
Siva – The IPFS Search Engine

by

Nawras Nazar Khudhur

February 20, 2020

H

A dissertation submitted to the Faculty of the Information Engineering Course of the

Graduate School of Engineering of Hiroshima University in partial fulfillment of the

requirements for the degree of Master of Engineering.

Declaration of Authorship

I, Nawras Nazar KHUDHUR (M182220), declare that this thesis titled, ”Siva – The

IPFS Search Engine” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree

at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself.

Signed: Nawras Nazar KHUDHUR Date: 2020

i

Acknowledgments

I would like to thank my supervisor Professor S. Fujita, and Associate Professor H.

Okamura, Associate Professor S. Kamei for their support and contributions, not only

during the preparation of this thesis, but also throughout my studies at Hiroshima

University.

I would like to thank my colleagues at Information Engineering Laboratory of

Hiroshima University and all of my friends for their warm-hearted support.

Finally, I must express my very profound gratitude to my family members, rel-

atives and to my wife Hori for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process of researching

and writing this thesis. This accomplishment would not have been possible without

them.

Thanks again.

ii

Abstract

Recently, InterPlanetary File System (IPFS) has attracted considerable attention as

a method to overcome the weaknesses of the current Web such as the single point

of failure and an arbitrary control by the government. Each file stored in IPFS is

associated with a unique cryptographic hash (CID) as a logical address to enable users

to acquire the content of the file without being aware of the network address. In this

paper, we design a decentralized search engine for IPFS which quickly returns a list

of CIDs associated with a given collection of keywords. A key idea of the proposed

method is to store the association between keywords and CIDs in the Distributed Hash

Table (DHT) used in IPFS, and to utilize a result cache to accelerate the processing

of partially duplicated queries. In addition, we use a variant of Bloom filter to quickly

check the availability of the result cache. The performance of the proposed method

is evaluated by simulation.

The simulation results indicate that it takes 1.7 s on average to respond to a

query in a network of 1000 and 2000 nodes reduced by 43%, 31% respectively when

the result cache is added to the search engine. Further, the search engine scales with

the network size.

iii

Contents

Declaration of Authorship i

Acknowledgments ii

Abstract iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Related Work 4

3 Preliminaries 6

3.1 Kademlia DHT . 6

3.2 IPFS . 7

4 Proposed Method 9

4.1 Overview . 9

4.2 Keyword Extraction . 11

4.3 Result Caching . 11

4.3.1 Handling of Single-Keyword Queries 12

4.3.2 Handling of Conjunctive Queries 13

4.4 Hash Filter on Cache Results . 14

iv

4.5 Extra Step to Reduce Response Time 16

5 Evaluation 18

5.1 Simulation Parameters . 18

5.2 Query Response Time . 19

5.2.1 Single-Keyword Queries Evaluation 20

5.2.2 Conjunctive Queries Evaluation 21

5.3 Scalability . 22

5.3.1 Single-Keyword Queries . 23

5.3.2 Conjunctive Queries . 24

6 Concluding Remarks 28

Bibliography 29

Achievements 31

v

List of Tables

5.1 Single-Keyword Query Experiment 1 21

5.2 Single-Keyword Query Experiment 2 22

vi

List of Figures

3.1 The way of generating identifiers in IPFS. 8

4.1 Search-Index. 10

4.2 The search-index generation. 12

4.3 Proposed layers. 15

4.4 Search process & cache generation flow. 17

5.1 Yahoo! Webscope dataset. 20

5.2 Average query response time. 23

5.3 Cache hit-rate. 24

5.4 Average single-keyword query response time - Scalability. 25

5.5 Average query response time - Scalability. 26

5.6 Average query response time - Sub-query cache. 27

vii

Chapter 1

Introduction

The concept of InterPlanetary File System (IPFS) was proposed by Juan Benet in

2014 [3] to overcome the weaknesses of the current World Wide Web such as the

single point of failure and an arbitrary control by the government/corporation poli-

cies. In fact, IPFS beat the access block and the censorship to the Turkish version of

Wikipedia conducted by the Turkish government in April 2017 [14, 13]. A key tech-

nique used in IPFS is to associate each file with a unique cryptographic hash (called

Content Identifier CID) and to use the resulting hash as an address in the file system

instead of the conventional network address such as https://www.whitehouse.gov/

to realize a content-based networking without causing access bottlenecks (as will be

described later, since any node associated with the hash stores a list of content hold-

ers for the corresponding file, the file content could be acquired from those nodes in

parallel without any centralized authority)

The above mechanism of IPFS implies that we can easily acquire the content

of a file if we know the hash of the file. Such a hash can be easily calculated by

applying a predetermined hash function to the file content. However, it provides

no means to acquire the hash of un-owned file nevertheless it is exactly the task

of file search. To overcome this issue, some developers outside the IPFS community

developed a centralized search engine based on the Elasticsearch, called ipfs-search[4].

Elasticsearch is a distributed, multitenant-capable full-text search engine with an

HTTP web interface and schema-free JSON documents [5]. Elasticsearch supports a

CHAPTER 1. Introduction 2

horizontal scaling; meaning, it can be accessed in the same way whether it is running

on one node or in a cluster of for example 300 nodes, and it automatically adjusts

the distribution of indexes and queries across the cluster according to the number of

events processed per second. However, the centralized solution with ipfs-search does

not escape from the curse of concentration similar to the conventional web; namely,

it still has a single point of failure and is affected by an arbitrary control by the

government and corporation policies.

The objective of the current paper is to explore the design of a decentralized search

engine for IPFS. The idea is simple but powerful. We store the association between

keywords and hash values (CIDs) in IPFS in a distributed manner, where keywords

are automatically extracted from given file. We then enhance the efficiency of the

search of CIDs matching queries, with the following techniques:

1. The result for queries is cached in IPFS so that the duplicated calculation is

avoided; and

2. To quickly check the existence of cached result for a combination of keywords,

it uses a variant of Bloom filter called Cuckoo hash filter [6].

Similar idea has been proposed by the same authors in the context of standard dis-

tributed hash tables (DHTs) [7, 2]. In this paper, when a peer in the IPFS network

issues a query to search for some content, we draw on the DHT to respond to that

query. Meanwhile, the returned query results are cached either by the direct neigh-

bors of the query-issuer node or by the nodes closest to it depending on whether the

query was single-keyword query or conjunctive query.

The performance of the proposed method is evaluated by experiments using Simu-

lation. The results of evaluations indicate that using the proposed caching techniques

with the DHT reduces the query response time significantly. In addition the search

engine scales with the network size as the average query response time increases

only by 87% while the network size scaled by 900%. The remainder of this paper

is organized as follows. Chapter 2 overviews related work. Chapter 3 explains the

preliminaries. Chapter 4 describes the details of the proposed method. Chapter 5

CHAPTER 1. Introduction 3

summarizes the results of simulations. Finally, Chapter 6 concludes the paper with

future work.

Chapter 2

Related Work

Since the only work on IPFS is the elasticSearch based ipfs-search search engine. We

review some of the papers that take into consideration similar goals of processing

conjunctive queries in a structured P2P environment as our work.

In Vahdat et al [11] first suggested hash function can be used to create a dis-

tributed inverted index. The inverted index is updated with each new document

publishing. The selected keywords of a document are hashed using some hash func-

tion then appropriate peers are contacted to update the index accordingly. To reduce

the bandwidth usage during conjunctive queries, they suggested using and caching a

bloom hash filter. It reduces the bandwidth usage by drawing on bloom filter genera-

tion for the matched documents of a keyword, then send the bloom filter to the peer

responsible for the next keyword instead of sending the whole matched document

list thus minimizing the used bandwidth. Our current work is considering a different

approach of using the hash filters and processing the conjunctive queries.

Abere et al [12] try to reduce the traffic consumed by conjunctive queries by

constructing an index for the result cache corresponding to the query load. That

is, only frequently issued queries are cached. The index is stored on a DHT called

Distributed Cache Table. The selection of a query to be cached depends on the

importance of the query like whether it can be used to answer more queries. A peer

tries to find the results in DCT at first, if no cache was available, the query message

is broadcasted to all the peers in the network.

CHAPTER 2. Related Work 5

Zeng and Wang [17] introduce a routing and lookup protocol based on CAN (con-

tent addressable Network). To reduce the routing hops with far nodes, it constructs

a long distant link using network size estimation. With this approach, the new pro-

tocol provides high flexibility in the neighbor selection that a new node can choose

from. Hence, it can be used to set physically close nodes to become neighbors in the

logical network. Their results show a reduction in lookup latency compared to the

traditional CAN. But they have not provided any results of conjunctive query lookup.

Chapter 3

Preliminaries

3.1 Kademlia DHT

Kademlia is a distributed hash table that organizes the peers into a structured overlay

network. Kademlia uses binary codes as the underlying ID space; namely, any entity

including peers and files is assigned a binary string as the unique ID, where the

distance between two strings is the difference of the corresponding bitwise XOR value

(e.g., although 011 is at distance one from 010, 100 is at distance six from 010). In

this regard, the distance is shortened between two keys when matching more prefix

bits. The routing table of a Kademlia node consists of buckets where each bucket

holds a maximum of k nodes called contacts. These buckets are known as k-buckets.

The parameter k is a system-wide replication parameter to ensure data availability.

The contacts information stored in the form of triples ⟨IP address, UDP port, Node

ID⟩ with respect to the distance from the self node. More specifically, for any bucket

i, 0 ≤ i < B, where B is the size in bits of the used ID, it is guaranteed that the

distance to contacts is between 2i and 2(i+1)

To find the k closest node to a key in Kademlia protocol, the initiator node first

chooses α nodes it knows about from its closest k-bucket to create a shortlist for

the search. It then sends a parallel, asynchronous find request to the α contacts in

the shortlist. Each contacted node will then return k closest triples to the requested

key. Upon receiving the intermediate lists, the shortlist is updated. It then contacts

CHAPTER 3. Preliminaries 7

another α nodes that are not queried yet. This operation is repeated iteratively until

no more uncontacted nodes remain. Thus, closest k nodes obtained.

3.2 IPFS

IPFS consists of a number of autonomous peers connected by a Kademlia network

[9]. In IPFS, each peer has its own public/secret keys and is assigned a unique NodeId

which is calculated by applying SHA256 hash function to its public key and encoding

it with Base58 encoding algorithm (see Figure 3.1 for illustration). Similarly, each

file shared in IPFS is given a unique CID which is calculated by applying the same

functions to the content of the file (note that SHA256 can be applied to any file

including binary file). For example, the turkish wikipedia webpage from https:

//tr.wikipedia.org translated to /ipfs/QmT5NvUtoM5nWFfrQdVrFtvGfKFmG

7AHE8P34isapyhCxX/ where the long string of characters is the CID of the index

file of wikipedia.

Since IPFS implements Kademlia, the index of a file, which is a key-value pair to

have CID of the file as the key and a list of content holders and their IP addresses as

the value, is stored in a peer to have the closest NodeId with the CID. For example,

for a key-value pair ⟨10001, {{IP address, UDP port, 11001}, {IP address, UDP port,

11101}, . . . }⟩ and a list of candidate nodes 10110, 11110, 01111 the distance(CID,

NodeId) for each NodeId is calculated by XORing each NodeId with the CID resulting

in 7, 15, 30 respectively. Thus, the first node is chosen to be the holder of the key-

value pair. With the above notions, the retrieval of a file with a designated CID

proceeds as follows:

1. Identify a peer to have the index of the file through Kedemlia;

2. Acquire a list of content holders from the identified peer;

3. Acquire the file content from peers contained in the list; and

4. After receiving the requested file, cache the replica of file for a certain time and

add itself to the list of content holders (the list is updated when the replica is

CHAPTER 3. Preliminaries 8

IPFS
Node

Public key

Private key

87ak463d
mgf...sha256

QmYkAR
Nc... base58-btc

Hash Encode Node idDigest

(a) NodeId

sha256
64fdb75
cdda...

QmT5Nv
UtoM5n... base58-btc

EncodeHash000010001
010001110
001000100
100101011
11101101...

Raw
Digest CID

(b) CID

Figure 3.1: The way of generating identifiers in IPFS.

removed).

In terms of the system hierarchy, IPFS consists of three layers called Moving

data, Defining data and Using data layers [8]. The first layer is called libp2p, and is

divided into three sub-layers called network, routing and exchange sub-layers. The

network sub-layer provides point-to-point connections between any two nodes within

the IPFS network. The routing layer provides peer routing and content routing to

find other nodes and requested data on the network respectively. The IPFS Block

Exchange layer manages the transfer of the blocks of data among nodes. The second

layer contains definition of IPNS, that is used as naming in IPFS network. The using

data layer is where applications of IPFS are defined which depends on the mentioned

layers. Our proposal falls on the top layer of IPFS that is using data layer.

Chapter 4

Proposed Method

4.1 Overview

The association between keywords and CIDs can be represented as key-value pairs

in which the cryptographic hash of keyword is used as the key and the list of CIDs

associated with the keyword is used as the value. See Figure 4.1 for illustration. In the

following, we call this simple data structure the search-index. Note that this index

can be naturally stored in the DHT of IPFS in a distributed manner. In this section,

we propose a method to realize an efficient processing of single-keyword/conjunctive

queries issued by the users in IPFS.

A single-keyword query is a query containing only one word which requests a set

of CIDs associated with it, such query is processed easily by finding the closest nodes

to the hash of the keyword then request the responsible node for the list of associated

CIDs.

A conjunctive query is designated by a set of keywords which requests a set of

CIDs associated with all keywords contained in it. In the following, we represent a

conjunctive query as {key1, key2, . . . , keyw}, where w(≥ 2) is the number of keywords

in the query. With the notion of search-index, such a conjunctive query can be

naturally processed by taking an intersection of the sets of CIDs for each keyi after

acquiring them from the corresponding peers through DHT. However, such a naive

scheme takes a long computation time since it is dominated by the longest response

CHAPTER 2. Proposed Method 10

D

C

A

H

G

J

O
N

L
M

E
F

K

I

CID &
Keywords Providers

 cid1 A, B, C

 cid2 A, C, F, N

 hash(k1)

 hash(k2)

.

cid1, cid2, cid3
File-name1

cid3, cid9
File-name2

IPFS Peers

IPFS built-in DHT
includes search-index

search- index d ata
B

uilt-in D
H

T
 da ta

B

Figure 4.1: Search-Index.

time from corresponding peers which depends on the number of CIDs associated with

the keywords and the network environment.

The proposed scheme improves the efficiency of the naive scheme with the notion

of result caching and a variant of Bloom filter. More concretely, the proposed scheme

consists of the following four components:

• IPFS Layer

Stores the association between CIDs and lists of content holders.

• Search-Index Layer

Stores the association between keywords and lists of CIDs.

CHAPTER 2. Proposed Method 11

• Result Cache Layer

Stores the association between keywords sets and lists of calculated result for

the keyword set. Used to avoid the recalculation of the repeated conjunctive

queries.

• A Variant of Bloom Filter

Quickly judges whether the full or partial result for a given keyword set is stored

in the Result Cache layer.

4.2 Keyword Extraction

In the proposed method, the search-index is maintained in such a way that CID of

a file is stored in a peer to have the closest NodeId to the hash of keyword for each

keyword extracted from the file. Keyword extraction from a given file proceeds as

follows (refer to Figure 4.2 for illustration):

1. At first, it extracts metadata such as author, created date, content of a page,

and so on by using a metadata extractor such as Apache-Tika [1].

2. In case of text file, it calculates the TF-IDF weight of all words contained in the

file and selects words scored higher than the mean value as the representative

keywords of the file.

Finally, the CID of the processed file with its list of representative keywords and

metadata are stored in the search-index.

Although the extracted words are certainly relevant with the given file, the ap-

propriateness of them should be refined through interaction with the users. Concrete

design of such an interaction is left as a future work.

4.3 Result Caching

Result caching is the process of storing the calculated result of a query and reuse it

to reply future queries in order to avoid the re-calculation and reply faster. These

CHAPTER 2. Proposed Method 12

CID
Qmf5FXpgmVP8pfhWurieZ3oTY
7pra8BSDU7mMWqVY7v5n1

Metadata &
Keyword extraction

Keywords
Aimer

I

beg

You

...

 Keyword CID

<hash(aimer), Qmf5FXp...>

<hash(i), Qmf5FXp...>

<hash(beg), Qmf5FXp...>

<hash(you), Qmf5FXp...>

 ...

prepare

Artist name: Aimer
Album name: I beg you
...

IPFS Network

Figure 4.2: The search-index generation.

queries can be either partially similar or exactly the same as the stored query. Since

search engines have a strong locality [16], that is, many users repeat the same or

similar queries, result cache can be used to take advantage of it.

We take different a approach for processing the single-keyword queries, and con-

junctive queries as discussed below.

4.3.1 Handling of Single-Keyword Queries

For a query consisting of a single-keyword, the set of CIDs matching the query has

already been stored by the peers closest to the hash of the keyword in search-index

(as discussed before). To accelerate frequent query reply, the query result, which is

a set of CIDs matching the query, is cached by k direct neighbor nodes of the issuer

node to have the closest NodeId to the hash of the query where k is a Kademlias

system-wide replication parameter.

When a query is issued, the issuer node does not have any knowledge about holders

of the cached results, thus, it will not look for any cache. Instead, it forwards the

query to other nodes to find the responsible node holding the actual requested value.

In the meantime, the intermediate nodes can reply the query directly and interrupt

the search if they happened to have the cached result.

CHAPTER 2. Proposed Method 13

4.3.2 Handling of Conjunctive Queries

Result caching can reduce the number of sub-queries needed by any conjunctive query.

For a conjunctive query, the result for the query, which is a set of CIDs matching the

query, is cached by k nodes to have the closest NodeId to the hash of the conjunctive

query. The query issuer node caches the results for the past queries locally so that

the same query answered right away by itself.

Since the cache storage is limited and the query result is always getting cached once

it is issued, the Least Recently Used (LRU) cache replacement algorithm is applied

to avoid memory overflow. With LRU, the new cached results are pushed into the

result cache storage by removing the least recently used cache record.

Under the above caching strategy, the requester of a new conjunctive query

{key1, key2, . . . , keyk} conducts the query processing in the following manner: It first

searches the network for peers holding the fully cached results. For example, for a

query Q = {key1, key2, key3}, k closest nodes for hash({key1, key2, key3}) are deter-

mined and queried. If no result is found, all of the possible combinations (>1 keyword

and <whole query) of the keywords in query Q such as {key1, key2}, {key1, key3}, . . .
are calculated. Then, the sub-queries subQ1, subQ2, . . . are issued for each combina-

tion to query the result cache layer for partially cached results. The final result is

calculated by intersecting results from sub-queries such that subQ1∩subQ2∩ . . . = Q.

When sub-queries are not enough to produce query Q, the search-index is used to find

results for the remaining keywords by issuing the necessary single-keyword queries.

The above steps are highly time consuming when the results are not cached yet

because it is going to retry cache check for all possible combinations of the conjunctive

query. Finally, as the last resolve, it starts creating sub-queries for each keyword

separately to query the search-index. We approach this issue by introducing another

layer as discussed in the following section.

CHAPTER 2. Proposed Method 14

4.4 Hash Filter on Cache Results

To solve the issue mentioned in the previous section, a hash filter layer is added.

Figure 4.3 illustrates the proposed extra layers to the search engine. Hash filters are

used as membership testing against a set of existing data. In this case, the hash

filter layer can quickly judge about the existence of the requested result cache or its

combinations in the network; therefore, bypassing the unsuccessful cache searches.

That means, instead of going through the distributed cache directly. Hash filters can

respond by ensuring that the query is not in the cached result set.

Because the cache result is not static, which means it will be updated or deleted

after some period of time, deletion feature of the hash filter is needed. Thus, we

propose using a variant of bloom filter called Cuckoo filter which is a new data

structure, represented in a paper by Fan et al in 2014 [6]. Cuckoo filters improve upon

the scheme of the bloom filter by giving deletion, restricted counting, and bounded

false positive probability, whereas still keeping up a similar space complexity.

In this proposal, every peer holds the same version of the hash filter and uses

it to decide whether to conduct the search keyword by keyword then combine the

results or retrieve results from the cache layer for the conjunctive query directly. It

will also give the ability to find out about partially cached results that can serve the

requested query best (intersecting fewer subsets to get the query result). For the same

simple example Q = {key1, key2, key3}, at first, the hash filter is questioned about the

existence of cache results for the whole query Q. If the answer is negative, the hash

filter is asked about the existence of cache results for the generated combinations/sub-

queries starting from largest combinations. Finally, the new query is formalized with

reference to the hash filter results. For example, assuming only {key1, key2} is cached

according to the hash filter layer. Then, two sub-queries {key1, key2} and {key3} are

created and issued simultaneously.

To sum up, with the combination of the above mentioned techniques, the proposed

search engine works as follows (for the illustration refer to Figure 4.4):

1. User x makes a query search for some query Q.

2. If the query is single-keyword query, the search processeds normally by finding

CHAPTER 2. Proposed Method 15

search-index

Result Cache

Hash Filter

IPFS peers

Query: olympic games
Result:
QmT5NvU...
QmfQ5QAjv...
QmdN23AXu...

Result Cache Example

Is query cached? Yes/No

Figure 4.3: Proposed layers.

the closest nodes to the hash of the query. In this case, the issuer node depends

on the intermediate nodes to get a cache hit and return results faster.

3. Otherwise, the cuckoo hash filter is used to find out about the existence of fully

or partially cached results for the conjunctive query.

4. If the query result was fully cached, the result cache layer is searched by finding

the responsible peers holding the cache.

5. Otherwise, hash filter layer is asked about partially cached results, and the final

result is calculated by issuing the extra needed queries if partially cached results

were not enough.

6. If the query Q was not cached fully nor partially, it proceeds to the keyword by

keyword search on the search-index, then the calculated result is cached on the

closest nodes.

CHAPTER 2. Proposed Method 16

4.5 Extra Step to Reduce Response Time

Since we expect the cache effectiveness reduction when the network grows very large,

which means the query response time reduces gradually. We suggest mixing the

approach of handling single-keyword queries with conjunctive queries. We propose

caching the intermediate results of the conjunctive queries by considering them as

the seperate single-keyword queries. More specifically, The search engine caches the

results of single-keyword sub-queries. The responsible nodes to hold this cache, are k

direct closest (to the key) neighbors found in the issuers routing table. In this case,

the hash filter does not update and the search engine depends on intermediate nodes

to get a cache hit. Since Kademlia tends to keep the most probably available nodes in

the routing table, this strategy considers the availability of the nodes automatically

without extra calculations.

With this approach, when a conjunctive query divided into sub-queries of single-

keyword, the intermediate node which get the sub-query request, at first searches

its local cache, if the cache is found, it interrupts the search by returning the result

directly. Otherwise, it proceeds normally by returning the k closest nodes it knows

about.

CHAPTER 2. Proposed Method 17

Cached result
available

Cached result
NOT available

Cache the computed
result

Is it a
conjunctive

query?

Search the
search-index for the

list of CIDs

Ask the
hash filter

Cache the result in
the direct closest

neighbors

Caclulate sub-
queries

Ask the
hash filter
for sub-
queries

cached sub-
queries Some missing

Intersect the result
set

Search for the
subqueries in the

cached result

Calculate neccessary
single-keyword

queries

Search in the
search-index for the
missing keywords

Search for the
cached result

Yes No

Figure 4.4: Search process & cache generation flow.

Chapter 5

Evaluation

To evaluate the performance of the proposed method, we simulate a P2P environment

using Peersim simulator [10]. The objectives of these experiments are to show the

result caching effectiveness in term of query response time and the scalability of search

engine with respect to the network size.

5.1 Simulation Parameters

In the simulated environment the nodes are organized using Kademlia DHT similar

to the actual IPFS network. The used hash function to generate identifiers is SHA256

same as used in IPFS. The Kademlia tuning parameters k is 20, α is 3 and B is 256

bits. The P2P environment is set to be static, which means the state of peers does not

change during the simulation. The nodes are in a random topology of the degree of 5.

The used dataset is from Yahoo! Search Engine provided by Yahoo! Webscope [15].

The dataset contains 1,500,000 queries in total with 1,198 unique queries. Figure 5.1

shows the distribution of the dataset that follows a power law distribution with some

degree of α.

We have calculated the CID for each unique document in the dataset and built

the ⟨keyword, CID⟩ association for the dataset by combining the CIDs to the hash of

the corresponding queries. The produced collection is then stored in the search-index

which is distributed according to the used Kademlia DHT. Hence, each peer in the

CHAPTER 5. Evaluation 19

network is responsible to maintain a portion of the search-index that is closer to their

NodeId.

Since we are only interested in showing the change in the ratio of query response

time compared to the conventional approach, a uniform link latency (100 ms) is ap-

plied between peers in the network. We set the same cache size for all peers in the

network and specified by a number of units, where each unit represents a storage

for one query result. The random queries were drawn according to the distribution

of the dataset. Any peer can issue the next query randomly with equal probability.

Once a query is issued, the obtained results are cached by the k nodes having closest

NodeId to the hash of the conjunctive query. As for single-keyword queries, The nodes

responsible for caching query results are direct closest neighbors of the issuer node

whose NodeId is closest to the hash of the query text. Finally, for the cache replace-

ment, we have implemented the LRU cache replacement scheme in this simulation.

The hash filter layer is implemented using cuckoo hash filter as it was proposed and

we assumed that all peers have the same version of hash filter at any point of time.

5.2 Query Response Time

In this paper, we define the response time for a query to be the time which a query

is issued to which the result is returned to the issuer node. With this definition

query response time =
∑n

i=1 2∗ (latency) where n is the number of iterations needed

until the corresponding peer is reached. Since the conjunctive queries may divide into

sub-queries, the response time for conjunctive queries is the maximum response time

of the issued sub-queries.

To evaluate the effect of network size on the performance of the proposed solution,

we have simulated two different networks of 1000 nodes and 2000 nodes with the same

basic parameters. To show the sufficient cache size for the best query response time,

we repeat the simulation comparing different cache size parameters.

CHAPTER 5. Evaluation 20

Figure 5.1: Yahoo! Webscope dataset.

5.2.1 Single-Keyword Queries Evaluation

In the single-keyword query experiment, the nodes are unaware whether a particular

query result is cached or not. To respond to a query using the cache, each intermediate

routing node checks its cache upon receiving query messages along the way until the

actual responsible node that holds the stored result is reached. If the cached result

were found on any intermediate node, it will send back the result to the issuer node.

On the other hand, the issuer node will stop listening to further responses about the

issued query.

We issued 54000 single-keyword queries, and cache size starts from 10 unit to 100

units doubling each time for two different network size 1000 nodes and 2000 nodes.

Each unit of the cache represents storage for one query result.

CHAPTER 5. Evaluation 21

Table 5.1: Single-Keyword Query Experiment 1

Cache Size Avg Query Response Time Avg # of hops Cache Hit %

0 1878 21.59 0

10 1282 14.82 36

20 948 11.34 55

40 619 7.67 74

80 374 5.25 87

100 321 4.89 89

Network Size 1000 nodes, issued queries 54,000

The proposed approach to handle single-keyword queries showed a significant re-

duction in the average query response time as summarized in tables 5.1, 5.2. the

average query response time reduced by 83% compared to no usage of cache. We

can also obaerve that the average number of hops for each query is reduced consider-

ably from 21.59 hops when result is not cached to 4.89 hops when 100 unit of cache

is added, which is about 77% reduction in the number of hops needed by a query

Additionally, with larger network size, the average query response time reduced by

81% when result cache of 100 units is added to the peers. Again, the number of hops

reduced noticeably when cache layer is added. From 22.30 hops when result is not

cached to 6.16 hops when 100 unit of cache is added, which is about 72%.

In both cases, we can see the cache hit-rate also increases along with the increasing

of the cache size indicating that the peers take advantage of the used result cache

when processing search queries.

5.2.2 Conjunctive Queries Evaluation

In the conjunctive query experiment, The cache size starts from 100 units to 500 units

adding 100 unit to each simulation. The simulation issued 216,000 conjunctive queries

(of two or three keywords with the same probability). We compare the results with

the conventional approach (0 unit cache size). Figure 5.2 shows the distribution of

CHAPTER 5. Evaluation 22

Table 5.2: Single-Keyword Query Experiment 2

Cache Size Avg Query Response Time Avg # of hops Cache Hit %

0 1963 22.30 0

10 1297 14.98 38

20 967 11.59 56

40 647 8.06 74

80 412 6.24 86

100 365 6.16 88

Network Size 2000 nodes, issued queries 54,000

the average query response time corresponding to the different cache size parameters

for the two networks of 1000 and 2000 nodes. We can observe from the figure that

adding the proposed cache layer and the hash filter layer to the search engine reduces

the average query response time significantly. The average response time reduced by

about 10% for both networks of 1000 and 2000 nodes after adding a 100 units of cache

to the nodes in the network. The reduction rate increases when cache size increases.

Using 500 units of cache, reduces response time by 43% in the network of 1000 nodes,

and by 31% in the network of 2000 nodes. In Figure 5.3, the cache hit-rate is showed

in the network of 1000 nodes. The increasing in the cache size gives more opportunity

to have a cache hit for the succeeding queries. Adding 100 units of cache helped 12%

of queries get cache hit. Increasing the cache size to 500 units, the search engine

replied 46% of the queries from cache. We can also find that the most effective cache

size for the simulated network size is between 200 units to 400 units as the highest

reduction rate falls between these two cache sizes as 29% raising to 44% of the query

replies are from cache.

5.3 Scalability

The only work toward IPFS search engine (the mentioned ipfs-search [4]) can be as-

sumed easily scalable as it is based on Elasticsearch. Elasticsearch databases can scale

CHAPTER 5. Evaluation 23

100%

89%

73%

64%

59%
57%

100%

90%

79%

74%
70% 69%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500

Av
g

Ra
te

 o
f

Q
ue

ry
 R

es
po

ns
e

Ti
m

e

Cache Size

Network size 1000 Network size 2000

Figure 5.2: Average query response time.

to hundreds of nodes and respond to thousands of users. But due to the need of high

performance servers to operate, the only major concern in scaling the Elasticsearch

can be the financial cost.

Thus, we have evaluated our P2P solution for the scalability of the network size.

5.3.1 Single-Keyword Queries

The proposed scheme is tested for the scalability of the network size issuing 54000

queries and letting each node have 100 unit of cache. Figure 5.5 shows the average

time a query takes to return the results while growing the network size starting from

500 to 5000 nodes adding 500 nodes each time. We notice a linear growth of the

needed time for a query with increasing the network size, but not as fast as the

growth of the network size. The average time starts from 365ms raising only by 65%

while the network size increased by 900%.

CHAPTER 5. Evaluation 24

12%

29%

38%

44%

46%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

100 200 300 400 500

Ca
ch

e
H

itr
at

e

Cache Size

Network size 1000

Figure 5.3: Cache hit-rate.

5.3.2 Conjunctive Queries

Next, We start the evaluation of this approach for the conjunctive queries in a scaled

network up to 5000 nodes then compare the results with using only conjunctive query

cache.

We set each node to have a cache size of 500 units and issued 216,000 queries.

Figure 5.5 shows the average time a query takes to return the results. We increased

the network size starting from 500 to 5000 nodes adding 500 nodes each time. The

squared line shows the scalability result when the conjunctive query result is cached

but not the intermediate results. We notice a linear growth of the needed time for a

query with increasing the network size, but not as fast as the growth of the network.

The average query response time starts from 847 ms raising only by 87% to 1581 ms

while the network size is increased by 900%. When comparing to the second approach

that caches the result of sub-queries in the direct closest neighbors of the issuer node.

CHAPTER 5. Evaluation 25

0

100

200

300

400

500

600

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ti
m

e
in

 m
ill

is
ec

on
d

Network size

average query-time

Figure 5.4: Average single-keyword query response time - Scalability.

We can read from its trend line, even for a growing network the query response time

increases very slowly and steadily by 36% for the same 900% growth in the network.

We compared the effectiveness of our approach with random node selection in the

network of 5000 nodes. Figure 5.6 summarizes the results of the comparison. In the

large network of 5000 nodes, the direct closest neighbors cache performs 40% better

than the random selection of nodes. We can also confirm that caching the single-

keyword sub-queries in general performs 40% and 58% better than just caching the

results of conjunctive queries.

CHAPTER 5. Evaluation 26

0

200

400

600

800

1000

1200

1400

1600

1800

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ti
m

e
in

 M
ill

is
ec

on
d

Network Size

Conjunctive query Result Cache Direct Neighbor Sub-query Result Cache

Figure 5.5: Average query response time - Scalability.

CHAPTER 5. Evaluation 27

100%

60%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

avg rate of query response time (# of queries 216,000, Network size 5000)

Random node cache Direct neighbor cache

Figure 5.6: Average query response time - Sub-query cache.

Chapter 6

Concluding Remarks

This paper proposes a design of a scalable decentralized search engine for IPFS that

can respond to the queries very efficiently. The DHT is used to hold the auto-

generated indexed data and a combination of result cache layer with the hash filter

layer used to process the conjunctive queries. The result of evaluations indicates that

the proposed layer combo reduces the average query response time in networks of 1000

and 2000 nodes by 43%, 31% respectively. In addition, the average query response

time increases by 87% when the network size is increased by 900%. By adding the sub-

query result cache on direct closest neighbors, we achieved even better scalability. The

sub-query result cache increased only by 36% for the 900% expansion of the network.

We leave the following issues as future work: 1) to evaluate the overall performance

of the proposed method in the actual IPFS environment; 2) to develop a concrete

design of ranking and correcting the indexed data; and 3) to propose a method to

return the results depending on some similarity degree.

Bibliography

[1] Apache. Apache tika - a content analysis toolkit. https://tika.apache.org/,

2018. Accessed: October 12, 2018.

[2] T. Ariyoshi and S. Fujita. Efficient processing of conjunctive queries in p2p

dhts using bloom filter. In International Symposium on Parallel and Distributed

Processing with Applications, pages 458–464, Sept 2010.

[3] Juan Benet. IPFS - content addressed, versioned, P2P file system. CoRR,

abs/1407.3561, 2014.

[4] Mathijs de Bruin. Search engine for the interplanetary filesystem. https://

github.com/ipfs-search/ipfs-search, 2018. Accessed: October 10, 2018.

[5] Elasticsearch. Elasticsearch. https://www.elastic.co/products/

elasticsearch, 2018. Accessed: October 10, 2018.

[6] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.

Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM

International on Conference on Emerging Networking Experiments and Tech-

nologies, CoNEXT ’14, pages 75–88, New York, NY, USA, 2014. ACM.

[7] Koji Kobatake, Shigeaki Tagashira, and Satoshi Fujita. A new caching technique

to support conjunctive queries in p2p dht. IEICE - Trans. Inf. Syst., E91-

D(4):1023–1031, April 2008.

[8] Libp2p. Libp2p. https://github.com/libp2p/libp2p, 2018. Accessed: Octo-

ber 23, 2018.

29

[9] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information

system based on the xor metric. In Revised Papers from the First International

Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 53–65, London, UK, UK,

2002. Springer-Verlag.

[10] Alberto Montresor and Márk Jelasity. PeerSim: A scalable P2P simulator. In

Proc. of the 9th Int. Conference on Peer-to-Peer (P2P’09), pages 99–100, Seattle,

WA, September 2009.

[11] Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword searching.

In Proceedings of the ACM/IFIP/USENIX 2003 International Conference on

Middleware, Middleware ’03, pages 21–40, New York, NY, USA, 2003. Springer-

Verlag New York, Inc.

[12] Gleb Skobeltsyn and Karl Aberer. Distributed cache table: Efficient query-driven

processing of multi-term queries in p2p networks. In Proceedings of the Interna-

tional Workshop on Information Retrieval in Peer-to-Peer Networks, P2PIR ’06,

page 33–40, New York, NY, USA, 2006. Association for Computing Machinery.

[13] IPFS Team. Uncensorable wikipedia on ipfs. https://blog.ipfs.io/

24-uncensorable-wikipedia/, 2017. Accessed: December 20, 2018.

[14] Turkeyblocks. Wikipedia blocked in turkey. https://turkeyblocks.org/2017/

04/29/wikipedia-blocked-turkey/, 2018. Accessed: November 26, 2018.

[15] Yahoo. Yahoo! webscope dataset anonymized yahoo! search logs with relevance

judgments version 1.0. http://labs.yahoo.com/Academic_Relations, 2018.

[16] Yinglian Xie and D. O’Hallaron. Locality in search engine queries and its im-

plications for caching. In Proceedings.Twenty-First Annual Joint Conference of

the IEEE Computer and Communications Societies, volume 3, pages 1238–1247

vol.3, June 2002.

[17] B. Zeng and R. Wang. A novel lookup and routing protocol based on can for

structured p2p network. In 2016 First IEEE International Conference on Com-

puter Communication and the Internet (ICCCI), pages 6–9, Oct 2016.

Achievements

1. Nawras Khudhur and Satoshi Fujita, “Siva the ipfs search engine.” In Pro-

ceedings of CANDAR’19 pages 150–156. Selected as a CANDAR 2019

Outstanding Paper.

2. Nawras Khudhur and Satoshi Fujita. “Siva – The IPFS Search Engine.” In

Bulletin of Networking, Computing, Systems, and Software 8.2 (2019) pages

98-103.

31

