Towards Safety in Open-field Agricultural Robotic Applications:
A Method for Human Risk Assessment using Classifiers.

José C. Mayoral ! Lars Grimstad ! Pal J. From ! Grzegorz Cielniak 2

Abstract—Tractors and heavy machinery have been used for
decades to improve the quality and overall agriculture pro-
duction. Moreover, agriculture is becoming a trend domain for
robotics, and as a consequence, the efforts towards automatizing
agricultural task increases year by year. However, for autonomous
applications, accident prevention is of prior importance for
warrantying human safety during operation in any scenario. This
paper rephrases human safety as a classification problem using
a custom distance criterion where each detected human gets a
risk level classification. We propose the use of a neural network
trained to detect and classify humans in the scene according
to these criteria. The proposed approach learns from real-world
data corresponding to an open-field scenario and is assessed with
a custom risk assessment method.

Index Terms—Risk Assessment, Mobile Robotics, Agricultural
Robots

I. INTRODUCTION

The safety aspect for autonomous mobile robots with their
integration into our daily lives points to life quality im-
provement in various industries and drives a new industrial
revolution in several applications such as agriculture. Robotic
systems are relatively new in agriculture, and the number of
tasks increases year by year while researchers are finding new
paradigms and situations on these novel applications. This spe-
cific agricultural utilization requires safety functionality and
particularly ability to avoid trespassing human personal spaces.
Solutions for enhancing safety in unstructured environmental
tasks must consider situation awareness, especially when an
autonomous robot is fitted with a hazardous tool and navigates
across an environment shared with human beings.

Collisions of humans with machines represent over 70% of
the total causalities in different agricultural tasks, and the agri-
cultural machinery represents the second source of incidents in
such environments [1]. Enhancing safety capabilities of robotic
systems is a key point for real-time applications, especially in
the decision-making process which plans the mobile robot’s
subsequent actions, after identifying obstacles or human in
the proximity of the platform.

There is a high interest in safety for autonomous navi-
gation systems attempting to perform a given task without
causing any harm. Typical perception systems use cameras
and other sensors to provide information about mobile robot’s
surroundings which is used by collision avoidance algorithms.
Whilst the robot detects the objects and people, it manoeuvres
around any obstacles and avoids collisions, mimicking the
understanding of common sense and safety.
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Fig. 1: Human Risk Assessment in Open-field scenario.

Safety concerns eliminating or reducing harm to any person
in every situation, being the autonomous device the greatest
risk source for humans in agricultural applications. Tradition-
ally, once the person is detected, its 3D pose coordinates
are computed, followed by a tracking or motion prediction
process, or in best cases, model checking or safety rules
procedures. Then, a safety assessment component computes
people and robot trajectories, exposing safety rules violations.
In contrast, our method uses a one-step classification for
people’s risk states based on the distance to camera criteria,
and it classifies human-hazard as a safety assessment modality.

This work focuses on human risk assessment in autonomous
agricultural navigation proposing a methodology based on
a risk evaluation process. Specifically, this paper demon-
strates a method to classify a human risk according to its
appearance from the camera perspective, matching human
into risk classifications using classifiers, an example can be
seen on Figure 1. The presented classification method uses
distance as a fundamental criterion to define safety, classifying
every person’s safety into four categories: lethal, dangerous,
warning, and safe, from the riskiest to safest state, respectively.
A neural network is trained using this criteria high-passing the
need of a pose calculation. Our contributions are:

o The integration of risk assessment into a robotic agricul-
tural domain.

o A distance-based classification system developed to mea-
sure human risk in the context of autonomous mobile
robots.

o A method to calculate the risk index over the human risk
classification.

II. RELATED WORK

In terms of autonomous navigation, a motion planning
algorithm must avoid any action that can potentially harm a



human to grant a safe motion [2], denoting safety as the state
of the world where there is no unreasonable risk [3]. Typically,
society defines the acceptable risk threshold according to the
potential consequences, generally involving all relevant objects
and intentions of their motions [4].

Safety should imply risk probability and task-related knowl-
edge [5]. Even more, for agricultural tasks, any autonomous
mobile robot must match the requirements declared by the
standards for highly automated agricultural machines to exe-
cute safely, including safe functionalities as hazard-free zone,
state transition, remote emergency stop, and unintended ex-
cursions [6].

When an autonomous agricultural mobile robot executes a
task in open fields, it must be aware of humans who might
share the environment with the robotic system, and computer
vision systems highly contribute to optimizing the different
processes related to agriculture, including fruit, crop, people
and obstacle detection [7].

Indeed, a deep learning model can estimate safety indexes
for risk assessment, by utilising historical data and expert
knowledge indicators [8], proving a method that integrates risk
assessment in a data-based solution and have started a bridge
between artificial intelligence and risk assessment.

Even more, risk evaluation is an on-going research for mo-
bile robot application since it becomes a challenging approach
due to the high variance of environmental features found on
real-life. Thriving this issue, Mayoral et.al. [9] defines an
automatic risk assessment method using a LiDAR-3D in the
context of agricultural application based on a depth limited
sampling trajectory prediction.

In agricultural tasks, safety restriction must concentrate on
the assurance and reliability of operator and the agricultural
robot, and it must satisfy some requirements [10]. Likely any
risk analysis must include performance’s unexpected behaviors
and damage avoidance either for people, infrastructure and
crops. Robustness at software and hardware levels is essential
for fault detection and diagnosis that together with physical
safety devices like emergency buttons or switches integrates
the system.

Safety implies environmental awareness and perception,
being RGB cameras are the most common sensor used as data
acquisition and sensory systems. In robotic applications, they
are able to detect and handle safety aspects in the presence
of humans activating one or several safety strategies which
return the robot to a safe state. These tactics include safety-
rated monitored stop, robot speed, and position control, and
near-field vision system through the set of static or dynamic
safety zones [11].

Although computer vision systems provide robust solutions
for different perception tasks, collisions with non-detected
environmental elements still represent a common risk for
autonomous navigation tasks [12]. Safety monitored stop, hand
guiding, speed monitoring, or power and force suppression
strategies can address those situations [13] by implement-
ing run-time collision avoidance methods for assuring assure
safety in autonomous vehicles. Besides, behavioral strategies

can adapt to local changes in the environment, enhancing
the system to plan future events with updated information
to minimize the risk of dangerous situations and preventing
robots from causing damages [14, 15].

In addition, the research community proposes to use learn-
ing methods for teaching safety concepts to robots specific
to each application enhancing the robot’s capability to per-
form particular tasks in environments such as cities or open-
fields [16]. Machine learning techniques provide a robust
solution mainly because of their capability to attain complex
situation awareness, and these methods boost robot abilities
by learning from camera inputs about the real world [17].
Furthermore, these learning approaches can enhance a safety
system by detecting the relevant objects in a scene by calcu-
lating relative speed and distance to the camera [18].

However, machine learning techniques often require manual
and resource-demanding annotations for any new application.
As a response to this problematic, the community develop
automatic labeling processes that leads to faster and more
accurate ground truth data generation, and their use show
more reliable results than relying on pure real-world data
only [19]. A review of the attempts for improving the neural
networks using simulated data shows that experiments to train
with a mixture between real-world and synthetic data achieve
generally better results than if trained on real data alone [20].
An alternative solution comes when a ground truth automatic
process is pushed into the system leading to fast and accurate
ground truths, and in some cases its use shows more reliable
results than pure real-world data [19].

Simulation are a natural tool for generating new data, and
recently, there are some advances in the generation of realistic
data. A large-scale human synthetic dataset is present on [21],
together with a novel approach to generate geometric images
taking as an input a single shot of a person. Further, Lambert
et. al. [22] merge the labels of a different datasets, creating a
more general datasets concealing the different objects proper-
ties using a customized process getting high performance in
multiple domains.

III. METHODOLOGY

The idea of the proposed methodology is to combine a
human perception system with the risk assessment, and further,
classify individual human hazards according to a risk criteria.
It squeezes the safety assessment pipeline using the distance to
the camera as a recognizable feature, instead of the 3D poses,
and maps detected humans into distance-based zones, which
assesses risk for each person.

Ignoring the tool-related risk requirements implied in a
robust robotic operation, we detect the following risks related
to human presence, summarized on Table I. It provides a
general analysis for this kind of scenarios emphasizing the
need of assess risk of people which interacts in the proximity
of the autonomous device.

As a remark, we consider for this that the exposure of a
person rolling over is lower than a person exposure to be inside
ring 0 zone since it is dependable of this meaning that before



TABLE I: Human Detection Risk Analysis. Correlation be-
tween a Human (H) and rings

ID  Definition Sev. Exp. Task Avoid. Risk Level
0l Rollover §3 El o0 A giiﬁ
02 H.Ring0 S3 E2 SF]‘?:: ﬁ Vegig}];igh
03 HRingl s2 E2 S A Mfl?;l}l)m
04 H.Ring2 SI  E2 SFI;):: 2} igz
05 H.Ring3 SI E2 51;12:: ii igyv

the person is rolled over it must be on the located in the ring
0. In the scope of this project, and taking into account the
previous risk analysis, this approach focuses in the high ad
very high risks of the given analysis to reduce risk during
agricultural applications.

Our criteria sorts detected people into four categories which
stand for qualitative risk related to the robot, based on the
distance to the camera, implying the closer a person gets
to the robot, the higher the risk is. Up to the application,
a range of interest is selected and divided equally into four
equidistant zones, labeled from RO to R3, raising a distance-
based classification method used for labeling.
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Fig. 2: The equidistant risk zones in the robot’s sensory FOV
used as human-hazard classification criteria.

The selected 1-dimensional criteria could demonstrate if
classification can sort appearance-related features affected by
the proximity using RGB cameras. Rather than the traditional
classification approach, our method requires additional infor-
mation for labeling, not just the human detection but the
distance to the camera as well, limiting availability of the
existing public datasets, particularly in open-field scenarios.

Moreover, a risk analysis is a fundamental requirement
for ensuring risk evaluation and reduction in any task where
autonomous devices are involved on. For some agricultural
applications like seeding, harvesting, collection are executed
on open-field spaces where the absence of environmental
features may be constant along different fields, the complexity

for isolating possible events that could affect the robot perfor-
mance might not be high during daylight operations.

As qualitative evaluation criteria, a four-step misclassifica-
tion severity level associates the highest risk to the persons
laying on the lethal zone who are classified as in the safe
region, which potentially causes harm or injuries, while sets
low misclassification error to the safe persons classified as
lethal considering this classification error does not generate
any harm to any person. Figure 3 demonstrates the concept of
the proposed misclassification rank.

Severity Costs

Prediction Tag | Severity | Cost
Actualpg R R2 R3 Null 0
RO Low 1
R1 Moderate 2
R2. High 3
R3 B Critical [ 4

Fig. 3: Misclassification Risk Proposed Method.

The mentioned method is included as an additional com-
ponent of the loss function, to minimize the critical errors,
training our data prior within risk awareness knowledge. The
calculations takes into consideration the confidence of the
detection (p(i)) times an standardized severity cost, which
indexes belongs to the ground truth and the classification
output of the network, in Equation 1.

n
RiskLoss = % > p(i) * S(GT (i), (i) (1)

i=1
Our proposed method is based on a risk assessment method-
ology. However, for this particular setup, it has some similar-
ities with the confusion matrix commonly used to visualize
misclassifications. Therefore, we propose it as the base of a
risk index calculation taken as a base the confussion matrix
expressed on percentages times the severity cost expressed on

Figure 3.
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RiskIndex =Y Y CF(i,j) * S(i, §) 2)
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IV. APPROACH

Our proposed pipeline consists of three stages, shown in
Figure 4, starting from the dataset, followed by an automatic
labeling process, and finishing with a classification stage.
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Fig. 4: Human hazard data preparation pipeline from dataset
generation to training step.
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A. Dataset Generation

Four data collection sessions generate an open-field
dataset’s subset, and this consists of up to three persons
moving randomly in front of a depth camera at open field
environments. The dataset consists of 13481 RGB and depth
registered image frame pairs varying on lighting conditions
and recorded with different cameras. After passing the auto-
matic labeling process, only the frames with detected persons
or accurate pose calculations remain. Table Il summarizes the
dataset given the number of frames per collection session.

TABLE II: Open-field Data Collection Summary.

Session Raw Frames  Used Frames  Annotations
1 3759 2875 4635
2 3589 2105 2101
3 2541 1617 3244
4 3592 3570 7230
13481 10157 17210

B. Automatic Labeling Process

For labeling, a pre-trained neural network provides the
bounding boxes, while the risk class comes from the 3D person
coordinates provided in the camera’s frame by the projection
of the bounding boxes into the rectified depth image. Pairs
of RGB and depth images are matched by the timestamps of
the frames as a pre-labeling step, a frame pair is shown in
Figure 5.

Fig. 5: Pair of RGB with its corresponding depth image.

For this paper, the d, values for our criteria two meters for
covering the depth camera range within four risk zones. The
depth image plays a role in the labeling stage, but they are
not used on the run-time execution, and a human supervised
procedure ensures the data quality to either remove or correct
false negatives and positives. Figure 6 illustrates the complete
automatic labeling procedure.

V. EXPERIMENTS

The principal objective of the this experiment is to evaluate
the classifiers performance and calculate its risk index. How-
ever, we are aware that the shapes of a bounding boxes might
be proportional to the distance to the camera. Therefore, we
add benchmark solutions that classifies giving prior knowledge
on where the people are.

Our approach addresses risk quantification on agricultural
open-field environments particularly when leading with human
avoidance and detection. As backbone, YOLOv4 [23] is used
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Fig. 6: Automating Labeling Process for RGBD images.

as classification network. Performance analysis between dif-
ferent classifier architectures is not one of our main objectives,
so the training runs on a standard neural network architecture,
one-stage YOLOv4, which is characterised by fast reference
times, being a good choice for real-time implementations.
As benchmark, we use a selection of linear classifiers
including Logistic Regression and Naive Bayes, assuming that
the detected objects bounding boxes’ sizes are proportional to
the camera’s distance, i.e., larger bounding boxes correspond-
ing to closer obstacles. While the benchmark methods uses
the bounding boxes coordinates as input, the network’s input
is the image itself. The objective is to evaluate how much
the complexity of the network impacts the results. All the
considered methods share the train and validation datasets.

TABLE III: Comparison of the selected Risk Classification
methods

Method Name Abbreviation Input
Logistic Regression L.R. 1D Array
Naive Bayes N.B. 1D Array
Support Vector Classifier SVC 1D Array

YOLO-v4-tiny YOLOv4 Image

A. Results

Further, the automatic labeling approach for annotating the
data provides the data’s ground truth. Setting a pre-trained
model as a bounding box generator provides a robust and
fast method for splitting a person class into four risk zone
classifications on detection.

Table IV displays the algorithm’s overall performance com-
pared against the three selected benchmarks, linear classifiers,
and our proposal that uses a neural network. The neural
network over-performs the benchmarks when talking about
recall. In the other hand, L.R. and YOLOv4 get the same
precision. N.B. shows the lesser results in terms of precision
and L.R., the ones at recall. The metris for mAP are only
availabe for the image-input based classifier.

Analysing the classification errors on the neural network
approach at the open-field dataset (Table V), we observe
that errors happens in consecutive risk zones. In the other



TABLE IV: Comparison of different Risk Classification meth-
ods

Method Precision  Recall mAPO.5 mAP.5-.95
LR. 0.79 0.38
N.B. 0.51 0.50
SvC 0.78 0.69

YOLOv4 0.79 0.76 0.78 0.61

hand, in terms of safety it can be observed that there are
no misclassification problems between lethal and safe states
which can produce the higher risks. This is consistent with the
qualitative evaluation criteria (Figure 3) and our customized
Risk Loss (Equation 1).

TABLE V: Normalized Confusion Matrix

Actual Predictions
Lethal Danger Warning  Safe
Lethal 0.95
Danger 0.05 0.66 0.03 0.05
Warning 0.34 0.94 0.55
Safe 0.03 0.45

The precision and recall metrics do not consider any
classifications range or risk evaluation. Our method for this
experiment can lead to multiple misclassification belonging
to both consecutive risk zones. This phenomena can be seen
in the relative high false positive range on our approach for
the safety and warning classes. The risk index on Formula
2 provides a manner to assess the risk on our detector and
benchmarks, giving the results in Table VI.

TABLE VI: Risk Index Calculation for the selected Risk
Classification Methods

Method  Risk Index
LR. 0.5075
N.B. 0.5900
SVC 0.515

YOLO 0.6450

As it can be observed in Table VI, our approach that uses
neural network is riskier than the benchmark approaches that
have prior knowledge of the location of the person. However,
Table VII shows that the 90% of the risk in the approach comes
from the Warning class that is consistent with the results in
the related confusion matrix at Table V.

TABLE VII: Analysis of Risk Index per Class for YOLOv4
method

Class Risk Index  Percentual
Lethal 0.0 0.0
Danger 0.0475 7.36
Warning 0.5825 90.31

Safe 0.0150 2.32

Figure 7 shows a sample of our most common classification
error. The network struggles to classify persons who are further
to the camera mixing the two risk zones with lesser risk,
Warning and Safe.

(a) Ground truth: Danger (b) Prediction: Warning

Fig. 7: Misclassification Sample

We report true positives classifications that exemplify the
classifier’s output in Figure 8 where the detector can even
find people lying on the grass according to the criteria.

Fig. 8: True Positive Classifications

VI. CONCLUSIONS

The presented approach uses the distance to camera as a
classification feature providing a novel solution for integrating
safety at autonomous application compacting human detection
using as methodology the risk analysis of the applications.
Overall, a neural network based approach performs better than
linear classifier. Nonetheless, the input of these classifiers are
the bounding boxes. In the other hand, despite these results
our analysis show that the high misclassification rate between
Warning and Safe increases significantly the risk index in the
YOLOvV4 method.

This approach can contribute to safety for other domains,
extending the distance classification threshold as it is done here
to match the data from the automotive dataset. Notwithstand-
ing, we suggest that this safety functionality should be part of
the mobile robots’ sensor fusion vision systems designed to
handle risk on agricultural applications.

A narrow safety classification system concept has proved
its potential to implement functional safety action. Besides,
the system must be enhanced with other unsafe situations to
increase its robustness, not just pure human awareness. As a
different approach, robot state information like speed could
be added to the network on the final layers to generate a
dynamic distance classification, mixing time-to-collision and
appearance-based risk state estimation.
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