ = 3) for the fixed effects as Prummel and Frisch (1986) 

was not used by anyone. The four expertise groups (‘Group 1’ = 0, ‘Group 2’ = 1, ‘Group 

3 = 2, ‘Group 4’ = 3) were additionally included in the final model (Ref 6) as the impact 

of expertise is also of interest.  

Table V-20 shows the model comparison process and the changes in model complexity, 

which resulted in six different models. It is interesting to note that adding reference 

texts or sketches does not improve the Null 4 model but including reference specimens 

(Ref 3) or reference images (Ref 4) as fixed effects does. Using all types of reference 

materials (Ref 5 and Ref 6 models) as fixed effects also improves the Null 4 model. It was 

additionally attempted to include interactions for all of the reference materials but 

doing so resulted in an overfit model and it is therefore not reported here. Although the 

Ref 6 model, which includes the expertise group as a fixed effect, does not significantly 

improve upon Ref 5 in LRT (χ2 = 7.2753, Df = 3, Pr(> χ2) = 0.0636), Ref 6 model is 

nonetheless chosen as the model for further discussion as expertise group membership 

is relevant and important to this analysis. Multicollinearity (Table V-21) is not an issue 

for Ref 6 model as all VIF scores are below the critical threshold of five. 

Formally, Ref 6 model is defined as follows. Let W (‘No’ = 0, ‘Yes’ = 1) be a dummy 

variable for the reference specimen fixed effect; M (‘No’ = 0, ‘Yes’ = 1) is a dummy 

Table V-19. Random effects structure selection. Each null model was compared to the baseline GLM. No predictor 

variables were used. The best random effects structure is highlighted in grey. 

Random effects structures (null model selection) 

Model Random effects AIC BIC logLik deviance χ2 Df Pr(>χ2) 

Baseline None (GLM model) 1132.2 1137.3 -565.11 1130.2    

Null 1 Analyst (intercept) 1116.9 1127 -556.45 1112.9 17.324 1 3.15e-05 

Null 2 Specimen (intercept) 1060 1070.1 -527.99 1056 74.253 1 < 2.2e-16 

Null 3 
Analyst (intercept), 

Specimen (intercept) 
1045.5 1060.7 -519.75 1039.5 90.731 2 < 2.2e-16 

Null 4 

Analyst (intercept), 
Species (slope within 
Analyst), Specimen 

(intercept) 

1023.6 1054.0 -505.81 1011.6 118.61 5 < 2.2e-16 
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variable for the reference images fixed effect; K (‘No’ = 0, ‘Yes’ = 1) is a dummy variable 

for the reference sketch fixed effect; T2, T3, and T4 (‘No’ = 0, ‘Yes’ = 1 for all) are dummy 

variables for reference text fixed effects referring to Boessneck, Other, and Zeder and 

Lapham, respectively; and G2, G3, and G4 (‘No’ = 0, ‘Yes’ = 1 for all) are dummy variables 

referring to expertise group membership in Groups 2, 3, and 4, respectively. 𝑆0𝑠 is the 

analyst random intercept, 𝐼0𝑖 is the specimen random intercept, and (𝛽1 + 𝑆1𝑠)𝑋𝑖 is the 

analyst random slope given by the species of the specimen 𝑋𝑖 (‘Goat’ = 0, ‘Sheep’ = 1) 

dummy variable. The overall intercept is 𝛽0 and the fixed effect coefficients are 𝛽n, 

where n = {1, . . . , 10}. Then, the model is defined as   

𝑙𝑜𝑔𝑖𝑡[𝑌𝑠𝑖 = 1|𝑆0𝑠, 𝑆1𝑠, 𝐼0𝑖]  = 

𝛽0 + 𝑆0𝑠 + 𝐼0𝑖 + (𝛽1 + 𝑆1𝑠)𝑋𝑖 + 𝛽2𝑇2𝑠 + 𝛽3𝑇3𝑠 + 𝛽4𝑇4𝑠 + 𝛽5𝑊𝑠 + 𝛽6𝑀𝑠 + 𝛽7𝐾𝑠  

+ 𝛽8𝐺2𝑠 + 𝛽9𝐺3𝑠 + 𝛽10𝐺4𝑠 + 𝑒𝑠𝑖, 

Likelihood Ratio Tests for fixed effects selection 

Model Fixed effects Comparison AIC BIC logLik deviance χ2 Df Pr(>χ2) 

Ref 1 
Species + 
Reference  

texts 
Null 4 1027.2 1072.8 -504.60 1009.2 2.426 3 0.4888 

Ref 2 
Species + 
Reference 
sketches 

Null 4 1024.2 1059.6 -505.09 1010.2 1.4386 1 0.2304 

Ref 3 
Species + 
Reference 
specimen 

Null 4 1021.0 1056.5 -503.51 1007.0 4.5982 1 0.0320 

Ref 4 
Species + 
Reference 

images 
Null 4 1019.5 1055 -502.77 1005.5 6.0832 1 0.0137 

Ref 5 

Species + 
Reference  

texts + 
Reference 
sketches + 
Reference 
specimen + 
Reference 

images 

Null 4 1021.9 1082.7 -498.97 997.94 13.677 6 0.0335 

Ref 6 

Species + 
Reference  

texts + 
Reference 
sketches + 
Reference 
specimen + 
Reference 
images +  

Group 

Null 4 1020.7 1096.6 -495.33 990.66 20.953 9 0.0129 

Table V-20. Stepwise addition of fixed effects to increase the model complexity. Null 4 is the best fit null model from 

Table V-19. Colons in the Fixed effects column indicate interaction term between the two fixed effects. Best fit 

models are highlighted in grey. 
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(𝑆0𝑠, 𝑆1𝑠)~𝛮 ([
0
0
] , [

𝜏00
2 𝜌𝜏00𝜏11

𝜌𝜏00𝜏11 𝜏11
2 ]), 

𝐼0𝑖 ~ 𝑁(0, 𝜔00
2 ), 

𝑒𝑠𝑖  ~ 𝑁(0, 𝜎
2). 

The maximum likelihood parameters of the model are 𝜏00
2 , 𝜏11

2 , 𝜌𝜏00𝜏11, 𝜔00
2 , 𝛽0 and 𝛽n. 

The reader should note that the intercept incorporates the baseline levels of all fixed 

effects (‘No’ for all reference materials, ‘Goat’ for species, and ‘Group 1’ for group 

membership).  

The maximum likelihood estimates for Ref 6 are shown in Table V-22. This model 

produces a log odds estimate of a correct answer when given the species (sheep or goat) 

of the specimen, analyst’s expertise group membership (Group 1, 2, 3, or 4), and the 

combination of the reference materials used by the analyst. The estimate is conditional 

on the specimen and analyst random effect. None of the estimated reference material 

coefficients have a positive and significant impact on the log odds of a correct answer. 

Instead, apart from using Boessneck’s text, the effect of using reference materials leads 

to lower log odds of a correct answer, which means that when relying on reference 

materials, the probability of providing a correct answer is reduced. However, as noted, 

these effects are not significant. The only significant fixed effect appears to be Group 4 

membership, which leads to a significant improvement in the log odds of correct answer. 

5.3.5.2. Impact of reference texts on analyst accuracy 

As the above analysis indicates that the choice of reference text may have an impact on 

accuracy, a quick statistical analysis is conducted. First, the analysts were grouped by 

their chosen reference text. Shapiro-Wilk test for normality was then conducted for the 

accuracies of each group (Zeder and Lapham: N = 20, W = 0.9481, p = 0.3394; Boessneck: 

N = 8, W = 0.7771, p = 0.0162; Other: N = 4, W = 0.8780, p = 0.33; None: N = 7, W = 

Multicollinearity for fixed effects in Ref 6 

Fixed effect VIF Increased SE Tolerance 

Species 1.01 1.00 0.99 
Group 3.13 1.77 0.32 

Reference texts 2.27 1.51 0.44 
Reference specimen 1.93 1.39 0.52 
Reference images 1.75 1.32 0.57 

Reference sketches 1.78 1.33 0.56 

Table V-21. Measures of multicollinearity for Ref 6 model.  
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0.8713, p = 0.1907), showing that the accuracy of those who reported as intending to 

use Boessneck as a reference text violates the assumption of normality. Thus, using 

Kruskal-Wallis H test, the null hypothesis that the accuracy achieved is equal between 

reference texts cannot be rejected (df = 3, H = 4.043, p = 0.2569), suggesting that there 

is no significant evidence that any one group of reference text (Zeder and Lapham, 

Boessneck, Other, and None) dominates any other group in terms of the analyst 

accuracy, although there is some evidence that the accuracy for those using Boessneck 

is elevated versus the other groups (Figure V-5).  

It may then be asked if the accuracy of using a reference text is significantly better than 

when not using a reference text. To test this, the analysts who used a reference text 

were aggregated into ‘Yes’ group and those who did not remained in the ‘None’ group. 

An additional Shapiro-Wilk test for normality was performed for group ‘Yes’ (N = 32, W 

= 0.9587, p = 0.2534). As the assumption of normality is not violated for either group on 

this occasion, the variances of ‘Yes’ and ‘None’ groups were compared in F-test (F 

Maximum likelihood estimates for Ref 6 model 

Fixed effects 

Parameter Effect Coefficient Std. Error z-value Pr(>|z|) 

𝛽0 Intercept 1.8266 0.4802 3.8040 0.0001 

𝛽1 Species: Sheep 0.7852 0.4477 1.7540 0.0794 

𝛽2 Boessneck 0.1842 0.5147 0.3580 0.7204 

𝛽3 Other text -0.0512 0.5435 -0.0940 0.9249 

𝛽4 Zeder and Lapham -0.3337 0.3993 -0.8360 0.4033 

𝛽5 Reference specimen -0.0842 0.3664 -0.2300 0.8183 

𝛽6 Reference images -0.5471 0.3186 -1.7170 0.0860 

𝛽7 Reference sketches -0.2191 0.3213 -0.6820 0.4953 

𝛽8 Group 2 0.1985 0.3795 0.5230 0.6010 

𝛽9 Group 3 0.6382 0.4537 1.4060 0.1596 

𝛽10 Group 4 1.0188 0.4339 2.3480 0.0189 

      

Random effects 

Parameter Effect Variance Std. Dev. Corr.  

𝐼0𝑖 Specimen (Intercept) 2.6887 1.6397   

𝑆0𝑠 Analyst (Intercept) 0.8164 0.9036   

𝑆1𝑠 Species: Sheep (Slope within Analyst) 2.9412 1.7150 -0.93  

Table V-22. Maximum likelihood estimates for Ref 6 model. Significant coefficients highlighted in grey. 
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=0.9032, p = 0.5053) and Levene’s test for equality of variance (W = 0.0042, p = 0.949). 

These tests pass the assumption of equal variance, so Student’s T-test was used to 

evaluate whether the distributions of the two groups are significantly different. This test 

shows that there is no reason to reject the null hypothesis that the distributions are 

drawn from the same population (T = 0.2023, p = 0.8408, Df = 37). Therefore, none of 

the tests found any support for the hypothesis that the accuracy of those using 

reference texts is higher than those who did not use reference texts, nor are there any 

discernible differences in the analysts’ accuracies based on which reference texts they 

use. It is hypothesised that some other latent variable explains the results. These 

hypothetical latent variables may be the analyst’s research history, continuous 

involvement in teaching duties, or talent for identifying patterns. For instance, the 

analysts in Group 4 are less likely to use reference texts and they use fewer reference 

aides, but their accuracy, consistency and confidence are elevated (see sections 5.3.3.1, 

5.3.4, and 5.3.6) compared to the other groups. Yet, on average they spend less time in 

identification tasks than analysts in other groups (see section 5.3.7) and have not 

analysed as many assemblages as analysts in Group 1. 

Figure V-5. Boxplot of analysts' accuracies by their use of reference texts. Orange line is the median accuracy within 

group and green triangle is the mean. Outliers are shown as a circle. 
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5.3.6. Self-reported confidence 

5.3.6.1. Do confidence and correct answer correlate? 

This section considers self-reported confidence and its relationship with accuracy. In 

total, there are 1,168 identifications made by the 39 analysts. However, in 225 responses 

the default confidence value (51) was unchanged by the analysts, so two different 

confidence values are considered: the corrected and the uncorrected confidence values. 

The corrected confidence values refer to all identifications for which the confidence 

value is not the same as the default value of 51 (N=943). Because the answer correctness 

is a binary variable, while the confidence scores are continuous but non-normal as 

shown by Shapiro-Wilk test (uncorrected: N = 1,168, W = 0.9484, p = 8.31-e20; 

corrected: N = 943, W = 0.9007, p = 3.10-e24), the correlation of these continuous 

confidence values with whether or not the answer was correct is tested using Somers’ 

D (Somers, 1962). The result of the Somers’ D test is that there is a slight, albeit 

significant, correspondence between the ranks of the confidence values and correct 

answer (using uncorrected confidences: N = 1,168, D = 0.3092, p = 9.82e-12; using 

corrected confidences: N = 943, D = 0.3575, p = 2.34e-11). As a side note, Somers’ D 

produces the same test statistic as rank biserial correlation for this test (uncorrected 

confidences: rpb = 0.3092, p = 6.87e-13; corrected confidences: rpb = 0.3575, p = 2.97e-

13), but the p-values differ between the two techniques as the p-value is computed 

using the Mann-Whitney U test statistic for rank biserial correlation (Wendt, 1972). 

As it is arguable that self-reported confidence should not be represented as continuous 

values but rather through Likert-like scale, these continuous confidence values are 

additionally converted into categorical values for further statistical tests. The responses 

are categorised in the following way: identifications with a confidence of under 26 are 

labelled ‘Very low confidence’, confidence values between 26-50 (inclusive) are in 

category ‘Low confidence’, 51-75 (inclusive) refer to ‘High confidence’, and answers with 

a confidence of above 75 are in ‘Very high confidence’ category. Again, corrected and 

uncorrected confidence values are treated in separate tests.  

In both corrected and uncorrected cases, a contingency table of correct and incorrect 

answers for each confidence category is created (Table V-23) and χ2-test is performed. 

The χ2-test for all analysts was statistically significant in both cases (uncorrected: N = 

1,168, χ2 = 49.383, p = 1.10e-10, df = 3; corrected: N = 943, χ2 = 48.94, p = 1.30e-10, df 
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= 3), meaning that the number of correct and incorrect identifications are dependent on 

the confidence category, although the association between confidence category and 

correctness of an identification is quite low according to Cramér’s V measure. This 

relationship is made clearer in Figure V-6, where the number of correct and incorrect 

identifications by all analysts are plotted, showing that as analysts are more confident, 

the correctness of the answer is also more likely. However, although the percentage of 

wrong answers is significantly reduced when analysts are very confident in their 

decision, the error rate is still 10.46% in the highest confidence category. This result 

suggests that it could be beneficial for zooarchaeologists to remove ambiguous species 

categories such as sheep/goat with a strict species identification accompanied by self-

assessed confidence score for each specimen. By choosing only the most confident 

identifications, the probability of including incorrectly identified specimens in 

subsequent analyses would be reduced (assuming no systematic bias in confidence), 

which would have the effect of reducing noise in palaeoenvironmental analyses and 

therefore create statistically more powerful results.  

To gauge an optimal threshold for self-reported confidence scores that maximizes the 

accuracy, the mean accuracy of identifications is plotted for each threshold. In Figure 

V-7A and Figure V-7C, the mean accuracy of all identifications (y-axis) with a confidence 

score above the threshold (x-axis) is plotted for uncorrected and corrected cases, 

respectively. In contrast, Figure V-7B and Figure V-7D show the mean accuracy for those 

identifications below the confidence threshold. Figure V-7A and Figure V-7C tell us that 

the self-reported confidence threshold that maximizes sheep and goat astragalus 

identification accuracy is 96, resulting in a mean accuracy of around 95.11%. However, 

Figure V-6. All correct and incorrect identifications by confidence categories for the corrected and uncorrected cases. 
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the accuracy begins to plateau around the 85 mark, when the mean accuracy reaches 

93.33%. Furthermore, the number of identifications that can be included at these higher 

confidence scores decreases significantly. If the confidence threshold is set to 96, only 

15.16% of all identifications in the corrected set are taken into account, whereas at the 

85 level, 31.81% of identifications are included. If one were to include 50% of the most 

confident identifications, the threshold would have to be set to 75 (inclusive), resulting 

in a mean accuracy of 88.77%. To include 75% of the most confident identifications, the 

threshold would have to be set to 57 (inclusive) and the mean accuracy would fall to 

86.08%. 

Figure V-7B and Figure V-7D, on the other hand, show that lower confidence scores are 

rather uninformative and cannot be used to say that the identification is definitely 

wrong. However, these figures also reflect the phrasing of the self-reported confidence; 

the lower end of the scale was labelled as ‘Guess’ and the expected accuracy for such a 

confidence score would therefore be 50%, which is well within the 95% confidence 

interval for the observed mean accuracy for the very low confidence scores in Figure 

V-7B and Figure V-7D.  

As a suggestion for any future work on an identification task such as this, instead of 

providing a radio button for the species and a slider for the confidence, an alternative 

would be to provide a single slider with values ranging from -k to k, with each end 

χ2-test for confidence categories and correctness of answer 

All analysts 

 Uncorrected confidences Corrected confidences 
 Observed χ2 expected Observed χ2 expected 

Category Corr. Incorr. Corr. Incorr. Corr. Incorr. Corr. Incorr. 

Very low 60 37 78.73 18.27 60 37 79.62 17.38 
Low 97 31 103.89 24.11 97 31 105.06 22.94 
High 380 104 392.84 91.16 206 53 212.58 46.42 

Very high 411 48 372.55 86.46 411 48 376.74 82.26 
         
         
 χ2 p df N χ2 p df N 

Statistics 49.383 1.10e-10 3 1,168 48.94 1.30e-10 3 943 

 

Effect sizes 

Corrected test Cramér’s V  Uncorrected test Cramér’s V 

All analysts 0.2056  All analysts 0.2278 

Table V-23. χ2-test results, contingency tables (Observed column) for confidence categories and the answer 

correctness, and effect sizes for all answers by all analysts. 
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representing one species. This would then encode the species identification as well as 

the person’s confidence. However, this approach would present an interpretation 

problem near zero as dichotomous identification is not possible at zero. Forcing an 

analyst to make a decision is beneficial in this study, but other studies may find the 

alternative approach more informative. It is further noted that the current methodology 

only concerns two species and other methodological considerations must be taken into 

account for multi-species identification tasks – it would not be possible to use a slider 

with a range from -k to k in a multi-species blind study. Additionally, it is suggested that 

the person providing the confidence scores and the identifications should not be the 

one deciding the confidence threshold above which identifications are included in an 

analysis because such an approach has the potential for the analyst to ‘hack’ their 

confidence scores for individual identifications to be above the decided threshold, 

resulting in the obfuscation of the method. 

5.3.6.2. Are more experienced analysts more confident? 

Next, it is hypothesised that more experienced analysts may be more confident than 

other analysts and so statistical tests of the self-reported confidence values between 

groups of analysts are performed. The bar plots in Figure V-8 show that there are group-  

Figure V-7. Mean identification accuracies by confidence threshold. A) Mean accuracy for all identifications above 

the confidence threshold, without correction for confidence scores. B) Mean accuracy for all identifications below the 

confidence threshold, without correction for confidence scores. C) Mean accuracy for all identifications above the 

confidence threshold, with correction for confidence scores. D) Mean accuracy for all identifications below the 

confidence threshold, with correction for confidence scores. Note how the mean accuracy in C) for confidence scores 

below 51 are higher than for the same confidence scores in A) – this is the result of correcting for the default values 

and it shows that there is a plateau in accuracy for confidence scores approximately between 35-60. 
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wise differences regarding the rate of correct versus incorrect identifications across the 

four confidence categories, with particularly Group 3 and Group 4 error rates being far 

lower when these analysts have very high confidence in their identifications. However, 

this effect is reduced in Groups 1 and 2. To show this effect statistically, χ2-tests for 

independence were initially attempted, but the expected values were less than five in 

more than 20% of the cells for all but Group 2, which is commonly cited as the minimum 

threshold for using χ2-tests for independence (Bewick et al., 2004). Therefore it was 

decided to use both corrected and uncorrected continuous rather than categorical 

confidence scores in the between-groups comparison. 

All tests are non-parametric as normal distribution cannot be assumed for confidence 

for any of the groups (Table V-24). Thus, Kruskal-Wallis H test followed by Dunn’s test 

with Bonferroni correction is employed to uncover group-wise differences in 

confidence. Kruskal-Wallis H test was statistically significant when using either corrected 

or uncorrected confidence scores (Table V-25) and the results of Dunn’s test show that 

Group 2 confidence scores are significantly different from the other groups (Table V-26). 

The corrected confidence scores (Table V-26) further demonstrate a statistically 

significant difference between Group 3 and Group 4 at α = 0.05. 

As Group 2 was interpreted as consisting of the least experienced analysts, it can be said 

that less experienced analysts are less confident about their identifications, which is as 

Table V-24. Shapiro-Wilk's test for normality for analysts’ mean confidence scores for all groups. 

Kruskal-Wallis H test for confidence  

scores across analyst groups 
 df H p 

Corrected continuous 3 107.14 4.52e-23 

Uncorrected continuous 3 108.02 2.93e-23 

Table V-25. Kruskal-Wallis H test for confidence scores across analyst experience groups. Corrected continuous are 

numerical confidence scores with all default values removed, while uncorrected continuous contains all 

identifications. 

Shapiro-Wilk's test for normality for confidence scores (group-wise) 
  Uncorrected Corrected 
 N W p W p 

Group 1 240 0.93308 5.56e-09 0.87640 2.45e-11 

Group 2 359 0.96900 6.27e-07 0.93930 3.42e-09 

Group 3 239 0.94836 1.68e-07 0.91187 7.18e-10 

Group 4 330 0.90987 3.81e-13 0.83412 2.77e-16 
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expected. The lack of confidence by analysts in Group 2 can be seen in the histogram in 

Figure V-9 for individual answers and the mean confidences for analysts are shown in 

Figure V-10. The boxplots in Figure V-10 question the validity of the result from Dunn’s 

test (Table V-26), which showed Group 3 confidence scores as being significantly lower 

than Group 4 for the corrected subset, as the means and medians for Group 1, Group 3, 

and Group 4 are nearly equal in the boxplots. However, this discrepancy can be  

explained by the fact that the Dunn’s test in Table V-26 used the raw confidence scores 

of individual answers, whereas Figure V-10 displays the analysts’ mean confidence for 

all of their answers. Therefore, it can be said that Group 3 analysts are not more or less 

confident than Group 4 analysts, but, through chance, they may have been shown a set 

of astragali that were morphologically more ambiguous than those shown to Group 4 

participants, which could have affected their confidence on some individual answers. 

The analysts’ access to different reference materials may also have an impact. A future 

study should be devised to test specifically the hypothesis that analysts are more 

confident about their identifications when given access to different reference materials 

such as physical specimens, images, sketches, 3D models, or different reference texts. 

Dunn's test for continuous confidence scores across analyst groups 
 Uncorrected Corrected 
 Group 1 Group 2 Group 3 Group 4 Group 1 Group 2 Group 3 Group 4 

Group 1 1.0000 1.13e-10 1.0000 0.3414 1.0000 5.50e-12 1.0000 0.5056 

Group 2 1.13e-10 1.0000 1.81e-13 1.85e-20 5.50e-12 1.0000 4.62e-10 8.45e-22 

Group 3 1.0000 1.81e-13 1.0000 1.0000 1.0000 4.62e-10 1.0000 0.0489 

Group 4 0.3414 1.85e-20 1.0000 1.0000 0.5056 8.45e-22 0.0489 1.0000 

Table V-26. Dunn's test for continuous confidence scores across analyst groups. Statistically significant results 

highlighted in grey. Values are Bonferroni corrected p-values at α = 0.05. 

Figure V-9. Histogram of corrected and uncorrected confidence scores for the four groups. Number of bins is 10. 
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5.3.6.3. Are analysts more confident about identifying sheep or goat 
astragali? 

The next hypothesis test concerns whether the analysts were more confident about 

identifying sheep than they were about goats. The reason it is hypothesised that the 

analysts were more confident about their identifications when identifying sheep than 

goats relates to their use of reference materials with a clear preferential use of physical 

sheep specimens over goats, with seven analysts using physical sheep specimens and 

none relying solely on goat specimens. During data collection it was additionally noticed 

that finding enough suitable goat astragalus specimens for the study was much harder 

than finding their sheep counterparts and the literature on goat bones is not as 

extensive as it is for sheep, which may indicate a bias in the zooarchaeological 

community towards a more accurate and confident identification of sheep than goat 

bones. Thus, a simple comparison of confidence scores between the two species is 

conducted. Again, the confidence scores for both sheep (uncorrected: W = 0.9429, p = 

3.39e-14; corrected: W = 0.8918, p = 1.05e-17) and goat (uncorrected: W = 0.951, p = 

5.25e-13; corrected: W = 0.9062, p = 1.81e-16) violate the assumption of normality in 

Shapiro-Wilk test and Mann-Whitney U test is performed. 

Mann-Whitney U test for confidences between sheep and goats 

 Median 
(sheep) 

Median 
(goat) 

Mean 
(sheep) 

Mean 
(goat) 

N 
(sheep) 

N 
(goat) 

U p 
Cohen's d 

(effect size) 

Uncorrected 70 66 66.46 63.29 584 584 182491 0.0372 0.1251 

Corrected 76 73 70.16 66.21 471 472 121386 0.0143 0.1459 

Table V-27. Mann-Whitney U test for confidences between sheep and goats. 

Figure V-10. Boxplot of mean confidences for the analysts. The green triangle indicates mean value, while the orange 

line reflects median. Circles are outlying analysts. 
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Mann-Whitney U test for the two species is statistically significant (Table V-27), showing 

that analysts were less confident about their decision when identifying goats. The effect 

size of this result is then assessed using Cohen’s d. Different thresholds for interpreting 

Cohen’s d have been given, but the most recent thresholds based on empirical evidence 

suggests that Cohen’s d values of 0.15, 0.36, and 0.65 represent small, medium, and 

large effect sizes (Lovakov and Agadullina, 2021). Thus, although the statistical test is 

significant, the effect size is small, as measured by Cohen’s d. When comparing the 

confidences for the two species group-wise, Shapiro-Wilk test was not performed as it 

is clear from previous tests that normality cannot be assumed for group-wise confidence 

values. In this case, Mann-Whitney U test did not produce statistically significant results 

for uncorrected or corrected confidences for any of the groups (Table V-28). Thus, while 

there is a general, but small tendency for analysts to be more confident about identifying 

sheep than goats, the significance is reduced within expertise groups. 

5.3.7. Effect of speed in identification 

Next, the effect of response time in the identification task is explored. One of the 

identifications by Analyst 51 was recorded as taking over seven hours to finish, and as it 

is the only clear outlier in the data, it has been removed from any subsequent analysis 

involving timing. The mean response time for all answers was 38.81 seconds and the 

median was 18.98 seconds. The mean response time for Group 1 is 32.79 seconds 

(median: 15.69s), for Group 2 it is 35.34 seconds (median: 19.85s), for Group 3 it is 58.95 

seconds (median: 33.25s), and for Group 4 it is 32.37 seconds (median: 16.34s). Thus, 

Mann-Whitney U test for sheep and goat confidences, group-wise 

Group 
Median 
(sheep) 

Median 
(goat) 

Mean 
(sheep) 

Mean 
(goat) 

N (sheep) N (goat) U p adj. 
Cohen's d 

(effect size) 

U
n

c
o

rr
e
c
te

d
 1 70 70 69.59 65.68 120 120 7779.5 1 0.1571 

2 51 51 55.56 51.75 179 180 17696.0 0.4179 0.1548 

3 72.5 70 71.44 68.56 120 119 7709.0 1 0.1327 

4 76 77 72.36 70.35 165 165 13986.5 1 0.0811 

C
o

rr
e

c
te

d
 

1 82 75 75.25 69.16 92 97 5223.5 0.1666 0.2320 

2 67.5 61 57.01 51.98 136 138 10513.0 0.341 0.1786 

3 79 73 74.14 70.91 106 105 6113.0 0.8669 0.1480 

4 83 82.5 76.73 75.19 137 132 9014.5 1 0.0609 

Table V-28. Mann-Whitney U test for sheep and goat confidence scores for each analyst group. Bonferroni correction 

is used to compute the adjusted p-value. 
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the more experienced analysts in Group 1 and Group 4 spent less time on their 

responses on average than the less experienced analysts.  

As for the choice of statistical test in determining whether faster answers correlate with 

incorrect answers, Somers’ D is performed as the answers are coded as a binary variable 

(1 = Correct, 0 = Incorrect), and the response times are heavily skewed towards shorter 

response times (Figure V-11). The alternative for this test would have been to log 

transform the response times and use Point Biserial Correlation but discussing response 

times as log transformed values would be unnecessarily confusing, and thus, Somers’ D 

is preferred. This test resulted in a statistically significant negative correspondence 

between answer speed and correct answer (N = 1,167, D = -0.1338, p = 0.0017), meaning 

that faster responses were more often correct, although the correspondence is 

negligible. Conducting the same test for each analyst group separately demonstrates 

that this negative correlation is only significant for Group 2 (Group 1: N = 239, D = -

0.0664, p = 0.6863; Group 2: N = 359, D = -0.2328, p = 0.001; Group 3: N = 239, D = -

0.1407, p = 0.4267; Group 4: N = 330, D = -0.0489, p = 0.6863). The p-values are 

Bonferroni adjusted. As it was hypothesised that only positive correlation should occur 

between response time and correct answer, the causality of this correlation remains 

unknown and the null hypothesis that correct answers are not associated with longer 

response times cannot be rejected. 

Figure V-11. Boxplot of response times for all answers for the four analyst groups. The green triangle indicates mean 

value, while the orange line reflects median. Circles are outlying answers. 
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This result may suggest that as one is more confident about their answer, they take less 

time to provide an answer. Thus, a second correlation analysis is conducted. This time 

Spearman’s rank correlation test is used because response times cannot be assumed to 

be normally distributed, as is clear from the skew in response times shown in Figure 

V-11. For all answers, this correlation analysis shows that there exists a significant, 

moderate negative correlation between confidence and response time (r = -0.2981, p = 

8.22e-21, N = 943), supporting the hypothesis that analysts take less time when they are 

more confident. As for each group, the Bonferroni adjusted results show that this effect 

is strongest for Group 1 (r = -0.6082, p = 1.66e-20, N = 189) and less so for Groups 2 (r = 

-0.3785, p = 9.17e-11, N = 274) and 3 (r = -0.2054, p = 0.0027, N = 211), while there is no 

apparent relationship between confidence and response speed for analysts in Group 4 

(r = 0.033, p = 0.5886, N = 269). Thus, while analysts take less time when they are more 

confident, the effect vanishes for analysts with high mean confidence, high mean 

accuracy, and who are highly consistent. Considering that analysts in Group 4 were also 

less likely to use reference materials, this group of analysts could be argued as having 

an in depth understanding of the morphological differences between sheep and goat 

astragali.  

5.3.8. Specimen difficulty 

It is probable that some of the specimens included in the study are exceptionally 

difficult for the analysts. To identify those specimens that are difficult, simple item 

analysis is conducted. Difficulty Index for all included astragali is shown in Figure V-12, 

which allows the assessment of the included specimens – the lower the Difficulty Index, 

the harder the specimen. It is notable that a majority of the specimens are very easy, 

while there are only a few items that are very difficult. The red labels in the x-axis of this 

plot represent sheep astragali and the blue labels are goat astragali. As the Shapiro-Wilk 

test shows that the Difficulty Index violates the assumption of normality for both species 

(Sheep: N = 99, W = 0.741, p = 6.33e-12; Goat: N = 84, W = 0.8161, p = 7.6e-09), Mann-

Whitney U test is used to analyse if the Difficulty Indices of the two species are 

significantly different. The result of this test demonstrates that there is a significant 

difference in terms of how difficult the analysts found the species (Nsheep = 99, Ngoat = 84, 

Meansheep = 0.8344, Meangoat = 0.7546, U = 4896, p = 0.03), with sheep being easier for 

the analysts than goat specimens. Again following Lovakov and Agadullina's (2021)  
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empirical guideline to interpreting Cohen’s d, there is a small to moderate effect size (d 

= 0.3093). Boxplots for sheep and goats show that the harder sheep (lower Difficulty 

Index) are outliers (Figure V-13). 

In previous sections, it was noted that there are differences in the performances 

between analyst expertise groups. One possible explanation for this observation could  

be the different samples that each analyst was given. Thus, the mean difficulty of the 

specimens was computed for each analyst and Shapiro-Wilk test for normality was 

performed for each analyst group (Group 1: W = 0.9358, p = 0.5698; Group 2: W = 

0.9150, p = 0.2473; Group 3: W = 0.9702, p = 0.8999; Group 4: W = 0.9506, p = 0.6515). 

As these tests indicate that the mean difficulty of the specimens seen by the analysts in 

all groups does not violate the assumption of normality, Levene’s test for equality of 

variance (F = 0.5304, p = 0.6644) was performed to show that the between-groups 

variance is not significant. Considering these results, one-way ANOVA was performed, 

demonstrating that the mean specimen difficulties between analyst groups were not 

significantly different (F = 0.2410, p = 0.8672). Group-wise kernel density plot of mean 

specimen difficulties supports this conclusion (Figure V-14). Thus, specimen difficulty 

Figure V-13. Boxplot of the Difficulty Index for sheep and goat. Outliers are shown as circles, the green triangle is the 

within group mean, and the orange line is the within group median. 
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cannot be used as a straightforward explanation as to why some groups performed 

better than others. However, specimen difficulty also cannot be completely dismissed 

due to the method of measuring difficulty, which may over- or underestimate the 

difficulty of specimens that were analysed only once or twice. 

Considering the differences in the difficulties between specimens, it is further expected 

that confidence correlates with the Difficulty Index. Here, only the corrected set of 

confidence scores are used. To test this, the mean confidence per specimen is computed 

and Shapiro-Wilk test for normality is performed, showing that the specimen mean 

confidences violate the assumption of normality (W = 0.9731, p = 0.0016, N = 179) as 

does the specimen Difficulty Index (W = 0.7390, p = 1.71e-16, N = 179). Thus, Spearman’s 

rank correlation test is performed (r = 0.3778, p = 1.85e-07, N = 179), demonstrating a 

positive correlation, which is as expected since higher Difficulty Index for a specimen 

implies easier specimen. Furthermore, it is hypothesised that the difficulty of a specimen 

correlates with the average speed of answer for that specimen. Again, because the 

specimen mean response speed violates the assumption of normality in Shapiro-Wilk 

Figure V-14. Difficulty Index KDE-plot for the four analyst groups. The mean specimen difficulties were computed for 

each analyst based on all 30 test items. 
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test (W = 0.7109, p = 2.39e-17, N = 183), Spearman’s rank correlation is performed (r = 

- 0.1921, p = 0.0092, N = 183), showing that there exists a significant negative correlation 

between the Difficulty Index and the mean response time. Thus, the analysts took longer 

to provide an answer for harder specimens and they were less confident about their  

identification, but as seen in section 5.3.7, a longer response time is not correlated with 

more correct answers.  

The correlations in the tests performed in this section are perhaps not as strong as 

expected because the distribution of the specimens is such that it is very heavily skewed 

towards the higher end of Difficulty Index (Figure V-15). This skew is not simply 

explained by the fact that the specimens have a varying number of responses, which is 

demonstrated in Figure V-16. In this figure, the mean Difficulty Index for specimens 

(green triangles, right y-axis) with a number of responses ranging from one to 13 (x-axis) 

remains relatively stable between approximately 0.7 and 0.9, even though the number 

of specimens ranges from five to 25 on the same interval (blue line, left y-axis). Two of 

the three specimens with the most answers were very easy for the analysts and have a 

Figure V-15. Kernel Density Estimate for Difficulty Index showing the estimated distribution of Difficulty for the 

specimens (N=183). 
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Difficulty Index of 1. Even the one specimen with 17 responses was relatively easy with 

a Difficulty Index just below 0.9. However, had there been more specimens with more 

than 13 responses, the boxplots at these locations on the x-axis would have likely 

followed the trend. In other words, the number of answers per specimen does not 

explain the specimen’s Difficulty Index, and this is supported by Spearman’s correlation 

between the number of responses for a specimen and its Difficulty Index (r = -0.0186, p 

= 0.803, N = 183). 

5.3.8.1. Qualitative analysis of the easiest and the hardest specimens 

As the data suggests that a majority of the astragali are extremely easy and only seven 

astragali were very difficult, current comparative identification methods seem to work 

well for a large proportion of the sample, while a minority do not conform to current 

morphological characterisations of sheep and goat astragali. This section therefore 

focuses on the qualitative differences between the hardest and the easiest samples of 

each species.  

Two of the seven hardest astragali are sheep and the rest are goats. Two specimens 

(Sheffield 1387 L and Portsmouth 3694 L; L = Left side) were only presented to analysts 

once, one was shown twice (Sheffield 0620 L), and others were shown three or more 

Figure V-16. Relationship between the number of responses by analysts, the count of specimens with that number of 

responses, and their Difficulty Index. The count of specimens (left y-axis) is shown as a line plot, while the Difficulty 

Index (right y-axis) is shown as a boxplot and is formed using the number of specimens shown in the left y-axis. The 

green triangles are within group means, the orange lines are the within group medians, and the circles are within 

group outliers. Note that the means (green triangles) do not vary significantly despite the change in number of 

responses. The number of responses contains both original answers and possible consistency tests. 
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times (including re-tests). Of most interest are the hardest specimens of both species. 

The hardest goat astragalus is Cardiff 77 R (R = Right side), which was shown to four 

separate analysts, three of whom the bone was presented a second time, and which was 

always identified as sheep. The hardest sheep astragalus is Portsmouth 3567 L and it 

was identified by two analysts, to one of whom the specimen was shown twice. 

Comparing these two difficult bones with the easiest astragali of both species – chosen 

based on the highest number of attempts among those specimens with a Difficulty Index 

of 1.0 – may provide a visual guide as to why some specimens are difficult while others 

are excessively easy. The easiest sheep specimen is Portsmouth 3113 L and the easiest 

goat is Cardiff 57 L – the former was correctly identified in all 14 identifications (including 

three re-tests) and the latter was successfully identified in all 15 identification attempts 

(including seven re-tests).  

These four bones and the regions highlighted by the analysts as the most important to 

their identification are shown in Figure V-17 – Figure V-20. The painted red regions are 

weighted so that the view with the most paintings by the analysts is the brightest. Only 

some very wide, qualitative remarks can be made based on these four bones due to such 

Figure V-17. The easiest goat astragalus - Cardiff 57 L. 
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a small sample size. For instance, the hardest goat specimen (Figure V-19) resembles the 

easiest sheep specimen (Figure V-18) in its proximo-plantar projection and medial 

articular ridge in medial view, while the medial articular ridge in dorsal view is nearly 

horizontal with respect to the longest axis of the bone. The oblique orientation of the 

medial articular ridge is often taken as an indication of species, with more oblique angles 

towards the distal end being associated with goats and more horizontal angles being 

more often encountered in sheep (Boessneck, 1969; Zeder and Lapham, 2010). In fact, 

the hardest goat appears to have a more horizontally oriented medial articular ridge in 

dorsal view than even the easiest sheep, Portsmouth 3113 L. 

Thus, it is understandable that analysts would misidentify Cardiff 77 R given the 

instructions from literature. Yet, this bone presents morphological clues that are not 

normally taken into account in a identification task. For instance, the curvature of this 

bone in dorsal view may be associated with the perceived reduced obliqueness of the 

medial articular ridge. Similarly, the overall curvature of the bone may have reduced the 

prominence of the medial articular ridge in medial view. The plantar view supports this 

Figure V-18. The easiest sheep astragalus - Portsmouth 3113 L. 
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hypothesis, with the plantar articular surface being distinctly shifted towards the lateral 

side. The lateral side of the bone may thus be more concave in goat individuals with such 

a bending characteristic. An analogue to this phenomenon is a spring that is being 

pressed unevenly, compressing on one side and bulging on the opposite side. The 

morphology of this bone therefore does not conform to analysts’ expectations, but it is 

impossible to say whether the bone is abnormal since the analyst would not know the 

population or sample variation. Although the example represents only one bone, these 

bones with ambiguous morphologies (in the sense that comparative methods cannot 

accurately identify them) may be far more common in the archaeological record, but we 

simply do not know since comparative identification is based on modern samples that 

underestimate the importance of morphological variation through simplifications and 

rules of thumb, reducing variance to a single point. 

Similar to the hardest goat astragalus, the hardest sheep specimen shows morphological 

clues that resemble goat morphology. This specimen’s medial articular ridge is oblique 

towards the distal end in the dorsal view and it is somewhat prominent in the medial 

Figure V-19. The hardest goat astragalus - Cardiff 77 R. Note the curved nature of the bone in dorsal view, 

particularly on the lateral side. This curvature may cause the medial articular ridge to appear more horizontal in 

dorsal view. 
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view, while the proximo-plantar projection could be described as pointed. All of these 

characteristics are commonly described as reflecting a goat-like morphology (Boessneck, 

1969; Zeder and Lapham, 2010). However, the distal articular surface is not tear-drop 

shaped and it runs across the entire lateral face of the bone, which is expected from a 

sheep (Zeder and Lapham, 2010). Due to the prominence of the medial articular ridge in 

medial view being similar between the hardest goat and the easiest sheep (not 

prominent), as well as between the easiest goat and the hardest sheep (very prominent), 

while in dorsal view this feature is arguably oblique in all but the hardest goat specimen, 

it is argued that the source of confusion for human analysts is the dependence on medial 

articular ridge along with the pointiness of the proximo-plantar projection. In other 

words, it is hypothesised that while the medial articular ridge may be a good predictor 

of species, it is the whole bone morphology that needs to be taken into account during 

identification to achieve truly reliable identifications. These examples underline the 

argument that morphological descriptions cannot help in the identification of individuals 

that vary from the expected. These observations need to be qualified with further 

testing, which is beyond the scope of this thesis. 

Figure V-20. The hardest sheep astragalus - Portsmouth 3567 L. 
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5.3.9. Comparing analysts and the CNN model 

The overall performance metrics for the ensemble CNN model introduced in Chapter 

IV and the human analysts are tabulated in Table V-29. The performance for the CNN 

model is better than the average human performance for all analysts and the average 

performance of any of the expertise groups. However, four analysts are as good if not 

better than the CNN ensemble model with an accuracy of 96.67%, while another four 

analysts achieved 93.33% accuracy and three more analysts reached 90% accuracy. The 

mean accuracy for these best 11 analysts is 93.63%, which is only marginally lower than 

that of the CNN model. Thus, it is argued that the trained CNN model reaches at least 

the same accuracy as the top 10%, and certainly the top 25%, of human analysts in the 

task of identifying sheep and goat astragali. 

The differences in performances are sustained even when comparing the 20 astragali 

(Table V-30) present in both human and CNN test sets. The mean human accuracy 

(80.03%) for this subset is based on 120 responses by 36 different analysts, and it is not   

Performance comparison 

 Accuracy Precision Recall F1-score 

Overall 
81.15%  

(± 10.80%) 
82.47% 

(± 10.34%) 
81.15%  

(± 10.79%) 
80.83%  

(± 11.17%) 

Group 1 
77.08%  

(± 11.88%) 
78.63% 

(± 12.68%) 
77.08% 

(± 11.88%) 
76.87%  

(± 11.81%) 

Group 2 
77.13%  

(± 9.43%) 
78.26%  

(± 9.24%) 
77.14%  

(± 9.40%) 
76.84%  

(± 9.61%) 

Group 3 
82.82%  

(± 6.65%) 
83.12%  

(± 6.68%) 
82.80% 

(± 6.67%) 
82.76%  

(± 6.67%) 

Group 4 
87.27%  

(± 11.82%) 
89.40%  

(± 9.07%) 
87.27%  

(± 11.82%) 
86.65%  

(± 13.12%) 

Best 11 analysts 
93.63%  

(± 2.77%) 
94.04%  

(± 2.62%) 
93.63%  

(± 2.77%) 
93.62% 

(± 2.78%) 

Best 4 analysts 96.67% 96.88% 96.67% 96.66% 

CNN 10-fold test avg. 
95.42%  

(± 3.93%) 
96.03%  

(± 3.22%) 
95.42%  

(± 3.93%) 
95.38%  

(± 3.98%) 

CNN 10-fold validation 
avg. 

100.00% 100.00% 100.00% 100.00% 

10-fold ensemble CNN 95.83% 96.15% 95.83% 95.83% 

Table V-29. Performances for human analysts and the Inception V3 CNN model. Standard deviations (±1 SD) are 

computed where appropriate and shown in parentheses. 
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Specimens used as CNN test set 

Specimen Species 
Present in  

human data 

Ensemble 
CNN 

prediction 
correct 

Number of 
times correct 
in 10-fold CV 

Human 
Difficulty Index 

Sheffield 94 R Goat No Yes 10 NA 

Cardiff 25 L Goat Yes Yes 10 1 

Cardiff 78 L Goat Yes Yes 10 1 

Cardiff 73 R Goat Yes Yes 10 1 

Cardiff 1 R Goat Yes Yes 10 0.6 

Sheffield 0784 L Goat No Yes 10 NA 

Portsmouth 1631 L Goat Yes Yes 10 0.3333 

Sheffield 1581 L Goat No Yes 10 NA 

Portsmouth 45 R Goat Yes Yes 10 1 

Sheffield 8080 R Goat Yes Yes 10 1 

Cardiff 23 L Goat Yes Yes 10 0.9091 

Cardiff 18 R Goat Yes Yes 10 0.5 

Portsmouth 3647 L Sheep Yes Yes 10 0.5455 

Portsmouth 3612 L Sheep Yes Yes 10 0.8571 

Portsmouth 3539 L Sheep Yes Yes 10 1 

Portsmouth 1589 R Sheep Yes No 3 0.8333 

Portsmouth 3538 L Sheep Yes Yes 10 1 

Portsmouth 3080 L Sheep Yes Yes 9 0.6667 

Portsmouth 3665 L Sheep Yes Yes 10 1 

Portsmouth 3534 L Sheep Yes Yes 10 1 

Portsmouth 3564 L Sheep Yes Yes 10 1 

*Portsmouth 3071 L Sheep No Yes 7 NA 

Portsmouth 3141 L Sheep Yes Yes 10 0.3333 

Portsmouth 2969 L Sheep Yes Yes 10 0.5 

 

Performance on the shared specimens in CNN test set (weighted avg. by species) 

 Accuracy Precision Recall F1-score 

Analysts 80.03% 80.03% 80.03% 80.03% 

10-fold ensemble CNN 95.00% 95.50% 95.00% 95.01% 

Table V-30. Human and the 10-fold ensemble Inception V3 model's performances on the specimens included in the 

CNN test set. Human Difficulty Index can be conceptually compared to the number of times a specimen was correctly 

classified in the 10-fold cross-validation (the last two columns in the top part of the table). *Specimen was available 

in the human dataset but not attempted to identify by anyone because of the randomised sampling process. 
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very different from the average of all answers (81.15%). Furthermore, the mean 

Difficulty Index (0.8039) for the subset of 20 specimens is not substantially different 

from that of the rest of the specimens (0.797, N = 163) identified by humans. This is 

shown by using a two-sample Kolmogorov-Smirnov test, which is a non-parametric test 

used for comparing the distributions of two samples to answer the question of how 

likely it is that the two samples derive from the same population (Massey, Jr., 1951). This 

test was chosen as Difficulty Index did not satisfy the assumption of normality in Shapiro-

Wilk test for normality for either sample (specimens in CNN test set: W = 0.7741, p = 

0.0004, N = 20; Rest of the specimens: W = 0.7692, p = 9.73e-15, N = 163). The result of 

the Kolmogorov-Smirnov test demonstrates that it is highly likely that the Difficulty 

Index distributions do not come from separate populations (D = 0.1221, p = 0.9203) – 

here, higher p-value can be understood as higher probability of the two samples deriving 

from the same population. Therefore, the difference in human and CNN model 

performances cannot be explained by the difficulty of the specimens. 

5.3.9.1. GLMM analysis of human analyst and CNN model performances 

5.3.9.1.1. Model fitting 

The best random effects structure, Null 5, is chosen on the basis of its lowest AIC, BIC, 

and negative log likelihood (Table V-31). This model is a crossed random effects design 

in which each analyst has a random intercept and random slope for each species, while 

the specimens have their own intercept. It is not a fully crossed experiment since not all 

specimens were seen by all analysts. As the interest in this section is solely on the 

differences in the analyst type (0 = ‘CNN’, 1 = ‘Human’) and the analyst group (CNN, 

Group 1, Group 2, Group 3, and Group 4), these two fixed effects are iteratively added 

to the Null 5 model (Table V-32) to find the best fit model. In the Full 2 model the analyst 

type variable is replaced by analyst group, with the individual CNN folds being encoded 

as a new group of analysts alongside the four human analyst experience groups. Full 2 

is the best model on the basis of AIC, with negative loglikelihood significantly improving 

from Full 1 model (Table V-32). Given the four human analyst groups that are all encoded 

as dummy variables (i.e. 0 or 1 for each fixed effect G1, G2, G3, and G4, where G1 = 

‘Group 1’, G2 = ‘Group 2’, G3 = ‘Group 3’, G4 = ‘Group 4’), species dummy variable X (0 

= ‘Goat’, 1 = ‘Sheep’), specimens random effect I (N = 187), and analyst random effect S 

(N = 49), the final GLMM model (Full 2) takes the following form: 
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𝑙𝑜𝑔𝑖𝑡[𝑌𝑠𝑖 = 1|𝑆0𝑠, 𝑆1𝑠, 𝐼0𝑖]  = 𝛽0 + 𝑆0𝑠 + 𝐼0𝑖 + (𝛽1 + 𝑆1𝑠)𝑋𝑖 + 𝛽2𝐺1𝑠 + 𝛽3𝐺2𝑠 +

𝛽4𝐺3𝑠 + 𝛽5𝐺4𝑠 + 𝑒𝑠𝑖, 

(𝑆0𝑠, 𝑆1𝑠)~𝛮 (0, [
𝜏00
2 𝜌𝜏00𝜏11

𝜌𝜏00𝜏11 𝜏11
2 ]), 

𝐼0𝑖 ~ 𝑁(0, 𝜔00
2 ), 

𝑒𝑠𝑖  ~ 𝑁(0, 𝜎
2). 

Here, 𝑆0𝑠 is the analyst random intercept, 𝐼0𝑖 is the specimen random intercept, and 

(𝛽1 + 𝑆1𝑠)𝑋𝑖 is the analyst random slope given by the species of the specimen 𝑋𝑖 (‘Goat’ 

= 0, ‘Sheep’ = 1) dummy variable. The overall intercept is 𝛽0 and the fixed effect 

coefficients are 𝛽n, where n = {1, . . . , 5}. There are separate intercepts 𝛽2, 𝛽3, 𝛽4, and 

𝛽5 for each human analyst group fixed effect (G1 through G4) and just as in the GLMM 

analysis of reference materials in section 5.2.2.5.1, the reader should be aware that the 

intercept incorporates the baseline levels of all fixed effects (‘Goat’ for species, and 

‘CNN’ for group membership). The error term for the ith specimen for the sth analyst is 

𝑒𝑠𝑖.  

5.3.9.1.2. Full 2 model effect size 

The model parameters are expressed in Table V-33, showing that when the random 

effects are held constant, the estimated log odds of a correct response for a CNN model 

is 4.4169, while for human analysts in any of the groups the log odds of a correct answer 

is much lower than for the CNN models. Figure V-21 demonstrates the differences in 

human and CNN performances by plotting each analyst’s intercept coefficients against 

their slope coefficient, grouped by analyst group. The intercept coefficient for each 

analyst in this plot incorporates all of the fixed and random effects, meaning that the 

random variance deriving from the analysts’ different subsets of specimens is accounted 

for as is the random effect of the analyst and the fixed effect of analyst type. The slope 

coefficient on the other hand models the impact of the species of the specimen – values 

above 0 indicate a higher accuracy for sheep and values below 0 refer to higher accuracy 

for goats, while slopes closer to zero signal that there is no difference in the analyst’s 

ability to identify sheep and goat specimens. It is evident from Figure V-21 that CNN 

models and human analysts differ in their potential biases, with more than half of the 

human analysts having a positive slope (and thus being better at identifying sheep),   
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Table V-31. Random effects structure selection. Each null model was compared to the baseline GLM. No predictor 

variables were used. The best random effects structure is highlighted in grey.  

Likelihood Ratio Tests 

Model 
Compared 

to 
Random 

intercepts 
Random 
slopes 

Fixed 
effects 

AIC BIC logLik deviance χ2 Df Pr(>χ2) 

Null 5  Analyst, 
Specimen 

Species 
within 

Analyst 
None 1117.4 1143.6 -553.69 1107.4    

Full 1 Null 5 
Analyst, 

Specimen 

Species 
within 

Analyst 

Analyst 
type 

1099.1 1135.8 -542.54 1085.1 21.311 1 3.90e-06 

Full 2 Full 1 
Analyst, 

Specimen 

Species 
within 

Analyst 
Group 1088.6 1141.1 -534.3 1068.6 16.492 3 0.0009 

Table V-32. Likelihood Ratio Tests for full models. The best fit model is highlighted in grey.  

Random effects structures (null model selection) 

Model Random effects AIC BIC logLik deviance χ2 Df Pr(>χ2) 

Baseline None (GLM model) 1258.9 1264.2 -628.45 1256.9    

Null 1 Analyst (intercept) 1226.9 1237.4 -611.47 1222.9 33.977 1 5.58e-09 

Null 2 Specimen (intercept) 1164.7 1175.2 580.33 1160.7 96.243 1 < 2.2e-16 

Null 3 
Analyst (intercept), 

Specimen (intercept) 
1140.7 1156.4 -567.34 1134.7 122.23 2 < 2.2e-16 

Null 4 
Species within Analyst 

(slope), Analyst (intercept) 
1213.1 1239.3 -601.54 1203.1 53.82 4 5.74e-11 

Null 5 
Species within Analyst 

(slope), Analyst (intercept), 
Specimen (intercept) 

1118.4 1149.9 -553.20 1106.4 150.51 5 < 2.2e-16 

Maximum likelihood estimates for Full 2 model 

Fixed effects 

Parameter Name Estimate Std. Error z-value Pr(>|z|) 

𝛽0 CNN (Intercept) 4.4169 0.6112 7.227 4.93e-13 

𝛽1 Species: Sheep 0.4384 0.4538 0.966 0.3340 

𝛽2 Group 1 -2.8925 0.5857 -4.939 7.86e-07 

𝛽3 Group 2 -2.7421 0.5598 -4.899 9.65e-07 

𝛽4 Group 3 -2.3448 0.5771 -4.063 4.84e-05 

𝛽5 Group 4 -1.45 0.5739 -2.527 0.0115 

      

Random effects 

Parameter Name Variance Std. Dev. Corr.  

𝐼0𝑖 Specimen (Intercept) 3.032 1.741   

𝑆0𝑠 Analyst (Intercept) 1.225 1.107   

𝑆1𝑠 
Species: Sheep (Slope within 

Analyst) 
3.408 1.846 -0.94  

Table V-33. Maximum likelihood estimates of Full 2 model parameters. All significant parameters are highlighted in 

grey. 
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while CNN models are better at classifying goats, as was already pointed out in Chapter 

IV on multiple occasions. CNN models also have a higher intercept overall, 

corresponding to the already mentioned higher log odds of a correct answer. However, 

it is noted that analysts in Group 4 differ from the other three human analyst groups, 

signalling a higher expected probability of a correct answer. It is also noteworthy that 

analysts in Groups 1 and 2 have nearly identical distributions. 

5.3.9.1.3. Post-hoc tests 

Post-hoc contrast test further demonstrates that when contrasting CNN folds with 

human analysts and using an odds ratio of 1 as a null hypothesis (i.e. the groups being 

compared have equal chance of providing a correct answer), a randomly picked CNN 

model (from the pool of ten CNN models) has far higher odds of a correct answer than 

any of the analysts if randomly picked from any human analyst group, except for those 

analysts in Group 4 (Table V-34). This test also corroborates previous analyses that found 

Group 4 analysts to perform better than other human analysts in that Group 4 analysts 

have a far higher odds of producing a correct answer than analysts in Groups 1 and 2. 

The rather large standard errors (when comparing CNN to humans) in this test shows 

that comparing a handpicked sample of CNN models to the pool of random human 

analysts may not be fair, and indeed handpicking the best human analysts (such as 

Figure V-21. Analyst coefficients for CNN folds and human analysts. Numbers indicate analyst ID – the ID numbers 

for CNN models are ordered by the fold, so that ID 10000 is the first fold and the last fold is 10009. 
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Group 4) results in a much more closer odds ratio. However, the CNN models are still 

favoured to provide a correct answer over Group 4 analysts with an odds ratio of 4.263 

(SE ±2.4464). In Figure V-22 the groups are compared by their predicted probabilities of 

correct answer – Groups 1, 2, and 3 have a high overlap, while Group 4 overlaps with 

both Group 3 and CNN analysts, as already mentioned. 

Pairwise contrasts 

Contrast 1 Contrast 2 Odds ratio SE Null z-ratio p adj. 

CNN Group 1 18.038 10.564 1 4.939 <.0001 

CNN Group 2 15.52 8.6878 1 4.899 <.0001 

CNN Group 3 10.431 6.0195 1 4.063 0.0005 

CNN Group 4 4.263 2.4464 1 2.527 0.1152 

Group 1 Group 2 0.86 0.2885 1 -0.448 1 

Group 1 Group 3 0.578 0.215 1 -1.473 1 
Group 1 Group 4 0.236 0.0914 1 -3.731 0.0019 

Group 2 Group 3 0.672 0.2278 1 -1.173 1 
Group 2 Group 4 0.275 0.0973 1 -3.647 0.0027 

Group 3 Group 4 0.409 0.1592 1 -2.297 0.2162 

Table V-34. Pairwise contrast tests. P-values are Bonferroni adjusted. All significant comparisons are highlighted in 

grey. 

Figure V-22. Pairwise comparison of analyst groups. Groups can be compared by the red 'comparison arrows', which 

indicate that the groups are significantly different only if the red arrows of the groups being compared do not 

overlap. The blue bars signify 0.95 confidence intervals. The black dots indicate the estimated marginal means. 
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5.3.9.2. Qualitative comparison of CNN Grad-CAM heatmaps and the areas 
of human focus 

Next, the human focus areas are compared to the Inception V3 ensemble Grad-CAM 

heatmaps to gain an insight on the potential differences regarding attention. The most 

obvious difference between the branch normalized ensemble Grad-CAM saliency maps 

(Figure V-23 and Figure V-24) and the areas of human focus is that the human drawings 

(Figure V-25A) are far more concentrated. This difference is caused by the fact that the 

Grad-CAM heatmaps do not behave consistently for all input images, meaning that the 

important areas for a CNN differ from one bone to the next, which then leads to the 

observed blurriness. Also note that not all views may have been of equal importance in 

each of the partner models of the ten-fold ensemble. Furthermore, there is a large 

difference in the quality of the average Grad-CAM heatmaps when using signed 

gradients (Figure V-23) versus using absolute gradients (Figure V-24) as the neuron 

importance weights. Assuming that the absolute gradient based average heatmaps in 

Figure V-24 provide a more truthful representation of the ensemble model’s areas of 

focus than the signed gradient Grad-CAM heatmaps in Figure V-23, there are two 

regions in the CNN Grad-CAM heatmaps that can be said to approximately match the 

features used by humans: proximo-plantar projecting lobe of both sheep and goat 

astragali in medial and proximal views. In proximal view it is the relationship of the 

position and size of the proximo-plantar projecting lobe (i.e. medial proximal trochlea) 

with respect to the lateral side of the proximal trochlea that differs between the two 

Figure V-23. Average branch normalized 10-fold ensemble Grad-CAM images for Inception V3 using signed 

gradients. Each image is an average of 12 specimens from the test set. These classifications include correct and 

incorrect answers for both species. 
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species in Figure V-24, whereas humans appear to have highlighted the plantar ridge of 

the proximal trochlea as well as the proximo-plantar projecting lobe (Figure V-25A).  

Figure V-24 additionally suggests that the highly activated regions in the plantar view 

correspond to the same area of articulation as humans, but humans mainly focus on the 

edge of this area while the model may be using the texture or the overall shape. 

Regarding the lateral view, the CNN model ignores almost completely the area that is 

mostly focused on by humans in this view, corresponding to the shape of the distal 

articular surface. Concerning the dorsal view, there does not appear to be any significant 

overlap between humans and the CNN model. In Appendix 13, it was shown that the 

ten-fold ensemble model gains the most information from plantar, dorsal, and proximal 

views. However, it was also demonstrated that the CNN model performance improves 

as it gains more the information from all views, including the distal view, whereas 

humans limit themselves to dorsal, lateral, medial, and plantar views, although they 

occasionally also use the proximal and distal views.  

Comparing the drawings of correct and incorrect answers made by human analysts 

provides a more nuanced insight on the human analysts’ behaviour. When analysts are 

correct (Figure V-25B), their drawings generally emulate the criteria set by Zeder and 

Lapham (2010) or Boessneck (1969), as would be expected. Unfortunately, when 

analysts are incorrect (Figure V-25C), their drawings also generally reflect the same 

criteria, but for the wrong species. This effect is most visible for dorsal and medial views. 

In the dorsal view, the medial articular ridge is generally drawn as oblique in goats and 

horizontal in sheep when the identifications are correct, but when identifications are 

Figure V-24. Average branch normalized 10-fold ensemble Grad-CAM images for Inception V3 using absolute 

gradients. Each image is an average of 12 specimens from the test set. These classifications include correct and 

incorrect answers for both species. 
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incorrect, this feature is often drawn as horizontal for goats and oblique for sheep. A 

similar, but perhaps less obvious effect is noted for the proximo-plantar projection in 

the medial view, which is – in general – drawn rounded for sheep and pointed for goats 

for correct answers and vice versa for incorrect answers. As these misgivings of the 

comparative method were already noted in section 5.3.8.1, this evaluation shows that 

Figure V-25. Average analyst focus maps. A) All analyst focus maps; B) analyst focus maps for correct answers; C) 

analyst focus maps for incorrect answers. Each view is averaged by the number of times (N) it was drawn by 

analysts. These identifications include correct and incorrect answers for both species. 
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the problems with comparative identification extends beyond the hardest specimens 

and generalizes to human misidentification in general. 

 Discussion 

The results of the blind study are multifaceted and complex due to the research 

design. It must also be noted that the results discussed are likely to be affected by the 

fact that zooarchaeologists do not normally make identifications on the basis of 

photographs, but rather after careful, tactile inspection of the bone. The images in this 

study were further transformed to remove the most obvious size differences between 

specimens, so that the identifications were not influenced as much by size as the bone’s 

overall shape. Furthermore, Heilen and Altschul (2013) found that identifying pottery 

and lithics through digital photographs and identifying them comparatively in laboratory 

did not yield strong agreement. Although their study could be used to argue that digital 

photography in itself is not an adequate medium from which to analyse archaeological 

objects, it may be more likely that the observed discrepancy is caused by differences 

between the analysts’ capabilities, since separate analysts were involved in the 

identification from photographs and the physical examination. While it is possible that 

the mean identification accuracy for the analysts in this study would be higher had the 

participants had the opportunity to handle the bones in person, there is no firm 

evidence to support the assertion that photography itself would cause lower 

identification accuracies. In fact, only one person (Analyst 104, the last one to finish the 

study) stated that a couple of the photographs were ‘blurred at the proximal end’, 

‘truncated’, ‘speckled or very light/white and it was not clear where the surfaces were’. 

They also made the point that lighting and angle could be adjusted to see any problem 

areas in real life. Moreover, removing size differences from the analysed bones also 

removes the analysts’ ability to use size as a method of separating the two species, a 

factor that could have been relied upon by some analysts. This is necessary since size is 

not typically included as part of the morphological criteria even though osteometric 

analyses indicate that there are size differences between sheep and goat astragali 

(Davis, 2017; Haruda, 2017; Salvagno and Albarella, 2017).  



283 
 

5.4.1. Analyst performance 

The analysts’ consistency was found to be good while their overall accuracy was less 

than ideal with almost every fifth identification being incorrect. It is put forward here 

that a reasonable expectation for an effective and accurate identification method should 

only result in an error once in twenty identifications or less often, corresponding to at 

most 5% error rate – a limit that only the best human analysts appear to achieve, at least 

in this blind study. The reason for this argument is that each zooarchaeological 

identification should be considered to be a hypothesis test, which naturally results in 

Type I and Type II error rates, while each research has its own wider hypothesis that is 

being tested. Understanding zooarchaeological research design as consisting of a tree-

like structure of hypothesis tests, where the lower branches are the individual bone 

identifications that ultimately affect the reliability of the main hypothesis tests, a lower 

expected error rate in each identification (and assuming no systematic bias) would lead 

to higher statistical power regarding the actual research questions. The observed human 

error rates in the blind study suggest 15.26% error rate for sheep and 22.44% for goat 

astragali (Table V-12) and limiting this identification error rate would reduce the risk of 

making Type I and Type II errors in answering the actual research questions through 

hypothesis testing. In other words, higher error rates in zooarchaeological 

identifications have unaccountable consequences to the statistical power of specific 

research questions due to the hierarchical nature of hypothesis testing process. 

However, it is necessary to note that there are signs of systematic differences in the 

analysts’ ability to identify sheep and goats, with the latter being misidentified more 

often than the former. This human bias towards sheep astragalus identification may 

either be an artefact of the zooarchaeological identification process or it is caused by 

the analysts’ expectation bias, since most zooarchaeologists would expect to be faced 

with more sheep than goats. 

Moreover, it was demonstrated that human analyst performance: 1) depends on the 

difficulty of the specimen; 2) varies between individuals; 3) varies depending on the 

species of the bone being identified; and 4) is counterintuitively not clearly helped by 

the use of reference materials. Because Group 4 analysts outperformed all other groups 

in essentially all indicators of performance such as accuracy and consistency while the 

most experienced group, Group 1, did not perform significantly better than the analysts 

in Groups 2 and 3, it is further argued that experience – as a function of number of hours 
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per week worked in zooarchaeological identification and the larger variety of 

assemblages worked on – is not a strong indicator of performance in identifying sheep 

and goat astragali. Instead, it was expected that analysts in Group 1 were going to be 

the top performers due to them spending the most time on identification tasks on a 

weekly basis as well as having worked on the largest number of assemblages. This result 

corroborates the wider remarks made by Ericsson and Lehmann (1996, p. 276), who 

state that when defining expertise as “the amount and complexity of knowledge gained 

through extensive experience of activities in a domain [… those individuals] do not 

necessarily exhibit performance that is superior on relevant tasks to the performance of 

less-experienced individuals.” This effect has also been noted for other species 

identification tasks such as fisheries observers’ ability to identify sharks (Tillett et al., 

2012) and great crested newt licence holders’ ability to sort images of newts to species 

(Austen et al., 2018). It therefore appears that zooarchaeology is one of those tasks 

where expertise cannot be measured as time spent on the task or the variety of tasks 

undertaken, but instead zooarchaeological identification requires some latent ability to 

identify shapes or it depends on continuous self-improvement. It is possible that the 

superior performance of those in Group 4 is actually linked to teaching and continuous 

learning, but this cannot be deduced from the data collected. It can only be 

hypothesised that teaching and active self-improvement regarding zooarchaeological 

identification result in better identification performance. To provide an answer to this 

hypothesis, it would have been beneficial to ask the participants more details about 

their roles in their current profession. Furthermore, it is also possible that Group 4 

analysts are in fact those with the most extensive experience, but not in the terms as 

measured in this study. 

5.4.2. Inference on reference materials 

The study on the impact of reference materials does not provide any evidence in 

favour of reference materials as helping the analysts in the identification task, nor was 

it found that using some specific reference text enables statistically higher accuracy for 

its users, albeit that those analysts using Boessneck (1969) did present some 

performance gains. Instead, the GLMM analysis suggests that using reference images, 

specimens, sketches and all texts except Boessneck (1969; Boessneck et al. 1964) results 

in negative coefficients compared to the baseline of not using any reference materials. 
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Using Boessneck (1969; Boessneck et al. 1964) as a reference text resulted in a positive 

coefficient. This study then implies that not using reference materials leads to higher log 

odds of correctly identifying the species of sheep and goat astragali than when relying 

on reference aides, apart from Boessneck (1969; Boessneck et al. 1964). However, none 

of the fixed effects had a statistically significant result, so it is more likely that their 

impact, be it positive or negative, is negligible.  

This result will be unfathomable for many, since it is clear to all that having a reference 

at hand is helpful, particularly when one does not have any baseline frame of reference. 

Therefore, these results must be interpreted carefully. One way to reasonably explain 

the observed pattern is that those who use reference materials, they use materials that 

show morphological characteristics that do not encapsulate the variation of their sample 

of test images. Their frame of reference is therefore not close enough to the test sample 

to be of use, resulting in the observed lower probability of correct answer. Overreliance 

on a single specimen or on a set of codified rules during identification is thus one 

possible cause of lowered accuracy. While it is admissible that the mismatch between 

the variances of the test sample and the reference materials could, in part, be explained 

by the pre-processing – and particularly the re-scaling – of the images shown to the 

analysts, these transformations did not remove any other type of variation but that 

related to length. To state it explicitly: the bone shape was retained, bar the variation 

regarding their lengths. Furthermore, it is probable that the use of reference materials 

is linked to the analyst’s trust in their own ability, with the best analyst group (Group 4) 

being the same group with the highest confidence and the least frequent use of 

reference materials, which indicates their more general understanding of the range of 

morphological variation associated with the astragali of the two species. Thus, an 

alternative explanation for this result is that the importance of reference materials 

wains as the analyst builds a mental frame of reference about the variance of bones. 

This would mean that reference materials are likely to be most helpful when a new bone 

morphology is encountered. As evidence of this, one simply has to point to the fact that 

most established zooarchaeologists are capable of identifying a large number of bones 

without needing to resort to reference materials, but they are also quick to ask for 

second opinions when presented with an unusual specimen. In contrast, novices tend 

to solely rely on reference materials as they build their knowledge of bone morphology. 

However, as noted, reference materials enable an accurate identification of only a 
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portion of the population variance and the analyst therefore has to build a mental 

reference corresponding to wider population variance either through experience or 

natural ability. 

In addition, there may be a difference in the performance of those who actively used 

reference materials versus those who consulted the reference materials only 

occasionally during the study. These different ways of using reference materials were 

not recorded. However, only three analysts provided negative feedback with regards to 

the usefulness of reference materials in the test, while 30 analysts said that they found 

the material to be useful. Six analysts left this question unanswered.  

It is highly recommended that further blind studies looking into the effect of reference 

materials are conducted, as there may exist a larger trend that shows that reference 

materials are actually hindering analyst performance. This could be particularly true for 

zooarchaeological studies since past faunal populations may express morphologies 

significantly different from those represented in modern populations, especially if 

geographic variation is not taken into account. Indeed, Pöllath et al. (2019) argue that 

there is a geographic and temporal variation related to the morphology of their sample 

of modern and ancient sheep astragali, while a very similar result was reached by Haruda 

et al. (2019), who found that there were morphological differences between the sheep 

astragali found at three geographically separate Kazakhstani Bronze and Iron Age 

archaeological sites. This problem could be alleviated by having a larger reference 

sample that encapsulates the variation of the modern species for a given bone. Although 

it could be feasible to create such a physical reference collection for some animals, 

accessing and performing comparisons within this hypothetical collection by any given 

analyst would not be so simple. While an argument can be made for a centralized 3D 

model library to fulfil this role, deep learning convolutional neural networks can 

summarize and compress the same information into a much smaller and more 

transportable digital package (i.e. a model) all the while also having the benefit of 

helping the researcher by producing classifications. Improved explainability or 

interpretability of these deep learning models is likely to play a role in reassuring the 

unconvinced researchers of the models’ utility.  
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5.4.3. Impact of confidence 

It is clear that confidence is related to one’s ability to identify the bones, although 

confidence can be misplaced. Moreover, it was found that self-reported confidence has 

the potential to be used in place of ambiguous species categorisations such as sheep 

and goat and also decrease the identification error rate. The error rate for analysts in 

Groups 3 and 4 were particularly improved when considering only the ‘Very high’ 

confidence category – the Group 3 accuracy increased from 82.82% to 95.24% and the 

Group 4 accuracy from 87.27% to 94.74%. Likewise, the accuracy for all analysts 

improved to approximately 93.33% from the baseline of 81.15% when considering 

identifications with self-reported confidence scores of above 85. Thus, replacing 

ambiguous species aggregations with confidence scores can significantly improve the 

statistical power of any subsequent studies.  

According to Driver (1992), it is particularly the more experienced analysts who are less 

willing to differentiate closely related species, but this study found that self-reported 

confidence works best for the more experienced analysts, meaning that it is unnecessary 

for the established zooarchaeologists to be cautious. Self-reported confidence scores 

also have an added benefit of informing peers about the analyst’s certainty of any given 

specimen’s identity, allowing the reviewer a better grasp of potential blind spots in the 

analysis. Collecting confidence scores could further help the analysts themselves to 

identify species or elements that they are not as confident about and improve their 

performance by training.  

However, this study only considered complete bones and fragmentation is likely to 

decrease the analyst’s confidence as it also decreases analyst accuracy when identifying 

the element (Pickering et al., 2006). Additionally, this study presents evidence that less 

experienced analysts are less confident overall, the difficulty of a specimen correlates 

with confidence scores, and analysts are in general more confident about identifying 

sheep astragali. Thus, zooarchaeological identification is a complex task in which 

confidence could be used as a proxy to specimen difficulty, although this relationship 

could be obfuscated by overreliance on established identification procedures that rely 

on reference materials with limited variance. Finally, systematic errors such as 

overreliance on a small number of features in comparative methods of identification 
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may erroneously lead to inflated or deflated confidence, depending on the prevalence 

of the feature among the population. 

5.4.4. Identification speed 

Identification speed was not found to be correlated with correct answers. Instead, 

the results suggest that easier specimens are responded to faster, especially by 

inexperienced analysts. The main implication of this finding is that there should exist a 

very good reason for experienced analysts to spend an excessive amount of time on any 

given specimen, since the identification is unlikely to be any more correct than if the 

identification was done quickly. It could even be recommended that a time limit is set 

for every specimen, but this may cause unnecessary stress in practice and suggesting a 

specific time limit is not feasible on the basis of this study. 

5.4.5. Specimen difficulty 

It was unexpectedly found that a large proportion of the specimens were very easy 

for the analysts. Yet, a small proportion of the samples appears to be very difficult for 

the majority of analysts to accurately identify. Considering that the analysts were quite 

consistent – as seen through their drawings and the consistency analysis – the 

morphological variation of this portion of difficult specimens likely lie at the fringes or 

just beyond the morphological variation represented in reference materials. The 

reliance on the morphological representativeness of single specimens or sketches that 

try to capture the ‘goatness’ or ‘sheepness’ in a single drawing when the reality is that 

all bones represent a spectrum of variation is therefore the single largest contributor to 

human analyst inaccuracy. This is exemplified by the identification of the obliqueness of 

the medial articular ridge and the pointiness of the proximo-plantar projection being 

very similar between difficult goats and easy sheep specimens and vice versa, both 

features of which are primary features advocated in reference texts (Boessneck, 1969; 

Zeder and Lapham, 2010). Moving past single points of reference would most certainly 

result in better statistical power in zooarchaeological research. 

5.4.6. Comparison of humans and CNN model 

The main purpose of this blind study was to provide a baseline to which to compare 

the CNN model performance. Although the test samples for the ten-fold ensemble 

Inception V3 and humans were different, it was shown that the 20 specimens included 
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in both the CNN test sample and the sample of bones evaluated by human analysts were 

no harder or easier than the other specimens analysed by humans. Similarly, human 

analyst accuracy on the 20 specimens included in the CNN test set and seen by the 

human analysts was not significantly different from the human analysts’ overall 

accuracy. This comparison then shows that the ten-fold ensemble Inception V3 model 

performed better than human analysts overall, although four individual analysts were 

able to match and even exceed the CNN model performance. However, the subsequent 

GLMM analysis showed that when including the separate folds of the Inception V3 as 

individual artificial analysts alongside human analysts, a randomly picked CNN fold has 

far higher predicted probability of a correct answer than a randomly picked human 

analyst from any of the analyst expertise groups. Only the analysts in Group 4 were close 

enough to CNN performance that these two groups of analysts were not shown to 

perform in a manner that is statistically different. Moreover, the number of samples per 

analyst and model were somewhat small, which may indicate low precision of the 

estimates. 

The main advantage humans have over CNN models is the interpretability of their focus 

maps. Even though the blind study consists of results from 39 analysts, nearly all of them 

look at the same features. This consistency can be an advantage when interpreting areas 

of focus, but it also tells us that there is a certain inflexibility about human identification. 

While the interpretability is largely lost for the ten-fold ensemble branch normalized 

Grad-CAMs when using signed gradients (i.e. Grad-CAM in its originally intended form), 

the Grad-CAMs are far easier to interpret when using absolute gradients as the neuron 

importance weights. The Grad-CAM heatmaps overall signal the inherent flexibility of 

CNNs in that the classifications are made on the basis of a broader set of features than 

done by humans (see Figure IV-14 and Figure IV-15), resulting in a slightly different Grad-

CAM heatmap for each specimen being tested. This hypothesis is supported by the 

occlusion and combination tests performed in Appendix 11 and Appendix 13, 

respectively. Unfortunately, there is a level of uncertainty related to Grad-CAMs in the 

present binary classification task, which is caused by the use of signed versus absolute 

gradients that lead to differences in the heatmaps. For now, it is considered that 

absolute gradients are more truthful than signed gradients. On that basis, we can 

identify features of the bones that are and are not used by both humans and the CNN. 

For instance, the proximo-plantar projecting lobe in medial and proximal view is a 
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feature that both the CNN and humans exploit, white the distal articular surface in the 

lateral view is only used by humans but not the CNN model.  

Another important aspect of comparing humans and CNN models are their comparative 

biases. It was clearly demonstrated in Chapter IV that the Inception model produces a 

default classification of ‘goat’ but changes its classification to ‘sheep’ when given enough 

information. It can therefore be said that the Inception ensemble model is likely to be 

biased towards goat classifications. While humans may not consciously make the 

decision to always choose one species as the default answer unless proven otherwise, 

humans are prone to expectation and recency biases that may steer them to 

overestimate the proportions of some species in an assemblage. In this blind study, it 

was found that the analysts were more accurate when identifying sheep astragali (with 

a moderate effect size), while they were also more confident when identifying sheep 

astragali (with a small effect size). These results imply that humans were, in general, 

biased in their identifications towards sheep. Although the bias towards goats is a 

concern for the CNN model, the benefit of using CNN models is that these biases can be 

controlled and eliminated to a large extent by improving the image dataset and by a 

more rigorous process of finding the least biased model. It is also possible that the 

source of bias in the CNN model is the binary nature of the classification task and one 

way in which the bias could be limited is by including more classes and more data. By 

forcing the CNN model to tackle a more complex problem, the model has to learn the 

right features for all classes – in a binary task, it may be enough for the model to learn 

only the features that indicate the presence of one class, which in this case is sheep. In 

its current form, the model cannot be trusted for archaeological work as it cannot 

misclassify goat bones, but it can misclassify sheep bones, which has the potential to 

produce a species distribution for a given assemblage that overestimates the 

contribution from goats. To improve the trust on the model, it would be beneficial to 

conduct a ZooMS study on an archaeological assemblage of sheep and goat astragali and 

see how well the model fares when presented with such data. 

 Conclusion 

The presented results of the blind study support the use of CNNs in the task of 

classifying animal bones from images as CNNs were found to perform at the same level 

as the best human analysts, while also being more consistent since the model would 
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always give the same result for the same specimen. Although the model presented in 

Chapter IV is biased, the benefit of using CNN models derives from the fact that they 

raise the minimum bar for all analysts – the best human analysts are already very good 

at identifying sheep and goat astragali, but the majority of analysts have significant room 

for improvement, many are also biased towards identifying sheep, and using CNN 

models can bridge the gap between true experts and the novices. The biases in CNN 

models can also be accounted for or limited relatively easily, whereas measures of bias 

in analyses done by humans are harder to catch. In contrast, this study questions the 

usefulness of reference materials, particularly photographs and physical specimens due 

to them representing single points in a spectrum of variation. It was further shown that 

ambiguous species identifications such as sheep/goat are unnecessary as 

zooarchaeologists can qualify all of their identifications by self-reporting their 

confidence scores. This has been demonstrated for whole bones in a binary 

identification task, but it is believed that this methodology can be generalized to multi-

species identification. This simple addition to the zooarchaeological process would 

additionally allow peers to judge potential blind spots in the analysis and perhaps even 

help the analysts themselves to identify their own weak areas. Identification speed was 

not found to be of significant importance overall.  

As specimens were found to vary in difficulty, a further inspection of the analyst focus 

maps shows that human analysts are less flexible about the features they use during 

identification and cannot accurately identify specimens outside the variation 

represented in the reference materials. While this is similar to how CNNs work in that 

CNNs cannot extrapolate the variation learnt for each class during training, CNNs 

provide focus maps (as Grad-CAM heatmaps) that are different for each individual test 

specimen. It is therefore concluded that CNNs provide clear benefits over human 

analysts, including higher or equal accuracy, better consistency, potentially faster 

classification, and specimen specific focus maps. The main obstacle with wider adoption 

of CNN models as classifiers is the lack of available imaging data required to train these 

models. Future research into the classification accuracy of fragmented specimens by 

CNN models is also necessary.   



292 
 

Chapter VI. Discussion and conclusion 

“Zooarchaeological identification is an interpretive act: analysts choose 
which specimens are worth identifying and/or measuring, which 
morphological features to rely on, and where precisely to place the calipers 
for measurements. Published standards constrain these choices, but they do 
not provide final answers. That zooarchaeologists converge as frequently as 
we do on identifications is attributable not only to a common reliance on 
published standards but also to ongoing conversations, lab visits and 
methodological demonstrations. Such collaboration is vitally important, as it 
keeps the subjective aspects of zooarchaeological identification — the 
choices we make about what to analyse, to what extent and on what bases 
— relatively consistent across the field.” 

-Twiss et al. (2017, p.303) 

 Introduction 

For a discipline that has long strived for scientific approach (e.g. Watson et al., 1971), 

the process of tackling subjectivity in archaeology has been slow. This is in contrast to 

other disciplines reliant on comparative identification methods, with for instance 

researchers involved in zooplankton (Jeffries et al., 1984; Culverhouse, 2008; MacLeod 

et al., 2010) and palynological research (Flenley, 1968) being ahead of the curve. The 

blind studies discussed in Chapter I and Chapter V should be alarming to archaeologists 

as they indicate that reliance on human sensory experience has permeated the entire 

discipline, leading to intra- and inter-observer error in nearly all aspects of archaeology, 

which results in identification biases towards certain classes being unequivocally 

present in most if not all archaeological sub-disciplines. Subjective argumentation has 

become a widely accepted necessary evil; the current impetus in zooarchaeology in 

particular seems to be towards spending more resources on re-assessing assemblages 

without really dealing with the core problem of subjectivity and reproducibility (Atici et 

al., 2013; Wolverton, 2013; Nims and Butler, 2017; Lau and Whitcher Kansa, 2018), and 

this general attitude is captured well in the above quote.  

With the recent advances in computer vision and deep learning in particular, there is an 

increased potential for deep learning models to improve zooarchaeological 

identifications and perhaps even replace humans in the identification stage, although 

this is not yet possible nor even wanted by many (Huggett, 2022). While it is accepted 

that in majority of the cases human analysts can produce reliable classifications and 

identifications, particularly when the assessed object’s morphology is causally related to 
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the object’s ground-truth (sensu Driver, 1992; Wolverton, 2013), it is the external 

evaluation and reproduction of the experts’ classifications and identifications that are 

impossible when they are made by human analysts. Herein lies the problem; we cannot 

step inside every analyst’s brain to inspect their decisions, but we can analyse, assess, 

and validate computational models.  

By creating computational algorithms such as the deep learning convolutional neural 

network models developed in this thesis, we can at least begin to inspect the individual 

decisions. Furthermore, computational solutions will free scientists to focus their efforts 

more on particular research questions rather than expend time and effort on the 

compilation of their datasets through tedious identification tasks. By using images of 

objects as the basic data, we ensure that there is a permanent digital representation of 

the objects, which permits the analysis of a vast number of objects at once (Hallgrímsson 

et al., 2008). Computational models also have the advantage in that they allow the 

evaluation of every single classification, taking us a step closer to ensuring that there are 

fewer biases in the published lists of identifications. Removing biases as well as errors in 

identifications results in less noisy data and statistically more powerful outcomes. With 

statistically more powerful results, archaeologists can draw stronger conclusions, 

benefiting the research community and the society at large. 

In Chapter I, it was set out to answer a set of hypotheses regarding the applicability of 

deep learning with respect to the study’s palaeoenvironmental datasets. The first 

hypothesis concerns the possibility of finding deep learning models that are capable of 

achieving state-of-the-art performances in the classification of pollen grains and animal 

bones. It was further hypothesised that state-of-the-art models could perform at least 

as well as expert humans in these tasks. Since studies applying deep learning to 

archaeological problems tend not to verify that the model makes the right decision for 

the right reasons, it was hypothesised that the models’ regions of focus approximate 

human expectations and that the features most relevant to the CNN models would be 

identifiable from the visualizations. This research question was approached from a 

qualitative perspective after creating Grad-CAM heatmaps for the models. The 

advantages and limitations of visualizing deep learning models are also discussed here. 

Before the concluding remarks, this chapter also makes practical suggestions for future 

studies that wish to utilise deep learning in archaeology.  
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 State-of-the-art results and comparing CNNs to humans 

This thesis supports the conclusions of many previous studies that applied deep 

learning models in the classification of pollen grains, namely the fact that convolutional 

neural networks are excellent at this task. For the POLEN23E pollen dataset with 23 

classes, the ensemble models achieved 99% accuracy, which is better than previous 

studies on this same dataset (Gonçalves et al., 2016; Gutierrez Arias et al., 2017; 

Sevillano and Aznarte, 2018). Moreover, as there has been only one previous study that 

used convolutional neural networks to classify images of animal bones, but which was 

also limited to rodent teeth for species that were easy for even GMM to separate (Miele 

et al., 2020), the presented work also demonstrates that animal bones can be classified 

to a very high accuracy after a careful search for the optimal model. The sheep and goat 

astragali separation was slightly harder for the CNN model due to the two species’ 

morphological closeness, but the results still indicate a very respectable >95% accuracy, 

placing it on par with the best expert humans in the blind study presented in Chapter V. 

The ten-fold ensemble Inception V3 model presented in Chapter IV performed better 

than Salvagno and Albarella's (2017; Salvagno, 2020) osteometric method. 

For the pollen study, there is only a non-expert baseline with an average of 64% accuracy 

across the 23 grain types included in the dataset (Gonçalves et al., 2016). This was 

already beaten by Gutierrez Arias et al. (2017) and further improved upon by Sevillano 

and Aznarte (2018). However, it could be argued that since most of the pollen grain 

types in the POLEN23E dataset are quite easy to distinguish (see Figure III-2), it is likely 

that an expert palynologist would have a far higher accuracy than the novices’ 64% 

accuracy. Unfortunately, such a blind study has not been performed and – despite 

palynology’s long history of attempts at automation – there are in general very few blind 

studies testing palynologists’ ability to identify pollen. Instead, the focus has been on 

the analyst consistency to count pollen grains within the quality control context 

(Pedersen and Moseholm, 1993; Sikoparija et al., 2017; Galán et al., 2021), with only 

Mander et al.'s (2014) study being known to the present author as a direct evaluation of 

identification ability. Mander et al. (2014), however, used a limited number of grass 

pollen grains and SEM images, meaning that the light microscopy images of POLEN23E 

dataset cannot be placed in the same context and even a vague analogy would be futile. 

Furthermore, there are no widely accepted palynological benchmark datasets and 
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POLEN23E used in this thesis is the only publicly available pollen image dataset that has 

more than one published test result (Viertel and König, 2022). Yet, without an explicit 

study on expert human ability on the POLEN23E dataset, the deep learning models’ 

performances cannot be placed in the context of human analysts.  

Therefore, to have a proper comparison between human experts and a deep learning 

model, a double-blind study on the sheep and goat astragali images was conducted and 

presented in Chapter V. Human expert accuracy and consistency varied quite widely, but 

expertise was not identified as the biggest source of variance. It was conclusively 

demonstrated that only the very best human experts match the trained model’s 

classification accuracy in the task of identifying images of sheep and goat astragali – the 

four best experts achieved 96% accuracy, but the average accuracy across all analysts 

was only 81.15%. Analyst consistency was measured slightly higher at 86.41%, which is 

good, but not comparable to deep learning models since the models will always produce 

the same answer for the same test images.  

Beyond the identification accuracy and consistency, the biggest difference noted 

between humans and the CNN model is that humans rely on reference materials and 

follow its guidance without considering whether the bone presents morphological 

characteristics that make it an abnormal bone. The Inception V3 ensemble model on the 

other hand assesses each bone on its own merit and does not rely on rigid criteria in its 

decisions. This results in a model that is harder for humans to comprehend, but with an 

exceptional classification ability, whereas human decisions are far more predictable on 

the basis of the observed morphology to the detriment that subtle but important 

deviances are ignored. A truly expert human however may be able to combine the 

morphological trends captured in reference materials with their knowledge of instances 

that do not quite fit the rigid morphological structures presented in reference materials. 

This may be seen in the performance of the best four analysts. 

6.2.1. Extending the results to archaeological samples 

The task of classifying taphonomically modified ancient remains is much harder than 

intact modern specimens included in the datasets in this thesis. Fossil pollen in particular 

is difficult in this regard because modern analogues or relatives may not exist and 

identifications are always done visually, although DNA barcoding of intact modern 

pollen has been done (Keller et al., 2015; Bell et al., 2016). The problem with DNA 
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barcoding and visual comparative methods of fossil pollen identification is that the 

internal and external structures of fossil pollen are more prone to damage from 

chemical, mechanical, or microbial forces than modern pollen (Mander et al., 2012; 

Mander and Punyasena, 2014). The cost of using DNA barcoding and the volume of 

pollen that would need to be sampled is likely to also be prohibitive for most studies. 

The taxonomic accuracy of pollen grain identifications further depends on the resolution 

of the analytical method with SEM imaging producing the most readily identifiable 

images of pollen with the detriment that it is time-consuming and the equipment are 

costly (Mander and Punyasena, 2014). Although Airyscan (and other laser scanning 

confocal microscopy systems) has recently been harnessed to improve optical methods 

to create highly detailed images of pollen in a relatively timely manner (Romero et al., 

2020), the problem of fossil pollen lacking ground-truth labels remains. Due to these 

issues and the fact that there is no available image dataset with archaeological pollen 

grains, fossil and broken pollen grains were not considered in this thesis. Instead, it was 

concluded that re- or de-hydration methods of grains could be developed, broken pollen 

could be included in the training dataset through data augmentation, or the model could 

be trained to reject unsuitable pollen grains, as done by Bourel et al. (2020). 

In contrast to pollen, fossil bones often preserve enough molecular material for aDNA 

or ZooMS analyses and the extraction of which can be done relatively swiftly, enabling 

the creation of ground-truth labels even for extinct fauna, although there are limits. 

Moreover, taphonomic processes do not tend to morph osseous remains in the same 

way as pollen because the bone structures are much more rigid and therefore more 

resistant to attrition and geological pressure. This same rigidity tends to lead to 

fragmentation instead, which itself is a problem unique to disciplines that study the past, 

such as archaeology, palaeoanthropology and palaeontology. Excluding fragmentation, 

animal bones may retain their overall morphological shape in stable stratigraphic 

contexts even over millions of years, meaning that a bone classification model is much 

more likely to be successful with ancient remains than one trained to classify pollen even 

if trained on modern samples. However, evolutionary pressures and processes as well 

as human involvement can lead to changes in animal bone morphologies, so creating a 

classifier using modern samples may not always be appropriate. 
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Unfortunately, due to the combined effect of lack of funds and the Covid-19 pandemic 

removing access to archaeological collections, it was not possible in this thesis to apply 

deep learning methods to an archaeological assemblage of sheep and goat astragali with 

ground-truth labels obtained through molecular methods. Instead, an ablation study 

executed as part of the Chapter IV and presented in Appendix 13 demonstrates that 

when training a multi-view CNN, it is possible to remove two or even three of the 

model’s six views without a significant performance penalty. Similarly, the Inception V3 

ensemble model was very robust against artificial occlusions placed on top of the bone 

even though the model was not trained with this test in mind. These occlusion and 

ablation studies simulate incomplete bones and therefore indicate that the model would 

likely perform well if archaeological sheep and goat astragali with some level of 

fragmentation were to be presented to the model. It is therefore tentatively concluded 

that yes, archaeological remains of bones can in theory be classified when using modern 

samples as training data, but this hypothesis must be verified through future tests with 

real archaeological specimens, including fragments. Any future model must take 

evolutionary processes into consideration and archaeological test samples should come 

from different regions and time periods to ascertain that the model is useful in a wide 

variety of situations. Likewise, a larger number of species and elements should be 

included in future datasets and it could be beneficial to utilise hierarchical classifications 

so that deep learning models would follow the zooarchaeological identification process 

more closely. Finally, in order to advance the adoption of automated identifications, it 

could be beneficial for these processes to take a human-in-the-loop approach, in which 

an expert is alerted for any identification below some pre-defined confidence level and 

that human decision is then added to the training set of the next iteration of the decision 

model (Huggett, 2022). 

 Identifying the features through Grad-CAM and comparison 
to human attention 

In theory it is possible to identify the most important features in the test images, 

although it is not a straightforward task and some have argued that post-hoc 

explanations of deep learning models are inadequate (Rudin, 2019; Chen et al., 2020). 

As discussed in section 2.7 on trust and visualizing deep learning CNNs, there are many 

methods by which this can be achieved. In this thesis, it was decided to use Grad-CAM 
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as the sole mechanism of inspecting the models due to its relative simplicity and ability 

to localize objects within images without it being considered a simple edge detector like 

some other saliency mapping techniques (Adebayo et al., 2018; Kindermans et al., 

2019). However, it is known that certain saliency mapping techniques such as Grad-CAM 

may highlight different classes on the same local region of an image, leading Rudin 

(2019) to argue that such techniques do not tell the user what the model is doing with 

that local region. In the course of applying Grad-CAM, it was noticed that even though 

the model may base its decision on the same local region for many different classes, 

there can be large differences in the magnitudes of the forward activations and the 

backward gradients between the predicted class and the other unimportant classes. 

Thus, a simple normalization of the Grad-CAM technique was introduced in section 

3.2.4.5 to improve Grad-CAM. This normalization creates heatmaps for all classes and 

the maximum value across the heatmaps of all classes was searched and used as the 

normalizing factor. This procedure removes noise in the Grad-CAM images of classes 

that were not relevant to the classification prediction since the magnitude of the 

weights and gradients is very much related to the prediction score. 

Regarding the pollen dataset, it was not possible to discern individual features except 

for certain images. One of the reasons for this is that Grad-CAM highlights regions that 

are not particularly granular whereas the features of the individual grains are small. The 

highlighted regions thus mainly reflect the texture of the pollen grains rather than other, 

more specific features. However, one of the positives of using Grad-CAM is that it could 

be shown that the classifications were not based on the context or the background of 

the pollen grain, which in itself is already better than not using any visualization 

technique.  

The same cannot conclusively be said about applying Grad-CAM to the sheep and goat 

astragali images, with Grad-CAM heatmaps behaving rather erratically and highlighting 

mainly unimportant regions in sheep images, but not for goat. This effect was 

manifested as the corners of the images being highlighted by Grad-CAM, but this noisy 

behaviour seems to have been restricted to Grad-CAM in its normal configuration, which 

relies upon signed gradients as the neuron importance weights. Switching to absolute 

gradients was found to produce qualitatively much better Grad-CAM heatmaps. 

Because of the lack of granularity in the Grad-CAM heatmaps in general and the 
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problems faced especially with regards to the astragali, the comparison of human and 

deep learning attention maps in Chapter V was quite limited. The main outcome of the 

comparison was that humans echoed the established morphological criteria published 

by Boessneck (1969) and Zeder and Lapham (2010) and they highlighted easily 

identifiable regions and features on the bones. In contrast, the Inception V3 ensemble 

model changed areas of attention depending on the input image and human 

interpretation of these heatmaps is difficult. The main shared trait between the focus 

maps drawn by humans and the absolute gradient weighted Grad-CAM heatmaps 

involves the proximo-plantar projecting lobe in proximal and medial views. Additionally, 

proximo-plantar projecting lobe was consistently identified as being of importance to 

the model through Grad-CAM even when the heatmaps were created with signed 

gradients. 

In conclusion, the identification of individual features is possible, although it is mainly 

larger textured areas that can be located with Grad-CAM. This is a useful approach if one 

only cares about whether the background or the context are involved in the 

classification decisions, but much more limited if one wants to learn new features that 

could separate classes that are difficult for humans. It may be that to be able to identify 

individual features one would have to resort to concept-based deep learning models 

and visualizations, similar to Chen et al. (2020). Such an approach is unfortunately 

dependent on collating a large number of concepts and segmenting the training images 

with respect to these concepts. As discussed in section 2.7.3, concepts come with a 

variety of other problems as well, starting with concepts not being language-agnostic, 

they may be inherently wrong, or it may not be possible to clearly discern different 

concepts in an image as is the case with the different features of pollen grains in light 

microscopy. 

 The advantages and limitations of visualization of deep 
learning model decision-making 

Although model trustworthiness is an on-going area of research in artificial 

intelligence and computer science literature (Chang et al., 2005; Wei et al., 2020; Markus 

et al., 2021), trust was not measured at any point in this thesis. Measuring the 

trustworthiness of a model has traditionally been done through surveys, resulting in 

psychometric measures of perceived trust (Miller, 2022). While it is important to 
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measure human trust in a model, this perceived trust may be misplaced and lead to 

over-reliance on an unreliable model (Wei et al., 2020), which is arguably worse than 

mistrusting a well-performing model. Another measure of trust is demonstrated trust, 

which simply means the rate at which a model or a system is adopted if given the 

opportunity (Miller, 2022). This measure is again not enough to evaluate the 

trustworthiness of a model, as a model or a system may be trusted for the wrong 

reasons. Instead of measuring how much trust humans put on the presented models, 

the model performance metrics and the qualitative evaluation of Grad-CAM 

visualizations were taken as proxies of trustworthiness. This section focuses on the trust 

deriving from Grad-CAM visualizations.  

It is clear that post-hoc explanations of deep learning models are far from ideal 

solutions, even if they do provide further information to the analyst to decide whether 

the model is looking at the right region of the image and therefore makes the correct 

classification for the right reasons. For instance, in the case of the pollen study in 

Chapter III, the Grad-CAM visualizations were adequate for the evaluation of whether 

the background of the pollen grain influenced the classification decision. In the cases 

where it is difficult to identify individual features of the objects of interest in the input 

images to begin with, this approach can be deemed adequate. Although a good start, it 

is clear from the discussion in the previous section on the application of Grad-CAM in 

the sheep and goat study that better visualization techniques are required and that 

Grad-CAM is not adequate for all problem domains, especially when more fine-grained 

details need to be taken into account in the classification. However, Grad-CAM is not 

alone in its inadequacy as a visualization technique since they all present some 

problems. These problems were discussed in section 2.7 and are not repeated here. 

Though, it must be added that relying on visualizations alone can only answer the 

question of what region of the image was used in the classification. To further instil trust 

in deep learning models, the question of how the information was learnt should also be 

answered. 

Instead of relying purely on visualizations, trust in models should come from the 

combination of several sources: the explanation of the model’s structure and behaviour 

must be comprehensible by the reader, the generalization performance should be 

demonstrated conclusively with respect to test and validation data, the code and data 



301 
 

should be made available with minimal technical problems for the reader to solve, and 

the chosen visualizations should be relevant to the data and the problem at hand. Of 

course, these solutions are relevant mainly in an academic or professional context and 

for users unfamiliar with computational techniques most of these sources of trust may 

be meaningless. Similarly, it may be excessive to expect commercial enterprises to share 

so much information about their products as it can lead to security issues by, for 

example, making the creation of adversarial attacks much easier.  

In a case where the user is not familiar with deep learning or sharing all the information 

about the model is not viable, it is the visualizations that take precedence over all else 

since they can enhance the user’s intuitive understanding about the behaviour of image 

classifiers. Unfortunately, it is difficult to adequately explain any decision made by deep 

learning models let alone the model itself with a single visualization. In fact, it is for this 

exact reason that the Grad-CAM normalization procedure was introduced in Chapter III; 

it is considered important to provide heatmaps for all classes, not just the predicted class 

to improve trust in the visualizations. This method does not answer the question of how, 

though, but visualizing the activations or the filters’ weights can help in this regard. This 

can be achieved quite easily by simply visualizing the activations or the filters’ weights 

(each of which is a simple matrix) directly. The problem is that each layer can quite easily 

have dozens or hundreds of filters and activations, which results in a large number of 

individual visualizations that are easy to interpret individually but difficult to interpret 

when taking all of them into account. For an example of such a case, see Sevillano et al. 

(2020). 

Therefore, it is concluded that there are instances when visualizations are enough to 

induce trust, but they are unlikely to satisfy an inquisitive sceptic. To maximize trust in 

models, particularly in archaeology, it is beneficial to share more details about the model 

and its performance, provide data and code, and create visualizations. Yet, even taking 

these steps is unlikely to convince everyone to embrace deep learning classifiers in 

archaeology with glee and some may even argue that deep learning removes a human 

element that has traditionally been present in archaeology. 
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 What practical suggestions can be made to improve 
archaeological deep learning applications? 

The best thing a researcher can do regarding deep learning is acquire good quality 

data for the problem at hand. Secondly, one should familiarise with the machine 

learning terminology and understand the processes of forward and backward 

propagation and how they influence each other. Third, a firm theoretical grounding 

must be established for the ground-truth labels if using supervised learning, otherwise 

the supervised deep learning model’s credibility is undermined. This means that 

typological labels are absolutely not acceptable for a supervised learning task due to 

their tendency to change over time (Whittaker et al., 1998) and their lack of causal 

relationship between the object’s shape and the label (sensu Driver, 1992). If there are 

no other labels available, one should refrain from supervised learning and opt for 

unsupervised learning. Moreover, there are several practical suggestions that can be 

made for the entire process from data acquisition to training and evaluation of the 

model. These aspects are detailed in the following sections and many of them echo the 

advice of Chicco (2017). 

6.5.1. Data acquisition 

Data acquisition for the purposes of this thesis was problematic. Even though there 

are billions if not trillions of images floating on the internet, finding well-structured 

image datasets for pollen and animal bones proved to be difficult. Compared to 

zooarchaeological image data, there are more pollen image datasets and reference 

websites available from which one can scrape images to compile datasets of dozens if 

not hundreds of pollen classes. Moreover, because palynology has a longer research 

history of attempting the automation of this identification task, palynologists have 

developed complete systems of image acquisition and classification such as Classifynder 

and Pollen Sense (Flenley, 1968; Stillman and Flenley, 1996; Holt et al., 2011). Yet, one 

of the few pollen image datasets available at the time of beginning this thesis work is 

the POLEN23E (Gonçalves et al., 2016), which was subsequently used in the thesis. This 

dataset has since been superseded by POLLEN73S, which uses some of the data from 

POLEN23E and expands the number of classes to 73 (Astolfi et al., 2020). In contrast, 

readily available zooarchaeological image datasets are completely lacking, there are 

very few images of unmodified bones on various museums’ and institutions’ online 
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databases, and the images that are available do not cover all aspects of the bones. A 

bone image dataset therefore had to be compiled through visits to the University of 

Sheffield’s archaeology department, National Museum Wales, and Historic England. 

Methodologically, photographing bones from all aspects is repeatable and requires little 

training. Conversely, the method is time-consuming, which sets limits to how much data 

can be collected. One aspect contributing to the slowness of creating a suitable image 

dataset was simply the access to the collections. Alternative image dataset compilation 

methodologies were considered such as web and journal article scraping, but these 

approaches were too challenging to justify the expected outcome. By this it is meant 

that the reward was not expected to match the effort, whereas photographing known 

modern specimens was certain to result in a usable dataset. For instance, although there 

are several websites dedicated to animal bone identifications, each website often only 

consists of a single example or, at most, few examples of each bone, making image data 

collection through web scraping an arduous task and it is not always clear whether the 

bones are modern or archaeological. This problem is also present for pollen grains, but 

there are far more images of pollen with multiple grains depicted in one image, meaning 

that some classes of pollen may only require the use of image segmentation to 

significantly increase the count of training images. Scraping journal articles for images 

of bones on the other hand could be useful but extracting labels for the images at the 

same time without manual intervention is technically challenging as one would have to 

develop a method of finding the label and linking it with the image.  

In future studies, image datasets could be compiled by launching a citizen science 

project in which the general population is asked to send images of bones found during 

walks or museum visits with an associated species label, if available. Likewise, images 

and their captions scraped from journal articles could be used as data for a citizen 

science project in which the volunteers would find the depicted bone’s species label 

within the associated caption. The captioning exercise would be far easier to achieve 

technically than developing an algorithm that searches for a correct label within the 

journal article by itself. However, the reliability of the labels in both of these citizen 

science projects could be questionable because verifying the ground-truth would be 

nigh on impossible. 
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The best quality labels come from modern collections or archaeological samples that 

have been sampled for ZooMS or aDNA. To obtain high quality training and test sets that 

contain a vast number of specimens with many elements and species, the 

zooarchaeological community needs to consider the creation of deep learning classifiers 

a common goal. To achieve this goal, a centralised image data library should be created 

and zooarchaeological samples for which ZooMS or aDNA data is available should be 

photographed and placed in this database alongside the species identification from the 

molecular methods. The goal would not necessarily be to create a single universal 

zooarchaeological classifier, since ecogeographical and evolutionary realities dictate 

that any given region only contains a subset of all species. Instead, deep learning 

classifiers in zooarchaeology could have regional scope and an argument could even be 

made for temporal scope – European Pleistocene fauna was very different from that of 

European Holocene fauna, for instance. The answer to how this database could be 

compiled is again citizen science – individual museums could arrange participatory 

citizen science days during which the volunteers spend their day discovering and 

photographing the stored artefacts using their own cameras or phones. Given that the 

majority of museums’ collections are kept away from the public and that such events 

give a chance to experience and handle artefacts as well as contribute to science, it is 

anticipated that many volunteers would find such an activity highly rewarding. The 

volunteers’ use of their own cameras or phones would not pose a problem, but rather 

help the deep learning model to generalise better as different camera sensors produce 

varying noise signals. 

Finally, 3D models and data augmentation may be used to create larger image datasets. 

Regarding 3D models, they would be useful in that they can either be used on their own, 

they can be fractioned to replicate fragmentation or otherwise manipulated to simulate 

bone surface modifications, or a simple script that rotates the 3D model and takes 

snapshots from different angles could be made to collect a large amount of 2D data from 

a single 3D model. Likewise, data augmentation can be taken advantage of to increase 

the size of one’s training set or to simulate fragmentation and deformation. 

6.5.2. Pre-processing and training 

It is highly recommended that those new to deep learning start with transfer learning 

and the base models tested in this thesis. These base models have been trained on huge 
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amounts of data over long periods of time on GPU clusters that are only available to 

large commercial organisations like Google or Nvidia. For instance, the state-of-the-art 

Florence model took 10 days to train on 512 Nvidia A100 GPUs, each of which costs over 

£10,000 (Yuan et al., 2021). It is thus inconceivable that any sole researcher could create 

a better model than those created by entire research teams and enormous budgets. 

However, there are certain pitfalls that one must be aware of when using pre-trained 

models. The first of these pitfalls is that the images used to train these models may have 

been pre-processed in a particular way, which means that to get the best results, one 

needs to re-train the model by following the same pre-processing protocol. This process 

was not followed in Phase 1 of Chapter III, which may partly explain the slightly poorer 

results than those achieved in Phase 2 of the same chapter. Pre-trained models and their 

required pre-processing methods are available in TensorFlow 2 and its in-built Keras 

library (Chollet, 2015; Abadi et al., 2016b, 2016a), for example.  

Although many of these pre-trained models are large and can lead to over-

parameterization when re-training on a smaller dataset, this is rarely a problem 

regarding the model’s classification performance as long as proper precautionary 

measures are in place. Such measures include early stopping of training, cross-

validation, and adding a penalty term to the cost function. One can also use layers such 

as dropout to prevent co-evolution of neurons during training or try to remove 

redundant parameters altogether through parameter pruning. Early stopping was found 

to be useful during the training of models, especially when combined with functions that 

allow saving and recovering of a model’s best-performing trained state. Using these two 

techniques, a model training can be stopped if its validation loss did not improve over n 

number of epochs and the best state could be recovered even though it occurred in the 

past. Including k-fold cross-validation in this training protocol provides a convenient 

measure of over-fitting as well as a method of structuring ensemble models.  

Ensemble models were found to be very successful for both the pollen grain and sheep 

and goat astragali classification problems and it is therefore easy to recommend a wider 

adoption of ensemble models. Their main problem is that they are cumbersome to train, 

test, and visually evaluate. As a solution, Hinton et al. (2015) suggested knowledge 

distillation by using the class probabilities produced by the cumbersome model as ‘soft 

targets’ and then training a smaller model using those soft labels instead of the usual 
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hard targets. In other words, rather than using [0, 1, 0] as a target for the class ‘dog’ in 

a network trained to classify three classes (cats, dogs, horses), we would use the 

cumbersome model’s probabilities for that input (such as [0.002, 0.991, 0.007]) as the 

targets for the new, lighter model. This mechanism is called temperature scaling in 

relation to the softmax function and it has also been suggested as a method of 

calibrating models to reduce overconfidence (Guo et al., 2017). Since Hinton et al.'s 

(2015) publication, other methods of model compression have been proposed and the 

reader should refer to Gou et al. (2021) for a survey on this topic. To further reduce 

model computational cost and memory requirements, one can apply quantization, 

which approximates the learnt parameters and the activation maps from floating point 

precision to a lower precision (Gholami et al., 2021).  

Regarding the two different approaches to re-training, namely fine-tuning and feature 

extraction, it was found that fine-tuning produced better results. When taking the 

feature extraction approach, it is typically the last few densely connected layers that are 

replaced with untrained layers and during training the new model learns the weights 

only for these replacement layers, while all other layers are kept as they are. Fine-tuning 

differs from feature extraction only in that all layers are allowed to adjust to the new 

data. It is also possible to have a two-step re-training process where feature extraction 

is performed with a relatively high learning rate (e.g. 0.2) and then the model is fine-

tuned with a much lower learning rate (e.g. 0.0001). Sevillano and Aznarte (2018) 

provide an example of such an approach. 

To further improve the model’s performance, it is recommended that a formal 

hyperparameter search methodology is followed. While grid search and random search 

produce good results, the benefits of using Bayesian optimization outweigh the 

technical challenges. At least in Python, the technical hurdles are relatively easy to 

overcome by using an optimization package such as scikit-optimize (Head et al., 2020). 

It is not recommended that the hyperparameters are left unoptimized unless there is a 

good methodological reason. Manual tuning of hyperparameters should also be avoided 

as it is very counter-productive due to humans’ inability to estimate how changing multi-

dimensional parameters affect the model. 

Finally, although TensorFlow and PyTorch allow training models using just the 

computer’s CPU, deep learning image classifiers are much faster to train with GPUs. Yet, 



307 
 

not all GPUs are created equal and at least for those using TensorFlow, the number of 

CUDA and Tensor cores will be important. One major annoyance one may encounter 

during training with TensorFlow is that the models sometimes do not fit into memory, 

which results in Out of Memory (OOM) error. This is a problem particularly when training 

ensembles because all models may not fit into memory at the same time and the OOM 

error stops the progress. There are ways to counter this problem such as quantization 

and knowledge distillation, but another practical alternative method that was found 

effective was to train each of the ensemble’s partner models separately inside its own 

thread using Python’s built-in multiprocessing package. The use of the multiprocessing 

package was necessary because TensorFlow retains the symbolic graph of the neural 

network in memory as long as the thread is running and the multiprocessing package 

helped with fully shutting down the thread within the Python script and avoided halting 

the training loop. 

6.5.3. Model evaluation 

Evaluation of deep learning models can be a complex process that consists of 

reporting error metrics and visualizing the performance of the model in several ways. 

The exact error metrics and the associated visualizations depend on the task at hand, 

but with classification tasks, the formal metrics of accuracy, precision, recall, and F1-

score are typically reported alongside a confusion matrix. Graphs displaying the change 

of loss and accuracy for training and validation sets over the course of the training should 

be presented, and different models should be compared in relation to each other using 

a test set. The comparison of models can be done visually with for instance ROC and 

precision-recall curves, the latter of which is preferred by Chicco and Jurman (2020), as 

well as through comparing the metrics. When classes are imbalanced (especially in 

binary classification), it is highly recommended that F1-score is used rather than the 

other metrics as it captures the balance of precision and recall, although Chicco (2017) 

and Chicco and Jurman (2020) advocate for the use of Matthews correlation coefficient 

over F1-score as it captures the balance ratio of true and false positives and negatives.  

Considering the visualization of the types of mistakes the model makes with the help of 

confusion matrices, they work well in general for a relatively small numbers of classes 

but become increasingly difficult to read the more classes there are in the data. 

Confusion matrices are important in explaining a model’s behaviour, so alternative 
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visualizations have been developed such as packing the information to tree or flow 

charts (Shen et al., 2020). Tree charts would be especially useful in evaluating models 

for which the data has a hierarchical structure such as taxonomically ranked data. 

However, the number of classes remains a problem for any visualization, especially 

when the data contains hundreds or thousands of classes. 

For tasks where it is claimed that the model can replace or assist human decision making, 

the model’s performance needs to be evaluated against humans in a blind study. For all 

blind studies, an appropriate demographic must be identified and the study performed 

on the same dataset as used in creating the classifier. For example, when evaluating 

classifiers that are meant to perform the task of a trained professional, it is important 

that at least some portion of the blind study’s participants are also experts in the subject. 

This was not the case for the blind study performed on POLEN23E dataset, which may 

explain the participants’ low average accuracy even though they were provided with a 

training set of images that they were allowed to consult during testing (Gonçalves et al., 

2016).  

6.5.3.1. Post-hoc visual evaluation 

Even when one has trained a model that passes the metric tests, generalizes well to 

a test set, and perhaps even performs better than humans, one cannot fully trust a 

model without visualizing the model’s decision making in some way. For this reason, 

Grad-CAM was used in Chapter III and Chapter IV, showing that the model’s attention is 

on the relevant objects. However, the claim that Grad-CAM and other techniques 

visualize the ‘most important regions in the image’ should be evaluated critically. The 

concept of importance regarding Grad-CAM in particular is extremely pertinent, as 

importance is defined as ‘neuron importance’, which implies that some neurons are less 

important than others and that Grad-CAM can identify the important neurons (Selvaraju 

et al., 2019). Neuron importance in this case derives from the linear combination of the 

global average pooled backward gradients flowing from the class score to the activation 

maps of the convolutional layer (forming the neuron importance weights) and the 

respective neuron’s forward activations, both of which can range from negative to 

positive (Selvaraju et al., 2019). The neuron importance weights (i.e. global average 

pooled gradients) in Grad-CAM are interpreted such that positive values of neuron 

importance weights indicate that the presence of that neuron in the activation map will 
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result in an increase in the class score, whereas negative neuron importance weights 

mean that the absence of that neuron results in an increase in the class score (Selvaraju 

et al., 2019). As the final Grad-CAM neuron importance score is dependent on the sign 

of the neuron importance weights and the sign of the activations that are multiplied 

together, it is quite possible that the signs of the neuron importance weights and the 

neurons in the activation map can counteract each other and result in a noisy heatmap. 

This was almost certainly the case in Chapter IV and using absolute gradients instead of 

signed gradients almost completely removed the noise. Furthermore, it is perceivable 

from the functioning of Grad-CAM that it is not the sign of the neuron importance weight 

that matters, but rather its magnitude. For this reason, absolute gradients may overall 

perform better as the neuron importance weights than signed gradients – this was 

already found by the authors of Grad-CAM, but they do not give any justification for 

preferring signed gradients over absolute gradients (Selvaraju et al., 2019). It is 

suspected that the reason why absolute gradients are not preferred by Selvaraju et al. 

(2019) is that Grad-CAM loses the ability to discriminate between classes, but this can 

be recovered to an extent by normalizing the heatmaps across classes, as shown in 

Appendix 10. Considering the additional issues associated with using gradients (e.g. their 

noisiness and potential to vanish or explode) in visualizations, it could be beneficial for 

many studies to implement some other visualization technique either as a replacement 

or in conjunction with Grad-CAM, especially if the heatmaps are suspected to suffer 

from noise.  

One interesting alternative is Ablation-CAM, which iteratively occludes the forward 

activation maps, measures the change in class confidence scores, and weights the 

activation maps by the amount of change in these scores (Desai and Ramaswamy, 2020). 

It is therefore a relatively simple method that produces similar heatmaps to Grad-CAM 

but does away with gradients. Moreover, Ablation-CAM is easier to interpret than Grad-

CAM as it relates directly to the confidence scores and does not abstract the importance 

to gradients. Ablation-CAM thus constitutes a more intuitive interpretation of a model’s 

performance than that attributable to Grad-CAM. Ablation-CAM is also more likely to 

produce visually salient maps even for highly confident decisions unlike Grad-CAM 

because of the absence of gradients. This is not to say that Ablation-CAM is the ideal 

solution for all occasions. Rather, it is argued that the choice of visualization is likely 

dependent on the problem, the data, and the model.  
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 Conclusion and future directions 

This thesis has demonstrated that deep learning convolutional neural networks are 

effective tools in the classification of intact palaeoenvironmental remains and that 

scientists reliant on comparative methods cannot adequately extrapolate the 

morphological variance from single points of comparison. In contrast, deep learning 

models encode the variance of the training samples within the model and compute the 

probability of the unseen sample’s class membership, which is something that human 

analysts using visual comparative methods cannot achieve due to their use of reference 

samples and guides that do not simulate the population variance adequately. 

Comparative methods are further limited by spatiotemporal variation inherent in the 

morphology of the species which means that modern reference materials may not be 

helpful when dealing with archaeological remains or even with contemporary remains 

from different geographic locations. Although this limitation affects both machine 

learning and analyst identifications, machine learning training sets are readily 

extendable through photographs and 3D models of archaeological remains once they 

have been identified through other means such as aDNA and ZooMS. While one can in 

theory increase the size of the reference collections for human use in a similar fashion, 

it is unlikely from a purely practical perspective that human analysts would be able to 

take advantage of a collection with thousands, let alone millions of items, in a sensible 

timeframe. Furthermore, actual physical limits such as the researcher’s distance from 

relevant materials can and do affect zooarchaeological analyses.  

Deep learning models can also assist by limiting biases and subjectivity in archaeology 

through more consistent identifications that improve the statistical power of 

archaeological analyses, which will result in more impactful research. While deep 

learning models in themselves are likely to be biased, these biases are more 

straightforward to correct for than those introduced by human analysts as human biases 

may be context and expectation dependent. The model biases could be reported as part 

of the model performance metadata, which would help with external evaluation of 

research results. Publishing the model performance attributes as metadata 

would improve transparency and trust in archaeological analyses and this is a clear 

benefit over human analysts from whom such information is never demanded. Although 

this thesis has considered a limited range of pollen grains and just one skeletal element 
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of two species of animals, the implication of this research is far wider, particularly within 

the palaeoenvironmental field – comparative methods has the potential to be replaced 

or aided by image recognition techniques and a general modelling paradigm has clear 

benefits over the existing paradigm, albeit that there is an initial cost of collecting the 

required data. Archaeologists claiming to conform to scientific methods should take 

heed of the presented results and prioritize the creation and use of deep learning 

models in classification and identification tasks.  

In the future, palaeoenvironmental applications of deep learning are likely to include 

the identification of vertebrate remains, pollen, diatoms, plant macrofossils, insects, 

Mollusca, Ostracoda, Foraminifera, and other micropalaeontological remains. Materials 

for which the use of imaging technologies such as microscopes are already necessary 

would especially benefit from deep learning models since image collection may already 

be part of the research design. Deep learning models will without a doubt be created to 

accurately classify a far wider range of species than was possible here. Separating closely 

related species will likely take primacy and it is easy to see the application of deep 

learning extended to differentiate Bos and Bison bones, for instance. Future studies will 

likely be able to show their efficacy in the classification of broken and misshaped fossil 

faunal remains, as has already been done with broken fossil pollen (Bourel et al., 2020), 

while studies on purely archaeological samples will measure the ability of models built 

using known modern specimens to generalize to past populations by comparing the 

models’ classifications to ZooMS or aDNA results. Other possible avenues of research 

may include the separation of domesticated and wild individuals, identification of 

pathologies, and the creation of aging and sexing models. For instance, given enough 

data, it should be relatively straightforward to create continuous models of aging using 

photographs of mandibular dentition to replace Payne's (1973, 1985) comparative aging 

method. Such a research is feasible right now, as there is a large number of sheep 

remains with known ages at death stored at Historic England’s Fort Cumberland office 

in Portsmouth left from the Sheep Project (Popkin et al., 2012). Furthermore, MacLeod 

and Kolska Horwitz (2020) have already shown the utility of deep learning in sexing wolf 

crania, meaning that sexing osseous remains is likely to become commonplace. 

At the end of the day, the success of deep learning in archaeology will depend on our 

willingness to gather and distribute new data. It is therefore no surprise that the main 



312 
 

hindrance in the application of image based deep learning models using 

palaeoenvironmental remains is the lack of 2D and 3D data. In the short term, the 

primary goal for the archaeological community should be the amassing of 2D and 3D 

datasets of these remains. The author’s favoured methods of acquiring such a data are 

detailed in section 6.5.1 and not repeated here. Large scale applications of deep learning 

in archaeology are not currently feasible due to the limited availability of data and many 

of the possible future studies require specific data collection regimes. Furthermore, it is 

recommended that ecogeographical and evolutionary limits of palaeoenvironmental 

remains are taken into account before attempting the creation of universal models, 

which should be seen as a long term goal. Finally, if archaeology is to be seen as a STEM 

discipline, many of the typological labels and approaches need to be dropped in favour 

of the modelling paradigm due to the labels’ tendency to morph over time. Although 

this thesis has strictly dealt with identification of pollen and animal bones, where the 

labels are clearly identifiable and have a causal relationship to the object itself, the 

modelling paradigm can be argued as being applicable to typologies as well. The only 

difference in applying the modelling paradigm to typology is the type of models that are 

required. For instance, machine learning clustering techniques are excellent for 

grouping items and they can be seen as the machine learning equivalent of 

archaeological classification. These models can also be allowed to retrain themselves all 

the while keeping track of model versions when using them, thus addressing the issues 

of replication.   
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Appendix 1. A comparison of normalized and 
unnormalized Grad-CAM visualizations 

A brief comparison between normalized and unnormalized Grad-CAM visualizations 

is presented. The model for which the visualizations are made is the DenseNet-169 fold 

five presented in Phase 2 of Chapter III. As the test set contains five images for each 

class, it is necessary to create five figures of both normalized and unnormalized Grad-

CAM visualizations to fit them in these pages. From the following figures, it is clear that 

when creating Grad-CAM images of all classes without normalization, the Grad-CAM 

visualizations are noisy for unimportant classes. However, upon applying normalization, 

this noise disappears. In every case where the normalized Grad-CAM highlights an 

incorrect class (e.g. the incorrect class Qualea multiflora is partially highlighted for test 

image 1 for which the correct class is Dipteryx alata in Appendix figure 2), the highlighted 

area does not overlap with the highlighted area for the correct class. This observation 

implies that Grad-CAM, and normalized Grad-CAM in particular, creates faithful spatial 

explanations about the classification, at least for POLEN23E dataset. Importantly, the 

applied normalization method does not change the heatmap visualization for the class 

of highest importance.   
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Appendix figure 1. Unnormalized Grad-CAM visualizations overlaying test image 1 for all 23 classes. The vertical 

label is the correct one and the horizontal label is the class c according to which the Grad-CAM heatmap Lc was 

created. 
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Appendix figure 2. Normalized Grad-CAM visualizations overlaying test image 1 for all 23 classes. The vertical label 

is the correct one and the horizontal label is the class c according to which the normalized Grad-CAM heatmap Lc 

was created. 
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Appendix figure 3. Unnormalized Grad-CAM visualizations overlaying test image 2 for all 23 classes. The vertical label 

is the correct one and the horizontal label is the class c according to which the Grad-CAM heatmap Lc was created. 
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Appendix figure 4. Normalized Grad-CAM visualizations overlaying test image 2 for all 23 classes. The vertical label is 

the correct one and the horizontal label is the class c according to which the normalized Grad-CAM heatmap Lc was 

created. 
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Appendix figure 5. Unnormalized Grad-CAM visualizations overlaying test image 3 for all 23 classes. The vertical label 

is the correct one and the horizontal label is the class c according to which the Grad-CAM heatmap Lc was created. 
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Appendix figure 6. Normalized Grad-CAM visualizations overlaying test image 3 for all 23 classes. The vertical label is 

the correct one and the horizontal label is the class c according to which the normalized Grad-CAM heatmap Lc was 

created. 
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Appendix figure 7. Unnormalized Grad-CAM visualizations overlaying test image 4 for all 23 classes. The vertical label 

is the correct one and the horizontal label is the class c according to which the Grad-CAM heatmap Lc was created. 
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Appendix figure 8. Normalized Grad-CAM visualizations overlaying test image 4 for all 23 classes. The vertical label is 

the correct one and the horizontal label is the class c according to which the normalized Grad-CAM heatmap Lc was 

created. 
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Appendix figure 9. Unnormalized Grad-CAM visualizations overlaying test image 5 for all 23 classes. The vertical label 

is the correct one and the horizontal label is the class c according to which the Grad-CAM heatmap Lc was created. 
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Appendix figure 10. Normalized Grad-CAM visualizations overlaying test image 5 for all 23 classes. The vertical label 

is the correct one and the horizontal label is the class c according to which the normalized Grad-CAM heatmap Lc 

was created. 
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Appendix 2. Performance metrics for all composite 
models using grid hyperparameter 
search in Phase 1 

Neural network 
Batch 
size 

Steps/ 

epochs 

Learning 
rate 

Precision Recall F1-score Accuracy 

Inception V3 50 850/50 0.01 0.8875 0.8845 0.8849 88.45% 

Inception V3 50 850/50 0.025 0.8953 0.8932 0.8930 89.32% 

Inception V3 50 850/50 0.05 0.9043 0.9019 0.9014 90.19% 

Inception V3 50 850/50 0.1 0.9041 0.9019 0.9016 90.19% 

Inception V3 50 850/50 0.2 0.9083 0.9068 0.9065 90.68% 

Inception V3 50 2550/150 0.01 0.8987 0.8969 0.8963 89.69% 

Inception V3 50 2550/150 0.025 0.9053 0.9043 0.9037 90.43% 

Inception V3 50 2550/150 0.05 0.9034 0.9019 0.9014 90.19% 

Inception V3 50 2550/150 0.1 0.9055 0.9043 0.9041 90.43% 

Inception V3 50 2550/150 0.2 0.9086 0.9081 0.9073 90.81% 

Inception V3 50 5100/300 0.01 0.9054 0.9043 0.9037 90.43% 

Inception V3 50 5100/300 0.025 0.9091 0.9068 0.9065 90.68% 

Inception V3 50 5100/300 0.05 0.9084 0.9068 0.9063 90.68% 

Inception V3 50 5100/300 0.1 0.9127 0.9106 0.9103 91.06% 

Inception V3 50 5100/300 0.2 0.9070 0.9056 0.9049 90.56% 

Inception V3 50 8500/500 0.01 0.9008 0.8994 0.8989 89.94% 

Inception V3 50 8500/500 0.025 0.9123 0.9106 0.9105 91.06% 

Inception V3 50 8500/500 0.05 0.9124 0.9118 0.9114 91.18% 

Inception V3 50 8500/500 0.1 0.9131 0.9118 0.9114 91.18% 

Inception V3 50 8500/500 0.2 0.9127 0.9118 0.9110 91.18% 

Inception V3 100 450/50 0.01 0.8743 0.8720 0.8715 87.20% 

Inception V3 100 450/50 0.025 0.8883 0.8870 0.8864 88.70% 

Inception V3 100 450/50 0.05 0.8993 0.8981 0.8978 89.81% 

Inception V3 100 450/50 0.1 0.8930 0.8919 0.8914 89.19% 

Inception V3 100 450/50 0.2 0.9086 0.9081 0.9076 90.81% 

Inception V3 100 1350/150 0.01 0.8948 0.8932 0.8929 89.32% 

Inception V3 100 1350/150 0.025 0.9009 0.9006 0.9001 90.06% 

Inception V3 100 1350/150 0.05 0.9049 0.9031 0.9028 90.31% 

Inception V3 100 1350/150 0.1 0.9040 0.9031 0.9026 90.31% 

Inception V3 100 1350/150 0.2 0.9026 0.9019 0.9012 90.19% 

Inception V3 100 2700/300 0.01 0.9013 0.9006 0.9000 90.06% 

Inception V3 100 2700/300 0.025 0.9056 0.9056 0.9049 90.56% 

Inception V3 100 2700/300 0.05 0.9107 0.9093 0.9089 90.93% 

Inception V3 100 2700/300 0.1 0.9090 0.9068 0.9066 90.68% 

Inception V3 100 2700/300 0.2 0.9002 0.8994 0.8987 89.94% 

Inception V3 100 4500/500 0.01 0.9007 0.8994 0.8988 89.94% 

Inception V3 100 4500/500 0.025 0.9062 0.9056 0.9051 90.56% 

Inception V3 100 4500/500 0.05 0.9053 0.9043 0.9036 90.43% 

Inception V3 100 4500/500 0.1 0.9052 0.9031 0.9031 90.31% 

Inception V3 100 4500/500 0.2 0.9104 0.9081 0.9078 90.81% 

Inception V3 150 300/50 0.01 0.8614 0.8609 0.8580 86.09% 

Inception V3 150 300/50 0.025 0.8841 0.8807 0.8801 88.07% 



382 
 

Neural network 
Batch 
size 

Steps/ 

epochs 

Learning 
rate 

Precision Recall F1-score Accuracy 

Inception V3 150 300/50 0.05 0.8987 0.8981 0.8978 89.81% 

Inception V3 150 300/50 0.1 0.8997 0.8981 0.8978 89.81% 

Inception V3 150 300/50 0.2 0.9040 0.9031 0.9023 90.31% 

Inception V3 150 900/150 0.01 0.8858 0.8845 0.8842 88.45% 

Inception V3 150 900/150 0.025 0.9046 0.9031 0.9030 90.31% 

Inception V3 150 900/150 0.05 0.8996 0.8981 0.8977 89.81% 

Inception V3 150 900/150 0.1 0.9051 0.9043 0.9039 90.43% 

Inception V3 150 900/150 0.2 0.9080 0.9068 0.9061 90.68% 

Inception V3 150 1800/300 0.01 0.8985 0.8969 0.8965 89.69% 

Inception V3 150 1800/300 0.025 0.9067 0.9056 0.9050 90.56% 

Inception V3 150 1800/300 0.05 0.9078 0.9068 0.9064 90.68% 

Inception V3 150 1800/300 0.1 0.9065 0.9043 0.9041 90.43% 

Inception V3 150 1800/300 0.2 0.9069 0.9056 0.9052 90.56% 

Inception V3 150 3000/500 0.01 0.9014 0.8994 0.8989 89.94% 

Inception V3 150 3000/500 0.025 0.9078 0.9056 0.9051 90.56% 

Inception V3 150 3000/500 0.05 0.9066 0.9056 0.9051 90.56% 

Inception V3 150 3000/500 0.1 0.9086 0.9068 0.9065 90.68% 

Inception V3 150 3000/500 0.2 0.9045 0.9031 0.9025 90.31% 

Inception ResNet V2 50 850/50 0.01 0.8651 0.8634 0.8629 86.34% 

Inception ResNet V2 50 850/50 0.025 0.8721 0.8708 0.8711 87.08% 

Inception ResNet V2 50 850/50 0.05 0.8911 0.8882 0.8886 88.82% 

Inception ResNet V2 50 850/50 0.1 0.8921 0.8907 0.8906 89.07% 

Inception ResNet V2 50 850/50 0.2 0.9041 0.9019 0.9020 90.19% 

Inception ResNet V2 50 2550/150 0.01 0.8841 0.8820 0.8822 88.20% 

Inception ResNet V2 50 2550/150 0.025 0.8934 0.8907 0.8906 89.07% 

Inception ResNet V2 50 2550/150 0.05 0.9020 0.8994 0.8995 89.94% 

Inception ResNet V2 50 2550/150 0.1 0.9075 0.9056 0.9056 90.56% 

Inception ResNet V2 50 2550/150 0.2 0.9022 0.9006 0.9006 90.06% 

Inception ResNet V2 50 5100/300 0.01 0.8909 0.8882 0.8886 88.82% 

Inception ResNet V2 50 5100/300 0.025 0.9022 0.9006 0.9004 90.06% 

Inception ResNet V2 50 5100/300 0.05 0.9066 0.9043 0.9044 90.43% 

Inception ResNet V2 50 5100/300 0.1 0.9089 0.9081 0.9078 90.81% 

Inception ResNet V2 50 5100/300 0.2 0.9149 0.9130 0.9128 91.30% 

Inception ResNet V2 50 8500/500 0.01 0.8997 0.8981 0.8982 89.81% 

Inception ResNet V2 50 8500/500 0.025 0.9083 0.9056 0.9056 90.56% 

Inception ResNet V2 50 8500/500 0.05 0.9067 0.9043 0.9044 90.43% 

Inception ResNet V2 50 8500/500 0.1 0.9020 0.9006 0.9003 90.06% 

Inception ResNet V2 50 8500/500 0.2 0.9045 0.9031 0.9030 90.31% 

Inception ResNet V2 100 450/50 0.01 0.8374 0.8348 0.8316 83.48% 

Inception ResNet V2 100 450/50 0.025 0.8642 0.8634 0.8630 86.34% 

Inception ResNet V2 100 450/50 0.05 0.8808 0.8795 0.8795 87.95% 

Inception ResNet V2 100 450/50 0.1 0.8952 0.8932 0.8931 89.32% 

Inception ResNet V2 100 450/50 0.2 0.8945 0.8932 0.8928 89.32% 

Inception ResNet V2 100 1350/150 0.01 0.8695 0.8671 0.8672 86.71% 

Inception ResNet V2 100 1350/150 0.025 0.8891 0.8882 0.8878 88.82% 

Inception ResNet V2 100 1350/150 0.05 0.9054 0.9019 0.9022 90.19% 
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Neural network 
Batch 
size 

Steps/ 

epochs 

Learning 
rate 

Precision Recall F1-score Accuracy 

Inception ResNet V2 100 1350/150 0.1 0.8952 0.8919 0.8920 89.19% 

Inception ResNet V2 100 1350/150 0.2 0.9056 0.9031 0.9027 90.31% 

Inception ResNet V2 100 2700/300 0.01 0.8892 0.8870 0.8871 88.70% 

Inception ResNet V2 100 2700/300 0.025 0.8972 0.8957 0.8955 89.57% 

Inception ResNet V2 100 2700/300 0.05 0.9018 0.8994 0.8994 89.94% 

Inception ResNet V2 100 2700/300 0.1 0.9081 0.9068 0.9067 90.68% 

Inception ResNet V2 100 2700/300 0.2 0.9094 0.9068 0.9066 90.68% 

Inception ResNet V2 100 4500/500 0.01 0.8916 0.8894 0.8894 88.94% 

Inception ResNet V2 100 4500/500 0.025 0.9017 0.8994 0.8994 89.94% 

Inception ResNet V2 100 4500/500 0.05 0.9047 0.9031 0.9031 90.31% 

Inception ResNet V2 100 4500/500 0.1 0.9029 0.9019 0.9015 90.19% 

Inception ResNet V2 100 4500/500 0.2 0.9076 0.9056 0.9052 90.56% 

Inception ResNet V2 150 300/50 0.01 0.8259 0.8236 0.8200 82.36% 

Inception ResNet V2 150 300/50 0.025 0.8545 0.8534 0.8518 85.34% 

Inception ResNet V2 150 300/50 0.05 0.8727 0.8708 0.8707 87.08% 

Inception ResNet V2 150 300/50 0.1 0.8866 0.8832 0.8837 88.32% 

Inception ResNet V2 150 300/50 0.2 0.9021 0.8994 0.8992 89.94% 

Inception ResNet V2 150 900/150 0.01 0.8699 0.8671 0.8668 86.71% 

Inception ResNet V2 150 900/150 0.025 0.8831 0.8807 0.8806 88.07% 

Inception ResNet V2 150 900/150 0.05 0.8893 0.8870 0.8871 88.70% 

Inception ResNet V2 150 900/150 0.1 0.9017 0.8994 0.8993 89.94% 

Inception ResNet V2 150 900/150 0.2 0.8967 0.8957 0.8954 89.57% 

Inception ResNet V2 150 1800/300 0.01 0.8768 0.8745 0.8745 87.45% 

Inception ResNet V2 150 1800/300 0.025 0.8908 0.8882 0.8881 88.82% 

Inception ResNet V2 150 1800/300 0.05 0.8964 0.8944 0.8942 89.44% 

Inception ResNet V2 150 1800/300 0.1 0.9058 0.9031 0.9033 90.31% 

Inception ResNet V2 150 1800/300 0.2 0.9114 0.9093 0.9094 90.93% 

Inception ResNet V2 150 3000/500 0.01 0.8920 0.8894 0.8897 88.94% 

Inception ResNet V2 150 3000/500 0.025 0.8946 0.8919 0.8923 89.19% 

Inception ResNet V2 150 3000/500 0.05 0.9091 0.9081 0.9079 90.81% 

Inception ResNet V2 150 3000/500 0.1 0.8978 0.8957 0.8957 89.57% 

Inception ResNet V2 150 3000/500 0.2 0.8994 0.8981 0.8980 89.81% 

ResNet-152 V2 50 850/50 0.01 0.9098 0.9081 0.9081 90.81% 

ResNet-152 V2 50 850/50 0.025 0.9085 0.9081 0.9074 90.81% 

ResNet-152 V2 50 850/50 0.05 0.9059 0.9031 0.9028 90.31% 

ResNet-152 V2 50 850/50 0.1 0.9057 0.9043 0.9040 90.43% 

ResNet-152 V2 50 850/50 0.2 0.9011 0.8994 0.8990 89.94% 

ResNet-152 V2 50 2550/150 0.01 0.9043 0.9031 0.9027 90.31% 

ResNet-152 V2 50 2550/150 0.025 0.9029 0.9019 0.9016 90.19% 

ResNet-152 V2 50 2550/150 0.05 0.9195 0.9180 0.9176 91.80% 

ResNet-152 V2 50 2550/150 0.1 0.9041 0.9031 0.9029 90.31% 

ResNet-152 V2 50 2550/150 0.2 0.9040 0.9006 0.9002 90.06% 

ResNet-152 V2 50 5100/300 0.01 0.9006 0.8994 0.8993 89.94% 

ResNet-152 V2 50 5100/300 0.025 0.9100 0.9081 0.9073 90.81% 

ResNet-152 V2 50 5100/300 0.05 0.9095 0.9081 0.9076 90.81% 

ResNet-152 V2 50 5100/300 0.1 0.9067 0.9056 0.9048 90.56% 
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Neural network 
Batch 
size 

Steps/ 
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Learning 
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Precision Recall F1-score Accuracy 

ResNet-152 V2 50 5100/300 0.2 0.9073 0.9068 0.9063 90.68% 

ResNet-152 V2 50 8500/500 0.01 0.9042 0.9031 0.9024 90.31% 

ResNet-152 V2 50 8500/500 0.025 0.9078 0.9056 0.9052 90.56% 

ResNet-152 V2 50 8500/500 0.05 0.9147 0.9130 0.9125 91.30% 

ResNet-152 V2 50 8500/500 0.1 0.9088 0.9068 0.9066 90.68% 

ResNet-152 V2 50 8500/500 0.2 0.9031 0.9031 0.9026 90.31% 

ResNet-152 V2 100 450/50 0.01 0.8929 0.8919 0.8917 89.19% 

ResNet-152 V2 100 450/50 0.025 0.9075 0.9056 0.9056 90.56% 

ResNet-152 V2 100 450/50 0.05 0.9068 0.9043 0.9041 90.43% 

ResNet-152 V2 100 450/50 0.1 0.9101 0.9081 0.9077 90.81% 

ResNet-152 V2 100 450/50 0.2 0.9002 0.8994 0.8990 89.94% 

ResNet-152 V2 100 1350/150 0.01 0.9080 0.9068 0.9066 90.68% 

ResNet-152 V2 100 1350/150 0.025 0.9138 0.9118 0.9118 91.18% 

ResNet-152 V2 100 1350/150 0.05 0.9027 0.9019 0.9015 90.19% 

ResNet-152 V2 100 1350/150 0.1 0.9049 0.9031 0.9028 90.31% 

ResNet-152 V2 100 1350/150 0.2 0.9091 0.9068 0.9067 90.68% 

ResNet-152 V2 100 2700/300 0.01 0.9144 0.9130 0.9129 91.30% 

ResNet-152 V2 100 2700/300 0.025 0.9095 0.9081 0.9076 90.81% 

ResNet-152 V2 100 2700/300 0.05 0.9168 0.9155 0.9150 91.55% 

ResNet-152 V2 100 2700/300 0.1 0.9212 0.9205 0.9200 92.05% 

ResNet-152 V2 100 2700/300 0.2 0.9051 0.9031 0.9029 90.31% 

ResNet-152 V2 100 4500/500 0.01 0.9059 0.9056 0.9053 90.56% 

ResNet-152 V2 100 4500/500 0.025 0.9121 0.9106 0.9098 91.06% 

ResNet-152 V2 100 4500/500 0.05 0.9110 0.9106 0.9100 91.06% 

ResNet-152 V2 100 4500/500 0.1 0.9082 0.9056 0.9054 90.56% 

ResNet-152 V2 100 4500/500 0.2 0.9058 0.9043 0.9041 90.43% 

ResNet-152 V2 150 300/50 0.01 0.8910 0.8894 0.8891 88.94% 

ResNet-152 V2 150 300/50 0.025 0.9103 0.9081 0.9076 90.81% 

ResNet-152 V2 150 300/50 0.05 0.9155 0.9143 0.9138 91.43% 

ResNet-152 V2 150 300/50 0.1 0.9180 0.9168 0.9164 91.68% 

ResNet-152 V2 150 300/50 0.2 0.8943 0.8932 0.8926 89.32% 

ResNet-152 V2 150 900/150 0.01 0.9116 0.9081 0.9081 90.81% 

ResNet-152 V2 150 900/150 0.025 0.9007 0.8994 0.8990 89.94% 

ResNet-152 V2 150 900/150 0.05 0.9090 0.9068 0.9067 90.68% 

ResNet-152 V2 150 900/150 0.1 0.9085 0.9068 0.9062 90.68% 

ResNet-152 V2 150 900/150 0.2 0.8921 0.8907 0.8903 89.07% 

ResNet-152 V2 150 1800/300 0.01 0.9025 0.9019 0.9015 90.19% 

ResNet-152 V2 150 1800/300 0.025 0.9117 0.9106 0.9103 91.06% 

ResNet-152 V2 150 1800/300 0.05 0.9115 0.9106 0.9098 91.06% 

ResNet-152 V2 150 1800/300 0.1 0.9056 0.9043 0.9040 90.43% 

ResNet-152 V2 150 1800/300 0.2 0.9111 0.9093 0.9088 90.93% 

ResNet-152 V2 150 3000/500 0.01 0.9016 0.9006 0.9003 90.06% 

ResNet-152 V2 150 3000/500 0.025 0.9115 0.9093 0.9090 90.93% 

ResNet-152 V2 150 3000/500 0.05 0.9093 0.9081 0.9076 90.81% 

ResNet-152 V2 150 3000/500 0.1 0.9093 0.9081 0.9076 90.81% 

ResNet-152 V2 150 3000/500 0.2 0.9012 0.8994 0.8990 89.94% 
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ResNet-50 V2 50 850/50 0.01 0.9172 0.9168 0.9163 91.68% 

ResNet-50 V2 50 850/50 0.025 0.9128 0.9118 0.9114 91.18% 

ResNet-50 V2 50 850/50 0.05 0.9149 0.9143 0.9136 91.43% 

ResNet-50 V2 50 850/50 0.1 0.9170 0.9168 0.9165 91.68% 

ResNet-50 V2 50 850/50 0.2 0.8970 0.8969 0.8965 89.69% 

ResNet-50 V2 50 2550/150 0.01 0.9129 0.9130 0.9124 91.30% 

ResNet-50 V2 50 2550/150 0.025 0.9187 0.9180 0.9175 91.80% 

ResNet-50 V2 50 2550/150 0.05 0.9144 0.9143 0.9137 91.43% 

ResNet-50 V2 50 2550/150 0.1 0.9116 0.9118 0.9111 91.18% 

ResNet-50 V2 50 2550/150 0.2 0.9134 0.9130 0.9127 91.30% 

ResNet-50 V2 50 5100/300 0.01 0.9255 0.9255 0.9251 92.55% 

ResNet-50 V2 50 5100/300 0.025 0.9196 0.9193 0.9186 91.93% 

ResNet-50 V2 50 5100/300 0.05 0.9257 0.9255 0.9250 92.55% 

ResNet-50 V2 50 5100/300 0.1 0.9203 0.9193 0.9189 91.93% 

ResNet-50 V2 50 5100/300 0.2 0.9097 0.9093 0.9089 90.93% 

ResNet-50 V2 50 8500/500 0.01 0.9168 0.9168 0.9164 91.68% 

ResNet-50 V2 50 8500/500 0.025 0.9266 0.9255 0.9250 92.55% 

ResNet-50 V2 50 8500/500 0.05 0.9089 0.9081 0.9079 90.81% 

ResNet-50 V2 50 8500/500 0.1 0.9207 0.9205 0.9196 92.05% 

ResNet-50 V2 50 8500/500 0.2 0.9174 0.9168 0.9164 91.68% 

ResNet-50 V2 100 450/50 0.01 0.9110 0.9106 0.9102 91.06% 

ResNet-50 V2 100 450/50 0.025 0.9107 0.9093 0.9091 90.93% 

ResNet-50 V2 100 450/50 0.05 0.9103 0.9093 0.9087 90.93% 

ResNet-50 V2 100 450/50 0.1 0.9088 0.9081 0.9078 90.81% 

ResNet-50 V2 100 450/50 0.2 0.9075 0.9068 0.9068 90.68% 

ResNet-50 V2 100 1350/150 0.01 0.9119 0.9118 0.9114 91.18% 

ResNet-50 V2 100 1350/150 0.025 0.9209 0.9205 0.9200 92.05% 

ResNet-50 V2 100 1350/150 0.05 0.9183 0.9180 0.9176 91.80% 

ResNet-50 V2 100 1350/150 0.1 0.9134 0.9130 0.9124 91.30% 

ResNet-50 V2 100 1350/150 0.2 0.9149 0.9143 0.9140 91.43% 

ResNet-50 V2 100 2700/300 0.01 0.9161 0.9155 0.9151 91.55% 

ResNet-50 V2 100 2700/300 0.025 0.9224 0.9217 0.9213 92.17% 

ResNet-50 V2 100 2700/300 0.05 0.9161 0.9155 0.9151 91.55% 

ResNet-50 V2 100 2700/300 0.1 0.9177 0.9168 0.9162 91.68% 

ResNet-50 V2 100 2700/300 0.2 0.9006 0.9006 0.9001 90.06% 

ResNet-50 V2 100 4500/500 0.01 0.9210 0.9205 0.9200 92.05% 

ResNet-50 V2 100 4500/500 0.025 0.9256 0.9255 0.9250 92.55% 

ResNet-50 V2 100 4500/500 0.05 0.9183 0.9180 0.9174 91.80% 

ResNet-50 V2 100 4500/500 0.1 0.9131 0.9130 0.9123 91.30% 

ResNet-50 V2 100 4500/500 0.2 0.9076 0.9068 0.9063 90.68% 

ResNet-50 V2 150 300/50 0.01 0.9061 0.9056 0.9052 90.56% 

ResNet-50 V2 150 300/50 0.025 0.9122 0.9118 0.9113 91.18% 

ResNet-50 V2 150 300/50 0.05 0.9137 0.9130 0.9127 91.30% 

ResNet-50 V2 150 300/50 0.1 0.9184 0.9180 0.9179 91.80% 

ResNet-50 V2 150 300/50 0.2 0.9164 0.9155 0.9152 91.55% 

ResNet-50 V2 150 900/150 0.01 0.9157 0.9143 0.9140 91.43% 



386 
 

Neural network 
Batch 
size 

Steps/ 

epochs 

Learning 
rate 

Precision Recall F1-score Accuracy 

ResNet-50 V2 150 900/150 0.025 0.9149 0.9143 0.9138 91.43% 

ResNet-50 V2 150 900/150 0.05 0.9146 0.9143 0.9138 91.43% 

ResNet-50 V2 150 900/150 0.1 0.9169 0.9168 0.9163 91.68% 

ResNet-50 V2 150 900/150 0.2 0.9078 0.9068 0.9067 90.68% 

ResNet-50 V2 150 1800/300 0.01 0.9153 0.9143 0.9140 91.43% 

ResNet-50 V2 150 1800/300 0.025 0.9223 0.9217 0.9214 92.17% 

ResNet-50 V2 150 1800/300 0.05 0.9234 0.9230 0.9226 92.30% 

ResNet-50 V2 150 1800/300 0.1 0.9194 0.9180 0.9177 91.80% 

ResNet-50 V2 150 1800/300 0.2 0.9121 0.9118 0.9114 91.18% 

ResNet-50 V2 150 3000/500 0.01 0.9220 0.9217 0.9214 92.17% 

ResNet-50 V2 150 3000/500 0.025 0.9144 0.9143 0.9137 91.43% 

ResNet-50 V2 150 3000/500 0.05 0.9121 0.9118 0.9113 91.18% 

ResNet-50 V2 150 3000/500 0.1 0.9248 0.9242 0.9240 92.42% 

ResNet-50 V2 150 3000/500 0.2 0.9146 0.9143 0.9140 91.43% 

  

Appendix table 1. Performance metrics for all composite models using grid strategy hyperparameter search. Best 

composite models for each neural network are highlighted in bold typeface. 
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Appendix 3. Performance metrics for all composite 
models using manual hyperparameter 
search in Phase 1 

Neural network 
Batch 
size 

Steps/ 

epochs 

Learning 
rate 

Precision Recall F1-score Accuracy 

Inception V3 25 6600/200 0.1 0.9131 0.9118 0.9112 91.18% 

Inception V3 25 6600/200 0.2 0.9107 0.9093 0.9088 90.93% 

Inception V3 50 8500/500 0.1 0.9139 0.9118 0.9112 91.18% 

Inception V3 50 8500/500 0.2 0.9059 0.9043 0.9038 90.43% 

Inception V3 50 17000/1000 0.0005 0.9073 0.9056 0.9053 90.56% 

Inception V3 100 9000/1000 0.05 0.9169 0.9155 0.9151 91.55% 

Inception V3 100 9000/1000 0.1 0.9123 0.9106 0.9100 91.06% 

Inception ResNet V2 16 7650/150 0.075 0.9110 0.9093 0.9095 90.93% 

Inception ResNet V2 25 990/30 0.1 0.9078 0.9068 0.9064 90.68% 

Inception ResNet V2 25 990/30 0.15 0.9019 0.8994 0.8990 89.94% 

Inception ResNet V2 25 990/30 0.2 0.9156 0.9130 0.9131 91.30% 

Inception ResNet V2 25 990/30 0.25 0.8942 0.8932 0.8932 89.32% 

Inception ResNet V2 25 990/30 0.3 0.8884 0.8870 0.8866 88.70% 

Inception ResNet V2 25 990/30 0.2 0.9092 0.9068 0.9067 90.68% 

Inception ResNet V2 25 3300/100 0.1 0.9069 0.9056 0.9054 90.56% 

Inception ResNet V2 25 4950/150 0.1 0.9116 0.9106 0.9101 91.06% 

Inception ResNet V2 25 4950/150 0.2 0.9080 0.9068 0.9067 90.68% 

Inception ResNet V2 25 9900/300 0.005 0.9023 0.8994 0.8994 89.94% 

Inception ResNet V2 25 9900/300 0.005 0.9095 0.9081 0.9078 90.81% 

Inception ResNet V2 25 9900/300 0.2 0.8964 0.8944 0.8944 89.44% 

Inception ResNet V2 50 340/20 0.2 0.9026 0.9006 0.9005 90.06% 

Inception ResNet V2 50 850/50 0.2 0.9031 0.9019 0.9019 90.19% 

Inception ResNet V2 50 850/50 0.3 0.9015 0.8994 0.8997 89.94% 

Inception ResNet V2 50 1700/100 0.1 0.9128 0.9118 0.9113 91.18% 

Inception ResNet V2 50 1700/100 0.2 0.9130 0.9118 0.9116 91.18% 

Inception ResNet V2 50 2975/175 0.2 0.9033 0.9006 0.9006 90.06% 

Inception ResNet V2 50 3400/200 0.1 0.9124 0.9106 0.9108 91.06% 

Inception ResNet V2 50 3400/200 0.18 0.9137 0.9118 0.9115 91.18% 

Inception ResNet V2 50 3400/200 0.2 0.9140 0.9130 0.9129 91.30% 

Inception ResNet V2 50 3400/200 0.22 0.9132 0.9118 0.9120 91.18% 

Inception ResNet V2 50 4250/250 0.1 0.9127 0.9106 0.9105 91.06% 

Inception ResNet V2 50 4250/250 0.2 0.9150 0.9130 0.9129 91.30% 

Inception ResNet V2 50 5100/300 0.1 0.9082 0.9068 0.9067 90.68% 

Inception ResNet V2 50 8500/500 0.05 0.9120 0.9106 0.9105 91.06% 

Inception ResNet V2 50 8500/500 0.1 0.9059 0.9043 0.9043 90.43% 

Inception ResNet V2 50 17000/1000 0.0005 0.9000 0.8969 0.8972 89.69% 

Inception ResNet V2 100 2700/300 0.005 0.9072 0.9056 0.9054 90.56% 

Inception ResNet V2 100 9000/1000 0.05 0.9110 0.9081 0.9082 90.81% 

Inception ResNet V2 100 9000/1000 0.1 0.9145 0.9130 0.9131 91.30% 

Inception ResNet V2 200 150/30 0.08 0.8789 0.8783 0.8778 87.83% 

Inception ResNet V2 200 250/50 0.2 0.8975 0.8944 0.8946 89.44% 

Inception ResNet V2 200 500/100 0.2 0.9055 0.9043 0.9041 90.43% 
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Neural network 
Batch 
size 

Steps/ 
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Learning 
rate 

Precision Recall F1-score Accuracy 

Inception ResNet V2 200 1500/300 0.2 0.9066 0.9031 0.9031 90.31% 

ResNet-152 V2 50 17000/1000 0.0005 0.9121 0.9106 0.9103 91.06% 

ResNet-152 V2 100 2700/300 0.005 0.9174 0.9155 0.9154 91.55% 

ResNet-152 V2 100 2700/300 0.01 0.9130 0.9106 0.9101 91.06% 

ResNet-152 V2 100 2700/300 0.1 0.8860 0.8820 0.8827 88.20% 

ResNet-152 V2 100 4500/500 0.0001 0.9160 0.9130 0.9131 91.30% 

ResNet-152 V2 100 4500/500 0.0005 0.9253 0.9230 0.9230 92.30% 

ResNet-152 V2 100 4500/500 0.005 0.9191 0.9168 0.9167 91.68% 

ResNet-50 V2 25 33000/1000 0.0005 0.9260 0.9242 0.9241 92.42% 

ResNet-50 V2 50 17000/1000 0.0005 0.9390 0.9379 0.9378 93.79% 

ResNet-50 V2 100 4500/500 0.0001 0.9304 0.9292 0.9290 92.92% 

ResNet-50 V2 100 4500/500 0.0005 0.9268 0.9255 0.9254 92.55% 

ResNet-50 V2 100 4500/500 0.001 0.9336 0.9317 0.9317 93.17% 

ResNet-50 V2 100 4500/500 0.0045 0.9252 0.9242 0.9240 92.42% 

ResNet-50 V2 100 4500/500 0.005 0.9341 0.9329 0.9328 93.29% 

ResNet-50 V2 100 4500/500 0.0055 0.9275 0.9267 0.9263 92.67% 

ResNet-50 V2 100 4500/500 0.0075 0.9250 0.9242 0.9239 92.42% 

ResNet-50 V2 100 4500/500 0.025 0.9212 0.9205 0.9200 92.05% 

ResNet-50 V2 100 9000/1000 0.0005 0.9362 0.9354 0.9351 93.54% 

ResNet-50 V2 100 9000/1000 0.001 0.9367 0.9354 0.9353 93.54% 

  

Appendix table 2. Performance metrics for all composite models using manual strategy hyperparameter search. Best 

composite models for each neural network are highlighted in bold typeface. 
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Appendix 4. Average test set performance metrics in 
Phase 2 

Neural network 
Batch 
size 

Learning 
rate 

Precision Recall F1-score Accuracy 

DenseNet-121 8 0.001 0.9701 0.9652 0.9649 96.52% 

DenseNet-121 8 0.005 0.9757 0.9722 0.9719 97.22% 

DenseNet-121 8 0.01 0.9757 0.9704 0.9700 97.04% 

DenseNet-121 8 0.02 0.9674 0.9583 0.9585 95.83% 

DenseNet-121 8 0.03 0.9523 0.9304 0.9290 93.04% 

DenseNet-121 8 0.04 0.8436 0.8017 0.7920 80.17% 

DenseNet-121 8 0.05 0.6782 0.6548 0.6256 65.48% 

DenseNet-121 8 0.06 0.5757 0.5330 0.4990 53.30% 

DenseNet-121 8 0.07 0.4730 0.4817 0.4249 48.17% 

DenseNet-121 8 0.08 0.4147 0.4365 0.3810 43.65% 

DenseNet-121 8 0.09 0.3806 0.3730 0.3241 37.30% 

DenseNet-121 8 0.1 0.3285 0.3470 0.2913 34.70% 

DenseNet-121 16 0.001 0.9684 0.9626 0.9623 96.26% 

DenseNet-121 16 0.005 0.9768 0.9730 0.9728 97.30% 

DenseNet-121 16 0.01 0.9784 0.9739 0.9737 97.39% 

DenseNet-121 16 0.02 0.9802 0.9757 0.9756 97.57% 

DenseNet-121 16 0.03 0.9743 0.9687 0.9683 96.87% 

DenseNet-121 16 0.04 0.9585 0.9487 0.9475 94.87% 

DenseNet-121 16 0.05 0.9275 0.9052 0.9044 90.52% 

DenseNet-121 16 0.06 0.7229 0.6983 0.6741 69.83% 

DenseNet-121 16 0.07 0.7170 0.6748 0.6509 67.48% 

DenseNet-121 16 0.08 0.6515 0.6200 0.5935 62.00% 

DenseNet-121 16 0.09 0.5055 0.4809 0.4386 48.09% 

DenseNet-121 16 0.1 0.4670 0.4652 0.4178 46.52% 

DenseNet-121 32 0.001 0.9569 0.9504 0.9503 95.04% 

DenseNet-121 32 0.005 0.9676 0.9617 0.9616 96.17% 

DenseNet-121 32 0.01 0.9706 0.9652 0.9651 96.52% 

DenseNet-121 32 0.02 0.9687 0.9626 0.9624 96.26% 

DenseNet-121 32 0.03 0.9725 0.9678 0.9673 96.78% 

DenseNet-121 32 0.04 0.9753 0.9704 0.9701 97.04% 

DenseNet-121 32 0.05 0.9515 0.9374 0.9371 93.74% 

DenseNet-121 32 0.06 0.8888 0.8670 0.8635 86.70% 

DenseNet-121 32 0.07 0.3934 0.3930 0.3624 39.30% 

DenseNet-121 32 0.08 0.4018 0.3991 0.3754 39.91% 

DenseNet-121 32 0.09 0.0019 0.0435 0.0037 4.35% 

DenseNet-121 32 0.1 0.0707 0.0991 0.0627 9.91% 

DenseNet-121 64 0.001 0.9499 0.9435 0.9429 94.35% 

DenseNet-121 64 0.005 0.9563 0.9496 0.9492 94.96% 

DenseNet-121 64 0.01 0.9678 0.9626 0.9623 96.26% 

DenseNet-121 64 0.02 0.9636 0.9574 0.9575 95.74% 

DenseNet-121 64 0.03 0.9750 0.9704 0.9704 97.04% 

DenseNet-121 64 0.04 0.9757 0.9713 0.9709 97.13% 

DenseNet-121 64 0.05 0.9755 0.9713 0.9707 97.13% 
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DenseNet-121 64 0.06 0.9553 0.9461 0.9459 94.61% 

DenseNet-121 64 0.07 0.4804 0.4983 0.4771 49.83% 

DenseNet-121 64 0.08 0.0958 0.1287 0.0951 12.87% 

DenseNet-121 64 0.09 0.0949 0.1313 0.0953 13.13% 

DenseNet-121 64 0.1 0.0019 0.0435 0.0036 4.35% 

DenseNet-169 8 0.001 0.9710 0.9652 0.9647 96.52% 

DenseNet-169 8 0.005 0.9712 0.9652 0.9650 96.52% 

DenseNet-169 8 0.01 0.9788 0.9739 0.9736 97.39% 

DenseNet-169 8 0.02 0.9663 0.9565 0.9557 95.65% 

DenseNet-169 8 0.03 0.9221 0.8930 0.8904 89.30% 

DenseNet-169 8 0.04 0.8833 0.8470 0.8424 84.70% 

DenseNet-169 8 0.05 0.6993 0.6696 0.6458 66.96% 

DenseNet-169 8 0.06 0.5565 0.5391 0.4981 53.91% 

DenseNet-169 8 0.07 0.5832 0.5443 0.5116 54.43% 

DenseNet-169 8 0.08 0.5251 0.5035 0.4534 50.35% 

DenseNet-169 8 0.09 0.4261 0.4252 0.3722 42.52% 

DenseNet-169 8 0.1 0.5133 0.5130 0.4686 51.30% 

DenseNet-169 16 0.001 0.9601 0.9539 0.9531 95.39% 

DenseNet-169 16 0.005 0.9682 0.9635 0.9630 96.35% 

DenseNet-169 16 0.01 0.9743 0.9696 0.9690 96.96% 

DenseNet-169 16 0.02 0.9817 0.9783 0.9779 97.83% 

DenseNet-169 16 0.03 0.9681 0.9609 0.9608 96.09% 

DenseNet-169 16 0.04 0.9599 0.9504 0.9495 95.04% 

DenseNet-169 16 0.05 0.8355 0.7991 0.7930 79.91% 

DenseNet-169 16 0.06 0.7411 0.7043 0.6806 70.43% 

DenseNet-169 16 0.07 0.7783 0.7078 0.6977 70.78% 

DenseNet-169 16 0.08 0.5811 0.5704 0.5367 57.04% 

DenseNet-169 16 0.09 0.6280 0.5826 0.5561 58.26% 

DenseNet-169 16 0.1 0.5117 0.5130 0.4721 51.30% 

DenseNet-169 32 0.001 0.9574 0.9522 0.9514 95.22% 

DenseNet-169 32 0.005 0.9701 0.9652 0.9647 96.52% 

DenseNet-169 32 0.01 0.9754 0.9704 0.9703 97.04% 

DenseNet-169 32 0.02 0.9747 0.9704 0.9699 97.04% 

DenseNet-169 32 0.03 0.9747 0.9696 0.9691 96.96% 

DenseNet-169 32 0.04 0.9683 0.9617 0.9612 96.17% 

DenseNet-169 32 0.05 0.9310 0.9139 0.9107 91.39% 

DenseNet-169 32 0.06 0.5327 0.5365 0.5097 53.65% 

DenseNet-169 32 0.07 0.5109 0.5009 0.4730 50.09% 

DenseNet-169 32 0.08 0.2821 0.2904 0.2579 29.04% 

DenseNet-169 32 0.09 0.1844 0.2096 0.1694 20.96% 

DenseNet-169 32 0.1 0.0945 0.1278 0.0837 12.78% 

DenseNet-169 64 0.001 0.9478 0.9391 0.9385 93.91% 

DenseNet-169 64 0.005 0.9589 0.9513 0.9507 95.13% 

DenseNet-169 64 0.01 0.9640 0.9583 0.9574 95.83% 

DenseNet-169 64 0.02 0.9717 0.9661 0.9655 96.61% 

DenseNet-169 64 0.03 0.9726 0.9661 0.9654 96.61% 
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DenseNet-169 64 0.04 0.9754 0.9696 0.9693 96.96% 

DenseNet-169 64 0.05 0.9765 0.9704 0.9702 97.04% 

DenseNet-169 64 0.06 0.9592 0.9487 0.9480 94.87% 

DenseNet-169 64 0.07 0.1852 0.2157 0.1837 21.57% 

DenseNet-169 64 0.08 0.0940 0.1296 0.0936 12.96% 

DenseNet-169 64 0.09 0.0019 0.0435 0.0036 4.35% 

DenseNet-169 64 0.1 0.0025 0.0478 0.0047 4.78% 

DenseNet-201 8 0.001 0.9592 0.9522 0.9516 95.22% 

DenseNet-201 8 0.005 0.9761 0.9713 0.9711 97.13% 

DenseNet-201 8 0.01 0.9758 0.9704 0.9700 97.04% 

DenseNet-201 8 0.02 0.9692 0.9600 0.9593 96.00% 

DenseNet-201 8 0.03 0.9359 0.9174 0.9149 91.74% 

DenseNet-201 8 0.04 0.8792 0.8478 0.8422 84.78% 

DenseNet-201 8 0.05 0.7132 0.6835 0.6522 68.35% 

DenseNet-201 8 0.06 0.5990 0.5678 0.5302 56.78% 

DenseNet-201 8 0.07 0.5303 0.5148 0.4746 51.48% 

DenseNet-201 8 0.08 0.5654 0.5452 0.5095 54.52% 

DenseNet-201 8 0.09 0.5171 0.5087 0.4641 50.87% 

DenseNet-201 8 0.1 0.4623 0.4452 0.4058 44.52% 

DenseNet-201 16 0.001 0.9586 0.9522 0.9510 95.22% 

DenseNet-201 16 0.005 0.9718 0.9678 0.9673 96.78% 

DenseNet-201 16 0.01 0.9727 0.9670 0.9667 96.70% 

DenseNet-201 16 0.02 0.9765 0.9713 0.9704 97.13% 

DenseNet-201 16 0.03 0.9702 0.9626 0.9622 96.26% 

DenseNet-201 16 0.04 0.9716 0.9643 0.9639 96.43% 

DenseNet-201 16 0.05 0.9551 0.9470 0.9460 94.70% 

DenseNet-201 16 0.06 0.8361 0.8122 0.8001 81.22% 

DenseNet-201 16 0.07 0.7324 0.6800 0.6626 68.00% 

DenseNet-201 16 0.08 0.6010 0.5591 0.5266 55.91% 

DenseNet-201 16 0.09 0.6701 0.6191 0.5940 61.91% 

DenseNet-201 16 0.1 0.4815 0.4783 0.4366 47.83% 

DenseNet-201 32 0.001 0.9482 0.9417 0.9405 94.17% 

DenseNet-201 32 0.005 0.9633 0.9574 0.9569 95.74% 

DenseNet-201 32 0.01 0.9703 0.9635 0.9635 96.35% 

DenseNet-201 32 0.02 0.9779 0.9739 0.9738 97.39% 

DenseNet-201 32 0.03 0.9771 0.9730 0.9729 97.30% 

DenseNet-201 32 0.04 0.9753 0.9704 0.9701 97.04% 

DenseNet-201 32 0.05 0.9622 0.9539 0.9535 95.39% 

DenseNet-201 32 0.06 0.8021 0.7843 0.7755 78.43% 

DenseNet-201 32 0.07 0.7511 0.7296 0.7158 72.96% 

DenseNet-201 32 0.08 0.2777 0.2887 0.2570 28.87% 

DenseNet-201 32 0.09 0.2769 0.2791 0.2471 27.91% 

DenseNet-201 32 0.1 0.1349 0.1600 0.1164 16.00% 

DenseNet-201 64 0.001 0.9439 0.9365 0.9349 93.65% 

DenseNet-201 64 0.005 0.9552 0.9487 0.9481 94.87% 

DenseNet-201 64 0.01 0.9615 0.9557 0.9552 95.57% 
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DenseNet-201 64 0.02 0.9679 0.9626 0.9625 96.26% 

DenseNet-201 64 0.03 0.9756 0.9713 0.9712 97.13% 

DenseNet-201 64 0.04 0.9765 0.9713 0.9712 97.13% 

DenseNet-201 64 0.05 0.9758 0.9713 0.9712 97.13% 

DenseNet-201 64 0.06 0.8791 0.8791 0.8750 87.91% 

DenseNet-201 64 0.07 0.8694 0.8661 0.8614 86.61% 

DenseNet-201 64 0.08 0.2705 0.2948 0.2685 29.48% 

DenseNet-201 64 0.09 0.0946 0.1296 0.0938 12.96% 

DenseNet-201 64 0.1 0.0019 0.0435 0.0036 4.35% 

Inception V3 8 0.001 0.9639 0.9574 0.9565 95.74% 

Inception V3 8 0.005 0.9615 0.9548 0.9541 95.48% 

Inception V3 8 0.01 0.9565 0.9487 0.9467 94.87% 

Inception V3 8 0.02 0.9476 0.9322 0.9294 93.22% 

Inception V3 8 0.03 0.9251 0.9070 0.9028 90.70% 

Inception V3 8 0.04 0.9457 0.9304 0.9282 93.04% 

Inception V3 8 0.05 0.9277 0.9061 0.9007 90.61% 

Inception V3 8 0.06 0.9109 0.8843 0.8782 88.43% 

Inception V3 8 0.07 0.9199 0.9026 0.8969 90.26% 

Inception V3 8 0.08 0.8913 0.8591 0.8551 85.91% 

Inception V3 8 0.09 0.8868 0.8565 0.8502 85.65% 

Inception V3 8 0.1 0.8706 0.8365 0.8297 83.65% 

Inception V3 16 0.001 0.9570 0.9478 0.9462 94.78% 

Inception V3 16 0.005 0.9636 0.9557 0.9543 95.57% 

Inception V3 16 0.01 0.9698 0.9652 0.9647 96.52% 

Inception V3 16 0.02 0.9690 0.9635 0.9630 96.35% 

Inception V3 16 0.03 0.9705 0.9643 0.9636 96.43% 

Inception V3 16 0.04 0.9587 0.9548 0.9517 95.48% 

Inception V3 16 0.05 0.9384 0.9252 0.9224 92.52% 

Inception V3 16 0.06 0.9544 0.9452 0.9441 94.52% 

Inception V3 16 0.07 0.9511 0.9400 0.9375 94.00% 

Inception V3 16 0.08 0.9456 0.9330 0.9317 93.30% 

Inception V3 16 0.09 0.9425 0.9322 0.9296 93.22% 

Inception V3 16 0.1 0.9326 0.9217 0.9181 92.17% 

Inception V3 32 0.001 0.9468 0.9330 0.9307 93.30% 

Inception V3 32 0.005 0.9536 0.9409 0.9391 94.09% 

Inception V3 32 0.01 0.9564 0.9478 0.9460 94.78% 

Inception V3 32 0.02 0.9619 0.9530 0.9518 95.30% 

Inception V3 32 0.03 0.9589 0.9496 0.9491 94.96% 

Inception V3 32 0.04 0.9646 0.9565 0.9556 95.65% 

Inception V3 32 0.05 0.9682 0.9635 0.9629 96.35% 

Inception V3 32 0.06 0.9638 0.9548 0.9533 95.48% 

Inception V3 32 0.07 0.9609 0.9504 0.9497 95.04% 

Inception V3 32 0.08 0.9531 0.9409 0.9402 94.09% 

Inception V3 32 0.09 0.9476 0.9374 0.9353 93.74% 

Inception V3 32 0.1 0.9513 0.9339 0.9326 93.39% 

Inception V3 64 0.001 0.9230 0.9043 0.9004 90.43% 
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Inception V3 64 0.005 0.9446 0.9304 0.9280 93.04% 

Inception V3 64 0.01 0.9495 0.9374 0.9355 93.74% 

Inception V3 64 0.02 0.9521 0.9391 0.9366 93.91% 

Inception V3 64 0.03 0.9607 0.9513 0.9507 95.13% 

Inception V3 64 0.04 0.9584 0.9487 0.9466 94.87% 

Inception V3 64 0.05 0.9673 0.9600 0.9600 96.00% 

Inception V3 64 0.06 0.9671 0.9591 0.9579 95.91% 

Inception V3 64 0.07 0.9638 0.9539 0.9528 95.39% 

Inception V3 64 0.08 0.9711 0.9643 0.9641 96.43% 

Inception V3 64 0.09 0.9688 0.9617 0.9609 96.17% 

Inception V3 64 0.1 0.9694 0.9609 0.9601 96.09% 

Inception ResNet V2 8 0.001 0.9609 0.9548 0.9544 95.48% 

Inception ResNet V2 8 0.005 0.9643 0.9583 0.9578 95.83% 

Inception ResNet V2 8 0.01 0.9678 0.9600 0.9596 96.00% 

Inception ResNet V2 8 0.02 0.9706 0.9626 0.9619 96.26% 

Inception ResNet V2 8 0.03 0.9632 0.9539 0.9521 95.39% 

Inception ResNet V2 8 0.04 0.9555 0.9426 0.9415 94.26% 

Inception ResNet V2 8 0.05 0.9765 0.9713 0.9708 97.13% 

Inception ResNet V2 8 0.06 0.9544 0.9452 0.9445 94.52% 

Inception ResNet V2 8 0.07 0.9560 0.9452 0.9442 94.52% 

Inception ResNet V2 8 0.08 0.9564 0.9443 0.9442 94.43% 

Inception ResNet V2 8 0.09 0.9414 0.9261 0.9223 92.61% 

Inception ResNet V2 8 0.1 0.9219 0.9061 0.9029 90.61% 

Inception ResNet V2 16 0.001 0.9743 0.9704 0.9701 97.04% 

Inception ResNet V2 16 0.005 0.9691 0.9643 0.9640 96.43% 

Inception ResNet V2 16 0.01 0.9714 0.9661 0.9658 96.61% 

Inception ResNet V2 16 0.02 0.9794 0.9748 0.9745 97.48% 

Inception ResNet V2 16 0.03 0.9731 0.9670 0.9667 96.70% 

Inception ResNet V2 16 0.04 0.9688 0.9609 0.9601 96.09% 

Inception ResNet V2 16 0.05 0.9755 0.9696 0.9691 96.96% 

Inception ResNet V2 16 0.06 0.9771 0.9722 0.9715 97.22% 

Inception ResNet V2 16 0.07 0.9649 0.9565 0.9563 95.65% 

Inception ResNet V2 16 0.08 0.9705 0.9643 0.9639 96.43% 

Inception ResNet V2 16 0.09 0.9724 0.9670 0.9660 96.70% 

Inception ResNet V2 16 0.1 0.9645 0.9565 0.9558 95.65% 

Inception ResNet V2 32 0.001 0.9613 0.9530 0.9525 95.30% 

Inception ResNet V2 32 0.005 0.9681 0.9617 0.9612 96.17% 

Inception ResNet V2 32 0.01 0.9728 0.9678 0.9674 96.78% 

Inception ResNet V2 32 0.02 0.9691 0.9617 0.9611 96.17% 

Inception ResNet V2 32 0.03 0.9687 0.9600 0.9597 96.00% 

Inception ResNet V2 32 0.04 0.9700 0.9617 0.9610 96.17% 

Inception ResNet V2 32 0.05 0.9660 0.9565 0.9557 95.65% 

Inception ResNet V2 32 0.06 0.9691 0.9617 0.9612 96.17% 

Inception ResNet V2 32 0.07 0.9687 0.9609 0.9606 96.09% 

Inception ResNet V2 32 0.08 0.9670 0.9583 0.9579 95.83% 

Inception ResNet V2 32 0.09 0.9640 0.9539 0.9536 95.39% 
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Inception ResNet V2 32 0.1 0.9653 0.9565 0.9559 95.65% 

Inception ResNet V2 64 0.001 0.9116 0.8939 0.8915 89.39% 

Inception ResNet V2 64 0.005 0.9602 0.9530 0.9525 95.30% 

Inception ResNet V2 64 0.01 0.9593 0.9513 0.9506 95.13% 

Inception ResNet V2 64 0.02 0.9566 0.9487 0.9480 94.87% 

Inception ResNet V2 64 0.03 0.9655 0.9583 0.9574 95.83% 

Inception ResNet V2 64 0.04 0.9644 0.9574 0.9569 95.74% 

Inception ResNet V2 64 0.05 0.9681 0.9609 0.9604 96.09% 

Inception ResNet V2 64 0.06 0.9326 0.9235 0.9179 92.35% 

Inception ResNet V2 64 0.07 0.9632 0.9548 0.9542 95.48% 

Inception ResNet V2 64 0.08 0.9639 0.9565 0.9561 95.65% 

Inception ResNet V2 64 0.09 0.9637 0.9565 0.9562 95.65% 

Inception ResNet V2 64 0.1 0.9697 0.9626 0.9621 96.26% 

NASNet-Large 8 0.001 0.9074 0.8878 0.8848 88.78% 

NASNet-Large 8 0.005 0.8409 0.8130 0.8038 81.30% 

NASNet-Large 8 0.01 0.8551 0.8209 0.8113 82.09% 

NASNet-Large 8 0.02 0.8374 0.8009 0.7912 80.09% 

NASNet-Large 8 0.03 0.8620 0.8304 0.8226 83.04% 

NASNet-Large 8 0.04 0.8812 0.8470 0.8402 84.70% 

NASNet-Large 8 0.05 0.8489 0.8096 0.8005 80.96% 

NASNet-Large 8 0.06 0.8946 0.8687 0.8629 86.87% 

NASNet-Large 8 0.07 0.8825 0.8513 0.8419 85.13% 

NASNet-Large 8 0.08 0.8794 0.8374 0.8302 83.74% 

NASNet-Large 8 0.09 0.8525 0.7965 0.7883 79.65% 

NASNet-Large 8 0.1 0.7760 0.6965 0.6808 69.65% 

NASNet-Large 16 0.001 0.8190 0.7765 0.7645 77.65% 

NASNet-Large 16 0.005 0.8143 0.7748 0.7597 77.48% 

NASNet-Large 16 0.01 0.7374 0.6965 0.6728 69.65% 

NASNet-Large 16 0.02 0.6691 0.5965 0.5668 59.65% 

NASNet-Large 16 0.03 0.7103 0.6470 0.6207 64.70% 

NASNet-Large 16 0.04 0.7379 0.6965 0.6680 69.65% 

NASNet-Large 16 0.05 0.7814 0.7270 0.7089 72.70% 

NASNet-Large 16 0.06 0.8280 0.7957 0.7835 79.57% 

NASNet-Large 16 0.07 0.8153 0.7774 0.7597 77.74% 

NASNet-Large 16 0.08 0.8600 0.8104 0.7983 81.04% 

NASNet-Large 16 0.09 0.8679 0.8409 0.8313 84.09% 

NASNet-Large 16 0.1 0.8862 0.8452 0.8394 84.52% 

NASNet-Large 32 0.001 0.6756 0.6270 0.5989 62.70% 

NASNet-Large 32 0.005 0.6463 0.6043 0.5706 60.43% 

NASNet-Large 32 0.01 0.5704 0.4957 0.4671 49.57% 

NASNet-Large 32 0.02 0.5499 0.4835 0.4508 48.35% 

NASNet-Large 32 0.03 0.5883 0.5096 0.4802 50.96% 

NASNet-Large 32 0.04 0.5939 0.5383 0.4987 53.83% 

NASNet-Large 32 0.05 0.5883 0.5322 0.4961 53.22% 

NASNet-Large 32 0.06 0.6474 0.5696 0.5383 56.96% 

NASNet-Large 32 0.07 0.6356 0.5739 0.5390 57.39% 
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NASNet-Large 32 0.08 0.6550 0.6000 0.5654 60.00% 

NASNet-Large 32 0.09 0.7406 0.6843 0.6637 68.43% 

NASNet-Large 32 0.1 0.7121 0.6609 0.6336 66.09% 

ResNet-101 V2 8 0.001 0.9037 0.8843 0.8812 88.43% 

ResNet-101 V2 8 0.005 0.9338 0.9183 0.9168 91.83% 

ResNet-101 V2 8 0.01 0.9466 0.9339 0.9314 93.39% 

ResNet-101 V2 8 0.02 0.9425 0.9270 0.9258 92.70% 

ResNet-101 V2 8 0.03 0.9326 0.9165 0.9149 91.65% 

ResNet-101 V2 8 0.04 0.9242 0.9070 0.9028 90.70% 

ResNet-101 V2 8 0.05 0.9386 0.9217 0.9201 92.17% 

ResNet-101 V2 8 0.06 0.9212 0.9000 0.8959 90.00% 

ResNet-101 V2 8 0.07 0.9268 0.9130 0.9107 91.30% 

ResNet-101 V2 8 0.08 0.9167 0.8878 0.8851 88.78% 

ResNet-101 V2 8 0.09 0.8788 0.8530 0.8476 85.30% 

ResNet-101 V2 8 0.1 0.9071 0.8852 0.8847 88.52% 

ResNet-101 V2 16 0.001 0.8865 0.8635 0.8596 86.35% 

ResNet-101 V2 16 0.005 0.9316 0.9157 0.9135 91.57% 

ResNet-101 V2 16 0.01 0.9378 0.9261 0.9250 92.61% 

ResNet-101 V2 16 0.02 0.9494 0.9357 0.9343 93.57% 

ResNet-101 V2 16 0.03 0.9492 0.9348 0.9337 93.48% 

ResNet-101 V2 16 0.04 0.9562 0.9478 0.9471 94.78% 

ResNet-101 V2 16 0.05 0.9418 0.9270 0.9248 92.70% 

ResNet-101 V2 16 0.06 0.9331 0.9209 0.9170 92.09% 

ResNet-101 V2 16 0.07 0.9420 0.9278 0.9264 92.78% 

ResNet-101 V2 16 0.08 0.9344 0.9200 0.9180 92.00% 

ResNet-101 V2 16 0.09 0.9452 0.9339 0.9334 93.39% 

ResNet-101 V2 16 0.1 0.9223 0.9009 0.8980 90.09% 

ResNet-101 V2 32 0.001 0.8650 0.8426 0.8371 84.26% 

ResNet-101 V2 32 0.005 0.9010 0.8791 0.8757 87.91% 

ResNet-101 V2 32 0.01 0.9099 0.8904 0.8876 89.04% 

ResNet-101 V2 32 0.02 0.9329 0.9148 0.9142 91.48% 

ResNet-101 V2 32 0.03 0.9397 0.9270 0.9254 92.70% 

ResNet-101 V2 32 0.04 0.9485 0.9339 0.9322 93.39% 

ResNet-101 V2 32 0.05 0.9557 0.9461 0.9442 94.61% 

ResNet-101 V2 32 0.06 0.9539 0.9461 0.9446 94.61% 

ResNet-101 V2 32 0.07 0.9437 0.9270 0.9252 92.70% 

ResNet-101 V2 32 0.08 0.9465 0.9339 0.9336 93.39% 

ResNet-101 V2 32 0.09 0.9452 0.9287 0.9276 92.87% 

ResNet-101 V2 32 0.1 0.9374 0.9217 0.9203 92.17% 

ResNet-101 V2 64 0.001 0.8314 0.8061 0.7988 80.61% 

ResNet-101 V2 64 0.005 0.8703 0.8452 0.8386 84.52% 

ResNet-101 V2 64 0.01 0.8783 0.8548 0.8513 85.48% 

ResNet-101 V2 64 0.02 0.9127 0.8930 0.8909 89.30% 

ResNet-101 V2 64 0.03 0.9224 0.9035 0.9017 90.35% 

ResNet-101 V2 64 0.04 0.9433 0.9278 0.9269 92.78% 

ResNet-101 V2 64 0.05 0.9453 0.9330 0.9324 93.30% 
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Neural network 
Batch 
size 

Learning 
rate 

Precision Recall F1-score Accuracy 

ResNet-101 V2 64 0.06 0.9516 0.9409 0.9401 94.09% 

ResNet-101 V2 64 0.07 0.9605 0.9504 0.9495 95.04% 

ResNet-101 V2 64 0.08 0.9588 0.9487 0.9477 94.87% 

ResNet-101 V2 64 0.09 0.9520 0.9426 0.9421 94.26% 

ResNet-101 V2 64 0.1 0.9469 0.9391 0.9369 93.91% 

ResNet-152 V2 8 0.001 0.9351 0.9209 0.9173 92.09% 

ResNet-152 V2 8 0.005 0.9428 0.9304 0.9290 93.04% 

ResNet-152 V2 8 0.01 0.9536 0.9435 0.9425 94.35% 

ResNet-152 V2 8 0.02 0.9348 0.9174 0.9166 91.74% 

ResNet-152 V2 8 0.03 0.9377 0.9261 0.9250 92.61% 

ResNet-152 V2 8 0.04 0.9237 0.9035 0.9036 90.35% 

ResNet-152 V2 8 0.05 0.9435 0.9296 0.9278 92.96% 

ResNet-152 V2 8 0.06 0.9343 0.9165 0.9162 91.65% 

ResNet-152 V2 8 0.07 0.9313 0.9148 0.9133 91.48% 

ResNet-152 V2 8 0.08 0.9279 0.9130 0.9116 91.30% 

ResNet-152 V2 8 0.09 0.9078 0.8817 0.8792 88.17% 

ResNet-152 V2 8 0.1 0.8548 0.8252 0.8178 82.52% 

ResNet-152 V2 16 0.001 0.9201 0.9035 0.8981 90.35% 

ResNet-152 V2 16 0.005 0.9439 0.9304 0.9289 93.04% 

ResNet-152 V2 16 0.01 0.9510 0.9409 0.9399 94.09% 

ResNet-152 V2 16 0.02 0.9590 0.9496 0.9481 94.96% 

ResNet-152 V2 16 0.03 0.9565 0.9478 0.9464 94.78% 

ResNet-152 V2 16 0.04 0.9500 0.9365 0.9353 93.65% 

ResNet-152 V2 16 0.05 0.9507 0.9417 0.9408 94.17% 

ResNet-152 V2 16 0.06 0.9436 0.9287 0.9281 92.87% 

ResNet-152 V2 16 0.07 0.9433 0.9270 0.9254 92.70% 

ResNet-152 V2 16 0.08 0.9363 0.9226 0.9202 92.26% 

ResNet-152 V2 16 0.09 0.9292 0.9113 0.9098 91.13% 

ResNet-152 V2 16 0.1 0.9449 0.9304 0.9295 93.04% 

ResNet-152 V2 32 0.001 0.8982 0.8783 0.8723 87.83% 

ResNet-152 V2 32 0.005 0.9236 0.9070 0.9039 90.70% 

ResNet-152 V2 32 0.01 0.9438 0.9313 0.9296 93.13% 

ResNet-152 V2 32 0.02 0.9535 0.9426 0.9418 94.26% 

ResNet-152 V2 32 0.03 0.9582 0.9461 0.9456 94.61% 

ResNet-152 V2 32 0.04 0.9452 0.9304 0.9287 93.04% 

ResNet-152 V2 32 0.05 0.9650 0.9574 0.9568 95.74% 

ResNet-152 V2 32 0.06 0.9476 0.9330 0.9333 93.30% 

ResNet-152 V2 32 0.07 0.9452 0.9278 0.9257 92.78% 

ResNet-152 V2 32 0.08 0.9457 0.9357 0.9355 93.57% 

ResNet-152 V2 32 0.09 0.9350 0.9191 0.9171 91.91% 

ResNet-152 V2 32 0.1 0.9348 0.9200 0.9191 92.00% 

ResNet-152 V2 64 0.001 0.8703 0.8504 0.8431 85.04% 

ResNet-152 V2 64 0.005 0.9053 0.8870 0.8818 88.70% 

ResNet-152 V2 64 0.01 0.9134 0.8922 0.8894 89.22% 

ResNet-152 V2 64 0.02 0.9485 0.9357 0.9332 93.57% 

ResNet-152 V2 64 0.03 0.9493 0.9365 0.9351 93.65% 
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Neural network 
Batch 
size 

Learning 
rate 

Precision Recall F1-score Accuracy 

ResNet-152 V2 64 0.04 0.9503 0.9391 0.9384 93.91% 

ResNet-152 V2 64 0.05 0.9550 0.9443 0.9439 94.43% 

ResNet-152 V2 64 0.06 0.9662 0.9591 0.9589 95.91% 

ResNet-152 V2 64 0.07 0.9567 0.9452 0.9447 94.52% 

ResNet-152 V2 64 0.08 0.9575 0.9496 0.9489 94.96% 

ResNet-152 V2 64 0.09 0.9605 0.9522 0.9516 95.22% 

ResNet-152 V2 64 0.1 0.9511 0.9383 0.9381 93.83% 

ResNet-50 V2 8 0.001 0.9381 0.9261 0.9240 92.61% 

ResNet-50 V2 8 0.005 0.9447 0.9357 0.9348 93.57% 

ResNet-50 V2 8 0.01 0.9408 0.9304 0.9296 93.04% 

ResNet-50 V2 8 0.02 0.9474 0.9330 0.9309 93.30% 

ResNet-50 V2 8 0.03 0.9278 0.9061 0.9059 90.61% 

ResNet-50 V2 8 0.04 0.9400 0.9235 0.9227 92.35% 

ResNet-50 V2 8 0.05 0.9227 0.9052 0.9030 90.52% 

ResNet-50 V2 8 0.06 0.9007 0.8783 0.8736 87.83% 

ResNet-50 V2 8 0.07 0.9189 0.8957 0.8939 89.57% 

ResNet-50 V2 8 0.08 0.9076 0.8835 0.8818 88.35% 

ResNet-50 V2 8 0.09 0.9147 0.8974 0.8947 89.74% 

ResNet-50 V2 8 0.1 0.8963 0.8757 0.8722 87.57% 

ResNet-50 V2 16 0.001 0.9220 0.9096 0.9073 90.96% 

ResNet-50 V2 16 0.005 0.9434 0.9330 0.9313 93.30% 

ResNet-50 V2 16 0.01 0.9529 0.9426 0.9417 94.26% 

ResNet-50 V2 16 0.02 0.9559 0.9487 0.9477 94.87% 

ResNet-50 V2 16 0.03 0.9639 0.9565 0.9553 95.65% 

ResNet-50 V2 16 0.04 0.9523 0.9435 0.9420 94.35% 

ResNet-50 V2 16 0.05 0.9414 0.9287 0.9262 92.87% 

ResNet-50 V2 16 0.06 0.9416 0.9296 0.9275 92.96% 

ResNet-50 V2 16 0.07 0.9313 0.9148 0.9133 91.48% 

ResNet-50 V2 16 0.08 0.9318 0.9157 0.9136 91.57% 

ResNet-50 V2 16 0.09 0.9263 0.9052 0.9037 90.52% 

ResNet-50 V2 16 0.1 0.9316 0.9183 0.9150 91.83% 

ResNet-50 V2 32 0.001 0.9173 0.9043 0.9010 90.43% 

ResNet-50 V2 32 0.005 0.9190 0.9061 0.9045 90.61% 

ResNet-50 V2 32 0.01 0.9306 0.9209 0.9200 92.09% 

ResNet-50 V2 32 0.02 0.9403 0.9261 0.9253 92.61% 

ResNet-50 V2 32 0.03 0.9561 0.9452 0.9436 94.52% 

ResNet-50 V2 32 0.04 0.9571 0.9461 0.9458 94.61% 

ResNet-50 V2 32 0.05 0.9575 0.9487 0.9476 94.87% 

ResNet-50 V2 32 0.06 0.9479 0.9330 0.9317 93.30% 

ResNet-50 V2 32 0.07 0.9514 0.9409 0.9396 94.09% 

ResNet-50 V2 32 0.08 0.9444 0.9287 0.9266 92.87% 

ResNet-50 V2 32 0.09 0.9439 0.9313 0.9306 93.13% 

ResNet-50 V2 32 0.1 0.9456 0.9313 0.9309 93.13% 

ResNet-50 V2 64 0.001 0.8916 0.8765 0.8730 87.65% 

ResNet-50 V2 64 0.005 0.9079 0.8948 0.8923 89.48% 

ResNet-50 V2 64 0.01 0.9134 0.9000 0.8976 90.00% 
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Neural network 
Batch 
size 

Learning 
rate 

Precision Recall F1-score Accuracy 

ResNet-50 V2 64 0.02 0.9317 0.9209 0.9188 92.09% 

ResNet-50 V2 64 0.03 0.9438 0.9313 0.9298 93.13% 

ResNet-50 V2 64 0.04 0.9469 0.9330 0.9319 93.30% 

ResNet-50 V2 64 0.05 0.9545 0.9409 0.9398 94.09% 

ResNet-50 V2 64 0.06 0.9652 0.9565 0.9559 95.65% 

ResNet-50 V2 64 0.07 0.9534 0.9426 0.9422 94.26% 

ResNet-50 V2 64 0.08 0.9554 0.9435 0.9426 94.35% 

ResNet-50 V2 64 0.09 0.9525 0.9400 0.9395 94.00% 

ResNet-50 V2 64 0.1 0.9564 0.9461 0.9458 94.61% 

Xception  8 0.001 0.9477 0.9383 0.9368 93.83% 

Xception  8 0.005 0.9522 0.9426 0.9413 94.26% 

Xception  8 0.01 0.9564 0.9478 0.9465 94.78% 

Xception  8 0.02 0.9608 0.9513 0.9496 95.13% 

Xception  8 0.03 0.9605 0.9522 0.9503 95.22% 

Xception  8 0.04 0.9560 0.9443 0.9426 94.43% 

Xception  8 0.05 0.9553 0.9478 0.9462 94.78% 

Xception  8 0.06 0.9508 0.9391 0.9377 93.91% 

Xception  8 0.07 0.9526 0.9426 0.9396 94.26% 

Xception  8 0.08 0.9399 0.9235 0.9215 92.35% 

Xception  8 0.09 0.9448 0.9278 0.9267 92.78% 

Xception  8 0.1 0.9399 0.9200 0.9191 92.00% 

Xception  16 0.001 0.9436 0.9322 0.9308 93.22% 

Xception  16 0.005 0.9458 0.9357 0.9342 93.57% 

Xception  16 0.01 0.9512 0.9409 0.9394 94.09% 

Xception  16 0.02 0.9609 0.9522 0.9511 95.22% 

Xception  16 0.03 0.9593 0.9504 0.9498 95.04% 

Xception  16 0.04 0.9565 0.9478 0.9468 94.78% 

Xception  16 0.05 0.9650 0.9574 0.9564 95.74% 

Xception  16 0.06 0.9647 0.9574 0.9565 95.74% 

Xception  16 0.07 0.9586 0.9504 0.9493 95.04% 

Xception  16 0.08 0.9680 0.9609 0.9602 96.09% 

Xception  16 0.09 0.9624 0.9530 0.9524 95.30% 

Xception  16 0.1 0.9674 0.9626 0.9620 96.26% 

Xception  32 0.001 0.9298 0.9157 0.9146 91.57% 

Xception  32 0.005 0.9475 0.9374 0.9365 93.74% 

Xception  32 0.01 0.9465 0.9365 0.9358 93.65% 

Xception  32 0.02 0.9477 0.9383 0.9374 93.83% 

Xception  32 0.03 0.9485 0.9391 0.9380 93.91% 

Xception  32 0.04 0.9491 0.9383 0.9373 93.83% 

Xception  32 0.05 0.9533 0.9443 0.9435 94.43% 

Xception  32 0.06 0.9568 0.9487 0.9478 94.87% 

Xception  32 0.07 0.9567 0.9487 0.9480 94.87% 

Xception  32 0.08 0.9528 0.9435 0.9425 94.35% 

Xception  32 0.09 0.9599 0.9522 0.9512 95.22% 

Xception  32 0.1 0.9663 0.9591 0.9582 95.91% 

Xception  64 0.001 0.8764 0.8539 0.8517 85.39% 
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Neural network 
Batch 
size 

Learning 
rate 

Precision Recall F1-score Accuracy 

Xception  64 0.005 0.9394 0.9270 0.9262 92.70% 

Xception  64 0.01 0.9464 0.9348 0.9341 93.48% 

Xception  64 0.02 0.9462 0.9348 0.9339 93.48% 

Xception  64 0.03 0.9463 0.9357 0.9348 93.57% 

Xception  64 0.04 0.9463 0.9348 0.9340 93.48% 

Xception  64 0.05 0.9450 0.9330 0.9324 93.30% 

Xception  64 0.06 0.9473 0.9357 0.9351 93.57% 

Xception  64 0.07 0.9495 0.9383 0.9377 93.83% 

Xception  64 0.08 0.9485 0.9374 0.9367 93.74% 

Xception  64 0.09 0.9503 0.9400 0.9396 94.00% 

Xception  64 0.1 0.9510 0.9409 0.9404 94.09% 

  

Appendix table 3. 10-fold average performance metrics for all models using grid strategy hyperparameter search in 

Phase 2. Best average models for each neural network are highlighted in bold typeface. 
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Appendix 5. Clutton-Brock et al. (1990) bones, 
features, and the criteria for species 
assignments 

Bone Feature Sheep Goat 

Cranium 

Fronto-lacrimal suture Straight with few serrations Indented and serrated 

Lacrimal fossa Present Absent 

Fontanelle between nasal 
and lacrimal bone 

Absent Present 

Lateral projection of 
mastoid process 

Absent Present 

Shape of mastoid process Narrow and constricted Broad 

Muscular process of 
tympanic bone 

Long and pointed Short and flat 

Shape of frontal and 
frontal-parietal sutures 

Inverted Y-shape Inverted T-shape 

Shape of lambdoid suture Straight Convex 

Temporal fossae Wide apart Closer together 

Shape of paramastoid 
process 

Long and slender Short and broad 

Mandible 

Angle between horizontal 
and vertical ramus 

Obtuse Acute 

Ventral margin of 
horizontal ramus 

Convex Straight 

Atlas 

Length of transverse 
process 

Short Long 

Shape of transverse 
process 

Males: short and blunted; 
Females: short and pointed 

Males: long and pointed; 
Females: Long and blunted 

Shape of ventral 
tuberosity 

Broad and ill-defined Narrow and ridge-like 

Axis 

Shape of cranial end of 
spinous process 

Short and rounded or pointed Long and projecting 

Shape of caudal end of 
spinous process 

Rounded Angular 

Shape of crest of spinous 
process at caudal end 

Rounded Angular 

Transverse canal Present Absent 

Shape of ventral crest at 
caudal end 

Males: broad and blunt dome; 
Females: not given 

Males: a more angular dome; 
Females: not given 

Scapula Shape of anterior margin Strongly concave Less concave 
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Bone Feature Sheep Goat 

Pecten on posterior 
margin 

Present Absent 

Shape of spinal tuberosity Thick and curved 
Sharp and runs in a straight 

line 

Angle of spine Obtuse Acute 

Shape of subscapular 
fossa 

Broad and flat 
Narrow and restricted by a 

distinct eminence towards the 
cervical border 

Humerus 

Shape of lateral 
tuberosity of proximal 

articular surface 
Broad and low High and narrow 

Shape of ridge below 
deltoid tuberosity 

Sharp and turned over 
Straight and blunt, becoming 

indistict distally 

Position of nutrient 
foramen 

On posterior side of shaft Towards lateral side of shaft 

Shape of distal trochlear 
surface 

Thickening on lateral side Absent or slight 

Shape of lateral 
epicondyle (distal end) 

Crest on edge around pit Crest absent 

Shape of medial 
epicondyle 

Ends in an angle between 
acute and obtuse 

Angle is cut off obliquely 

Radius and 
ulna  

Fusion of shafts of radius 
and ulna 

Unfused Fused proximally 

Shape of lateral edge of 
proximal articular surface 

of radius 
Forms a ledge Ledge absent 

Shape of distal facet in 
radius for articulation with 

scaphoid 
Long and narrow Broad and more angular 

Shape of medial edge of 
olecranon process of ulna 

Slightly convex Almost straight 

Pelvis 

Shape of iliac wing 
Males: blunt and rounded; 

Females: pointed 
Males: blunt and rounded; 

Females: pointed 

Shape of pecten 

Males: rounded and indistinct 
on robus pubic bone; Females: 
a sharp ridge on slender pubic 

bone 

Males: rounded and indistinct 
on robus pubic bone; Females: 
a sharp ridge on slender pubic 

bone 

Shape of iliopectineal 
eminence on pubic bone 

Males: pad-shaped; Femals: 
sharp-edged or pointed 

Males: pad-shaped; Femals: 
sharp-edged or pointed 

Notch on anterior, dorsal 
border of obturator 

foramen 
Absent Present 

Muscle ridge on ventral 
body of ilium 

Males: absent; Females: short, 
narrow ridge bordering and 

deep pit 

Males: absent; Females: long, 
more strongly-marked ridge, 

shallow pit 

Femur 

Shape of head 
Extended in a medio-lateral 

direction across the saddle of 
the proximal end 

Restricted and ball-like 

Shape of antero-lateral 
border of greater 

trochanter 
Flat or with shallow depression Slightly convex 

Profile of antero-lateral 
border 

Square Rounded 

Synovial pit on distal 
trochlear 

Absent Present 
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Bone Feature Sheep Goat 

Tibia 
Position of nutrient 

foramina on proximal 
articular surface 

One or more foramina on flat 
surface of epiphysis 

Foramina are contained in a pit 

Patella 
Sulcus on antero-

proximal side 
Present Absent or small 

Astragalus 
Shape of distal end of 
medial articular ridge 

Weakly developed and without 
a sharp angle 

Drawn into a point and strongly 
developed 

Calcaneum 

Shape of anterior border Straight Convex 

Shape of articular facets 
for the posterior side of 

the talus 
Separated into two parts A single facet 

Metapodials 

Synovial pits on the 
proximal articular surface 

Absent in the metacarpal, rare 
in the metatarsal or if present 
there is one large circular hole 

Sometimes present in the 
metacarpal, often present in 

the metatarsal 

Angle of the verticilli of 
the distal condyles 

Lie parallel to each other in 
metacarpal and metatarsal 

The medial verticillus lies at an 
acute angle to the lateral 

verticillus in metacarpal and 
metatarsal 

Fore & hind 
phalanx 1  

Shape of lateral edge 
below proximal articular 

surface 
Rounded without a ridge Forms a ridge 

Shape of posterior side of 
shaft 

Flat or convex Concave 

Development of muscle 
scars on posterior mid-

shaft 
Weak More strongly developed 

Shape of posterior edge 
of distal articular condyle 

Wide open or obtuse angle Acute or right angle 

Fore & hind 
phalanx 2 

Shape of posterior medial 
edge of distal articular 

condyle 

Equal in height to the posterior 
lateral edge 

Drawn up into a little tail 

Fore & hind 
phalanx 3 
(hoof core)  

Shape of dorsal edge Rounded and blunt 
Medio-laterally flattened, sharp 

and pointed 

Shape of extensor 
process 

Large and with a saddle or 
hollow in front of it 

Small and with no saddle 

Shape of lateral edge of 
sole 

Convex Straight 

Shape of medial edge of 
sole 

Concave Straight 

  

Appendix table 4. Clutton-Brock et al. (1990) criteria for separating sheep and goats. 
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Appendix 6. Table of sheep and goat astragali 
samples 

List of specimens 

Catalogue ID Species Side Age Sex Breed Collection Comment 

45 G R ? ? ? HE  

45 G L ? ? ? HE  

501 G L ? M "White goat" HE  

502 G R ? M "White goat" HE  

1315* G L 3.5 years M Toggenberg HE “Toggenberg” on bone 

1631 G L 7 months F Damascus HE  

2199 G L 15 months M Old English HE  

2774 G R 
2 years 7 
months 

M Bagot HE  

3318 G R Adult M Feral HE  

3323 G R Adult M Feral HE  

Z1988.112.004.01 G R 4 years M Feral Rhum NMC R14 

Z1988.112.004.03 G L 
5 years or 

1 years 
F or ? Feral NMC 

R15 - There were two 
R15s in Noddle's table, 
one a 5-year-old feral 

female, the other one a 
one-year-old feral goat of 

unknown sex. The 
specimen found in the 
collections is likely the 

younger one as the other 
bones were all unfused. 

Z1988.112.004.04 G R 
4 years 11 

months 
C Saanen NMC 

G21, Castrate male 
"Thunderball" born Mar/66 

- killed 15.2.71 

Z1988.112.004.06 G R 8 years C ? NMC 
G22, Castrate male "Paul" 
born Mar/63 - killed 4.3.71 

Z1988.112.004.09 G L 
4 years 1 

month 
F Saanen NMC G13 

Z1988.112.004.10 G R 
1 year 11 
months 

F ? NMC G18 

Z1988.112.004.11 G R 4 years F Feral Rhum NMC R1 

Z1988.112.004.12 G R 2 years F Feral Rhum NMC R8 

Z1988.112.004.13 G R ? ? ? NMC G27 

Z1988.112.004.14 G L 3 years F Saanen NMC G34 

Z1988.112.004.15 G L 
2 years 6 
months 

F Saanen NMC G16 

Z1988.112.004.16 G R 
3 years 6 
months 

F ? NMC G17 

Z1988.112.004.18 G R ? F Bagot NMC  

Z1988.112.004.20 G L 3 years F ? NMC R9 

Z1988.112.004.21 G L 5 years C ? NMC R10 

Z1988.112.004.22 G L 3 years F ? NMC R11 

Z1988.112.004.23 G L 
2 years 6 
months 

F Galloway feral NMC G1 

Z1988.112.004.25 G L 2 years F ? NMC G14 

Z1988.112.004.26 G L ? ? ? NMC G15 

Z1988.112.004.27 G L 1 year C Saanen NMC G6 

Z1988.112.004.28 G R 13 months F Welsh NMC G8 
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List of specimens 

Catalogue ID Species Side Age Sex Breed Collection Comment 

Z1988.112.004.34 G R 3 years F ? NMC R13 

Z1988.112.004.35 G R ? ? Galloway feral NMC G3 

Z1988.112.004.36 G R ? ? 
Golden 

guernsey 
NMC  

Z1988.112.004.37 G R 2 years M Feral NMC R2 

Z1988.112.004.38 G L 3 years F ? NMC R5 

Z1988.112.004.39 G R ? ? Feral Rhum NMC R6 

Z1988.112.004.41 G L ? ? Northumberland NMC G61 

Z1988.112.004.44 G L ? ? ? NMC G38 

Z1988.112.004.45 G L ? ? Compton NMC  

Z1988.112.004.46 G R 2 years M Feral NMC R3 

Z1988.112.004.47 G R 3 years M Feral NMC R4 

Z1988.112.004.49 G L ? ? ? NMC  

Z1988.112.004.50 G L ? ? ? NMC  

Z1988.112.004.51 G R 3 years F Saanen NMC G30 

Z1988.112.004.54 G L ? ? Colbred NMC G54 

Z1988.112.004.57 G L 11 months ? Feral NMC 

G24 - this is possibly the 
other side of the individual 

with the ID 
Z1988.112.004.64 

Z1988.112.004.58 G R 13 months C Saanen NMC G32 

Z1988.112.004.60 G R ? ? Feral NMC  

Z1988.112.004.61 G L ? ? ? NMC A159 

Z1988.112.004.62 G R ? ? ? NMC 

G46? There was another 
astragalus in the same 
bag, but it did not fit the 
other bones as it was 

much smaller. 

Z1988.112.004.63 G L 
2 years 9 
months 

F Saanen NMC G23 

Z1988.112.004.64 G R 11 months ? Feral NMC 

G24 - this is possibly the 
other side of the individual 

with the ID 
Z1988.112.004.57 

Z1988.112.004.65 G L ? ? Ulster? NMC G64 

Z1988.112.004.65 G R ? ? Ulster? NMC G64 

Z1988.112.004.67 G R 1 year F Saanen NMC G25 

Z1988.112.004.68 G R 2 years C Saanen NMC 
G26, born Mar/69 - killed 

25.3.71 

Z1988.112.004.69 G R ? ? ? NMC  

Z1988.112.004.71 G R 14 months C 
Dwarf African 

goat 
NMC D2 

Z1988.112.004.73 G R 9 months C Saanen NMC G19 

Z1988.112.004.74 G L 
4 years 3 
months 

F Welsh NMC G20 

Z1988.112.004.75 G R ? ? ? NMC G41 

Z1988.112.004.76 G R ? ? ? NMC G42 
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List of specimens 

Catalogue ID Species Side Age Sex Breed Collection Comment 

Z1988.112.004.77 G R ? ? ? NMC G40 

Z1988.112.004.78 G L 
11.5 

months 
M Welsh NMC G43 

Z1988.112.004.79 G L ? ? ? NMC G44 

Z1988.112.004.80 G L ? ? ? NMC  

Z1988.112.004.81 G L ? ? ? NMC  

Z1988.112.004.82 G R ? ? ? NMC G35? 

Z1988.112.004.84 G L ? ? ? NMC G49 

0044 G L 
< 1 year 

old 
M ? SU  

0090* G R 11 years F ? SU 
Collected in Greece, 

“Capra” on bone 

0091 G L 7 years M ? SU Collected in Greece 

0094* G R ? F ? SU 
Collected in Greece, 

“Capra” on bone 

0094* G L ? F ? SU 
Collected in Greece, 

“Capra” on bone 

0502 G L ? ? ? SU Collected in Greece 

0620 G L ? ? ? SU  

0620 G R ? ? ? SU  

0671 G R ? ? Capra aegagrus SU  

0784 G R ? F ? SU Collected in Greece 

0784* G L ? F ? SU 
Collected in Greece, 

“Capra” on bone 

0862b G L Juvenile ? ? SU  

0862b G R Juvenile ? ? SU  

0921 G R ? ? ? SU  

1053 G L ? ? ? SU Collected in Greece 

1387 G R 9 months M ? SU  

1387 G L 9 months M ? SU  

1581* G L ? ? ? SU 
Tony Legge collection, 

“Goat astragalus” on bone 

1795* G L ? ? Wild goat SU “Wild goat” on bone 

7620 G R ? ? ? SU Collected in Greece 

7620 G L ? ? ? SU Collected in Greece 

8080 G R ? M ? SU Collected in Greece 

8080 G L ? M ? SU Collected in Greece 

1489 S R ? F 
Unimproved 

Shetland 
HE  

1558 S R ? ? ? HE  

1559 S R ? ? ? HE  

1585 S R 
52.5 

months 
C Shetland wether HE  

1587 S R 45 months C Shetland HE  

1588 S R 
52.5 

months 
C Shetland wether HE  

1589 S R 36 months C Shetland HE  

2966 S L 333 days M Shetland HE  
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List of specimens 

Catalogue ID Species Side Age Sex Breed Collection Comment 

2967 S L 337 days F Welsh mountain HE  

2968 S L 337 days M Welsh mountain HE  

2969 S L 337 days F Welsh mountain HE  

2970 S L 337 days M Welsh mountain HE  

2971 S L 325 days M 
Scottish 

blackface 
HE  

2972 S L 336 days F 
Scottish 

blackface 
HE  

2973 S L 333 days F Shetland HE  

2974 S L 322 days F 
Scottish 

blackface 
HE  

2975 S L 342 days M 
Scottish 

blackface 
HE  

2976 S L 333 days M Shetland HE  

2977 S L 333 days F Shetland HE  

2985 S L 189 days M Welsh mountain HE  

3071 S L 262 days M Suffolk HE  

3077 S L 278 days M 
Scottish 

blackface 
HE  

3080 S L 279 days M 
Karagouniko 

(Greek) 
HE  

3085 S L 274 days F Suffolk HE  

3099 S L 260 days M 
Karagouniko 

(Greek) 
HE  

3100 S L 223 days M 
Gallego 

(Spanish) 
HE  

3108 S L 226 days F 
Gallego 

(Spanish) 
HE  

3109 S L 263 days F Suffolk HE  

3113 S L 197 days F 
Scottish 

blackface 
HE  

3115 S L 199 days F 
Scottish 

blackface 
HE  

3116 S L 197 days F 
Karagouniko 

(Greek) 
HE  

3117 S L 202 days M 
Scottish 

blackface 
HE  

3118 S L 206 days F 
Scottish 

blackface 
HE  

3122 S L 199 days M 
Scottish 

blackface 
HE  

3125 S L 185 days F 
Gallego 

(Spanish) 
HE  

3127 S L 297 days M Suffolk HE  

3140 S L 193 days M 
Gallego 

Marinana 
(Spanish) 

HE  

3141 S L 238 days F 
Karagouniko 

(Greek) 
HE  

3142 S L 190 days F 
Gallego 

(Spanish) 
HE  

3178 S L 319 days F 
Karagouniko 

(Greek) 
HE  

3511 S L 1291 days M Shetland HE  

3514 S L 1291 days M Shetland HE  

3517 S L 1288 days C Shetland HE  

3518 S L 1294 days C Shetland HE  
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List of specimens 

Catalogue ID Species Side Age Sex Breed Collection Comment 

3520 S L 1292 days C Shetland HE  

3521 S L 1301 days F Shetland HE  

3532 S L 1293 days F Shetland HE  

3533 S L 927 days M Shetland HE  

3534 S L 927 days M Shetland HE  

3535 S L 929 days F Shetland HE  

3536 S L 1293 days F Shetland HE  

3537 S L 933 days F Shetland HE  

3538 S L 1297 days F Shetland HE  

3539 S L 1294 days F Shetland HE  

3540 S L 915 days C Shetland HE  

3541 S L 1279 days M Shetland HE  

3542 S L 1294 days F Shetland HE  

3554 S L 914 days M Shetland HE  

3555 S L 915 days M Shetland HE  

3560 S L 924 days M Shetland HE  

3563 S L 932 days F Shetland HE  

3564 S L 926 days F Shetland HE  

3566 S L 937 days F Shetland HE  

3567 S L 929 days M Shetland HE  

3610 S L 565 days C Shetland HE  

3612 S L 571 days F Shetland HE  

3624 S L 580 days F Shetland HE  

3647 S L 1205 days C Shetland HE  

3648 S L 836 days C Shetland HE  

3649 S L 1205 days C Shetland HE  

3650 S L 841 days C Shetland HE  

3656 S L 1214 days F Shetland HE  

3662 S L 1204 days F Shetland HE  

3663 S L 1208 days F Shetland HE  

3665 S L 837 days F Shetland HE  

3670 S L 1195 days F Shetland HE  

3671 S L 830 days M Shetland HE  

3672 S L 842 days F Shetland HE  

3675 S L 1210 days F Shetland HE  

3677 S L 839 days C Shetland HE  

3680 S L 468 days C Shetland HE  

3681 S L 1194 days M Shetland HE  
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List of specimens 

Catalogue ID Species Side Age Sex Breed Collection Comment 

3682 S L 1207 days C Shetland HE  

3683 S L 838 days F Shetland HE  

3684 S L 840 days F Shetland HE  

3685 S L 864 days F Shetland HE  

3687 S L 487 days F Shetland HE  

3688 S L 1226 days F Shetland HE  

3690 S L 486 days C Shetland HE  

3691 S L 487 days C Shetland HE  

3692 S L 1207 days M Shetland HE  

3693 S L 482 days F Shetland HE  

3694 S L 1221 days F Shetland HE  

3710 S L 486 days M Shetland HE  

3711 S L 487 days M Shetland HE  

3724 S L 499 days F Shetland HE  

3726 S L 502 days F Shetland HE  

3727 S L 484 days C Shetland HE  

3771 S L 490 days M Shetland HE  

3774 S L 488 days M Shetland HE  

  

Appendix table 5. All photographed specimens. Species codes: G = goat, S = sheep; Sex codes: C = castrate, F = 

female, M = male; Collection codes: HE = Historic England, SU = Sheffield University, NMC = National Museum 

Cardiff. The codes in the Comments column for some of the individuals refer to Noddle’s coding and they acted as 

cross-references for information about the age, sex, and breed published in Noddle (1974). The two specimens that 

have been shaded grey were removed from the final image dataset. The specimen with Catalogue ID 

Z1988.112.004.44 was too tarnished by taphonomic processes to be included, and the left specimen with Catalogue 

ID 7620 was photographed from only five sides due to user error. Specimens with * after to their Catalogue ID were 

not included in the blind study – see Comment column. 
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Appendix 7. Partial dependence of hyperparameters 
for each neural network 

In the following graphs, the best hyperparameter setting is indicated by the red star 

in the heatmaps and by the vertical dashed line in the diagonal subplots. The black dots 

are the sampled points in the hyperparameter search space. The partial dependencies 

(y-axis) in the diagonal subplots indicate a single hyperparameter’s effect on the 

objective function, which in this case is the five-fold mean classification error. The plots 

below the diagonal show the effect of changing two hyperparameters. 

 

Appendix figure 11. Partial dependence plot for DenseNet-121. 
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Appendix figure 12. Partial dependence plot for DenseNet-169. 
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Appendix figure 13. Partial dependence plot for DenseNet-201. 
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Appendix figure 14. Partial dependence plot for ResNet-50 V2. 
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Appendix figure 15. Partial dependence plot for ResNet-101 V2. 
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Appendix figure 16. Partial dependence plot for ResNet-152 V2. 
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Appendix figure 17. Partial dependence plot for Inception ResNet V2. 
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Appendix figure 18. Partial dependence plot for Inception V3. 
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Appendix figure 19. Partial dependence plot for Xception. 
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Appendix 8. Grad-CAM heatmaps for all folds of the 
Inception V3 model 

The following heatmaps display the branch normalized Grad-CAM heatmaps for all 

ten folds that are part of the ten-fold Inception V3 probability averaged ensemble. The 

heatmaps are not weighted by their contribution to the final ensemble model. 

  

Appendix figure 20. Branch normalized Grad-CAM images for the 24 test images for fold 1. 
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Appendix figure 21. Branch normalized Grad-CAM images for the 24 test images for fold 2. 



420 
 

 

  

Appendix figure 22. Branch normalized Grad-CAM images for the 24 test images for fold 3. 
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Appendix figure 23. Branch normalized Grad-CAM images for the 24 test images for fold 4. 
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Appendix figure 24. Branch normalized Grad-CAM images for the 24 test images for fold 5. 



423 
 

 

  

Appendix figure 25. Branch normalized Grad-CAM images for the 24 test images for fold 6. 
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Appendix figure 26. Branch normalized Grad-CAM images for the 24 test images for fold 7. 
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Appendix figure 27. Branch normalized Grad-CAM images for the 24 test images for fold 8. 
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Appendix figure 28. Branch normalized Grad-CAM images for the 24 test images for fold 9. 
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Appendix figure 29. Branch normalized Grad-CAM images for the 24 test images for fold 10. 
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Appendix 9. Noisy training of Inception V3 and testing 
for vanishing gradients 

Hypothesis and methods 

The Inception V3 Grad-CAM images were found to be noisy and focused on the 

corners of the images in most of the folds in Chapter IV. This phenomenon occurs in the 

normalized ten-fold ensemble Grad-CAM to a lesser extent. One of the hypotheses for 

why this occurs is that weight saturation, or vanishing gradient problem, may have 

occurred. When vanishing gradient problem is encountered, the neuron’s weights are 

saturated and any additional updates through gradients have very little or no effect on 

the neuron (Goodfellow et al., 2016). This happens when the neurons’ values are either 

very large or very small in neurons that use an activation function with strict bounds 

(e.g. Tanh or sigmoid). ReLU activation function is bound at the lower end to zero, so it 

too may saturate when the neuron’s weights are negative, but learning for a neural 

network is much easier with ReLU than other activation functions (Glorot and Bengio, 

2010; Glorot et al., 2011; H. Wang et al., 2020b). By reducing the confidence of the 

model’s classifications, gradient vanishing is reduced since it mostly occurs in highly 

confident decisions, resulting in failure to provide faithful explanations in Grad-CAM 

(Desai and Ramaswamy, 2020). It is thus conjectured that low variability in the 

backgrounds may cause cliff-edges in the gradients and adding noise to the training 

images could help in making the model and Grad-CAM more robust. 

To test the hypothesis that the Grad-CAM heatmaps and therefore the model’s focus on 

the bones can be improved by reducing the model’s confidence, noise was added to all 

training images in order to reduce the confidence of the neural network and a new ten-

fold ensemble model was trained. The augmented noise was not added to validation 

and test sets. The noise was created by randomly generating pixel values between 0 and 

255 with equal probability for each value (uniform probability distribution). This was 

done for one channel representing greyscale noise and the noise was overlaid on top of 

the original image with a weighting of 0.1. Appendix figure 30 shows an example. The 

effect is very subtle and can best be seen in the shadowy parts of the original image 

becoming slightly lighter, but this change is enough for the neural network to be less 

confident and not too large to completely handicap the learning, which it was found to 

do when the noise was more prominent. 
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Inception V3 architecture was chosen as it corresponds to the best one found in Chapter 

IV and the model’s initial weights were transferred from a model pre-trained on 

ImageNet dataset. The model was subjected to a new Bayesian hyperparameter search 

(as outlined in Chapter IV) to account for the modified training data. The split into test, 

training and validation datasets was the same as in Chapter IV, with the same images in 

each split. The optimal batch size found through hyperparameter search was 1, the 

backpropagation optimizer used is SGD, and the learning rate was set to 0.0062. 

Inception V3 model was then trained with these training parameters. 

Formal test 

Formally testing whether the ten-fold ensemble model trained with noisy training 

images focuses less on the corners than the original, baseline ten-fold ensemble model 

consists of several steps. First, both models need to be evaluated on the same test 

images and branch normalized Grad-CAM heatmaps created. From these heatmaps, the 

mean values for each of the four corners is extracted from a region of size 64 x 64 pixels. 

For the ith corner, this 64 x 64 pixel region is termed 𝑥𝑖 and its mean is �̅�𝑖. Additionally, 

for a branch normalized Grad-CAM heatmap 𝐿𝑏𝑟𝑎𝑛𝑐ℎ∈𝐵
𝑐

 (see section 4.2.3.3.2 for 

definition), the mean intensities for the heatmap excluding the four corners is termed 

as �̅�. An example of the two regions being compared is shown in Appendix figure 31. As 

we have six different views, two classes, and two different models, the comparison 

between the two models is not very straightforward. However, the analysis can be 

simplified by aggregating the four corners together by taking their mean: 

X̅  =  
∑ x̅i
4
i

4
. 

Appendix figure 30. An example of random noise applied to a distal view of a goat astragalus. Note the original 

image’s darker shade, particularly in the shadows. 
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Since the interest here is the differences in the mean intensities of the corners and the 

rest of the heatmap for a given view, the measured value of interest is the mean 

intensity of the four corners subtracted from the mean intensity of the rest of the 

heatmap: 

𝐶𝑜𝑟𝑛𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 =  R̅  −  X̅. 

Resulting negative values from this arithmetic would signify higher intensity in the 

corners than in the rest of the heatmap. Conversely, positive values would signify higher 

intensity in the rest of the heatmap. Thus, as the hypothesis is that the ensemble model 

trained with noisy images should result in less focus in the corners than the baseline 

model – and therefore in more positive (or less negative) values of 𝐶𝑜𝑟𝑛𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 – the 

only test necessary is to see whether the difference in 𝐶𝑜𝑟𝑛𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 for a given view 

of a chosen class is statistically significantly higher in the model trained with noisy 

images. If the mean or median values of the baseline ensemble model are higher than 

the model trained with noisy images, there is no need to apply statistical tests as we are 

interested in only whether the new model is better than the baseline. Thus, these simple 

summaries are explored first. 

Results 

The average validation set accuracy for the model trained with noisy training data 

was 82.52% (Appendix table 6) and the average test set accuracy was 84.58%. However, 

the first two of the nine ensemble models reached an accuracy of 87.5% and the other 

seven ensemble models reached an accuracy of 95.83% on the test set, which equals 

the reported accuracy for the baseline Inception V3 ensemble in Chapter IV.  

Appendix figure 31. Example of the intensity extraction regions for a single heatmap. The mean of corners is �̅� and 

the mean of the rest of the image is �̅�. 
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10-fold mean for validation sets 

Fold Precision Recall F-beta F1-score Accuracy 

1 0.7983 0.6471 0.6070 0.6070 64.71% 

2 0.8600 0.8000 0.7946 0.7946 80.00% 

3 0.9037 0.8824 0.8798 0.8798 88.24% 

4 0.8109 0.7059 0.6710 0.6710 70.59% 

5 0.8676 0.8235 0.8158 0.8158 82.35% 

6 0.8717 0.8235 0.8198 0.8198 82.35% 

7 0.9477 0.9412 0.9412 0.9412 94.12% 

8 1.0000 1.0000 1.0000 1.0000 100.00% 

9 0.9477 0.9412 0.9412 0.9412 94.12% 

10 0.8077 0.6875 0.6537 0.6537 68.75% 

Mean 0.8815 0.8252 0.8124 0.8124 82.52% 

      

10-fold mean for test set 

Fold Precision Recall F-beta F1-score Accuracy 

1 0.8750 0.8333 0.8286 0.8286 83.33% 

2 0.9000 0.8750 0.8730 0.8730 87.50% 

3 0.9286 0.9167 0.9161 0.9161 91.67% 

4 0.2500 0.5000 0.3333 0.3333 50.00% 

5 0.8750 0.8333 0.8286 0.8286 83.33% 

6 0.9286 0.9167 0.9161 0.9161 91.67% 

7 0.9615 0.9583 0.9583 0.9583 95.83% 

8 0.9615 0.9583 0.9583 0.9583 95.83% 

9 0.9000 0.8750 0.8730 0.8730 87.50% 

10 0.8529 0.7917 0.7822 0.7822 79.17% 

Mean 0.8433 0.8458 0.8267 0.8267 84.58% 

      

Ensemble model scores for test set 

N members Precision Recall F-beta F1-score Accuracy 

2 0.9000 0.8750 0.8730 0.8730 87.50% 

3 0.9000 0.8750 0.8730 0.8730 87.50% 

4 0.9615 0.9583 0.9583 0.9583 95.83% 

5 0.9615 0.9583 0.9583 0.9583 95.83% 

6 0.9615 0.9583 0.9583 0.9583 95.83% 

7 0.9615 0.9583 0.9583 0.9583 95.83% 

8 0.9615 0.9583 0.9583 0.9583 95.83% 

9 0.9615 0.9583 0.9583 0.9583 95.83% 

10 0.9615 0.9583 0.9583 0.9583 95.83% 

Appendix table 6. Classification metrics for the Inception V3 model trained with noisy images. 
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The one misclassified test bone is that of Sheep 10. The mean confidence for the model 

trained with the noisy training data is 94.51%, which is lower than the mean confidence 

for the baseline model (98.25%). The mean confidence for goat bones is 94.49% 

(baseline: 99.57%) and for sheep bones it is 91.09% (baseline: 96.94%). Thus, the model 

confidence is considerably lower when trained with noisy training data. Yet, the branch 

normalized ten-fold ensemble Grad-CAM (Appendix figure 32) for this ensemble model 

shows that the ensemble model focuses more strongly on the corners of the test images 

than the baseline model displayed in Figure IV-14. To formally measure the difference 

in the importance put on the corners versus the rest of the image between the two 

models, it is necessary to compare the two models using the 𝐶𝑜𝑟𝑛𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 metric 

defined above.  

Formal test 

The summary statistics presented in Appendix table 7 show that the baseline model 

has higher median and mean values for the 𝐶𝑜𝑟𝑛𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 measure in nine out of 12 

cases, meaning that applying noise to training images only exacerbated the problem 

with the Grad-CAM heatmaps’ focus on the corners. Interestingly, the branch 

normalized Grad-CAM heatmaps of the baseline ten-fold ensemble model for the lateral 

view of the goat images is the only one to consistently have higher intensity values in 

the centre of the image rather than the corners, as indicated by the positivity of the 

𝐶𝑜𝑟𝑛𝑒𝑟 𝑓𝑜𝑐𝑢𝑠 metric. Indeed, the heatmaps of the lateral view of the goat astragali in 

Figure IV-14 appear to lack highlighted regions in the corners.   

Appendix table 7. Median and mean values for the Corner focus metric. Higher is better, and cells highlighted in grey 

represent the higher of the two models. 

Class View 
Noisy training 
median Corner 

focus 

Baseline 
median Corner 

focus 

Noisy training 
mean Corner 

focus 

Baseline 
mean Corner 

focus 

Goat Distal -48.14 -34.49 -47.73 -35.50 

Sheep Distal -48.48 -37.15 -46.27 -37.70 

Goat Dorsal -54.79 -13.52 -55.30 -3.15 

Sheep Dorsal -39.47 -72.85 -38.96 -66.54 

Goat Lateral -19.89 9.76 -19.87 9.96 

Sheep Lateral -43.72 -59.20 -46.26 -49.59 

Goat Medial -43.89 -39.08 -44.29 -26.14 

Sheep Medial -58.84 -40.72 -58.01 -39.03 

Goat Plantar -63.36 -8.64 -59.31 -9.90 

Sheep Plantar -42.84 -61.55 -40.55 -53.63 

Goat Proximal -53.37 -29.26 -54.72 -35.96 

Sheep Proximal -64.53 -47.19 -64.83 -41.72 
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Appendix figure 32. Branch normalized Grad-CAM visualizations for the 10-fold Inception V3 ensemble model trained 

with noisy data. 



434 
 

Conclusion 

In conclusion, lowering the classifier’s confidence by adding noise to the training 

images and reducing the cliff-edges in regions of low variation does not improve the 

Grad-CAM localization overall. As the baseline model focuses less on the corners than 

this new model that was trained with noisy images, no evidence was found in support 

of the hypothesis that Grad-CAMs focus on corners because of vanishing gradients and 

adding noise to the training images was not found to improve the Grad-CAM 

localization.   
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Appendix 10. Measuring the forward activations and 
backward gradients and testing for 
vanishing gradients 

Hypothesis and methods 

This appendix concerns the problem of vanishing gradients in the final convolutional 

layer of the Inception V3 ensemble model. Vanishing gradients means that the gradients 

approach zero, which may occur when the activations in a region are flat. As Grad-CAM 

relies on gradients to provide the attribution score weights for each activation map, 

Grad-CAM may be prone to vanishing gradients which could lead to the attribution score 

weights to be misleading (Zhang et al., 2021). If the gradients are vanishing, then this 

would be evident by the mean and the variance of the gradients approaching zero over 

time. To observe this, a new ten-fold cross-validated Inception V3 model is trained using 

the same hyperparameters from Chapter IV and the state of each of the partner models 

is saved at the end of each training epoch. The activation maps and gradients flowing 

from the (ground-truth) class score to the final convolutional layers of each of the six 

views are extracted after each training epoch for the 24 test specimens. 

The number of maximum training epochs in each fold is limited to ten (although early 

stopping was implemented as in Chapter IV), which was found to be enough for the 

ensemble model to reach the same classification accuracy as the original Inception V3 

ten-fold ensemble model. This limit on epochs was necessitated by the need to also 

observe the changes in Grad-CAM images through the epochs and the number of Grad-

CAMs would have become unwieldy if the number of training epochs had been higher – 

even in the current configuration the end result is 97 Grad-CAMs for each test specimen. 

This information is compressed further by only displaying average Grad-CAM heatmaps 

of the test specimens for both species for each epoch. To somewhat simplify the 

information contained in the heatmaps, no branch normalization or confidence score 

weighting is performed on the heatmaps. Given a predicted class c, N test specimens for 

a class, and let 𝐵 =  {𝑑𝑖𝑠𝑡𝑎𝑙, 𝑑𝑜𝑟𝑠𝑎𝑙, 𝑙𝑎𝑡𝑒𝑟𝑎𝑙,𝑚𝑒𝑑𝑖𝑎𝑙, 𝑝𝑙𝑎𝑛𝑡𝑎𝑟, 𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙}, the class 

average Grad-CAM heatmap of the test specimens for each branch is defined by: 

 �̅�𝑏𝑟𝑎𝑛𝑐ℎ ∈ 𝐵 = 
1

𝑁
∑𝐿𝑏𝑟𝑎𝑛𝑐ℎ ∈ 𝐵

𝑐

𝑁

1

. 

In other words, the presented Grad-CAMs are averages of 12 test specimens. 
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Results 

The ensemble and the partner model accuracies are very similar to the accuracies 

presented for the original model in Chapter IV (Appendix figure 33). In Appendix figure 

34 - Appendix figure 43, the Grad-CAM heatmaps of all sheep and goat bones included 

in the test set are aggregated per epoch for all ten folds. The epoch with the lowest 

validation loss – and thus the epoch for which the test accuracy is based on – is 

highlighted in red. These figures clearly demonstrate how Grad-CAM regularly highlights 

unimportant regions in the corners of some of the views. Based on the average Grad-

CAM heatmaps, Appendix table 8 was constructed to show numerically in how many 

epochs the corners appear to be the main focus. Note that the counts in the table are 

based on the author’s qualitative assessment of the Grad-CAM heatmaps. These counts 

help with assessing Appendix figure 44 - Appendix figure 47, which show both the mean 

gradients and mean forward activations for sheep and goat test samples by view.  

The mean forward activations for both sheep and goat bones are negative and approach 

zero, while the mean gradients are either positive or negative. The behaviour of the 

mean gradients is different for the two classes. For goat bones, the mean gradients 

approach zero for all but folds four and ten, whereas this is generally not true for sheep. 

Counts of epochs with main focus on corners 

 Fold Epochs Distal Dorsal Lateral Medial Plantar Proximal 

G
o

a
t 

1 8 0 1 1 5 8 0 

2 10 6 1 9 1 6 2 

3 10 0 8 8 9 1 5 

4 10 9 8 9 0 0 8 

5 10 0 9 0 0 9 1 

6 10 8 0 8 8 1 1 

7 10 0 1 0 8 9 2 

8 10 0 9 0 7 8 7 

9 10 1 1 9 8 10 1 

10 9 0 1 6 1 7 2 

S
h

e
e
p

 

1 8 0 7 6 1 5 7 

2 10 0 4 9 7 7 8 

3 10 0 8 0 1 8 9 

4 10 1 0 1 8 8 9 

5 10 0 1 8 8 8 9 

6 10 8 8 8 7 9 9 

7 10 8 9 8 8 8 9 

8 10 0 3 7 2 1 7 

9 10 0 9 0 3 9 8 

10 9 6 7 6 6 1 6 

Appendix table 8. Count of epochs for which the average Grad-CAM heatmap’s main focus is on the corners. The 

counts are based on the author’s qualitative assessment. The grey regions indicate views for which more than half 

the epochs focused on the corners. 
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This difference is also clear from the mean variances in gradients approaching zero for 

goat specimens in folds one through nine (Appendix figure 48), which is again not true 

for sheep (Appendix figure 49). This suggests that vanishing gradients may be argued as 

the cause of corner focus for goat astragali, but not for sheep. The problem then arises 

as to why Grad-CAM focuses more on the corners in sheep images?  

It is suspected that the pointwise multiplicative arithmetic (global average pooled 

gradient * activation map) involved in creating the Grad-CAM heatmaps results in 

positive activations to be multiplied by negative global average pooled gradients and 

positive global average pooled gradients to be multiplied by negative activations, both 

of which result in negative values in the neuron importance weighted heatmaps. As 

these weighted heatmaps are summed together to create a single heatmap, there is no 

guarantee that the relevant activation maps have high enough positive values to 

counteract the negatively weighted and therefore irrelevant activation maps. Since 

Grad-CAM further relies on ReLU, those regions of the summed heatmap with negative 

values are filtered out to produce the final Grad-CAM heatmap. Thus, it is possible that 

the activations in the corners arise from these regions having similarly signed activations 

Appendix figure 33. Ensemble and partner model accuracies. 
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and gradients (e.g. both are either negative or positive), whereas the regions 

representing the bone could have positive activations and negative gradients or 

negative activations and positive gradients, resulting in the areas above the bone to not 

show up in the Grad-CAM heatmap. Furthermore, the use of ReLU and the additive 

nature of combining the weighted heatmaps actively aim to remove a large portion of 

the information, much of which is likely to be relevant for the classifier.   

For this reason, it is further argued that using absolute valued gradients is better than 

signed gradients, at least for the present problem. Ignoring the sign of the gradient is 

permissible because it is the magnitude of importance that is more relevant than the 

sign, as argued by Srinivas and Fleuret (2019). In fact, the original authors of the Grad-

CAM method also examined absolute gradients and found it to be better at localization 

than signed gradients (Selvaraju et al., 2019). To show the improvement on Grad-CAM 

images when using absolute gradients as neuron importance weights, new Grad-CAM 

heatmaps are produced in Appendix figure 50 - Appendix figure 59. It is evident that 

focus on corners has now completely disappeared, which demonstrates the impact of 

the sign on the final heatmaps. This formulation of Grad-CAM is defined as: 

𝐿𝑐 =  𝑅𝑒𝐿𝑈(∑|𝛼𝑘
𝑐|

𝑘

𝐴𝑘). 

It is possible that Selvaraju et al. (2019) opted not to use absolute gradients because it 

loses the desirable property of class discrimination, which is easiest to show by using 

some of the POLEN23E test images as examples (Appendix figure 60). However, we can 

get back the class discrimination by using the normalization process introduced in 

Chapter III, which further shows that it is indeed the magnitude of the values in the 

heatmap that matter (Appendix figure 61). 

Conclusion 

It has not been shown that vanishing gradients are the reason for the noisy Grad-

CAM heatmaps, even though the mean and the variance of gradients for goat specimens 

do approach zero. Instead, it is argued that the sign of the gradient is at fault and Grad-

CAMs improve significantly when using the absolute values of gradients as the 

importance weights. Using absolute gradients resulted in the complete removal of 

corner activations, for instance. The downside is that using absolute gradients loses class 
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discrimination ability, which is desirable, although this property can be reintroduced by 

simply normalizing the heatmaps across classes. However, the usefulness of Grad-CAM 

is that it helps the user to be sure that the model is focusing on the object and that the 

classification decision is not based on the background. This property may in some cases 

be more important than the ability to discriminate classes. 

  

Appendix figure 34. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 1. The 

epoch with the lowest validation loss is highlighted in red on the left. 
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Appendix figure 35. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 2. The 

epoch with the lowest validation loss is highlighted in red on the left. 
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Appendix figure 36. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 3. The 

epoch with the lowest validation loss is highlighted in red on the left. 
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Appendix figure 37. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 4. The 

epoch with the lowest validation loss is highlighted in red on the left. 
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Appendix figure 38. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 5. The 

epoch with the lowest validation loss is highlighted in red on the left. 
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Appendix figure 39. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 6. The 

epoch with the lowest validation loss is highlighted in red on the left. 
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Appendix figure 40. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 7. The 

epoch with the lowest validation loss is highlighted in red on the left. 
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Appendix figure 41. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 8. The 

epoch with the lowest validation loss is highlighted in red on the left. 
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Appendix figure 42. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 9. The 

epoch with the lowest validation loss is highlighted in red on the left. 
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Appendix figure 43. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 10. The 

epoch with the lowest validation loss is highlighted in red on the left. 
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Appendix figure 50. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 1 using 

absolute gradients as neuron importance weights. The epoch with the lowest validation loss is highlighted in red on 

the left. 
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Appendix figure 51. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 2 using 

absolute gradients as neuron importance weights. The epoch with the lowest validation loss is highlighted in red on 

the left. 
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Appendix figure 52. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 3 using 

absolute gradients as neuron importance weights. The epoch with the lowest validation loss is highlighted in red on 

the left. 
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Appendix figure 53. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 4 using 

absolute gradients as neuron importance weights. The epoch with the lowest validation loss is highlighted in red on 

the left. 
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Appendix figure 54. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 5 using 

absolute gradients as neuron importance weights. The epoch with the lowest validation loss is highlighted in red on 

the left. 
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Appendix figure 55. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 6 using 

absolute gradients as neuron importance weights. The epoch with the lowest validation loss is highlighted in red on 

the left. 
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Appendix figure 56. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 7 using 

absolute gradients as neuron importance weights. The epoch with the lowest validation loss is highlighted in red on 

the left. 
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Appendix figure 57. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 8 using 

absolute gradients as neuron importance weights. The epoch with the lowest validation loss is highlighted in red on 

the left. 
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Appendix figure 58. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 9 using 

absolute gradients as neuron importance weights. The epoch with the lowest validation loss is highlighted in red on 

the left. 
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Appendix figure 59. Mean Grad-CAM heatmaps for the sheep and goat test images for all epochs in fold 10 using 

absolute gradients as neuron importance weights. The epoch with the lowest validation loss is highlighted in red on 

the left. 
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Appendix figure 60. Grad-CAM heatmaps for test image 1 of the POLEN23E dataset using fold 5 of DenseNet-169 

model trained in Chapter III. The heatmaps are unnormalized and absolute gradients were used. The species on the 

left is the ground-truth and the species at the top is the class based on which the Grad-CAM heatmap was created. 
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Appendix figure 61. Grad-CAM heatmaps for test image 1 of the POLEN23E dataset using fold 5 of DenseNet-169 

model trained in Chapter III. The heatmaps are normalized and absolute gradients were used. The species on the left 

is the ground-truth and the species at the top is the class based on which the Grad-CAM heatmap was created. 
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Appendix 11. Occluding the proximo-plantar projecting 
lobe 

Hypothesis and methods 

This appendix concerns the hypothesis that occluding the corners of the images 

where the proximo-plantar projecting lobe is present will have a larger impact than 

occluding other corners on the classification accuracy of the ten-fold Inception V3 

ensemble model that was discussed in Chapter IV. The null hypothesis is that occluding 

the corners where the proximo-plantar projecting lobe is present does not have a bigger 

impact on the model’s classification accuracy than occluding another set of corners. The 

test images and the ensemble model are the same as in Chapter IV, but with occlusions 

applied to the test images. Occlusions of size 32 x 32, 64 x 64, and 128 x 128 pixels were 

used and the occlusions were coloured black or white in separate runs. The occluded 

corners were those that coincide with the position of the proximo-plantar projecting 

lobe or the corner diagonally opposite the proximo-plantar projecting lobe in each view. 

The α in all tests is 0.05. 

Formal tests 

Do occlusions affect the model’s accuracy? 

Prior to testing whether occluding the proximo-plantar projection affects the model’s 

accuracy more than when occluding the opposite corner, it would be helpful to confirm 

that occlusions affect the model’s accuracy in the first place. Thus, the first statistical 

test takes the model’s accuracies for all occlusions as a single sample and compares it to 

the baseline model’s accuracy (95.83%). This is done for sheep, goat, and overall 

accuracies separately. The test used is one-sided one-sample T-test, which was chosen 

because none of the groups violated the assumption of normality in Shapiro-Wilk test 

for normality (Occluded sheep: N = 12, W = 0.88417, p = 0.0991; Occluded goats: N = 12, 

W = 1, p = 1; Occluded overall: N = 12, W = 0.88425, p = 0.0994). The T-test is one-sided 

because the interest here is on whether the occlusions lower the accuracy of the model. 

Similarly, a one-sided one-sample T-test for mean confidences is performed to establish 

whether the occluded test images lower the model’s mean confidence in a significant 

manner (Shapiro-Wilk test for normality for occluded mean confidences: N = 12, W = 

0.87452, p = 0.0746). 
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Does the size of the occlusion matter with respect to the model’s 
accuracy? 

The effect of the occlusion size on the model’s accuracy is studied. This is done by 

pair-wise comparison of the three different sizes, meaning that samples are combined 

along the occlusion colour and occlusion area columns (see Appendix table 9). Since the 

assumption of normality for the accuracies of two of the three size categories did not 

hold in Shapiro-Wilk test (32 x 32px occlusions: N = 4, W = 0.94466, p = 0.683; 64 x 64px 

occlusions: N = 4, W = 0.62978, p = < 0.005; 128 x 128px occlusions: N = 4, W = 0.72863, 

p = 0. 0239), the statistical test chosen is the Mann-Whitney U. The test is again one-

sided as it is only of interest to show that the larger occlusions affect the accuracy more 

than the smaller occlusions.  

Does occluding the projecting lobe have a bigger impact on the model’s 
accuracy than occluding the opposite corner? 

Comparing the impacts of the two types of occlusion on the accuracy of the model 

requires splitting the data further and therefore these splits are also tested for normality 

using Shapiro-Wilk test for normality. Regardless of whether the occlusion is located at 

the projecting lobe or in the opposite corner, the assumption of normality cannot be 

rejected for the accuracy of classifying goat images (Projecting lobe goats: N = 6, W = 1, 

p = 1; Opposite corner goats: N = 6, W = 1, p = 1). However, for the model’s accuracies 

for opposite corner in sheep (Projecting lobe sheep: N = 6, W = 0.90666, p = 0.4148; 

Opposite corner sheep: N = 6, W = 0.49609, p = < 0.001) and the opposite corner overall 

(Projecting lobe overall: N = 6, W = 0.90677, p = 0.4155; Opposite corner overall: N = 6, 

W = 0.49609, p = < 0.001) the null hypothesis of assumption of normality is rejected, 

which means that comparing the two occlusion types’ effect on the model’s accuracy of 

classifying sheep as well as the model’s overall accuracy must be done using a non-

parametric two-sample test. Furthermore, the two samples (i.e., the accuracies of 

opposite and projecting lobe corners) are dependent due to both values deriving from 

the use of the same model and only differ in their input images, and thus Wilcoxon 

signed-rank test is used to find any differences between the two locations of occlusion. 

As the hypothesis is that occluding the proximo-plantar projection affects the model’s 

accuracy more than occluding the opposite corner, the test is again one-sided.  
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In addition, the model’s overall mean confidence is tested with one-sided paired 

samples T-test, because the overall mean confidence for both projecting lobe and 

opposite corners did not violate the assumption for normality in Shapiro-Wilk test 

(Projecting lobe overall mean confidence: N = 6, W = 0.94755, p = 0. 7204; Opposite 

corner overall mean confidence: N = 6, W = 0.94617, p = 0.7092). This test is performed 

to reveal whether the projecting lobe has a larger impact on the confidence of the 

model’s classifications, which may provide a more nuanced result.  

Results 

Since the ensemble model’s accuracy for goat test images is 100% in all scenarios 

(Appendix table 9), most of the focus in this appendix is on the model’s accuracy of 

classifying sheep images and the model’s overall accuracy. On average, the accuracy and 

mean confidence for the ten-fold ensemble model decreased with occlusions (Appendix 

table 9, Appendix figure 62). Curiously, the 32 x 32 pixel white occlusion at the corner of 

the projecting lobe increased the accuracy of the model. However, it is difficult to place 

much weight on this occurrence and it would require further investigation to show that 

this instance is not down to pure chance. The ensemble model’s mean confidence was 

lower when occlusions were applied than when no occlusions were in place (Overall 

mean confidence: N = 12, df = 11, T = -4.18714, p = < 0.001). One-sample T-test also 

Appendix figure 62. Overall accuracies and mean confidences for the 10-fold Inception V3 ensemble model tested 

with test images occluded in various ways. 
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shows that the occlusions reduce the model’s accuracy in a statistically significant 

manner when compared to the baseline model (Occluded sheep: N = 12, df = 11, T = -

3.0015, p = < 0.01; Occluded overall: N = 12, df = 11, T = -2.9971, p = < 0.01). Moreover, 

occluding the images has a more noticeable impact on the accuracy of the model when 

the size of the occlusion is large (Appendix figure 62), which is as expected. Mann-

Whitney U test shows this to be statistically significant when comparing the largest 

occlusion to the smallest, but it is not statistically significant between the 64 x 64 pixel 

and 32 x 32 pixel occlusions nor between 128 x 128 pixel and 64 x 64 pixel occlusions 

(Appendix table 10).  

Regarding the main interest in this appendix, the model’s accuracy is not statistically 

significantly lower in Wilcoxon signed-rank test when occluding the projecting lobe 

versus the opposite corner (Sheep: N = 6, Z = 7.0, p = 0.7693; Overall: N = 6, Z = 5.0, p = 

0.5). However, in terms of the ensemble model’s mean confidence, the drop is 

significant in the T-test (N = 6, T = -3.62551, p = < 0.01). Thus, occluding the projecting 

lobe is not more damaging to the accuracy of the model than when occluding the 

opposite corner, but it is to the model’s confidence.  

Occlusion 
colour 

Occlusion 
size 

Occluded 
area 

Goat 
accuracy 

Sheep 
accuracy 

Goat mean 
confidence 

Sheep 
mean 

confidence 

Overall 
accuracy 

Mean 
confidence 

No occlusion 100.00% 91.67% 99.57% 96.94% 95.83% 98.25% 

Black 32 x 32 
Projecting 

lobe 
100.00% 91.67% 98.78% 96.85% 95.83% 97.81% 

Black 64 x 64 
Projecting 

lobe 
100.00% 83.33% 99.38% 95.83% 91.67% 97.60% 

Black 128 x 128 
Projecting 

lobe 
100.00% 75.00% 99.38% 92.11% 87.50% 95.75% 

Black 32 x 32 
Opposite 

corner 
100.00% 91.67% 99.61% 95.90% 95.83% 97.75% 

Black 64 x 64 
Opposite 

corner 
100.00% 83.33% 99.69% 96.75% 91.67% 98.22% 

Black 128 x 128 
Opposite 

corner 
100.00% 83.33% 99.50% 96.05% 91.67% 97.78% 

White 32 x 32 
Projecting 

lobe 
100.00% 100.00% 96.86% 96.75% 100.00% 96.80% 

White 64 x 64 
Projecting 

lobe 
100.00% 91.67% 96.19% 96.92% 95.83% 96.56% 

White 128 x 128 
Projecting 

lobe 
100.00% 75.00% 97.49% 94.79% 87.50% 96.14% 

White 32 x 32 
Opposite 

corner 
100.00% 83.33% 99.77% 96.17% 91.67% 97.97% 

White 64 x 64 
Opposite 

corner 
100.00% 83.33% 99.73% 95.81% 91.67% 97.77% 

White 128 x 128 
Opposite 

corner 
100.00% 83.33% 99.32% 95.49% 91.67% 97.40% 

Appendix table 9. Results for the occlusion tests. Each row reflects the mean of the 10-fold ensemble model. 
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The Appendix figure 63 - Appendix figure 74 below show the Grad-CAM heatmaps for 

all occlusion tests. In these figures, the misclassified sheep astragali are Sheep 4, Sheep 

10, and Sheep 11. Sheep 4 is misclassified in all tests apart from when a 32 x 32 pixel 

white occlusion is applied to the corner of the projecting lobe, Sheep 10 is misclassified 

by the model in seven of the 12 tests, and Sheep 11 is only misclassified when either 

black or white 128 x 128 pixel occlusion is applied to the corner of the projecting lobe. 

However, the test image set Sheep 4 was also misclassified by the baseline model, 

meaning that the model’s classification of Sheep 10 and Sheep 11 were most clearly 

affected by the occlusion. Furthermore, occluding the different corners does not stop 

Grad-CAM from highlighting these occluded regions. Instead, on many occasions Grad-

CAM highlights the occlusion itself along with the bone. This behaviour is logical since it 

is not the feature maps that are occluded, but the input images. In other words, even 

flat regions in the input images can lead to some features being activated and Grad-CAM 

does not readily broadcast the reasons behind the highlighted areas.  

Conclusion 

Even though occlusions in general reduce the ensemble model’s accuracy and 

confidence in a statistically significant manner, no convincing evidence was found in 

favour of the hypothesis that occluding the corner of the proximo-plantar projecting 

lobe in the test images reduces the ensemble model’s accuracy more than occluding the 

opposite corner. Instead, it was found that there is a significant difference in the 

ensemble model’s mean confidence when occluding the corner of the proximo-plantar 

projecting lobe versus occluding the opposite corner. One possible explanation for the 

discrepancy in the statistical significance of accuracies and mean confidences is that 

since the projecting lobe was visually observed in Chapter IV to be impactful mainly in 

sheep astragalus distal and plantar views, the model may reach the same accuracy 

regardless of the occluded area if the four other views provided enough relevant 

Mann-Whitney U test 

Occlusion 1 Occlusion 2 Occlusion 1 U Occlusion 2 U p-value 

64 x 64 32 x 32 3.5 12.5 0.1714 

128 x 128 32 x 32 1.0 15.0 0.0286 

128 x 128 64 x 64 3.0 13.0 0.1 

Appendix table 10. Pair-wise Mann-Whitney U test on the effect of different occlusion sizes on the ensemble model’s 

accuracy. The statistically significant results are highlighted in grey. N for all occlusions is 4. 
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information, but the model’s confidence in the decision would still suffer more when 

the occlusion coincided with the projecting lobe than when the opposite corner is 

occluded.  

Considering the observation that Grad-CAM heatmaps highlight even the occluded 

regions in the test images, this test corroborates the finding in Appendix 10 that signed 

Grad-CAM is not truly highlighting the regions of most importance to the model. If this 

is the case, then the fact that the classification accuracy does not decrease with the 

occlusions in the corners as much as would be expected is the result of the wrong 

regions being occluded. In future studies, it may be beneficial to apply Occlusion 

Sensitivity analysis, which would map the model’s sensitivity to occluding a region 

through the creation of a heatmap of the desired class’s confidence scores. 
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Appendix figure 63. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 32 

x 32 pixel black square in the corner diagonally opposite the proximo-plantar projecting lobe. 
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Appendix figure 64. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 32 

x 32 pixel black square in the corner of the proximo-plantar projecting lobe. 
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Appendix figure 65. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 32 

x 32 pixel white square in the corner diagonally opposite the proximo-plantar projecting lobe. 
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Appendix figure 66. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 32 

x 32 pixel white square in the corner of the proximo-plantar projecting lobe. 
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Appendix figure 67. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 64 

x 64 pixel black square in the corner diagonally opposite the proximo-plantar projecting lobe. 
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Appendix figure 68. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 64 

x 64 pixel black square in the corner of the proximo-plantar projecting lobe. 
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Appendix figure 69. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 64 

x 64 pixel white square in the corner diagonally opposite the proximo-plantar projecting lobe. 
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Appendix figure 70. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 64 

x 64 pixel white square in the corner of the proximo-plantar projecting lobe. 
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Appendix figure 71. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 128 

x 128 pixel black square in the corner diagonally opposite the proximo-plantar projecting lobe. 
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Appendix figure 72. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 128 

x 128 pixel black square in the corner of the proximo-plantar projecting lobe. 
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Appendix figure 73. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 128 

x 128 pixel white square in the corner diagonally opposite the proximo-plantar projecting lobe. 



484 
 

 

Appendix figure 74. 10-fold Inception V3 ensemble model Grad-CAM visualization of the test images occluded by 128 

x 128 pixel white square in the corner of the proximo-plantar projecting lobe. 
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Appendix 12. Moving the bone vertically in the test 
images 

Hypothesis and methods 

This appendix aims to answer whether the vertical position of the sheep and goat 

bones in the image is of any consequence to the model’s ability to correctly classify it. 

Should a clear relationship be found between the position of the bone and the species 

assignment by the model, a new model may be trained using augmented training images 

where the position of the bone is changed randomly. The specific hypothesis is that 

vertically shifting sheep bones higher in the images and goat bones lower reduces the 

model’s classification accuracy. Conversely, the null hypothesis is that vertically shifting 

sheep bones higher in the images and goat bones lower does not reduce the model’s 

classification accuracy. The ensemble model and the test set images are the same as in 

Chapter IV. 

Before applying the vertical movement, it is necessary to find out how many pixels the 

bones need to move up or down on average. By finding the first pixel with a mean 

intensity value of 25 or above (a high enough value that is guaranteed to be part of the 

bone and not a shadow, but low enough that it is not at the point of reflection from the 

flash) across the three channels in all images, it is possible to calculate the mean vertical 

distance of the bone from the top of the image for both sheep and goat astragali. For 

goats the mean location is 42.72 pixels and for sheep the mean is 36.94 pixels from the 

top edge when the images are scaled to 299 x 299 pixels. Thus, on average, the first pixel 

with a value of 25 or above for goat images are approximately six pixels lower than sheep 

images. This small difference may be enough for the model to differentiate the two 

species and therefore the following test is conducted: the bones in the sheep test images 

are lowered and the bones in the goat test images are lifted by four, six, eight, and ten 

pixels and in a final test the sheep bones are moved to the bottom edge and the goat 

bones to the top edge of the images to see whether the correct classification rate is 

reduced.  

In practice, the last pixel with a mean intensity of 25 or above was also identified so that 

the original image could be cropped vertically. When moving the image up, rows of zero-

valued pixels were added below the bone, and when moving the image down, rows of 
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zero-valued pixels were added above the bone. The width of the image was always kept 

constant.  

Two statistical tests are implemented here: Kendall’s tau b and Spearman’s rank 

correlation coefficient to measure the correspondence between two variables. These 

two non-parametric tests can be used interchangeably, but it has been argued that 

Kendall’s tau is more robust in terms of its resistance to outliers, whilst also being 

statistically more efficient (Croux and Dehon, 2010), which implies that Kendall’s tau 

requires smaller sample size to achieve a given performance. However, even though Xu 

et al. (2013) remark that Kendall’s tau is more mathematically tractable, they also state 

that Spearman’s rho is computationally more efficient as it takes O(n log n) in 

computational time compared to Kendall’s tau’s O(n2). By using both tests, the results 

are easier to accept. These statistical tests are conducted to reveal the relationship 

between the amount of vertical shift and the ensemble model’s accuracy, as well as 

between the amount of vertical shift and the ensemble model’s mean confidence. For 

Spearman’s rho, the tests are one-sided with the expectation that the correlation 

between vertical shift and accuracy and mean confidence is negative. 

Results 

The classification accuracy and the mean confidence of the classifications is lower in 

all cases when compared to the baseline of no vertical movement (Appendix table 11). 

Moving the images by four, six, eight or ten pixels had a similar impact to the 

classification accuracy and the mean confidence. When the bones were placed at the 

edge of the image, the classification accuracy and the model’s mean confidence dropped 

more noticeably. The model’s classification accuracy for goat astragali remained at 100% 

Vertical 
movement 

Goat 
accuracy 

Sheep 
accuracy 

Goat mean 
confidence 

Sheep mean 
confidence 

Overall 
accuracy 

Mean 
confidence 

No movement 100.00% 91.67% 99.57% 96.94% 95.83% 98.25% 

4 px 100.00% 83.33% 98.90% 95.79% 91.67% 97.35% 

6 px 100.00% 83.33% 98.87% 95.12% 91.67% 96.99% 

8 px 100.00% 83.33% 98.76% 95.58% 91.67% 97.17% 

10 px 100.00% 83.33% 98.98% 95.99% 91.67% 97.48% 

Edge 100.00% 75.00% 98.96% 94.65% 87.50% 96.81% 

Appendix table 11. Overall accuracies and mean confidences for the 10-fold Inception V3 ensemble model presented 

with vertically moved test images. The images of the two species’ astragali were moved in opposing directions. 
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throughout the tests, while the mean confidence for them dipped only slightly from 

99.57% for the baseline to 98.76% when the bones were moved by six pixels. In contrast, 

the model’s accuracy in classifying sheep images was lowered from 91.67% for the 

baseline to 83.33% in the tests where the bones were moved down by four, six, eight or 

ten pixels and down to 75% when the bones were moved to the edge of the image. The 

mean confidence follows along the same trend and is at its lowest (94.65%) for the sheep 

images when the bones are moved to the edges. In terms of statistical significance, the 

results from both the Kendall’s tau b and Spearman’s rank correlation coefficient 

(Appendix table 12) demonstrate that the ensemble model’s overall accuracy and its 

ability to correctly classify sheep is significantly affected by the vertical movement of the 

bones within the images. The ensemble model’s mean confidence is also affected by 

vertical shift, but these changes are not statistically significant.  

The Grad-CAM heatmaps are presented in Appendix figure 75 - Appendix figure 79, 

although the changes in Appendix figure 75 - Appendix figure 78 are relatively minor due 

to only moving the images a few pixels at a time. However, Appendix figure 79 clearly 

shows that when the sheep bones are moved to the bottom edge of the image, the 

proximo-plantar projecting lobe is highlighted in distal, dorsal, lateral, and medial views 

of sheep astragali, while the focus is on the negative space in plantar view and possibly 

on the written label in proximal view. For goat astragali (and sheep bones classified as 

goats), the model’s attention is more noticeably on the whole of the bone rather than 

specific parts. In Appendix figure 75 - Appendix figure 78, Sheep 4 and Sheep 10 are the 

misclassified bones, while in Appendix figure 79 Sheep 11 is additionally misclassified. 

Species 
Accuracy / mean 

confidence 
Test Correlation p 

Goat Accuracy Kendall’s tau NaN NaN 

Sheep Accuracy Kendall’s tau -0.77460 0.0424 

Overall Accuracy Kendall’s tau -0.77460 0.0424 

Goat Accuracy Spearman’s rho NaN NaN 

Sheep Accuracy Spearman’s rho -0.84515 0.0171 

Overall Accuracy Spearman’s rho -0.84515 0.0171 

Goat Mean confidence Kendall’s tau -0.20000 0.7194 

Sheep Mean confidence Kendall’s tau -0.46667 0.2722 

Overall Mean confidence Kendall’s tau -0.46667 0.2722 

Goat Mean confidence Spearman’s rho -0.14286 0.3936 

Sheep Mean confidence Spearman’s rho -0.60000 0.1040 

Overall Mean confidence Spearman’s rho -0.60000 0.1040 

Appendix table 12. Results from Kendall's tau b and Spearman's rank correlation coefficient. The vertical movement 

of sheep bones within the images had a significant impact at alpha = 0.05 on the accuracy of the ensemble model 

(highlighted in grey). 
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As Sheep 4 is also misclassified by the baseline model, this result suggests that the 

baseline model’s correct classification of Sheep 10 and Sheep 11 are both somewhat 

dependent on their vertical position within the image.  

Conclusion 

To conclude, this post-hoc study shows that only the ensemble model’s accuracy to 

classify sheep bones is affected by the vertical shift and the null hypothesis that vertically 

shifting sheep bones higher in the images and goat bones lower does not reduce the 

model’s classification accuracy is therefore conditionally rejected. The ensemble 

model’s ability to classify goat bones was unaffected and it appears that the model may 

be biased towards classifying goats and may even be wired so that its default answer is 

goat. The Grad-CAM heatmaps in Appendix figure 79 indicate that labels in proximal 

view of sheep bones may play a part in the classification and the impact of labels on the 

ensemble model’s predictions requires further research in general.  
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Appendix figure 75. Branch normalized Grad-CAM visualizations for 10-fold Inception V3 ensemble model. The goat 

images have been vertically moved up and sheep images are moved down by four pixels. 
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Appendix figure 76. Branch normalized Grad-CAM visualizations for 10-fold Inception V3 ensemble model. The goat 

images have been vertically moved up and sheep images are moved down by six pixels. 
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Appendix figure 77. Branch normalized Grad-CAM visualizations for 10-fold Inception V3 ensemble model. The goat 

images have been vertically moved up and sheep images are moved down by eight pixels. 
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Appendix figure 78. Branch normalized Grad-CAM visualizations for 10-fold Inception V3 ensemble model. The goat 

images have been vertically moved up and sheep images are moved down by ten pixels. 
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Appendix figure 79. Branch normalized Grad-CAM visualizations for 10-fold Inception V3 ensemble model. The goat 

images have been vertically moved up and sheep images are moved down to the edge of the image. 
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Appendix 13. Combination hypothesis test 

Hypothesis and methods 

The purpose of this hypothesis test is to find out which view or views are the most 

important for the trained ten-fold Inception V3 ensemble model. It is equally possible 

that all views are as important as each other. It is hypothesised that presenting the 

ensemble model different combinations of the views affects the classification accuracy 

and/or the mean confidence. The null hypothesis is that it does not matter which views 

are present. Methodologically, this analysis is simple: some of the views of the bones in 

the test set are replaced by a black image and the ten-fold ensemble model is then asked 

to predict the class of the test set. In total, 62 different combinations of input views were 

analysed in this way and the ten-fold ensemble’s accuracy and mean confidence were 

measured after each combination.  

Formal tests 

Before attempting to identify which view is the most important, it is shown that the 

ensemble’s accuracy and mean confidence suffer from the reduction of views. To do so, 

the results are grouped based on the number of views presented to the model and one-

sample Wilcoxon signed-rank test or one-sample T-test is used to analyse the effect of 

reduced number of views for overall accuracy, sheep accuracy, goat accuracy, mean 

confidence, sheep mean confidence, and goat mean confidence. The exact choice of 

statistical test is made based on whether or not the data aggregated by view violates 

the assumption of normality in Shapiro-Wilk’s test.  

Following this confirmatory analysis, the next stage is to find out which view commands 

the most influence over the accuracy and confidence of the model. To do so, the data is 

aggregated by view, giving six different groups. For each measurement of interest 

(overall accuracy, sheep accuracy, goat accuracy, mean confidence, sheep mean 

confidence, and goat mean confidence), Friedman rank sum test is performed with the 

aim to find out whether the presence of different views result in indistinguishable 

scores, and if not, individual views are compared to each other in a two-sided paired 

samples Wilcoxon test regarding these measurements. For pairs of views that are 

significantly different in the Wilcoxon test, the view with more importance to the model   
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Input views 
# 

views 
Goat 

accuracy 
Sheep 

accuracy 
Goat mean 
confidence 

Sheep mean 
confidence 

Overall 
accuracy 

Mean 
confidence 

Baseline 6 100.00% 91.67% 99.57% 96.94% 95.83% 98.25% 

Distal, Dorsal, 
Lateral, Plantar, 

Proximal 
5 100.00% 91.67% 99.48% 97.08% 95.83% 98.28% 

Distal, Dorsal, 
Plantar, Proximal 

4 100.00% 91.67% 99.31% 97.11% 95.83% 98.21% 

Distal, Dorsal, 
Medial, Plantar, 

Proximal 
5 100.00% 91.67% 99.41% 96.67% 95.83% 98.04% 

Distal, Dorsal, 
Lateral, Medial, 

Plantar 
5 100.00% 91.67% 99.35% 96.36% 95.83% 97.85% 

Distal, Dorsal, 
Lateral, Plantar 

4 100.00% 91.67% 99.17% 95.67% 95.83% 97.42% 

Distal, Dorsal, 
Medial, Plantar 

4 100.00% 91.67% 98.30% 95.77% 95.83% 97.04% 

Distal, Dorsal, 
Plantar 

3 100.00% 91.67% 98.09% 95.48% 95.83% 96.78% 

Dorsal, Lateral, 
Medial, Plantar, 

Proximal 
5 100.00% 83.33% 99.85% 95.99% 91.67% 97.92% 

Dorsal, Lateral, 
Plantar, Proximal 

4 100.00% 83.33% 99.75% 95.63% 91.67% 97.69% 

Dorsal, Medial, 
Plantar, Proximal 

4 100.00% 83.33% 99.58% 95.67% 91.67% 97.63% 

Medial, Plantar, 
Proximal 

3 100.00% 83.33% 99.08% 95.75% 91.67% 97.42% 

Distal, Lateral, 
Medial, Plantar, 

Proximal 
5 100.00% 83.33% 99.77% 95.01% 91.67% 97.39% 

Lateral, Medial, 
Plantar, Proximal 

4 100.00% 83.33% 99.79% 94.93% 91.67% 97.36% 

Distal, Dorsal, 
Lateral, Medial, 

Proximal 
5 100.00% 83.33% 98.85% 95.75% 91.67% 97.30% 

Distal, Lateral, 
Plantar, Proximal 

4 100.00% 83.33% 99.69% 94.89% 91.67% 97.29% 

Dorsal, Plantar, 
Proximal 

3 100.00% 83.33% 99.43% 95.04% 91.67% 97.24% 

Distal, Medial, 
Plantar, Proximal 

4 100.00% 83.33% 99.09% 95.37% 91.67% 97.23% 

Lateral, Plantar, 
Proximal 

3 100.00% 83.33% 99.73% 94.03% 91.67% 96.88% 

Distal, Dorsal, 
Medial, Proximal 

4 100.00% 83.33% 97.77% 95.98% 91.67% 96.88% 

Distal, Dorsal, 
Lateral, Proximal 

4 100.00% 83.33% 98.46% 95.24% 91.67% 96.85% 

Distal, Plantar, 
Proximal 

3 100.00% 83.33% 98.86% 94.16% 91.67% 96.51% 

Plantar, Proximal 2 100.00% 83.33% 98.85% 93.36% 91.67% 96.10% 

Dorsal, Lateral, 
Medial, Plantar 

4 100.00% 83.33% 99.35% 92.85% 91.67% 96.10% 

Distal, Dorsal, 
Proximal 

3 100.00% 83.33% 97.38% 94.78% 91.67% 96.08% 

Dorsal, Lateral, 
Plantar 

3 100.00% 83.33% 99.28% 92.84% 91.67% 96.06% 

Distal, Lateral, 
Medial, Plantar 

4 100.00% 83.33% 98.83% 92.74% 91.67% 95.79% 

Distal, Medial, 
Plantar 

3 100.00% 83.33% 98.46% 92.60% 91.67% 95.53% 
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Input views 
# 

views 
Goat 

accuracy 
Sheep 

accuracy 
Goat mean 
confidence 

Sheep mean 
confidence 

Overall 
accuracy 

Mean 
confidence 

Dorsal, Plantar 2 100.00% 83.33% 98.11% 92.29% 91.67% 95.20% 

Dorsal, Medial, 
Plantar 

3 100.00% 83.33% 98.30% 91.69% 91.67% 94.99% 

Distal, Lateral, 
Plantar 

3 100.00% 83.33% 98.67% 90.57% 91.67% 94.62% 

Distal, Plantar 2 100.00% 83.33% 97.72% 90.24% 91.67% 93.98% 

Dorsal, Lateral, 
Medial, Proximal 

4 100.00% 75.00% 98.93% 94.58% 87.50% 96.75% 

Dorsal, Medial, 
Proximal 

3 100.00% 75.00% 98.24% 94.72% 87.50% 96.48% 

Dorsal, Lateral, 
Proximal 

3 100.00% 75.00% 98.77% 93.36% 87.50% 96.07% 

Distal, Lateral, 
Medial, Proximal 

4 100.00% 75.00% 98.76% 92.98% 87.50% 95.87% 

Dorsal, Proximal 2 100.00% 75.00% 97.96% 93.71% 87.50% 95.84% 

Distal, Medial, 
Proximal 

3 100.00% 75.00% 97.31% 93.45% 87.50% 95.38% 

Distal, Lateral, 
Proximal 

3 100.00% 75.00% 98.37% 91.77% 87.50% 95.07% 

Distal, Dorsal, 
Lateral, Medial 

4 100.00% 75.00% 96.61% 92.12% 87.50% 94.36% 

Lateral, Medial, 
Plantar 

3 100.00% 75.00% 99.03% 89.63% 87.50% 94.33% 

Distal, Dorsal, 
Lateral 

3 100.00% 75.00% 96.78% 90.68% 87.50% 93.73% 

Distal, Dorsal, 
Medial 

3 100.00% 75.00% 95.70% 90.55% 87.50% 93.13% 

Distal, Dorsal 2 100.00% 75.00% 95.43% 90.82% 87.50% 93.12% 

Lateral, Medial, 
Proximal 

3 100.00% 66.67% 99.21% 91.32% 83.33% 95.27% 

Medial, Plantar 2 100.00% 66.67% 98.74% 89.52% 83.33% 94.13% 

Distal, Proximal 2 100.00% 66.67% 96.24% 90.05% 83.33% 93.15% 

Dorsal, Medial 2 100.00% 66.67% 95.25% 89.91% 83.33% 92.58% 

Dorsal, Lateral, 
Medial 

3 100.00% 58.33% 97.65% 90.67% 79.17% 94.16% 

Medial, Proximal 2 100.00% 58.33% 97.83% 89.82% 79.17% 93.82% 

Lateral, Proximal 2 100.00% 50.00% 98.66% 91.52% 75.00% 95.09% 

Dorsal, Lateral 2 100.00% 50.00% 96.89% 90.43% 75.00% 93.66% 

Distal, Lateral, 
Medial 

3 100.00% 50.00% 94.69% 90.80% 75.00% 92.74% 

Dorsal 1 100.00% 50.00% 94.00% 90.11% 75.00% 92.06% 

Proximal 1 100.00% 41.67% 96.53% 91.25% 70.83% 93.89% 

Plantar 1 100.00% 41.67% 98.20% 88.61% 70.83% 93.40% 

Lateral, Plantar 2 100.00% 41.67% 98.72% 87.52% 70.83% 93.12% 
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Input views 
# 

views 
Goat 

accuracy 
Sheep 

accuracy 
Goat mean 
confidence 

Sheep mean 
confidence 

Overall 
accuracy 

Mean 
confidence 

Distal, Medial 2 100.00% 33.33% 91.97% 91.76% 66.67% 91.86% 

Distal, Lateral 2 100.00% 25.00% 93.46% 90.81% 62.50% 92.14% 

Distal 1 100.00% 8.33% 91.26% 91.30% 54.17% 91.28% 

Lateral, Medial 2 100.00% 0.00% 95.89% 89.09% 50.00% 92.49% 

Lateral 1 100.00% 0.00% 93.91% 90.85% 50.00% 92.38% 

Medial 1 100.00% 0.00% 92.00% 89.15% 50.00% 90.57% 

is obtained by observing the summary statistics. These non-parametric statistical tests 

were chosen as one can consider each combination to be a repeat measurement of the 

same model, where the views are dependent on each other. Shapiro-Wilk test for 

normality was again used to test whether the data violates the assumption of normality. 

Results 

The ensemble model’s performance results are presented in Appendix table 13. This 

table confirms what previous hypothesis tests already suggested, which is that the 

model is tuned to classifying goats with high confidence and accuracy since the 

ensemble model’s accuracy in predicting goat images is 100% in all combinations. Only 

if the input images deviate enough from the model’s representation of goats does the 

classification become a sheep. In fact, the model appears to use goat as the default 

answer, since its ability to classify goat astragali is not affected whatsoever by the 

reduction of views, while the accuracy of sheep classifications falls to 0% when only 

lateral or medial views are used, be it individually or together.  

Moreover, the ensemble model’s overall accuracy remains the same as the baseline 

accuracy (95.83%) when as few as three views (distal, dorsal, and plantar views) are 

presented to it. However, Appendix table 14 shows that, on average, the model’s 

expected accuracy falls when the model is shown fewer views, with the model’s mean 

accuracy being 88.54% even with just three views, but then sharply deteriorates to 

78.61% with two views. 

Appendix table 13. Results of the 62 combination tests. The percentages are calculated for the 10-fold Inception V3 

ensemble model. 
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Impact of view reduction 

To show statistically that the reduction in the number of views has an impact on the 

model’s performance, a set of tests was performed. These tests are presented in 

Appendix table 15, which shows that the reduction in the number of views was 

statistically significant in all but seven instances. In five of these instances the ensemble 

model’s goat accuracy was not impacted at all by the reduction in available views, as 

already mentioned. In comparison to the baseline performance, the model’s mean 

confidence in its prediction of goat bones was not significantly reduced when the model 

was presented five views. Similarly, the model’s overall accuracy was not found to be 

significantly lower than the baseline accuracy when five views were shown. Thus, the 

impact of reducing the number of informative images shown to the ensemble model is 

negative in general, albeit with the above exceptions. 

The significance of different views 

In addition to goat accuracy, which is not taken into consideration in the following 

tests due to all values being unaffected by the reduction in views, three combinations 

of measurements and views do not violate the assumption of normality in Shapiro-Wilk 

test (Appendix table 16). These are the ensemble model’s mean confidence in classifying 

goats given the presence of plantar view, the ensemble model’s mean confidence in  

 
Number of views as inputs 

5 4 3 2 1 

N 6 15 20 15 6 

Goat mean accuracy 100% 100% 100% 100% 100% 

Goat median accuracy 100% 100% 100% 100% 100% 

Sheep mean accuracy 87.50% 83.33% 77.08% 57.22% 23.61% 

Sheep median accuracy 87.50% 83.33% 79.17% 66.67% 25.00% 

Mean accuracy 93.75% 91.67% 88.54% 78.61% 61.81% 

Median accuracy 93.75% 91.67% 89.58% 83.33% 62.50% 

Mean of goat mean confidence 99.45% 98.89% 98.15% 96.78% 94.32% 

Median of goat mean confidence 99.44% 99.09% 98.42% 97.72% 93.96% 

Mean of sheep mean confidence 96.14% 94.77% 92.69% 90.72% 90.21% 

Median of sheep mean confidence 96.17% 95.24% 92.72% 90.43% 90.48% 

Mean of mean confidence 97.80% 96.83% 95.42% 93.75% 92.26% 

Median of mean confidence 97.89% 97.04% 95.46% 93.66% 92.22% 

Appendix table 14. Mean and median values for the variables across the 62 combination tests. The number of views 

refers to the number of different views being presented to the ensemble model and N refers to how many 

combination tests were involved in producing the means and medians for each variable given the number of 

presented views. 
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classifying sheep given the presence of lateral view, and the ensemble model’s mean 

confidence given the presence of lateral view. As it is not possible to assume normality 

for all views in all cases, it is necessary to use a non-parametric tests. In the first instance, 

Friedman’s test is used to find out whether all of the views produce indistinguishable 

values of overall accuracy, sheep accuracy, mean confidence, sheep mean confidence, 

and goat mean confidence, with each view combination seen as a repeat measurement 

of the model’s performance. In this test (Appendix table 17), the null hypothesis that all 

instances of the measurements come from the same distribution is rejected for all 

variables and two-sided paired samples Wilcoxon test is executed to detail which   

# views Measurement N 
Shapiro-
Wilk W 

Shapiro-
Wilk p 

Test DF 
Test statistic 

(T or W) 
p 

1 Goat accuracy 6 1.00 1.00 T-test 5 NaN NaN 

2 Goat accuracy 15 1.00 1.00 T-test 14 NaN NaN 

3 Goat accuracy 20 1.00 1.00 T-test 19 NaN NaN 

4 Goat accuracy 15 1.00 1.00 T-test 14 NaN NaN 

5 Goat accuracy 6 1.00 1.00 T-test 5 NaN NaN 

1 Sheep accuracy 6 0.8117 0.0747 T-test 5 -7.1784 <0.0005 

2 Sheep accuracy 15 0.9077 0.1249 T-test 14 -5.5208 <0.0001 

3 Sheep accuracy 20 0.8157 0.0015 Wilcoxon NA 0.0 9.54E-07 

4 Sheep accuracy 15 0.7991 0.0036 Wilcoxon NA 0.0 <0.0001 

5 Sheep accuracy 6 0.6827 0.0040 Wilcoxon NA 0.0 0.0156 

1 
Goat mean 
confidence 

6 0.9435 0.6879 T-test 5 -4.8691 0.0023 

2 
Goat mean 
confidence 

15 0.8773 0.0432 Wilcoxon NA 0.0 <0.0001 

3 
Goat mean 
confidence 

20 0.8832 0.0202 Wilcoxon NA 2.0 2.86E-06 

4 
Goat mean 
confidence 

15 0.8734 0.0379 Wilcoxon NA 10.0 0.0013 

5 
Goat mean 
confidence 

6 0.9299 0.5793 T-test 5 -0.8216 0.2244 

1 
Sheep mean 
confidence 

6 0.8922 0.3298 T-test 5 -14.5782 <0.0001 

2 
Sheep mean 
confidence 

15 0.9704 0.8638 T-test 14 -14.8715 2.85E-10 

3 
Sheep mean 
confidence 

20 0.933 0.1766 T-test 19 -9.8812 3.19E-09 

4 
Sheep mean 
confidence 

15 0.8997 0.0941 T-test 14 -5.8398 <0.0001 

5 
Sheep mean 
confidence 

6 0.9874 0.9820 T-test 5 -2.6674 0.0222 

1 Overall accuracy 6 0.8117 0.0747 T-test 5 -7.1773 <0.0005 

2 Overall accuracy 15 0.9077 0.1249 T-test 14 -5.5192 <0.0001 

3 Overall accuracy 20 0.8157 0.0015 Wilcoxon NA 1.0 <0.0001 

4 Overall accuracy 15 0.7991 0.0036 Wilcoxon NA 6.0 <0.0005 

5 Overall accuracy 6 0.6827 0.0040 Wilcoxon NA 6.0 0.2188 

1 Mean confidence 6 0.9713 0.9010 T-test 5 -11.7223 <0.0001 

2 Mean confidence 15 0.9476 0.4874 T-test 14 -13.2341 1.32E-09 

3 Mean confidence 20 0.9653 0.6543 T-test 19 -9.4623 6.36E-09 

4 Mean confidence 15 0.9093 0.1323 T-test 14 -5.7085 <0.0001 

5 Mean confidence 6 0.9265 0.5535 T-test 5 -2.9097 0.0167 

Appendix table 15. Impact of the reduction of the number of views shown to the ensemble model. Shapiro-Wilk’s test 

for normality as well as the main test results are presented. The significant results at a < 0.05 for the main test (one-

sample Wilcoxon or one-sample T-test) are highlighted in grey. 
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Shapiro-Wilk test for normality 

View Measurement N W p 

Distal Goat accuracy 31 1 1 

Dorsal Goat accuracy 31 1 1 

Lateral Goat accuracy 31 1 1 

Medial Goat accuracy 31 1 1 

Plantar Goat accuracy 31 1 1 

Proximal Goat accuracy 31 1 1 

Distal Sheep accuracy 31 0.6907 8.49E-07 

Dorsal Sheep accuracy 31 0.8258 <0.0005 

Lateral Sheep accuracy 31 0.7484 6.56E-06 

Medial Sheep accuracy 31 0.7053 1.39E-06 

Plantar Sheep accuracy 31 0.5808 3.05E-08 

Proximal Sheep accuracy 31 0.777 <0.0001 

Distal Goat mean confidence 31 0.82934 <0.0005 

Dorsal Goat mean confidence 31 0.8888 0.0038 

Lateral Goat mean confidence 31 0.784 <0.0001 

Medial Goat mean confidence 31 0.795 <0.0001 

Plantar Goat mean confidence 31 0.9482 0.1396 

Proximal Goat mean confidence 31 0.9022 0.0082 

Distal Sheep mean confidence 31 0.9078 0.0114 

Dorsal Sheep mean confidence 31 0.9031 0.0086 

Lateral Sheep mean confidence 31 0.9607 0.3046 

Medial Sheep mean confidence 31 0.915 0.0175 

Plantar Sheep mean confidence 31 0.9137 0.0161 

Proximal Sheep mean confidence 31 0.9311 0.0471 

Distal Overall accuracy 31 0.6907 8.49E-07 

Dorsal Overall accuracy 31 0.8258 <0.0005 

Lateral Overall accuracy 31 0.7484 6.56E-06 

Medial Overall accuracy 31 0.7053 1.39E-06 

Plantar Overall accuracy 31 0.5808 3.05E-08 

Proximal Overall accuracy 31 0.777 <0.0001 

Distal Mean confidence 31 0.9296 0.0428 

Dorsal Mean confidence 31 0.915 0.0174 

Lateral Mean confidence 31 0.9381 0.0730 

Medial Mean confidence 31 0.9321 0.0499 

Plantar Mean confidence 31 0.9122 0.0148 

Proximal Mean confidence 31 0.9274 0.0372 

Appendix table 16. Shapiro-Wilk's test for normality. Significant results at a < 0.05 are highlighted in grey. 

Friedman's test 

Measurement N Q p 

Sheep accuracy 31 16.8306 0.0048 

Goat mean confidence 31 19.9438 0.0013 

Sheep mean confidence 31 15.1941 0.0096 

Overall accuracy 31 16.8306 0.0048 

Mean confidence 31 12.855 0.0248 

Appendix table 17. Friedman's test results. Significant results at a < 0.05 are highlighted in grey. 
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views differ in this regard. 

The Wilcoxon signed-rank test, for which the results are presented in Appendix table 18, 

reveals that there are four pairs of views that impact the model’s accuracy and mean 

confidence to classify sheep images in a differential manner, six pairs of views that vary 

in their impact on the model’s mean confidence in goat classifications, five pairs of views 

that differ in their impact on the model’s overall accuracy, and four pairs that differ 

regarding the model’s mean confidence. By taking the mean values of these pairs of 

views in the summary table (Appendix table 19), it is possible to construct comparison 

matrices for each measurement for easier visualization of which view exerts more 

influence over a given measurement.  

From these tables (Appendix table 20 - Appendix table 24), it can be deduced that 

plantar view is significantly more important than distal, lateral, medial, and proximal 

views regarding the model’s accuracy to classify sheep (Appendix table 20) and it is also 

more important than lateral, medial, and proximal views with respect to the model’s 

overall accuracy (Appendix table 21). Concerning the model’s mean confidence 

(Appendix table 24) and sheep mean confidence (Appendix table 23), proximal view 

weights more heavily than distal, lateral, and medial views. Plantar view is more 

important than other views (except for lateral view) regarding the model’s confidence 

in classifying goats (Appendix table 22). 

Dorsal view is more important than lateral and medial views with respect to the model’s 

overall accuracy (Appendix table 21), with dorsal view also being more influential than 

medial view when considering the sheep mean confidence (Appendix table 23). Distal, 

lateral, and medial views are no more important than any other views considering goat 

mean confidence, sheep mean confidence, sheep accuracy, overall accuracy, and the 

model’s mean confidence. Dorsal view is not less important than plantar view in terms 

of sheep accuracy or overall accuracy nor less important than proximal view regarding 

overall mean confidence and sheep mean confidence. Lateral view is not less important 

than plantar or proximal view regarding goat mean confidence. Plantar view is not less 

influential than proximal view in terms of sheep mean confidence, and distal view is not 

less influential over the overall model accuracy than plantar view. 

Finally, although some views (plantar and proximal view in particular) are statistically 

more important to the model than others, the effect size is rather small for sheep   
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Two-sided paired samples Wilcoxon signed-rank tests 

Measurement View 1 View 2 N W p  

Sheep accuracy Distal Dorsal 31 62.0 0.4909 

Sheep accuracy Distal Lateral 31 74.5 0.2531 

Sheep accuracy Distal Medial 31 60.5 0.4468 

Sheep accuracy Distal Plantar 31 55.0 0.0191 

Sheep accuracy Distal Proximal 31 125.0 0.4715 

Sheep accuracy Dorsal Lateral 31 94.5 0.0663 

Sheep accuracy Dorsal Medial 31 64.5 0.0752 

Sheep accuracy Dorsal Plantar 31 84.0 0.165 

Sheep accuracy Dorsal Proximal 31 103.5 0.6749 

Sheep accuracy Lateral Medial 31 79.5 0.793 

Sheep accuracy Lateral Plantar 31 37.5 0.0066 

Sheep accuracy Lateral Proximal 31 101.5 0.0981 

Sheep accuracy Medial Plantar 31 35.0 0.0049 

Sheep accuracy Medial Proximal 31 91.5 0.1503 

Sheep accuracy Plantar Proximal 31 14.0 0.0081 

Goat mean confidence Distal Dorsal 31 65.0 0.2273 

Goat mean confidence Distal Lateral 31 145.0 0.117 

Goat mean confidence Distal Medial 31 112.0 0.1742 

Goat mean confidence Distal Plantar 31 54.0 0.0002 

Goat mean confidence Distal Proximal 31 84.0 0.0023 

Goat mean confidence Dorsal Lateral 31 181.0 0.6164 

Goat mean confidence Dorsal Medial 31 131.0 0.5872 

Goat mean confidence Dorsal Plantar 31 98.0 0.0057 

Goat mean confidence Dorsal Proximal 31 139.0 0.0896 

Goat mean confidence Lateral Medial 31 135.0 0.6682 

Goat mean confidence Lateral Plantar 31 92.0 0.0578 

Goat mean confidence Lateral Proximal 31 153.0 0.2549 

Goat mean confidence Medial Plantar 31 49.0 0.0023 

Goat mean confidence Medial Proximal 31 87.0 0.0422 

Goat mean confidence Plantar Proximal 31 31.0 0.0176 

Sheep mean confidence Distal Dorsal 31 73.0 0.376 

Sheep mean confidence Distal Lateral 31 165.0 0.2563 

Sheep mean confidence Distal Medial 31 132.0 0.4118 

Sheep mean confidence Distal Plantar 31 196.0 0.4528 

Sheep mean confidence Distal Proximal 31 133.0 0.0407 

Sheep mean confidence Dorsal Lateral 31 134.0 0.1161 

Sheep mean confidence Dorsal Medial 31 73.0 0.0278 

Sheep mean confidence Dorsal Plantar 31 225.0 0.8774 

Sheep mean confidence Dorsal Proximal 31 185.0 0.4822 

Sheep mean confidence Lateral Medial 31 131.0 0.5872 

Sheep mean confidence Lateral Plantar 31 105.0 0.1218 

Sheep mean confidence Lateral Proximal 31 101.0 0.0202 

Sheep mean confidence Medial Plantar 31 113.0 0.1829 

Sheep mean confidence Medial Proximal 31 76.0 0.0199 

Sheep mean confidence Plantar Proximal 31 50.0 0.1221 

Overall accuracy Distal Dorsal 31 61.0 0.4615 

Overall accuracy Distal Lateral 31 73.5 0.2377 

Overall accuracy Distal Medial 31 56.0 0.3297 

Overall accuracy Distal Plantar 31 82.5 0.1493 

Overall accuracy Distal Proximal 31 143.5 0.8515 

Overall accuracy Dorsal Lateral 31 87.0 0.0414 

Overall accuracy Dorsal Medial 31 57.5 0.043 

Overall accuracy Dorsal Plantar 31 100.0 0.3866 

Overall accuracy Dorsal Proximal 31 95.5 0.4845 

Overall accuracy Lateral Medial 31 82.0 0.8783 

Overall accuracy Lateral Plantar 31 41.0 0.0094 

Overall accuracy Lateral Proximal 31 110.5 0.1574 
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Two-sided paired samples Wilcoxon signed-rank tests 

Measurement View 1 View 2 N W p  

Overall accuracy Medial Plantar 31 35.0 0.0049 

Overall accuracy Medial Proximal 31 91.5 0.1503 

Overall accuracy Plantar Proximal 31 9.0 0.0031 

Mean confidence Distal Dorsal 31 67.0 0.2598 

Mean confidence Distal Lateral 31 208.0 0.8372 

Mean confidence Distal Medial 31 156.0 0.8612 

Mean confidence Distal Plantar 31 118.0 0.0185 

Mean confidence Distal Proximal 31 104.0 0.0082 

Mean confidence Dorsal Lateral 31 162.0 0.3505 

Mean confidence Dorsal Medial 31 91.0 0.0919 

Mean confidence Dorsal Plantar 31 196.0 0.4528 

Mean confidence Dorsal Proximal 31 158.0 0.1982 

Mean confidence Lateral Medial 31 149.0 0.9772 

Mean confidence Lateral Plantar 31 95.0 0.0693 

Mean confidence Lateral Proximal 31 108.0 0.0305 

Mean confidence Medial Plantar 31 90.0 0.0511 

Mean confidence Medial Proximal 31 69.0 0.0119 

Mean confidence Plantar Proximal 31 81.0 0.8446 

mean confidence, goat mean confidence, and overall mean confidence measurements, 

for which the difference between the lowest and the highest values between views are 

at most ~1.5 percentage points. However, the mean ensemble model accuracy for all 

combinations that included plantar view is between ~1.9-6.5 percentage points higher 

than for combinations that included other views (Appendix table 21). Similarly, the 

ensemble model’s mean accuracy for sheep is more than 10 percentage points higher 

for combinations that included plantar view than for those that included lateral and 

medial views and ~3.7-5.9 percentage points higher than for proximal and distal views 

(Appendix table 20). Yet, the combinations including plantar view did not result in a 

statistically significantly higher mean sheep accuracy than when dorsal view is present. 

Regarding the ensemble model’s mean overall accuracy, the combinations including 

plantar view result in the highest mean accuracy, but it is not statistically significantly 

different distal or dorsal views. 

Conclusion 

In conclusion, the model’s confidence of classifying a bone as a sheep or goat and its 

mean confidence is highest when the plantar view is shown to the ensemble model, 

although the effect size is small. The model’s overall and sheep classification accuracies 

are also higher when the model can draw information from the plantar view than when 

Appendix table 18. Two-sided paired samples Wilcoxon signed-rank test. Significant results at a < 0.05 are 

highlighted in grey. 
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other views are shown, but this is not significantly different from dorsal view. Therefore, 

it is concluded that dorsal and plantar views exert the most influence over the model’s 

accuracy, followed by proximal view. These same views are also the three most 

significant views when considering the overall mean confidence and sheep mean 

confidence, although there are smaller differences between views regarding goat mean 

confidence. Furthermore, the present hypothesis test suggests that lateral and medial 

views are underutilised by the model, albeit that the difference in goat mean confidence 

for lateral and plantar views was not statistically significant. In addition, the model does 

benefit from having more views presented to it, as the mean accuracy and the mean of 

mean confidences across the 62 combination tests increases as more views are shown 

to the model (Appendix table 14), although presenting the ensemble model five views 

was not shown to be statistically significantly less performant in terms of the model’s 

overall accuracy than the baseline. Therefore, the model finds informational value in all 

views, which enables it to perform so well. The final conclusion is then that the null 

hypothesis is conditionally rejected, as it does matter which views and how many of 

them are presented to the model albeit that the model performs well even with some 

missing data. 
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Summary statistics 

View Measurement N Mean Median 

Distal Goat accuracy 31 100.00% 100.00% 

Dorsal Goat accuracy 31 100.00% 100.00% 

Lateral Goat accuracy 31 100.00% 100.00% 

Medial Goat accuracy 31 100.00% 100.00% 

Plantar Goat accuracy 31 100.00% 100.00% 

Proximal Goat accuracy 31 100.00% 100.00% 

Distal Sheep accuracy 31 75.81% 83.33% 

Dorsal Sheep accuracy 31 79.57% 83.33% 

Lateral Sheep accuracy 31 69.09% 75.00% 

Medial Sheep accuracy 31 70.97% 75.00% 

Plantar Sheep accuracy 31 81.72% 83.33% 

Proximal Sheep accuracy 31 77.96% 83.33% 

Distal Goat mean confidence 31 97.52% 98.37% 

Dorsal Goat mean confidence 31 98.11% 98.30% 

Lateral Goat mean confidence 31 98.27% 98.83% 

Medial Goat mean confidence 31 97.86% 98.74% 

Plantar Goat mean confidence 31 99.03% 99.09% 

Proximal Goat mean confidence 31 98.74% 98.86% 

Distal Sheep mean confidence 31 93.50% 93.45% 

Dorsal Sheep mean confidence 31 93.86% 94.72% 

Lateral Sheep mean confidence 31 92.83% 92.84% 

Medial Sheep mean confidence 31 93.01% 92.85% 

Plantar Sheep mean confidence 31 93.71% 94.89% 

Proximal Sheep mean confidence 31 94.23% 94.78% 

Distal Overall accuracy 31 87.90% 91.67% 

Dorsal Overall accuracy 31 89.78% 91.67% 

Lateral Overall accuracy 31 84.54% 87.50% 

Medial Overall accuracy 31 85.48% 87.50% 

Plantar Overall accuracy 31 90.86% 91.67% 

Proximal Overall accuracy 31 88.98% 91.67% 

Distal Mean confidence 31 95.51% 95.87% 

Dorsal Mean confidence 31 95.98% 96.48% 

Lateral Mean confidence 31 95.55% 95.87% 

Medial Mean confidence 31 95.43% 95.79% 

Plantar Mean confidence 31 96.37% 96.88% 

Proximal Mean confidence 31 96.48% 96.85% 

Appendix table 19. 10-fold Inception V3 ensemble mean and median summary statistics for each measurement by 

view. 
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Appendix table 20. View comparison matrix for sheep accuracy. The value inside red and green cells is the p-value 

from Wilcoxon signed-rank test (Appendix table 18). A red cell signifies that View 2 in the Wilcoxon test has larger 

mean, while a green cell shows that View 1 has the larger mean. The mean values are from Appendix table 19. 

Goat mean confidence 

 View 1 

Distal Dorsal Lateral Medial Plantar 

 Mean 97.52% 98.11% 98.27% 97.86% 99.03% 

V
ie

w
 2

 

Distal 97.52%      

Dorsal 98.11%      

Lateral 98.27%      

Medial 97.86%      

Plantar 99.03% 0.0002 0.0057  0.0023  

Proximal 98.74% 0.0023   0.0422 0.0176 

Sheep accuracy 

 View 1 

Distal Dorsal Lateral Medial Plantar 

 Mean 75.81% 79.57% 69.09% 70.97% 81.72% 

V
ie

w
 2

 

Distal 75.81%      

Dorsal 79.57%      

Lateral 69.09%      

Medial 70.97%      

Plantar 81.72% 0.0191  0.0066 0.0049  

Proximal 77.96%     0.0081 

Overall accuracy 

 View 1 

Distal Dorsal Lateral Medial Plantar 

 Mean 87.90% 89.78% 84.54% 85.48% 90.86% 

V
ie

w
 2

 

Distal 87.90%      

Dorsal 89.78%      

Lateral 84.54%  0.0414    

Medial 85.48%  0.043    

Plantar 90.86%   0.0094 0.0049  

Proximal 88.98%     0.0031 

Appendix table 21. View comparison matrix for overall accuracy. The value inside red and green cells is the p-value 

from Wilcoxon signed-rank test (Appendix table 18). A red cell signifies that View 2 in the Wilcoxon test has larger 

mean, while a green cell shows that View 1 has the larger mean. The mean values are from Appendix table 19. 

Appendix table 22. View comparison matrix for goat mean confidence. The value inside red and green cells is the p-

value from Wilcoxon signed-rank test (Appendix table 18). A red cell signifies that View 2 in the Wilcoxon test has 

larger mean, while a green cell shows that View 1 has the larger mean. The mean values are from Appendix table 19. 
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Mean confidence 

 View 1 

Distal Dorsal Lateral Medial Plantar 

 Mean 95.51% 95.98% 95.55% 95.43% 96.37% 

V
ie

w
 2

 

Distal 95.51%      

Dorsal 95.98%      

Lateral 95.55%      

Medial 95.43%      

Plantar 96.37% 0.0185     

Proximal 96.48% 0.0082  0.0305 0.0119  

Appendix table 23. View comparison matrix for sheep mean confidence. The value inside red and green cells is the p-

value from Wilcoxon signed-rank test (Appendix table 18). A red cell signifies that View 2 in the Wilcoxon test has 

larger mean, while a green cell shows that View 1 has the larger mean. The mean values are from Appendix table 19. 

Appendix table 24. View comparison matrix for mean confidence. The value inside red and green cells is the p-value 

from Wilcoxon signed-rank test (Appendix table 18). A red cell signifies that View 2 in the Wilcoxon test has larger 

mean, while a green cell shows that View 1 has the larger mean. The mean values are from Appendix table 19. 

Sheep mean confidence 

 View 1 

Distal Dorsal Lateral Medial Plantar 

 Mean 93.50% 93.86% 92.83% 93.01% 93.71% 

V
ie

w
 2

 
Distal 93.50%      

Dorsal 93.86%      

Lateral 92.83%      

Medial 93.01%  0.0278    

Plantar 93.71%      

Proximal 94.23% 0.0407  0.0202 0.0199  
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Appendix 14. Consent form, pre-test and post-test 
survey questions 

  

Category Consented terms 

Age I am over 18 years old. 

Personal_info 
I understand that all personal information will remain confidential and that all 

efforts will be made to ensure I cannot be identified. 

Anonymity 
I understand that my data gathered in this study will be stored anonymously 

and securely. It will not be possible to identify me in any publications. 

Auditing 
I understand that my responses may be subject to review by responsible 

individuals from University College London or Kone Foundation for 
monitoring and audit purposes. 

Withdrawal 

I understand that my participation is voluntary and that I am free to withdraw 
at any time without giving a reason. I understand that if I decide to withdraw, 
I may choose to have all personal data provided up to that point deleted. I 

am aware that I must explicitly press the 'Delete my data' button to delete all 
of my data. 

Promises 
No promise or guarantee of benefits have been made to encourage me to 

participate. 

Responsibility 
I understand that the data will not be made available to any commercial 

organisations but is solely the responsibility of the researcher(s) undertaking 
this study. 

Benefits 
I understand that I will not benefit financially from this study or from any 

possible outcome it may result in in the future. 

Further research 
I agree that my anonymised research data may be used by others for future 

research. No one will be able to identify me when this data is shared. 

Cookies 

I accept all cookies set by this website. I am aware that their function is to 
track my responses and that they enable the functioning of this website. I 
am aware that the cookies set by this website do not contain any personal 
information. I am aware that deleting cookies will not delete my responses 

from this study. 

Screen_consent 
I consent to information about my monitor width (in pixels) to be saved in the 

database. 

Appendix table 25. Terms of consent to which the participant had to agree. The Category column names are the 

column names in the SQL database. 
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Category Question Options Help text 

Qualifications 
What is the highest level of 

zooarchaeological 
qualification that you hold? 

• None 

• Bachelor 

• Master 

• Doctorate 

Select the qualification that you 
currently hold, not the one you are 

working towards. 

No_of_assemblages 

How many 
zooarchaeological 

assemblages have you 
worked on in the last five 

years? 

• None 

• <10 

• 10-20 

• 20-30 

• 30-40 

• 40-50 

• >50 

Please give an estimate. 

Hours_per_week 

How many hours per week 
(on average) have you 

spent analysing 
zooarchaeological remains 

in the last five years? 

• None 

• <10 

• 10-20 

• 20-30 

• Full time 

Please give an estimate. 

Land_mammal_specialism 

Would you consider yourself 
as specialised in the 
identification of land 

mammals? 

• Yes 

• No 

• Not applicable 

As opposed to mollusks, fish, 
invertebrates, marine mammals, 

avifauna etc. Select Not 
applicable if you do not have any 
zooarchaeological qualifications. 

Sheep_goat_specialism 
Does your specialist 
experience involve 

sheep/goat separation? 

• Yes 

• No 

• Not applicable 

Select Yes if you have conducted 
any studies involving the 

differentiation of the two species. 
Select Not applicable if you are 

not specialised in land mammals. 

Reference_specimen 

Will you be using reference 
specimens of sheep and/or 

goat astragali during the 
test? 

• Both 

• No 

• Only sheep 
astragalus 

• Only goat astragalus 

Only use reference specimens 
that derive from a known, modern 

individual. 

Reference_images 

Will you be using any 
reference photographs of 

sheep and/or goat astragali 
during the test? 

• Both 

• No 

• Only sheep 
astragalus 

• Only goat astragalus 

This includes only actual 
photographs. 

Reference_sketches 

Will you be using any 
reference materials of 

sheep and/or goat astragali 
that include artistic licence? 

• Both 

• No 

• Only sheep 
astragalus 

• Only goat astragalus 

This includes drawings, sketches 
and other two-dimensional 

material created by artists or 
researchers. 

Reference_models 

Will you be using 3D 
models of sheep and/or 
goat astragali during the 

test? 

• Both 

• No 

• Only sheep 
astragalus 

• Only goat astragalus 

These models can be either on 
your own PC, Mac, or online. 

Reference_texts 

Will you be directly 
consulting any of the 

following reference texts as 
your main source during the 

test? 

• Boessneck et al. 
1964 or Boessneck 
1969 

• Prummel & Frisch 
1986 

• Zeder & Lapham 
2010 

• Some other 
description 

• None 

Select None if you are not directly 
consulting any of the following 
descriptive methods during the 
test. Select your main source if 

you are consulting several texts. 

Appendix table 26. Pre-test survey questions, help text and options. The Category column names are the column 

names in the SQL database. 
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Category Question Help text 

Understanding 
Were any of the questions in 

the test unclear? 
Please specify which parts were 

unclear in the box below. 

Understanding_expand If so, please expand: 
Please expand on which specific 
questions were unclear. This isn't 

necessary, though 

Helpful_reference_material 

Did you find that your 
reference materials helped 

you in the classification 
task? 

If you didn't use any reference 
materials, please select Not 

applicable. 

Appendix table 27. Post-test survey questions and help text. The Category column names are the column names in 

the SQL database. 
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Appendix 15. Classification and painting task 
instructions and pages 
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Appendix 16. Database entity relationship diagram 

 

 

Appendix figure 83. Entity relationship diagram. PK refers to the table's primary key and FK refers to the foreign key. 

The dashed lines reflect the relationship between tables: 0…N is the source table and {0, 1} is the table receiving the 

foreign key. The table named study_imageset contains the links to sheep and goat astragalus images and was filled 

a priori. 


