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Abstract 
 

Two billion people consume drinking water contaminated with human and animal faeces. The 

resulting infections are a major source of disease globally, with an estimated 500,000 deaths per 

year from diarrhoea alone. This thesis explores the viability of in-situ fluorescence spectroscopy as a 

simpler, instantaneous, more temporally resilient alternative to faecal indicator organisms (FIOs) to 

indicate faecal contamination risk in drinking water sources across a range of hydrological and 

climatological settings 

TLF was a significant predictor in logistic regression models of the presence-absence of FIOs and 

moderately to very strongly correlated with FIO enumeration, including in real-time data. HLF was 

also shown to be a similarly effective indicator to TLF of FIO presence-absence and enumeration. 

TLF/HLF were superior to other rapid approaches, such as turbidity, sanitary risk scores or total 

bacterial cell counts, to indicate FIOs. Seasonal sampling demonstrated TLF/HLF were more 

associated with FIOs during the wet season than dry season. The ranking of sources using TLF/HLF 

was more resilient with time than that using FIOs, with dry season TLF/HLF more related to wet 

season FIOs, when FIOs are elevated, then dry season FIOs.  

In groundwater, tryptophan-like and humic-like fluorophores were shown to be predominantly 

extracellular and hence will have different transport properties in comparison to FIOs and larger 

pathogens. Fluorophores were also demonstrated to accumulate in highly contaminated 

intergranular aquifers where TLF/HLF intensity related to other indicators of faecal contamination, 

such as on-site sanitation density, but not to FIO enumeration.  

In-situ fluorescence spectroscopy is a simple, instantaneous approach to screen water sources for 

faecal contamination risk. The technique offers global scope to reduce population exposure to 

enteric pathogens in drinking water: from providing real-time data across municipal supply 

infrastructure to assessing the relative risks between drinking water sources in low-income settings. 
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Thesis structure 

This thesis contains a series of interrelated chapters that address the main aim of evaluating the utility 

of fluorescence spectroscopy for the instantaneous detection of faecally contaminated drinking water 

risks. Chapter 1 details the global prevalence and impacts of faecally contamination drinking water, 

current methodologies to assess faecal contamination risks, introduces fluorescence spectroscopy as 

a potential alternative, and leads to the research aims and objectives. Chapter 2 outline the reasoning 

for the study areas and details methods used consistently through the thesis. Chapter 3 demonstrates 

the first application of in-situ fluorescence spectroscopy as a real-time predictor of the presence-

absence and enumeration of faecal indicator organisms (FIOs) in drinking water supplies. Chapter 4 

derives fluorescence thresholds to determine faecal contamination from a multicounty country 

dataset and compares the technology against broad indicator assessment criteria defined by 

UNICEF/WHO. Chapter 5 establishes online fluorescence spectroscopy as a real-time indicator of 

faecal contamination risks at public water supplies that is correlated with both E. coli and total 

bacteria, and a superior bacteriological indicator than turbidity. Chapter 6 confirms tryptophan-like 

and humic-like fluorophores are predominantly extracellular in groundwater and discusses the 

implications in terms of their use as faecal indicators. Chapter 7 shows that tryptophan-like (TLF) and 

humic-like fluorescence (HLF) are most related to total bacterial cell counts and dissolved organic 

carbon, not FIOs, in a highly contaminated intergranular aquifer. Chapter 8 illustrates that TLF and HLF 

fluorescence are more related to FIOs than other rapid approaches and that both TLF and HLF are 

more temporally resilient indicators of faecal contamination risk than FIOs. Chapter 9 summarises the 

key results, and looking forward, articulates how in-situ fluorescence spectroscopy could reduce 

exposure to faecally contaminated drinking water. 
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Chapter 1 - Introduction 
1.1 Drinking water as a source of disease 

Microbial contamination of drinking water remains the primary water quality concern in both 

developing and developed countries (WHO, 2017b). The greatest public health risk relates to the 

consumption of drinking water contaminated with human and animal faeces to which two billion 

people are currently exposed worldwide (WHO, 2019). Consumption of such water is linked to income 

and is most prominent in low-income countries, for example over half of the African population (Table 

1-1). Nevertheless, there are still large populations exposed in high-income countries. This is typically 

a result of consuming ineffectively treated groundwater from unregulated private supplies in rural 

areas (Charrois, 2010; DeFelice et al., 2016). For example, recent US figures indicate 44.5 million 

residents (14% of the population) consume untreated groundwater (Maupin et al., 2014). In municipal 

supplies, there also remain sporadic incidences of contamination due to failures within the water 

supply chain (e.g. Adler et al., 2017; Smith et al., 2010). 

Table 1-1 Estimated regional and global population exposure to faecally contaminated drinking 
water in 2012 (adapted from Bain et al., 2014a).  Note: HI – high-income, LMI – low-middle-
income. 

WHO Region, by income group Exposure (%) 

Africa 52.2 

Americas (HI) 1.2 

Americas (LMI) 14.6 

Eastern Mediterranean (HI) 12.2 

Eastern Mediterranean (LMI) 28.8 

Europe (HI) 0.6 

Europe (LMI) 14.0 

South-East Asia 35.1 

Western Pacific (HI) 1.5 

Western Pacific (LMI) 23.8 

Global 26.0 
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The consumption of enteric pathogens in faecally contaminated drinking water constitutes a major 

burden on public health due to the elevated incidence of infectious diseases (Bain et al., 2014b). 

Enteric pathogens encompass bacteria, viruses, protozoa, and helminths; their consumption can result 

in well-known diseases such as diarrhoea, cholera, typhoid, hepatitis, dysentery, giardiasis and guinea 

worm. The major impact of enteric pathogens is the more than half a million deaths per year in low- 

and middle-income countries from diarrhoea, with children under five particularly at risk (Prüss‐Ustün 

et al., 2014). Early childhood diarrhoea is also associated with decremented child growth, cognitive 

development, and school performance (Berkman et al., 2002; Dillingham and Guerrant, 2004; Esrey 

et al., 1988). Outside the developing world, impacts remain appreciable.  For example, there are an 

estimated 750,000 to 5,900,000 cases of waterborne illness and 1400 to 9400 deaths per year in the 

USA from consuming faecally-contaminated groundwater (Macler and Merkle, 2000). To reduce the 

proportion of the world’s population drinking faecally contaminated water, the United Nations have 

established Sustainable Development Goals (SDGs) for the universal access to safe drinking water for 

all and improvements in water quality by 2030. 

1.2 Current indicators of faecally contaminated drinking water 

Routine microbiological analyses of drinking water are undertaken using faecal indicator organisms 

(FIOs) that share similar characteristics to enteric pathogens and are used to infer their presence 

(Savichtcheva and Okabe, 2006). Ideal indicators should be present in faeces, not multiply outside the 

intestinal tract, share similar resilience to environmental conditions and disinfection to enteric 

pathogens, and can be quantified relatively simply in the laboratory (Hurst et al., 2007). Currently, the 

WHO Guidelines for Drinking Water Quality (WHO, 2017b), and regulation in many countries, include 

the indicator group thermotolerant (faecal) coliforms (TTC), including Escherichia coli that is 

considered the best indicator of faecal contamination by warm-blooded mammals.  

Drinking water compliance monitoring using FIOs alone provides ineffective protection of public 

health (Stelma Jr and Wymer, 2012; WHO, 2017a) and waterborne outbreaks remain common, even 

in high-income countries (Collier et al., 2021). The main concerns relating to FIOs are that microbial 
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contamination is highly variable temporally, which is not characterised by infrequent (e.g. 

quarterly/annual) FIO sampling in many circumstances (Hrudey and Hrudey, 2004), and results are 

delivered after exposure has occurred.  Furthermore, FIO analysis requires well-trained personnel, 

restricting the extent of nationally representative surveys.  Because no result is provided in-situ at the 

source, communication of risks and behavioural change is also inhibited (UNICEF/WHO, 2017).  

To address some of these limitations with FIO monitoring, the World Health Organisation (WHO) 

recommends a risk-based management approach to ensure water safety (WHO, 2017b). A risk-based 

approach often includes sanitary inspections of the source (Kelly et al., 2020) and operational 

monitoring of parameters that can be quantified rapidly to indicate changes in source water quality 

(WHO, 2017b), notably turbidity (WHO, 2017d), in addition to FIO culturing. However, turbidity is not 

a reliable indicator of faecal contamination (Jung et al., 2014; Pronk et al., 2006; UKWIR, 2012) and 

there is a dearth of suitable alternative online detection methods that can be used (Besmer and 

Hammes, 2016). There is also a current drive by UNICEF/WHO (2017) for the development of new 

water quality approaches enabling more rapid, in situ detection of faecal contamination in drinking 

water. 

1.3 Fluorescence spectroscopy 

1.3.1 Principles of fluorescence 

Fluorescence is produced via three stages: excitation of a molecule, vibrational relaxation and internal 

conversion, and emission of light (Figure 1-1) (Lakowicz, 2006; Reynolds, 2014). A molecule reaches 

an excited state by gaining energy through the adsorption of an appropriate incoming photon and 

happens over femtoseconds (10-15).  Vibrational relaxation is a non-radiative process whereby the 

gained energy is lost as kinetic energy within the same molecule or to surrounding molecules allowing 

transition between vibration levels over picoseconds (10-12). Internal conversion is a further loss of 

energy at similar timescales to vibrational relaxation allowing relaxation across vibration levels and 

electronic energy states. Fluorescence is a slower process (10-9 seconds) whereby gained energy is lost 
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through the emission of light. This light is typically of longer wavelength than the original absorbed 

light because of the loss of energy through vibrational relaxation and internal conversion - termed the 

Stokes shift (Stokes, 1852). Emitted light is also generally distributed over a range of wavelengths 

because of the array of vibrational levels between electronic states that are returning to ground state 

(S0, Figure 1-1). Other processes such molecular collisions and quenching, energy transfer between 

molecules due to spectral overlap in absorption and fluorescence, are competing pathways with 

fluorescence to return an excited an electron to the ground state. 

 

 

Figure 1-1. Jablonski Diagram with electronic energy states (S0-S3) and vibration levels (V0-V5) 
demonstrating varied excitation through absorption (blue), relaxation through internal conversion 
and vibrational relaxation (green) and relaxation to a ground state through fluorescence (red). 

1.3.2 Fluorescence of natural organic matter 

Natural organic matter (NOM) is defined as the assortment of organic, carbon-based materials that 

are present in all natural waters (Matilainen et al., 2010). NOM can be broadly be split into non-humic 

solutes (e.g. fats, carbohydrates, and proteins) and complicated heterogeneous humics, though the 

two groups are not completely distinct as non-humic solutes can be contained in the structure of 

complicated humics (Fabris et al., 2008). NOM can be either allochthonous, derived from the 

surrounding environment, or autochthonous, created in-situ through microbial processes (Hudson et 
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al., 2007). The specific characteristics of NOM are frequently related to its origin (e.g. vegetation, soil, 

wastewater) (Baker and Curry, 2004; Baker and Spencer, 2004; Reynolds, 2002; Spencer et al., 2008). 

Fluorescence spectroscopy is a rapid, non-invasive technique commonly used to characterise 

fluorescent NOM over the past 50 years (Baker, 2002a; Bieroza et al., 2009; Carstea et al., 2010; 

Fellman et al., 2010; Hudson et al., 2007; Lapworth et al., 2008; Stedmon and Markager, 2005; Stryer, 

1968). Aromatic organic compounds commonly fluoresce because of the energy sharing, unpaired 

electron structure of the carbon ring (Hudson et al., 2007). Fluorescence spectroscopy allows the 

discrimination between different types of NOM because the wavelengths of adsorption (excitation) 

and emission are specific to a molecule (Lakowicz, 2006). In the study of fluorescent NOM, compounds 

that fluoresce or only absorb light are termed fluorophores and chromophores, respectively (Mopper 

et al., 1996).  

Fluorescence spectroscopy is commonly conducted on water samples using a range of excitation and 

emission wavelengths. This approach allows the creation of excitation-emission matrices (EEMs) to 

visualise the intensity of fluorescence across the range of wavelengths (Figure 1-2). A range of peaks 

have been observed in these EEMs that are often split into protein-like and humic-like fluorescence 

(Coble et al., 1993; Yamashita and Tanoue, 2003). Protein-like fluorescence is considered 

autochthonous and includes tryptophan- (Figure 1-2A) and tyrosine-like fluorescence (Coble et al., 

2014). These peaks resemble the fluorescent properties of the equivalent amino acids but are not 

necessarily representative of the presence of the amino acid itself.  

Tryptophan-like fluorescence (TLF), or peak T, is the most commonly detected protein-like 

fluorescence in natural waters (Yang et al., 2015a), with one peak centred around λex/em of 275/340 nm 

(Coble, 1996) (Figure 1-2A). TLF is considered an indicator of biological activity in water (Cammack et 

al., 2004; Elliott et al., 2006a) and has been characterised in high concentrations in both human and 

animal wastewater (Baker, 2001; 2002b). In wastewater and sewage impacted rivers, multiple studies 

have successfully correlated TLF with biological oxygen demand (BOD5) tests (Hudson et al., 2008; 
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Reynolds and Ahmad, 1997), which is the quantity of oxygen required by the native microbial 

population to degrade the labile organic matter over five days. Consequently, researchers have 

recommended TLF as a rapid, indicative tool of bioavailable organic matter for monitoring effluent 

quality, river water quality, and pollution events (Baker and Inverarity, 2004; Hudson et al., 2008). 

Humic-like fluorescence (Figure 1-2B) has traditionally been considered allochthonous, outside of 

the marine environment, and resembles the fluorescent properties of humic acids (Coble et al., 

2014).  Nevertheless, HLF is also elevated in wastewater (Hur et al., 2010; Sihan et al., 2021), is an 

excellent proxy for DOC in rivers (r2 0.74-0.99) (Carstea et al., 2020), and recent laboratory studies 

suggest it can also be microbially-derived (Fox et al., 2019; Fox et al., 2017; Fox et al., 2021). Other 

observed NOM fluorophores include polyaromatic hydrocarbons and chlorophyll (Moberg et al., 

2001; Nahorniak and Booksh, 2006).  

 

Figure 1-2. (A) Excitation-emission matrix (EEM) of a 100 ppb tryptophan standard (B) mean EEM 
from repeated sampling of a UK public water supply demonstrating no clear protein-like peak, but 
dual humic-like peaks. Both EEMs have been masked to remove Raleigh and Raman scattering. 
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1.3.3 Data analysis 

Peak-picking and PARAllel FACtor (PARAFAC) analyses are commonly used to interpret EEMs. Peak 

picking involves identifying components based on their maximum intensity at specific excitation-

emission wavelength pairs (Coble, 1996) (Figure 1-2). However, peak-picking is limited by overlapping 

and interference between peaks and peak shifts (Carstea et al., 2016; Murphy et al., 2008; Yang et al., 

2015a). Consequently, authors usually additionally report intensity ratios between identified 

components (e.g. Baker, 2002b). Recently, it has become standard practice to additionally undertake 

PARAFAC analysis (Bro, 1997; Murphy et al., 2013). PARAFAC is a mathematical tri-linear model that 

identifies and separates the contribution of individual fluorophore components to EEMs without any 

assumptions regarding their excitation-emission spectra (Carstea et al., 2016; Cohen et al., 2014).  

1.3.4 In-situ fluorescence spectroscopy 

Multiple manufacturers currently produce field-deployable fluorimeters according to the principle of 

peak-picking which target commonly observed fluorophores such as TLF, HLF, and PAHs (e.g. Figure 

1-3). The capability to take high temporal resolution fluorescence measurements in-situ has triggered 

a new wave of research. This work has included investigating event-driven nutrient export (Blaen et 

al., 2016; Tunaley et al., 2016; Wilson et al., 2013) and detection of wastewater surges/inputs 

(Mendoza et al., 2020; Thompson and Dickenson, 2021) in surface waters. In-situ fluorimeters have 

also been used as real-time indicators of DOC, BOD (Khamis et al., 2021; Khamis et al., 2017; Ruhala 

and Zarnetske, 2017; Saraceno et al., 2009) and cyanobacteria (Zamyadi et al., 2016) in freshwaters. 

In engineered water systems, in-situ fluorimeters have been used to assess cross-connections 

between recycled water and potable water (Hambly et al., 2015) and for real-time monitoring of 

organic matter in drinking water treatment plants (Mladenov et al., 2018; Shutova et al., 2016). 

However, in-situ measurements of fluorescence can be impacted by temperature and turbidity, which 

can require compensation (Downing et al., 2012; Khamis et al., 2015; Saraceno et al., 2017).  
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Figure 1-3 UviLux Fluorimeter developed by Chelsea Technologies Group Ltd., UK. Note that the 
sensor operates using UV light and is sensitive to sunlight; hence, the beaker would need to be 
covered for a reliable measurement. 

1.3.5 An indicator of microbiological quality 

Within the applied spectroscopy literature, it has been long documented that E. coli cells directly emit 

TLF and also excrete compounds that fluoresce in the TLF region in controlled laboratory studies 

(Bronk and Reinisch, 1993; Dalterio et al., 1986; Dalterio et al., 1987; Seaver et al., 1998). In terms of 

excreting TLF NOM, E. coli is the preferred organism for the industrial production of tryptophan by the 

fermentation of carbohydrates (Ikeda, 2006). Alternatively, if tryptophan is readily available in the 

environment then E. coli will import and hydrolyse tryptophan, almost quantitatively (Li and Young, 

2013), into indole that is then excreted. This would also enhance any TLF signal because pure indole 

fluoresces within the TLF region at 33% greater intensity than tryptophan (Figure 1-4).  
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Figure 1-4. Comparison of the TLF intensity emitted by dissolved tryptophan and indole. Analyses 
were performed on 0, 10, 20, 50, and 100 ppb solutions of both compounds with a UviLux 
fluorimeter (Chelsea Technologies Group Ltd., UK). The gradients of the regression lines are 278 
and 209 for indole and tryptophan, respectively. 

Fox et al. (2017) investigated the microbial origins of both TLF and HLF. They cultured E.coli, amongst 

other species, for 6 h and collected samples every 30 min for fluorescence and optical cell density. The 

cultured E. coli cells fluoresced at TLF wavelengths and displayed a significant and very strong 

correlation with cell density over the bacterial growth curve (r2 0.98). They suggested that although 

the correlation was strong, this was more likely to be attributed to cell activity rather than the number 

of cells as tryptophan will be produced as a result of cell multiplication and metabolic processing 

(Coble et al., 2014; Hogg, 2013). HLF was also produced by E. coli; the authors suggest as a metabolic 

by-product or a secondary meteabolite, with a correlation of r2 0.86 across the growth curve, although 

HLF continued to increase during the stationary phase.  

Cumberland et al. (2012) investigated the use of TLF as a tool for assessing the microbiological quality 

of river water and effluents. The authors collected a range of effluent and river water samples from 

the UK. These samples were used to make up a dilution series of 10:1, 100:1, 1000:1 and 10000:1, 

which were analysed for TLF and the bacterial indicators: total coliforms, E. coli, presumptive coliforms 

and heterotrophic bacteria and compared. Correlations were reported between TLF and 

heterotrophic bacteria (r2 0.81), total coliforms (r2 0.78) and E. coli (r2 0.65). It was also noted that E. 

coli displayed the greatest TLF per unit of bacteria. 
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Fluorescence at TLF and HLF wavelengths is not unique to TTCs such as E. coli. Tryptophan residues in 

proteins are ubiquitous in bacteria, and many bacterial cells directly fluoresce at TLF wavelengths 

(Bronk and Reinisch, 1993; Dalterio et al., 1986; Dalterio et al., 1987; Dartnell et al., 2013; Fox et al., 

2017; Seaver et al., 1998; Sohn et al., 2009). Furthermore, multiple species excrete TLF and HLF 

fluorophores including those that are omnipresent in freshwater systems such as Pseudomonas 

aeruginosa (Elliott et al., 2006a; Fox et al., 2017; Kida et al., 2019; Nakar et al., 2019). Therefore, 

elevated TLF/HLF may be indicative of elevated numbers of non-FIO bacteria, which are not 

necessarily an indicator of risk to human health. For example, Bridgeman et al. (2015) demonstrated 

a correlation between TLF and total bacterial cells (TBCs), but not E. coli, in predominantly treated 

drinking water. Additionally, various species of cyanobacteria, diatoms and green algae also fluoresce 

at TLF wavelengths (Determann et al., 1998; Henderson et al., 2008; Nguyen et al., 2005). 

It is unclear whether the bulk of TLF or HLF fluorophores in the environment are extracellular or 

intracellular in groundwater. Some research indicates TLF is associated with free amino acids, i.e. 

extracellular, (Yamashita and Tanoue, 2003) whilst others have suggested it is partially bound in 

proteins or cell walls, i.e. intracellular (Determann et al., 1998). In the laboratory, Fox et al. (2017) 

reported that at least 75% of TLF was intracellular when E. coli were cultured under controlled 

conditions. This evidence was supported further by similar laboratory work using Pseudomonas sp. 

where >68% of TLF was intracellular (Fox et al., 2021). In an assortment of surface waters, Baker et al. 

(2007) showed 32-86% of TLF was lost following filtration through a 0.2 µm membrane indicating a 

substantial proportion was associated with particulate and cellular material. Samples from the River 

Leith, NW England, in an area featuring groundwater-surface interaction showed a slightly lower TLF 

loss following filtration of 20-40 % (Bieroza and Heathwaite, 2016a), albeit through a larger pore-size 

0.45 µm membrane that would not remove all microbes. For HLF, Fox et al. (2021) reported >80% of 

fluorescence was extracellular in their laboratory model system using Pseudomonas sp. and Baker et 

al. (2007) reported 70-96% of the signal remained after filtration from their range of surface waters. 

In groundwater, we might expect an even higher proportion of TLF and HLF to be extracellular due to 
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natural filtration during recharge and subsurface flow, as well as, typically, a lower microbial biomass 

(Griebler and Lueders, 2009; Marmonier et al., 1995; Pedersen, 2000; van Driezum et al., 2018).  

1.4 Aims and objectives 

The principal aim of this research is to evaluate the use of in-situ fluorescence spectroscopy as an 

instantaneous indicator of faecal contamination risk in drinking water. This goal will be achieved by: 

1. Testing TLF/HLF as indicators of faecal contamination determined by FIOs across a range of 

settings (Chapters 3, 4, 5, 7, 8). 

2. Demonstrating online TLF/HLF as real-time indicators of faecal contamination risk at public 

water supplies (Chapter 5). 

3. Generating TLF/HLF thresholds to infer FIO presence-absence that could be implemented 

widely (Chapter 4). 

4. Investigating temporal dynamics in TLF/HLF-FIOs relationships (Chapters 3, 8). 

5. Exploring the uniqueness of TLF/HLF to FIOs, as opposed to the wider bacterial population 

(Chapters 5, 7, 8). 

6. Examining the intracellular/extracellular nature of TLF/HLF fluorophores (Chapter 6). 

7. Evaluating TLF/HLF against UNICEF/WHO faecal indicator criteria, including limit of detection, 

usability, and interferents (Chapter 4). 
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Chapter 2 - Methodological overview 
 

2.1 Study areas and data availability 

Data were collected from multiple study areas, with a focus on Africa, the WHO region with the highest 

proportion of the population consuming faecally contaminated water (Table 1-1). African locations 

were selected opportunistically according to funding availability in Kenya (Kisumu), Senegal (Dakar), 

Uganda (Lukaya), and Zambia (Kabwe). A UK project solely designed around the application of 

fluorescence spectroscopy at public water supplies enabled a real-time technological application, 

which would have been challenging to undertake in Africa. Datasets were also collated for analysis 

from other projects operating simultaneously alongside this PhD in India (Sorensen et al., 2016) and 

Malawi (Ward et al., 2020), as well as a previous project in South Africa (Baker et al., 2015). These 

datasets from seven countries allowed in-situ fluorescence spectroscopy to be explored as an 

indicator of faecal contamination risk across a range of aquifers in different climates that are exposed 

to varying degrees of pollution pressures. Faecal contamination was primarily assessed by culturing 

FIOs. 

2.2 Faecal indicator organisms (FIOs) 

Thermotolerant (faecal) coliforms (TTCs) were selected as the FIO of contamination to assess the 

presence and extent of faecal contamination risks in groundwater for all research undertaken outside 

of the UK. TTCs include the preferred FIO E. coli (WHO, 2017b), which was used in the UK water 

industry work (Chapter 5), in addition to other genera such as Klebsiella spp. that are less likely to 

originate from a faecal source (Leclerc et al., 2001). Nevertheless, TTCs are considered acceptable FIO 

alternatives to E. coli by the WHO (2017b), as the majority of TTCs comprise E. coli in most 

circumstances. In tropical groundwater impacted by inadequate sanitation, 90-99% of all TTCs have 

been shown to be E. coli (Howard et al., 2003; Leclerc et al., 2001). The Howard et al. (2003) study, 

where 99% of TTCs were confirmed as E. coli, was undertaken in shallow groundwater in Kampala in 
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a near identical climatological and hydrogeological setting to that as the Ugandan study area (Chapter 

8). 

TTCs were isolated and enumerated using the membrane filtration method with Membrane Lauryl 

Sulphate Broth (MLSB, Oxoid Ltd, UK) as the selective medium. A volume of water (0.1-100 mL) was 

passed through a 0.45 µm cellulose nitrate filter (GE Whatman, UK). The filtrate volume was selected 

according to the corresponding TLF measurement and any previous TTC analyses at the source to 

ensure colonies were not too numerous to count (TNTC), whilst always attempting to maximise the 

volume. The filter was placed on an absorbent pad (Pall Gelman, Germany) saturated with MLSB broth 

in a plate and incubated at 44 °C for 18–24 h. Plates were inspected within 15 mins of removal from 

the incubator and all cream to yellow colonies greater than 1 mm considered TTCs. Where plates were 

TNTC the analysis was repeated the following day using a smaller volume of the remaining sample that 

had been kept refrigerated at 4oC.  

2.3 In-situ fluorescence spectroscopy 

There are several commercially available options available to collect in-situ fluorescence 

spectroscopy data (Khamis et al., 2020; Khamis et al., 2015). The UviLux fluorimeters produced by 

Chelsea Technologies Group Ltd were selected because they contain a photomultiplier, which 

improves the minimum detection limit (MDL). For example, for TLF, the MDL in the laboratory is 

0.17-0.19 µg/L, which is an order of magnitude lower than competitors (Khamis et al., 2020; Khamis 

et al., 2015). This lower detection limit is important for groundwater fluorescence studies when 

fluorescence can be very low. 
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Figure 2-1 Optical regions of TLF and HLF UviLux fluorimeters shown on (A) an Excitation-emission 
matrix (EEM) of a 100 ppb tryptophan standard; (B) mean EEM from repeated sampling of a UK 
public water supply demonstrating no clear protein-like peak, but dual humic-like peaks that 
overlap into the TLF region. 

Two UviLux fluorimeters were used targeting TLF and HLF, as indicators of faecal contamination risk. 

The TLF and HLF fluorimeters targeted excitation-emission values of 280/360 (λex/ λem) and 

280/450 nm (λex/λem), respectively.  Whilst the HLF λem targeted the established peak, the λex was 

matched to that of TLF to also investigate evidence of optical overlap between the two regions 

(Figure 2-1), as opposed to centres of peaks typically observed at λex <260 and 320-360 nm (Fellman 

et al., 2010). The bandpass filters for λex and λem were ± 15 and ± 27.5 nm, respectively, for both 

fluorimeters (Figure 2-1). 

The TLF and HLF fluorimeters are factory calibrated using dissolved tryptophan and pyrene 

tetrasulphonic acid in deionised water, respectively. The TLF fluorimeter units were originally 

equivalent to dissolved tryptophan intensity in parts per billion (ppb) but then subsequently changed 

to quinine sulphate units (QSU), the unit used by the HLF fluorimeter, to allow calculation of TLF:HLF 

ratios. QSU are a standard unit produced by standardising the factory calibrationd using the 
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fluorescence at λex 347.5 nm and λem 450 nm from 1 ppb of quinine sulphate dissolved in 0.105 M 

perchloric acid. 

Initial laboratory testing of the TLF fluorimeter using dissolved L-tryptophan (Acros Organics, USA) in 

ultrapure water demonstrated excellent linearity (R2 >0.999) (Figure 2-2), repeatability of ±0.12-

0.29 µg/L up to a concentration of 50 µg/L (Table 2-1), and an excellent relationship with a bench 

top VarianTM Cary Eclipse fluorescence spectrophotometer (R2 >0.99). 

Table 2-1 Repeatability of tryptophan-like fluorescence across 12 concentrations based on 10 
measurements within each standard. 

Tryptophan standard 
(µg/L) 

3σ  
(µg/L) 

1 0.16 

2 0.16 

3 0.12 

4 0.18 

5  0.16 

10 0.29 

20 0.23 

50 0.20 

100 0.40 

200 1.23 

400 2.11 

1000 3.51 

 

 

Figure 2-2 Comparison of bench and portable fluorimeters with ten synthetic tryptophan 
standards.  
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Chapter 3 - In-situ tryptophan-like 
fluorescence: a real-time indicator of faecal 
contamination in drinking water supplies 

3.1 Introduction 

This chapter addresses Objective 1 and documents the first work to pilot the use of in-situ TLF 

fluorimeters for the rapid assessment of the microbiological quality of drinking water supplies, with 

a focus on groundwater in a low-income country. The aims of this work are to investigate the 

application of a portable fluorimeter to indicate i) whether a groundwater supply was faecally 

contaminated; ii) the extent of any contamination; and iii) compare TLF as an indicator of 

contamination against other common indicators such as NO3, Cl, turbidity, and sanitary risk scores 

(SRS).  

The chapter is published as: 

Sorensen, J.P.R., Lapworth, D.J., Marchant, B.P., Nkhuwa, D.C.W., Pedley, S., Stuart, M.E., Bell, R.A., 

Chirwa, M., Kabika, J., Liemisa, M. and Chibesa, M., 2015. In-situ tryptophan-like fluorescence: a real-

time indicator of faecal contamination in drinking water supplies. Water Research, 81, 38-46. 

3.2 Materials and Methods 

3.2.1 Study site 

Kabwe is located in Zambia’s Central Province approximately 150 km north of the capital Lusaka. It 

has a population of over 200,000, with a high proportion residing within informal settlements on the 

outskirts of the city such as Makululu – regarded as one of the largest slums in southern Africa with 

an estimated 46,000 inhabitants  (LgWSC, 2014). The city is predominantly underlain by several 

hundred metres of either the Lower Roan Group (quartzite, schist and pelite) or Upper Roan Group 

(dolomite). The bedrock is concealed beneath continuous saprolite and laterite superficial deposits 

that are typically 5-20 m thick (Houston, 1982). Groundwater is generally encountered 5-10 m below 
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ground level, with superficial deposits typically in hydraulic connection with the deeper aquifer 

within the karstic bedrock. The local climate is sub-tropical with rainfall exhibiting strong seasonality: 

95% falls between mid-November and mid-April (Nkhuwa et al., 2006). Natural surface waters are 

absent, as rainfall rapidly infiltrates into the subsurface. 

Groundwater is the major source of drinking water supply for the city. The centralised supply system 

abstracts groundwater from deep boreholes within peri-urban wellfields, which is then treated and 

piped directly to properties, or dispensed via communal taps and water kiosks within the informal 

settlements. Households frequently also self-supply groundwater to some extent as the centralised 

supply can be unreliable and is charged on a per volume basis. Within informal settlements this is 

generally restricted to vulnerable shallow hand-dug wells and illegal connections to pre-treated 

water within the centralised supply network. In more affluent areas, self-supply includes tapping the 

bedrock or superficials through deeper boreholes or shallow wells, respectively, with limited use of 

piped supplies. 

Low levels of sanitation coverage are a major cause for concern within newer parts of Kabwe. This 

includes the burgeoning informal settlements where coverage is estimated at less than 11% of 

properties and restricted to pit latrines (LgWSC, 2014). In established parts of the city, the sewerage 

network is more extensive, but is ageing, in need of investment, and therefore prone to leakage and 

overflow. Furthermore, waste collection is limited to the larger businesses in the town centre. 

Typically, household waste is buried within gardens, burned, or illegally dumped. It should be noted 

that informal settlements are beginning to encroach into the wellfield areas, with concerns over the 

potential threats to the city’s groundwater resources in the medium to long-term. 

3.2.2 Groundwater sampling and analysis 

A total of 117 groundwater samples was obtained from a mixture of supplies that were distributed 

across the city (Figure 3-1). These comprise 55 samples in the dry season (September 2013) and 62 

in the subsequent wet season (January 2014), of which 45 were obtained from the same supplies. 
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Dry season sampling included 25 boreholes and 30 shallow wells whereas in the wet season 26 

boreholes and 36 shallow wells were investigated. These supplies included the city wellfields (K1-

12), a mixture of private supplies within both higher and lower cost residential areas, as well as 

those in the industrial zone (K26-28). 

 

Figure 3-1 Bedrock geology and sampled groundwater supplies in Kabwe. 

Groundwater samples were obtained once field measurements of pH, specific electrical conductance 

(SEC), Eh, dissolved oxygen (DO) and temperature had stabilised during pumping. Turbidity was also 

measured on an agitated pumped sample, as settling was rapid. In-situ TLF was undertaken by 

sampling 5 L of groundwater and immersing a portable UviLux Fluorimeter in the dark (Section 2.3).  

Microbiological samples were collected in sterile 60 mL brown-glass bottles.  Brief interviews with 

the well owners, or other informed persons, confirmed that the supplies sampled had not been 

recently chlorinated, or were chlorinated at a point further down the distribution system.  Samples 

were stored in a cool box and transported back to the laboratory for analysis.  Typically 50 mL (giving 

a limit of detection of 2 cfu/100 mL), or an appropriate dilution of the sample, were filtered and 
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incubated within seven hours of collection for TTCs (Section 2.2). The results from 26 duplicate 

measurements were used to calculate the average Relative Standard Deviation of Reproducibility 

(RSDRC) and the Uncertainty of Measurement of the microbiological analysis.  

Hydrochemical samples were collected for Cl, NO3, NH4, SO4, soluble reactive P (SRP), and total 

dissolved P (TDP) in 60 mL HDPE bottles after passing through a 0.45 µm nitrocellulose filter, with 

the bottle for SRP and TDP pre-treated with 0.45 g of potassium peroxodisulfate preservative. 

Samples for dissolved organic carbon (DOC) were passed through 0.45 µm silver filters into sterile 

acid washed glass vials. All samples were stored within cool boxes before transfer to a refrigerator at 

the end of each day. Cl, NO3, SO4 were analysed by ion chromatography. NH4 was determined by 

automated calorimetry using the indophenol blue method. Total dissolved phosphate and soluble 

reactive phosphate were determined via the methods of Eisenrech et al. (1975) after treatment with 

sulphuric acid. DOC analysis was conducted using a Thermalox™ C analyser after acidification and 

sparging.  

3.2.3 Sanitary risk score 

A sanitary risk assessment was undertaken at every source during the wet and dry season surveys.  

The assessment was carried out using the methods published by the WHO and the sanitary risk 

assessment forms appropriate to the supply type (WHO, 1997). The supplies and surrounding areas 

were assessed for the presence of defined hazards, such as latrines and waste dumps, and pathways 

for contaminants to reach the sample point, using pre-set questions.  The sanitary risk score (SRS) 

was calculated from the number of positive responses. 

3.2.4 Statistical analyses 

Statistical models and tests were performed with MATLAB v14.1 to determine the extent to which 

TLF concentration and other predictors indicate the presence of TTC contamination and the accuracy 

with which they could be used to model TTC counts. The TTC count in water supply 𝑖 was denoted 𝑦𝑖  
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and the binary variable, 𝑦𝑖
I, indicated whether or not the TTC exceeded the detection limit of 2 

counts, i.e.  

  

𝑦𝑖
I = {

1     if 𝑦𝑖 ≥ 2
0 otherwise

. 

A series of Mann-Whitney rank sum tests (Mann and Whitney, 1947) were used to assess whether or 

not the values of each of the predictors differed between the water supplies with TTC contamination 

(𝑦𝑖
I = 1) and those which were uncontaminated (𝑦𝑖

I = 0). The non-parametric Mann-Whitney rank 

sum test does not require the predictors to conform to a particular statistical distribution. Therefore, 

it was preferred to the T-test which requires the assumption of a Gaussian distribution. In each test 

the null hypothesis was that the expected value of the predictor was the same for contaminated and 

uncontaminated supplies.   

The probability that a water supply was contaminated with TTCs was represented by a logistic 

regression model (Dobson, 2001). If 𝑝𝑖  is the probability that there is contamination at supply 𝑖, then 

the logistic model is written: 

ln (
𝑝𝑖

1 − 𝑝𝑖
) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑞

𝑗=1

,                                                                 (1) 

  

where 𝑥𝑖𝑗  is the value of predictor 𝑗 at water supply 𝑖 and the 𝛽𝑗 are coefficients which, in this study,  

were estimated by least squares (Draper and Smith, 1981). A stepwise regression algorithm (Draper 

and Smith, 1981) was used to decide which of the available predictors should be included in the 

model. This approach guards against too many predictors being included. In such circumstances the 

model is said to be overfitted, meaning that it is overly suited to the intricacies of the data set to 

which it has been fitted but will not achieve the same accuracy on independent validation data.  
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The stepwise algorithm adds one predictor to the model at a time. It considers all of the available 

predictors not yet included in the model in turn and selects the one which causes the largest 

decrease in the mean squared residuals. If this decrease is deemed significant for a p-value of 0.05, 

according to a F-test (Draper and Smith, 1981), this parameter is added to the model. The iterative 

process continues with the remaining parameters until none of them lead to a significant 

improvement to the model. The stepwise algorithm was implemented using the MATLAB function 

‘stepwiseglm’. The observed values of TLF were highly skewed (Figure A-1). Therefore these data 

were log transformed prior to the estimation of regression models. Note that a positive shift of 0.1 

was required to ensure that the logarithm was always defined.  

A classifier of TTC contamination was then formed by designating all water supplies with 𝑝𝑖  greater 

than some threshold 𝑝∗ as contaminated. There is uncertainty associated with such a classification. 

False positive errors occur when the classifier erroneously suggests that the supply is contaminated 

whereas false negative errors occur when the supply is erroneously classified as uncontaminated. 

Similarly, true positive and true negative results refer to correctly classified contaminated and 

uncontaminated supplies.  

The effectiveness of a classifier can be assessed in terms of the receiver operating characteristic 

curve (Hanley and McNeil, 1983). This is a plot of the proportion of true positive results against the 

proportion of false positive results as 𝑝∗ is varied. The area under this curve is a measure of the 

effectiveness of the classifier. It will be 1 for a perfect classifier and 0.5 if the classifier is performing 

no better than a random choice. 

The TTC counts were represented by a linear regression model: 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑞

𝑗=1

+ 𝜀𝑖,                                                                     (2) 
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where the 𝜀𝑖  were independent realizations of Gaussian random variable with zero mean and 

variance 𝜎2. The 𝛽𝑖 and 𝜎2were the model parameters which in this study were estimated by least 

squares. Again, the optimal predictors for the model were selected by stepwise regression. When a 

linear regression model was estimated for TTC counts, the residuals were highly skewed, contrary to 

the assumptions required by the model. Therefore a model was instead estimated for the logarithm 

of the TTC counts.  

A regression model such as Equation 2 determines the entire probability density function for the TTC 

count at a water supply from the values of the predictor variables from that supply. Therefore, the 

model can be used to determine the probability that the TTC count falls within particular intervals. In 

this case, the five risk classes outlined by the WHO (1997) to prioritise interventions in areas where 

microbiological contamination of water supplies is widespread were used.  

3.3 Results 

3.3.1 Characteristics of TTC contaminated water supplies 

The results of the Mann-Whitney rank Sum tests suggested that the mean TLF concentration was 

significantly (p<0.001) larger in water supplies contaminated with TTCs as opposed to water supplies 

where they were absent (Figure 3-2). The relationship remained significant at the p<0.001 level 

when the supplies from each season were considered separately and when only boreholes were 

considered. No significant difference was evident when only shallow wells were considered but, 

since there were only five shallow wells where TTCs were absent, this finding is likely to be the result 

of insufficient data. Overall, the median TLF concentrations were 0.9 and 9.2 µg/L in uncontaminated 

and contaminated supplies, respectively. 
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Figure 3-2 Box plots of tryptophan-like fluorescence and other variables for the presence or 
absence of thermotolerant coliforms. P-values are denoted as * <0.05, ** <0.01, and *** <0.001. 
Dots indicate 5th and 95th percentiles. 

Other variables showing a highly significant difference (p<0.001) included SRS, turbidity, depth to 

water, Cl and SO4 (Figure 3-2). Phosphate species or DOC were not appreciably elevated in 

contaminated water supplies, although NH4 was significant (p=0.019). Temperature, pH and turbidity 

typically ranged between 23.8-27.7 oC, 6.4-7.4, and 1-20 NTU, respectively, across the dataset. All 

variables correlated with faecal contamination were also significantly correlated with TLF 

concentration (notably SRS, NO3, and NH4), with no relationship observed with DOC, pH, DO, or 

temperature (Figure A-2). 

3.3.2 Predicting the presence/absence of TTCs 

Transformed (and raw) TLF was a significant predictor (p<0.001) of the presence/absence of TTC 

according to the logistic regression model (Equation 1). Other indicators were significantly correlated 

with the probability of TTC contamination (Table 3-1), including Cl and the SRS. However, 

transformed TLF was the first predictor to be included in the logistic regression model and the results 

of the F-tests demonstrate that the addition of other predictors did not significantly improve the 
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model (Table 3-2). The findings were the same when data from the wet and dry seasons were 

considered individually, as well as when boreholes and shallow wells were considered separately. 

Therefore, for the predictors investigated in this study, transformed TLF appears to be the best 

indicator of the presence/absence of TTCs.  

Table 3-1 Estimated coefficients and p-values for the hypothesis that the coefficients are zero for 
single-predictor models of probability of the presence and number of thermotolerant coliforms. 
Areas under the receiver operator characteristic curves for single predictor classifiers are also 
shown. Classifiers are only formed for predictors that are significantly related to contamination. 

 Predictor Logistic Regression Linear Regression 
 Area β p-value β p-value 

Transformed T1 0.92 2.12 <0.001 1.78 <0.001 
SRS 0.90 0.61 <0.001 0.63 <0.001 
Turbidity 0.76 0.48 0.019 1.05 <0.001 
Depth to water 0.80 -2.86 <0.001 -2.42 <0.001 
Cl 0.86 1.63 <0.001 1.61 <0.001 
NO3 0.73 0.35 0.019 0.86 <0.001 
NO3:Cl NA -0.34 0.221 0.36 0.331 
SO4 0.71 0.31 0.050 0.33 0.128 
TP NA 0.25 0.382 -0.09 0.820 
SRP 0.63 -0.41 0.024 -0.47 0.039 
NH4 0.64 2.88 0.174 2.04 0.016 
DOC NA -0.74 0.057 -0.59 0.286 
SEC NA 0.00 0.502 0.00 0.101 
DO NA -0.17 0.423 0.21 0.489 

 

Table 3-2 P-values for the addition of predictors to the final logistic and linear regression models. 
NA means that the predictor is already in the model. 

Predictor Logistic regression         
p-values 

Linear 
regression 
p-values 

Transformed T1 NA NA 
SRS 0.18 NA 
Turbidity 0.47 0.44 
Depth to water 0.17 0.11 
Cl 0.07 0.85 
NO3 0.53 NA 
NO3:Cl 0.96 0.62 
SO4 0.84 0.52 
TP 0.25 0.98 
SRP 0.19 0.79 
NH4 0.59 0.85 
DOC 0.76 0.74 
SEC 0.19 0.32 
DO 0.91 0.25 
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When the logistic regression model with only TLF as a predictor was used to form a classifier of TTC 

contamination, the area under the receiver operator characteristic curve was 0.92 (Figure 3-3a). This 

is much closer to the perfect classifier value of 1 than the random selection value of 0.5. The 

corresponding areas for other single predictor models ranged from 0.63 to 0.90 (Table 3-1).  There is 

a trade-off between false positive and false negative errors as the classifier’s threshold on TLF 

readings is varied (Figure 3-3b). When the threshold is 3.5 μg/l both the false positive and false 

negative error rates are approximately 0.14. However, there are a small number of sites where the 

contamination status inferred from TLF and TTC differ. For example there are two water supplies 

where the TLF concentration is less than 1.5 μg/l but the TTC count is 2 and 10 cfu/100 mL. Note that 

since TLF is the only predictor and the relationship between these readings and the probability of 

contamination is monotonic, putting a threshold on these readings is equivalent to putting a 

threshold on the probability of contamination.   

 

Figure 3-3 (a) Receiver operator characteristic curve for classifier of the presence or absence of TTC 
using transformed TLF as the only predictor; (b) error rates for this classifier. 



50 
 

3.3.3 Predicting the number of TTCs 

Transformed TLF was a significant predictor (p<0.001) of the number of TTCs (Table 3-1). Other 

similarly significant indicators included Cl, NO3, SRS, and turbidity. However, the stepwise regression 

algorithm included transformed TLF first, signifying it is the most important predictor. When 

transformed TLF is the only predictor the estimated model has an R2 of 0.57 and is written: 

ln 𝑦𝑖 = 1.36 + 1.78  ln(TLF + 0.1)                                                                     (3) 

NO3 and SRS were added at the second and third stages of the stepwise algorithm. These predictors 

cause the R2 to increase to 0.67 and the final model is written:  

ln 𝑦𝑖 = −0.34 + 1.11 ln(TLF + 0.1) + 0.35 NO3
− + 0.25 SRS                                          (4) 

The addition of other predictors did not significantly improve the model (Table 3-2). This might 

indicate that the predictors included in Equation 4 accounted for the other observed significant 

relationships. 

Additionally, there is an increase in the median transformed TLF concentration with elevated WHO 

risk class, although the levels of scatter produce overlap between all classes (Figure 3-4). 

Nevertheless, the single-predictor linear regression model using TLF can be used to estimate the 

probability of a water supply belonging to each risk class (Figure 3-4). This suggests that as TLF 

concentration increases there is a greater probability of the water supply being within higher risk 

groups.  
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Figure 3-4 (a) Box plot of transformed TLF for each TTC risk class with dots indicating 5th and 95th 
percentiles where sample number exceeds nine; (b) modelled probability that a water supply 
belongs to each risk class for a given TLF concentration. Risk classes are defined by TTC count as <2 
(none), 2 to <10 (low), 10 to <100 (medium), 100 to <1000 (high), >1000 cfu/100 mL (very high). 

3.3.4 Risk classes for water supplies across Kabwe estimated by TTC count or modelled TLF 

Deeper boreholes are considered less at-risk than shallow wells across the city using either modelled 

TLF or TTC count (Figure 3-5). Boreholes are most at-risk within the central districts, with these risks 

elevated in the wet season, and higher when allocated using modelled TLF compared to the TTC 

count. There are also notable seasonal changes in risk in the city’s centralised peri-urban water 

supply boreholes (K1-12) using modelled TLF which are not apparent from the TTC data (Figure 3-5). 

In the dry season, there are no risks by TTC count or modelled TLF in any of the boreholes, with the 

exception of K3 and K11 being considered as low risk by modelled TLF. Following the onset of the 

rains, modelled TLF suggests increases in risk at the majority of these boreholes, including some 

located beyond the city limits (K2, K6, and K12). Furthermore, high risks are indicated at those sites 

closest to the urban area (K8, K9 and K11). On the other hand, TTC data only suggest elevated 

medium and low wet season risks at K8 and K9, respectively. 
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Shallow wells are typically at medium or greater risk perennially in the central districts of Kabwe by 

modelled TLF (Figure 3-5). However, TTC counts suggest many of these wells have no risk during the 

dry season, but medium or greater during the wet season. Nevertheless wells within Makululu 

generally remained at least at high risk during both seasons using either modelled TLF or TTC counts. 

Elsewhere, other wells also considered at a minimum of high risk by both TTC count and modelled 

TLF in the dry season, predominantly remain so in the wet season.  

 

Figure 3-5 Water supply risk class across Kabwe allocated using modelled TLF (a) dry season, (b) 
wet season; and TTC data (c) dry season, (d) wet season. TTC risk classes are defined as <2 (none), 
2 to <10 (low), 10 to <100 (medium), 100 to <1000 (high), >1000 cfu/100 mL (very high). 
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3.4 Discussion 

3.4.1 Uncertainty in TTC counts and TLF concentrations 

Doubts have been expressed about the reliability of TTCs to indicate faecal contamination in water. 

Although the TTC group includes the species E.coli, which is generally considered to be specific for 

faecal contamination, it also includes other genera such as Klebsiella and Citrobacter which are not 

necessarily of faecal origin and can emanate from alternative organic sources such as decaying plant 

materials and soils (WHO, 2017b). Nevertheless, studies have shown that greater than 90% of 

thermotolerant coliforms are  E. coli (Dufour, 1997 cited in Leclerc et al. (2001)) and as high as 99% 

in groundwater impacted by poor environmental sanitation in Africa (Howard et al., 2003). 

Therefore this is not considered a significant source of uncertainty. 

The uncertainty of measurement of the microbiological analysis was calculated using the RSDRC, 

which is the average relative standard deviation of reproducibility of a series of duplicate analyses. 

The RSDRC calculated for the duration of the sampling programme was 0.14.  Using a coverage factor 

of 2.056, which was determined from the number of duplicate analyses used to calculate RSDRC, the 

95% confidence intervals for any result could be calculated.  For example, a result of 100 cfu/100ml 

would have an upper and lower limit of 197 and 51 cfu/100ml respectively.  This figure is slightly 

higher than might be anticipated in a laboratory accredited to International Standard 

ISO17025:2005, but is not unusual for microbiological analysis.  

False-negatives and underestimates of TTCs may occur where environment conditions within certain 

groundwater supplies are unfavourable for the survival of bacteria, but TLF is less affected. There 

were three supplies where TTCs were absent but TLF exceeded 10 µg/L. At two of these sites the 

water differed from a typically neutral pH; being 5.1 and 10.5 in supplies K40 and K55, respectively. 

Moreover, K40 also contained high concentrations of heavy metals which have a toxic influence on 

bacteria (Foppen and Schijven, 2006), yet also quench TLF fluorescence to a degree (Tabak et al., 

1989). These two sites actually account for two of the five shallow wells where TTCs were absent. 
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It was confirmed that none of the supplies had recently been chlorinated before sampling. However, 

a parallel study confirmed the presence of trihalomethanes (by-products of chlorination) at K16 and 

K30 in the dry season (Sorensen et al., 2015c), although this discrepancy could indicate the leakage 

of chlorinated mains water into the shallow aquifer. In addition to sterilising the supply, chlorination 

is generally considered to quench TLF (Henderson et al., 2009). However, the results do not appear 

anomalous with K16 having a TLF of 1.5 µg/L and TTC count of <2 cfu/100 mL and K30 having a TLF 

of 13.4 µg/L and TTC count of 700 cfu/100 mL.  

Other environmental factors that may influence the intensity of TLF fluorescence in the environment 

did not vary appreciably. Thermal quenching may have been limited to approximately 10-20% over 

the typical temperature range based on previous results using bacteria cultures (Elliott et al., 2006b). 

This assertion is further supported by a laboratory study using dissolved tryptophan, where Khamis 

et al. (2015) demonstrated a 0.65 and 1.14 µg/L reduction in TLF for every 1 oC increase in 

temperature in 10 and 20 µg/L solutions, respectively. This factor equates to uncertainty of 22-25% 

across the typical temperature, and it should be re-iterated that there was no observed inverse 

relationship between TLF and temperature (Figure A-2). pH values are within the 5-8 bracket of 

minimal impact, with the exception of one supply (Patel-Sorrentino et al., 2002; Reynolds, 2003). 

Turbidity was less than 200 NTU, hence attenuation of TLF was considered negligible, although low-

levels of signal amplification due to light scattering by particles could have been possible (Khamis et 

al., 2015). Finally, no correction of the data due to inner-filtering (absorption of light by the sample 

matrix) was necessary (Ohno, 2002), as the mean absorbance of all samples at 254 nm was only 0.04 

±0.21 (3σ). 

3.4.2 Is TLF a better indicator of enteric pathogens than TTCs? 

Bacteria can be effectively removed during the infiltration and percolation of water due to natural 

filtering and adsorption. This is also likely to remove a proportion of TLF, given its direct association 

with bacteria (Elliott et al., 2006a). However, a fraction of the fluorescence is likely to be in a free 
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dissolved form (Baker et al., 2007), which could mean it is transported more easily and rapidly 

through porous media. There is evidence for this in Kabwe where increases in modelled TLF risks 

were greater than TTC risks in the deeper boreholes following the onset of the seasonal rains. This 

observation suggests TLF can migrate through superficial deposits more effectively. Furthermore, 

once into the karstic aquifer, increases in modelled TLF risks were identified in boreholes well 

outside the urban limits where TTCs were absent. A more mobile indicator of enteric pathogens is 

favourable because viruses are transported more efficiently than bacteria through the subsurface 

due to their smaller sizes (Borchardt et al., 2007; Hunt et al., 2014).  

The perennial persistence of high risks by modelled TLF for shallow wells in central Kabwe, as 

opposed to the seasonal risks by TTCs, suggests TLF is a less transient faecal indicator in 

groundwater. The presence of TTCs in groundwater is generally considered evidence of recent faecal 

contamination, with E. coli remaining active for 16-45 days (Taylor et al., 2004). These rates of 

inactivation are similar for many pathogens but enteric viruses generally inactivate at a slower rate 

(John and Rose, 2005). Therefore, elevated TLF could be a better indicator of pathogens which are 

more long-lived in the environment, thus providing a more precautionary estimate of pathogen risk.  

It is unsurprising that TLF is more resilient with time than TTCs in groundwater as it is contained 

within organisms. Therefore, as TTCs and other organisms die-off following their release into 

groundwater (an unfavourable habitat) many cells will rupture and release TLF in dissolved and more 

complex phases into the environment. It may remain present in groundwater in these forms as 

groundwater ecosystems are less active in comparison to surface waters, or be taken up by other 

microorganisms. Either way, it will continue to contribute to a TLF signal. Furthermore, it has been 

demonstrated that under nutrient limited conditions E. coli release dissolved tryptophan, as they 

transit from a culturable to a dormant viable but nonculturable state (Arana et al., 2004).  
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3.5 Conclusions 

This is the first study to investigate the use of in-situ tryptophan-like (TLF) for the rapid assessment 

of the biological quality of drinking water supplies. TLF was significantly elevated in supplies where 

thermotolerant coliforms (TTCs) were present, alongside many other traditional indicators, but was 

demonstrated to be the most effective indicator of TTC presence/absence. TLF was also the most 

significant indicator of the number of TTCs, although the linear regression model could be improved 

through the inclusion of NO3 and sanitary risk scores (SRS). A single-predictor linear regression 

model using TLF was used to estimate the probability of a water supply belonging to each WHO risk 

class. This highlights that as TLF concentration increases there is a greater probability of a water 

supply being within the higher risk groups.  

The use of in-situ TLF sensors has multiple methodology advantages over bacterial indicators for 

inferring the presence of enteric pathogens. TLF is likely to be more mobile and temporally resilient in 

groundwater and, as such a more precautionary indicator of enteric pathogens in groundwater, 

including where bacterial indicators are absent. Importantly, TLF has the added advantage of 

potentially detecting the presence of TTC in viable but non-culturable states. Furthermore, the sensors 

require no reagents and provide instantaneous readings. These characteristics could facilitate their 

inclusion in real-time pollution alert systems for drinking water supplies throughout the world, for the 

rapid mapping of enteric pathogen risks in developing regions, and as an initial screening tool to inform 

and complement further water quality investigations. 
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Chapter 4 - Real-time detection of faecally 
contaminated drinking water with 
tryptophan-like fluorescence: defining 
threshold values 

4.1 Introduction 

It has been demonstrated that TLF is significantly more intense in groundwater-derived sources 

contaminated with TTCs than those where TTCs were absent (Chapter 3, Sorensen et al., 2016). 

Moreover, significant positive correlations between TLF intensity and TTC concentration have also 

been observed in both groundwater- and surface water-derived sources (Chapter 3, Baker et al., 2015; 

Sorensen et al., 2016), in addition to TLF being elevated in the presence of enteric pathogens 

(Sorensen et al., 2015b). This chapter collates paired TLF and TTC data from studies in four countries 

(India, Malawi, South Africa, Zambia) and evaluates TLF as an indicator of TTC across these different 

settings (Objective 1), including generating thresholds to infer FIO presence-absence that could be 

implemented widely (Objective 3). Finally, TLF is evaluated against defined UNICEF/WHO faecal 

indicator criteria covering limit of detection, usability and interferents (Objective 7). 

The following parts of this chapter are published as: 

Sorensen, J.P., Baker, A., Cumberland, S.A., Lapworth, D.J., MacDonald, A.M., Pedley, S., Taylor, R.G. 

and Ward, J.S., 2018. Real-time detection of faecally contaminated drinking water with tryptophan-

like fluorescence: defining threshold values. Science of the Total Environment, 622, 1250-1257. 

4.2 Methods 

4.2.1 Available TLF-TTC data 

Concurrent TLF and TTC data were collated from a mixture of unpublished and published studies of 

drinking water in four separate countries: India, Malawi, South Africa and Zambia (Table 4-1). The 

Indian study was conducted in Bihar State; 150 groundwater sources were selected to achieve spatial 
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coverage across four villages with an approximate split between those near (<10 m) and those away 

(>10 m) from recently installed on-site sanitation (Sorensen et al., 2016). The Malawian study 

predominantly comprised sampling a randomly selected groundwater source in 40 randomly selected 

villages in each of five districts of the country (Balaka, Machinga, Lilongwe, Nkhotakota, Mzimba). In 

total, 39 of the 200 randomly selected sources were non-functional and an additional 21 sources were 

opportunistically sampled near the original randomly selected source. The South African study 

involved repeated sampling of 28 locations selected upstream, near to, and downstream of expected 

contributing sources of poor water quality in two surface water catchments in KwaZulu Natal (Baker 

et al., 2015). The Zambian study comprised sampling 65 groundwater sources across peri-urban, 

industrial, and lower and higher income residential land uses in the city of Kabwe, of which 46 sources 

were sampled during both wet and dry seasons (Chapter 3).  

Table 4-1 Details of individual TLF-TTC studies. 

Study Source Fluorimeter Faecal 
indicator  

No. 
positive  

No. 
negative  

No. 
total  

Published 

India Groundwater UviLux TTCs 45 105 150 Sorensen et al. 2016 
Malawi Groundwater UviLux TTCs 49 133 182 Unpublished 
South Africa Surface water SMF4 E. coli 121 0 121 Baker et al. 2015 
Zambia Groundwater UviLux TTCs 74 37 111 Chapter 3 

Total - - - 289 275 564 - 

 

All studies used a portable fluorimeter targeting TLF on an unfiltered water sample and enumerated 

either TTCs by membrane filtration (Section 2.2) or E. coli by the Colilert® (IDEXX) method (Table 4-1). 

Although the studies employed differing faecal indicator organisms, Hamilton et al. (2005) noted that 

E. coli by the Colilert method accounted for 104% of TTCs enumerated by membrane filtration in 

temperate surface waters. In tropical groundwaters, impacted by inadequate sanitation, 90-99% of all 

TTCs have been shown to be E. coli (Howard et al., 2003; Leclerc et al., 2001). Therefore we consider 

the number of faecal indicator organisms to be comparable between studies. Furthermore, 

relationships between TLF and the concentration of indicator organisms will be addressed using WHO 

risk categories (1997) that are classified based on a logarithmic scale of faecal indicator organisms that 

does not distinguish between TTCs and E. coli. 
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4.2.2 Assessment criteria 

The ability of TLF to detect faecally contaminated drinking water was assessed using the UNICEF target 

product profile for a new method for the more rapid detection of E. coli (Table 4-2) (UNICEF/WHO, 

2017). This incorporates sensor performance, design and interferences. As a minimum, any new 

methodology should be able to determine faecal contamination within 3 h with a 10% false-positive 

and false-negative error rate, have a limit of detection of 10 cfu/100 mL, and quantify faecal 

contamination according to the WHO risk categories (1997).  Additionally, the method should be easy-

to-use, suitable for fieldwork in remote locations, cost <$5 per test over its lifetime, and not be 

adversely affected by a range of common interferents such as turbidity and pH.  

Table 4-2 Summarised UNICEF target product profile for the more rapid detection of E.coli  
drinking water (UNICEF 2017). 

Attribute Minimum performance Ideal performance 

Function Detection of faecal contamination Detection of faecal contamination  
equivalent to E. coli  
 

Determining faecal 
contamination 

False-positives <10%  
False-negatives <10% 

False-positives <5%  
False-negatives < 5% 

Limit of detection Equivalent to 10 cfu/100mL Equivalent to 1 cfu/100mL 

Quantifying faecal contamination Distinguishes WHO risk categories Distinguishes equivalent plate count 

Sensor design Less than 3 h for result Less than 30 mins for result 

 Negative control sterile water No negative control 

 Calibration for pH No calibration 

 Easy-to-use Easy-to-use 

 Battery-powered Battery-powered 

 Lightweight and portable Handheld 

 2 year lifespan (hardware) 
2 year lifespan (consumables) 

5 year lifespan (hardware) 
5 year lifespan (consumables) 

 $1-5 per test (lifetime cost) $1-5 per test (lifetime cost) 

Potential interferences Turbidity (0-10 NTU) 
pH (5.5-8.5)  
salinity (drinking water range)  

Turbidity (0-50 NTU) 
pH (4.5-8.5) 
salinity (drinking water range)  

 

4.2.3 Determining faecal contamination  

The extent to which TLF indicated the presence of TTCs, the indicator of faecal contamination, was 

investigated using a logistic regression model (Dobson, 2001) in R software version 3.2.2. The model 

was developed using a training dataset, then evaluated against a validation dataset. To produce these 

datasets, firstly, the collated dataset (n=564) was grouped into WHO risk categories (WHO, 1997). 

These risk categories are based on the number of faecal indicator organisms per 100 mL: Very Low 



60 
 

risk (0), Low risk (1-9), Medium risk (10-99), High risk (100-999), and Very High risk (1000+). 

Subsequently, the data were randomly sampled to split the data equally in each risk category using 

the R package ‘caret’.  This produced training and validation datasets for each risk category, which 

were combined to form collated training (n=286) and validation datasets (n=276). 

The performance of the model was initially assessed using the receiver-operating characteristic (ROC) 

curve (Hanley and McNeil, 1983) implemented in the R package ‘pROC’ (Robin et al., 2011). The ROC 

curve is a plot of the false-positive rate (FPR - the proportion of uncontaminated sites falsely classified 

as contaminated) against the true-positive rate (TPR - the proportion of contaminated sites correctly 

classified) at varying TLF thresholds. The area under this curve (AUC) is a measure of the effectiveness 

of the classifier: it will be 1 for a perfect classifier and 0.5 if the classifier is performing no better than 

a random choice.  

An optimal TLF threshold was selected as the value that provides the lowest sum of the FPR and the 

false-negative rate (FNR – the proportion of contaminated sites incorrectly classified as 

uncontaminated) for samples in the Very Low to Medium training risk categories. These lower risk 

categories were used to select the TLF threshold to ensure it was optimised around the limits of 

detection outlined in the assessment criteria. This threshold was then used to classify the validation 

dataset as a whole, then each validation risk category dataset individually. The threshold performance 

was assessed in terms of FPR and FNR for consistency with the assessment criteria. Finally, the 

threshold was used to classify data from the individual studies separately to evaluate any potential 

discrepancies. 

4.2.4 Quantifying faecal contamination 

There is a significant very strong positive correlation between TLF intensity and TTC concentration in 

the collated dataset (Spearman’s ρs = 0.80, p < 0.001), but due to the amount of scatter it was 

considered unlikely that TLF could predict an equivalent plate count. Hence, the ability of TLF to 

distinguish between WHO risk categories was investigated instead. Consequently, the TLF data were 
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grouped into the risk categories and the non-parametric Kruskal-Wallis test was performed. A non-

parametric pairwise multiple comparison was then conducted using Dunn’s Method to assess 

differences between all individual categories. We then attempted to define TLF threshold values for 

each individual WHO risk category using the same training and validation datasets acquired using 

methods outlined in section 4.2.3. TLF thresholds were defined for each risk category by selecting the 

mid-point between the upper and lower quartiles of adjacent risk categories in the training dataset 

and then evaluated by classifying the validation datasets. These thresholds were not tested against 

individual studies because there are insufficient data across the risk categories to facilitate evaluation. 

4.3 Results and discussion 

4.3.1 Determining faecal contamination and limit of detection 

Tryptophan-like fluorescence is a significant predictor of the presence of TTCs for the training dataset 

according to the logistic regression model (p <0.001). The area under the ROC curve was 0.90 (Figure 

4-1a), which is much closer to the perfect classifier of 1 than the random selection value of 0.5. The 

optimal selected TLF threshold value of 1.3 ppb resulted in a FNR and FPR of 14% and 21%, respectively 

(Figure 4-1b). The overall FNR is slightly high, but it is biased to the Low risk category where the 

classification is unsuccessful (52%). Omitting this category the overall FNR reduces to within the ideal 

performance of 5% (5%). The Medium risk category data are classified to close to the minimum 

assessment criterion (12%), whilst the High and Very High risk datasets are successfully classified with 

FNRs of 9 and 0%, respectively (Figure 4-2). 
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Figure 4-1 (A) Receiver operator characteristic curve for the classifier of the presence of TTCs using 
TLF and the performance of a random variable; (B) false-positive (FPR) and false-negative (FNR) 
error rates for this classifier. 

The TLF threshold performs similarly, classifying the validation dataset with an overall FNR and FPR of 

15% and 18%, respectively. Again, the threshold is unsuccessful at classifying sites in the Low risk 

category, with a FNR of 50%, which may, in part, result from limited reproducibility in the TTC counts 

themselves at low numbers. If we exclude these Low risk data then the overall FNR reduces to within 

the ideal criterion of 5% (4%). The individual Medium, High, and Very High validation datasets are 

classified close to or within the minimum assessment criterion with FNRs of 12%, 3% and 2%, 

respectively (Figure 4-2). 
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Figure 4-2 Training and validation false-positive (FPR) and false-negative (FNR) error rates for 
presence of TTCs using a TLF threshold of 1.3 ppb for each WHO risk category. 

Given the inability of the threshold to classify Low risk sites, we deem the limit of detection is currently 

Medium risk, i.e. at least 10 cfu/100 mL. To refine a precise detection limit requires considerably more 

data around 10 cfu/100 mL. This detection limit should be considered sufficient given any relationship 

between E. coli concentration in drinking water and diarrhoea is frequently only significant above at 

least 10 cfu/100 mL (Brown et al., 2008; Moe et al., 1991).  

The TLF threshold of 1.3 ppb is generally effective at classifying data from individual studies (Figure 

4-3). TTC negative data in the Indian study are classified within the assessment criteria with a FPR of 

only 9%. However, FPRs for these uncontaminated sites are high in both the Malawian and Zambian 

datasets. The elevated FPR of 35% in the Zambian study combined with the near absence of false-

negatives suggests a higher TLF threshold may be warranted for a more equal distribution of errors. 

However, a logistic regression model developed solely using the Very Low, Low and Medium risk 

Zambian datasets indicates only a marginally higher optimal threshold of 1.6 ppb. Here, the FPR still 

remains too high (24%) and the FNR is acceptable (7%). The majority of unsuccessfully classified Low 

risk data are from the Indian and Malawian datasets. Where error rates exceed the 10% minimum 
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criterion for Medium and High risk categories in individual studies, it is a result of only one or two 

incorrectly classified sources suggesting that sample sizes are too small to robustly estimate error 

rates for these categories. All Very High risk data are successfully classified with a FNR of only 0-1% in 

all studies. 

 

Figure 4-3 False-positive (FPR) and false-negative (FNR) error rates for presence of TTCs for each 
WHO risk category in each study using a TLF threshold of 1.3 ppb. Number above the bar indicates 
number of incorrectly classified sites. 

4.3.2 Quantifying faecal contamination 

There are significant differences in median TLF between risk categories indicating that multiple 

populations exist in the dataset (Kruskal-Wallis, p < 0.001). Significant differences in median TLF exist 

between all risk categories (Figure 4-4), with the exception of Medium and High (Dunn’s Method, 

p =  0.96). The TLF thresholds, defined in Table 4-3, have error rates that are too high for practical 

implementation when assessed against the validation dataset (Figure 4-5). Nevertheless, incorrectly 

classified sites are most likely to fall in the immediately adjacent risk categories. For example, 90% of 
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Very Low risk sites are classified as Very Low to Low risk and 91% of Very High risk sites are classified 

as High to Very High risk.  

Therefore, a threshold of 1.3 ppb for classifying at-risk sources (>10 cfu/100 mL) is proposed according 

to the logistic regression model in Section 4.3.1. This would effectively classify sites in the validation 

dataset according to Figure 4-4 with a FNR of only 4% for sources that are at least Medium risk. It 

would be unsuccessful at classifying Low risk sites (FPR = 50%) and reasonably successful at classifying 

Very Low risk sites (FPR = 21%). 

 

Figure 4-4 Boxplot of the natural logarithm of tryptophan-like fluorescence by WHO risk category. 
An addition of 0.2 ppb TLF was made to nine sites to ensure the logarithm could be defined. 
Significance tests were performed on untransformed TLF data using Dunn’s test and are denoted 
by: not significant = n.s., p = 0.05 (*)  p = 0.01 (**). Sample sizes: Very Low = 293, Low = 61, 
Medium = 32, High = 71, Very High = 107. Boxes illustrate median and interquartile range, 
whiskers indicate 5th and 95th percentile and all outliers are shown. 

Table 4-3 Tryptophan-like thresholds for individual risk categories. 

Category TLF threshold (ppb) 

Low 1.3 
Medium 2.4 
High 6.9 
Very High 27.1 
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A greater threshold of 6.9 ppb is proposed for classifying higher risk sources (>100 cfu/100 mL) 

following the TLF thresholds defined in Table 4-3. This threshold successfully classifies sources in the 

validation dataset that are at least High risk with a FNR of 17% and incorrectly classifies lower risk sites 

with a FPR of 4%. However, due the TLF overlap between Medium and High risk categories (Figure 

4-5) the threshold produces a FPR for Medium risk sites of 31% and a FNR for High risk sites of 30%. 

Notwithstanding, at such an elevated TLF the FNR for Very High risk sources remains low (9%) and the 

FPR for Very Low and Low risk sites is very low (2%). 

 

Figure 4-5 Risk matrix of observed versus predicted risk category. 

4.3.3 Sensor designs 

TLF can simply be measured instantaneously in a covered beaker or cuvette using a fluorimeter, with 

no need for reagents, consumables or incubation. There are currently several commercially available 

battery-powered fluorimeters on the market that are suitable for fieldwork in remote locations, 
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although these vary in design and method. They include submersible sensors, e.g. UviLux (Chelsea 

Technologies Group Ltd, UK) and Cyclops-7TM (Turner Designs, USA), or cuvette-based systems, e.g. 

SMF4 (STS Instrument Ltd, UK). Cuvette-based systems are advantageous because they require very 

small volumes of water (<5 mL) and contamination of the sample is less likely. This advantage arises 

because the housing of submersible sensors comes into contact with the sample and the housing can 

be easily manually handled and can also begin to degrade allowing suspended particles to collect in 

surface imperfections and potentially leach residue TLF into subsequent samples. This limitation could 

partially be overcome by mounting submersible sensors in flow-through cells. In addition, it is notable 

that submersible sensors can produce an apparently very low TLF intensity when air is trapped 

adjacent to sensor windows. The main advantage of submersible sensors is for online deployments in 

a flow-cell or directly within a water body. 

The most critical element to currently consider when selecting a sensor is currently the limit of 

detection and not whether it is submersible or cuvette-based. The proposed 1.3 ppb threshold for the 

detection of faecal contamination is below the specification for the majority of sensors on the market. 

For example, Khamis et al. (2015) demonstrated a minimum detection limit (MDL) of 1.99 ± 0.53 ppb 

for the Cyclops-7TM and Khamis et al. (2016) reported a MDL of 1.74 ppb for a modified submersible 

GGUN–FL30 (Albillia Co, Switzerland). The only commercially available field fluorimeter we are aware 

of that is capable of sufficient sensitivity is the submersible UviLux fluorimeter, which incorporates a 

photomultiplier to amplify the signal and achieve a MDL of up to 0.17 ± 0.06 ppb (Khamis et al., 2015).  

The present generation of field fluorimeters cost in the region of $5,000-6,000. This excludes any 

accessories, such as handheld readers or cables, which can inflate costs by a further $2,000-3,000. 

Nevertheless, once procured there are no ongoing consumable costs. The expected lifetime of these 

fluorimeters is estimated to be at least 10 years; hence the costs would be within the minimum 

criterion of $5 if used at only 100 sites a year. The sensor lifetime is determined by the LEDs and light 

filters. To account for a loss of output from the LED and change in the filters over time, it is 
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recommended to undertake a calibration check annually with dissolved tryptophan standards, which 

can be done by the end user. Additionally, regular negative controls should also be performed using 

high quality deionised water. Ideally manufacturers would supply sealed long-life containers for both 

calibration and negative control, but these are currently only available for cuvette-based instruments. 

Current cuvettes for calibration contain another fluorescent compound, quinine sulphate, which does 

not fluoresce directly within the TLF region. High concentration standards can be used to assess drift, 

but these do not reflect the range of TLF intensity encountered in the environment and these 

standards cannot be used for a robust calibration. In conclusion, current commercially available 

fluorimeters adhere to all the assessment criteria concerning sensor design. 

4.3.4 Potential interferents 

There are a range of matrix interferences that can impact on TLF including pH, temperature, and 

turbidity (Hudson et al., 2007; Khamis et al., 2015), but these have not been considered to have 

substantially affected previous TLF-TTC studies (Chapter 3, Baker et al., 2015; Sorensen et al., 2016). 

Reynolds et al. (2003) documents a ±3% variation in TLF from pure dissolved tryptophan when the 

sample matrix was modified between pH 5 and 8. Baker et al. (2007) observed an order of magnitude 

greater quenching in TLF for urban surface water samples for a pH range of 5 to 9.  

Khamis et al. (2015) noted that TLF emitted from dissolved tryptophan standards was not attenuated 

by the addition of particles treated with hydrogen peroxide, to remove organic matter, below 50 NTU 

turbidity. Instead, suspended particles scattered the emitted light and increased the intensity reaching 

the detector. Larger silt particles were more efficient than smaller clay particles at scattering light. 

However, multiple high turbidity (>10 NTU) groundwater sites in India and Malawi contained low TLF 

(<1 ppb) suggesting that the scattering of light may be insignificant in natural settings. The issue of 

turbidity could be partially addressed by widening the separation between the excitation and emission 

wavelengths. Currently, sensors have broad filters for both excitation and emission to maximise 

fluorescent output and detection. For example, the Cyclops 7TM has an excitation output of 285±10 nm 
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and emission set at 350±55 nm, i.e. there is overlap at 295 nm. Low salinity in drinking water is unlikely 

to have an appreciable impact on TLF. Overall, there is limited evidence, to date, that the range of 

interferents outlined in the assessment criteria has any substantial adverse impact on the TLF of raw 

drinking water.  

One interferent not considered in the criteria is temperature. Baker (2005) noted quenching of TLF by 

20±4% to 35±5% between 10 and 45oC in rivers and wastewaters. Such temperature quenching is 

generally considered to be linear (Khamis et al., 2015), hence it is possible that sensors could employ 

automatic corrections for temperature. Researchers have already developed such algorithms and 

demonstrated their value for in-situ fluorimeter deployments (Khamis et al., 2015; Shutova et al., 

2016). However, such studies have explored the temperature quenching of dissolved tryptophan, 

whilst TLF in field studies is known to quench at different rates in different water types dependent 

upon its composition (Baker, 2005). The thresholds defined in this paper do not consider the influence 

of temperature, which was broadly similar across all studies: India (24-29 oC), Malawi (21-29 oC), South 

Africa (20-26 oC), Zambia (24-28 oC). 

There are multiple peaks of fluorescent dissolved organic matter that overlap with the tryptophan-

like region and could dominate, or give rise to an apparent, TLF signal. For example, part of the region 

of humic-like fluorescence can overlap with that of TLF and provide an additional baseline component 

or potentially mask the TLF signal completely. In addition, proteins in organic waste (Muller et al., 

2011) and xenobiotic compounds, e.g. polycyclic aromatic hydrocarbons (Baker and Curry, 2004) and 

diesel pollution (Carstea et al., 2010),  may directly fluoresce in the TLF region. Such interference that 

is unrelated to faecal contamination could result in false-positives.    

Interference between fluorescent regions is a long-recognised issue for researchers using laboratory-

based spectrofluorometers which scan over a large range of excitation-emission wavelengths, but is a 

real limitation of single-wavelength sensors. Studies using laboratory spectrofluorometers address the 

issue by investigating ratios of fluorescent peaks (Baker, 2002b; Lapworth et al., 2008) or by a 
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modelling approach to elucidate individual peaks known as PARAllel FACtor analysis (PARAFAC) 

(Baghoth et al., 2011). In the field, it is possible to use multiple single-wavelength sensors to evaluate 

potential interference (Sorensen et al., 2016). Additionally, there is an increasing move towards the 

development of dual-wavelength pair sensors  that can output ratios as well as absolute TLF 

(Bridgeman et al., 2015; Li et al., 2016).  

Other potential interferences include the absorption of light by the sample matrix (the inner filtering 

effect), quenching by high concentrations of metal ions, or by water treatment processes such as 

chlorination that is known to quench TLF. See Henderson et al. (2009) for a review of the impacts of 

water treatment processes on fluorescent dissolved organic matter. 

4.3.5 Future work 

Currently, false-positive error rates (18%) are too high, particularly in specific studies. Further work 

should better constrain the temporal relationship between TLF and TTCs at individual sources to 

investigate whether elevated TLF is indicative of sporadic TTC contamination at certain times of the 

year. The only current evidence for this is in the Zambian study where snap-shot seasonal sampling 

campaigns of some sources showed perennially elevated TLF whilst TTC varied substantially between 

dry and wet seasons (Chapter 3). If TLF is more temporally resilient than TTCs in water sources, then 

the use of TLF could be considered advantageous for detecting at-risk sources irrespective of the time 

of year selected for sampling and given that TTCs are not as long-lived as other pathogens in the 

environment (John and Rose, 2005). 

There is uncertainty over what is actually measured when we quantify TLF in freshwater 

environments. Compounds emitting TLF can predominantly be: contained within bacterial cells 

(Determann et al., 1998; Fox et al., 2017), associated with particles (Baker et al., 2007), or entirely 

freely dissolved (Sorensen et al., 2016; Yamashita and Tanoue, 2003); and there remains uncertainty 

as to the relative contribution from each source. Further, it is questionable whether TLF is a selective 

indicator of TTCs. There are many other bacteria species that fluoresce in the TLF region because of 
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tryptophan residues in proteins (Bronk and Reinisch, 1993; Dalterio et al., 1986; Dalterio et al., 1987; 

Dartnell et al., 2013; Fox et al., 2017; Seaver et al., 1998; Sohn et al., 2009) and/or excrete compounds 

that fluoresce in the TLF region, such as Pseudomonas aeruginosa that is ubiquitous in freshwater 

systems (Elliott et al., 2006a; Fox et al., 2017). Therefore, future work should investigate whether TLF 

is an indicator of total bacteria cells in drinking water as opposed to specifically TTCs.  

4.4  Conclusions 

A tryptophan-like fluorescence (TLF) threshold equivalent to 1.3 ppb dissolved tryptophan can 

instantaneously predict the presence of thermotolerant coliforms (TTCs) with a false-positive error 

rate of 18% and a false-negative error rate of 15%. However, this TLF threshold is not effective at 

classifying a contaminated sample with less than 10 TTC cfu/100 mL, which we currently consider to 

be the limit of detection. If only contaminated sources above this limit of detection are classified then 

the false-negative error rate is very low at 4%. A greater threshold of 6.9 ppb is proposed for classifying 

higher risk sources (>100 TTC cfu/100 mL). 

TLF can be quantified instantaneously using existing commercially available fluorimeters that are 

battery-powered and handheld for use in remote environments. Its analysis can simply be undertaken 

by submerging a fluorimeter in a covered container of water. The lifespan of current fluorimeters is 

anticipated to be in excess of ten years with annual checks and infrequent maintenance. Current 

procurement costs are in the order of $5000-6000 and per test costs would fall below $5 within 1000 

samples, as there is an absence of ongoing consumable costs. TLF measurements are unlikely to be 

appreciably impaired by common interferents, such as pH, turbidity, and temperature, within typical 

natural ranges. Interference from other fluorescent compounds is likely to be more problematic. 

The technology should be considered a viable option for the real-time detection of faecally 

contaminated drinking water which is still consumed by 1.8 billion people globally. It has now been 

successfully demonstrated in multiple different settings from surface water to groundwater and 

across varying climatic zones. However, all analyses herein were performed on a modest dataset 
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(n=564), which may contain sampling bias as the majority of data have not been drawn from an 

independent random sample. There is a need for a large-scale field demonstration of the technique 

to robustly support the results of this study. 
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Chapter 5 - Online fluorescence 
spectroscopy for the real-time evaluation 
of the microbial quality of drinking water 

5.1 Introduction 

The aim of this chapter was to address Objective 2 and extend the demonstration of in-situ 

fluorescence as an indicator of faecal contamination beyond roaming surveys at limited temporal 

resolution to real-time deployment online at water sources. Furthermore, HLF was investigated as an 

indicator of faecal contamination for the first time (Objective 1) and TLF/HLF are also compared with 

total bacterial cell counts as well as FIOs (Objective 5). We measured TLF and humic-like fluorescence 

(HLF) online at four groundwater-derived public water sources and compared these to in-situ turbidity 

measurements, culture-based counts of E. coli and total bacterial counts measured by flow cytometry.  

This chapter is published as: 

Sorensen, J.P.R., Vivanco, A., Ascott, M.J., Gooddy, D.C., Lapworth, D.J., Read, D.S., Rushworth, C.M., 

Bucknall, J., Herbert, K., Karapanos, I., Gumm, L.P. and Taylor, R.G., 2018. Online fluorescence 

spectroscopy for the real-time evaluation of the microbial quality of drinking water. Water Research, 

137, 301-309. 

5.2 Methods 

5.2.1 Study sites 

Four groundwater-derived public water supply sites were selected in Southern England (Figure 5-1). 

These sites all abstract from varying types of fractured limestone, which is the largest source of 

groundwater in the UK. These limestone aquifers can have rapid flow paths and the selected sites are 

all known to experience episodic pollution events that are generally linked to heavy rainfall. Site 1 

comprises Portland Stone Formation boreholes, site 2 Chalk Group springs, site 3 Chalk Group 

boreholes, and site 4 Jurassic Limestone springs.  



74 
 

 

Figure 5-1 Location of public water supplies and major aquifers of the UK. Note the Portland Stone 
Formation is too small to be visualised at this scale. 

5.2.2 Online analysis 

TLF was determined at each site and HLF at sites 1, 2, and 3 every two minutes on the raw water intake 

for between 6 and 10 months using telemetered UviLux fluorimeters (Section 2.3). All fluorimeters 

were installed in flow-through cells, which excluded all natural light, connected to sample taps at each 

site. Factory calibrations were implemented on all UviLux sensors. For the calculation of a TLF:HLF 

ratio, TLF was converted to QSU by multiplication by 0.5365; this factor relates the fluorescence 

intensity of tryptophan to that of quinine sulphate. The temperature of water exiting each cell was 

monitored with a HOBO Tidbit® v2 (Onset Computer Corporation, USA).  

At all sites abstracted raw groundwater is screened in real-time against defined turbidity thresholds, 

using nephelometric technology, before passing into a treatment plant prior to onward distribution. 
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If water exceeds the defined threshold, usually 1 NTU, it is considered a potential threat to the 

provision of clean water, as high levels of microbial contamination may be present alongside particles 

that could reduce treatment efficacy (DWI, 2010). In this case, abstraction may cease or raw water 

may be directed to waste until turbidity returns to below the threshold. In both cases, fresh sample 

did not pass through the flow cells containing the fluorimeters. These instances were observed 

regularly at sites 1, 3 and 4 and all fluorescence data were disregarded during these periods that could 

last from hours to weeks. Only site 2 has a complete uninterrupted record of fluorescence data across 

the monitoring period.  

5.2.3 Sample collection and laboratory analysis 

Sample collection and storage 

Duplicate water samples were retrieved from each site on a regular basis for comparison with the 

online sensors. One was collected and analysed for E. coli within 8 h following standard water industry 

compliance procedures (EA, 2009). The second was collected in sterile 15 ml polypropylene tubes, 

stored in the dark at 4 oC, and analysed for fluorescence and absorbance, and total bacterial cell counts 

by flow cytometry. These second samples were analysed within 48–96 hours of collection. Sample 

stability tests were performed which confirmed the stability of samples over this timeframe, see 

Section 2.3.4. 

Fluorescence and absorbance analysis 

Fluorescence analysis was conducted on unfiltered samples at 20 oC with λex between 200 and 400 nm 

(5 nm bandwidth) and λem between 280 and 500 nm (2 nm bandwidth) using a Varian™ Cary Eclipse 

fluorescence spectrometer (Agilent Technologies, USA). The scan rate was 9600 nm/min and the 

detector voltage was set to 900 V. All analysis was performed in a quartz cuvette with a path length 

of 1 cm. The Raman peak of ultrapure water at 348 nm was used to check for instrument stability prior 
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to and following analysis, for blank correction, and to standardise the fluorescence excitation-emission 

matrices (EEMs).  

Absorbance measurements were undertaken in a 1 cm quartz cuvette at 1 nm intervals from 800 to 

200 nm using a Varian Cary 50 UV–Vis spectrophotometer (Agilent Technologies, USA). All absorbance 

spectra were referenced to a blank of ultrapure water. Mean absorbance was 0.011 cm-1 

(σ = 0.007 cm-1) at 280 nm. This indicates that inner-filter correction was not required, since the 

primary inner filter effect was <3.7% across all samples (Lakowicz, 2006). 

Flow cytometry 

It has been proposed that the total number of bacterial cells by flow cytometry could act as an 

indicator for drinking water contamination, as elevated counts could indicate contamination from 

external sources containing higher cell densities or the growth of bacteria within the distribution 

network (Lautenschlager et al., 2013). Consequently, total bacterial counts were analysed for on a BD 

Accuri C6 flow cytometer equipped with a 488 nm solid state laser (Becton Dickinson U.K. Ltd., Oxford, 

U.K.). Water samples (500 µl) were stained with SYBR Green I (Sigma-Aldrich, Gillingham, UK) at a final 

concentration of 1:200 v/v for 20 minutes in the dark at room temperature, before running on the 

Accuri at a slow flow rate (14 µL/min, 10 µm core) for 5 minutes and a detection threshold of 1,500 

on channel FL1. A single manually drawn gate was created to discriminate bacterial cells from 

particulate background, and cells per mL were calculated using the total cell count in 5 minutes divided 

by the reported volume run in µl. The mean absolute error (MAE) from 69 duplicate analyses across 

all sites was 6536 cells/mL 

Sample stability  

A series of samples was collected sequentially from each of sites 1, 2, and 4. These samples were 

destructively analysed in triplicate on a daily basis, excluding weekends, over eleven days for 

fluorescence and nine days for total bacterial cell counts following the procedures listed above. For 
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fluorescence, equivalent TLF and HLF wavelength pairs corresponding to the in-situ sensors were 

extracted from the excitation/emission matrix. The results are expressed in percentage change from 

the mean of three samples analysed after storage for one day (Figure 5-2). 

There was no consistent change in either TLF or HLF over 11 days, hence variation in storage time 

before analysis is unlikely to have influenced the results. Nonetheless, transformations during storage 

have been observed within the first 24 h, which have not been considered here. For example, Bieroza 

and Heathwaite (2016b) demonstrated increases in TLF of 9–11% in unfiltered surface water samples 

stored at 10 oC over this timescale. However, potential changes in samples collected in this study are 

likely to be lower given the reduced storage temperature (4 oC) and because groundwater as a medium 

is likely to be more stable than river waters due to the generally lower concentrations of bacteria and 

nutrients that are present. Of greater significance is the variability between samples analysed in 

triplicate on the same day (Figure 5-2).  

 

Figure 5-2 Percentage change in TLF, CDOM and bacterial counts from the initial sample analysed 
after one day of storage to samples stored for varying lengths of time. Error bars represent range 
from three separate samples analysed on the same day. 
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Bacterial cell counts were consistently lower after storage for one day (Figure 5-2), with an overall 

mean decline of 12% between storage for one and two days across all samples. Nevertheless, there 

was no apparent change between two and four days. Therefore, it is considered that reported 

bacterial cells counts are marginally lower than at the time of sampling at sites 1, 2 and 4, but variation 

in storage time between 2 and 4 days is unlikely to have influenced the results. 

5.2.4 Statistical analysis 

Correlations were assessed by Spearman’s Rank (Spearman, 1904). Differences in the median between 

two populations were assessed by Mann-Whitney tests and between multiple populations by the 

Kruskal-Wallis method (Kruskal and Wallis, 1952) followed by a pairwise multiple comparison using 

Dunn’s Method (Dunn, 1964). E. coli data were classified into World Health Organisation (WHO) risk 

categories for some analyses which defines risks based on the plate count per 100 mL (WHO, 1997) as 

follows: Very Low (0 cfu), Low (1-9  cfu), Medium (10-99  cfu), High (100-999  cfu) and Very High 

(1000+ cfu). All these statistical analyses were non-parametric, due to the non-normal distribution of 

all datasets, and performed in SigmaPlot version 13. 

Parallel factor analysis (PARAFAC) was undertaken on blank corrected fluorescence EEMs from all sites 

to extract, model and quantify the spectrally overlapping components. PARAFAC uses a least-squares 

algorithm to decompose the data; for further details on the method and approach see Stedmon et al. 

(2003). The analysis was undertaken using the ‘DOMFluor v1.7’ toolbox (Stedmon and Bro, 2008) in 

Matlab version 9.1. Rapid model convergence was obtained and validated using independent split-

half analysis of the dataset following removal of outlier data which had high leverage (Stedmon and 

Bro, 2008). 

5.3 Results and Discussion 

5.3.1 Online indication of E. coli  

There are strong correlations between TLF and E. coli (ρs = 0.71, p <0.001, n= 134) and HLF and E. coli 

(ρs= 0.77, p <0.001, n= 122), but only a moderate correlation between turbidity and E. coli (ρs = 0.48, 
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ps <0.001, n= 134). When grouping the E. coli data into WHO risk categories, TLF, HLF and turbidity all 

vary significantly between categories (Kruskal-Wallis, p < 0.001) (Figure 5-3). Significant differences 

exist between all categories for TLF (Dunn’s Method). However, for turbidity and HLF (HLF was only 

monitored at sites 1–3), Low and Medium categories are not significantly different, although both are 

significantly different from the Very Low category. There were insufficient data to robustly include the 

High risk category in the analysis (n = 5), although all variables are generally most elevated in this 

category (Figure 5-3). 

 

Figure 5-3 Boxplots of TLF, turbidity and HLF against WHO risk categories for E. coli. Boxes 
illustrate median and interquartile range, whiskers indicate 5th and 95th percentile, and all 
outliers are shown. Results of non-parametric Dunn’s Method tests are displayed for Very Low to 
Medium categories: not significant = n.s =, p = 0.05 (*),  p < 0.001 (***) =. Sample sizes were Very 
Low = 53, Low = 47, and Medium = 29 for TLF and turbidity, and Very Low = 49, Low = 44, and 
Medium = 24 for HLF. 

Consideration of the collated dataset as a whole is important for evaluating the universal applicability 

of these indicators. Ideally each indicator would also be assessed at each site individually to confirm 

that any collated analysis is not biased by site-to-site differences. However, there is a limited spread 

of data across risk categories at each individual site with which to undertake such analyses (Figure 

5-4). Where n > 5, there is a significant difference between Low and Medium risk categories at site 1 

for TLF (Mann-Whitney, p = 0.04) and turbidity (Mann-Whitney, p = 0.01), but not HLF (Mann-Whitney, 

p = 0.09); there are no significant differences between Very Low and Low categories at site 2 for any 

variable (Mann-Whitney, p = 0.49–0.91). Similarly, correlations are only present at site 1 for all 
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indicators (0.49–0.54, p < 0.001, n=53), which has the largest number of samples that are spread 

across all risk categories.  

 

Figure 5-4 Frequency of data within each WHO risk categories for each site. 

At all sites, TLF remains in excess of the proposed threshold of 1.3 ppb (Chapter 4) to indicate the 

presence of faecal contamination in untreated drinking water. Indeed, all sites experience E. coli 

contamination, but this ranges from commonplace occurrence at site 1 (93% of samples) to episodic 

occurrence at site 3 (12% of samples). TLF always remains above the threshold because the sites 

appear to have a reasonably consistent TLF baseline of around 4 to 8 ppb (Figure 5-5). Comparatively, 

previous groundwater studies linking TLF to faecal indicator organisms in boreholes have suggested a 

zero TLF baseline  (Chapter 3; Sorensen et al., 2016).  
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Figure 5-5 Boxplots of online TLF, HLF and TLF:HLF ratio subsampled to 15 minute resolution data 
at relevant sites. 

5.3.2 Online indication of total bacterial cell counts 

A strong positive non-linear correlation is observed between TLF and total bacterial cell counts, 

although there is noticeable scatter (Figure 5-6). This positive correlation holds at several individual 

sites: site 1 (ρs = 0.82, n = 17, p <0.001), site 2 (ρs = 0.68, n = 91, p <0.001), and site 4 (ρs = 0.70, n = 5, 

p = 0.23). No correlation is evident at site 3 (ρs = 0.11, n = 11, p = 0.73) because there is limited variation 

in TLF (σ = 0.1 ppb) and bacterial cell counts (σ = 5800 cells/mL). In fact, if site 3 is removed from the 

overall analysis, the overall correlation becomes even stronger (ρs = 0.86, n = 113, p <0.001). It is also 

noted that there is a discrepancy in the order of 2 ppb TLF at similar low bacterial cell counts between 

sites 2 and 3.  
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Figure 5-6 Scatterplots of TLF, turbidity and HLF against total bacterial cell counts for all sites. 
Spearman’s rank correlation coefficients (ρ) and significance are displayed (*** indicates p < 
0.001), n = 124 for TLF and turbidity and n = 119 for HLF. 

HLF is strongly correlated with total bacterial cell counts in a collated dataset from sites 1-3 (Figure 

5-6). Again, this positive correlation is observed at site 1 (ρs = 0.77, n = 17, p <0.001) and site 2 (ρs = 

0.65, n = 91, p = <0.001), but not site 3 where there is limited variation in counts. The correlation 

coefficients for sites 1 and 2 are very similar to the correlation coefficients between TLF and total 

bacterial cell counts. 

Only a weak correlation is noted between turbidity and total bacterial cell counts across all sites 

(Figure 5-6). The only statistically significant correlation is actually observed at site 2 (ρs = 0.72, n = 91, 

p <0.001), with no relationships at the other sites (ρs = 0.01 to -0.18). 

5.3.3 Complete time series of online indicators at site 2 

The complete dataset from site 2 shows the relationship between online indicators and bacteriological 

variables (Figure 5-7). There is a consistent TLF baseline (IQR = 0.9 ppb) where E. coli are generally 

absent, or few in number, and total bacterial cell counts are reasonably stable (IQR = 10 000 cells/mL). 

Following rainfall, increases in TLF, E. coli and total bacterial cell counts are noted. These increases are 

greatest during the main groundwater recharge season ending in March, and include several smaller 

peaks between late-May and mid-July. HLF displays a near identical relationship to TLF and 

bacteriological variables over the time period. Examination of the TLF:HLF ratio demonstrates it is 
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reasonably stable at around 0.85, except during events when there is a decrease in the ratio due to a 

proportionally greater increase in HLF. There is a noticeable decline in baseline TLF and HLF of around 

0.8 ppb and 0.4 QSU, respectively, over the record. 

 

Figure 5-7 Comparison of TLF, HLF, and turbidity with bacteriological variables at site 2. All data 
are displayed at 15 minute resolution. No samples were taken for total bacterial cell counts prior 
to 6 Feb and between 1-10 Mar. Daily rainfall values are from Havant, Hampshire. 

Turbidity increases appreciably during events in the main groundwater recharge season, but returns 

back to baseline more quickly than the bacteriological and fluorescence variables. This partially 

mirrors the results of Pronk et al. (2006) who demonstrated that following rises in turbidity, DOC and 

E. coli counts in springs after rainfall,  turbidity rapidly returned to baseline values whereas both DOC 

and E. coli remained elevated for several more days. These observations may result from turbidity 
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predominantly being associated with larger particles, which rapidly settle out, whereas smaller 

particles also associated with bacteria and fluorescent DOM continue to be transported through the 

system. It is also noted that turbidity changes during late Spring and Summer rainfall events, are 

minimal despite sizeable increases in bacteriological variables. These observations indicate why 

turbidity is an inferior indicator of both E. coli and total bacterial cells compared to fluorescence at 

site 2. 

5.3.4 HLF bleed-through into the TLF spectral region 

The sensor data from sites 1 to 3 do not indicate a clear TLF peak, with relatively constant TLF:HLF 

ratios (IQR = 0.01–0.03) that never exceed 1.0 (Figure 5-5). Mean laboratory fluorescence data also do 

not indicate a visual TLF peak (Figure 5-9). The TLF region appears completely masked by the 

neighbouring HLF peak centred at λem 420–460 nm, which bleeds through and causes an apparent 

amplified TLF signal. Deconvoluting the EEMs statistically using PARAFAC analysis demonstrates that 

a two component model, based on HLF peaks (Figure 5-8), explains 98.3% of the variability. A validated 

three component model, including an additional TLF component (Figure 5-8), provides only a very 

marginal improvement to 98.6%. It is, hence, unsurprisingly that HLF and TLF were similarly correlated 

to both E. coli and total bacterial cells. 

In other studies, HLF has proven to be similarly or better correlated than TLF to: BOD at wastewater 

treatment works (Cohen et al., 2014), total coliforms and E. coli at springs (Frank et al., 2017) and E. 

coli concentrations during controlled laboratory experiments (Fox et al., 2017). Therefore, a HLF 

fluorimeter alone may suffice for monitoring the microbial quality of untreated drinking water sources 

in many instances. Alternatively, a sensor that excites at λex 280 nm and has a broader emission filter 

of λem 335-500 nm could also provide comparable performance. The advantage of this device would 

be a reduction in cost due to the replacement of an expensive narrow bandpass filter.  
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Figure 5-8 Two- and three-component models produced by PARAFAC analysis. 
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Figure 5-9 A) Mean fluorescence excitation/emission matrix between λex 250–300 nm and λem 
280–500 nm for all sites with TLF and TLF sensor spectral regions indicated; B) Mean fluorescence 
intensity at λex 280 nm,  λem 320–500 nm for all water samples collected at sites 1 to 4. 
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The ratios of fluorescent peaks are commonly used to address the issue of optical bleed-through (e.g. 

Baker, 2002b; Lapworth et al., 2008). Variability in TLF:HLF ratios between sites demonstrates that 

there is not a consistent ratio in the absence of a clear TLF peak at these study sites (Figure 5-5). This 

observation arises because fluorescence intensity is always low and relatively consistent at 

wavelengths slightly shorter than the TLF region (λem 320-340 nm); therefore, an intense HLF peak will 

typically result in a lower TLF:HLF ratio as the recession in fluorescence intensity from the peak is 

steeper (Figure 5-9b). Hence, site 1 with a relatively intense HLF peak has a median ratio of 0.58, as 

opposed to a median ratio of 0.73 at site 3 which has the lowest intensity HLF peak. Consequently, 

using TLF:HLF ratios does not allow comparisons between sites, although it may indicate relative 

changes in the fluorescent components at an individual site. 

The lack of a clear TLF peak indicates the sites are not likely to have been appreciably impacted by 

wastewater during the monitoring period, which is the most likely attribution of TLF in groundwater. 

HLF is generally considered to be of allochthonous origin (Coble et al., 2014) and is likely to derive 

from the near-surface in groundwater. Therefore increases in fluorescence during rainfall events are 

indicative of water from the near-surface rapidly impacting the sites. 

5.3.5 Operational constraints 

At all water company sites, operating procedures impacted fluorescence monitoring. Borehole pump 

start-up resulted in spikes in fluorescence as well as turbidity at all borehole sites. These spikes 

typically lasted for minutes to hours until returning to expected levels. However, fluorescence 

remained elevated for longer periods (up to several days) when the primary water source was rotated 

to another borehole at the same site that had remained on standby for days/weeks. Boreholes contain 

elevated concentrations of planktonic bacteria cells and DOC compared with the surrounding aquifer 

when they are not pumped due to the accumulation of organic material (Sorensen et al., 2013). The 

longer a borehole is not pumped, the greater the accumulation of this organic material within the 

borehole and adjacent aquifer. Consequently,  a greater load is mobilised by pump start-up and it 
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takes longer for fluorescence readings to stabilise. Furthermore, there is likely to be build-up of 

organic material within the pipe network with time when there is no active flow that would then only 

begin to clear upon pump start-up. 

Variations in the active pumping rate within a borehole are also likely to impact fluorescence 

monitoring. A higher flow rate increases flow velocities and shear stress within the borehole and 

aquifer, increasing disturbance, entrainment, and shearing of biofilms. Previous research has 

demonstrated an increase in DOC mobilisation and bacterial cell counts at higher pumping rates 

(Graham et al., 2015; Kwon et al., 2008). A higher pumping rate through the pipe network could 

similarly increase biofilm mobilisation (Cloete et al., 2003), with a resultant increase in TLF and HLF.  

Minor sensor drift of 0.3–0.8 ppb TLF over 6 to 10 months was evident at all sites and is the underlying 

cause of the change in baseline fluorescence over time at Site 2. Sensor drift was evaluated by testing 

the fluorimeters in ultrapure water and tryptophan standards before installation and following 

removal at the end of the project. There was no visible sign of material on any sensor window, but the 

apparent drift could be corrected for by cleaning the windows with a lens cloth. It is recommended 

that suppliers supplement these optical sensors with self-cleaning wipers on the windows for online 

installations. This should resolve the problem, but infrequent manual maintenance will still be 

required to validate the sensor readings. More problematic was an installation at a riverbank filtration 

site that was not included in this paper. Here, there was a dramatic >40% loss of signal in the first two 

weeks following installation (Figure 5-10). The sensor was cleaned and re-installed on multiple 

occasions, but similar rates in signal loss were always observed. Hydrochemical analysis of deposits 

removed from the windows indicated a build-up of metals, most notably iron. The sensor windows 

are constructed from silica, which has a surface comprising mainly silanol (Si-O-H) groups. Any loss of 

the proton could allow the windows to become negatively charged, attracting cations, and there could 

also be exchange of the proton with cations in the sample. 
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Figure 5-10 TLF variation at a river bank filtration scheme (site 5). Arrows indicate a site visit when 
the sensor was cleaned and re-installed. 

There are a range of other variables that interfere with fluorescence spectroscopy measurements 

(Hudson et al., 2007), notably temperature and turbidity (Khamis et al., 2015). Turbidity was generally 

very low with the 95th percentile being 1.0, 0.1, 0.1 and 1.6 NTU at sites 1 to 4, respectively. 

Temperature was similar at all sites, with median values of between 10.6 and 12.2 oC, with variations 

typically limited to only 1–2 oC, and only very occasional greater variation. Therefore, neither 

temperature nor turbidity are likely to have had appreciable influence on the fluorescence results. It 

is possible to generate correction factors to account for variations in temperature and turbidity, which 

could be automated online (e.g. Shutova et al. 2016), and these may be necessary for surface water 

sources. However, Khamis et al. (2015) demonstrated only marginal improvements by correcting 

groundwater TLF data and suggest that corrections factors are likely to be unnecessary for 

groundwater sources universally, as generally turbidity is very low and temperature is perennially 

stable. 

5.3.6 Beyond an indicator of microbial quality in untreated water 

Online fluorescence has viable applications beyond purely as an indicator of the microbial quality of 

untreated drinking water. Bridgeman et al. (2015) identified a correlation between TLF and total 
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bacterial cell counts within the treated drinking water distribution network; albeit slightly weaker (r2 

= 0.56) than in this study. The correlations between fluorescence and total bacterial counts, observed 

herein and in Bridgeman et al. (2015), indicate that online fluorescence spectroscopy could represent 

a more practical, cheaper, and robust alternative to flow cytometry for monitoring total bacteria 

throughout the water supply network. However, flow cytometry has the potential to record other 

properties of bacterial communities, including cell size, viability (the proportion of live and dead cells) 

and the metabolically active proportion of the community (Hammes and Egli, 2010).   

Within the treated water distribution network it has been demonstrated that HLF is relatively stable 

(Heibati et al., 2017) so that online fluorescence would be a potentially sensitive indicator of any water 

quality changes. Potential changes could include cross-connection detection, which many researchers 

have highlighted as a future use for online fluorescence (e.g. Hambly et al., 2010), or failure in the 

water treatment system. Further uses could be strategic deployments at the outlets of service 

reservoirs and large diameter trunk mains, which can both suffer from structural integrity issues. 

Nevertheless, the use of online fluorescence spectroscopy for treated water is likely to be complicated 

by water treatment processes that remove fluorescent DOM to various degrees (Carstea et al., 2016). 

Further work is need to appraise the utility of the technique on treated water. 

Fluorescence targeting HLF (λex/λem of around 350/450 nm) has been correlated with DOC (Shutova et 

al., 2016) and TOC (Bieroza et al., 2009; Bridgeman et al., 2015; Stedmon et al., 2011) in untreated 

and treated drinking water. If peak C is related to the total organic matter load in water, then online 

HLF fluorimeters could be useful to forewarn of the generation of harmful amounts of carcinogenic 

by-products during certain types of disinfection such as trihalomethanes (Yang et al., 2015b).  

Fluorescence spectroscopy could also be a useful indicator for the water industry, or other abstractors, 

for rapidly characterising the vulnerability of groundwater sources to contamination. The higher the 

fluorescence (either TLF or HLF) then the stronger the likely link with the near-surface, which is the 
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source of the majority of microbial and chemical contaminants. Therefore, fluorescence could be 

considered an instantaneous assessor of risk for groundwater sources.  

5.4 Conclusions  

• Online tryptophan-like fluorescence (TLF) and humic-like fluorescence (HLF) were both 

strongly correlated with E. coli concentration and total bacterial cell counts at public water 

supplies.  

• The current commonly employed microbial indicator in the UK, turbidity, was more weakly 

correlated with both bacterial variables. Nevertheless, turbidity is still an essential indicator 

of suspended solids in raw water that can affect treatment efficacy. 

• Monitoring both TLF and HLF was unnecessary in this environment with minimal change in 

the ratio. A HLF sensor alone would be sufficient for evaluating when water from the near-

surface was impacting a groundwater supply. 

• Fluorescence data were strongly influenced by pump start-up at borehole sources and, at one 

site, continuous build-up of ferric deposits on the sensor reduced intensity by up to >40% 

within two weeks. There is a need for manufacturers to supply fluorimeters that are more 

resistant to fouling, for example through the provision of wiper systems. 

• Online fluorescence could be a more practical approach for monitoring total bacterial cell 

counts than flow cytometry. 

• Online fluorescence is an effective indicator of the microbial quality of untreated drinking 

water and could be effective throughout the water supply chain for identifying changes in 

water quality that could signify the presence of enteric pathogens. 
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Chapter 6 - Extracellular nature of common 
fluorophores in groundwater 

6.1 Introduction 

This chapter addresses Objective 6 and hypothesises that tryptophan-like and humic-like fluorophores 

in groundwater are predominantly extracellular. This hypothesis is tested using data collected from 

four countries with contrasting hydrogeological settings and pollution pressures, and the implications 

for TLF and HLF as faecal indicators are discussed.  

This chapter is published as: 

Sorensen, J.P.R.; Carr, A.F.; Nayebare, J.; Diongue, D.M.L.; Pouye, A.; Roffo, R.; Gwengweya, G.; Ward, 

J.S.T.; Kanoti, J.; Okotto-Okotto, J.; van der Marel, L.; Ciric, L.; Faye, S.C.; Gaye, C.B.; Goodall, T.; 

Kulabako, R.; Lapworth, D.J. ; MacDonald, A.M. ; Monjerezi, M.; Olago, D.; Owor, M.; Read, D.S.; Taylor, 

R.G.. 2020 Tryptophan-like and humic-like fluorophores are extracellular in groundwater: implications 

as real-time faecal indicators. Scientific Reports, 10, 15379, 9. 

6.2 Materials and Methods 

6.2.1 Study areas 

The four study areas together comprise varying degrees of urbanisation from a large city to rural 

context where pollution sources and pressures vary considerably. Dakar is the large capital city of 

Senegal with over three million inhabitants constrained within the Cap-Vert peninsular, Kisumu is a 

medium-sized city of 600,000 residents in Kenya, Lukaya is a small town of around 24,000 people in 

Uganda, and the rural communities were located in the Lilongwe & Balaka Districts of Malawi (Figure 

6-1).  

The four study areas have contrasting hydrogeological settings. The unconfined shallow Thiaroye 

aquifer of Dakar comprises Quaternary fine- and medium-grained sands with a shallow water table 

less than 2 m below ground level (bgl) (Faye et al., 2019; Faye et al., 2004). The heterogeneous 
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volcano-sedimentary Kisumu aquifer system is a suite of Archaean age metasediments, Tertiary 

volcanics, Quaternary sediments, colluvium and lateritic soils (Consultants, 1988; Okotto-Okotto et 

al., 2015; Olago, 2019). It is multi-layered with unconfined (5-30m) and confined (>30m) horizons. 

Lukaya predominantly sits on Precambrian Basement with aquifers developed within the weathered 

overburden and fractured bedrock, in addition to alluvial aquifers towards Lake Victoria. Rest water 

levels are between 0.5 and 9 m bgl. Lilongwe District is Precambrian Basement with deeper rest 

water levels between 15-25 m bgl (Chavula, 2012). The alluvial aquifers in Balaka District are 

dominated by clays with significant subordinate sand horizons and a typical rest water level of 5-

10 m bgl (Chavula, 2012). Sanitation in all the study areas consists of mainly onsite sanitation (Cole 

et al., 2013; Diédhiou et al., 2012; Nayebare et al., 2020; Wright et al., 2013), which has the potential 

to faecally contaminate underlying groundwater resources that are used by communities in all 

settings (Sorensen et al., 2016).    

 

Figure 6-1 Study site locations in Africa. Continental map modified from 
https://online.seterra.com/pdf/africa-countries.pdf. 
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6.2.2 Groundwater sampling and analysis 

A total of 140 groundwater sources were sampled: 29 in Dakar, 38 in Kisumu, 32 in Lukaya, and 41 in 

Lilongwe & Balaka Districts. Sampling was undertaken in the dry season in Dakar and Kisumu and the 

wet season in Lukaya and Lilongwe & Balaka Districts. The sources comprised a mixture of pumped 

boreholes, hand pumped boreholes, open wells, and springs. Samples were obtained from open 

wells using a 12V submersible WaSP-P5 pump, except for Lilongwe & Balaka Districts where a rope 

and bucket were used. Prior to sampling, boreholes, open wells (except Lilongwe & Balaka Districts) 

and hand pumps flowed for at 1-2 minutes to ensure pipework was flushed and the sample was 

representative of the source. Springs were sampled directly from the outlet: either a discharge pipe 

in a protected setting or from the surface water channel in an unprotected setting.  

TLF and HLF were determined using portable UviLux fluorimeters reporting in QSU (Section 2.3). 

Fluorescence analysis was conducted in a HDPE beaker placed within a covered black container to 

prevent interference from sunlight. Analysis was conducted on unfiltered water to indicate total 

fluorescence, then passed through a low-protein binding 0.22 µm PVDF membrane (Sterivex, Merck 

KGaQ, Germany) to sterilise the water and quantify extracellular fluorescence.  

Repeatability of TLF fluorimeter data was previously investigated in the laboratory using dissolved 

tryptophan standards (Chapter 3). This study indicated that repeatability was approximately 0.2-

0.6 QSU up to 100 QSU, with evidence that absolute repeatability decreased with increasing 

intensity. To address repeatability in a field situation, including HLF, we calculated 3σ of 74 

duplicated measurements in Lukaya. These data ranged between 0-16.5 and 0-49.2 QSU for TLF and 

HLF, respectively. Repeatability was 0.5 QSU for TLF and 0.3 QSU for HLF. 

Specific electric conductivity (SEC), pH, temperature and turbidity were quantified using 

multiparameter Manta-2 sondes (Eureka Waterprobes, USA) in Dakar, Kisumu, and Lukaya. In 
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Lilongwe & Balaka Districts, temperature, SEC, and turbidity were measured using a HI766EIE1 

thermocouple with HI935005 thermometer (Hanna Instruments, USA), S3 portable conductivity 

meter (METTLER TOLEDO, USA), and 2100Q turbidimeter (Hach Company, USA),  respectively. 

Thermotolerant coliform (TTC) samples were collected in sterile 250 mL polypropylene bottles and 

stored in a cool box (up to 8 h) before analysis (Section 2.2). Samples in Dakar and Lukaya for total 

(planktonic) bacterial cells were collected in 4.5 mL polypropylene cryovials (STARLAB, UK) that were 

pre-treated with the preservative glutaraldehyde and the surfactant Pluronic F68 (Marie et al., 2014) 

at final concentrations of 1% and 0.01%, respectively. The samples were frozen at -18oC within 8 h of 

collection, defrosted overnight during transit to the UK, and analysed the following morning on a BD 

Accuri C6 flow cytometer equipped with a 488 nm solid state laser (Becton Dickinson UK Ltd, UK). 

Water samples (500 mL) were stained with SYBR Green I (Sigma-Aldrich, UK) at a final concentration 

of 0.5% for 20 min in the dark at room temperature, before running on the Accuri at a slow flow rate 

(14 mL/min, 10 mm core) for 5 min and a detection threshold of 1500 on channel FL1 (Chapter 5). A 

single manually drawn gate was created to discriminate bacterial cells from particulate background, 

and cells per mL were calculated using the total cell count in 5 min divided by the reported volume 

run in µL. 

6.2.3 Statistical analyses 

The non-parametric paired Wilcoxon test was used to assess the impact of filtration using the null 

hypothesis that the median difference following filtration is zero (Hollander and Wolfe, 1973). 

Relationships between loss in fluorescence and various independent variables (total bacterial cells, 

TTCs, SEC, and turbidity) were assessed using the non-parametric Spearman’s Rank test (Spearman, 

1904). Non-parametric techniques were used because of the non-Gaussian distribution of the 

datasets. All analyses were undertaken in R version 3.4.0 using core commands wilcox.test and 

cor.test(R Core Team, 2020).  Boxplots display the median, the interquartile range, whiskers denote 
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that 10th and 90th percentiles, and dots the 5th and 95th percentiles; these were produced in 

SigmaPlot version 13.0. 

6.3 Results 

6.3.1 Variation in TLF and HLF in the study areas 

The intensity of total TLF/HLF in groundwater relates to the degree of urbanisation (Figure 6-2a). 

Median TLF reduces from 17.4 QSU in the large city of Dakar, to 7.0 QSU in the medium-sized city of 

Kisumu, and 1.1-1.2 QSU in the small town of Lukaya and rural Lilongwe & Balaka Districts. 

Furthermore, median HLF in Dakar is almost 90-fold that of Lukaya.  

Neither variations in water temperature nor turbidity is considered to appreciably impact the 

fluorescence results (Figure 6-2b-d). Water temperature across all data vary between 23.2 and 

29.6 oC and within individual study areas by 2.5-6.0 oC. Therefore, uncertainty relating to 

temperature is likely to be limited to a maximum of <6 and <9% for TLF and HLF, respectively (Baker, 

2005; Downing et al., 2012; Watras et al., 2011). Any optical attenuation relating to suspended solids 

is also likely to have limited influence on TLF/HLF with a median turbidity of 0.3-4.6 NTU and 97% all 

of data <46.2 NTU (Khamis et al., 2015; Saraceno et al., 2017). 
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Figure 6-2 Boxplots of (a) total TLF, (b) total HLF, (c) temperature and (d) turbidity across D = large 
city of Dakar, K = medium-sized city of Kisumu, L = small town of Lukaya, and L&B = rural Lilongwe 
& Balaka Districts. 

6.3.2 TLF/HLF are predominantly extracellular in groundwater 

There is a significant change in median TLF following filtration (ΔTLF) across the whole dataset 

(paired Wilcoxon, p < 0.001). Median ΔTLF is a decline of 0.2 QSU (3.1%), which is within the error of 

repeatability (Figure 6-3). The majority (68.6%) of the supplies show no change when considering 

repeatability uncertainty, with 28.6% declining, and 2.9% increasing. The lower and upper quartiles 

highlight limited changes of only -12.2 and 2.6%, respectively.  
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Figure 6-3 Change in TLF following filtration in (a) QSU and (b) as a percentage. Dotted lines in (a) 
denote error in repeatability and (b) is a reference zero line. 

Within the individual country datasets, significant changes following filtration were observed in 

Dakar and Kisumu, but not Lukaya nor Lilongwe & Balaka Districts (Figure 6-4). The lack of a 

significant change in Lukaya and Lilongwe & Balaka Districts could be a result of the low unfiltered 

TLF intensities (median 1.1-1.2 QSU). Consequently, any changes following filtration could be harder 

to detect amongst repeatability uncertainty (±0.5 QSU). Overall median changes following filtration 

in Dakar, Kisumu, Lukaya and Malawi were -0.4 (-2.8%), -0.3 (-4.2%), -0.1 (-6.2%), 0 (0%) QSU, 

respectively. The greatest loss in TLF following filtration across the entire dataset was at a spring in 

Lukaya 28.6 QSU (78.6%), with a further spring in the town experiencing a loss of 2.7 QSU (69%). 

These springs were gentle seepages, and could be considered more representative of slow-moving 

surface waters; algae were also visible in the channel where samples were obtained. Given any 

changes following filtration are insignificant or minimal within country datasets collected in both the 

dry and the wet seasons, TLF is likely to be predominantly extracellular throughout the year.  
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Figure 6-4 Comparative boxplots of unfiltered (UF) and filtered (F) TLF data for each study area. 
Displayed p-values are the results of paired Wilcoxon signed rank tests. 

 There was no significant change in HLF following filtration (Figure 6-5) across the entire dataset 

(paired Wilcoxon, p 0.861), or within both the Dakar (paired Wilcoxon, p 0.522) and Lukaya (paired 

Wilcoxon, p 0.704) datasets individually (Figure 6-7). Although TLF and HLF are correlated in Dakar 

(ρs 0.678, p <0.001), contrasting filtration effects suggest that fluorescence is, in part, emanating 

from two different sources. 

 

Figure 6-5 Change in HLF following filtration in (a) QSU and (b) as a percentage. Dotted lines in (a) 
denote error in repeatability and (b) is a reference zero line. 
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Figure 6-6 Comparative boxplots of unfiltered (UF) and filtered (F) HLF data for each study area. 
Displayed p-values are the results of paired Wilcoxon signed rank tests. 

6.3.3 Relationships between TLF loss, total bacterial cells, TTCs, SEC, and turbidity 

There is a moderate positive correlation between ΔTLF after filtering and total bacterial cells in 

Dakar (Figure 6). Note, though, that there is a significant tendency for ΔTLF to decrease with 

increasing TLF intensity (Figure 6-8). No other significant correlations between ΔTLF and other 

variables in any country, including turbidity (Figure 6-7). It is unsurprising there is no significant 

correlations in Lukaya and Lilongwe & Balaka Districts, where no significant ΔTLF was observed, but 

coefficients are included for completeness.  
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Figure 6-7 Correlation matrix between four independent variables and TLF change following 
filtration in each of the four countries. Displayed values are Spearman’s ρs and ** denotes a p 
value of 0.01. 

6.4 Discussion 

6.4.1 Implications for TLF/HLF as faecal indicators 

TLF and HLF are predominantly extracellular in groundwater, which supports findings from our 

earlier TLF pilot study in rural India (Sorensen et al., 2016). Extracellular TLF/HLF will have different 

transport properties to larger faecal indicator bacteria and enteric pathogens, such as bacteria, 

Cryptosporidium oocysts, and Giardia that are around 1, 5, and 10 µm, respectively (Hunt and 

Johnson, 2017). These organisms will be more readily strained between a faecal source and a 

groundwater source through both the unsaturated and saturated zones. This behaviour could 

potentially result in false-positives when organisms are removed completely, whilst an elevated 

TLF/HLF signal remains. Indeed, false-positives have been highlighted as an issue when defining TLF 

thresholds to indicate the presence of TTCs (Chapter 4). False-positives will be more likely in aquifers 
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exhibiting matrix flow where faecal indicator bacteria and pathogens are typically restricted to only 

metres or tens of metres from sources such as pit latrines (Graham and Polizzotto, 2013). Co-

transport of TLF/HLF and both TTCs and pathogens is more likely in fractured aquifers where rapid 

transport of bacteria can occur over several kilometres within a few days, for example Heinz et al. 

(Heinz et al., 2009), or alternatively, irrespective of the aquifer, where a source’s integrity is 

compromised at or near the surface. Co-occurrence of TLF/HLF and TTCs is also more probable 

where there is a very shallow water table (<1 m).  

 

Figure 6-8 Relationship between unfiltered TLF and change in TLF following filtration beneath 
Dakar. Spearman’s Rank and associated p-value displayed. 

Elevated TLF/HLF in the absence of TTCs may still indicate a groundwater source is at-risk. Viruses 

are the smallest pathogens (27-75 nm) and are often also found in the absence of faecal indicator 

bacteria and larger pathogens because they can be more mobile in the subsurface  (Borchardt et al., 

2004; Wu et al., 2011). Future work could explore TLF as an indicator of virus contamination where 
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faecal indicator bacteria are ineffective. We  also previously demonstrated through seasonal 

sampling that TLF tended to remain perennially elevated in some sources whilst TTCs were more 

transient (Chapter 3). Finally, elevated TLF/HLF is likely to mean a source is better connected to the 

near surface and potential sources of contamination, even if the fluorescent OM may currently 

relate to non-faecal sources such as plant litter and soil organic matter. 

Our results demonstrate a significant correlation between ΔTLF and total bacterial cells in Dakar, and 

not between ΔTLF and TTCs. These observations may suggest a proportion of tryptophan-like 

fluorophores are bound within larger protein molecules within cells, although the relationship could 

be coincidental and a result of other particulate OM being filtered out. Furthermore, it is supportive 

of TLF being associated with total microbial biomass and activity, as opposed to purely TTCs, such as 

E. coli. Previous work has shown a vast assortment of microbes exhibit TLF (Bridgeman et al., 2015; 

Dartnell et al., 2013; Determann et al., 1998), including ubiquitous species in the environment 

(Elliott et al., 2006a; Fox et al., 2017; Nakar et al., 2019). 

6.4.2 Implications for fluorescence sampling 

The extracellular nature of TLF/HLF means there are minimal concerns over comparing groundwater 

fluorescence data collected from in-situ field sensors and samples that have been filtered prior to 

laboratory analysis. The filtration of laboratory samples is undertaken in many studies to remove 

suspended solids and sterilise the water to minimise biologically driven OM transformation prior to 

analysis.  

There is no evidence for turbidity attenuating TLF/HLF in groundwater (Figure 6). Samples with the 

highest turbidity in each country (46-153 NTU) also showed no evidence of appreciable change in 

TLF following filtration (1, 2, -3, 5%, respectively). This result further supports Khamis et al. (2015) in 

suggesting turbidity is unlikely to have any impact on the in-situ fluorescence monitoring of 

groundwater.  With no observed relationship between ΔTLF and turbidity, and no significant ΔHLF, it 

is unconfirmed why some ΔTLF/ΔHLF are positive beyond any repeatability error. Many of these 
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positive data are at greater fluorescent intensity, than the repeatability study conducted herein, 

with previous evidence that error increases with greater intensity; hence, these positives values may 

not indicate an appreciable change. However, it is also possible some of these data are indicative of 

either anomalously low total or high extracellular fluorescence. Anomalous low readings could occur 

due to air bubbles trapped within the sensor and high readings due to contamination resulting from 

sensor handling (Chapter 4). 

6.5 Conclusions 

Tryptophan-like fluorophores are predominantly extracellular in groundwater. Significant changes in 

TLF following filtration were only observed beneath the cities of Kisumu, Kenya, and Dakar, Senegal, 

where TLF was elevated in comparison to the small town of Lukaya, Uganda and rural Lilongwe & 

Balaka Districts, Malawi. Nevertheless, TLF was still 93.2-97.2% extracellular on average. In Dakar, 

tryptophan-like fluorophores associated with the unfiltered >0.22 µm fraction were moderately 

correlated with total bacterial cells. Humic-like fluorophores are extracellular in groundwater.  

The extracellular nature of TLF/HLF means they will have different transport properties in 

comparison to faecal indicator bacteria and larger pathogens, which will be more readily strained in 

both the unsaturated and saturated zones of the subsurface. Co-transport is least likely in 

intergranular aquifers where the water table exceeds a metre depth below ground level resulting in 

a higher likelihood of false-positives. TLF/HLF should be considered more precautionary indicators of 

microbial risks than faecal indicator bacteria in groundwater-derived drinking water.
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Chapter 7 – Relationship between in-situ 
fluorescence and total bacterial abundance  

7.1 Introduction 

This chapter primarily addresses Objective 5 and explores the relationships between in-situ 

fluorescence spectroscopy and total bacterial abundance, as well as common parameters associated 

with faecal contamination such as TTCS (Objective 1), nitrate and dissolved organic carbon, across a 

wide-range of drinking water sources. The study area is a highly contaminated aquifer beneath a 

suburb of Dakar (Senegal), Thiaroye, where on-site sanitation (OSS) comprises the only means of 

sewage disposal. 

This chapter is published as: 

Sorensen, J.P.R.; Diaw, M.T.; Pouye, A.; Roffo, R.; Diongue, D.M.L.; Faye, S.C.; Gaye, C.B.; Fox, B.G.; 

Goodall, T.; Lapworth, D.J. ; MacDonald, A.M. ; Read, D.S.; Ciric, L.; Taylor, R.G.. 2020 In-situ 

fluorescence spectroscopy indicates total bacterial abundance and dissolved organic carbon. Science 

of the Total Environment, 738, 139419, 10. 

7.2 Methods 

7.2.1 Study area 

The unconfined Thiaroye aquifer beneath a suburb of Dakar is located on the Cap-Vert Peninsula 

(Figure 7-1). The aquifer comprises Quaternary fine- and medium-grained aeolian sands overlying low-

permeability Tertiary marl deposits (Faye et al., 2019; Faye et al., 2004), with no humiferous layers 

(Fall, 1986; Martin, 1970). The sands are 5 to 75 m thick depending on the morphology of the Tertiary 

deposits. It is bounded by the Atlantic Ocean to the North and Southwest, the Tertiary marl deposits 

that outcrop to the South, a piezometric ridge separating it from the infrabasaltic aquifer to the west, 

and the Tanma depression and its seasonal lake in the east. The water table is typically within 2 to 
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15 m of the ground surface and the hydraulic gradient is generally from southeast towards the Atlantic 

Ocean.  

Monsoonal rainfall occurs between July and October and provides the only annual precipitation that 

is typically 450 to 500 mm (Faye et al., 2019). The semi-arid peninsula has an absence of perennial 

surface water features with the exception of hypersaline Retba Lake located below sea level. However, 

numerous seasonal lakes are expressions of a rise in the shallow water table. Tritium (3H), stable 

isotope ratios of O (δ18O) and H (δ2H), and piezometric data suggest groundwater is predominantly 

modern (post-1963), and diffuse recharge occurs during the latter part of the monsoon once soil 

moisture deficits are overcome (Faye et al., 2019). 

The Thiaroye aquifer contributed ~50% of Dakar’s water supply in the 1980s (Faye et al., 2019; Faye 

et al., 2004). Groundwater withdrawals have now decreased to ~5% of total municipal supply due to 

exorbitantly high nitrate (NO3
-) concentrations that had increased to an average of 450 mg/L by 2008 

(Diédhiou et al., 2012). Stable isotopes of dissolved nitrate (δ15N and δ18O) indicate an organic source 

of contamination (Diédhiou et al., 2012; Re et al., 2011) that is likely to relate to the vast network of 

septic tanks (Diaw et al. 2020, Diédhiou et al., 2012), as there is a lack of mains sewerage outside the 

historic city centre in the far west of the peninsula. Furthermore, Diaw et al. (2020) demonstrate a 

significant linear relationship between the density of OSS and NO3
- concentrations. Notwithstanding  

high levels of contamination, the aquifer remains essential for self-supply due to limited access to 

piped water.  

7.2.2 Groundwater sampling and analysis 

Sampling sites 

Eighty-four groundwater samples were collected from 70 water sources between 29th May and 3rd July 

2018 (Figure 7-1). Fourteen of the sources were resampled after 27th June following the only 

precipitation event (19 mm at Yoff) in the sampling period, as part of another study investigating 

temporal dynamics in water quality in the aquifer. These 14 resampled data were included following 
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confirmation that the outcomes of the statistical analysis presented in the results remained 

unchanged. The 70 sources comprise: 41 drilled hand-pumped boreholes, 1 borehole equipped with 

a submersible pump, 22 dug-wells, which are all used for water supply, and 6 research piezometers. 

Samples were obtained directly from the source where there was a pump in-situ, using a 12V 

submersible WaSP-P5 pump (In-Situ Europe, Redditch, UK) at hand dug-wells, and an MP1 pump 

(Grundfos, Bjerringbro, Denmark) set at around 1 m3/h in piezometers. All sources flowed for at least 

a minute before sampling to ensure all pipework associated with the pump was flushed, but the 

sources were not purged so the water was representative of what was actually being used for supply. 

 

Figure 7-1 Location of Thiaroye aquifer on the Cap-Vert Peninsula and sources sampled in this 
study. 

Sanitary inspection surveys were undertaken at all sources to assess potential risks of contamination 

observable at the surface (WHO, 1997).  These surveys consist of a list of proscribed yes-no questions 

pertaining to the presence of potential sources of contamination (e.g. on-site sanitation (OSS), animal 

faeces, trash) and pathways for contamination to migrate rapidly into groundwater sources. The 

sanitary risk score (SRS) is the total number of positive responses to these ten questions. SRS is 

interpreted as 9-10 (very high), 6-8 (high), 3-5 (medium), and 0-3 (low). 
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The density of OSS in proximity to each source was retrieved from a 100x100 m grid of the entire 

Thiaroye aquifer previously devised by Diaw et al. (2020). The grid was produced using both object-

oriented classification and photo-interpretation or visual interpretation of high-resolution Quickbird 

satellite images, which were validated by ground-truthing surveys. Population density was retrieved 

for the district of each source from the National Census of Senegal in 2016 (ANSD, 2016). 

In-situ analysis 

TLF and HLF were determined on unfiltered samples using portable UviLux fluorimeters (Section 2.3). 

Both TLF and HLF fluorimeters expressed intensity using in-built factory calibrations in quinine 

sulphate units (QSU) allowing calculation of TLF:HLF ratios. TLF data herein are reported in ppb 

tryptophan, for comparison to previous work, through calibration in standards of laboratory grade L-

tryptophan (Acros Organics, USA) dissolved in ultrapure water (ppb TLF = 2.4461 QSU TLF -1.5086, r2 

1.00). Fluorescence analysis was conducted in a HDPE beaker placed within a covered black container 

to prevent interference from sunlight. Specific electric conductivity (SEC), pH, temperature and 

turbidity were quantified using a multi-parameter Manta-2 sonde (Eureka Water Probes, USA). 

Laboratory analysis 

Thermotolerant coliform (TTC) samples were collected in sterile 250 mL polypropylene bottles and 

stored in a cool box (up to 8 h) before analysis (Section 2.2). Samples for total (planktonic) bacterial 

cells (TBCs) were collected in 4.5 mL polypropylene cryovials (Starlab, UK) that were pre-treated with 

the preservative glutaraldehyde and the surfactant Pluronic F68 (Marie et al., 2014) at final 

concentrations of 1% and 0.01%, respectively. The samples were frozen at -18oC within 8 h of 

collection, defrosted overnight during transit to the UK, and analysed the following morning on a BD 

Accuri C6 flow cytometer equipped with a 488 nm solid state laser (Becton Dickinson UK Ltd., UK). 

Water samples (500 mL) were stained with a 1:50 v/v solution of SYBR Green I (Sigma-Aldrich, UK) to 

a final concentration of 1:10,000 v/v for 20 min in the dark at room temperature. Samples were run 

with the Accuri at a slow flow rate (14 mL/min, 10 mm core) for 5 min and a detection threshold of 
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1500 on channel FL1. A single manually drawn gate was created to discriminate bacterial cells from 

particulate background, and cells per mL were calculated using the total cell count in 5 min divided by 

the reported volume run in µL. 

Samples for major anions were filtered through 0.45 µm cellulose nitrate membranes (GE Whatman®, 

UK) into 30 mL Nalgene bottles (Thermo Fisher Scientific, USA) in the field. Analysis for chloride, nitrite, 

nitrate and sulphate was conducted by ion chromatography (Dionex AS50, Thermo Fisher Scientific, 

USA). Samples for dissolved organic carbon (DOC) were filtered through 0.22 µm hydrophilic 

polyvinylidene fluoride membranes (Sterivex, Merck KGaQ, Germany) into 15 mL polypropylene 

centrifuge tubes (Merck KGaA, Germany). DOC was quantified by thermal oxidation using an 

Elementar Vario Cube (Elementar Analysensysteme GmbH, Germany). Only a subset of 22 samples 

was collected and analysed for DOC due to budget constraints. All hydrochemical samples were 

refrigerated at 4oC between collection and analysis. 

7.2.3 Statistical analyses 

Linear regression and correlation analyses were performed in R version 3.4.0 using base commands 

unless described otherwise. A forward stepwise linear regression algorithm was implemented (train, 

car package) using 10-fold cross validation. The algorithm adds one predictor to the model at a time 

according to whichever predictor will yield the largest decrease in the root mean square error (RMSE), 

until no further improvement can be achieved. Once an optimal set of predictors was retrieved, 

standardised beta coefficients (β) were estimated using lm.beta (lm.beta package) to allow 

quantitative comparisons between predictors. This command multiplies each unstandardized 

coefficient by the standard deviation of the associated predictor over the standard deviation of the 

dependent variable, hence a β refers to how many standard deviations a dependent variable changes, 

per standard deviation increase in the predictor. 

The normality of model residuals were evaluated using Q-Q plots (qqPlot, car package), and Shapiro-

Wilk’s tests that employ the null hypothesis that the population is of Gaussian distribution (Royston, 
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1982). Multicollinearity (i.e. correlation between predictors) within multi-predictor models was 

investigated by calculating variance inflation factors (VIF) (vif, car package) (Alin, 2010). Prior to linear 

regression modelling, all variables with a skewness (skewness, moments package) greater than one 

were natural log transformed. In the case of TTCs and NO2
-, additions of 1 and 0.1, respectively, were 

made prior to transformation to ensure the logarithm could be defined. Transforming the data was 

necessary as initial modelling produced skewed residuals, in contrary to the assumptions required by 

the model. Histograms of all variables used in the linear regression modelling are presented in Figure 

B-1. 

Correlation matrices for variables of interest were produced by rcorr (Hmisc package) using 

Spearman’s Rank incorporating mid-ranks in the case of ties (Myles and Wolfe, 1973), due to the non-

Gaussian distribution of some data. These matrices were displayed using corrplot (corrplot package) 

and ordered by hierarchical clustering (Friendly, 2002; Murdoch and Chow, 1996). 

7.3 Results  

7.3.1 Faecal contamination in the Thiaroye aquifer 

Water quality and sanitary risks 

Groundwater beneath Dakar displays clear evidence of faecal contamination (Figure 7-2). TTCs are 

present in 80% of samples with a median count of 115 cfu/100mL. The median NO3
- concentration 

(257 mg/L) is five times the WHO drinking water guideline value and exceeds this value in 90% of 

samples. A subset of sources also shows that the concentration of dissolved organic carbon is elevated 

(median 6.8 mg/L). Median TLF (70 ppb) and HLF (86.9 QSU) are similarly high. There is a large 

variation in TLF:HLF from 0.11 and 0.61 (5-95th percentiles); there is no clear TLF peak as the ratio is 

<1, with the exception of a single site. Median water temperature was 28.0oC with variations limited 

to 2.2oC (2σ) indicating minimal influence upon fluorescence data (Baker, 2005; Khamis et al., 2015). 

Turbidity is also likely to have limited influence on TLF/HLF with a median of 1.5 NTU and 2σ of 

20.9 NTU (Khamis et al., 2015; Saraceno et al., 2017). 
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Sanitary risk scores show that these groundwater sources are at moderate risk of contamination from 

the surface (mean 4.7). In terms of potential sources of faecal contamination within 10 m, only one 

site had on-site sanitation (OSS), 64% had animal faeces, and 50% had trash. 

 

Figure 7-2 Boxplots of TTCs, TBCs, TLF, HLF, DOC, NO3- and NO2-. Box boundaries illustrate the 
25th and 75th percentiles, the line within the box is the median, the whiskers are the 10th and 
90th percentiles, and the circles are the 5th and 95th percentiles (n=84). 

Table 7-1 Estimated coefficients and p-values for single predictor linear regression models of 
ln(TTCs+1). Predictors are ordered by coefficient. 

Predictor Adj. beta p-value 

ln(turbidity) 0.276 0.011 

ln(NO2
-+0.1) 0.224 0.041 

ln(SEC) 0.211 0.054 

OSS density -0.182 0.097 

ln(Cl-) 0.173 0.115 

Latrines -0.153 0.165 

Population density -0.142 0.197 

NO3
- 0.102 0.356 

ln(TBCs) 0.073 0.511 

Animal faeces 0.070 0.526 

SRS -0.057 0.608 

Trash 0.042 0.707 

HLF 0.037 0.737 

ln(TLF+1) 0.029 0.793 

Temperature -0.004 0.971 

SO42- 0.004 0.974 

 

Predicting thermotolerant coliform counts 

There is no relationship between fluorescent OM fractions and TTCs (Table 7-1). Significant linear 

regression models cannot be developed using either TLF (p-value 0.793) or HLF (p-value 0.737) as 

predictors of TTC counts. TLF is far in excess of the 1.3 ppb threshold proposed to indicate faecal 
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contamination and typically (>95%) exceeds the 6.9 ppb threshold to classify high risk sources 

≥ 100 cfu/100 mL TTCs (Figure 7-2, thresholds from Chapter 4). TTC counts are, in contrast, 

comparably low (Figure 7-2) and absent in 20% of the samples.  

The only significant predictors of TTCs are turbidity (p-value 0.011) and NO2
- (p-value 0.041) though 

relationships are very weak (r2 0.07 and 0.04, respectively). Potential explanatory variables relating to 

common sources of TTCs observed at the surface including OSS within 10 m, density of OSS, the 

presence of either animal faeces or trash are not significant (Table 7-1). The lack of relationships 

between TTCs and TBCs is also notable. 

 

Figure 7-3 Correlation matrix of TLF and all significant single-predictors of TLF. Only significant (p-
value < 0.01) Spearman’s ρs are shown. Variables are ordered by hierarchical clustering and black 
squares enclose six clusters. If the number of clusters is increased to seven, SEC forms a cluster of 
its own. 
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Table 7-2 Estimated coefficients and p-values for single predictor linear regression models of 
ln(TLF). Predictors are ordered by coefficient. 

Predictor Adj. beta p-value 

HLF 0.767 <0.001 
ln(TBCs) 0.647 <0.001 
OSS density 0.553 <0.001 
ln(SEC) 0.533 <0.001 
ln(NO2

-+0.1) 0.531 <0.001 
SO4

2- 0.521 <0.001 
Population density 0.430 <0.001 
ln(Cl-) 0.423 <0.001 
NO3

- 0.249 0.022 
SRS 0.241 0.027 
Animal faeces 0.209 0.057 
Temperature -0.207 0.059 
Trash 0.104 0.346 
ln(turbidity) -0.049 0.657 
ln(TTCs+1) 0.029 0.793 
pH 0.011 0.920 
Latrines 0.010 0.928 

 

Predicting tryptophan-like fluorescence 

Significant single-predictor linear regression models can be estimated using either: HLF, TBCs, OSS 

density, SEC, SO4
2-, population density, Cl-, or NO2

- with a p-value of <0.001, or NO3
- or SRS with a p-

value of <0.05 (Table 7-2). The superior model uses HLF as the predictor and has an r2 of 0.58, with 

the next best models using TBCs and OSS density obtaining an r2 of 0.41 and 0.30, respectively. Many 

of these ten TLF predictors are significantly correlated to each other with varying strengths (ρs 0.29-

0.78, Figure 7-3), although they can be split into six hierarchical clusters: HLF and TBCs (alongside TLF); 

OSS and population densities; SO4
2-, SEC, and Cl-; NO2

-; SRS; and NO3
- (Figure 7-3). 

Table 7-3 Stepwise linear regression model RMSE and r2 following the addition of each predictor 
with ln(TLF) as the dependent variable 

Predictor RMSE r2 

Model 1   
HLF 0.52 0.58 
NO3

- 0.48 0.64 
ln(TBCs) 0.42 0.72 
OSS density 0.40 0.74 

Model 2   
ln(TBCs) 0.61 0.41 
NO3

- 0.52 0.56 
ln(NO2

-+0.1) 0.48 0.63 
OSS density 0.46 0.66 
SO4

2- 0.44 0.68 
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Implementing the stepwise linear regression algorithm, the model incorporates HLF, followed by the 

addition of NO3
-, then TBCs and, finally, sanitation density (p-value <0.001) (Equation 1). HLF is the 

most important predictor in the model: being added first and having the greatest β. The additional 

predictors improve both the RMSE and r2 to final values of 0.40 and 0.74, respectively (Table 3, Figure 

7-4A).  

ln(𝑇𝐿𝐹) = 0.480 𝐻𝐿𝐹 + 0.335 𝑁𝑂3
− +  0.306 ln(𝑇𝐵𝐶𝑠) + 0.196 𝑂𝑆𝑆 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 0.401   

         (Equation 1) 

 

 

Figure 7-4 Scatterplots of observed against predicted ln(TLF) using (A) equation 1 and (B) equation 
2, and (C) a scatterplot comparison of predicted ln(TLF) from both equations. A 1:1 line is shown in 
all plots. 

The stepwise algorithm was also applied excluding HLF as a predictor. TBCs is the most important 

predictor and included first, followed by NO3
-, OSS density, NO2

- and SO4
2- (p-value <0.001) (Equation 

2). The final model has an r2 of 0.68 and an RMSE of 0.44 (Table 3, Figure 7-4B). Equation 2 predictions 

are similar to Equation 1 at lower TLF with increasing differences between predictions as TLF increases 

(Figure 7-4C). 

ln(𝑇𝐿𝐹) = 0.489 ln(𝑇𝐵𝐶𝑠) +  0.304 𝑁𝑂3
− + 0.205 ln  (𝑁𝑂2

− + 0.1)  + 0.187 𝑂𝑆𝑆 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 0.176 𝑆𝑂4
−2 −

0.376          (Equation 2) 
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Both multiple linear regression models have Gaussian residuals (Figure B-2, Shapiro-Wilk, p-values = 

0.103-0.330), no systematic spatial patterns in model residuals (Figure B-3), and no evidence of 

multicollinearity (VIF <2.06, Table B-1). The models are robust to the two highest TLF values; if we 

consider them outliers, identical predictors enter in the same order producing marginal improvements 

in the RMSE and r2 (Equations B1 and B2). Furthermore, both models are also significant (p-value < 

0.001) for the two main types of groundwater source: hand-pumped boreholes and dug wells, 

individually, where the models have an r2 of between 0.67 and 0.87. 

Relationships within DOC 

Significant predictors of ln(TLF) are generally also predictors of ln(DOC) for the subset of 22 sources 

(Table 7-4). The optimal single-predictor models are HLF (r2 0.84) and ln(TLF) (r2 0.71). The predictors 

and TLF cluster identically to the complete dataset with similar correlations between them (Figure 

7-5). DOC clusters with TLF, HLF and TBCs and there is a very strong or strong tendency for DOC to 

increase with each of these variables (Figure 7-5). TLF and HLF remain strongly associated with TBCs 

(ρs 0.67-0.68, p-value <0.001) in this subset of sources. No significant relationships exist between 

either DOC, NO3
- or OSS/population densities. 

Table 7-4 Estimated coefficients and p-values for single predictor linear regression models of 
ln(DOC). Predictors are ordered by coefficient. 

Predictor Adj. beta p-value 

HLF 0.921 <0.001 
ln(TLF) 0.853 <0.001 
ln(Cl-) 0.685 <0.001 
ln(TBCs) 0.650 0.001 
SO4

2- 0.615 0.002 
ln(SEC) 0.553 0.008 
ln(NO2

-+0.1) 0.551 0.008 
Trash -0.479 0.024 
NO3

- 0.234 0.294 
Population Density 0.212 0.344 
Temperature -0.199 0.375 
Latrines 0.163 0.469 
SRS -0.127 0.575 
Cattle 0.118 0.600 
pH 0.097 0.668 
ln(TTC+1) -0.091 0.688 
OSS Density 0.061 0.788 
ln(turbidity) -0.057 0.800 
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Figure 7-5 Correlation matrix of DOC, TLF, and all significant single-predictors of TLF identified in 
Table 7-2 for the subset of 22 groundwater sources. Only significant (p-value < 0.01) Spearman’s ρs 
are shown. Variables are ordered by hierarchical clustering and black squares enclose six selected 
clusters. 

The stepwise algorithm was employed using ln(DOC) as the dependent variable. HLF enters the model 

first, followed by TLF, which improves performance at lower concentrations (<2), and finally OSS 

density (Figure 7-6), with the final model (Equation 5) having an RMSE and r2 of 0.19 and 0.90, 

respectively. When ln(TLF) was designated the dependent variable, the optimal model includes only 

ln(DOC) (Equation 4), with an RMSE and r2 of 0.28 and 0.71, respectively. The unstandardized model 

coefficient is 0.712. 

ln(𝐷𝑂𝐶) = 0.686 HLF + 0.344 ln(𝑇𝐿𝐹) − 0.171 𝑂𝑆𝑆 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 0.202    (Equation 3) 

ln(𝑇𝐿𝐹) = 0.853 ln(𝐷𝑂𝐶) + 2.211        (Equation 4) 
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Both multiple linear regression models (Equations 3 and 4) have Gaussian residuals (Figure B-2, 

Shapiro-Wilk, p-values = 0.189-0.642) and Equation 3 has no evidence of multicollinearity (VIF <2.76, 

Table B-1).  

 

Figure 7-6 Scatterplots of observed against predicted ln(DOC) using (A) HLF; (B) HLF and TLF; (C) 
HLF, TLF and OSS density (Equation 3); and (D) observed against predicted ln(TLF) using ln(DOC) 
(Equation 4). A 1:1 line is shown in all plots. 

7.4 Discussion 

7.4.1 Fluorescent OM as an in-situ indicator of TTCs 

This is the first groundwater study to demonstrate no relationship between TLF/HLF and TTCs. We 

consider several potential explanations for this that relate to the environment of the Thiaroye aquifer, 

timing of the study, and uniqueness of TLF to TTCs. Firstly, the Thiaroye aquifer has been subject to 

high loading of faecal waste from a dense network of OSS facilities since settlement began in the 

1970s. In intergranular aquifers such as this, groundwater movement is relatively slow and porosity 

high, facilitating the accumulation of pollutants over time if they do not breakdown as rapidly as they 

arrive. We estimate a groundwater velocity of around 30 to 200 m/year, here, indicating a flow path 

from outcrop in the southeast to the Atlantic Ocean in the North of up to 50 to 120 years  (assuming 

a hydraulic conductivity of 10-60 m/d (Henry, 1972), hydraulic gradient of 0.003 (Faye et al., 2019), 

and effective porosity of 0.30 (Diedhiou, 2011)). Consequently, median NO3
- is five times the WHO 

drinking water quality guideline value, median DOC is almost six times the global median (McDonough 

et al., 2020), and median TLF/HLF are at least an order of magnitude greater than previous 

groundwater studies (Chapters 3 and 5; Sorensen et al., 2016). In terms of TLF, the groundwater  

resembles poor quality surface waters in South Africa (Baker et al., 2015). Against this elevated 
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historical baseline of fluorescent OM that is potentially spatially heterogeneous across the city, 

detecting deviations in recent faecal contamination, determined by TTCs, may not be possible. 

Additionally, there are also likely to be fluorophores unrelated to faecal contamination in this complex 

urban environment, which fluoresce at either TLF or HLF wavelengths such as proteins in solid organic 

waste and xenobiotic compounds (Baker and Curry, 2004; Muller et al., 2011). 

The fine- and medium- grained sands of the aquifer are also likely to be effective at straining bacteria 

during vertical and lateral groundwater flow whilst predominantly extracellular TLF and HLF 

fluorophores are expected to be transported more readily. Indeed, we have demonstrated that the 

majority of TLF (~97%) was extracellular and there was no evidence of intracellular HLF in this aquifer 

(Chapter 6). There are no specific studies investigating bacterial transport in this aquifer, though 

Weaver et al. (2013) showed bacterial transport was limited to only a few metres in moderate and 

coarse sandy aquifers. 

Our study was conducted outside of the recharge season following nine months of no rainfall, which 

is often a key driver of the microbiological contamination of groundwater (Hynds et al., 2012; 

Worthington and Smart, 2017). Furthermore, OSS, which could provide a perennial source of 

recharging water contaminated with TTCs, was typically absent in close proximity to water sources. 

Consequently, any TTCs present during the recharge season may have perished or become non-

culturable while elevated fluorescent OM remained present. This seasonal pattern was previously 

reported in Chapter 3 where we demonstrated that at some groundwater sources, TLF remained 

perennially elevated whereas TTCs were only elevated during the recharge season. Future sampling 

during the recharge season could examine whether seasonal TLF/HLF-TTC relationships exist.  

Finally, fluorescence at TLF and HLF wavelengths is not unique to TTCs such as E. coli (Bronk and 

Reinisch, 1993; Dalterio et al., 1986; Dalterio et al., 1987; Dartnell et al., 2013; Fox et al., 2017; Seaver 

et al., 1998; Sohn et al., 2009). Here, we demonstrate, despite the lack of TLF/HLF-TTC relationship, 
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that TBCs are the best predictor of TLF and are strongly correlated to HLF. Hence, non-TTC bacteria 

may be the source of TLF/HLF.  

7.4.2 Fluorescent OM as an in-situ indicator of total bacterial cells 

Relationships between TLF/HLF and TBCs may indicate that we are fluorescing autochthonous 

compounds produced by bacteria, given the associated fluorophores are predominantly extracellular 

(Chapter 6). Therefore, we are enumerating cells indirectly because of their activity, which is 

consistent with surface water (Cammack et al., 2004; Hudson et al., 2008; Parlanti et al., 2000) and 

laboratory studies (Fox et al., 2019; Fox et al., 2017) linking fluorescent OM and microbial activity. 

Despite this, abundance and activity are likely to be broadly interlinked in environmental systems. 

Alternatively, we can consider that fluorescent OM is allochthonous and derives mainly from 

anthropogenic activity at the surface, in addition to a subordinate baseline relating to naturally 

occurring fluorescent OM. The statistical relationship between TLF/HLF and OSS density supports the 

theory that septic tanks are a key source of allochthonous OM here. This anthropogenic fluorescent 

OM is associated with nutrients (C and N) that provide resources to the bacterial community in a 

habitat, which typically has low-availability of organic carbon and nutrients (Griebler and Lueders, 

2009). It then follows that the greater the OM supply to the system, the higher the bacterial biomass 

that can be supported. This hypothesis has been confirmed in multiple groundwater studies that have 

specifically related DOC inputs from anthropogenic sources to increases in bacterial abundance and 

activity (Findlay et al., 1993; Foulquier et al., 2011; Smith et al., 2015; Sobczak and Findlay, 2002). 

Therefore, the demonstrated relationship may not be a result of bacteria producing TLF/HLF 

fluorophores in-situ, but rather fluorophores being associated with OM inputs from the surface that 

provide a microbial resource. The abundance of this resource is then quantitatively related to the 

abundance of bacteria.  

A final explanation may be the bacterial population is transported alongside fluorescent OM from the 

same source at the surface because many sources, particularly those that are faecal, contain elevated 
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fluorescent OM and bacteria. We consider this to be the least plausible explanation as bacterial 

transport through the fine- and medium- grained sand aquifer is likely to be limited. Hence, the 

bacterial population that relates to TLF/HLF is likely to be a subsurface community that develops in-

situ. Furthermore, the study was conducted nine months after the termination of the recharge season, 

which is likely to provide the greatest influx of organic matter and bacteria; any foreign bacteria from 

that point in time are expected to have perished.  

Future microbiology studies could use high throughout DNA sequencing to reveal the community 

structure and function of the groundwater communities to indicate the primary source of these 

communities. For example the Bayesian tool SourceTracker (Knights et al., 2011) has been used to 

identify sources of faecal microbes in a variety of freshwater habitats (Baral et al., 2018; Brown et al., 

2017; Henry et al., 2016). In addition, it is possible to use flow cytometry to distinguish what 

proportion of the community is live versus dead (Berney et al., 2007) and the extent of microbial 

activity (Léonard et al., 2016). When combined, such analyses could disentangle the relationships 

between total bacterial cells and TLF/HLF by elucidating the origins of the bacterial community and 

whether the fluorescent OM is likely to be autochthonous or allochthonous. 

7.4.3 Fluorescent OM as an in-situ indicator of DOC 

This is the first groundwater study demonstrating a strong relationship between in-situ fluorescent 

OM and laboratory DOC data. Previous in-situ fluorescence research has demonstrated similarly 

strong relationships (r2 0.80-1.0) in surface waters (Downing et al., 2012; Khamis et al., 2017; Lee et 

al., 2015; Snyder et al., 2018; Tunaley et al., 2016). In these studies, researchers were deploying 

fluorescent sensors targeting the excitation peak of HLF around 350 nm and, with the exception of 

Khamis  et al. (2017), did not investigate DOC-TLF relationships.  Our analysis mirrors the linear 

regression modelling of Khamis  et al. (2017): HLF is a slightly better predictor of DOC but the model 

is marginally improved by the addition of TLF. The inclusion of both HLF and TLF suggests that each 

wavelength pair results in the fluorescence of slightly different components of the available DOC.  
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7.5 Conclusions 

Fluorescent OM is significantly associated with parameters linked to faecal contamination that include 

on-site sanitation density (OSS), NO2
-/NO3

-, total bacterial cells (TBCs), and dissolved organic carbon 

(DOC); but not with thermotolerant coliforms (TTCs), which tend to be indicative of recent 

contamination. It is unclear whether the lack of TTC association is because of: the intergranular nature 

of the aquifer, sampling being conducted nine months after the cessation of the recharge season, or 

the non-uniqueness of tryptophan-like (TLF) and humic-like fluorescence (HLF) to TTCs. In-situ 

fluorescence spectroscopy instantly indicates a drinking water source is impacted by faecal 

contamination, although it is unclear how that may relate to microbial risk in this setting. 

TBCs is the most related environmental parameter to both TLF and HLF across all samples. We consider 

this relationship is a result of either: (1) OM and its embedded nutrients providing a resource for 

bacteria in the subsurface; or (2) the in-situ production of fluorescent OM by subsurface bacteria. 

Irrespective, the relationships support the case of fluorescence spectroscopy as a more practical, 

cheaper, and robust alternative for indicating TBCs than quantification by flow cytometry. In remote 

settings, there is the additional advantage that samples can be measured in-situ rather than being 

preserved for subsequent laboratory analysis using hazardous chemicals (e.g. formaldehyde, 

glutaraldehyde, ethanol), that can modify the sample and are not always effective (Kamiya et al., 

2007).  

This groundwater study demonstrates strong relationships between in-situ fluorescent OM and DOC. 

HLF is the most strongly correlated peak to DOC and is likely to be sufficient in providing high-

resolution data that could provide novel insights into DOC and C fluxes within aquifers – an ecosystem 

that is generally C limited. Furthermore, online fluorimeters could facilitate more cost-effective 

chlorination of potable groundwater and forewarn of the generation of harmful disinfection by-

products within the water industry. 
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Chapter 8 - Temporal relationships between 
fluorescence spectroscopy and bacteria  

8.1 Introduction 

In this chapter, we evaluate the utility of both TLF and HLF as instantaneous, in-situ indicators of faecal 

contamination risk in groundwater, the world’s largest store of freshwater and the primary source of 

drinking water for up to two billion people (Gleeson et al. 2010). We repeatedly sampled 40 

groundwater sources in a community in Uganda across a period of fourteen months for TTCs and 

alternative rapid approaches that could be used to indicate faecal contamination. The rapid indicators 

included standard approaches of sanitary inspections, turbidity and electrical conductivity, alongside 

the more novel indicators of in-situ fluorescence spectroscopy and total (planktonic) bacterial cells 

(TBCs) by flow cytometry. We aim to demonstrate: (1) in-situ TLF and HLF are the superior rapid 

indicators of TTCs; and (2) the seasonal nature of the associations among TLF, HLF, TTCs, and TBCs. 

This chapter is published as: 

Sorensen, J.P.R.; Nayebare, J.; Carr, A.F.; Lyness, R.; Campos, L.C.; Ciric, L.; Goodall, T.; Kulabako, R.; 

Rushworth Curran, C.M.; MacDonald, A.M.; Owor, M.; Read, D.S.; Taylor, R.G.. 2021. In-situ 

fluorescence spectroscopy is a more rapid and resilient indicator of faecal contamination risk in 

drinking water than faecal indicator organisms. Water Research, 206, 117734. 11. 

8.2 Methods 

8.2.1 Study area 

Lukaya is a town in central Uganda around 100 km southwest of the capital city Kampala and close to 

the shores of Lake Victoria (Figure 8-1A). The town’s population was 24,000 in the last census (UBOS, 

2014), with a density of c. 640 inhabitants per km2 within the built-up area that is growing at 3% per 

year (PDP, 2017). To the east of town is the Lweera Swamp where commercial rice farming is practised 

(Figure 8-1B). The climate is humid with a mean annual rainfall of 890 mm (Nayebare et al., 2020) that 
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is bimodal and focussed within the rainy seasons of March to May and September to November 

(Figure 8-1C). 

The town predominantly sits on Precambrian basement rocks with aquifers developed within the 

weathered overburden and fractured bedrock with a shallow water table between 0.5 and 9 m below 

ground level (bgl). Groundwater is the primary source of water for the town, with the majority 

obtained from hand pumped wells and springs.  Piped water is used by <1%  of households (Nayebare, 

2021), which is obtained from a borehole operated by the National Water Sewerage Corporation 

(NWSC) to the south of the town (Figure 8-1B) (Nayebare et al., 2020).  

The town possesses neither a sewer network nor a wastewater treatment facility. On-site sanitation 

facilities number around 2,100 and predominantly comprise partially lined pit latrines that are 

elevated because of the shallow water table. The pits are not emptied: when full, faecal matter is 

moved from one pit to another, or a new pit is dug. Many pits also have overflow outlets in case of 

inundation during the rainy seasons (Nayebare et al., 2020). 

8.2.2 Hydrological monitoring 

Tipping bucket rainfall gauges, Lambrecht meteo model 15189 (Lambrecht meteo GmbH, Germany), 

were installed in two locations (1 and 2, Figure 8-1B) and data were aggregated to daily sums. A rainfall 

timeseries for the study period was produced using the data from station 1, in the centre of Lukaya, 

unless records were absent or failed quality checks, in which case data were replaced using records 

from station 2. Groundwater levels in the weathered overburden were monitored in three boreholes 

screened at the following depth intervals: 10.2-16.1, 11.4-17.3, and 23.5-29.4 m bgl. All boreholes are 

located within 20 m of each other at the surface (Figure 8-1B). Levels were monitored using Rugged 

TROLL 100 data loggers (In-Situ, USA). 
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8.2.3 Water sampling and analysis 

Water sources and sampling rounds 

An exhaustive survey of all water sources in the town was previously undertaken by Nayebare et al. 

(2020) and identified 56 shallow hand-dug wells equipped with hand pumps (shallow), 4 boreholes 

(deep) and 7 unprotected springs. The shallow sources vary between 3 and 8 m depth, and boreholes 

are at least 30 m deep, including the NWSC water supply well drilled to 61 m bgl (Nayebare et al., 

2020). All shallow and deep sources are protected and considered improved water sources, and the 

springs are unimproved (WHO, 2017c). 

A stratified sampling approach was implemented to sample 40 of the water sources (Figure 8-1B). The 

selected sources included: three deep sources, with the fourth having no accessible sampling location, 

and five springs, with the other two springs being such gentle seepages that groundwater inputs were 

not visible and these springs were not heavily utilised by the community. Finally, 32 of the 56 shallow 

sources were selected to maximise the spatial spread of shallow sources across the town, whilst 

accounting for some sources which had become non-functional. 

Sources were sampled in six rounds (R) across 14 months. R1 to 4 were undertaken in 2018 from late-

April to late-May when monthly rainfall typically peaks (Figure 8-1C); each round was separated by six 

to nine days. R5 and 6 were undertaken in 2019 from mid- to late-June when monthly rainfall is close 

to its annual minimum and the rounds were separated by four days. In R5 and 6, four of the hand 

pumps on the shallow sources had become non-functional and only 36 sources were sampled. Note 

that rainfall had progressed through two wet and dry seasons between R4 and R5.  

Water sampling and analysis 

All shallow and deep water sources were unlocked and in frequent use by the community or owner 

throughout daylight hours. Nevertheless, all sources were allowed to flow for an additional minute 

before sampling to ensure all pipework was adequately flushed. All unprotected springs were sampled 

from the surface water channel as close to the point of groundwater discharge as possible.  
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Each source was sampled for a range of possible in-situ rapid indicators of faecal contamination. TLF 

and HLF were quantified using separate UviLux fluorimeters (Section 2.3). The TLF fluorimeter was 

calibrated using eight standards (0, 1, 2, 5, 10, 50, and 100 ppb) of L-tryptophan dissolved in ultrapure 

water. The factory calibration was implemented for the HLF sensor, which expresses intensity in 

quinine sulphate units (QSU). The TLF ppb dissolved tryptophan data can be converted to QSU by 

division by 2.5037 or 2.3696 in rounds 1-4 and 5-6, respectively, to allow calculation of TLF:HLF ratios.  

Fluorescence spectroscopy measurements were taken by submerging the fluorimeter in 150 mL of 

groundwater contained in a polypropylene beaker. Each measurement was taken in the dark by 

placing the beaker and fluorimeter within a covered stainless steel container. Given the sensitivity of 

the fluorimeters, all measurements were taken in duplicate, or repeated further to obtain 

reproducible data. Field repeatability (σ) of TLF and HLF measurements were calculated as 0.4 ppb 

and 0.1 QSU, respectively, across all data in R5 and 6. Specific electrical conductivity (SEC), pH and 

temperature were monitored using a multi-parameter Manta-2 sonde (Eureka Waterprobes, USA). 

Turbidity was measured using a DR/890 portable colorimeter (HACH, USA), including blank correction 

with deionised water before each measurement, except during R4 when the Manta-2 was used. To 

account for absolute differences between the turbidimeters, the turbidity data were min-max 

normalised. Fluorescence data did not require linear correction for temperature quenching (Khamis 

et al., 2015), with only a range between 22.4-25.6oC.  The pH of the samples was 4.6-6.7, hence pH 

would not appreciably have impacted the fluorescence (Reynolds, 2003). 
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Figure 8-1 (A) Location of Lukaya within Uganda (TZ = Tanzania); (B) Sampling sources and 
hydrological monitoring in Lukaya mapped on Copernicus Sentinel data (2020), with the piped 
water source labelled NWSC; (C) Tukey boxplot, excluding outliers, of CRU monthly rainfall data 
(1900-2019) for grid cell 0.25 S, 31.75 E (Harris et al. 2020) indicating the timing of sampling rounds 
R1-6. 
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Sanitary risk inspections were undertaken at each source by the same assessor during sampling in  R5 

(WHO, 2020) (Table C-1). The surveys consisted of a list of nine yes-no questions: to identify sources 

of contamination observable at the surface, pathways for contaminants to the enter source, and 

breakdowns in barriers to contamination (Kelly et al., 2020). The questions differed for the 

shallow/deep sources and springs because of different potential pathways leading to contamination. 

The total number of positive responses to the questions equates to the sanitary risk score (SRS).  

Flow cytometry analysis for total (planktonic) bacteria cells (TBCs) was conducted in the laboratory on 

preserved samples, but the analysis can also be undertaken rapidly and online at a water source  

(Safford and Bischel, 2019). Samples (2 mL) were collected in 4.5 mL polypropylene cryovials 

(STARLAB, UK) that were pre-loaded with the preservative glutaraldehyde (Sigma-Aldrich, UK) and the 

surfactant Pluronic F68 (Gibco, USA) (Marie et al., 2014) at final concentrations of 1% and 0.01%, 

respectively. The samples were kept in a cool box for up to 8 h, then frozen at -18oC, defrosted 

overnight during transit to the UK in a cool box, and then analysed the following morning. Analysis 

was conducted using a BD Accuri C6 flow cytometer utilising a 488 nm solid state laser (Becton 

Dickinson UK Ltd., UK). Water samples (500 μL) were stained with a 1:50 v/v solution of SYBR Green I 

(Sigma-Aldrich, UK) to a final concentration of 1:10,000 v/v for 20 min in the dark at room 

temperature. Samples were run at a slow flow rate (14 mL/min, 10 mm core) for 5 min and a detection 

threshold of 1500 on channel FL1. A single manually drawn gate was created to discriminate bacterial 

cells from particulate background, and cells per mL were calculated using the total cell count in 5 min 

divided by the reported volume run in μL (Chapter 5).  

Thermotolerant (faecal) coliforms (TTCs) were selected as the FIO of contamination (Section 2.2). TTC 

samples were collected in sterile 250 mL polypropylene bottles and stored in a cool box (up to 8 h) 

before analysis.  
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8.2.4 Statistical analysis and modelling 

Rapid approaches to assess faecal contamination were tested against the benchmark FIO of TTCs using 

R v4.0.3 (R Core Team, 2020) and base commands unless otherwise stated. Logistic regression models 

were developed for each rapid approach as a predictor of ≥10 cfu/100 mL TTCs. There were 

insufficient data (n=1) where TTCs <1 cfu/100 mL to develop models for TTC presence-absence. Model 

performance was assessed using the area under the receive operating curve (AUC) (Mandrekar, 2010), 

which is a plot of the proportion of true positive results against the proportion of false positive results 

as the threshold of the predictor is varied. A perfect classifier has an AUC of 1 and a random classifier 

has a value of 0.5. Furthermore, we consider AUC values of 0.7 to 0.8, 0.8 to 0.9, and 0.9 and greater 

as acceptable, excellent, and outstanding, respectively (Hosmer Jr et al., 2013). Rank correlations 

between rapid approaches and TTCs were estimated using the non-parametric Spearman’s rank (ρs) 

(Spearman, 1904), given the non-Gaussian distribution of many of the variables. Coefficients of 0.80-

1.00, 0.60-0.79, 0.40-0.59, 0.20-0.39, 0.00-0.19 were considered very strong, strong, moderate, weak, 

and very weak, respectively. 

Multiple linear regression was applied to investigate what combination of rapid approaches was 

optimal for the prediction of TTC enumeration. A forward stepwise algorithm was used using 10-fold 

cross validation within the R package car (Fox and Weisberg, 2018). One predictor is added to the 

model at a time to achieve the largest decrease in the root mean square error (RMSE), until no further 

reduction can be yielded. The normality of model residuals was evaluated using Q-Q plots. Initial 

models produced non-Gaussian residuals, in violation of the assumptions, so all variables with a 

skewness >1 were natural log transformed. An addition of 1 was made to TTCs to ensure the logarithm 

could be defined. 

Differences in both rapid approaches and TTCs between sampling rounds were explored using the 

Friedman test in the R package PMCMR (Pohlert, 2014), with post-hoc Nemenyi tests (Demšar, 2006). 

The Friedman test is a non-parametric alternative to the repeated-measures ANOVA and tests the null 
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hypothesis that at least one group does not belong to the same population. If the Friedman test is 

significant (p < 0.05), the subsequent multiple comparison Nemenyi tests report significant (p < 0.05) 

differences between each pair of groups, if their corresponding mean ranks differ by at least the 

critical difference (Demšar, 2006; Pohlert, 2014).  

The comparative stability of rapid approaches and TTCs were evaluated by cross-correlating each 

variable with itself between sampling rounds. Additionally, TLF and HLF were cross-correlated with 

TTCs and TBCs across the sampling rounds to explore the seasonal nature of any associations. 

Spearman’s Rank was used because the variables were non-Gaussian and because we were most 

interested in the rank-order of the sources as an indicator of relative risk across the community.  

Groundwater levels (GWLs) for the most complete record, BH ALP-3, were hindcasted by 24 days to 

contextualise groundwater conditions before and during R1 and 2 where GWL observations were not 

collected. Hindcasting was conducted using a forward model implementing the water table fluctuation 

method and assuming diffuse recharge from daily rainfall observations (Cuthbert et al., 2019). The 

model was parameterised using a linear rainfall-recharge relationship with a rainfall threshold of 

10 mm, an exponential recession coefficient of 1.1 X 10-3 day-1 to a base of 1149 m asl, and a specific 

yield of 5%. The model effectively captures which rainfall events result in groundwater recharge, the 

timing of GWL responses, and the rate of recession, with an r2 of 0.85 and RMSE of 0.23 m (Figure 

C-1). 

8.3 Results 

8.3.1 Widespread prevalence and high variability of TTCs 

All sources show evidence of at least intermittent faecal contamination, inferred through the presence 

of TTCs (Figure 8-2A&B). Fifty percent of the sources have median TTCs of at least 88 cfu/100 mL 

(Figure 8-2A), with a range in median counts between <1 and 5,101 cfu/100 mL. The shallow sources 

cover the entire range in median counts, with median TTCs at springs and deep sources are in the 

upper 50% and lower 53% of all sources, respectively (Figure 8-2A). 
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TTCs vary widely at each source with 50% of sources having a range of at least 720 cfu/100 mL (Figure 

8-2B). The range in TTCs at a source is at least 8 cfu/100 mL and up to 34,000 cfu/100 mL, with all but 

two sources varying between risk categories, based upon the order of magnitude of TTCs, previously 

defined by WHO (1997).  A third of the sources transit between testing negative and positive for TTCs, 

including the only source with a median count of <1 cfu/100 mL (Figure 8-2D). There is a tendency for 

spring sources to have greater ranges in TTCs, than the other types of source (Figure 8-2B). 

 

Figure 8-2 Figure 2 Empirical cumulative distribution functions of (A) median TTCs and (B) range in 
TTCs for each water sources (n = 40). 

8.3.2 TLF and HLF are superior rapid approaches to indicate TTCs using source medians 

Median TLF is the only significant predictor of median TTCs ≥10 cfu/100 mL according to logistic 

regression models (β = 1.09, p-value = 0.042) (Figure 8-3A; Table C-2). The AUC using TLF as a classifier 
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is 0.88, which is closest to the perfect classifier value of 1 than the random selector of 0.5 (Figure 8-3A) 

and considered “excellent”. An optimal TLF threshold of 2.2 ppb can be defined to classify TTCs 

≥10 cfu/100 mL, with associated false-negative and false-positive rates of 16% and 25%, respectively 

(Figure 8-3C).  

The AUC when classifying median TTCs ≥10 cfu/100 mL using HLF was 0.85 and considered “excellent”, 

with the logistic regression model being borderline significant (β = 1.90, p-value 0.059) (Figure 8-3A). 

A HLF threshold of 0.85 QSU can classify median TTCs of ≥10 cfu/100 mL with identical error rates to 

those as the proposed TLF thresholds.  In fact, if the TLF ppb threshold is converted into QSU then they 

are almost equivalent to these HLF thresholds.  

The AUC was “acceptable” for Sanitary risk scores (SRS) and median total bacterial cells (TBCs), and 

demonstrated that SEC and turbidity performed no better than a random classifier (Figure 8-3A). 

Considering only the shallow sources (n=32), SRS was a significant predictor (β = 0.90, p-value 0.038) 

with an “acceptable” AUC of 0.79. Only one individual sanitary inspection question, whether drainage 

was inadequate, was a significant predictor (p-value < 0.05) of median TTCs ≥10 cfu/100 mL for 

shallow and deep sources where sanitary inspection questions were identical. The AUC for inadequate 

drainage as a classifier was 0.75 and considered “acceptable” (Table C-3).  

Median TLF is very strongly correlated with median TTCs (ρs 0.81, Figure 8-3D), being the most 

correlated rapid approach (Figure 8-3B). All types of water source follow the same rising trend (Figure 

8-3D), with two notable outliers. One outlier is a shallow source, which has a median TLF of 65.9 ppb, 

more than three times the TLF intensity of any other source, although median TTCs are also high at 

296 cfu/100 mL. The second outlier is a deep source with median TTCs of 89 cfu/100 mL, yet the 

lowest median TLF of 0.5 ppb, as well as being the only site with a zero SRS. Median HLF is similarly 

correlated with median TTCs (ρs 0.79) as TLF, with identical outliers. Median TBCs correlate 

moderately with median TTCs, but other in-situ indicators are only weakly related to median TTCs 

(Figure 8-3B).  
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No other rapid approaches provide additive performance to ln(TLF) for the prediction of median 

ln(TTCs) using the stepwise forward linear regression algorithm. The linear regression model has an r2 

of 0.51 and p-value <0.001 (Equation 1). Omitting ln(TLF), only ln(HLF) is included by the algorithm and 

the model has an r2 of 0.48 and p-value <0.001 (Equation 2).  Natural log transforms of TTCs, TLF, and 

HLF where required in the linear regression models to ensure the model residuals were Gaussian (see 

Figure C-2 for Q-Q plots).   

ln( 𝑇𝑇𝐶 + 1) = 1.66 ln 𝑇𝐿𝐹 + 2.19       Equation 1 

ln(𝑇𝑇𝐶 + 1) = 1.44 ln 𝐻𝐿𝐹 + 3.73       Equation 2 
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Figure 8-3 (A) Area under curve (AUC) and significance of the logistic regression models for each in-
situ parameter as a classifier of TTCs ≥10 cfu/100 mL; (B) Spearman’s Rank correlation coefficients 
and significance for TTCs and each in-situ parameter; (C) False-negative (FNR) and false-positive 
(FPR) rates for TLF thresholds  (0-10 ppb) as classifiers of TTCs ≥10 cfu/100 mL and an optimal TLF 
threshold highlighted with a dotted line; (D) Scatterplot of median TTCs and TLF for each source, 
illustrating ranges in both variables. The median of both in-situ parameters and TTCs at each 
source (n = 40) are used in all statistics. p-values of <0.05, <0.01 and <0.001 are denoted by ‘*’,’**’, 
and ‘***’, respectively. 
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8.3.3 Relationships between in-situ approaches and TTCs by sampling round 

TTCs were significantly different between the wet season rounds of R1, R2 and R4 and the dry season 

rounds of R5 and R6 (Figure 8-4A & B). Median TTCs were higher during than wet season (up to 

382 cfu/100mL, R1) than the dry season (as low as 13 cfu/100mL, R5) (Figure 8-4B). TTCs rapidly 

reduced in the absence of large rainfall events, for example, median TTCs reduced from 382 to 

55 cfu/100 mL within 17-23 days between rounds R1 and R3. The two large successive daily rainfall 

events of 40 mm preceding round R4 resulted in substantial groundwater recharge, an almost five-

fold increase in median TTCs to 262 cfu/100 mL, and increases in TTCs at 73% sources.  

TLF shows a similar trend to TTCs across sampling rounds (Figure 8-4B). Significant differences exist 

between wet and dry season rounds, with median TLF being highest in round R1 and lowest in rounds 

R5 and R6. HLF and TBCs also show significant differences only between wet and dry season rounds, 

with both at minima in the dry season. Turbidity and SEC show the least variability by sampling round, 

with fewest significant differences between rounds. 

TLF is generally the most strongly correlated in-situ approach with TTCs in each sampling round (Figure 

8-4C). Positive correlations are very strong or strong during the wet season rounds R1-4, but only 

moderate or weak in dry season rounds R5 and R6, respectively (Figure 8-4D). The strongest coefficient 

is during round R4, following the two large successive rainfall events. Correlation coefficients between 

HLF and TTCs are similar or marginally lower, notably in round R4, than between TLF and TTCs, with 

significant correlations in all rounds (Figure 8-4C), apart from R6 where significance is borderline 

(p = 0.051). TLF and HLF are also better predictors of TTCs ≥10 cfu/100 mL in the wet season rounds 

(mean AUC 0.84 and 0.73, respectively) than dry season rounds (mean AUC 0.68 for both). 

TBCs are intermittently significantly correlated with TTCs, with strong (ρs 0.70) and moderate (ρs 0.56) 

correlations during rounds R4 and R1, respectively. Other in-situ approaches are rarely significantly 

correlated within TTCs and coefficients are typically weak or very weak (Figure 8-4C). Only TBCs in the 
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dry season and SRS in the wet season have an AUC > 0.70 for classifying TTCs ≥10 cfu/100 mL (both 

mean seasonal AUC 0.71). 

There are also notable associations between in-situ approaches. During rounds R5 and R6 there is an 

almost perfect positive correlation between TLF and HLF (mean ρs 0.97); ρs remains very strong, but is 

lower in rounds R1-4 (mean r2 0.88) (Figure C-3). The TLF:HLF ratio is higher in rounds R1-4 (median 

0.95) than R5-6 (median 0.70), with the percentage of samples having a ratio >1 also decreasing from 

45 to 7%. The lower TLF:HLF ratio in R5-6 is a result of a greater reduction in TLF relative to HLF (Figure 

8-4C). In rounds R5 and R6, when the relationships between TLF/HLF and TTCs weaken, TLF and HLF 

are both strongly positively correlated with TBCs (mean ρs 0.62).  
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Figure 8-4 (A) Relationship between groundwater levels (GWLs) and rainfall in Lukaya illustrating 
timing of all sampling rounds in grey; (B) Tukey boxplots of TTCs and in-situ approaches by 
sampling round with χ2and significance of Friedman tests above each subplot and significant 
differences between rounds from post-hoc Nemenyi tests marked by ends of horizontal lines; (C) 
Spearman’s Rank correlation coefficients and significance between TTCs and each in-situ approach 
for all sampling rounds; (D) Scatterplots of TTCs and TLF for each sampling round with 
corresponding Spearman’s Rank correlation coefficients shown. p-values of <0.05, <0.01 and 
<0.001 are denoted by ‘*’,’**’, and ‘***’, respectively. 
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8.3.4 Cross-correlations between in-situ approaches and TTCs across sampling rounds 

There are very strong positive rank cross-correlations for both HLF and TLF between sampling rounds 

at the 36 sources, but rank cross-correlations are weaker and more varied for TTCs (Figure 8-5A, B, D). 

The source rank-order by HLF is most consistent with a mean ρs of 0.91 (σ 0.04) and, remarkably, a ρs 

of 0.95 between rounds R1 and R6 (Figure 8-5B), separated by 14 months.  The mean ρs for TLF is 0.86, 

with consistently very strong correlations between all rounds (σ 0.03). The rank-order of sources by 

TTCs is inconsistent, moderately correlated on average (ρs mean 0.57, σ 0.11), but with only a weak 

correlation between rounds R1 and R6 (Figure 8-5D). Bulk hydrochemistry rank-order of sources, as 

indicated by SEC, is also consistent between rounds (ρs mean 0.90, σ 0.07) (Figure 8-5D), but SEC is 

unrelated to TTCs (Figure 8-4C). 

A survey of TLF or HLF across the community in either the dry or the wet season relates to TTCs during 

the wet season when TTCs are most elevated. Ranking the sources based on HLF intensity during any 

sampling round correlates well (ρs mean 0.68, σ 0.06, all p-values <0.001) with the rank-order of the 

sources by TTCs during the wet season rounds R1-4 (Figure 8-5F). TLF cross-correlates similarly to HLF 

with TTCs over the same time period (ρs mean 0.67, σ 0.09, 92% p-values <0.001), although some 

coefficients for round R1 with TTCs are weaker (Figure 8-5E). Note, because of the very strong rank-

correlation between HLF and TLF in the dry season rounds (mean ρs 0.97), both rank-correlate near-

identically and strongly with TTCs during the wet season rounds.  Importantly, dry season TLF and HLF 

(both mean ρs 0.68, σ 0.05, all p-values <0.001) both correlate more strongly than dry season TTCs 

(mean ρs 0.50, σ 0.10, 38% p-values <0.001) with wet season TTCs.  



138 
 

 

Figure 8-5 Cross-correlations between variables in each sampling round illustrated by Spearman’s 
Rank correlation coefficients  for (A) TLF; (B) HLF; (C) SEC (D) TTCs; (E) TLF and TTCs; (F) HLF and 
TTCs (n = 36). p-values of <0.05, <0.01 and <0.001 are denoted by ‘*’,’**’, and ‘***’, respectively. 
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8.4 Discussion 

8.4.1 In-situ TLF/HLF as rapid approaches to indicate faecal contamination 

In our study, TLF/HLF are the superior rapid approaches to indicate faecal contamination of 

groundwater sources, as determined by TTCs. To set these results in a wider context, we re-analysed 

existing published datasets from contrasting hydrogeological settings following the same statistical 

approach (Figure 8-6).  The datasets were collated from: i) boreholes drilled to a consistent depth in 

an alluvial aquifer in Bihar, India (n = 145) (Sorensen et al., 2016); and ii) boreholes (n = 50) and shallow 

hand-dug wells (n = 61) tapping either quartzite/dolomite or the overlying weathered 

saprolite/laterite, respectively, in Zambia  (Chapter 3).  

The re-analysis of these datasets demonstrates TLF is an effective significant predictor of the presence-

absence of TTCs in a 100 mL sample in these other settings (Figure 8-6A). Logistic regression models 

using TLF are significant (p < 0.001) and the AUC is 0.89-0.94. SRS and turbidity perform no better than 

a random classifier in India; whilst both are significant predictors (p < 0.05) in boreholes in Zambia, 

their AUCs are much lower than TLF (Figure 8-6A). The shallow wells in Zambia were typically always 

contaminated with TTCs present in all but 5 of the 61 samples, so AUCs were not estimated.   

TLF is the most correlated in-situ indicator of the number of TTCs in our study, and the re-analysis of 

other published data (Figure 8-6B). In India, there is a significant relationship between TLF and TTCs, 

but not between either SRS or turbidity and TTCs.  In Zambia, TLF is strongly correlated with TTCs in 

boreholes, but only weak relationships exist between SRS or turbidity and TTCs. Correlation 

coefficients with TTCs also remain strongest for TLF, from the rapid approaches, in the shallow wells. 

An online application of TLF in groundwater-derived public water supplies in the UK has also 

demonstrated that TLF was better correlated (ρs 0.71) with E. coli than online turbidity (ρs 0.48) 

(Chapter 5).  

There are alternative groundwater studies that have presented evidence that TLF has been unrelated 

to FIOs in groundwater. Nevertheless, TLF has still served as an effective in-situ indicator of 
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contamination deriving from faecal matter in these studies. For example, Chapter 7 showed TLF was 

related to the density of on-site sanitation and associated nitrate but not TTCs beneath Dakar, Senegal. 

This study was also undertaken during the dry season and the results of our study suggests TLF/HLF 

relationships with FIOs are seasonal, and it is possible that during the wet season TLF/HLF could relate 

to FIOs in Dakar. Alternatively, the fluorophores in Dakar could relate to historic faecal contamination, 

as also observed at a source adjacent to an abandoned pit latrine in Malawi containing perennially 

high TLF, but sporadic and low TTC counts (Ward et al., 2021).  

There remains inconsistent evidence regarding the use of turbidity and SEC (Buckerfield et al., 2019; 

Jung et al., 2014; Pronk et al., 2006; Pronk et al., 2009; Valenzuela et al., 2009), or sanitary inspections 

(Bain et al., 2014b; Kelly et al., 2020; Misati et al., 2017) to determine faecal contamination risk in 

groundwater. Turbidity and SEC can derive from a variety of common sources, including the re-

mobilisation of particles within the aquifer, and the relationship with faecal indicator bacteria in the 

literature is consequentially inconsistent (WHO, 2017d). We consider that TLF/HLF are more 

appropriate indicators of variations in source water quality that relate to faecal contamination. A 

recent review by Kelly et al. (2020) suggested it was inappropriate to use sanitary inspections as 

indicators of microbial water quality. They argued that microbial samples from the same source are 

highly varied, whereas a sanitary inspection serves as a “lasting condition of the water source”. Other 

limitations of SRS are they only represent conditions local to the source, whereas rapid subsurface 

transport of enteric pathogens can occur over large distances in fracture flow aquifers (Worthington 

and Smart, 2017), and it is not possible to assess failure of the sanitary seal subsurface. Nevertheless, 

sanitary inspections are undoubtedly invaluable irrespective of whether they are indicative of 

microbial water quality, particularly as they provide information about potential risks and causes of 

contamination to inform interventions.  
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Figure 8-6 (A) Area under curve (AUC) and significance of the logistic regression models for each in-
situ rapid approach as a classifier of TTCs ≥1 cfu/100 mL and (B) Spearman’s Rank correlation 
coefficients and significance for in-situ rapid approaches against TTCs. Data are from previous 
studies in India (Sorensen et al. 2016), and Zambia split by source type: borehole (BH) and Wells 
(Shallow well) (Chapter 3). AUC is not shown for Zambia Wells because of only five from 61 
samples where TTCs <1 cfu/100 mL. p-values of <0.05, <0.01 and <0.001 are denoted by ‘*’,’**’, 
and ‘***’, respectively. 

8.4.2 TLF and HLF are more temporally resilient indicators of faecal contamination risk than TTCs 

(thermotolerant coliforms) 

TLF and HLF are more temporally resilient faecal contamination indicators in groundwater than TTCs 

within our study. We highlight comparable observations in Zambia where TLF remained elevated in 

several shallow sources over a period of four months, whereas TTCs were only elevated in the wet 

season (Chapter 3); this dynamic was also recently suggested at five water sources in Malawi by Ward 

et al. (2021). Despite TLF remaining seasonally elevated in several Zambian sources, there was an 

overall trend towards higher median TLF and TTCs in the wet season (7.1 ppb and 48 cfu/100 mL) 

relative to the dry season (2.8 ppb and 2 cfu/100 mL). Re-analysis of the Zambia data demonstrates 

that the relationship between TLF and TTCs is stronger in the wet (ρs 0.82) than the dry season 

(ρs 0.67). Moreover, there is also a stronger cross-correlation between dry season TLF and elevated 
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wet season TTCs (ρs 0.80), than dry and wet season TTCs (ρs 0.60). In summary, both TLF and TTC vary 

seasonally in Uganda and Zambia, but ranking the sources within a community by faecal 

contamination risk using TLF is a more temporally robust approach than using TTCs. 

Contrasting seasonal variations and relationships between TLF/HLF and TTCs suggest TLF/HLF differ 

from TTCs in one or more properties: (i) their source, (ii) their transport properties, and/or (iii) their 

persistence in the subsurface. The dominant source term for both types of faecal indicator is likely to 

be effluent from on-site sanitation in urban low-income settings, where present, except potentially 

where there are naturally high levels of sedimentary fluorescent NOM, or water is contaminated with 

fluorescent xenobiotic compounds, such as diesel (Carstea et al., 2010). Inputs from on-site sanitation 

are likely to be greatest during the wet season, particularly following large rainfall events, when 

latrines can be inundated and overflow (Nayebare et al., 2020), and accumulated faecal matter on the 

ground surface can be mobilised (Howard et al., 2003). There is also likely to be a continuous input 

function from on-site sanitation, as pit latrines and septic tanks, leak year-round. 

The faecal indicators have different transport properties. Frank et al. (2021) demonstrated that 

dissolved tryptophan was comparable in transit time and recovery to the conservative dye tracer 

uranine over short distance, <2h tracer tests, with no evidence of retardation. Frank et al. also 

demonstrated similar recovery for a humic acid, although there was some evidence of retardation and 

the tracer peak was marginally delayed by five minutes, in comparison to uranine. It is unclear what 

proportion of TLF/HLF can be attributed to dissolved pure tryptophan or the humic acid used in any 

given setting, although TLF/HLF fluorophores are predominantly extracellular in groundwater 

(Chapter 6). Nevertheless, there will also be an element of sorption and desorption of dissolved OM 

between groundwater and the aquifer matrix and soils (Shen et al., 2015), particularly for more 

hydrophobic molecules, which may have a TLF/HLF component, as well as a minor component 

contained within cells. TTCs can be transported more rapidly than solutes, notably in heterogeneous 

media such as weather crystalline rocks, but are subject to appreciable attenuation (Taylor et al., 
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2004). TTCs tend to accumulate and be transported laterally when flow velocities increase (WHO, 

2017b), such as during a rainfall event generating groundwater recharge. Therefore, TLF/HLF are likely 

to be more readily and continuously transported than TTCs in groundwater. 

The persistence of TLF/HLF fluorophores and TTCs are likely to differ in groundwater. HLF is expected 

to be the most persistent indicator, demonstrating the strongest rank-order cross-correlation 

between sampling rounds. Furthermore, although HLF decreases in the dry season, there is a 

proportionally greater loss in TLF indicating either preferential breakdown or more efficient lateral 

transport of TLF fluorophores. HLF has been demonstrated to be more recalcitrant, resistant to 

breakdown, than TLF in surface water and wastewater (Cory and Kaplan, 2012; Ignatev and Tuhkanen, 

2019) and a greater proportion of fluorophores are like to be recalcitrant in groundwater where NOM 

is typically less bioavailable (Chapelle, 2021; Shen et al., 2015). The refractory nature of some HLF 

fluorophores led Zheng et al. (2020) to suggest that HLF is an effective tracer of wastewater in 

groundwater.  There is also potential for the in-situ production of TLF or HLF from NOM entering an 

aquifer system (Fox et al., 2017; Yang et al., 2020). Therefore, fluorophore persistence in the 

subsurface could be a result of the continuous recycling and microbial transformation of NOM arriving 

in the system as opposed to the accumulation of recalcitrant molecules (Benk et al., 2019; Roth et al., 

2019). The dry season relationships between TLF/HLF and TBCs when faecal inputs are more limited, 

as also observed in Senegal (Chapter 7), suggest bacteria are using the NOM as a substrate and 

potentially generating fluorophores in-situ. Irrespective of the relative persistence of either TLF or 

HLF, either wavelength pair would provide a similar indicator of faecal contamination risk given their 

co-correlation in our study and the optical overlap between the peaks. TTCs are generally only 

considered indicative of recent contamination with die-off within 16-45 days (Taylor et al., 2004), in 

contrast to the more persistent fluorescence indicators.  

The more efficient transport of TLF/HLF fluorophores and their greater persistence in the subsurface 

in comparison to TTCs could explain why dry season TLF/HLF relates to wet season TTCs. Firstly, more 
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efficient transport could facilitate the perennial transport of TLF/HLF fluorophores from a faecal 

source to a water source, whereas TTCs are predominantly mobilised following rainfall in the wet 

season. It should also be re-iterated that TLF/HLF does also respond to rainfall with higher intensity in 

the wet season, indicating higher seasonal risks. Secondly, faecal contamination events at a water 

source would remain detectable for a longer period by fluorescing more persistent TLF/HLF 

fluorophores than TTCs.  If these events are focussed in the wet season, as observed here, then the 

proportion of TLF/HLF persisting into the dry season may relate to wet season TTCs, given the two 

types of indicator correlate very strongly after heavy rainfall (e.g. TLF, ρs 0.83, R4). 

8.4.3 Remaining uncertainties, instrumentation improvements, and future work 

There are a range of potential interferents with in-situ fluorescence measurements that are discussed 

in a review by Carstea et al. (2020) but these have not adversely impacted previous TLF-FIO studies 

(Chapter 4) or this study across a range of settings. Corrections for temperature, turbidity, and 

absorbance of light by the sample matrix (the inner-filtering effect) are not likely to be necessary in 

the majority of groundwater settings (Khamis et al., 2015). Moreover, the next generation of 

commercially available portable fluorimeters are now capable of automatic corrections. pH does not 

have an appreciable impact on TLF/HLF between values of 5 and 8 (Reynolds, 2003; Spencer et al., 

2007), and groundwater outside this range is unlikely to be suitable for drinking. High concentrations 

of metal ions could quench fluorescence (Yang et al., 2018), which is most likely where water is 

contaminated by mining and industry. Certain water treatments, including chlorination, also quench 

fluorescence (Henderson et al., 2009) so the well owner or other informed individuals should be 

interviewed to assess if the water has been treated prior to testing, as would be undertaken before 

FIO sampling. Alternatively, a chlorine residual test could be performed.  

There is the potential for TLF or HLF fluorophores to originate from contamination unrelated to faecal 

sources such as diesel and fuel derivatives, food waste, paper mills, and pesticides (Carstea et al., 

2016). In these instances, a source displaying high TLF/HLF should still be considered a higher faecal 
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contamination risk than one displaying low TLF/HLF, as there would be evidence that a pathway is 

present to a source of anthropogenic waste. Sedimentary fluorescent NOM contained within the 

aquifer could also potentially be problematic when comparing faecal contamination risks determined 

by TLF/HLF, particularly between study areas. In which case, deviation from baseline fluorescence 

intensity in uncontaminated sources would be more important than the absolute value for 

determining risk.  

Relatively high upfront costs undoubtedly constrain widespread adoption of in-situ fluorescence 

spectroscopy. The present generation of single peak fluorimeters cost in the region of US$5000-7000, 

before considering accessories that can also cost a further US$2000-3000 (Chapter 4). However, there 

is substantial scope to reduce these costs through the development of lower-cost portable 

fluorimeters, engineered specifically to provide an in-situ indication of faecal contamination risk at a 

water source. Multiple researchers have developed prototype fluorimeters with various benefits over 

commercial alternatives (Bedell et al., 2020; Bridgeman et al., 2015; Simões et al., 2021), but field 

validation and a discussion of indicative costs are absent or limited. As part of our study, we 

successfully developed and demonstrated the efficacy of a lower-cost prototype portable multi-

wavelength LED-based fluorimeter on duplicate samples in rounds R5 and R6 (Figure C-4). The 

prototype provided comparable results to the UviLux sensors in both the laboratory (Table C-5) and 

field. For example, the prototype derived HLF data from R5 and R6 both correlate strongly with TTCs 

in R4 (mean ρs 0.69). Therefore, a low-cost, portable fluorimeter to indicate faecal contamination risk 

could be produced for a total component cost of $1100. Further details are provided in the 

supplementary information (Section C.1). In addition to reducing costs, future development should 

investigate the production of low-cost sealed long-life containers of TLF/HLF standards. These 

containers would enable calibration checks, ideally annually, and negative controls to be performed 

by the end-user without return to the manufacturer or access to a well-equipped laboratory with 

reagents and high quality deionised water (Chapter 4). 
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 It remains unclear how TLF/HLF relate to the presence of enteric pathogens or risks posed to human 

health. There is one published study showing a relationship between TLF and DNA markers of enteric 

pathogens, although this study is limited to 22 sources in one town  (Sorensen et al., 2015b). Future 

work should explore the potential link between TLF/HLF and enteric pathogens using molecular 

approaches, as well as exploring the viability of pathogens where possible. Furthermore, studies 

should investigate if and how TLF/HLF could effectively be used for on-site risk communication to 

induce behavioural change in communities and reduce the disease burden relating to the 

consumption of faecally contamination drinking water.  

8.5 Conclusions 

In-situ fluorescence spectroscopy provides an instantaneous assessment of water source quality that 

relates to faecal contamination risk determined by faecal indicator organisms (FIOs). Consequently, 

faecal contamination risks can be assessed immediately, including in real-time, and could be 

communicated on-site to consumers to reduce exposure to contamination, whilst confirmative 

regulatory FIO analysis is undertaken. Furthermore, in-situ fluorescence can extend FIO sampling 

programs because data can be collected rapidly by users who require minimal training; nor are there 

consumable costs for additional samples.  

TLF and HLF are more temporally resilient indicators of faecal contamination risk than FIOs. Both types 

of indicator respond to rainfall and contamination events, with the strongest relationships between 

the indicators observed in the wet season, notably immediately after heavy rainfall (e.g. TLF-TTC ρs 

0.83). However, ranking the sources across a community by risk using FIOs is more variable (cross-

correlations ρs 0.34-72) between sampling rounds, than using TLF or HLF (cross-correlations ρs 0.81-

97). This ranking of sources using TLF/HLF at any point in time relates to TTCs during the wet season, 

when TTCs are significantly elevated and risks to human health would consequently also be expected 

to be greatest. Furthermore, the source rank-orders in the dry season using TLF/HLF cross-correlate 

more strongly (both mean ρs 0.68) with wet season TTCs than dry season TTCs (mean ρs 0.50). 
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Therefore, the comparative faecal contamination risks between sources generated by a dry season 

survey of TLF/HLF would be more accurate than using highly transient FIOs to indicate the comparative 

risks occurring in the wet season when risks are elevated. This characteristic is advantageous given 

water quality surveys are infrequent for private water supplies globally, as well as across low-income 

countries. TLF/HLF provide a more repeatable and temporally robust approach than FIOs to ranking 

sources by faecal contamination risk across a community to strategise prioritisation of sources for 

drinking or interventions. 
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Chapter 9 - Conclusions 
9.1 A rapid indicator of faecal contamination 

In-situ fluorescence spectroscopy provides an instantaneous assessment of source water quality that 

relates to faecal contamination risk, determined by faecal indicator organisms (FIOs), across a range 

of hydrogeological and climatological settings (Objectives 1&2). Tryptophan-like fluorescence (TLF) 

was a significant predictor in logistic regression models of the presence-absence of FIOs, with the 

area under the receiver-operator curve (AUC) considered “excellent” to “outstanding” (0.88-0.92) 

(Chapters 3, 4, 8). Furthermore, the correlation coefficients between TLF intensity and FIO 

enumeration were significant, with ranked correlation coefficients of between 0.49 and 0.80 

(Chapters 3, 4, 5, 8). In Uganda, humic-like fluorescence (HLF) was also shown to be a similarly 

effective indicator to TLF of FIO presence-absence and enumeration (Chapter 8).  

Fluorescence thresholds can successfully be determined to indicate the presence and extent of 

faecal contamination (Objective 3, Chapters 3, 4, 8). Analysis of pooled datasets from India, Malawi, 

South Africa, and Zambia showed that a TLF threshold of 1.3 ppb dissolved tryptophan can 

instantaneously predict FIOs >= 10 cfu/100 mL, with a false-positive error rate of 18% and a false-

negative error rate of 4% (Objective 7, Chapter 4). The threshold is not effective at classifying 

contaminated sources with <10 cfu/100 mL. The repeatability of field TLF measurements is 0.4 ppb 

(Chapter 8), so such a low threshold value of 1.3±0.4 ppb is effectively suggesting that any source 

exhibiting only traces of TLF is at risk of contamination. A higher threshold of 6.9 ppb has been 

proposed to indicate higher faecal contamination risk sources (Chapter 4). Nevertheless, in certain 

hydrogeological settings, there will be naturally high levels of sedimentary fluorescent organic 

matter, and elevation above the natural baseline would indicate contamination, as opposed to 

fluorescence thresholds devised from other settings. Thresholds to indicate likely presence of FIOs 

are also not appropriate in highly contaminated slow-moving intergranular aquifers (Chapter 7). 
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TLF or HLF are superior to other rapid approaches to indicate faecal contamination as determined by 

FIOs (Chapters 3, 5, 8). TLF was the superior single-predictor of FIO contamination in logistic 

regression models, compared with other rapid approaches including turbidity and sanitary risk 

assessments (Chapters 3, 8). Furthermore, no other rapid approaches provided additive 

performance to this model in Zambia (Chapter 3). TLF and HLF were more strongly correlated with 

FIOs than other rapid approaches on each occasion (Chapters 3, 5, 8), and TLF was incorporated first 

into multiple linear regressions of FIOs (Chapters 3, 8). In Zambia, nitrate and sanitary risk scores 

improved the multiple linear regression model (Chapter 3), but in Uganda TLF was the only 

independent variable included (Chapter 8). 

9.2 Advantages over faecal indicator organisms 

In-situ fluorescence spectroscopy has multiple methodology advantages over FIOs for inferring faecal 

contamination risks and protecting public health: 

1. Instantaneous results.  Sampling and culturing of FIOs takes 18-48 h and consequently 

exposure, potentially by large numbers of people in piped supplies, can occur before a 

positive result is received and communicated to consumers. Fluorescence can be quantified 

in-situ at the source during roaming studies (Chapters 3, 4, 6, 7, 8) or in real-time during inline 

deployments (Objective 2, Chapter 5). These instant results allow rapid evidence-based 

communication of faecal contamination risks that could reduce enteric pathogen exposure.  

2. Target fluorophores are more temporally resilient indicators of faecal contamination risk than 

FIOs (Objective 4). FIOs are episodic and, generally, do not survive for long in the subsurface 

and, therefore, to understand whether a source is at risk using FIOs, regular data need to be 

collected over a sustained period of time, which is uncommon.  TLF and HLF are more 

persistent than FIOs in the subsurface.  For example, some sources displaying elevated FIO 

contamination in the wet season but an absence of FIO in the dry season, maintain perennially 

elevated TLF, although the intensity does vary and mirror that of FIOs (Chapter 3). Ranking 
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sources across a community using TLF or HLF during the dry season is more strongly related 

to the wet season ranking by TTCs, when TTCs are most elevated, than dry season TTCs 

(Chapter 8). Fluorophores may more temporally resilient indicators as they are predominantly 

extracellular and less prone to straining than FIOs (Objective 6, Chapter 6). Equally, once 

fluorophores are emitted into the subsurface, predominantly during the wet season 

(Objective 4, Chapters 3, 8), there can be a continuous cycle of uptake, recycling and 

transformations by microbes, which could explain dry-season associations between 

fluorophores and total bacterial cells (Objective 5, Chapters 7, 8). A proportion of 

fluorophores, particularly some producing HLF, will be refractory in nature and could also 

explain how fluorophores can accumulate in some aquifers (Chapter 7). Finally, it is also 

known that E. coli excrete tryptophan as they move from a culturable to a dormant viable but 

nonculturable state (Arana et al., 2004). 

3. Analytical simplicity that does not require an aseptic environment. During all roaming surveys 

(Chapters 4, 6, 7, 8), fluorescence data were collected by submerging a portable, battery-

powered fluorimeter, in a beaker of water by the source, after both the fluorimeter and 

beaker had been rinsed in the sample water. No consumables nor reagents were used in the 

field, following prior factory or laboratory calibrations. In-field training was successfully 

provided to MSc and overseas PhD students who were also able to collect high quality, 

repeatable fluorescence data (Objective 7, Chapters 6, 7, 8). 

9.3 Looking forward 

9.3.1 An approach to improve drinking water quality and reduce exposure to waterborne 

pathogens 

In-situ fluorescence spectroscopy offers an instantaneous approach to screen water sources for 

faecal contamination risk. Within municipal supply networks, real-time fluorimeter deployments 

offer scope to identify and provide an early-warning of faecal breakthroughs at groundwater 

sources, as well as across the entire treated distribution network. Sudden increases in intensity in 
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treated water may signify ineffective water treatment, cross-connections, or a loss of integrity within 

the system. Fluorimeters can also be used in a roaming capacity to check for integrity within the 

distribution network and allow technicians to rapidly diagnose the location of any faults. Instant 

results also enable rapid communication to consumers to potentially encourage behavioural change. 

From a treatment perspective, HLF is strongly related to DOC in groundwater (Chapter 7) and real-

time fluorimeters could facilitate more cost-effective chlorination of potable groundwater and 

forewarn of the generation of harmful disinfection by-products 

In all settings, in-situ fluorescence spectroscopy can be used to assess the relative risks of faecal 

contamination between groundwater-fed drinking water sources. Fluorescence spectroscopy is a 

more temporally resilient indicator of faecal contamination risk, which has great utility for assessing 

risks between sources when historic, frequent, records of FIOs are unavailable, which is common to 

private water supplies, and most supplies in low-income settings.  

In-situ fluorescence spectroscopy remains a long way from being introduced from a regulatory 

perspective and is likely to be used conjunctively with FIO monitoring. In the municipal water supply 

network, detected changes in TLF/HLF could be used to target additional FIO compliance monitoring 

from both spatial and temporal perspectives. In low-income settings, in-situ TLF/HLF could prioritise 

sources for FIO sampling and analysis, extend drinking water microbial risk assessments given there 

are no consumable costs, and increase the impact of FIO surveys by allowing an immediate 

communicate of microbial risks to consumers. 

9.3.2 Addressing key limitations 

All analyses, herein, assessing in-situ fluorescence spectroscopy as an indicator of faecal 

contamination risk, determined using FIOs, have been performed on modest datasets up to a 

maximum of n = 564 (Chapter 4). Furthermore, the vast majority of datasets have not been drawn 

from an independent random sample. There is a need for a large-scale randomised field 

demonstration to robustly support the results of this thesis. Furthermore, evidence linking in-situ 
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fluorescence spectroscopy to waterborne pathogen presence is limited to a single case study in one 

town (Sorensen et al., 2015b) and there is no robust evidence linking the technique to risks posed to 

human health.  More work is need to interrogate such relationships, rather than simply focusing on 

in-situ fluorescence spectroscopy as an alternative indicator to an imperfect indicator of pathogens.  

Fluorimeters are optical sensors and are impacted by suspended particles in water. Consequently, in 

some settings real-time deployments may not provide reliable fluorescence data.  For example, in a 

bank-filtration setting, continuous build-up of ferric deposits on the sensor reduced intensity by up 

to 40% within two weeks (Chapter 5). However, suspended particles have not been detrimental to 

roaming studies (Chapters 3, 4, 6, 7, 8), given turbidity is generally low in groundwater. Furthermore, 

the next generation of fluorimeters are now including corrections for turbidity and wipers to 

improve performance in both real-time and roaming applications. High upfront costs will continue to 

constrain the uptake of the technique, but we have demonstrated that lower cost fluorimeters 

(component cost $1100) are feasible (Chapter 8). It remains unclear how best to engineer a 

fluorimeter or reader to specifically communicate risks onsite, although the proposed thresholds 

(Chapter 4) could be utilised to inform risks from a categorical perspective, potentially using 

coloured LEDS. 
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A. Appendix  

 

Figure A-1 Histograms of (a) raw and (b) transformed TLF data; and (c) raw and (d) transformed 
TTC counts. Unfilled bars refer to negative TTC counts. 
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Figure A-2 Correlations between TLF and all physio-chemical parameters.  Spearman’s rank 
correlation coefficients are shown (ρ) with significance denoted as * <0.05, ** <0.01, and *** 
<0.001. Certain parameters have been logged for illustrative purposes. 
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B.  Appendix 

 

Figure B-1 Histograms of all continuous variables and bar plots of binary variables used for linear 
regression modelling 
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Figure B-2 Q-Q plots illustrating Gaussian residuals for Equations 1-4. A 95% confidence envelope 
is shown as a dotted grey line. 
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Figure B-3 Spatial plots of model residuals for (A) Equation 1 and (B) Equation 2 
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Table B-1 Estimates of the variance inflation factor (VIF) for all predictors in each model 

Predictor VIF 

Equation 1  

HLF 1.84 

NO3
- 1.09 

ln(TBCs) 2.06 

OSS density 1.39 

Equation 2  

ln(TBCs) 1.58 

NO3
- 1.12 

ln(NO2
-+0.1) 1.31 

OSS density 1.45 

SO4
2- 1.29 

Equation 3  

ln(TLF) 2.76 

HLF 2.76 

OSS density 1.06 

 

 

Equations 

𝐥𝐧(𝑻𝑳𝑭) = 𝟎. 𝟓𝟓𝟗 𝑯𝑳𝑭 + 𝟎. 𝟑𝟒𝟗 𝑵𝑶𝟑
− +  𝟎. 𝟏𝟗𝟎 𝐥𝐧(𝑻𝒐𝒕𝒂𝒍 𝒃𝒂𝒄𝒕𝒆𝒓𝒊𝒂) + 𝟎. 𝟐𝟏𝟏 𝑺𝒂𝒏𝒊𝒕𝒂𝒕𝒊𝒐𝒏 𝒅𝒆𝒏𝒔𝒊𝒕𝒚 + 𝟎. 𝟗𝟕𝟒 

           

 (Equation B-1) 

ln(𝑇𝐿𝐹) = 0.387 ln(𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎) +  0.331 𝑁𝑂3
− + 0.270 𝑁𝑂2

− + 0.207 𝑆𝑎𝑛𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 +  0.193 𝑆𝑂4
2− +  0.168 

           (Equation B-2) 

The RMSE/r2 are 0.35/0.78 and 0.40/0.71 for Equations S1 and S2, respectively. 
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C. Appendix 

C.1 Development of a low-cost fluorimeter 

The low-cost fluorimeter targeted λex/λem peaks at 275/320-375 (TLF) and 365/400-490 nm (HLF). 

Additionally, absorbance was monitored to enable correction for the inner-filtering effect (Ohno, 

2002).  Absorbance was low; the median at 275 nm was 0.04 cm-1 and corrections were not 

implemented. The fluorimeter utilised a sample holder to minimise contamination associated with 

manual handling of submersible fluorimeters (Chapter 4). In place of a standard quartz cuvette 

(US$85) typically used in fluorescence studies, we used transparent 3.5 mL borosilicate glass test tubes 

(US$0.07). Emission signals were quantified with photodiodes (US$7 for HLF and US$70 for TLF), rather 

than more expensive and higher sensitivity photomultipliers (US$400). To account for the lower 

sensitivity of the photodiodes compared to a photomultiplier, the sampling frequency was reduced 

from 10 to 0.0027 Hz and the signal output was averaged over six minutes to minimise noise. A touch 

screen was built into the device to enable control and display of results. Before field deployment, the 

prototype compared favourably with TLF and HLF UviLux sensors in the laboratory (Table S5). In 

Lukaya, both TLF and HLF datasets obtained with the lower-cost prototype cross-correlated similarly 

to the equivalent UviLux data with wet season TTCs; for example the prototype derived HLF data from 

R5 and R6 both correlate strongly with TTCs in R4 (mean ρs 0.69).  

The total component costs of the low-cost fluorimeter to target only HLF (λex 365 nm) is currently 

US$1100. This price includes all optics, electronics, screen, case, power, and assumes procurement for 

50 units, with the potential to reduce costs further if scaled-up commercially. Our data suggest that 

such a sensor can provide similar information regarding faecal contamination risk in groundwater as 

a deep UV TLF sensor, given the co-correlation of HLF and TLF observed both in Lukaya, as well as in 

groundwater experiencing frequent faecal contamination in the UK (Chapter 5). The main advantage 

of the HLF sensor is cost, with the equivalent component costs of the prototype TLF sensor being 60% 

higher, due to required excitation within the deep-UV spectrum.  Furthermore, use of deep UV light 
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typically requires an expensive quartz glass cuvette to minimise absorbance as opposed to 

borosilicate. Finally, a HLF signal is much more intensive than a TLF signal with the same amplifier 

circuit (Li et al., 2016), enabling greater sensitivity and precision.   

 

 

Figure C-1 Comparison of observed and modelled groundwater levels (GWL) in borehole ALP-3. 
Three separate periods were modelled due to gaps in the driving rainfall observations. 
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Figure C-2 Q-Q plots for (A) Equation 1; (B) Equation 2. A 95% confidence envelope is shown as 
dotted lines. 
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Figure C-3 Relationship between TLF and HLF in sampling rounds R1 to R6. Spearman’s Rank (ps) 
and Pearson (r2) correlation coefficients shown. Pearson coefficients were calculated on the 
natural log of the data to ensure a Gaussian distribution. 
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Figure C-4 Low-cost portable fluorimeter used to test the quality of water sampled from a shallow 
well by co-author Jacintha Nayebare in Lukaya, Uganda; the fluorimeter is contained within the 
open black hardcase in the foreground of the photo. 

 

Table C-1 Combined sanitary inspection questions from hand pump and spring WHO forms. Note 
that questions 3 and 4 were not answered because no inspection ports were present for the hand 
pumps, so the respective questions on the spring form were also removed. 

Question 
Number 

Sanitary inspection question 

1 Is the pump damaged or loose at the point of attachment/a protective wall or spring 
box structure inadequate so that contaminants could enter the source? 

2 Is the cover slab or outlet pipe inadequate to prevent contaminants entering the 
source? 

3 N/A 

4 N/A 

5 Is the apron or diversion ditch inadequate to prevent contaminants from entering the 
source? 

6 Is the drainage inadequate, which may result in stagnant water around the source? 

7 Is the fencing or barrier around the source inadequate to prevent animals entering the 
area? 

8 Is there sanitation infrastructure within 15 m of the source? 

9 Is there sanitation infrastructure on higher ground within 30 m of the source? 

10 Can signs of other sources of pollution be seen within 15 m of the source (e.g. animals, 
rubbish, human settlement, open defecation, fuel storage)? 

11 Is there any point of entry to the aquifer that is unprotected within 100 m of the 
source? 
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Table C-2 Beta coefficients and p-values for the hypothesis that the coefficients are zero for single-
predictor logistic regression models of the probability of TTCs ≥10 cfu/100 mL. Source median 
values used for both independent and dependent variables. 

Predictor β p-value 

TLF 1.09 0.042 
HLF 1.90 0.059 
SRS 0.58 0.056 
TBCS 4.48 X 10-6 0.130 
Turbidity 0.97 0.763 
SEC 0.003 0.356 

 

Table C-3 Beta coefficients, p-values, area under the receive operating curve (AUC) for the 
hypothesis that the coefficients are zero using sanitary inspection questions as single-predictor 
logistic regression models of the probability of TTCs ≥10 cfu/100 mL. Source median values used 
for both independent and dependent variables. 

Predictor β p-value AUC 

Q1 16.47 0.994 0.56 
Q2 0.23 0.799 0.52 
Q5 0.88 0.285 0.61 
Q6 0.92 0.021 0.75 
Q7 -15.39 0.995 0.48 
Q8 16.47 0.994 0.56 
Q9 -0.53 0.513 0.56 
Q10 0.53 0.513 0.56 

 

Table C-4 Beta coefficients and p-values for the hypothesis that the coefficients are zero using 
sanitary inspection questions as single-predictor logistic regression models of the probability of 
TTCs ≥10 cfu/100 mL in each sampling round. p-values of <0.05, <0.01 and <0.001 are denoted by 
‘*’,’**’, and ‘***’, respectively. 

Round 1 2 3 4 5 6 

Q1 0.42** 0.45** 0.13 0.15 0.27 0.45** 

Q2 -0.18 -0.22 0.12 -0.03 -0.08 -0.01 

Q5 0.17 0.45** 0.33* 0.29 0.15 0.26 

Q6 0.11 0.16 0.02 0.09 -0.01 0.15 

Q7 -0.16 -0.08 0.12 0.03 0.06 0.18 

Q8 0.33* 0.53*** 0.3 0.12 0.2 0.15 

Q9 -0.08 -0.19 -0.2 -0.19 -0.12 -0.27 

Q10 0.07 0.27 0.09 0.12 -0.13 -0.05 
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Table C-5 Comparison of lower-cost prototype and Uvilux fluorimeters. Limit of detection is 3σ of 
triplicate analysis of ultrapure water blanks. Precision is the mean of 3σ of triplicate analysis of a 
range of dissolved tryptophan (0, 1, 2, 5, 10, 20, 50, 100 ppb) and pyrene (0, 0.2, 0.5, 1, 2, 5, 10, 20) 
standards. Accuracy is the root mean square error (RMSE) for the mean of triplicate analysis of 
these laboratory standards. 

Parameter Prototype TLF 
(ppb tryptophan) 

UviLux TLF 
(ppb tryptophan) 

Prototype HLF 
(ppb pyrene) 

Uvilux HLF 
(ppb pyrene) 

Limit of detection  0.7 0.2 0.2 0.1 
Precision 1.6 0.1 0.2 0.1 
Accuracy 1.5 0.6 0.2 0.2 
Calibration 
response (r2) 

0.999 0.999 0.999 0.999 
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