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Abstract
Diesel engine combustion releases many harmful components, thus there are continuous efforts into improving the effi-
ciency of these engines and reducing the harmful gasses and particulates to meet the emission authorities targets. To
develop and sell new engine-related products, these engines are required to run and to be audited in diesel engine test
cells. A critical measurement for benchmark testing is the exhaust back-pressure, which is the resultant exhaust flow
from the engine and a product of the air and fuel consumed. The back-pressure is controlled by restricting the flow of
the exhaust using a butterfly valve and this pressure must be set to the defined limits to ensure engine compliance.
Setting this limit takes time and consumes large volumes of fuel, which causes additional emissions. Therefore, a feedback
control solution to regulate this back-pressure is desirable. In current practice, a moving average filter is used on two
commercial standard engine softwares – SGS CyFlex� and AVL Puma 2� Data Acquisition and Control Systems to pro-
vide a useful signal for feedback control. Considering the presence of erratic noise associated with the back-pressure
measurement, a Kalman Filter with tunable measurement uncertainty and process noise gains is also considered. By
modifying the script in SGS CyFlex� and AVL PUMA 2�, a Kalman Filter is implemented for the first time on diesel
engine test cells and a comparative analysis between the performance of the two filters is provided. Both filters effec-
tively reduce the noise of the system, with the Kalman Filter showing a closer tracking to the desired system response.
This demonstrates the potential of applying the Kalman Filter to provide the feedback signal for improved back-pressure
control that could reduce the fuel consumption during testing, thereby makes testing process more economical and envi-
ronment friendly. The script and results presented in this work will open up the opportunities of applying Kalman filter-
ing method’s in various engine testing functions, which will have broader impact in the current industrial practice.
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Introduction

To develop and sell new engine-related products, the
engines are required to run and to be audited in perfor-
mance diesel engine test cells before shipment to cus-
tomers. A high horsepower engine for this work is
defined as an engine between 38–78L or 1200–4000
horsepower. This terminology is often used in litera-
ture1–4 to describe engine specification as mentioned
above. Running the engine in a test cell is to ensure that
the engines perform according to the applicable regula-
tory standards. It is also a requirement in accordance
with the Environmental Protection Agency (EPA) that
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the product ranges are demonstrated to perform within
the legislated emissions standards as specified by
Environmental Protection Agency.5

All new product development engines and sample
production engines (prior to shipment to customers)
require more in-depth emission testing to satisfy the
requirements set by the emission authorities. To do
this, a test cell facility capable of running the engine to
predefined testing conditions is required. Any improve-
ment achieved as a result of the testing process, despite
being costly in terms of both the running time and fuel
consumption, would provide more financial and envi-
ronmental benefits that outweigh the costs. Whilst
there is still high potential for improvement to current
practice, workable solutions are rare (e.g. Langness
et al.6) and to the authors best knowledge, such solu-
tions are not yet available for heavy duty test cells.
Research into large high horse power diesel engine con-
trol is extremely limited due to the lack of availability
of test facilities. Furthermore, because of the size, the
required infrastructure and the cost of these engines/
test beds, these facilities are mostly available to the
engine manufacturers. Thus, a collaboration between
researchers in academia and engineering practitioners
would present an integrated research opportunity as
well as product improvements for industry, which is
one of the main aims of this research project.

An important testing requirement for a large diesel
engine is the ability to control the restriction of the
exhaust system to the defined back-pressure targets, as
this can significantly affect the performance of the
engine.7–9 In particular, there are certain conditions
that must be met to ensure the performance is mea-
sured in line with those claimed in the data sheets.
These include:

� Airflow temperature/pressure/humidity.
� Fuel temperature
� Intake restriction pressure.
� Exhaust back-pressure

In this work, we investigate the dynamic behaviour
of the exhaust back-pressure from a high horse power
industrial engine test cell, where the final aim is to
develop a control strategy to set the flap in the back-
pressure control valve in order to achieve a level of flow
restriction to output the target back-pressure during
rated running conditions. The studies are carried out on
two high horse power diesel engine test cells at an
engine test facility. These two cells use distinctly differ-
ent data acquisition/control systems. The first test cell
uses SGS – CyFlex� and the second uses AVL PUMA
2�. Both systems provide the operator an interface for
the tester and handle the computation, i/o management,
control and data acquisition requirements. CyFlex� is a
Linux based system and AVL PUMA 2� is Windows.
As current practice the flaps are set manually. To
reduce the testing time and fuel consumption, a closed-
loop control solution is more desirable.

In order to develop and optimise the tuning of the
closed-loop control strategy, it is important to under-
stand the dynamic of the back-pressure such that an
accurate model can be developed to facilitate the con-
trol design. To develop an accurate model using a data-
driven identification approach, reliable measurements
are necessary. However, a common problem with
engine test cell measurements is that these raw mea-
surements are often too noisy to build a reliable and
representative model. The noise variation from the pro-
cess is 6200mmH2O. Currently, the moving average
filter is employed to filter out the process noise as this
feature is already a function available within the test
bed software. As the test cell facility is used for various
tests (e.g. transient and steady state tests) to obtain the
relevant dynamic responses of interest, the moving
average filter is found to be too slow to respond to
these changes. The reason for this could be because the
moving average filter is not designed based on the
dynamic model of the process. This prompts us to look
for an alternate approach to address the a above issue,
by using a dynamic filter that also includes a prediction
mechanism that would allow faster response.

The Kalman filter has been identified as a suitable
alternative as it is known to produce good estimation
of raw measurements that are noisy and erratic.10–12

This filter is not available for either system (and to the
knowledge of the authors not available on any other
test-beds) as standard and has been implemented by the
authors. Source code will be supplied within this paper
for the implementation in both systems and a descrip-
tion of tuning. In this study the performance of the
implementation of a Kalman Filter on the two afore-
mentioned test cells will be explored.

The main contributions of this industrial application
oriented study are: First, this paper focuses on practical
study of comparing the performance of two different
types of filtering approach implemented in an actual
large engine testbed. The practical contribution of this
work is important and significant, as to our best knowl-
edge, there has been no existing research on applying in
particular Kalman Filter to a large engine test bed in
obtaining a reliable back pressure signal to facilitate a
good controller design. The use of conventional
approach in filtering back pressure signals does help
but that approach still causes the tuning of back pres-
sure controllers for a large engine test bed to be
complicated.

Second, to the best of the authors knowledge, the
Kalman filter is not a standard filtering approach used
in the industry and in fact it is not available on any
other test beds software platforms, for example. Cyflex
and PUMA. The moving average filter on the other
hand is a standard filter that often comes with the appli-
cation software used for the engine test bed. In this
study, we have provided an implementable solution to
implement Kalman Filter to the actual engine test bed
in obtaining a reliable back pressure signal that could
facilitate better control design. Hence, the novelty of
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this study is how the modification is done to ensure that
the Kalman Filter can be implemented on existing
application software. We have illustrated its implemen-
tation on two different platforms, that is Cyflex and
PUMA, which are both commonly used in the industry.
The source code for the implementation of the filters
and its corresponding tuning description are provided
in this manuscript.

Filtering techniques

Moving average filter (MAF)

The moving average filter is currently applied at the
test cells for noise filtering of back-pressure signal. This
filter is commonly used in the industry as it is easy to
implement and provides low-pass filtering. It often
comes as a default option in popular engine testing
software, for example CyFlex� and PUMA�. The filter
can be represented as.13

�y½i�= 1

M

XM�1

j=0

y½i+ j� ð1Þ

where y is the measured back-pressure signal, which is
input to the MAF, �y is the filtered signal, which is the
filter output and M is the total points used in the mov-
ing average. This filter is simple to implement and very
effective for steady state condition as the back-pressure
signal remains fairly constant in the steady-state
operation.

In practice, a defined number of samples at a speci-
fied sample rate is required to set up this filter.
Moreover, all the samples are equally weighted in
equation (1). As such, a large number of past samples
are required to get a satisfactory performance. Using
large number of past samples in calculating the filtered
signal introduces delay, thereby making the dynamic
response slower. The currently specified moving average
filter at the test cells uses 30 samples at a sample rate of
10Hz, which represents a 3 s length of sample signal
and this introduces a dynamic lag of potentially 29
samples or 2.9 s.

Kalman filter

The Kalman filter developed by Kalman14 is widely
recognised as an optimal filter in various engineering
applications. Interested readers may consult the review
paper15 and the references therein. In terms of its appli-
cation to the diesel engine, the Kalman filter had been
used to estimate the temperature, nitrogen oxide,
ammonia coverage ratio, particulate matter distribu-
tion and pressure drop across a diesel catalysed particu-
late filter etc.16–19 In this study, the Kalman filter is
applied to reduce the erratic behaviour of the raw mea-
surements of the backpressure signal and the algorithm
as used in Ruppert et al.20 has been adapted for use in
test cells.

The Kalman filter is a cyclic series of calculations
run in order to produce an estimate of a process when
the true state is unknown. This filter can be tuned to
compensate for the process and measurement uncer-
tainty errors in the system. In order to apply Kalman
filter, state-space model of the measured back-pressure
signal y is required. When Kalman filter is used as a
noise smoother, the state-space model for the measured
back-pressure in discrete-time can be written as:

xk+1 =Akxk + vk
yk =Ckxk +wk

ð2Þ

where k is the discrete time index, x is the back-pressure
state variable, y is the measured back-pressure output,
Ak and Ck are state and output matrices and given by

Ak = Ck =1, E½vkvTk �=Qk is the covariance of the

process noise, and E½wkw
T
k �=Rk is the measurement

noise covariance.21

The Kalman filter uses a two-stage prediction and
correction algorithm, where the prediction stage is given
by21

x̂kjk�1 =Akx̂k�1jk�1
Pkjk�1 =AkPk�1jk�1A

T
k +Qk

ð3Þ

and the correction stage is given by21

Kk =PkC
T
k (Pkjk�1C

T
k +Rk)

�1

x̂kjk = x̂kjk�1 +Kk(yk � Ckx̂kjk�1)
Pkjk =(I� KkCk)Pkjk�1

ð4Þ

where the subscript k represents discrete time index,
kjk� 1 indicates the a priori estimate and kjk indicates
the post priori estimate, x̂ is the estimated state, K is
called the Kalman gain and P is the state estimate error
covariance, respectively. Compared to moving average
filter, Kalman filter requires more computation to be
performed in real-time. In fact, the most computation-
ally demanding part is the real-time matrix inversion
used in calculating the Kalman gain matrix. From the
numerical analysis literature,22 it is well known that a
n3 n matrix inversion requires n3 multiplications/divi-
sions and n2 � 2n2 + n additions/subtractions. Since all
the matrices involved in equations (3) and (4) are in
fact scaler, the computational burden is not an issue in
this case. In addition, the Kalman filter is implemented
in a high-spec industrial computer (details in the fol-
lowing Sec.), which is a common feature in any large-
capacity (38L or more) diesel engine test cell facility.

Test cell description

To evaluate the performance of a new engine or to vali-
date a currently existing engine, several tests need to be
run on these engines. To run an engine safely, a num-
ber of dynamic input and output processes are required
as shown in Figure 1. To deliver each of these process
inputs to the engine at the specified operating
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conditions and to recover/recycle the waste outputs,
several dedicated process loops for each system are
required.

Coolant is required to prevent the engine from over-
heating. Depending on the engine type, this could be a
single loop or split into multiple circuits such as a High
Temperature (HT) for piston liner and oil cooling and
Low Temperature (LT) for ancillaries such as cylinder
heads and turbos. These cooling loops are returned to
the cell and maintained at the desired temperature
through the use of heat ex-changers through which the
engine loop passes. The temperature is maintained by
controlling the flow of coolant from the site cooling
loop.

To allow the engine combustion to occur requires a
supply of clean air. The air is delivered through a series
of intake ducts fed from intakes on the plant roof and
the restriction is controlled by the use of butterfly valves
with electronic actuators.

The engine requires a power supply to operate each
of the Engine Control Module (ECM), thus a 27V
power supply and a separate 27V switched circuit are
required. Power is also required for the test cell control
system to operate. This is fed directly from the substa-
tion and distributed through the Programmable Logic
Controller (PLC) hardware, which is used as the con-
troller. This will supply power to the test cell ventilation
fans, 24V starter panel and all the cell Input/Output
and data acquisition system.

Another key element for combustion to occur is fuel,
which in this case is the diesel fuel. The requirement of

the fuel system is to reduce the pressure of the fuel from
the main supply, control the temperature as specified
by the test and measure the rate of fuel used. This sup-
ply is delivered to a gravity fed feeder tank from which
the engine can obtain the fuel using the fuel pump.

To evaluate an engine properly, the engine must be
able to operate at full running conditions up to and
including the ‘rated power’ and ‘torque peak’. This can
only be achieved by running the engine against a load,
which must be controlled. At these test cells being stud-
ied, this is provided by water brake dynamometers.
These systems operate by using a series of rotors and
stators, which restrict the flow of water through the
device producing torque against the engine. As the flow
is increased so does the load. The dynamometers
require a water supply feed from the central plant sup-
ply and return back. To improve the stability of the
feed, the water supply is fed to a header tank on the
roof of the test facility, which maintains fill control at a
set level to provide a consistent head of pressure that
dampens out fluctuations in the plant water supply.
Both the dynamometer control systems use defined
control loops managed by the dyno controllers which
regulate the flow of water through the dynamometer
by controlling the flow through an output valve. Both
systems also have an input valve that can be used to
further fine tune the control of the flow.

The final input requirement for the test cell is a cen-
tral control system and operator interface. The test cell
services at the test facility are controlled by a central
PLC. This system manages the power supply, processes
requests and controls the operation of the cell required
to run the engine safely.

These test cells use two types of operating systems
for the user interface and data acquisition. They are a
central Linux node with the Scientific Linux based
CyFlex� and AVL� Puma 2�. These systems provide
the user interface to operate and control the engine as
well as providing the central data acquisition system
for all of the instrumentation. Both systems have con-
figurable software control loops. The software has an
in-build option for setting up moving average filters
whereas there is no option or function to implement a
Kalman Filter. Moreover, there is no way to write the
Kalman Filter algorithm into the software in a straight
forward manner, and thus some modifications need to
be made to facilitate the implementation, which is one
of the contributions of this paper. As the setup require-
ments for implementing Kalman filter are different for
each operating system, following two implementations
will be described separately.

Implementation of Kalman filter in
CyFlex�

Implementing the Kalman filter in CyFlex� is challen-
ging. The calculations can be implemented within the
General Labels file but the difficulty comes with

Figure 1. Schematic representation of a test cell process flow
with a list of dynamic inputs and outputs processes.
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implementing the equations for previous Kalman and
covariance estimates. These calculations require the
capture of the last iteration of the Kalman and covar-
iance estimates. While this is simple to achieve in a cyc-
lic script that most systems use, but the General Labels
file in CyFlex does not operate this way. It updates
each channel individually on a frequency basis instead.
These are updated as described in the file for each para-
meter, and the frequencies are 1Hz for SLO, 10Hz for
MED and 50Hz for FAS. These frequencies are respec-
tively intended as slow, medium and fast sample rates
and they are as specified in the system start-up file
known as the ‘go’ script for each CyFlex� node. The
sample rates are of critical importance as sample rates
that are too slow will delay the response and miss the
updates. On the other hand, sample rates that are too
fast can make the system erratic.

To get around the previous sample problem, a sec-
ond ‘Running Averages’ specifications file is required.
Within this file it is possible to specify an average of a
specified number of samples at a specified frequency.
From this calculation a number of statistical values can
be obtained depending on the suffix. For the Kalman
filter implementation, a one-sample running average is
required. The file entries for this running at a medium
sample rate is shown in Figure 2. By assigning the suf-
fix .FV to the statistical variable, this captures the final
value from this data set, which is the previous estimate.

The remaining calculations for the Kalman filter are
specified in the CyFlex� General Labels file as shown
in Figure 3

The implementation of the Kalman filter begins with
the estimation using the specified parameters Q and R.
Here, Q is the process noise covariance specified as
10�6, with an initial value of 1 and R is the

measurement noise covariance specified as 10�3, with
an initial value of 0.1.

Then, the Kalman filter continues with the calcula-
tion of the cyclic variables:

� x̂(prev) – This is the parameter ‘X_hat_prev_
EXH_BP_R’ Linked to the Running Averages spe-
cification file parameter ‘a_X_hat_EXH_BP_R_
1m.FV’ as shown in Figure 2 to capture the previ-
ous value. The initial value is specified as 0.

� P(prev) – This is the parameter ‘P_prev_EXH_
BP_R’ Linked to the Running Averages specifica-
tion file parameter ‘a_P_EXH_BP_R_1m.FV’ as
shown in Figure 2 to capture the previous value
plus process covariance Q. The initial value is 1.

This is then followed by the calculation of the fol-
lowing items:

� K– Kalman Gain, with an initial value of 0.1.
� x̂– State Estimate, with an initial value of 0 and the

calculation includes fg brackets to exclude units
from the calculation.

� P– State Error Covariance Estimate, with an initial
value of one and the calculation includes fg brack-
ets to exclude units from the calculation.

Finally, the output is obtained and converted back
to the unit of mmH2O. This channel is linked to the
output of x̂ and is defined with an initial value of 1.

Figure 2. Running averages specifications file in CyFlex�.

Figure 3. Kalman filter implementation in CyFlex�.
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Again the calculation includes fg brackets to exclude
units from the calculation.

Implementation of Kalman filter in AVL
PUMA 2�

To create formulas in AVL PUMA 2�, an input and
an output ‘Quantity’ are required. In the case of the
output, these are given by the variables
‘EXH_BP_L_Kalman’ and ‘EXH_BP_R_Kalman’.

These quantities declare the parameter names, units,
decimal places and data types. An example is shown in
Figure 4.

The implementation of the Kalman filter within
PUMA AVL 2� is far simpler than in CyFlex� as the
Formula Device (FDV) block script can be set to oper-
ate cyclically. Therefore, the equations for the previous
Kalman and covariance estimates can be updated sim-
ply by defining the previous estimates as the estimate
from the last iteration of the cycle at the end of the
script. There is also no issue with unit conversions, so
the use of fg brackets is not required. The script comes
in two sections: Implementation and Formulas. The
Kalman filter initialisation in the PUMA AVL 2� envi-
ronment is shown in Figure 5.

Each of the calculations is declared as local variables
using the ‘dim’ command and the initial values are set
using the same values as done in CyFlex�. The covar-
iance parameters Q and R are also declared in this sec-
tion as these are constants. The implementation of the
Kalman filter in the PUMA AVL 2� environment is
shown in Figure 6.

The output is declared as a public variable at the
start of the script followed by the cyclic updates for the
previous estimates x̂(prev) and P(prev). As shown in
Figure 6, in the PUMA AVL 2� software language,
same variable names are used to denote x̂(prev) and
P(prev) as that of the CyFlex� implementation. The
calculations operate in the same manner like CyFlex�

without the need for declaring the measurement unit.
The final value is updated at the end of the script to the
defined output quantity declared in the ‘Quantities’ list
as shown in Figure 4.

Results and discussions

Off-line experiment using real data

To obtain accurate prediction or filtering, the covar-
iance parameters of the Kalman filter, Q and R, need
to be tuned according to the application. As the engine
needs to run at rated condition to achieve the necessary
condition, tuning would have taken a significant time
and cost. To get around this, a data set captured pas-
sively with a logger from live running was converted
into a simulation script created in CyFlex�.This dataset
represented a running engine cycle at varying speeds
and loads with the flaps set to the correct back-pressure
manually. This could run repeatedly without a real

Figure 4. Kalman filter quantities in AVL Puma 2�.

Figure 5. Kalman filter initialisation in Puma AVL 2�.

Figure 6. Kalman filter implementation in Puma AVL 2�.

6 International J of Engine Research 00(0)



engine, to compare a range of covariance values to
identify the optimal one. To do this, in the first set of
experiments, the process noise covariance Q value was
initially fixed to 10�5 and then decreased to 10�6, while
the measurement noise covariance R is varied.
Following this, in the second set of experiments, the
value of R was initially set to 10�3, then changed to
10�4, while the value of Q is varied. The variation of Q
and R are listed in Table 1. Comparing the experimen-
tal results, the best combination was obtained with
Q=10�6 and R=10�4, as this showed the best transi-
ent and steady state responses.

By plotting the various covariance value combina-
tions allows for comparison to determine suitable base-
line covariance values. By visual inspection and a prior
knowledge of the plant dynamic it is clear from com-
paring these plots to a fixed criteria that some of the
gains are too low resulting in a smooth signal far from
the actual. In the cases of too high a gain, the resultant
output is close to the original noisy signal. By

elimination of the unusable results, this leaves us with
the only suitable process covariance Q of 10�5 and
10�6. For noise covariance R the suitable settings were
more distinguished. The same high and low filtered
results were found with only two clear options, that is
R=10�3 and R=10�4. Comparing the results of these
selected values for Q and R, the most effective combi-
nation is found with Q=10�6 and R=10�4 as shown
in Sub-Figure 7(a). The plots demonstrate the applic-
ability of the filter and provides us a starting point for
further fine tuning by adjusting the coefficient of the
covariance values.

Originally, only the data where the engine is in a
steady state condition at rated was compared within
the simulation results but it quickly became clear that
this single criterion did not give sufficient distinction
between the plots to determine the best covariance val-
ues as the lack of distinction made it too difficult to
shortlist the changes to the covariance gain values. As
the filter is intended to improve the dynamic response,
it was decided to produce a new simulation script again
from passively collected live running data based on a
mix of transient and steady state running conditions to
allow for the comparison based on both criteria.

From the test cell, suitable range of transient logger
data were collected from a cycle test and converted into
a simulation script in the same way as for the steady
state data. The simulation was repeated using various
covariance values as shown in Table 2. Each set of the
covariance values was run in turn and the plots were
analysed to determine the transient performance com-
pared to the moving average. Those that were closer to
the raw value at transient portions were shortlisted for
further comparison. The shortlisted gains were high-
lighted in grey.

To narrow down the shortlisted selections from the
transient tests requires further study of the filter steady
state response. From running the steady state simula-
tion for the shortlisted settings, we were able to identify
the suitable covariance values. At the higher Q values,
the output was too noisy (compare top and bottom plot
of Figure 7(b)) and thus, the better configuration to
provide good tracking of the transient conditions was
with a lower value for Q as shown in Figure 8.

Experimental study

The use of the captured experimental data to produce
an off-line simulation script is invaluable for the trial
and development of the filter gains, but the final valida-
tion can only be achieved by capturing live data from a
running engine at the test cell. Here, we make use of the
same loggers as the trial script but we change the logger
trigger from a ‘start and stop’ command to run auto-
matically when the engine is running. By doing this, it
is possible to capture engine data passively during a
test. The data used in this case was collected during a
cycle test then trimmed to a single cycle which includes
transient and steady state engine running conditions

Table 2. Kalman filter final tuning table.

Q short-listed settings (grey) for fixed R

R=10�3 R=10�4 R=10�3 R=10�4

1 3 10�6 1 3 10�6 1 3 10�5 1 3 10�5

2 3 10�6 2 3 10�6 2 3 10�5 2 3 10�5

3 3 10�6 3 3 10�6 3 3 10�5 3 3 10�5

4 3 10�6 4 3 10�6 4 3 10�5 4 3 10�5

5 3 10�6 5 3 10�6 5 3 10�5 5 3 10�5

6 3 10�6 6 3 10�6 6 3 10�5 6 3 10�5

7 3 10�6 7 3 10�6 7 3 10�5 7 3 10�5

8 3 10�6 8 3 10�6 8 3 10�5 8 3 10�5

9 3 10�6 9 3 10�6 9 3 10�5 9 3 10�5

R short-listed settings for fixed Q

Q=10�5 Q=10�6 Q=10�5 Q=10�6

1 3 10�3 1 3 10�4 1 3 10�3 1 3 10�4

2 3 10�3 2 3 10�4 2 3 10�3 2 3 10�4

3 3 10�3 3 3 10�4 3 3 10�3 3 3 10�4

4 3 10�3 4 3 10�4 4 3 10�3 4 3 10�4

5 3 10�3 5 3 10�4 5 3 10�3 5 3 10�4

6 3 10�3 6 3 10�4 6 3 10�3 6 3 10�4

7 3 10�3 7 3 10�4 7 3 10�3 7 3 10�4

8 3 10�3 8 3 10�4 8 3 10�3 8 3 10�4

9 3 10�3 9 3 10�4 9 3 10�3 9 3 10�4

Table 1. Kalman filter initial tuning value of Q and R.

Q trial settings for fixed R R trial settings for fixed Q

R=10�3 R=10�4 Q=10�5 Q=10�6

10�0 10�0 10�0 10�0

10�1 10�1 10�1 10�1

10�2 10�2 10�2 10�2

10�3 10�3 10�3 10�3

10�4 10�4 10�4 10�4

10�5 10�5 10�5 10�5

10�6 10�6 10�6 10�6

10�7 10�7 10�7 10�7
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such that it can be used for the analysis of the transient
and steady state responses of the filter. The results with
CyFlex� are shown in Figure 9.

These results show the responses of the moving
average and Kalman filters as compared to the raw

signal. Using the Kalman filter the covariance values
can be tuned in accordance with the needs of the appli-
cation. In this case, the criterion was taken to be a faster
transient response in respect of the original signal when
compared to the tuned moving average filter but includ-
ing the most effective filtering at steady state condition.
Using this criterion, by comparing the plots it is possi-
ble to shortlist suitable covariance values that best meet
the criteria. From these plots it can be seen that the
Kalman filter tracks the raw signal much closer than
the moving average filter throughout the cycle during
the transient conditions. However there is a slight trade
off in filtering compared to the moving average filter.

For AVL PUMA 2� there is also a recording capa-
bility and this requires the set-up of a 10Hz logger to
run automatically. This time the data came from an
engine warm-up condition but still shows the transient
and steady state behaviours. The results are shown in
Figure 9.

This shows sample data collected live from the two
types of test cell with the flaps set to the correct operat-
ing position manually. The full data set for each is live
running data which contains engine transient and
steady state rated running conditions to allow for vali-
dation of the Kalman filter performance. Again we can
see that the Kalman filter outperforms the moving
average filter with the results very similar to the one
obtained in CyFlex�, thereby verifying the correct
implementation in the PUMA AVL 2� environment.

Figure 8. Top: Transient response for moving average and
Kalman filters. Bottom: Zoomed-in version between time 10–32 s.

Figure 7. Kalman filter: Steady state tuning comparison. (a) Top: Estimated back-pressure using moving average and Kalman filter
with different values of Q and R. Bottom: Zoomed-in version between time 30 to 60 s. and (b) Steady state performances for
different values of Q. Top: Low Q value, that is Q = 4 3 10�6. Bottom: High Q value, that is Q = 9 3 10�6.
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Practical application

To test the effectiveness of the Kalman filter would

require its application in a closed loop operation, and

its performance is compared with the moving average

filter as well as the raw input channel signal. This was

tested with a 60L engine running at the rated speed

and load with the control loop reference variable

changes between each test. In each case, the controller

was started from 100% Open-Loop (valve fully open)

and then switched to Closed-Loop to a target of

680mmH2O.
Initially, the raw channel signal was set as the refer-

ence signal. For this attempt as shown in Figure 10, the
controller was unstable resulting in large controller
inputs, which risked damaging the hardware if this was
allowed to continue. It was manually set to the expected
target but an engine limit was triggered before it could
stabilise for long causing the engine to shut down.

By applying the moving average filter as the refer-
ence signal, the control output is more stable as shown
in Figure 10. The control output has a smoother
response, and it achieved the set-point and reaches
steady-state after 150 s.

Finally, we consider the case where the Kalman filter
is used as the reference and a similar smooth response
can be seen as shown in Figure 10. However, with this
reference, the controller reaches the set-point and
reaches steady-state after 110 s.

Comparing the three scenarios, we note the follow-
ing. Without filter, where the raw signal is used as the
reference, the erratic behaviour of the signal results in a
large controller energy and unstable control. With the
application of filters and using the filtered signal as
the reference, we can see the improvement. While both
the moving average filter and Kalman filter reduce the
effect of noise, the Kalman filter has the advantage of
having a faster response. In this case 40 s. For an engine

Figure 9. Moving average and Kalman filters applied in CyFlex� (left column) and AVL PUMA 2 � (right column). Data set shown
on the middle and bottom rows are zoomed-in version of the data that focus on steady state and transient responses, respectively.
The ramp cycle refers to the build-up behaviour of the back-pressure starting from idle condition (i.e. zero pressure). The steady
state performance refers to the stabilise behaviour of the back-pressure after the ramp up stage. The transient performance refers
to the duration where the back-pressure ramp up prior stabilising.
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which consumes between 3–600L of diesel at rated con-
dition this time saving would equate to a 3.34–6.67L of
fuel saving for this time duration. As the back-pressure
must be set before every test at every cell this can add
up to a significant saving in time, fuel, money and emis-
sions output. Nevertheless, both methods require some
additional compensation to overcome the resolution of
the valve dead-band that prevents the actuator from
stabilising.

Conclusion and future works

The common methods for estimating noisy signals in
test cells are in the form of simple low pass or moving
average filters. Whilst effective, these filters are not
necessarily optimal, and in the case of the moving aver-
age filter, it introduces lag to the estimate of the dyna-
mical systems.

The Kalman filter, which is an optimal estimator sub-
ject to optimal tuning of process and measurement noise
covariance matrices, allows for tuning of the algorithm

to compensate for measurement uncertainty as well as
the process error. Through the careful tuning of the
covariance values, the resultant estimate outperforms
the moving average filter greatly by reducing the lag seen
on a transient cycle and is more responsive at steady
state when applied to an exhaust back-pressure signal.

Based on the results obtained in this study, the
Kalman Filter shows good potential for improving the
back-pressure control of a diesel engine in the CyFlex�

environment. The next step will be to test the ability of
the existing CyFlex closed loop Proportional-Integral
(PI) controller to stabilise to a target and to develop a
statistical measurement process to compensate for the
low valve resolution and centre to target. Moving for-
ward, the recommendation is to preferably apply the
system within the PUMA

�
environment as it is more

user friendly and is widely used for testing internal
combustion engines. Furthermore, it is of interest to
extend the trial and application of this filter to other
Cummins engine applications as well as other dynami-
cal systems that require filtering of Gaussian noise.
There is also interest in determining the variation in
tuning requirements between different systems as well
as to investigate options to simplify the script imple-
mentation in CyFlex�. Results presented in this work
showed the individual merits and demerits of Kalman
and moving average filters. As such, an intelligent com-
bination of Kalman filter and moving average filter to
achieve suitable transient and steady-state responses
can be investigated as a future work. In the present
work, due to the lack of ground truth, qualitative tun-
ing of Kalman filter is considered. As a future work,
quantitative tuning using some benchmark model can
be considered as well.
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