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Abstract

The fast adoption of battery electric vehicles (BEV) has resulted in a demand for

rapid technological advancements. Strategic areas undergoing this development

include lithium-ion energy storage. This is inclusive of electrochemical design

improvements and advanced battery management control architectures. Field

objectives for these developments include but are not limited to, reductions in cell

degradation, improvements in fast charging capabilities, increases in system-level

energy densities, and a reduction in energy storage costs. Improvements in

online predictive models provide a path for realising these objectives through

informed control interactions, reduced degradation effects, and decreased vehicle

costs. This thesis contributes to these developments through improvements in

fast physics-informed battery models for both lithium-ion and lithium-metal

batteries.

The key novelty presented is the improvement of real-time, physics-based

electrochemical model generation for lithium-ion batteries. A computationally

informed realisation algorithm is developed and expands on the previously pub-

lished realisation algorithm methods. An open-source Julia-based architecture is

presented and provides a high-performance implementation while maintaining

dynamic language capabilities for fast code development, and readability. A

performance improvement of 21.7% was shown over the previous discrete re-

alisation algorithm, with an additional framework improvement of 3.51 times

when compared to the previously published framework. A methodology for the
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creation and modification of the reduced order models via in-vehicle hardware is

presented and validated through an ARM-based model generation investigation.

This addition provides a versatile method for cell degradation prediction over the

battery life and can provide an interface for improved prediction of cell-to-cell

variations. This methodology is applied to intercalation-based NMC/graphite

batteries and is both numerically and experimentally validated.

A further element of novelty produced in this thesis includes advancements in

lithium-metal phase-field representations through the creation of a Julia-based

numerical framework optimised for high-performance predictions. This framework

is then utilised as a ground truth model for the development of an autoregressive

physics-informed neural solver aimed to predict lithium-metal evolution. Through

the implementation of the physics-informed neural solver, a reduction in the

numerical prediction time of 40.3% compared to the underlying phase-field

representation was achieved. This methodology enables fast lithium-morphology

predictions for improved design space explorations, online deployment, and

advancements in electrodeposition material discovery for lithium-metal batteries.
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Chapter 1

Introduction

1.1 Research Motivation

As climate impacts are accelerating, worldwide governing bodies are looking to

reduce carbon emissions through expansion in renewable energy, emission taxes,

and rebates for low-carbon vehicles, among other mechanisms. One such method

is the adoption of battery electric vehicles (BEV), which have gained market

share as passenger vehicle emission standards have increased across the globe

[3]. As these standards become difficult with internal combustion engine (ICE)

vehicles, automotive manufacturers have turned to hybrid-electric (HEV) and

pure battery electric production. BEVs store energy from grid energy solutions

such as hydroelectric, gas-turbine, photovoltaic, wind turbine, nuclear-fission,

and coal combustion in onboard electrochemical batteries. This onboard storage

of grid energy results in the life-cycle carbon footprint of BEVs varying depen-

dent on the local grid generation mixture [4]. Due to this coupling, low carbon

generation is required to minimise the life-cycle footprint and is projected to

increase with renewables meeting 80% of the global electricity demand during the

next decade [5]. As the grid-generated carbon footprint decreases, the individual

BEV footprint trends towards a minimum governed by the vehicle manufacturing
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process [6, 7]. Figure 1.1 provides a predictive comparison of life-cycle carbon

footprints for internal combustion, hybrid, and battery electric vehicles in the

EU market from 2021 to 2038. As low carbon grid generation and electric vehicle

manufacturing mature, the carbon footprint is expected to decrease further

[8]. Furthermore, with current grid generation data (2021) and manufacturing

capabilities, utilisation of BEVs provide a reduction in fleet emissions, satisfying

the automotive emissions standards and providing consumers with a lower carbon

footprint alternative [8].

Fig. 1.1 Comparison of predicted life-cycle carbon emissions of conventional
combustion powertrain and battery electric small segment vehicles from 2021-
2038 in the EU. This figure is reproduced from the ICCT white paper: "A Global
Comparison of the Life-Cycle Greenhouse Gas Emissions of Combustion Engine
and Electric Passenger Cars 2021" [8]

New challenges present themselves as the automotive industry transitions

from internal combustion to battery electric, requiring research attention to

ensure consumers experience a seamless transition. One such challenge is the

current onboard energy deficiency BEVs have compared to conventional combus-

tion vehicles. This deficiency stems from the large gap between usable energy

density in current lithium-based batteries and conventional petrol [9]. This

currently results in higher mass vehicles and/or lower vehicle range depending
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on the design decisions made in the vehicle concept phase. As well, current

electrochemical storage methods are charge power limited, resulting in major

challenges in reducing the minimum time for charging [10]. Lastly, the electro-

chemical storage experiences capacity degradation over the vehicle’s lifetime,

which provides a societal challenge in the transition from internal combustion, as

it does not experience this form of degradation. Furthermore, this degradation

occurs through multiple electrochemical and mechanical mechanisms, providing

a difficult problem to constrain and achieve immediate improvements.

The current mechanism to minimise electrochemical degradation is the battery

management system (BMS). This system ensures safe, reliable operation of

the onboard energy storage and acts as a supervisory control structure. This

control system is conventionally developed to prioritise safe operation over

battery performance. The system monitors observable information such as

temperature, current, and terminal potential to determine acceptable power

limits of the onboard battery. This structure provides a stable, safe interface

to the vehicle control unit but does little to optimise the vehicle’s performance.

Integration of internal state predictions has been previously shown to provide

performance and safety improvements to the BMS [11, 12]; however, achieving

accurate electrochemical state predictions can be computationally expensive

for conventional BMS hardware resulting in increased vehicle manufacturing

costs via high-performance computational hardware. This is mainly due to

the modelling complexity of the electrochemical system, with highly non-linear

dynamics needing to be predicted.
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1.1.1 Thesis Aims

The aims of this thesis are separated into two main concepts. The first is to provide

a robust method to acquire the internal state information for current chemistries

and future developments at a deployable computational cost. Achieving this

aim enables the ability to accurately model and predict the electrochemical

states of the battery, in real-time, on low-cost hardware, which enables an

improved understanding of the safe operating limits of the cells; thus, higher

levels of energy can be extracted without exceeding safe operating limits. This

improvement in extracted energy would directly enable increased vehicle range,

performance and safety. Inside this overarching aim, this work aims to provide

an improved methodology advancing the field towards improvements in onboard

battery utilisation for future transportation sector electrification.

The second aim of this thesis is to develop methods to enable fast internal

state prediction of high-energy next-generation batteries, advancing current chal-

lenges in achieving cycle life requirements for automotive applications (>800

cycles [13]). This includes the development of improved numerical frameworks for

conventional numerical solvers, as well as the implementation of neural solvers

for low-computation electrochemical predictions. By enabling fast electrochem-

ical modelling of lithium-metal batteries, this thesis provides an incremental

improvement for future BEVs through a reduction in vehicle mass, extended

range, and lower costs which will be assessed from an application perspective via

an introduced multi-scale battery design framework.

The remainder of this chapter presents the necessary background and literature

assessment of lithium-based batteries needed for later chapters. Finally, an

overview of the structure of the thesis is presented.
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1.2 Lithium-Based Battery Mechanics

This section presents the underlying operating principles for lithium-based batter-

ies and introduces the reader to the necessary knowledge for the work presented

in later chapters. Due to the variety in lithium-based chemistries, this section

aims to limit the material introduced to a high level, with a further literature

review provided in the following chapter.

1.2.1 Lithium-ion Mechanics

The operation of an intercalation-based lithium-ion battery involves ion trans-

portation between a porous positive electrode (cathode) to a porous negative

electrode (anode) through an electrolyte medium as shown in Figure 1.2.

Fig. 1.2 Lithium-ion unit cell with relative thickness scale to a production LG
Chem M50 21700 cylindrical battery undergoing a charge operation. Ion transfer
(light blue) is shown with the corresponding electron transfer direction (light
blue).
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A nonconductive porous separator is placed between the two electrodes

enabling ionic transport while providing the required electrical insulation. As

an external electrical load is applied to the current collectors of the cell, lithium

is oxidised at the negative electrode, and an electron and ion pair is produced.

The electron travels through an external circuit towards the positive electrode.

The lithium ions likewise travel through the porous separator via the electrolyte

to the positive electrode, where reduction occurs. For liquid electrolyte cells, the

electrodes are immersed in the electrolyte, thereby increasing the ion diffusivity

from porous electrode to porous electrode. The process is inverted when the

external load is replaced with an electrical source, with Figure 1.2 providing a

visual example of the lithium-ion cell under this condition.

Material selection for each component provides a mechanism for tailoring the

final cell to specific applications, with common compromises between battery

lifetime, capacity, energy, and power. The electrochemical dynamics can be

engineered for different applications by modifying the composition and physical

geometry of these electrochemically active components. Current common cell

geometries include cylindrical, prismatic, coin, and pouch, with the expansion of

these common geometries in formats such as blade [14] and structurally integrated

[15]. The four common geometries are shown in Figure 1.3.

Each of these formats provides applications specific benefits, such as the high

volume densities and low-cost capabilities for the cylindrical format; however,

they also have compromises, such as the higher nominal impedance for the same

conventional cylindrical format. In addition to cell geometries, electrochemical

design is commonly a process of optimising micro-scale parameters for a predeter-

mined operational characteristic. For example, by increasing electrode thickness

while maintaining constant porosity, the reversible capacity can be increased

[17]; however, this commonly results in higher electrochemical polarisation and a

decrease in the capable power output of the cell.
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Fig. 1.3 Visual representation of a) Cylindrical, b)Prismatic, c) Coin, and d)
Pouch geometries. This figure is an adaptation from "Issues and challenges facing
rechargeable lithium batteries" [16].

1.2.2 Lithium-ion Chemistries

With the development of the lithium titanium disulfide (LiT iS2) cathode by

Goodenough et al. [18] in 1980, a commercially viable cathode material was

available for rechargeable lithium-based batteries that were capable of reversible

(de) insertion of lithium ions. The creation of the lithium cobalt oxide, LiCoO2

(LCO) cathode enabled the wide adoption of intercalation lithium-ion batteries

[19]. This discovery resulted in approximately twice the energy density compared

to the LiT iS2 chemistry due to the increase in nominal potential and the im-

provements in the reversibility of lithium insertion at low cathode concentrations.

From that point forwards, improvements in cathode active material composition

have resulted from multiple years of academic and industrial research.

Lithium cobalt oxide provides a very capable solution and is still commonly

used in portable electronics [20]. This composition is comprised of a rock-salt

layered structure and is capable of a specific capacity of approximately 170
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mAh/g with a high nominal potential of 3.8V; however, due to its low thermally

stability of 200°C and large environmental and humanitarian impacts from

the high percentage of cobalt, alternative compositions are actively researched.

Nickel and manganese additions to the cobalt cathode have resulted in hybrid

compositions known as nickel-cobalt-manganese (NCM). Depending on the molar

ratio between these species, higher specific energy can be achieved, with NCM811

(8:1:1) providing up to 200 mAh/g, with other common compositions being

NCM111 (1:1:1) and NCM622 (6:2:2). These hybrid compositions have reduced

the required cobalt in lithium-ion batteries; however, increased nickel ratios have

shown a decrease in thermal stability, with NCM811 being thermally stable up

to 232°C in comparison to NCM111 at 306°C [21].

As these hybrid compositions enable higher specific capacities, with similar

nominal potential (3.7V vs 3.8V), an energy density improvement over the con-

ventional LCO composition is commonly experienced. This increased energy

density, coupled with the lower cobalt requirement, has resulted in NCM compo-

sitions commonly used in transportation applications such as automotive and

aerospace. Alternatively, tunnel-like octahedral (olivine) structured compositions

such as LiFePO4 (LFP) provide high thermal stability with a specific capacity

of approximately 165 mAh/g; however, due to a 3.45V nominal potential, the

energy density is reduced compared to the previously discussed layered structure

compositions. These olivine structured compositions offer lower environmental

impacts than the layered structure compositions due to the lack of cobalt with

improved worldwide access to the active materials; as such, they are heavily

utilised in grid-storage applications and low-cost automotive BEVs. Table 1.1

below presents a list of common active material compositions currently utilised in

various applications. As previously stated, these compositions provide different

characteristics, such as safe operating temperatures, specific capacity, and rated

cycle life. This table is not meant to be exhaustive but to reference the current
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state of cathode compositions.

Table 1.1 Common Cathode Material Compositions [22]

Short Name Composition Nominal Potential [V]

Specific Capacity

Theoretical / Experimental

[mAh · g−1]

Volum. Capacity

[mAh · cm−3]

LTS LiT iS2 1.9 225 / 210 697

LNO LiNiO2 3.8 275 / 150 1280

LCO LiCoO2 3.98 274 / 160 1363/550

NMC111 LiNi0.33Mn0.33Co0.33O2 3.84 280 / 160 1333/600

NMC811 LiNi0.8Mn0.1Co0.1O2 3.84 280 / 215 [23] - / 960 [24]

NCA LiNi0.8Co0.15Al0.05O2 3.84 279 / 199 1284/700

LFP LiFePO4 3.45 170 / 165 589

Anode material compositions have equally been developed to improve battery

lifetime, specific capacity, and specific energy. On large, graphite composition

has been commonly utilised in most commercial applications. This is mainly due

to graphite’s low nominal potential with reference to Li/Li+, thermal stability,

and strong ionic rate capabilities. Graphite has a theoretical specific capacity of

372 mAh/g with storage as one lithium ion per six carbon atoms as shown in its

lithiated atom structure of LiC6 and provides a low expansion ratio during lithi-

ation of 10% [25]. However, due to its low reference potential to lithium, under

high rates, the storage mechanism can change from intercalation to plating when

a combination of negative local overpotential and graphite surface saturation [26].

Alternative compositions such as lithium titanate (LTO) and silicon/graphite are

also being utilised. Specific capacity improvements can be obtained by doping

graphite with a small molecular percentage of silicon. This is realised through the

high alloying ratio of silicon to lithium ions, i.e. 1 silicon atom per 4 lithium ions.

High volume expansion is commonly experienced when utilising pure silicon as an

anode and is commonly minimised through doping graphite to achieve a hybrid

composition. Alternatively, LTO offers low volume expansion and high ionic
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rate capabilities with minimal capacity degradation; however, the full cell energy

density is greatly reduced due to the high Li/Li+ potential. Finally, storage as

pure lithium has received research interest in the last decade, specifically due to

the high theoretical specific capacity (3860 mAh/g); however, as introduced in

the next section, challenges in achieving high cycle life as well as high lithium

costs are currently hindering this objective. A list of commonly utilised anode

compositions are displayed in Table 1.2 below.

Table 1.2 Anode Material Composition [22, 27]

Short Name Composition
Specific
Capacity

[mAh · g−1]

Lithiation
potential [V]

Delithiation
potential [V]

Diffusion Const
(cm2s−1) Volume Delta

Graphite LiC6 372 [28] 0.07,0.10, 0.19 0.1, 0.14, 0.23 10−11 − 10−7 10%

Silicon c-Si 2800 [29] 0.05, 0.21 0.32, 0.47 10−13 − 10−11 270%

CuSn Cu6Sn5 − Sn 1020 [30] 0.4, 0.57, 0.69 0.58, 0.7, 0.78 10−16 − 10−10 255%

LTO Li4Ti5O12 175 [31] 1.55 1.58 10−12 − 10−11 0.20%

NWO Nb16W5O55 225[32] 1.0 3.0 2.1 × 10−8 −
1.7 × 10−9 5.5%

Furthermore, the requirements of the separator are to prevent the electrodes

from forming short circuits while providing high ionic conductivity for ion

transportation. Commonly, polypropylene and polyethene thin film compositions

are utilised. Next, lithium salt compositions dissolved in organic carbonate

solvents are commonly utilised for liquid electrolyte batteries. As the electrolyte is

required to maintain a robust, stable medium for ionic transport, alternatives are

consistently being investigated to improve ionic conductivity, dielectric constants,

and transference number while firstly maintaining a feasible manufacturing cost

and achieving viscosity, volatility, and operational temperature constraints. A

common electrolyte composition is 1M of lithium hexafluorophosphate (LiPF6),

combined with ethylene carbonate (EC) and diethyl carbonate (DEC) at a
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volumetric ratio of 1:2; however, electrolyte development is an active field with

improved compositions currently being discovered.

1.2.3 Lithium-Metal

Lithium-metal batteries provide an attractive solution for advancements in bat-

tery energy density while reducing potential manufacturing costs. These batteries

utilise pure electrodeposited lithium as storage in place of the porous negative

electrode conventionally used in the insertion-based lithium-ion batteries de-

scribed above. The development of lithium-metal batteries started in the 20th

century; however, it was replaced by intercalation-based lithium-ion due to ther-

mal safety issues and poor cycle life. Research interest in lithium-metal batteries

has recently expanded due to the trend towards higher energy requirements

for electrified transportation. Lithium-metal batteries can be split into two

sub-groups: anode-free and metal anode. An active material anode is omitted

during manufacturing for anode-free batteries, with pure lithium-metal deposit-

ing on the current collector during the formation cycle. Anode-free solutions

offer the highest available energy density and specific capacity (3680 mAh/g);

however, due to the lack of lithium reservoir, they are commonly susceptible to

failure mechanisms and have short cycle lifetimes [33, 34, 35]. The metal-anode

alternative utilises a lithium metal foil alternative as a lithium reservoir from

the first cycle. It can provide higher cycle lifetimes if the loss of lithium is the

predominant failure mechanism. Due to the high cost of lithium, minimising

the lithium reservoir is widely beneficial, as it also improves the energy density

of the battery. Figure 1.4 presents a visualisation of a lithium-metal unit cell

during charging operation, with ionic transport in the liquid electrolyte enabling

lithium anode electrodeposition.
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Fig. 1.4 Lithium-metal unit cell with scale representative LG Chem. M50 cathode
and separator, and 27.5µm thick electrodeposited lithium anode.

Further challenges with lithium-metal batteries stem from the plated storage

mechanism, specifically the potential for the lithium morphology to tend toward

mossy dendritic growth. Previous investigations have found that this dendritic,

tree-like growth can result in lithium punctures in the separator, causing internal

short circuits [36, 37]. Additional to this short circuit failure mode, the cycling

efficiency can be greatly impacted by this dendritic lithium [38, 39, 40]. These

tree-like structures can also become electronically isolated during discharge

cycling through disconnection from the current collector. Recent studies have

investigated methods to reconnect this isolated lithium through increases in

stripping current [39]; however, a definite path to reverse this failure mechanism

is unclear. It appears that the most successful method is to avoid the creation

of mossy lithium formation, of which success has been found in increased stack
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pressures [40, 41], optimising the charge/discharge rate ratio [35], and dual-salt

electrolyte compositions [42].

1.2.4 Battery Chemistry: A Multi-Scale Optimisation

Problem

Many fields benefit from fast, robust electrochemical models, as previously dis-

cussed. Another field currently heavily reliant on experimental discoveries is

battery design and manufacturing. The development of future material compo-

sitions can greatly benefit from predictive models aimed at improving system

understanding and design-space explorations. Experimental fabrication and

electrochemical characterisations actively lead next-generation electrochemical

material discovery. This is largely due to the difficulty in creating high-fidelity

multi-scale electrochemical models capable of effectively predicting atomistic

scale interactions at mesoscale applications. The Faraday Institute multi-scale

modelling project [43] is one such consortium aimed at addressing this discon-

nect. This research aims to discover the underpinning parameters required for

connecting differing electrochemical scales in a robust, identifiable method. A

visual representation of the different length scales and their connections across

the field is shown in Figure 1.5.

While the work in this thesis does not aim to solve the multi-scale challenge,

the presented modelling framework in Chapter 4 is aimed toward providing

insight into multi-scale interactions. This framework includes a physics-based

representation that provides the underlying data requirements for future physics-

informed data-driven approaches. Additionally, through the work discussed in

Chapter 4, a software package for high-level decision and scoping which utilises

multi-scale parameters is presented.
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Fig. 1.5 Visual representation of the multiple scales in electrochemical modelling,
from atomistic scale defining atom interactions and crystal orientations to full-
vehicle or grid attached energy storage pack design. This figure is reproduced
from the Faraday Institute Multi-Scale Modelling Project [43].

1.3 Fast, Robust Electrochemical Modelling

Battery management systems are utilised in electrochemical energy storage

to control system demands, minimise long-term degradation, and meet pack

safety constraints. The BMS will vary in control structure, system sensors, and

embedded hardware; however, an overarching similarity of these systems is the

gathering of system information, processing and filtering of this information, and

then applying a control decision from the processed information. These control

systems are developed on real-time embedded hardware ensuring decision-making

is consistent and independent of system operating states. Accurately capturing

the current state of operation for a lithium-based battery is an ongoing research

area, as it is difficult to guarantee predictions across all operational conditions;

however, the need for accurate predictions is growing as the demand for longer

cycle-life, power performance, and cost reductions in the onboard energy storage

increases.

The current state of the art for onboard battery modelling depends on the

application field and the requirement of the system; however, with advancements

in optimal control strategies, improved online prediction models have expanded.
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Three main model frameworks are actively utilised and investigated for online

battery management systems, data-driven, physics-based, and a hybrid combina-

tion. However, each modelling type provides capabilities to accurately predict

the online energy storage state with differing creation requirements.

Data-driven approaches have conventionally utilised electrical component-

based representations, such as equivalent circuits [44, 45, 46, 47] representing

the cell through common electrical components such as resistors and capacitors.

As the name suggests, data-driven or empirical models require observed data of

the system in question. This data can be generated from higher order models,

often known as digital twins, or through prior experimental measurements of

the system, both of which can be in the time domain, frequency domain, or a

combination of both [48, 49, 50]. Acquiring this data can be resource expensive,

as it often requires specialised equipment and extensive experimental protocols

over months and sometimes years.

Alternatively, physics-based models provide insight into the battery’s under-

lying states, providing an attractive solution for optimal control strategies aimed

at improving cycle-life and maximising performance [11, 12]. The creation of

these models is numerically complex compared to the conventional data-driven

approach and requires multiple experimentally captured physical parameters to

guarantee fidelity. Additional methods to reduce the experimental data require-

ments for this approach have been investigated and included system identification

through frequentist, and bayesian approaches [51, 52].

Finally, a hybrid approach that includes both underlying physical state

information and data-driven approaches has recently become of interest to

the field [53, 54, 55]. This framework can provide extrapolation guarantees

unavailable for pure data-driven approaches while offering the state information

that the physics-based models provide. Challenges with this framework include

minimising the data requirements to ensure resource costs are competitive and
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developing robust methodologies that ensure the final model correctly captures

the underlying system dynamics.

System information for data synchronisation and state estimation in models is

obtained through multiple system sensors, including terminal potential, current,

and temperature sensing. This information is gathered spatially in the energy

storage pack at varying frequencies depending on the system dynamics. Due

to the cost and system complexity, reducing sensing equipment in the pack is

desirable. Additional system challenges, such as reducing management systems’

available information, are introduced by removing this equipment. The lack

of state knowledge can be mitigated by augmenting this reduction of sensing

equipment with high-fidelity battery models. This can also provide system

benefits, such as reductions in system faults and overall energy storage mass,

while providing additional system information and improved safety decisions.

1.4 Thesis Outline

Chapter 1 (Introduction) introduces the research motivation for this the-

sis and presents background on lithium-based battery operation, the current

state-of-art of online battery modelling for battery management systems and the

corresponding challenges. Lastly, the need for fast predictive models to support

research and design operations is described. This chapter includes an overview

of the originality and publications created in this thesis.

Chapter 2 (Literature Review) summarises the modelling methodologies

utilised in this thesis and introduces a methodology for high-level design deci-

sions in lithium-based battery development. This chapter presents the current

state-of-the-art in reference to the aims and objectives presented in the previous

chapter. Finally, this chapter frames the motivation for fast, order-reduced
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methods, which are further expanded in the following chapters.

Chapter 3 (Fast, deployable, lithium-ion models) presents the compu-

tationally informed discrete realisation algorithm capable of generating physics-

informed reduced-order models. This chapter introduces a modelling framework

capable of creating offline and online reduced order models, providing a novel

degradation-capable, real-time physics-informed solution. This chapter also

validates the presented framework for both experimental data as well as the

full-order system. Lastly, this chapter deploys the generated models onto an

embedded target and verifies real-time capabilities with additional surrogate

model coupling for fast linearisation.

Chapter 4 (Multi-scale Battery Modelling) acts as a bridged chapter

and introduces the benefits of multi-scale models for system design while pro-

viding the reader with the required research motivation for Chapter 5. This

chapter investigates differing storage mechanisms for lithium-based batteries

and introduces a software package capable of capturing microscale parameter

effects on full-scale vehicle drive-cycles. An example is investigated that utilises

a high-performance motorsport application to predict system-level characteristics.

Chapter 5 (Message-Passing Graph Neural Networks for Lithium-

Metal Modelling) introduces a phase-field model developed to numerically

predict lithium-metal anode evolution during stripping and plating for differing

initial geometry. This chapter also discusses the completed numerical optimisa-

tion to advance the phase-field representation. A message-passing graph neural

network framework is presented to capture underlying physical dynamics in the

moving boundary lithium-metal anode. This chapter dives further into data-

driven modelling methods, intending to retain underlying physical information
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for global optimisation and design capabilities.

Chapter 6 (Conclusion) summarises the work presented in this thesis and

the novelty presented. This chapter also discusses future work and the limitations

of the presented work.



Chapter 2

Lithium-based battery models

Modelling lithium-based batteries provide the capability to improve system

understanding. Further, by improving real-time capable physics-informed models,

this is extended embedded control systems for improved performance. This

chapter introduces the battery models, challenges, and assessment of gaps in the

literature for this thesis. This chapter will assess the current methods in fast,

physics-informed battery modelling while introducing the concepts needed for

the work presented in future chapters. Once the gaps in the literature have been

discussed, an assessment of the novelty presented in this thesis will be presented.

Section 2.1 overviews lithium-ion cells and introduces the need for reduced-

order battery models. It first provides a background on various models before

diving further into the derivation of the models utilised in this thesis. Section

2.1.2 introduces the Doyle-Fuller-Newman (DFN) model and its multi-particle

representation of the electrochemical dynamics. The DFN is utilised as the basis

for order reduction in the work presented in Chapter 3. The model derivation,

with a discussion of the computational requirements for the DFN, is presented.

Section 2.2 overviews lithium-metal-based cells and the requirement for

new modelling methods as advancements in cell design, manufacturing, and

deployment are completed. Section 2.2.2 provides an introduction and review
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of physics-informed machine learning methods. This section assesses previous

implementations in the literature and discusses the current gaps for micro-scale

models. This section also provides the reader with the background needed for

the work presented in Chapter 5.

Finally, Section 2.3 concludes the assessed work, with a discussion on the

gaps with Section 2.3.1 summarising the novelty introduced in the remainder of

this thesis.

2.1 Lithium-ion models

With the rapidly increasing adoption of battery electric vehicles (BEVs), expan-

sion of in-vehicle battery modelling and control are required to improve safety

and driving performance while ensuring the vehicle battery pack reaches the

desired lifetime. Providing a viable method for capturing real-time degrada-

tion mechanisms coupled with physics-based electrochemical models is a key

achievement required for future electric vehicle advancements [56]. This coupling

benefits from meaningful physical states captured during online predictions that

correspondingly map to degradation modes that can be experimentally validated.

These degradation modes have corresponding mechanisms with recent literature

aiming to quantify and identify models that enable high-fidelity predictions.

Combining this, reduced-order physics-based models that predict battery degra-

dation will enable a control mechanism to further optimise and mitigate battery

degradation during operation. To achieve this target, battery models capable

of being deployed onto battery control systems with electrochemical informa-

tion are required. As previously discussed, battery management systems ensure

hardware limits are maintained while providing the requested interaction from

the operator. These systems accomplish this by ensuring the pack is in a safe

state for operation, protecting the individual cells from abuse, and reducing the
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battery pack degradation over the lifetime of operation. This is often achieved

through online predictive models for hardware limit forecasting, plant-based

control structures, and state estimation.

Data-driven models such as an equivalent circuit model (ECM) [47, 57, 58] are

commonly utilised for online prediction as they provide reasonable performance

and have a well-established path for model creation. These models are numerically

deployed onto in-vehicle embedded systems and provide information to the

BMS that typically would not be attainable via direct sensing methods. This

information is provided at designated non-flexible time intervals to the onboard

control strategy with key performance indicators such as state-of-power (SOP),

state-of-charge (SOC), and state-of-health (SOH) calculated through onboard

measurements. Each of these state variables provides insight into the vehicle’s

capabilities for future operation. These models can provide a fast, reliable

solution; however, the creation requires existing data that encompasses the

entire operating range of the cell to ensure a stable response to the predicted

operating conditions. Obtaining this data is time-consuming, of the order of

multiple months to years of test channel time, and also requires expensive test

equipment. These models also lack electrochemical generality due to their nature

and the model data requirements needed to achieve acceptable performance. For

example, ECMs utilise idealised, theoretical electrical components to represent

cell behaviour, whose properties are numerically calibrated so that the model

output is consistent with only a few basic measured cell characteristics, such as

terminal voltage [59]. As such, generality isn’t achievable for cell characteristics

across varying chemistries, geometries, and operating conditions. Additionally,

without observing internal electrochemical states during data acquisition, insight

into these properties of the cell is not available, making predictions of long-term

battery pack degradation difficult and inaccurate [56, 60, 61, 11, 62]. For many

OEM’s that are looking to have a vast array of performance from commuter
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vehicles to high-performance sports cars, this lengthy process is needed for each

separate cell and pack configuration they wish to utilise.

An alternative to data-driven models is physics-based models, such as the

Doyle-Fuller-Newman Pseudo-2D (DFN) [63, 64] or the Single Particle Model

(SPM) [65]. These models provide internal electrochemical insight and can offer

a viable solution for degradation-sensitive next-generation lithium-ion cells such

as nickel-manganese-oxide (LNMO) or high-voltage NMC chemistries [66, 67,

68]. This coupling is mathematically complex and requires knowledge of multiple

physical parameters, which can be difficult and/or expensive to obtain. The

information provided by these models is beneficial for theoretical development,

cell design iteration and development, as well as pack design and validation.

This work enables advancements at a lab-based level where computational load

and time are available; however, it is not currently a reasonable solution for

onboard deployment. Furthermore, accurate long-term predictions are within

these model’s capabilities, providing coupling for cell degradation mechanisms

such as intercalation electrode lithium plating, loss of active material (LAM) and

loss of lithium inventory (LLI), pore-clogging, and dendrite growth [56, 68]. Due

to the beneficial information provided by physics-based models, work has been

completed to reduce the numerical complexity and computational performance

requirements.

Simplifying the partial differential equations governing the system is one such

method and has resulted in the SPM and its electrolyte capable (SPMe) form

[65]. Additional methods include, Padé approximations [69], residue grouping [70,

71], and parabolic solid-phase diffusion approximations [72]. Further reduction

is required to achieve deployment on battery management systems; however,

one such method reduces the partial differential equations to continuous-form

transfer functions combined with eigensystem realisation algorithms [73, 58, 74].

Likewise, Jin et al. developed a reduced-order capacity-loss model for graphite
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anodes that focused on only the most significant degradation mechanisms to

improve computational efficiency [75]. Similarly, Han et al. developed a reduced

order lumped electrochemical-thermal cell model by applying a state space

approach to transform partial differential equations into ordinary differential

equations [76]. These reductions aim to deploy capable predictive models to

battery management systems and are heavily numerically reduced. The reduction

of these models provides a computationally reasonable model that provides

electrochemical information capable of providing this additional insight beyond

the capability of conventional ECM. However, these methods have not achieved

in-vehicle model generation; that is to say, these models are conventionally formed

offline and deployed on the embedded targets via standard deployment tools. To

achieve a degradation-capable implementation of these reduced order models, this

thesis will present improvements that enable model generation in-vehicle, thus

showcasing the potential for updated parameterisation over the energy storage

lifetime.

Beyond model fidelity and computational cost, the parameterisation of these

models is a critical requirement that recent literature has provided improvements

[77, 78, 79, 80, 81, 82]. The parameterisation of physics-based models requires

further insight than conventional data-driven methods such as the ECM. Due

to the micro-scale parameter definitions, standard parameterisation methods

include pre/post mortem deconstruction of the cell, half-cell electrochemical

experiments, and physical measurements at the micro-scale through scanning

electron microscopy. Alternative methods for parameterising the physics-based

models have been investigated that minimise the experimental requirements

through statistical inference and parameter fitting [51]. These methods offer a

viable solution to achieve physical parameterisations; however, due to the nature

of this methodology, validation of the corresponding model should be completed

to avoid low model fidelity outside of the experimental fitting domain.
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As discussed above, there are numerous benefits to deploying these reduced-

order electrochemical models onto a BMS, including improved accuracy for

predictions in SOC, SOP, and SOH [83, 84]; however, to ensure robust, stable

operation of the BMS, the deployed model needs to be real-time capable for

the given hardware. This requirement is fulfilled if the online model can be

solved before the BMS is required to communicate the solution or provide a

control interaction. Depending on the application, this solution rate can have

requirements as low as 1 Hz to upwards of 10 Hz in fast dynamic systems.

Therefore, the final reduced model must be capable within these ranges to be

seen as a viable solution.

2.1.1 Equivalent circuit model

As previously discussed, data-driven battery representations are commonly used

in battery management systems due to the ease of parameterisation and low

computational requirements. One such model, the equivalent circuit model

(ECM), is commonly used throughout the industry to predict the electrical voltage

response of the lithium-ion battery. This model represents the electrochemical

reactions in the battery as pure electrical components, such as resistors, capacitors,

and voltage sources. Each of these components requires parameter estimation

for accurate fitting and corresponding predictions. Due to this requirement,

experimental testing of the physical battery, with a procedure representing the

final prediction application, is commonly completed. Figure 2.1 below shows a

visual representation of the ECM.

The above figure introduces the two-branch equivalent circuit model, which

utilises two parallel resistors-capacitor pairs, C1, R1 and C2, R2, to predict the

electrical dynamics of the system. A series resistor, R0, is introduced to capture

the ohmic resistance of the cell, with a voltage source term, OCV , commonly
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Fig. 2.1 Equivalent circuit model with two resistor-capacitor branches.

modelled via polynomials with a functional input as battery state-of-charge

providing the open-circuit potential or through simplistic look-up tables. Finally,

each parallel resistor-capacitor branch represents diffusion voltage, with additional

branches added to capture higher complexity dynamics. The terminal battery

voltage is computed through the following equation,

Vt = OCV (θ) −
j∑
i=1

Rnin −R0i0, (2.1)

where θ denotes the battery state of charge, the polarisation due to each resistor-

capacitor pair is captured through a summation operator of the corresponding

resistor, Rn and loop current, in for each resistor-capacitor pair. Finally, the

pure ohmic polarisation of the cell is defined by R0 and i0. Common methods

for parameter fitting of R0, Cn, Rn for this model include, particle-swarm

optimisation [57, 85], least-square [86, 87], and genetic algorithms [86, 88]. As

equivalent circuit models are commonly utilised in real-time control applications,

they will be utilised as a benchmark for the reduction methods presented in

Chapter 3.
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2.1.2 Doyle-Fuller-Newman Model

Perhaps the most common continuum-order physics model is the Doyle-Fuller-

Newman (DFN) model. This model, first presented in two main publications [63,

64], has become a popular choice for electrochemical battery modelling due to

its ability to capture multi-scale electrochemical processes within a lithium-ion

cell utilising multi-particle interactions. The DFN describes electrochemical

electrodes of scale ∼ 100µm and active material particle size of scale ∼ 1µm.

These length scales are modelled one-dimensionally and coupled to produce a

pseudo-two-dimensional model space, often alternatively known as the "P2D"

model. The geometry captured includes three domains: the positive electrode,

the negative electrode, and the separator, with electrolyte spanning all three

domains. As previously discussed in Section 1.2.1, under discharge, the negative

electrode oxides lithium ions into the liquid electrolyte, with the positive electrode

reducing those ions into the porous media. This process is reversed for charging

and is the basis behind a reversible electrochemical battery.

This model introduces charge transfer reactions distributed throughout the

unit cell thickness x ∈ [0, L] with intercalated lithium diffused through the

spherical domain r ∈ [0, Rk] where subscript k defines the corresponding com-

ponent domain, i.e. k ∈ {n, s, p} where n represents the negative electrode, s

the separator, and p the positive electrode domain. Mathematically solving this

system across the domains above results in most of the differential equations

spanning the unit cell thickness, except lithium migration in the solid phase

active material being defined via diffusion and solved at a microscale length

dependent on the average pore size for each electrode. Figure 2.2 below presents

a diagram describing the unit cell. The multi-particle representation is shown

with the corresponding particle diameter relating to the average pore size in the



2.1 Lithium-ion models 27

porous electrodes denoted.

Fig. 2.2 Unit cell with Doyle-Fuller-Newman representation and corresponding
electrical circuit. Stack thickness is scaled from an LG M50 lithium-ion battery[1]

2.1.2.1 Solid-phase lithium transport

Lithium transport occurs through (de)intercalation in the active material and

migration in the electrolyte governed by concentration gradients. For the active

material, porous electrode theory is utilised to capture the transport, as well

as charge balance at the solid electrode-electrolyte interface (SEI) and charge

transfer kinetics. This theory defines the porous electrodes as a superposition of

three states: electrolyte, electrochemically active material and non-active material

such as binders [89]. This solid state lithium (de)intercalation is governed through
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Fickian diffusion and is presented in equation (2.2) below.

∂cs,k
∂t

= 1
(r)2

∂

∂r

(
Ds,k(r)2∂cs,k

∂r

)
, (2.2)

where the solid-state diffusion coefficient is Ds,k and is conventionally acquired

through experimental testing methods such as galvanic intermittent titration

testing (GITT). The mean active particle radius is introduced as r, representing

the corresponding mean pore size for the given domain. Through the spherical

particle symmetry, the boundary condition at r = 0 for the above diffusion

equation is defined as,
∂cs,k
∂r

∣∣∣∣∣
r=0

= 0. (2.3)

Additionally, the boundary condition at the outer particle surface r = Rs is

defined through the inhomogeneous Neumann condition,

−Ds,k
∂cs,k
∂r

∣∣∣∣∣r = Rs = −jk
F

, (2.4)

where jk represents the lithium flux between the solid phase active material and

the electrolyte, and F is the Faraday constant.

2.1.2.2 Lithium transport in the electrolyte

The domains for the DFN are separated into solid-phase active-material and

electrolyte. Concentration solution theory describes the ionic species migration

for lithium transportation in the electrolyte domain. This is completed through

the relation of the electrochemical potential gradient to the mass flux [90]. The

above, combined with the differentiated applied current density source term, gives

the electrolyte mass balance equation (2.5), capturing the ionic concentration

evolution.
∂(ϵkce,k)

∂t
= ∂Ne,k

∂x
+ 1
F

∂ie,k
∂x

, (2.5)
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where ϵk defines the volume fraction of active material in the porous electrode.

Ne,k introduces the molar flux of the electrolyte species, and ie,k defines the ionic

current density in the electrolyte. Additionally, the boundary conditions defining

the electrolyte concentration between the separator and the active material

domains are,

ce,n|x=Ln = ce,s|x=Ln , (2.6)

ce,p|x=Ln+Ls = ce,s|x=Ln+Ls . (2.7)

The electrolyte molar flux, Ne,k, can then be represented through ionic diffusion

at the interface between solid-phase active material and electrolyte as well as

the ionic current density as shown in equation 2.8 below,

Ne,k = ϵbkDe(ce,k)
∂ce,k
∂x

+ t+ie,k
F

, (2.8)

and is subject to homogenous Neumann boundary conditions describing the

molar flux at each current collector as well as a symmetric constraint at the

solid-phase interface,

Ne,n|x=0 = 0, (2.9)

Ne,p|x=L = 0, (2.10)

Ne,n|x=Ln = Ne,s|x=Ln , (2.11)

Ne,p|x=Ln+Ls = Ne,s|x=Ln+Ls . (2.12)
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2.1.2.3 Solid and electrolyte phase potential

For the solid-phase potential, the interfacial charge balance describes the applied

current density in the porous electrode via Ohm’s law and is presented as,

I − ie,k = σk
∂ϕs,k
∂x

, (2.13)

with σk as the solid-state conductivity, and ϕs,k denotes the solid state potential,

and I is the applied current density. Similarly, in the electrolyte, a modified ohm’s

relation governs the ionic transport created from local concentration variations

and is commonly known as the diffusion overpotential,

ie,k = ϵbkκe(ce,k)
(

− ∂ϕe,k
∂x

+ 2(1 − t+)RT
F

∂

∂x
(log(ce,k))

)
. (2.14)

The above equation scales linearly with the conductivity in the electrolyte, κe,

solid state active volume fraction ϵk, and logarithmically with the electrolyte ionic

concentration, ce,k. Additional dependencies include the transference number t+,

cell temperature T, electrolyte potential ϕe,k, the Faraday constant F, and the

universal gas constant R. Homogeneous Neumann boundary conditions for ionic

transportation are defined as,

ie,n|x=0 = ie,p|x=L = 0, (2.15)

with the corresponding first order derivation defined as,

∂ie,k
∂x

=


akFjk k ∈ {n, p}

0 k ∈ {s}.
(2.16)
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2.1.2.4 Charge kinetics

Coupled charge transfer kinetics in the electrode and electrolyte are captured

via the Butler-Volmer relation (2.17) by providing a relation between exchange

current density, j0,k and the overpotential difference, ηk between domains.

jk = j0,k sinh
(
Fηk
2RT

)
, (2.17)

with ηk is defined as,

ηk = ϕs,k − ϕe,k − Uocp
k − jkFRfilm,k, (2.18)

where ϕs,k defines the surface potential, ϕe,k is the electrolyte potential, and Uocp
s,k

is the solid-phase open-circuit potential. Finally, the exchange current density,

j0,k is introduced as,

j0,k = mk(cs,k|r=Rs)1/2(cs,k,max − cs,k|r=Rs)1/2(ce,k)1/2, (2.19)

where mk is the corresponding reaction rate for the selected k subdomain. Finally,

the cell terminal potential is defined as,

V = Uocp
n,p + ηp − ηn + ϕe,p − ϕe,n + ∆Φn,p, (2.20)

with the electrode Ohmic loss differences defined as,

∆Φn,p = (ϕs,x=L − ϕs,x=Ln+Ls) + (ϕs,x=0 − ϕs,x=Ln). (2.21)
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2.1.2.5 System of differential-algebraic equations

This finalises the DFN derivation, with the introduced equations coupled together

and numerically solved being the next step; however, before the numerical solving

methods for the DFN are discussed, alignment of the total model domain is

completed. To align the domains, the respective dimensionless species lengths

are transformed into distinct ranges denoted as,

γn = [0, Ln], (2.22)

γs = [Ln, Ln + Ls], (2.23)

γp = [Ln + Ls, L]. (2.24)

This allows for a summation of the total system variables defined below in this

transformed domain.

Table 2.1 Doyle-Fuller-Newman system variables

ce,n, ϕs,n, ϕe,n, ie,n, Ns,n x ∈ γn

ce,s, ϕe,s, ie,s, Ne,s x ∈ γs

ce,p, ϕs,p, ϕe,p, ie,p, Ns,p x ∈ γp

cs,n r ∈ [0, Rn], x ∈ γn

cs,p r ∈ [0, Rp], x ∈ γp

As the governing DFN system has now been defined, methods to numeri-

cally solve this highly coupled system can be investigated. As this system is

two-dimensional in space, i.e. two spatial dimensions, it does not require an
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unprecedented amount of computational resources; however, this still provides

challenges for embedded hardware, as discussed in the above chapter. Multiple ap-

proaches to solving this coupled partial differential system have been investigated

in literature and include finite elements [91], finite difference [92], orthogonal

collocation [93, 94, 95], and Chebyshev polynomials [96]. Popular frameworks

for solving the DFN in the electrochemical field mainly feature open-source

modelling packages such as PyBaMM [97], PETLION [98], and DUALFOIL

[99]. Alternatives that require licensing are available through COMSOL, and

MATLAB [100, 101]. Independent of the numerical package used to solve the

underlying mathematical equations; the physics-based models require solving a

coupled system of partial differential equations representing the electrochemical

processes that occur during operation.

Additional complexity is associated with this model due to the parameterisa-

tion requirements shown in Table 2.2. While the parameterisation requirement

can be costly, both financially and laboratory resources wise, the DFN provides

spatial information across each domain not attainable from the single particle

models while also maintaining accurate predictions at high ionic rates.

2.1.2.6 Single Particle Reduction

Additional development from the Doyle-Fuller-Newman model has been the

creation of the reduced-order single particle model (SPM) [102, 103]. This

representation assumes that the electrode dynamics can be captured through

a single (average) particle, as opposed to the multi-particle representation of

the DFN and as such, assumes the radial dimension, r, can be uncoupled from

the spatial thickness dimension, x. Additionally, due to the single particle’s

limitations, spatial variations in electrode lithiation cannot be predicted. This

reduced order representation also forgoes electrolyte dynamics, and as such, this

model struggles to predict dynamics at high applied currents accurately. Overall,
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Table 2.2 Doyle-Fuller-Newman Model Parameters

Positive Electrode

Lp, ϵp, rp, U
ocp
p , Dp, σp, θ

100
p , θ0

p x ∈ [γp]

cmaxs,p , αp, k
norm
p , Rfilm

p , Ap x ∈ [γp]

Negative Electrode

Ln, ϵn, rn, U
ocp
n , Dn, σn, θ

100
n , θ0

n x ∈ [γn]

cmaxs,n , αn, k
norm
n , Rfilm

n , An x ∈ [γn]

Electrolyte

De, κe, C
0
e , t

+ x ∈ [γn, γs, γp]

Separator

Ls, σs, D
brug
e x ∈ [γs]

this reduction to a single particle lowers the computational requirements at the

exchange of limiting the accurate predictions to current rates up to 1C [104].

An alternative reduction of the DFN has been achieved to improve the fidelity

of the SPM in higher applied current operation by maintaining the mathematical

representation of the electrolyte during reduction. This alternative model is

known as the single particle model with electrolyte (SPMe) [65]. This elec-

trolyte representation has been shown to offer close performance to the DFN

with a reduction in computation performance; however, it increases numerical

complexity compared to the SPM as it requires solving a quasi-linear partial

differential equation for the electrolyte ion concentration [105]. These prediction

improvements have resulted in the large utilisation of this model for electrochem-

ical degradation modelling; due to the high number of charge and discharge

cycles, a computational reduction is attractive. However, during high-applied

current operation, when electrolyte depletion occurs, this model deviates from
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the full-order DFN and has difficulty maintaining fidelity. Due to these applied

current constraints for both single particle reductions, they have struggled to

gain penetration in high-performance applications. In addition to the operation

fidelity limitations, the numerical complexity of these reduced single-particle

models still provides a challenge for implementation on low-cost embedded hard-

ware. As such, they have conventionally required linearised state-space formation

for embedded deployment [106].

2.1.3 Linear state-space representation

For control applications deployed onto embedded targets, low computation mod-

els are required to enable fast system response and stability. The prediction

requirements are extremely stringent in critical applications such as safety sys-

tems for human interactions or high-frequency dynamic control with multiple

system interfaces. A common representation of the system plant model in these

applications is in the state-space form to ensure requirements are met. In this

work, the plant model is defined as the online predictive model deployed onto

the embedded target utilised for augmented information provided to the control

structure. For linear systems, the continuous form state-space representation is

defined as,
ẋ = Ax + Bu

y = Cx + Du
(2.25)

The A, B, C, and D variables denote arrays and vectors that represent

the linear response from the system for a given state parameter. The state

vector, x ∈ Rn, represents the system’s dynamic state variables within the

defined subspace. The variable u represents the system input, which maps to the

predicted system output y. The mathematical calculation is visually represented

in Figure 2.3.
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Fig. 2.3 Continuous state-space architecture. The system input, u and the state
vector x, are utilised for output predictions of y.

The continuous form state-space representation is discretised for embedded de-

ployments to enable fast numerical integration. This ensures fast system response

without complex integration methods and transforms the above continuous form

to,
x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]
(2.26)

where this representation is commonly utilised for Kalman-filter estimation

[107] and model-predictive control (MPC) [108] to satisfy the given control

requirements. In this thesis, a discrete linear state-space formation of the DFN

model is presented. This formation structures the output vector for predictions

of the underlying DFN variables as presented in Table 2.1, with the applied

current as the system input. This formation was selected as it provides an

equivalent input-output structure to the DFN and reduces integration for end-

users. Alternatively, non-linear state-space representations have been previously

utilised to capture non-linear system dynamics. This can provide higher fidelity

in non-linear systems at the exchange of high-order terms in the system reduction.

Furthermore, Chapter 3 below provides evidence that a linear representation

with in-situ re-linearisation accurately captures the electrochemical dynamics.
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2.2 Lithium-metal models

Higher energy-dense batteries are needed as electrified transportation expands

from passenger vehicles to heavy-duty transportation and aerospace applications

such as fixed-wing and vertical take-off and landing aircraft. As previously dis-

cussed, one such method to achieve this requirement is anode-free lithium-metal

cells, which utilise a porous positive electrode and electrodeposit lithium-ions

on the negative current collector during cell charging. For liquid-electrolyte

chemistries, the manufactured cell closely matches a conventional lithium-ion

format; however, these cells currently face challenges in long-term coulombic

efficiency due to active lithium evolution degradation. Multiple industrial com-

panies, such as Cuberg, SES, Quatumscape, and Sion-Power, aim to provide

solutions to this cycling inefficiency while maintaining the high energy density

that lithium-metal offers. An alternative cell format, utilising a solid-state elec-

trolyte, has been gaining research interest as it can offer improved operational

safety [109, 110], the potential for higher cell voltages [110], and an improvement

in cycling degradation through resilience to metal oxide reactivity [111]. For

both of these formats, the current implementations are quite limited, with a

usable cycle life of 500 cycles in ideal operating conditions; however, electrolyte

composition investigations have shown promising results for expansion of this

limitation in both cases [40, 111, 112].

Currently, most of the research and development of lithium-metal batteries is

completed experimentally, as models commonly used for conventional lithium-

ion chemistries cannot provide physical insight at a micro-scale level. This

results in expensive, time-consuming research developments, which can provide

a barrier for small to medium companies as well as academic research groups

and results in lower user adoption. To address this issue, work from multiple

research groups has been aimed at developing predictive models to improve
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understanding of electrolyte reactions in electrodeposition [113, 114, 115, 116] as

well as understanding mechanical pressure effects [117, 118]. Recently, physics-

based lithium-anode models have been developed to improve understanding

of the lithium morphology evolution [119, 120] as it has a direct effect on the

degradation mechanisms active in the lithium-metal battery. Most of these models

aim to provide insight in combination with experimental research that enables a

reduction in the invested development cost. These models provide a mechanism

to capture lithium morphology; however, due to the solving requirement of

the coupled PDE systems, they are conventionally computationally expensive.

The work presented in this thesis aims to fill this gap through a fast coupled

physics-informed machine-learning framework.

Further opportunities for lithium-metal models capable of providing physical

insight include system-level battery management for safe operation. Previous

literature has shown that electrodeposited lithium-metal has an increased thermal

risk over conventional lithium-ion [121] due to the volatile combustion of the

excess lithium under stressed operation. By enabling battery management

systems with insight into the physical state of the cell, it should be possible to

improve operational performance while maintaining safety.

2.2.1 Electrodeposition phase-field representations

As previously introduced in Section 1.2.3, lithium-metal batteries are one such

method to achieve these higher energy densities to enable the feasibility of elec-

trification in many sectors, such as aerospace. However, due to the underlying

construction and storage mechanisms of lithium-metal batteries, it is difficult

to utilise conventional modelling structures to capture dynamics due to the

underlying assumptions of fixed-thickness porous electrode theory. The conven-

tional particle-based models aim to spatially discretise the unit cell thickness,
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capturing lithium intercalation dynamics through the porous diffusion of lithium

ions; however, in the electrodeposition cell, the negative electrode has varying

thickness requiring ongoing updates to this spatial discretisation. This is espe-

cially difficult to resolve mathematically; without this capability, the lithium

composition evolution and failure mechanisms are not represented.

Fig. 2.4 Example phase-field representation, designating the two different phases
as numerical values of 0 and 1. Modified and reproduced from [122].

One such method to accurately predict the varying thickness, lithium evolution

is a phase-field representation, which is a popular technique in thermodynamics

to describe a system of multiple states going through a phase transition. Phase-

field representations model the interaction between phases (or states) through

diffusion, thus removing sharp interface transitions. The numerical system is

divided into a spatial representation of the phase domain, with values of range

(0,1) designating the corresponding phase. For the liquid electrolyte lithium-metal

anode system, this results in the electro-deposited lithium (solid) forming one

phase and the electrolyte (liquid) forming the second, thus enabling the model to

predict plating and stripping evolution through phase distinction, which is not

possible with conventional lithium-ion methods such as the DFN, or it’s reduced
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SPM technique. As the phase field represents the interface between phases

through a diffuse mechanism, it doesn’t capture the solid-electrolyte interphase

(SEI) in its standard definition. This has been addressed in recent work by

Yurkiv et al. [123] to predict mossy lithium evolution while capturing the SEI

effects. Throughout the development of phase-field models capable of predicting

lithium morphology evolution for a lithium-metal battery (LMB), the aim is to

advance performance in parallel with experimental testing and developments.

2.2.2 Neural PDE solvers

The usage of data-driven machine-learning techniques for lithium-based battery

predictions has expanded in previous years, partially due to advancements in

computational training hardware, open-source machine-learning frameworks,

and the wide expanse of datasets available for model development. These

advancements have enabled improvements in cycle degradation modelling for

lithium-ion batteries [124, 125, 50], improvements in online state estimation [126,

127], and data-informed material selection for cell manufacturing [128, 129, 130,

131, 132]. In this section, an introduction to partial differential neural solvers

will be presented as an alternative method for data-driven machine learning

utilisation.

Additional usage for machine-learning techniques has been investigated in

partial differential equation solving, commonly denoted as neural PDE solvers.

These techniques aim to provide an additional capability to predict the solution

of a partial differential system given a training set. This has multiple benefits

over conventional solvers, such as fast implementation once the solver has been

trained and low-memory requirements when deployed; however, the training cost

to create a solver that has generality can be exceedingly expensive. These solvers

are commonly divided into two subcategories. The first are neural operators,
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which aim to map from system inputs and initial conditions, u0 to the given

solution by utilising a neural operator, M.

1

2

n

1

2

m

Neural Operator

δt

Fig. 2.5 Neural operator mapping initial conditions to system output for the
trained time domain.

As these operators cannot generalise boundary, initial conditions, or system

shape, their predictions are limited to the system used for training and cannot

guarantee predictions outside that domain. One such operator is the physics-

informed neural network (PINN), which has been heavily utilised across computer

science and engineering fields such as material design [133, 134, 135], stochastic

differential equations [136], uncertainty analysis [137, 138], and partial differential

equations [139, 140]. Physics-informed neural networks achieve improved results

by utilising network architectures that align with the partial differential equation

structure; this enables improvements in fitting and performance [141]. These

operators are trained to achieve the following equality,

M(t, u0) = u(t) (2.27)

The second type of neural solver utilises autoregressive methods to capture

the PDE solution evolution iteratively. This method enables the solver to interact

similarly to conventional numerical solving methods. It provides a solution that
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is not constrained by a predetermined time set, allowing solutions at δt+ t to be

found.

u(t+ δt) = N (δt, u(t)) (2.28)

This type of operator provides flexibility over the PINN methods as they

commonly encode boundary, initial, and shape information into the solver;

however, difficulties in training have been reported, and as such, they are less

common. Previously implementations of autoregressive methods have shown the

benefit of hybrid-style neural solving, where the time integration aligns with

conventional schemes such as the essentially nonoscillatory (ENO), weighted

essentially nonoscillatory (WENO), and finite difference. Sinai et al. [142] present

a methodology to solve the burger’s equation utilising an autoregressive method

that results in a time derivative representation similar to the WENO scheme.

Greenfield et al. [143] approach multigrid PDE solving with an autoregressive

neural network with an unsupervised loss function and showcase improvements

over a widely utilised black-box method for selecting operators. Hsieh et al.

[144] investigate an iterative finite element scheme for an autoregressive PDE

solver with convergence guarantees. Finally, Brandstetter et al. [145] introduce a

message-passing graph neural network framework for autoregressive solving of

multiple PDE families and present a novel pushforward concept for improvements

in training performance. The autoregressive framework provides a mechanism

for fast design-space exploration once the underlying system dynamics have

been trained, i.e. for trained system evolutions, the domain requirements can

be limited to boundary conditions, further expanding the generality of this

methodology. This provides a key improvement over the PINN method in design-

space exploration, which could be exploited for advanced material discovery.
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Fig. 2.6 Neural auto-regressive solver predicting the next time-step given the
previous output and corresponding boundary and initial conditions.

Given the above neural solver methodologies and the electrodeposition models

presented in the previous section, a direction for improvements in fast electrode-

position battery modelling is taking shape. Furthermore, as autoregressive neural

methods provide a flexible solution with parallels to conventional time integra-

tion schemes, this area provides a logical step to advance the field. Coupling

these methods and investigating the challenges posed is the aim of Chapter

5 while showcasing advancements in conventional numerical solvers alongside

autoregressive neural solvers.

2.2.3 Scientific programming languages

This thesis presents multiple numerical frameworks with a common theme of

high-performance implementations without sacrificing code comprehension. Com-

monly, interpreted languages such as MATLAB, Python, and R have been heavily

used for scientific computing due to their vast libraries, packages, and support,

as well as their ease of use for researchers, engineers, and statisticians. These

languages offer improved dynamic typesets that enable users to develop high-
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level source code without worrying about performance optimisation completed

underneath1. This stems from each language’s underlying interpretation of the

source code developed by users to the machine code needed to be numerically

implemented on the hardware. While this offers multiple user improvements,

this interpreter does not offer the same machine code optimisation achievable

from a compiled language.

Alternatively, compiled languages such as C/C++, Rust, and Fortran offer

high performance due to their compilation of source code to machine code;

however, these languages commonly utilise a static typeset and require knowledge

of compiler definitions. These languages offer improved numerical performance

over the interpreted languages at the expense of user knowledge and additional

compilation time before the program is executed. After initial development in

interpreted languages, these languages are occasionally utilised for performance

improvements for algorithms, packages, and production-ready scientific software.

Finally, there has been a recent push towards just-in-time (JIT) compilation

languages as they can provide a performant compromise between the inter-

preted and compiled languages discussed above. These languages commonly

provide benefits such as rich type information and multiple-dispatch, as well as

improvements in code comprehension through dynamic language implementa-

tion, such as removing the need for user compiling. One such language, Julia

[146, 147], is actively developed to provide numerical performance matching the

static compiled languages while offering the dynamic language benefits provided

in Python, MATLAB, and R. Furthermore, additional aims for this language

include multiple-dispatch, enabling even further code reusability and deploy-

ment, installation across both x86 and ARM platforms, and straight-forward

GPU deployment. Similarly, MATLAB’s execution code and Python’s Numba
1While these languages remove some of the optimisations from the user, there are still

recommended methods to enable interpreter performance.
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package [148] have both recently offered JIT capabilities enabling performance

improvements to their pure implementations; however, due to the overhead and

previous development goals of these languages, the additions are not as widely

supported and seemingly provide performance improvements lower than a pure

Julia implementation.

For most of the work presented in this thesis, the Julia language is utilised

for package development. This work includes open-source implementations for

the presented packages in Chapters 3, 4, and 5.

2.3 Concluding remarks

In this chapter, both lithium-ion and lithium-metal modelling methods aimed at

improving performance and underlying system understanding have been intro-

duced. In these methods, the need for improvements in reduced-order modelling

is apparent, with benefits including degradation-capable in-situ parameterisation,

design space exploration, and micro-scale lithium evolution predictions. Each

of these areas benefits heavily from improvements in fast modelling methods;

however, care needs to be taken to ensure the underlying physical states are not

lost during the order reduction. The second gap that has been assessed relates

to electrodeposition modelling, where current lithium-ion models cannot predict

lithium evolution. In this case, new models need to be developed that enable

insight while maintaining performance and understanding.

The lithium-ion-based DFN model introduces a multi-particle continuum

model capable of providing physical state information for the lithium-ion battery.

This model will likewise be used as the starting point in the next chapter for

real-time capable order reduction to provide physical state information to battery

management systems. Expanding on the assessed gaps in the literature, the

phase-field methodology and auto-regressive neural solvers presented will be used
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as the basis for the work completed in Chapter 5 by coupling a ground-truth

representation to a physics-informed message passing graph neural network.

In this thesis, the development of methods to improve both the onboard

utilisation of these lithium-based batteries and the capability of providing insight

into further design directions will be advanced. Both objectives align with fast,

accurate modelling improvements as onboard utilisation needs to be deploy-

able onto real-time hardware. In contrast, improvements in design decisions

greatly benefit from fast computational solutions that lend themselves to global

optimisation and design-space discovery.

2.3.1 Original work

The work presented in this thesis contains novelty published in [1, 2] and work

presented at the Gordon Research Conference in Batteries 2022 [149]. This

work also presents multiple novel approaches for creating fast, physics-informed

battery models utilised in real-time applications and design space exploration.

Additionally, this work presents a novel method for in-vehicle model creation that

has not been seen in the literature. This method achieves a key improvement for

physics-based electrochemical degradation prediction in real-time environments.

The originality is as follows,

1. Creation and validation of a computationally informed subspace realisation

algorithm capable of in-vehicle model generation. Including the develop-

ment of a fast, open-source software package with improvements over the

conventional discrete realisation algorithm. This work also introduces a

method for improved low-frequency linearisation for online performance

improvements on embedded hardware. The majority of this work was

published in [1].
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2. Creation of a multi-scale, high-level software package for electrochemical

design decisions. This tool is designed to support design engineers with

the initial scoping of an electrochemical energy storage system at the stage

where high fidelity is not yet required. This work provides capabilities

in moving between length scales while capturing trends across potential

geometry and chemistry for lithium-based batteries. An example of a

motorsport application is introduced, with an analysis of multiple battery

chemistries investigated.

3. An open-source, Julia-based phase-field package for electrodeposition pre-

dictions in the lithium-metal anode is presented. This work includes

investigating multiple time integration schemes and optimisation through

Intel MKL’s Pardiso linear algebra solver, memory optimisation, and dy-

namic language improvements. Performance verification of this work is

completed by assessing an alternative Maple language implementation.

This work was included in Jang et al. [2].

4. Development of a message-passing graph neural network for physics-informed

predictions of phase-field-based lithium evolution in lithium-metal anodes.

This work presents an auto-regressive neural solver architecture that has

been expanded upon for both single and multi-dimensional phase-field

lithium anode evolution predictions. Verification of this architecture is

performed through the previously introduced phase-field implementation,

with numerical performance also presented.



Chapter 3

Fast, deployable, lithium-ion

models

The ability to model lithium-based batteries in real time enables improved perfor-

mance for online control structures. This chapter presents a novel improvement

to realisation algorithms for lithium-ion batteries. A software package, LiiBRA.jl,

developed in Julia [147] is also presented for generating numerically reduced

real-time capable physics-informed models. LiiBRA.jl enables adaptive physics-

informed models to be implemented onto embedded systems, opening up the

capabilities of battery management and control systems within energy storage by

combining improvements in reduced-order models with the high performance of

the Julia language. This work develops a computationally informed realisation

algorithm aimed at fast solution generation and investigates in-vehicle model

creation as a viable method for degradation-informed models. A sensitivity anal-

ysis is performed alongside numerical verification and experimental validation

of the model predictions. The reduced-order models are then deployed onto

an embedded target to validate real-time capabilities. Finally, improved online

performance is presented via usage of neural surrogate models for low-frequency

linearisation at varying applied currents, further improving model fidelity.
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3.1 Electrochemical Transfer Functions

To achieve the required computational performance for in-vehicle model gener-

ation, the nonlinear governing equations of the DFN model shown in Chapter

2 will be reduced and linearised into transfer functions and transformed into

a state-space representation. This enables decoupling of the DFN’s governing

equations for fast, independent predictions. The DFN is selected as the full-

order model due to the improved fidelity in high applied current operations

as discussed in section 2.1.2.6, the improved spatial resolution of solid-phase

lithium concentrations [105], and localised electrolyte depletion predictions. The

derivation of these transfer functions is shown below; however, the reader is

pointed to Jacobsen and West [150], Smith et al. [151], and Lee et al. [152] for

the original derivations. Six electrochemical transfer functions, the electrode

surface concentration Csurf(z, s), the electrode surface potential Φs,e(z, s), the

reaction flux J(z, s), the electrolyte potential Φe(z, s), the electrolyte concentra-

tion Ce(z, s), and the electrode potential Φs(z, s) are derived. In this context, z

is the spatial electrode location, such that in the negative electrode, z = x/Ln

and in the positive electrode, z = L − x/Lp. For both definitions, the outer

electrode surface is defined as z = 0 with the separator surface corresponding

to z = 1. It is visually displayed in Figure 3.1. Additionally, s is the complex

Laplace domain variable, and t is the time domain representation.

x

z 01 z10

Positive

Electrode

Negative

Electrode
Li+

Fig. 3.1 Coordinate system for reduced-order models. z variable defines the
unitless electrode position, with x defining the unitless electrolyte domain.
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3.1.1 Electrode surface concentration, Csurf(z, s), surface

potential, Φs,e(z, s), and reaction flux j(z, s) transfer

functions

The starting point for this derivation is linearising the Butler-Volmer equation

shown previously in equation (2.17) above. This is completed by defining a system

point to linearise around; for this work, this point is selected as electrochemical

equilibrium, i.e. no system dynamics occurring as per,

ρ = [ϕs−e = Uocp(cs,0), csurf = cs,0, ce = ce,0, j = 0], (3.1)

where ϕs−e is defined as ϕs − ϕe, csurf is the solid surface concentration, with cs,0

and ce,0 as the corresponding concentrations at time zero. Finally, ρ is introduced

as the equilibrium linearisation point. Combining equations (2.17) and (2.19)

and linearising about ρ produces,

jk
mk(cs,k)1/2(cs,k,max − cs,k)1/2(ce,k)1/2 = sinh

(
ηkF

2RT

)
. (3.2)

The left-hand side of the above can then be represented via a two-term Taylor

expansion,

LHS ≈ LHS(ρ) + ∂LHS
∂csurf

∣∣∣∣∣
ρ

(csurf − ce,0) + ∂LHS
∂ce

∣∣∣∣∣
ρ

(ce − ce,0) + ∂LHS
∂jk

∣∣∣∣∣
ρ

jk,

≈ jk
j0
.

(3.3)

By expanding the right-hand side of equation (3.2) via equation (2.18) and

similarly representing the expansion with a two-term Taylor series, the following

result is obtained,

RHS|ρ=
F

RT
ϕ̃s,e − F

RT

[
∂Uocp
∂csurf

]
c̃surf − F 2Rfilm

RT
jk, (3.4)
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where ∼ introduces the debiased parameter definition such that c̃e = ce−ce,0, and

ϕ̃s,e = ϕs−e − Uocp(cs,0). It is then possible to combine the LHS and RHS above

and solve for Φ̃s,e to obtain the following linearised Butler-Volmer representation,

Φ̃s,e(z, t) = F

(
RT

F 2j0
+Rfilm

)
︸ ︷︷ ︸

Rtot

j(z, t) +
[
∂Uocp
∂csurf

∣∣∣∣∣
cs,0

]
c̃surf(z, t), (3.5)

where the charge transfer is defined as the RT/(j0F
2) component of Rtot in

this thesis. This concludes the Butler-Volmer linearisation and allows us to

move onto the surface concentration. First, by formally defining the solid

surface concentration, csurf(z, t) = cs(Rs, z, t) and it’s corresponding debiased

representation as,

c̃surf(z, t) = c̃s(Rs, z, t) = cs(Rs, z, t) − cs,0, (3.6)

utilising this result, it is possible to modify equation (2.2) to correspond to the

debiased representation such that,

∂c̃s(r, z, t)
∂t

= 1
r2

∂

∂r

(
Dsr

2∂c̃s(r, z, t)
∂r

)
(3.7)

and corresponding initial and boundary conditions defined as,

−Ds
∂c̃s(r, z, t)

∂r

∣∣∣∣∣
r=Rs

= −j(z, t), ∂c̃s(r, z, t)
∂r

∣∣∣∣∣
r=0

= 0. (3.8)

A derived transfer function representing the form shown in (3.7) has been

previously presented by Jacobsen and West [150] and is introduced as,

C̃surf(s)
J(s) = Rs

Ds

(
tanh(β)

tanh(β) − β

)
, (3.9)
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with β = Rs

√
s/Ds. The electrode surface potential is derived below by applying

a Laplace transformation to the derived linearised Butler-Volmer equation and the

introduced surface concentration transfer function (3.9). First, by representing

the solid potential equation (2.13) with the normalised spatial variable, z,

asFj = σeff

L2
n

∂2ϕs
∂z2 , (3.10)

with updated boundary conditions as,

σeff

Ln

∂ϕs
∂z

∣∣∣∣∣
z=0

= −Iapp
∂ϕs
∂z

∣∣∣∣∣
z=1

= 0. (3.11)

Completing a similar transformation of domain for the Stefan-Maxwell electrolyte

potential equation (2.14) results in,

−asFj = κeff

L2
n

∂2ϕe
∂z2 , (3.12)

with similar boundary conditions as,

κeff

Ln

∂ϕe
∂z

∣∣∣∣∣
z=0

= 0 ∂ϕe
∂z

∣∣∣∣∣
z=1

= Iapp. (3.13)

Through subtraction of equation (3.10) and (3.12), the following the phase

potential difference equation is obtained,

∂2

∂z2ϕs−e = asFL
2
n

( 1
σeff

+ 1
κeff

)
j, (3.14)

the combined boundary conditions then result as,

(
σeff

Ln

)
∂ϕs−e
∂z

∣∣∣∣∣
z=0

=
(
κeff

Ln

)
∂ϕs−e
∂z

∣∣∣∣∣
z=1

= −Iapp. (3.15)
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As diffusion is captured through the radial domain, r and not the spatial domain,

the Csurf in equation (3.5) is rewritten with a Laplace transformation completed,

Φ̃s,e(z, s) =
FRtot +

[
∂Uocp
∂Csurf

∣∣∣∣∣
cs,0

]
Rs

FDs

(
tanh(β)

tanh(β) − β

) J(z, s). (3.16)

Taking the Laplace transform of equation (3.14) and combining it with equation

(3.16) results in,

∂Φ̃s,e(z, s)
∂z

=
asFL

2
n

(
1
σeff

+ 1
κeff

)
Rtot +

[
∂Uocp

∂Csurf

∣∣∣∣∣
cs,0

]
Rs

FDs

(
tanh(β)

tanh(β)−β

) · Φ̃s,e(z, s), (3.17)

with corresponding boundary conditions as,

(
σeff

Ln

)
∂Φ̃s,e(z, s)

∂z

∣∣∣∣∣
z=0

=
(
κeff

Ln

)
∂Φ̃s,e(z, s)

∂z

∣∣∣∣∣
z=1

= −iapp
A

. (3.18)

To improve reader comprehension and simplify future transfer functions, a

dimensionless condensing variable is introduced as,

ν(s) = Ln

√√√√√√ as( 1
σeff + 1

κeff )

Rtot +
[
∂Uk,ref
∂Csurf

]
Rs

FDs

(
tanh(β)

tanh(β)−β

) , (3.19)

which then produces the following representation of equation (3.17),

∂Φ̃s,e(z, s)
∂z

− ν2Φ̃s,e(z, s) = 0. (3.20)

Finally, the above has a previously found solution [152] defined below after

enforcing the initial conditions as,

Φ̃s,e(z, s)
Iapp(s)

= Ln
Aν(s)sinh(ν(s))

cosh(ν(s)z)
κeff + cosh(ν(s)(z − 1))

σeff

. (3.21)
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Next, the reaction flux transfer function can be found through algebraic manipu-

lation of the surface potential transfer function (3.21) as,

J(z, s)
Iapp

= J(z, s)
Φ̃s,e(z, s)

Φ̃s,e(z, s)
Iapp

, (3.22)

where J(z, s)/Φ̃s,e(z, s) can be obtained from rearranging equation (3.16) above

resulting in,
J(z, s)
Iapp

= ν2

asFL2( 1
σeff + 1

κeff ) · Φ̃s,e(z, s)
Iapp(s)

. (3.23)

By combining the results obtained in equation (3.21), it is possible to introduce

the final form for the reaction flux for a given Iapp input as,

J(z, s)
Iapp(s)

=
(

ν(s)
asFLnA(κeff + σeff)

)

+
(
σeffcosh(ν(s)z) + κeffcosh(ν(s)(z − 1))

sinh(ν(s))

)
.

(3.24)

Using the results from the previous steps, the electrode surface concentration

transfer function can likewise be derived as,

C̃surf(z, s)
Iapp(s) = J(z, s)

Iapp(s)
C̃surf(z, s)
J(z, s) . (3.25)

By expanding the above right-hand side from results obtained above in equations

(3.25) and (3.9), the transfer function can be finalised as,

C̃surf,n(z, s)
Iapp(s) =

(
ν(s)Rs tanh(β)σeff cosh(ν(s) · z) + κeff cosh(ν(s)(z − 1))

asFLnDsA sinh(ν(s))(κeff + σeff)(tanh(β) − β)

)
.

(3.26)

For the positive domain, the above transfer functions are multiplied by -1. This

concludes the derivation for the surface concentration and reaction flux transfer
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functions. In the next subsection, this methodology proceeds with the derivation

of the solid potential transfer function, ϕs(z, s).

3.1.2 Transfer function for solid potential, Φs(z, s)

The starting point for the surface potential is the solid charge transfer Laplace

domain representation (3.14) which is reintroduced below,

asFj = σeff

Ln

∂2ϕs
∂z2 , (3.27)

through integration and a Laplace transformation as introduced in Lee et al.

[152], the corresponding solid potential Φs transfer function is,

Φs,n(z, s)
Iapp(s)

= − Lnκ
eff(cosh((z − 1)ν(s)))

Aσeff(κeff + σeff)ν(s)sinh(ν(s))

− Lnσ
eff(1 − cosh(zν(s)) + zν(s)sinh(ν(s)))
Aσeff(κeff + σeff)ν(s)sinh(ν(s)) .

(3.28)

As above, the positive domain is represented through multiplication by -1.

3.1.3 Transfer function for electrolyte potential, Φe(x, s)

For the electrolyte transfer functions, the normalised domain is represented

by x and spans the unit cell length. To account for the differing subdomains

captured inside of the introduced x domain, subscripts are used to differentiate

between positive electrode (p), negative electrode (n), and the separator (s).

The subscript k is used when the introduced equations can be utilised for each

domain. The first step in the derivation for the electrolyte potential transfer

function is integration of the electrolyte charge conservation equation (2.14) with

respect to the introduced x domain,

ϕe(x, t) −ϕe(0, t) =
∫ x

0
ϵbkκe(ce,k)

(
(1 − t+)2RT

F

∂ log(ce,k)
∂x

)
− ie(x, t) dx. (3.29)
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Splitting the above integrand into components and introducing a debiased elec-

trolyte potential as ϕ̃e(x, t) = ϕe(x, t) − ϕe(0, t) produces,

[ϕ̃e,1(x, t)]1 =
∫ x

0

−ie(x, t)
κe

dx, (3.30)

[ϕ̃e(x, t)]2 =
∫ x

0

(
(1 − t+)2RT

F

∂ log(ce,k)
∂x

)
dx. (3.31)

The summation of the two components produces the final transfer function as,

Φ̃e(z, s)
Iapp(s) = [Φ̃e(z, s)]1 + [Φ̃e(z, s)]2. (3.32)

In parallel, it is possible to obtain a transfer function for the ionic current through

integration of the reaction flux transfer functions presented in (3.24). For the

negative electrode domain of x that results in,

Ie,n(x, s)
Iapp

=
σeff sinh

(
(L−x)ν(s)

Ln

)
− κeff sinh

(
(Ln−x)ν(s)

Ln

)
A(κeff + σeff) sinh(ν(s)) + κeff

A(κeff + σeff) . (3.33)

Similarly, with the corresponding positive domain ionic current presented as,

Ie,p(x, s)
Iapp

=
σeff sinh

(
(L−x)ν(s)

Lp

)
+ κeff sinh

(
(Ln+Ls−x)ν(s)

Lp

)
A(κeff + σeff sinh(ν(s))) + κeff

A(κeff + σeff) .

(3.34)

Solving the first component of the electrolyte potential for the negative domain

is possible through substitution of equation (3.30) and integrating. The results

are presented as,
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[Φ̃e,1(x, s)]1
Iapp(s) =

∫ x

0

−ie(x, s)
κe

dx

=
Ln(σeff

n

κeff
n

)(1 − cosh(xνn(s)
Ln

)) − xνn(s) sinh(νn(s))
A(σeff

n + κeff
n )νn(s) sinh(νn(s))

+
Ln(cosh(νn(s)) − cosh( (Ln−x)νn(s)

Ln
))

A(σeff
n + κeff

n )νn(s) sinh(νn(s)) .

(3.35)

For the separator domain, the first component of the transfer function becomes,

[Φ̃e,1(x, s)]1
Iapp(s) = Ln − x

Aκeff
s

+
Ln((1 − σeff

n

κeff
n

) tanh(νn(s)
2 ) − νn(s))

A(σeff
n + κeff

n )νn(s) . (3.36)

Lastly, the first component of the positive domain transfer function is obtained

as,

[Φ̃e,1(x, s)]1
Iapp(s) = − Ls

Aκeff
s

+
Ln

((
1 − σeff

n

κeff
n

)
tanh

(
νn(s)

2

)
− νn(s)

)
A(κeff

n + σeff
n )νn(s)

−
Lp

(
1 + σeff

p

κeff
p

cosh(νp(s))
)

A(κeff
p + σeff

p )sinh(νp(s))νp(s)

+
Lpcosh

(
(Ln+Ls−x)νp(s)

Lp

)
A(κeff + σeff)sinh(νp(s))νp(s)

+
Lp

σeff
p

κeff
p

cosh
(

(L−x)νp(s)
Lp

)
A(κeff + σeff)sinh(νp(s))νp(s)

+ (Ln + Ls) − x

A(σeff
p + κeff

p ) ,

(3.37)

and the second term in the electrolyte transfer function is determined by the

value of Ce(x, s) and is shown as,

[Φ̃e(x, t)]2 = 2RT (1 − t0+)
F

log
(
Ce(x, t)
Ce(0, t)

)
. (3.38)
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This completes the electrolyte potential transfer function derivation with a two-

component solution dependent on the spatial location in the x domain. For the

numerical implementation, equation (3.35), (3.36), or (3.37) will be computed

for [Φ̃e(z, s)]1 depending on the spatial location, with [Φ̃e(x, t)]2 computed from

the Ce(x, s) transfer function derived in the next section.

3.1.4 Transfer function for the electrolyte concentration,

Ce(x, s)

Finally, to acquire the electrolyte concentration transfer function, the problem is

split into homogenous and non-homogenous components as introduced by Lee et

al. [152]. This allows for the homogenous component to be obtained through an

orthonormal eigenfunction representation of the ϵe weighting function through

the separation of variables method. The non-homogenous component performs a

projection of the concentration function into ϵe to solve for Fourier coefficients.

These are then used to derive the electrolyte concentration transfer function.

First, the individual component definition of ϵe(x) is defined as,

ϵ(x) =



ϵn 0 ≤ x < Ln,

ϵs Ln ≤ x < Ln + Ls,

ϵp Ln + Ls < x ≤ L,

(3.39)

likewise for Deff
e (x),

Deff
e (x) =



De,n 0 ≤ x < Ln,

De,s Ln ≤ x < Ln + Ls,

De,p Ln + Ls < x ≤ L.

(3.40)
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3.1.4.1 Homogenous problem

The homogenous problem is presented below with component for Deff
e (x) and

ϵe(x),
∂ce(x, t)

∂t
= 1
ϵe(x)

∂

∂x

(
Deff
e (x)∂ce(x, t)

∂x

)
, (3.41)

with corresponding boundary conditions that enforce continuity between the cell

subdomains of x with corresponding Deff
e (x) and ϵe(x) for each as,

ce(L−
n , t) = ce(L+

n , t),

ce((Ln + Ls)−, t) = ce((Ln + Ls)+, t),

De,n
∂ce(L−

n , t)
∂x

= De,s
∂ce(L+

n , t)
∂x

,

De,m
∂ce((Ln + Ls)−, t)

∂x
= De,p

∂ce((Ln + Ls)−, t)
∂x

.

(3.42)

Furthermore, through the separation of variables, it is possible to split the spatial

and time domains such that the form is represented as,

ce(x, t) = ξ(x)ζ(t). (3.43)

Through algebraic rearrangement, it’s possible to obtain the separated form as,

d

dx

(
Deff
e (x)dξ(x)

dx

)
= −λϵe(x)ξ(x), (3.44)

dζ(t)
dt

= −λζ(t), (3.45)

where the number of solutions to the above equation is dependent on the eigen-

values, λ, that satisfy the relation; this results in an infinite set for this system.

Therefore, the solutions depend on the specific eigenvalues, resulting in a variable

addition of ξ(x) → ξ(x;λ) and ζ(t) → ζ(t;λ). This solution of (3.45) is obtained

as,
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ξ(t;λ) = ξ(0;λ)e−λt. (3.46)

The solution of (3.44) is dependent on the subdomain and results in three different

equations orignally presented in [152]. For the negative electrode domain,

ξn(x;λ) = k1 cos
√√√√ λϵn

De,n

x

 . (3.47)

The separator solution is obtained as,

ξs(x;λ) = k3 cos
√√√√ λϵs

De,s

x

+ k4 sin
√√√√λϵe,s

De,s

x

 . (3.48)

Finally, the positive electrode solution is,

ξp(x;λ) = k5 cos
√√√√ λϵp

De,p

x

+ k6 sin
√√√√ λϵp

De,p

x

 . (3.49)

It is then possible to solve for the variables k1, k3, and k4 through the following

linear algebraic system,

 cos
(√

λϵs
De,s

Ln
)

sin
(√

λϵs
De,s

Ln
)

−
√
λϵsDe,s sin

(√
λϵs
De,s

Ln
) √

λϵsDe,s cos
(√

λϵs
De,s

Ln
)

k3

k4



= k1

 cos
(√

λϵn
De,n

Ln
)

−
√
λϵnDe,n sin

(√
λϵn
De,n

Ln
)
 .

(3.50)
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Likewise, variables k5, and k6 can be obtained and are represented in relation to

k3 and k4 as,

 cos
(√

λϵp
De,p

x̂
)

sin
(√

λϵp
De,p

x̂
)

−
√
λϵpDe,p sin

(√
λϵp
De,p

x̂
) √

λϵpDe,p cos
(√

λϵp
De,p

x̂
)

k5

k6



=

 cos
(√

λϵs
De,s

x̂
)

sin
(√

λϵs
De,s

x̂
)

−
√
λϵsDe,s sin

(√
λϵs
De,s

x̂
) √

λϵsDe,s cos
(√

λϵs
De,s

x̂
)

k3

k4

 ,
(3.51)

where x̂ = Ln + Ls, and the total eigenfunction representation across the spatial

x domain is,

ξ(x;λ) =



ξn(x;λ) 0 ≤ x < Ln,

ξs(x;λ) Ln ≤ x < Ln + Ls,

ξp(x;λ) Ln + Ls < x ≤ L.

(3.52)

As these eigenfunctions are by definition orthogonal [153], the next step is to

introduced a weighting function, α(x) that fulfils the following,

∫ L

0
ξ(x;λ)2α(x)dx = 1. (3.53)

With an additional boundary condition of ∂ξ(x;λ)/∂x = 0, it is possible to solve

for the set of eigenvalues, denoted in the context as λk through analysis of the

roots in the following equation,

dξp(x;λk)
dx

= −k5 sin
√√√√λkϵp

De,p

L

+ k6 cos
√√√√λkϵp

De,p

L

 = 0. (3.54)

This results in a representation of k5 and k6 in terms of λk, and the next step

is to numerical search across the unit cell width, L, to obtain zero crossings.

Further discussion of the numerical implementation will be presented below, as
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an efficient method for this search is desirable. Once these zero crossings have

been obtained, the solution to the homogenous problem is presented as,

ce(x, t) =
∞∑
k=0

ζ(0;λk)ξ(x;λk)e−λkt. (3.55)

3.1.4.2 Inhomogeneous problem

In parallel to the above homogenous solution, it is possible to investigate the

inhomogeneous component as the expectation is the final transfer function will

be a component of both. First, the inhomogenous problem is restated as,

∂ce(x, t)
∂t

= 1
ϵe(x)

∂

∂x

(
Deff
e (x)∂ce(x, t)

∂x

)
+ as(1 − t0+)

ϵe(x) j(x, t). (3.56)

Similarly to the previous subsection, the problem is transformed into a series

expansion and then partially derived with respect to t,

∂ce(x, t)
∂t

=
∞∑
k=0

dĉe,k(t)
dt

ξ(x;λk), (3.57)

where ĉe,k(t) represents the set of generalised Fourier coefficients. By substituting

equation (3.57) into (3.56) it is possible to obtain,

∞∑
k=0

dĉe,k(t)
dt

ξ(x;λk) = 1
ϵe(x)

∂

∂x

(
Deff
e (x)∂ce(x, t)

∂x

)
+ as(1 − t0+)

ϵe(x) j(x, t). (3.58)

To reduce the above equation, a bounded integration with respect to x from 0 to

L after multiplying both sides by ξ(x;λs)ϵe(x) which reduces to,

dĉe,k(t)
dt

= − λk

∫ L

0
ce(x, t)ξ(x;λk)ϵe(x)dx+ λk

∫ L

0
as(1 − t0+)j(x, t)ξ(x;λk)dx

= − λkĉe,k(t) + ĵk(t;λk),

(3.59)
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where ĵk has been defined as,

ĵk(t;λk) = λk

∫ L

0
as(1 − t0+)j(x, t)ξ(x;λk)dx. (3.60)

3.1.4.3 Transfer function combination

Now that both the inhomogeneous and homogenous problems have derived

solutions, the final transfer function for ce(x, t) can be viewed as the summation

of ĉe,k(t) components. That is to say, through obtaining a transfer function for

ĉe,k(t), it would be possible to obtain one for ce(x, t). Starting from equation

(3.59),

ĵk(t;λk) =λk
∫ L

0
as(1 − t0+)j(x, t)ξ(x;λk)dx,

s · Ĉe,k(s) = − λkĈe,k(s) + Ĵk(s),

Ĉe,k(s)
Iapp(s)

= 1
s+ λk

Ĵk(s)
Iapp(s)

,

(3.61)

where ĵk(t) is a summation of subdomain components and defined as,

ĵk(t;λk) =λk
∫ L

0
as(1 − t0+)j(x, t)ξ(x;λk)dx,

=λk
∫ Ln

0
as(1 − t0+)j(x, t)ξ(x;λk)dx+ λk

∫ L

Ln+Ls

as(1 − t0+)j(x, t)ξ(x;λk)dx,

=Ĵk,n(s) + Ĵk,p(s).

(3.62)

It is then required to investigate these subdomain representations of Ĵk(s),

utilising equation (3.60) above,

ĵk,n(t) =
∫ Ln

0
as(1 − t0+)j(x, t)ξ(x;λk)dx,

Ĵk,n(s)
Iapp(s)

=
∫ Ln

0
as(1 − t0+)J(x/Ln, s)

Iapp(s)
ξ(x;λk)dx,

(3.63)
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where J(x/Ln, s)/Iapp(s) is previously defined in (3.24) above. Following the

previous derivation presented in Lee et al.[152], equation (3.63) is integrated and

provides,

Ĵk,n(s)
Iapp(s) =k1(1 − t0+)L̂n sin(L̂n)(κeff

n + σeff
n cosh(νn(s)))νn(s)

AF (κeff
n + σeff

n )(L̂2
n + ν2

n(s)) sinh(νn(s))

+ k1(1 − t0+)L̂n sin(L̂n)(κeff
n + σeff

n )ν2
n(s)

AF (κeff
n + σeff

n )(L̂2
n + ν2

n(s))
,

(3.64)

where L̂n = Ln
√
ϵnλk/De,n. Likewise, for the positive domain representation,

ĵk,p(t) =
∫ L

Ln+Ls

as(1 − t0+)j(x, t)ξ(x;λk)dx,

Ĵk,p(s)
Iapp(s)

=
∫ L

Ln+Ls

as(1 − t0+)J(L− x/Lp, s)
Iapp(s)

ξ(x;λk)dx,
(3.65)

solving the integration in (3.65) provides the positive electrode reaction flux

transfer function as,

Ĵk,p(s)
Iapp(s) =

k6(1 − t0+)L̂p cos(L̂p)(κeff
p + σeff

p cosh(νp(s)))νp(s)
AF (κeff

p + σeff
p )(L̂2

p + ν2
p(s)) sinh(νp(s))

−
k5(1 − t0+)L̂p sin (̂Lp)(κeff

p + σeff
p cosh(νp(s)))νp(s)

AF (κeff
p + σeff

p )(L̂2
p + ν2

p(s))sinh(νp(s))

+
k6(1 − t0+)L̂p cos(L̂ns)(κeff

p + σeff
p cosh(νp(s)))νp(s)

AF (κeff
p + σeff

p )(L̂2
p + ν2

p(s)) sinh(νp(s))

−
k5(1 − t0+)L̂p sin(L̂)(κeff

p + σeff
p cosh(νp(s)))νp(s)

AF (κeff
p + σeff

p )(L̂2
p + ν2

p(s)) sinh(νp(s))

−
k5(1 − t0+)σeff

p (cos(L̂ns)κeff
p + cos(L̂)σeff

p )ν2
p(s)

AF (κeff
p + σeff

p )(L̂2
p + ν2

p(s))

−
k6(1 − t0+)σeff

p (sin(L̂ns)κeff
p + sin(L̂)σeff

p )ν2
p(s)

AF (κeff
p + σeff

p )(L̂2
p + ν2

p(s))
,

(3.66)

with, L̂p = Lp
√
ϵpλk/De,p, L̂ns = (Ln + Ls)

√
ϵpλk/De,p, and L̂ = L

√
ϵpλk/De,p.

Finally, the generalised Fourier coefficient electrolyte concentration transfer func-

tion is presented as,
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Ĉe,k(s)
Iapp(s) = 1

s+ λk

[
Ĵk,n(s)
Iapp(s) + Ĵk,p(s)

Iapp(s)

]
. (3.67)

The final electrolyte transfer function can be obtained by integrating equation

(3.57) with respect to time and combining with 3.67 as,

Ce(x, s)
Iapp(s) =

α∑
k=0

Ĉe,k(x, s)
Iapp(s) ξ(x;λk). (3.68)

3.1.5 Concluding derived transfer functions

The transfer functions utilised for reduced-order realisation have been derived

in this section. Each transfer function represents an internal physical electro-

chemical variable utilised for online predictions and control later in this chapter.

To capture the physical states in a single representation, the transfer functions

defined in equations (3.21), (3.24), (3.26), (3.28), (3.32), (3.68), for both posi-

tive and negative electrode domains are combined into a single input, multiple

output (SIMO) response array, which provides a single mathematical structure

comprising the continuous-time cell impulse response, shown as G(s) in (3.69)

below. To capture battery terminal voltage, equation (2.20) is utilised from the

output parameters of the system. Efficiently translating this formation into a

state-space representation is the basis for the computationally informed discrete

realisation algorithm defined in Section 3.2.
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G(s) =



Ce(x,s)
Iapp(s)

Φe(x,s)
Iapp(s)

C̃surf(z,s)
Iapp(s)

Φ̃s,e(z,s)
Iapp(s)

Φs(z,s)
Iapp(s)

J(z,s)
Iapp(s)



(3.69)

3.2 Computationally Informed Discrete Reali-

sation Algorithm

A computationally informed discrete realisation algorithm (CI-DRA) is presented

in this section to utilise the transfer functions derived in the previous section and

create a state-space representation of the system dynamics. This method utilises

the sampled impulse response from the continuous transfer functions derived in

Section 3.1 above. The CI-DRA provides a mathematical pathway to achieve

the linear state-space realisation of the form,

x[tc + Ts] = A · x[tc] + B · u[tc],

y[tc] = C · x[tc] + D · u[tc].
(3.70)

The CI-DRA incorporates the zero-order hold methodology first presented

in the conventional DRA [73]; however, to achieve faster system realisation, an

improvement has been achieved to reduce the overall realisation time. This is

achieved by aligning the sampled transfer function frequency (Ftf ) and the final

state-space sampling frequency, Fs = 1/Ts, to be integer multiples, thus removing

the DRA’s interpolation requirements of the discrete transfer function response

[73]. This alignment also enables the CI-DRA to utilise the discrete-time impulse
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response from the transfer function response without the additional accumulated

continuous time step response that is required in the conventional DRA method.

This section introduces the conventional discrete realisation algorithm and the

improvements achieved with the computationally informed algorithm.

First, the approximate discrete system response of the continuous time transfer

function is introduced as [154],

G(z) ≈ G(s) |
s= 2(z−1)

(z+1) Ftf
. (3.71)

This result is utilised to generate the approximate discrete time response, G(z),

from the continuous time transfer functions. Next, by relating the discrete Fourier

transformation of a sequence to its z-transform [155], the following equation is

formed,

Gd[f ] = G

(
2Ftf

exp(j2πf/N) − 1
exp(j2πf/N) + 1

)
, 0 < f < N (3.72)

where N is defined as the number of points captured in the transfer function

response and depends on the response length and sampling frequency, Ftf . For

this work, N is sized to be memory efficient instead of computationally efficient

in the conventional DRA, i.e. the size of N is the exact requested length. In

contrast, the conventional DRA selected the next largest power of two. Through

this sizing, the CI-DRA provides additional computational performance as the

size of N impacts the realisation performance. Next, to acquire the discrete-time

impulse response, gimp[n], an inverse discrete Fourier transformation is applied

to Gd[f ],

gimp[n] = 1
N

N−1∑
f=0

Gd[f ] exp(j2πfn/N). (3.73)

The conventional DRA proceeds with a cumulative summation and interpolation

of gimp[n], at the state-space sampling frequency, Fs. This result can recreate

the discrete-time impulse response through an element-wise difference operation
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(i.e. gstep[k] − gstep[k − 1]). The cumulative operator is presented as,

gstep = 1
Ftf

k−1∑
i=0

gd[i]. (3.74)

As the relation between Ftf and Ts is exploited, the CI-DRA can forgo the steps

formed from equation (3.74) that are required in the conventional DRA. The

relation allows for the CI-DRA to directly utilise equation 3.73 for realisation,

providing a substantial performance improvement with large values of N . To

showcase this difference, a reference continuous time transfer function is intro-

duced,

Gr(s) = 1
8s2 + 2s+ 4 . (3.75)

The CI-DRA’s aligned impulse response is shown in Figure 3.2, with comparison

to the conventional DRA. Continuing the realisation process, the Ho-Kalman [156]

Fig. 3.2 Conventional DRA discrete-time impulse response interpolation from
continuous-time transfer function impulse response (left) and CI-DRA’s response
alignment removing interpolation requirements (right)

algorithm is utilised to form the state-space representation. This is completed

via exploitation of the Markov parameters that comprise the resultant discrete

response impulse response, {Gk = gimp[n]}. This response can be shown in the
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following form,

Gk =


D k = 0,

CAt−1B k = 1, 2, 3, ..
(3.76)

The D array can be gathered from the system response at time-step zero; however,

it can also be obtained utilising an initial value theorem for the equivalent discrete-

time system definition as,

D = G0 = gimp[0] = lim
z→∞

G(z). (3.77)

This method will be utilised to numerically capture the D array. Further discus-

sion on the reformation of the D array for improvement in online predictions

will be discussed in a later section. The remaining transfer function response

can then be formulated into a block Hankel matrix (3.78) of corresponding

Markov parameters. This block Hankel (Hk,m) has indices corresponding to a

subset domain of the discrete-time impulse response. The dimensionality of Gk is

defined by the system realisation for the CI-DRA; this comprises the vector size

of equation (3.69) and the corresponding transfer function response length N .

Hk,m =



G1 G2 G3 · · · Gm

G2 G3 G4 · · · Gm+1

G3 G4 G5 · · · Gm+2
... ... ... . . . ...

Gk Gk+1 Gk+2 · · · Gm+k−1


. (3.78)
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The block Hankel has an additional feature that allows for relation to the

controllability and observability matrices defined as,

Hk,m = OkCm. (3.79)

This relation provides a mechanism to form the A, B, and C matrices from the

block Hankel matrix and is shown in the observability (O) and the controllability

(C) definitions below. Initially, by exploiting this relation and factoring Hk,m into

the two matrices, the first step to obtaining these matrices can be completed.

Ok =



C

CA

CA2

...

CAk−1


(3.80)

Cm =
[
B AB A2B · · · Am−1B

]
(3.81)

To accomplish this factoring, singular value decomposition (SVD) provides the

mechanism to reduce the block Hankel through truncation of the system order.

The truncated SVD is shown in equation (3.82) below, where Σs captures the

highest order singular values of the block Hankel in descending order while

Σn ≈ 0 captures the remaining values low order values. This approximation

is exact when the remaining orders captured by Σn are zero. Selection of the

size of Σs compromises numerical performance and final system fidelity. Further

discussion on this compromise is presented in Section 3.3.2 below.

Hk,m =
[
Us Un

] Σs 0

0 Σn


V †

s

V †
n

 = UsΣsV
†
s (3.82)
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Next, combining the SVD and the observability and controllability definitions,

equations (3.80) and (3.81) become,

Ok = UsΣ
1/2
s T , (3.83)

Cm = T−1Σ1/2
s V †

s , (3.84)

where T is introduced as a transformation matrix that defines the basis for A, B,

and C. It is presented as the identity matrix in this work, thus simplifying the

computation of Ok and Cm. It is then possible to exploit the original structure of

the matrices and utilise the intrinsic Markov parameters and obtain the resulting

state-space representation as:

A = O
†
kHk,m+1C

†
m,

B = Cm[1:M, 1:γin],

C = Ok[1:γout, 1:M ],

(3.85)

where γout and γin are the state-space output size and input size, respectively,

Hk,m+1 denotes a single index forward shifted of the block Hankel matrix, M

is the system order, and † is the matrix transpose. The realisation process is

completed with the above equations, and a linear system model of state-space

form, as shown previously in equation (3.70), is acquired. A summary of the

CI-DRA method is shown in the list below.

Summary of the CI-DRA:

1. Align the final system sampling period and transfer function sampling

period, ensuring that Ts is an integer multiple of the transfer function

sampling frequency, Ftf enabling the removal of the cumulation response

and interpolation steps in the conventional DRA.
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2. Compute the discrete-time frequency response Gd[f ] for the derived transfer

functions and generate the discrete-time impulse response, gimp[n] via the

inverse fast Fourier transformation equation (3.73).

3. Form the block Hankel matrix from the discrete-time impulse response of

values (t > 1) and compute the in-place truncated singular value decompo-

sition to acquire the controllability and observability matrices.

4. Perform an in-place element shift operation on the block Hankel matrix to

obtain the time-shifted block Hankel matrix.

5. Form a linear state-space system from the Ho-Kalman algorithm with

unstable poles replaced by their reciprocals and oscillating poles replaced

by their magnitudes.

3.2.1 Software Implementation

LiiBRA.jl, a Julia [147] based package, has been created for the fast computa-

tional implementation of the above computationally informed discrete realisation

algorithm. This package improves on previously presented implementations

[58] of the eigensystem realisation algorithm by providing fast computational

solutions while maintaining fidelity. Key improvements include performant trun-

cated SVD support, large array memory optimisation, and performance benefits

from the Julia language largely due to the bottleneck from block Hankel matrix

formation. Julia provides a high-performance dynamic typeset with just-in-

time compilation and multiple dispatch capabilities. These features provide

an effective computational language for scientific computing while providing

modern syntax. The open-source code repository for LiiBRA.jl can be found

at https://github.com/BradyPlanden/LiiBRA.jl. Example usage of LiiBRA.jl

https://github.com/BradyPlanden/LiiBRA.jl
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for creation and simulation of the reduced-order models is presented in the code

shown in Figure 3.3 below. First, the cell variable is constructed, with the

Chen et al. [81] parameterisation, followed by the range of state-of-charge and

temperature points for the model generation to be completed. This range enables

interpolating the generated state-space models for varying states of charge and

temperatures. A 75% initialisation state-of-charge is selected, and the model

generation is completed by passing through the exported Realise function call,

which outputs a tuple comprising of each corresponding state-space array. Finally,

a hybrid pulse power characterisation is completed through the exported HPPC

function call, with corresponding positive and negative pulse amplitudes of 4A

and -3A, respectively.

Fig. 3.3 Example usage of LiiBRA.jl, providing a simple package for creating
and simulating reduced-order models.

The high-level structure of LiiBRA.jl is shown in Figure 3.4 below. The pack-

age dependencies are shown and offer improved code reusability while minimising

the size of LiiBRA.jl. Through distributing the codebase and utilising Julia’s

open-source packages, LiiBRA.jl can be modular and flexible while providing

improved algorithm selection for compatibility and performance. These depen-

dencies include TSVD.jl [157] for the truncated SVD, FFTW.jl [158], providing

an interface for inverse fast Fourier transforms, and Roots.jl for numerical root

finding for the electrolyte concentration transfer function.
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Fig. 3.4 High-level architecture of LiiBRA.jl’s implementation of CI-DRA with
package dependencies listed.

To provide robust operation, LiiBRA.jl includes a dependency of Interpo-

lations.jl [159] to support the implementation of the conventional DRA when

the conditions required for the CI-DRA are not met (i.e. Ftf and Fs are not

integer multiples); however, N remains sized for memory efficiency as discussed

in the previous section. This provides an easy interface for model creation, with

feedback to end-users on the computational method being utilised. An additional

achievement for LiiBRA.jl is its capability to be numerically solved on ARM

hardware which greatly expands utilisation for in-situ model creation. This

provides a mechanism for one of the aims of this work, enabling in-vehicle model

creation for parameterisation variability. LiiBRA.jl’s capabilities are presented

in the next section.

3.3 Results

In this section, numerical optimisation of the SVD method used in LiiBRA.jl

is presented, followed by an investigation of parametric sensitivities and a ver-

ification of the reduced-order models against the full-order system. Finally,

experimental validation of the reduced-order model is presented through an au-

tomotive drive cycle. The x86 computational results for this work were gathered

on a 2019 Macbook Pro 13" Intel i5 with ARM results obtained on a Qualcomm

Snapdragon 845 with a Ubuntu 18.04.5 LTS operating system. Both hardware

architectures utilised Julia version 1.7.2.
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3.3.1 Singular Value Decomposition Methods

During initial platform profiling, the singular value decomposition was shown

to impact the total numerical solution time greatly. Optimising this truncated

singular value decomposition was required to achieve the online performance

targets of this work. Three open-source packages were investigated for their high

computational efficiency: Arpack.jl [160], PROPACK.jl [161], and TSVD.jl.[157]

Arpack.jl is a Fortran wrapper of the implicitly restarted Arnoldi method [162],

reducing to the implicitly restarted Lanczos method for symmetric input matrices.

PROPACK.jl is likewise a Fortran wrapper of the Fortran PROPACK software,

initially developed by R.M. Larsen [157]. This package implements the Lanczos

bidiagonalisation method with partial reorthogonalisation and implicit restart,

in which it acts directly on the system matrix without forming the equivalent

system in memory. Similarly, TSVD.jl implements the Lanczos bidiagonalisation

method with partial reorthogonalisation; however, it is implemented directly

with Julia.

To capture each implementations performance, the block Hankel size is varied,

as defined in equation (3.78). As the block Hankel determines the length of system

response captured in the model formation, it is utilised as the input variable

for this investigation. Analysing the results presented in Figure 3.5 below, it is

clear that TSVD.jl provides the lowest solution time across the presented range

of block Hankel sizes, with PROPACK.jl and Arpack.jl following respectively.

PROPACK.jl is shown to use significantly more memory, with the difference

between TSVD.jl and Arpack.jl negligible. Therefore, for SVD computations

in LiiBRA.jl, the TSVD.jl package was selected as it enables a large range of

solutions regarding block Hankel size without compromising performance.
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Fig. 3.5 Computation results of PROPACK.jl, TSVD.jl, and Arpack.jl completing
SVD of varying block Hankel sizes

Next, to investigate the CI-DRA’s improvements over the conventional DRA,

a comparison is completed across differing transfer function system response

lengths as presented in Figure 3.6 below. As the CI-DRA provides a mechanism

to simplify model generation through interpolation removal and sampling re-

sponse point optimisation, the improvements depend on the total system response

length. Figure 3.6 showcases the CI-DRA’s ability to capture approximately

twice the length of system response over the conventional DRA method for

an equivalent computational time from eight hours onwards. This performance

improvement enables longer system dynamics to be captured in the reduced-order

model generation for improved fidelity in long-term electrochemical predictions.

For a 12-hour system response, a 21.7% improvement in model generation time

is available through the CI-DRA over the conventional DRA.
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Fig. 3.6 Computation results comparing the CI-DRA to the conventional DRA
for varying transfer function system response length utilising LiiBRA.jl.

3.3.2 Computational Sensitivity

A numerical sensitivity analysis was also completed for the CI-DRA framework

variables. Table 3.1 lists the variables and the tested ranges. An initial in-

vestigation was completed to determine stable confines for the model, which

were then selected as the default values to minimise numerical instabilities. The

minimum and maximum of each range were tested to determine each variable’s

sensitivity on the resultant computational time. The benchmarking package

BenchmarkingTools.jl [163] was utilised to obtain the relevant statistical results.

For this work, the minimum number of simulations for each variable set was

selected at six to constrain the total number of simulations while reducing the

effect of numerical jitter on the analysis. The median computation time for each

variable is shown in Figure 3.7.
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Table 3.1 Default values and corresponding ranges for LiiBRA.jl sensitivity
analysis of framework variables.

Variable Definition Default Range
H Size of square Hankel matrix 2500 1500 - 3500
Se,m Number of spatial particles in electrolyte 6 4 - 8
M System order 8 4 - 12
Ss,m Number of spatial particles in electrodes 4 2 - 6
Tlen Length of transfer function sampling time [hr] 4.5 1.0 - 8.0

Ftf & Fs System sampling frequencies [Hz] 4 2 - 6

Furthermore, this analysis provides insight towards a minimal package configu-

ration for fast model generation. For this analysis, the transfer function sampling

frequency (Ftf ) and final system sampling time (Ts) are coupled together, as this

provides a stable solution for investigating the CI-DRA. The coupled Fs and Ts

variables, the number of particles in the electrode (Ss,m) and transfer function

sampling length (Tlen) have the lowest sensitivities and thus should be selected

based on the required model fidelity. The block Hankel size (H), number of

particles in the electrolyte (Se,m), and model order (M) have large impacts on

the total computational time. These variables should be selected based on a

compromise between model fidelity and generation time requirements.

Time TimeVariable

H 3.22s −60.39% 15.461s90.2%

Se,m 5.539s −31.86% 10.818s33.08%

M 5.499s −32.35% 10.03s23.39%

Ss,m 7.149s −12.06% 8.712s7.17%

Tlen 7.217s −11.22% 8.362s2.87%

Ftf / Fs 7.593s −6.59% 8.167s0.47%

Variable at 50% Variable at 150%

Fig. 3.7 CI-DRA numerical sensitivity for reduced-order model creation at each
variable’s lower bound (50% default) and higher bound (150% default). Block
Hankel size is shown to have the highest sensitivity, with the coupled Ftf and Fs
having the lowest.
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3.3.3 Numerical Verification

A worldwide harmonised light vehicle test procedure (WLTP) 3B [164] has

been implemented for numerical verification and experimental validation. This

drive-cycle was created from specifications provided for a 2022 Tesla Model 3

long-range vehicle, which are provided in Table 3.2 below. The fitted parameters

are denoted by ∗.

Table 3.2 Tesla Model 3 long-range specifications used for simulated WLTP

Variable Definition Value Unit
M Total vehicle mass 1931 kg
E Onboard useable energy 82 kWh

Ns/Np Electric system orientation 96s47p∗ -
CNom Rated single cell capacity 5 Ahr
VLim Operational voltage limits 2.5 / 4.2 V
FD Vehicle drivetrain losses [165] N
ηM Motor efficiency 0.827∗ -

The predicted cycle from the above specifications was then utilised to generate

the single-cell scaled power cycle, shown in Figure 3.8 below, for an alternative

pack designed with LG Chem. M50 cells instead of Tesla-manufactured cells.

This cell was selected as it is widely available and provides a strong reference for

the current state of a high-energy intercalation cell with an NCM 811 positive

electrode and bi-component Graphite-SiOx negative electrode. LiiBRA.jl was

then parameterised with the LG M50 electrochemical characterisation presented

by Chen et al. [81] and was utilised for both model generation and simulation of

the WLTP 3B drive-cycle.
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Fig. 3.8 Generated WLTP cycle for a single cell based on a 2022 Tesla Model 3,
long-range pack designed with LG M50 cells.

For this verification, the block Hankel was sized at 2500 by 2500 elements, with

the transfer function and final system sampling time set to 4 Hz, a reduced system

order of six was utilised, and finally, the transfer function sampling length was set

to 4.5 hours. Figure 3.9 below displays this verification across the WLTP 3B drive

cycle for both predicted terminal voltage and negative electrode concentration.

These two variables are shown as references to the underlying physical state

prediction capabilities of the CI-DRA and LiiBRA.jl; however, alternatives

could have likewise been selected. Additionally, the open-source python battery

mathematical modelling package (PyBaMM) [97] was utilised to solve the full-

order model with identical parameterisation. Figure 3.9 below outlines the

predicted terminal voltage and negative electrode concentration for both the

reduced-order and full-order models when initialised at the experimentally aligned

75% state of charge value.
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Fig. 3.9 Comparison of LiiBRA.jl to the full order implementation in PyBAMM,
WLTP 3B at 75% SOC and 25°C for terminal voltage and negative electrode
concentration.

The root-mean-square deviation between the full-order and reduced-order

models is 3.64 [mV ] and 5.59 [mol/m3] with an absolute maximum deviation of

46.68 [mV ] and 14.24 [mol/m3] observed. LiiBRA.jl had a total model creation

time of 20.2 seconds for five state-of-charge references for a single temperature.

The WLTP prediction component for LiiBRA.jl resulted in a mean time of 135.5

milliseconds for a total combined time of 20.34 seconds. In comparison, PyBaMM

had a mean runtime of 46.28 seconds. These results also show that LiiBRA.jl

has comparable fidelity to the full-order DFN implemented in PyBaMM while

enabling significantly faster predictions. The 20.34-second model generation time

is only required when first generating the reduced-order model; any additional

simulations for the generated models would only require the 135.5 millisecond

computation time. Figure 3.10 below showcases the predicted spatial electrolyte

salt concentration across the simulation drive cycle.
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Fig. 3.10 LiiBRA.jl electrolyte concentration for the WLTP 3B drive-cycle at
75% starting SOC and 25°C

An additional performance investigation was performed to compare LiiBRA.jl

to a previously reported MATLAB implementation [57, 58] of the DRA. This

implementation was modified to reproduce the CI-DRA methodology, allowing

for a direct investigation of LiiBRA.jl’s performance. Both models were initialised

with identical variable and parameterisation sets. The block Hankel size was

varied to represent different fidelity and computational timing compromises.

An additional ARM implementation of LiiBRA.jl is also presented to confirm

capabilities for in-vehicle model generation. The x86 and ARM implementations

of LiiBRA.jl perform very similarly, with a mean computational time of 4.04

seconds and 6.06 seconds, respectively. The MATLAB implementation performs

significantly worse, with a mean computational time of 13.27 seconds across the

simulated block Hankel sizes. A mean computational improvement of 3.51 times
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is showcased across the varied block Hankel sizes for the x86 results. These

results present a three-minute total model generation time for ARM hardware,

thus showcasing the viability of LiiBRA.jl for in-vehicle model creation and

enabling physics-based model modifications over the lifetime of the battery pack.

Computational timings are displayed in Figure 3.11 below.
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Fig. 3.11 Computation results for CI-DRA using LiiBRA.jl (x86, ARM) and Mat-
lab (x86) for varying block Hankel sizes with identical system parameterisation.

3.3.4 Experimental Validation

Experimental validation of LiiBRA.jl’s capabilities is presented below, utilising

the parameterisation of an LG Chem. M50 cylindrical 21700 cell [81]. To the

author’s knowledge, lithium-ion discrete realisation algorithms have been verified

from full-order and linearised partial differential implementations [152, 74, 166,

167]; however, an experimental validation has not been presented in the literature.
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This section presents an experimental voltage validation of the CI-DRA utilising

LiiBRA.jl and the parameterised LG Chem. M50 dataset is presented.

For this validation, three cells were experimentally tested to reduce cell-to-cell

variance. This is seen as the minimum requirement, and future investigations

are recommended to verify the minimum number of experimentally tested cells

required to capture adequate statical variations [168] with respect to LiiBRA.jl.

Each cell is initially conditioned at 25°C for five cycles at a 1C discharge rate

and a C/2 charge rate utilising an Arbin LBT21084 cycler and a Binder KB115

incubator. A constant current discharge follows this to 75% SOC based on

the measured capacity with a WLTP 3B drive-cycle performed based on the

specifications shown in Table 3.2. A T-type thermocouple is surface mounted with

thermal paste at the body centre of the cell to ensure temperature consistency

across the experimentally captured data.

Figure 3.12 below showcases the predicted voltages for the CI-DRA and

the experimentally measured cell for the WLTP 3B drive cycle. These results

verify the capabilities of the CI-DRA method and LiiBRA.jl for physics-based

predictions, with the prediction values producing a root mean square deviation of

7.54 mV to the experimental cell. It should be noted that LiiBRA.jl experiences

an increased cell voltage error throughout the length of the drive cycle. This

is believed to result from the variation between the experimental and modelled

applied current, as well as assumptions made during the experimental cell pa-

rameterisation by Chen et al. [81] Online SOC estimation for the conventional

DRA has been previously presented [169] which provides a viable correction for

this longer-term deviation. Finally, an updated parameterisation of the LG M50

cell is available [82] and includes temperature effects during characterisation,

requiring fewer calibration parameters. This parametrisation presents the po-

tential to improve the predicted fidelity without modifying the model architecture.
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Experimental Fig. 3.12 WLTP 3B voltage validation of CI-DRA implemented with LiiBRA.jl

to experimentally tested cell. This drive cycle is started at 75% SOC and 25° C
initial cell temperature.

3.3.5 Degradation-Informed Predictions

As the in-situ capabilities of the CI-DRA and LiiBRA.jl have been presented

alongside an experimental validation of the framework, this section presents a

methodology for implementing this framework for degradation-informed predic-

tions. This is completed by exploiting the in-situ capabilities of the presented

framework, as the ability for fast realisation on ARM hardware provides a

mechanism for reparameterisation of the predictive state-space realisation. The

underpinning methods for determining the reparameterisation values are outside

of the scope of this thesis; however, there have been multiple works to determine

the parameter values for electrochemical models in the literature [51, 170, 171,

172, 173]. These parameter estimation methods utilise non-destructive means

to acquire the electrochemical values for the corresponding model predictions;

however, due to parameter observability challenges, these methods tend to have

lumped parameter values. This subsection shows the degradation-informed capa-

bilities via the predictive changes for corresponding reparameterisation and the

corresponding model generation time.

The CI-DRA framework is parameterisation with the Chen et al. [81] dataset

for the initial predictions, with a framework variable definition presented in Table

A.1. A constant current discharge is predicted for the initial parameterisation, as
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well as three additional reparameterised models. To showcase the reparameteri-

sation capabilities and its ability to support degradation-informed predictions,

the negative electrode stoichiometric concentration limit, θ0
n, is modified as an

example degradation mechanism. This investigation is presented in Figure 3.13

for a 2A discharge at 25° C until the minimum voltage value is reached.
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Fig. 3.13 Constant current discharge at 2 A to 3V cell minimum, 100% initial SOC
and 25° C initial cell temperature. Three corresponding θ0

n values, 0.95, 0.85, 0.75,
are displayed, presenting LiiBRA and the CI-DRA’s degradation-informed pre-
diction capabilities.

3.3.6 Online Linearisation & Embedded Deployment

The CI-DRA has shown capability in generating reduced-order models in both

offline and online applications; however, a validation of the real-time capabilities
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of those models is required to confirm the framework’s performance. This

section confirms this by deploying the generated models from the CI-DRA onto

a real-time capable embedded controller. The state-space models generated

by the CI-DRA were transferred into a MATLAB Simulink model utilising a

fixed-step, discrete solver with a 10ms runtime that was then deployed onto the

real-time target through C-code compilation. This toolchain was selected as it is

commonly utilised in the automotive industry, and the embedded target supports

this compile framework. The process of obtaining the state-space models used

for this validation is shown in Appendix A.

The deployed representation is parameterised with an LG Chem. M50 cell,

with initialisation at 100% SOC and an operating temperature of 298.15K. The

CI-DRA framework variables were parameterised to include a system order of 4,

a transfer function system response length of 4.5 hours, a square block Hankel

matrix size of 2500 capturing the first 1500 elements of the transfer function

response, with the remaining elements capturing an additional 250 elements

at locations [2500 : 2750, ..., 5500 : 5750]. This methodology improved system

predictions by increasing the length of captured response from the transfer

functions while maintaining an equivalent memory size. The spatial particle

distribution includes four electrolyte particles spaced at the solid electrode

boundaries (i.e. Z = 0, 1) and two particles in each electrode at the same spatial

locations. Finally, the state-space system and transfer function sampling time

were selected at 4 Hz.

Given the presented state-space representation in Appendix A and the in-

troduced state-space architecture presented previously in Chapter 2, further

validation of the real-time deployment can be completed. As initially presented

in Section 3.1 above, the CI-DRA follows the convention introduced by Lee et

al. [174] to linearise the transfer functions around a predetermined equilibrium

point. This convention has provided accurate predictions, as shown in the pre-



3.3 Results 88

vious section; however, if the cell operation becomes highly dynamic (i.e. high

applied currents), the linearisation around the point ρ, which is utilised in the

model generation, will produce higher deviations from the full-order model. To

account for this error term, Lee et al. introduced a methodology to linearise the

state-space model for varying flux amplitudes by reforming the D matrix. This

has been shown to improve system predictions during highly-dynamic operations.

The remainder of this section aims to develop performance improvements for

this linearisation.

The conventional linearisation terms required for online system modification

are shown below and comprise non-linear hyperbolic functions. These equations

utilise the corresponding conductivities for each sub-domain of the cell and the

calculated reaction flux for the current time step to update the linearisation. This

information enables the creation of an updated D matrix for the next time step,

providing an improved prediction for the current operating conditions. First,

utilising the initial value theorem to capture the D indices for each corresponding

transfer function, the limit of the s-domain approaching ∞ is utilised for a

redefinition of the ν(s) variable for the negative and positive domains. The

negative domain representation is shown below, with the positive (νp) represented

with a corresponding Lp replacement,

νn(∞) = Ln

√√√√as( 1
σeff + 1

κeff )
Rtot

(3.86)

The next step in the relinearisation of the D matrix is to compute the correspond-

ing contribution for each transfer function. Starting with the electrolyte potential

transfer function (3.35), the initial value theorem response is represented below

for spatial particles within the negative electrode domain with the subdomain
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particle location denoted as ψ and as s → ∞,

Φe(ψ,∞)
Iapp(∞) =

Ln(σeff
n

κeff
n

)(1 − cosh(ψνn(∞)
Ln

)) − ψνn(∞) sinh(νn(∞))
A(σeff

n + κeff
n )νn(∞) sinh(νn(∞))

+
Ln(cosh(νn(∞)) − cosh( (Ln−ψ)νn(∞)

Ln
))

A(σeff
n + κeff

n )νn(∞) sinh(νn(∞))

(3.87)

For particles within the separator domain, the transfer function is reintroduced

from equation (3.36) with the corresponding initial value theorem applied as,

[Φ̃e,1(ψ,∞)]1
Iapp(∞) = Ln − ψ

Aκeff
s

+
Ln((1 − σeff

n

κeff
n

) tanh(νn(∞)
2 ) − νn(∞))

A(σeff
n + κeff

n )νn(∞) (3.88)

Finally, the positive electrode domain equation (3.37) is represented with the

initial value theorem applied as,

[Φ̃e,1(ψ,∞)]1
Iapp(∞) = − Ls

Aκeff
s

+
Ln((1 − σeff

n

κeff
n

)tanh(νn(∞)
2 ) − νn(∞))

A(κeff
n + σeff

n )νn(∞)

−
Lp(1 + σeff

p

κeff
p

cosh(νp(∞)))
A(κeff

p + σeff
p )sinh(νp(∞))νp(∞)

+
Lpcosh( (Ln+Ls−ψ)νp(∞)

Lp
)

A(κeff + σeff)sinh(νp(∞))νp(∞)

+
Lp

σeff
p

κeff
p

cosh( (L−ψ)νp(∞)
Lp

)
A(κeff + σeff)sinh(νp(∞))νp(∞)

+ (Ln + Ls) − ψ

A(σeff
p + κeff

p )

(3.89)

This is continued for each of the introduced transfer functions in equation

(3.69) with the updated definition of ν such that s → ∞. The corresponding

concentration transfer functions have a zero initial value as such, are given by

a null vector of length corresponding to the number of spatial points predicted.

The electrolyte concentration is defined as,

Ce = [0]ψ,1 (3.90)
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Likewise, for the solid phase concentration corresponding to the particle number

in these domains (j),

Csurf = [0]j,1 (3.91)

As these functions are numerically complex, with a requirement to compute

at each time step, they can contribute to an increased computational time for

real-time deployment. An alternative to computing these hyperbolic functions is

presented by investigating surrogate machine learning models capturing the non-

linear dynamics. A simplistic neural network is utilised for this investigation to

enable architecture understanding and fast real-time computation. A feedforward

network is created, with data generated through a Sobol design exploration from

the hyperbolic system, covering the corresponding up to 5C. The architecture of

this network is introduced in Figure 3.14.
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21

Feed-foward
Neural Network

Fig. 3.14 Surrogate feedforward neural network comprising two hidden layers,
mapping a seven-dimensional vector to the twenty-one-dimensional output vector.

To ensure a robust final model, the operating range for the exercised dataset

extends past the cell operating limits to avoid network extrapolation. This

dataset was split into three subsets and utilised for training (70%), testing

(15%), and validation (15%) of the network. A seven-dimensional input vector,

corresponding to the required parameters for computing equation (3.69), was
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mapped to two hidden layers comprising ten neurons each. These parameters

comprise the domain specific dimensionless condensing variables, νn and νp, and

the solid and electrolyte conductivies for the negative, σeff
n and κeff

n , positive, σeff
p

and κeff
p , and the electrolyte conductivity in the separator, κeff

s . The output vector

comprises the indices of the D matrix, with four electrolyte particles and two

solid phase particles for each domain; this results in a twenty-one-dimensional

output vector. The fitted performance of this surrogate model is presented in

Figure 3.15, showcasing the capability for accurate predictions.

Fig. 3.15 Fitted performance of the surrogate neural network for training, testing,
validation, as well as a combined performance for the total dataset.

The generated models coupled with the online linearisation method were

compiled onto an ETAS ES910 embedded prototyping and interface module to
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validate the improved linearisation method. This unit provides an embedded

reference for comparison with acceptable computation performance to ensure

these models operate without overrunning the real-time requirements. The con-

ventional linearisation and the neural network surrogate model were deployed, as

well as an enhanced self-correcting equivalent circuit model [58]. This equivalent

circuit model provides a reference to current battery management predictive

models, as previously discussed in Chapter 2. Figure 3.16 below displays the

computational requirements for each method when computing a 10-millisecond

prediction window for a static discharge. This result is reported from the em-

bedded controller for each time step and includes numerical jitter. This is

equivalent to a final model sample time of 100 Hz, showcasing a higher operating

condition for the CI-DRA. The conventional linearisation method results in a

real-time factor of 200 and validates this methodologies capability in creating

reduced-order models for real-time deployment without additional optimisations.

The ANN linearisation method improves the real-time factor to 2.27 × 102 for

this hardware, resulting in an approximate 13.5% reduction in computational

requirements. Finally, the equivalent circuit model results in computationally

efficient predictions with a real-time factor of 1.79 × 103; however, it does not

provide any internal state information.
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Fig. 3.16 Deployed model computational time for ECM, CI-DRA, and CI-DRA
with surrogate linearisation.

With this investigation, the CI-DRA’s real-time model creation capabilities

are verified while presenting an improvement in the online linearisation method.

Compared to the equivalent circuit model, the CI-DRA generation models have

a higher computation burden; however, they still exceed the required real-time

factor on the deployed hardware. Sizing of the generated model and utilisation

of the surrogate linearisation method provide calibratable options to ensure an

acceptable solution for varying hardware selection.

3.4 Concluding Remarks

This chapter presents an open-source modelling package, LiiBRA.jl, developed

in Julia to create and simulate real-time capable electrochemical models. An

improved realisation algorithm (CI-DRA) is presented with computational im-

plementation discussed and results showing improvements over the conventional
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method. This work presents capabilities in offline model creation and expansion

into in-vehicle creation via ARM compilation. This advancement was feasible due

to the improvements enabled by the CI-DRA, the high-performance capabilities

of LiiBRA.jl, and the ease of ARM-based compilation. This improvement opens

the future potential of parameterisation for in-vehicle online models, providing a

vital mechanism for individualised pack degradation predictions over its lifetime

due to its physics-informed capabilities. This package provides a mean value

improvement over the presented MATLAB CI-DRA implementation of 3.51 times.

For ARM deployment, this package provides a modest 1.53 times decrease in

performance compared to an equivalent x86 characterisation. Investigations

showed a computational solution time of 6.06 seconds per model for ARM-based

generation providing a total model creation time of three minutes.

An investigation into the CI-DRA’s capabilities over the conventional DRA

was presented, showcasing a performance improvement of 21.7% for 12 hours of

transfer function system response sampling. This was continued into a framework

variable sensitivity analysis, which presented the CI-DRA’s dependencies on

block Hankel size, the number of spatial particles in the electrolyte, and reduced

system order. Experimental validation of the CI-DRA was completed, with

voltage prediction of a WLTP 3B drive-cycle resulting in an RMSE value of

3.67mV. Finally, the generated models were deployed onto an embedded target

to validate their real-time capabilities. This deployment enabled an additional

improvement of 13.5% over the conventional DRA via the use of neural network

surrogate models to enable online linearisation of the generated model. To

conclude, the creation of LiiBRA.jl for this work has provided a performant step

towards solving the two-language problem in real-time embedded computing.

This is realised through the in-situ capabilities of LiiBRA.jl and the CI-DRA

optimisation, enabling the in-place creation of the reduced-order models for

embedded deployment. The translation of these models in corresponding C-code
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or real-time deployed Julia code can be completed through multiple open-source

packages in the Julia environment. Further, it reduces resources in software

creation and maintenance.

This chapter concludes the real-time realisation algorithm development. In

the next chapters, this thesis expands into a fast, physics-informed modelling

method for model-based cell design. This work will expand on a fast multi-scale

tool for high-level usage and continues into an application for next-generation

lithium-metal cells.



Chapter 4

Multi-scale battery modelling

4.1 Multi-scale battery design

Model-informed lithium-based battery design enables improvements in micro-

scale parameter effects and faster design iterations and provides a formulation

for application-specific battery design. As such, this chapter is implemented as a

bridge chapter between the previously introduced improvements in reduced-order

battery modelling and lithium-metal anode modelling. The aim is to introduce

the open-source multi-scale modelling package, BattCalc.jl, to frame the need for

lithium-metal modelling improvements from a systems-level perspective. As such,

a methodology to improve the understanding of multi-scale battery design and

its impacts on manufacturing targets is presented. This is completed by coupling

micro-scale parameters to the system-level battery pack characteristics. This

multi-scale predictive framework provides a mechanism for application-specific

design and selection, enabling key benefits for high-performance applications

with strict system requirements. Finally, an investigation that compares current-

generation lithium-ion chemistry to potential next-generation lithium-metal

chemistries for a high-energy and power-demanding motorsport application is

presented. In this work, four length scales are discussed, starting from the elec-
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trode length scale, continuing to multiple electrodes at the stack level, expanding

upwards to the full cell scale, and finally to the system level, which comprises

multiple cells.

4.1.1 Electrode scale predictions

To start the multi-scale battery characteristic predictions, an introduction to

the micro-scale parameters required for the design optimisation of lithium-based

batteries is required. As discussed previously in this thesis, lithium-based batteries

commonly utilise porous electrodes for lithium intercalation. The parameter

governing the ratio of active material to total electrode volume is reintroduced

as solid-phase porosity, ϵk where k denotes the specific electrode domain, i.e. (p)

subscript refers to the positive electrode, (n) the electrode, and (s) the separator.

This parameter is utilised in conjunction with the electrode coating thickness, Lk

and the active material-specific volume, νk to calculate the areal mass loading,

ρA for the domain-specific electrode as,

ρA = (1 − ϵk)Lk
νk

, (4.1)

where the active material specific volume can be calculated through a summation

of the active material composition introduced as,

νk =
i∑

n=1

1
Nnρn

, i ∈ [1, Nt], (4.2)

where i corresponds to each element in the electrode composition, N is defined as

the molecular ratio of species in the active material with subscript t denoting the

total composition, and ρ is the corresponding active material density. The total

electrode mass can then be defined through the product of the current collector



4.1 Multi-scale battery design 98

density, ρcc and thickness, Lcc to achieve areal mass for the current collector as,

Mk = Ak(ρA,k + ρcc,k · Lcc,k). (4.3)

Likewise, given the electrode loading and composition, it is possible to calculate

the areal capacity, QA. The first method to accomplish this is through theoretical

capacity from the electrode composition introduced as,

QA,k = ρA,k ·Qt,k = ρA,k · nkF
Ma,k

. (4.4)

This method utilises Faraday’s law of capacitance to predict the reversible

specific capacity for a given composition; however, this specific capacity is not

commonly achievable in the experimental operation of reversible intercalation

electrodes due to multiple difficulties commonly corresponding to structural

degradation and electrolyte voltage constraints. Alternatively, the prediction

can be directly obtained from measured reversible capacity. This introduces an

associated error term, (ei), attached to the measurement from the experimental

equipment; however, it provides a closer representation of the final electrode areal

capacity. For this work, the reversible areal capacity values have been acquired

through literature from experimental measurements. They have been previously

shown in Table 1.1 and Table 1.2 for common cathode and anode compositions,

respectively. Equation (4.5) below presents the areal capacity calculation for an

experimentally acquired specific capacity, Qk.

QA,k = ρA,k · (Qk + ei). (4.5)
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Similarly to the total electrode mass, the total electrode capacity can be calculated

utilising the electrode area, Ak,

Qk = Ak ·QA,k. (4.6)

The total electrode energy can be calculated via the summation of terminal

voltage for a given applied current. This reduces to the nominal electrode voltage,

Vnom and the previously calculated electrode capacity, Qk.

Ek = Qk · Vnom (4.7)

Finally, the electrode direct current resistance can be investigated by utilising

a transmission line model (TLM) as previously presented in the literature [175,

176]. For this framework, the methodology presented by Morasch et al. [177]

is utilised for predictions dependent on the corresponding limiting mechanism

contributing to the total electrode impedance. As introduced by Morasch et al.,

the low-frequency impedance response, Rk, is defined as,

Rk = Zω→0 =
√
Rion,kRct,k coth(

√
Rion,k/Rct,k), (4.8)

where Rion,k is the ionic resistance, with Rct,k representing the charge transfer

resistance, and Zω→0 denoting the complex impedance of the electrode at zero

frequency. Rion,k and Rct,k and commonly experimentally fit, and for this work

and experiment fit from the data presented in Ogihara et al. [176] is utilised.

This experimental fit can be found in the open-source repository . Utilising the

representations of Rion,k and Rct,k, it is possible to predict the low-frequency

resistance from equation (4.8) above.

https://github.com/BradyPlanden/BattCalc.jl
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4.1.2 Multi-electrode Scale

Utilising the above electrode definitions, it is possible to expand from a singular

electrode scale to a multi-electrode in a stack orientation. This requires additional

representations for the separator and current collectors, but as those components

are non-active, their contributions only contribute to the mass calculations.

Figure 4.1 below presents the stack orientation for three configurations: a lithium-

ion cell, a lithium-metal cell with excess lithium, and an anode-free lithium-metal

cell. The stack definition includes two positive electrodes, two negative electrodes,

and two separators; however, the individual electrode layers are rotated in

orientation to minimise material requirements due to the double coating on the

electrodes. The double coating reduces the required cell materials via a shared

current collector, which improves energy density and reduces manufacturing

costs.

0 100 200 300

Thickness (µm)

Lithium-ion

Lithium-Metal

Anode-Free
Cathode

Graphite

Metallic Lithium Copper

Aluminum

Separator

Fig. 4.1 Lithium-based stack definition with anode-free lithium-metal, 2:1 lithium
excess lithium-metal, and intercalation-based lithium-ion.
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For stack scale predictions, the corresponding mass and volume of the com-

ponents in Figure 4.1 are included; however, cell casing and tabs are ignored

and will be introduced at the cell scale. The total summation of components is

shown below for mass-specific summation,

Mst =
n∑
i=1

Mi = 2Mcath + 2Manode + 2Msep +Mccp +Mccn +Melectrolyte, (4.9)

and for volume-specific, the component masses are replaced with their corre-

sponding volumes as,

Vst =
n∑
i=1

Vi = 2Vcath + 2Vanode + 2Vsep + Vccp + Vccn + Velectrolyte. (4.10)

Due to the coupled exchange of lithium ions during oxidation and reduction for

each electrode, the reversible capacity for the stack is defined as the minimum

reversible capacity between the positive electrode, Qp and the negative electrode,

Qn, as shown below,

Qst = min(Qp, Qn). (4.11)

Furthermore, the stack energy density can then be defined with respect to

component mass or volume as introduced in equations (4.9) and (4.10). The

mass-specific energy density is introduced as,

Est = Qst · (V pos
nom − V neg

nom)
Mst

, (4.12)

where Vnom for each electrode is previously defined in Table 1.1. Similarly, the

corresponding stack-scale power density is obtained and shown as,

Pst = Ist,max · (V pos
nom − V neg

nom)
Mst

. (4.13)



4.1 Multi-scale battery design 102

where Ist,max is defined as the rated maximum constant current for the stack.

Finally the stack direct current resistance is defined through a summation of

electrode resistances as,

Rst =
n∑
i=1

Ri. (4.14)

At this point, the stack scale predictions can be completed and can be used

for design investigations at a coin-cell scale. Predicted values at this scale

are commonly difficult with error terms, including manufacturing defects and

equipment uncertainties weighted higher due to the perspective signal-to-noise

ratio. To improve these issues, recent literature has aimed to standardise the

manufacturing of coin-cells [178]. In the next section, the length scale will be

increased further, and cell-level predictions will be investigated.

4.1.3 Cell scale models

Having discussed the electrode and stack length scales, the next step is to expand

further into cell-level predictions. The main additions for cell-scale predictions

include the addition of non-active mass components required for cell packaging

and the coupling of multiple stacks to achieve full-cell predictions. For this work,

a methodology to predict pouch cell geometries is presented; however, cylindrical

and prismatic geometries follow similar methodologies, with the non-active mass

varying due to the differing geometry. For the non-active mass summations, the

first step is to define the geometric cell area,

Acell = Wcell · Lcell. (4.15)

As well the cell thickness is defined by the stack thickness and the corresponding

number of layers,

Tcell = Tst ·Nst. (4.16)
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Given the total cell dimensions, it is then possible to calculate the cell casing

mass for a given casing thickness Tc,

Mcasing = 2 · (Acell + Tcell · (Lcell +Wcell)) · (Tc · ρc) (4.17)

leading to the full cell mass calculation of,

Mcell = Mst ·Nst +Mtab,pos +Mtab,neg +Mcasing. (4.18)

Next, the full cell resistance can be quantified as,

Rcell = Rst

Nst

(4.19)

Cell capacity, (Qcell), energy, (Ecell), voltage, (Vcell), and corresponding densities

are directly scaled from the stack predictions based on the number of stacks

included in the cell. As the electrochemical calculations are defined at stack

length scale, and lower, from this point and higher the main additions will

be including the required non-active material needed for safety, storage, and

electrical connections.

4.1.4 Multi-cell definitions

Stepping from cell scale to pack scale involves the inclusion of safety considerations

such as protective outer casing, thermal propagation deterrents, and thermal

management systems, as well as electrical circuitry such as high-voltage busbars,

voltage sensing, relays, and battery management systems. The overall electrical

configuration of the pack defines voltage characteristics as such,

Vpack = Vcell ·Nseries, (4.20)
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where Nseries defines the number of cells connected in series. The capacity is

presented as,

Qpack = Qcell ·Nparallel, (4.21)

where Nparallel defines the number of parallel strings connected in the pack.

Additionally, the full pack energy is introduced as,

Echem =
N∑
i=1

Ei. (4.22)

where Ei represents the each full-cell energy contribute such that, Ei = Ecell,i.

Given the total electrical configuration of the pack, it is now possible to summarise

the overall DC resistance utilising Thévenin’s theorem as,

Rpack = 1/(1/Rstring ∗Nparallel), (4.23)

where Rstring is defined as the summation of resistances for the total number of

cells in series,

Rstring =
N∑
i=1

Ri. (4.24)

Next, given the total resistance of the pack, the thermal power due to ohmic

heating can be calculated as,

Ppack,W = I2
app ·Rpack. (4.25)

It is then possible to predict the energy available in the pack by assuming

ohmic heating forms the majority of the electrical losses. This is completed by

integrating the ohmic power loss over the corresponding time vector, Iapp as such,

Epack,usable = Epack,chem −RW

∫
I2
app dt. (4.26)
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At this scale, the remaining calculations mainly comprise summations of the

non-active components based on the predicted volume of the electrochemical

components. The development of an open-source software package that can meet

user-specific requirements for the predictions discussed above is discussed in the

next section.

4.2 Software architecture

A Julia package has been developed to implement the above equations and

act as an open-source tool for design iterations and predictions. This package,

BattCalc.jl provides a fast method to investigate the differing length-scale effects

on final cell and pack characterisations. As this type of analysis removes the

spatial resolution and variations from the defined variables previously intro-

duced, such as coating thickness, porosity, and loading, care must be taken to

ensure predictions are achievable. To provide the user with an understanding

of parameter sensitivities and potential non-homogeneity effects, propagated

uncertainty analysis spans the predicted scales. While this doesn’t guarantee

an exact prediction of the full system dynamics or capabilities, it is useful for

coupling potential chemistries and differing lithium storage mechanisms when

predicting trends. This package also aims to expand dataset understanding and

is actively being developed to enable the coupling of experimentally acquired

data.

Example usage of the BattCalc.jl package is presented in Figure 4.2 be-

low, with the pack structure built through wrapping the cell structure, which

comprises the stack and electrode scale parameterisation. Following that, the

number of stack layers for the formed pouch cell is set. At this point, the

exported functions, "Pouch!", "Module!" and "Pack!" can be called; however, in

the example, the default parameterisation of the lithium storage mechanism is
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overwritten, as well as the cell length and width, followed by the cathode and

anode compositions. The "Pouch!" function is called with the updated variable

definitions, followed by the "Module!" function with an electrical layout of 22

cells in series with two parallel strings corresponding to a 100V module utilising

high-voltage lithium-metal cells, i.e. 4.5V terminal voltage maximum and a mean

power definition of 13.33̄ kW. Finally, the system-level pack is formed through

the "Pack!" function with a high-voltage electrical configuration of 6 modules in

series with 1 parallel string and corresponding power.

Fig. 4.2 Example usage of BattCalc.jl, providing a simple method for predicting
battery characteristics.

4.3 Future chemistries for motorsport applica-

tions

To introduce BattCalc.jl’s capabilities and the benefits of multi-scale modelling

for battery design, a comparative investigation of three lithium-based batteries,

each with identical positive electrodes but varying negative electrode storage
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mechanisms, is presented. This study aims to provide insight into the char-

acteristics of varying lithium-based storage cells for a high-power motorsport

application. As motorsport applications have higher requirements for onboard

power when compared to commercial passenger vehicles, the current utilised

lithium-ion solutions are developed with a bias toward power density at the

expense of energy density. This has resulted in shorter events due to the reduc-

tion of onboard energy and lower velocities compared to internal combustion

alternatives. This compromise is constant across multiple applications requiring

high-power capabilities, including aerospace and heavy-duty transportation.

This investigation includes energy-dense lithium-metal batteries with the aim

to improve understanding of the capabilities for the high-power applications and

is achieved through an example application utilising a Formula Student vehicle.

The first step in this investigation was to define the cells’ electrode and stack

level characteristics, ensuring characteristics match the literature and are scaled

to match the final application. Next, pack characteristics are predicted with the

vehicle level parameters such as mass and energy provided to a transient vehicle

dynamic simulation. This simulation is completed utilising AVL VSM [179]

software with a parameterised electric Formula Student competition drive-cycle.

Figure 4.3 below provides a visual representation of the geometric trajectory of

this high-performance drive-cycle obtained from experimental testing.
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Fig. 4.3 Single lap trajectory of the 22-lap drive-cycle with the corresponding
velocity.

The vehicle parameterisation for the numerical vehicle dynamic simulation

is presented in Table 4.1 below and represents generalised characteristics for

a Formula Student electric vehicle. This parameterisation has completed a

validation process ensuring system response aligns with experimental captured

data. As the main focus of this thesis is on electrochemical modelling and design,

the validation process is left out; however, the reader is pointed to [180] as it

includes a range of experimentally recorded times for Formula Student vehicles

completing this drive-cycle.



4.3 Future chemistries for motorsport applications 109

Table 4.1 Default (Lithium-ion) values for dynamic Formula Student vehicle
simulation study.

Variable Definition Value

Vehicle Mass (kg) Total vehicle mass excluding driver 180

Pack Energy (kW · hr) Available Onboard Pack Energy 5.5

Vehicle Power (kW ) Maximum Electrical Power Available from Pack 80

Drive-cycle Length (km) Total length of driven cycle 21.96

Lift/Drag Coefficient Coefficient of Lift to Coefficient of Drag Ratio 4.5

Pack Voltage (V ) Maximum Pack Voltage 600

Utilising BattCalc.jl, an example cell geometry was selected as a pouch with

approximately 5 Ah. This capacity enables multiple electrical configurations

to achieve the energy and voltage target shown in Table 4.1 above, providing

additional flexibility in the system-level configuration. Next, to ensure direct

comparisons between the differing anode storage methods, the cathode parameter-

isation remains constant and is sized to a high loading of ∼ 24 [mg/cm2] with a

72.5 [µm] thickness. The lithium-ion anode is sized to achieve a negative/positive

(N/P) capacity ratio of 1.1, with the lithium-metal cell including a ∼ 20µm

lithium foil providing an excess of lithium of approximately 2.3 times. The

anode-free cell contains electrodeposited lithium from cycling, with the thickness

shown as the fully charged value. Each cell includes identical casing materials

of 0.21mm thick aluminium and is filled with 1.6 [g/Ah] of electrolyte. From

the given electrode parameterisation, Table 4.2 displays the resultant predicted

values up to cell scale. These predictions include an initialised uncertainty of two

per cent full scale attached to each input variable. As shown, the lithium-metal

cell benefits heavily from the removal of the porous anode while utilising elec-

trodeposition for storage. While the anode-free cell provides the highest energy

density, it should be noted that the lithium-metal with 2.3 times excess provides
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a viable solution that could enable high cycle life; however, with the high costs

of lithium, this may not apply to every application.

Table 4.2 Theoretical analysis of lithium-based battery characteristics from elec-
trode scale to stack scale.

Lithium-Ion

(NCM811)

Lithium-Metal

(NCM811)

Anode-Free

Lithium-Metal

(NCM811)

Cathode

Thickness (µm) 72.5 ± 1.45 72.5 ± 1.45 72.5 ± 1.45

Areal Capacity (mAh/cm2) 4.42 ± 0.18 4.42 ± 0.18 4.42 ± 0.18

Loading (mg/cm2) 23.9 ± 0.81 23.9 ± 0.81 23.9 ± 0.81

Anode

Thickness (µm) 85.2 ± 1.70 43.5 ± 0.94 23.5 ± 0.47

Areal Capacity (mAh/cm2) 3.9 ± 0.78 8.38 ± 0.25 4.53 ± 0.13

Loading (mg/cm2) 14.4 ± 2.9 2.28 ± 0.049 1.23 ± 0.025

Electrolyte

Mass (g) 0.62 ± 0.13 0.706 ± 0.038 0.706 ± 0.038

Stack

Area (cm2) 50 ± 1.4 50 ± 1.4 50 ± 1.4

Mass (g) 5.21 ± 0.45 4.07 ± .16 3.97 ± 0.16

Thickness (µm) 367 ± 4.5 284 ± 3.5 244 ± 3.1

Nominal Voltage (V) 3.67 ± 0.014 3.93 ± 0.01 3.93 ± 0.01

Capacity (mAh) 390 ± 79 442 ± 22 442 ± 22

Energy (Wh) 1.43 ± 0.29 1.74 ± 0.086 1.74 ± 0.086

Energy Density (Wh/kg) 275 ± 34 426 ± 9.0 437 ± 9.1

Volumetric Energy Density (Wh/L) 780 ± 160 1222 ± 46 1422 ± 52
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Utilising the results presented above from BattCalc.jl, it is possible to predict

the pack level characteristics and investigate full vehicle performance. The pack

level predictions are presented in Table 4.3 below and have been sized to match

the vehicle parameterisation introduced in Table 4.1 above. This sizing has

resulted in differing cell capacities for the lithium-ion and lithium-metal cells, as

the aim is to align the final pack energy for each configuration. The module and

outer pack casing characteristics are also held constant across each configuration.

This results in the mass differences being propagated from the electrochemical

volume requirements and enables the lithium-metal solutions to maintain their

improvements predicted at the cell scale. The electrical configuration for each

cell variation has been sized to match the maximum vehicle voltage, with module

energy limited to 100 volts to maintain safe assembly processes.
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Table 4.3 Theoretical analysis of lithium-based battery characteristics for pack
scale motorsport applications.

Lithium-Ion

(NCM811)

Lithium-Metal

(NCM811)

Anode-Free

Lithium-Metal

(NCM811)

Cell

Capacity (Ah) 5.07 ± 0.23 5.30 ± 0.23 5.30 ± 0.23

Nominal Voltage (V ) 3.67 3.84 3.84

Mass (g) 74.6 ± 2.1 55.5 ± 1.8 54.2 ± 1.8

DC Resistance (mW) 15.5 ± 0.45 23.3 ± 0.7 29.0 ± 0.86

Energy (Wh) 18.6 ± 0.84 20.8 ± 0.89 20.8 ± 0.89

Energy Density (Wh/kg) 249 ± 12 375 ± 7.3 384 ± 7.4

Volumetric Energy Density (Wh/L) 716 ± 39 1088 ± 31 1244 ± 34

Module

Cell Configuration 24s2p 22s2p 22s2p

Mass (kg) 4.58 ± 0.1 3.44 ± 0.084 3.38 ± 0.08

Energy (kWh) 0.893 ± 0.04 0.916 ± 0.039 0.916 ± 0.039

Energy Density (Wh/kg) 195 ± 9.2 266 ± 6.6 271 ± 6.7

Pack

Module Configuration 6s1p 6s1p 6s1p

Peak Voltage (V ) 605 594 594

Mass (kg) 36.0 ± 0.83 27.7 ± 0.67 26.9 ± 0.66

Energy (kWh) 5.36 ± 0.24 5.50 ± 0.24 5.50 ± 0.24

Energy Density (Wh/kg) 149 ± 7.2 199 ± 5.4 204 ± 5.5

Volumetric Energy Density (Wh/L) 558 ± 30 808 ± 24 904 ± 26

Next, the coupled variables used for the transient simulation gained from the

electrochemical prediction include the total pack mass and available energy. The

transient simulation is completed across the total drive cycle, defined as the time
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to complete 22 cycles of the trajectory shown in Figure 4.3. Figure 4.4 below

presents a predicted single lap from the total drive-cycle when parameterised

with current-generation lithium-ion batteries. This parameterised is used for the

initial sizing of the onboard energy requirements.

Fig. 4.4 Single lap simulation of endurance drive cycle for a Formula Student
electric vehicle. Negative power values denote discharging energy from the battery
pack, with the energy convention reversed.

Numerical results from the transient simulation for each cell configuration are

displayed in Table 4.4 below. From these results, the anode-free lithium metal

cell displays an improvement of 7.52 seconds with a 28.8 Wh reduction of used

energy. As this investigation does not include vehicle optimisation for each cell

configuration, it is expected that even further improvements will be achieved due

to the large volume reduction in the pack for the anode-free configuration. Even

without these additional improvements, this investigation provides an initial

direction for enabling energy-dense lithium-metal batteries in high-performance

applications. Additionally, due to the low volume, lithium foil-based lithium-

metal cells may provide a solution that provides a large percentage of the benefits
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enabled by anode-free configuration while potentially achieving a longer cycle life.

Table 4.4 Results for transient vehicle dynamic simulation for each battery chem-
istry and configuration relative to the anode-free lithium-metal cell.

Lithium-Ion
(NCM811)

Lithium-Metal
(NCM811)

Anode-Free
Lithium-Metal

(NCM811)

Results

Mass Delta (kg) +9.1 ± 1.1 +0.8 ± 0.94 0.0

Used Energy Delta (Wh) +28.8 +2.53 0.0

Energy Density (Wh/kg) −55 ± 9.1 −5 ± 7.7 0.0

Time Delta (s) +7.62 +0.67 0.0

4.4 Concluding Remarks

This chapter presents a multi-scale battery prediction methodology that enables

an improved understanding of underlying parametric effects. This methodology

was developed utilising fast multi-scale relations with the numerical package,

BattCalc.jl developed. This work has presented capabilities for investigating

lithium storage mechanisms and the applicability of differing chemistries in

demanding applications. Furthermore, an investigation of storage mechanisms

for lithium-metal applicability in motorsports was assessed through a transient

vehicle dynamic simulation parameterised for a Formula Student vehicle with

differing cell chemistries. This investigation presented modest improvements of

7.62 seconds over the 22 km drive-cycle for an anode-free lithium-metal battery

pack while consuming 28.81 Wh less energy when compared to the current

generation lithium-ion configuration.
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Overall, this chapter presented a methodology for high-level design capabilities

that will be expanded upon in the next chapter, where a higher fidelity continuum

model is presented for lithium-metal anode modelling. This work aims to expand

on the presented high-level methodology presented in this chapter, stepping

into lower-length scales to predict the evolution of the lithium-metal anode and

improve system understanding for improved performance.



Chapter 5

Fast lithium-metal models

Lithium-metal battery models can improve understanding of underlying lithium

morphology evolution and corresponding degradation mechanisms, further en-

abling the electrification of fields such as aerospace and heavy-duty transportation.

This chapter presents a novel continuum modelling methodology for predict-

ing lithium-metal anode thickness, potential, and composition evolution. This

work presents a fast, open-source coupled partial differential model solved with

phase-field methods that enable predictions from a predefined initialised anode

formation. As previously discussed in Chapter 4 above, the benefits that lithium-

metal cells provide can enable the electrification of many high-performance

applications not currently accessible with current-generation lithium-ion bat-

teries. This advancement has been actively under development for the last

decade with multiple start-up companies such as SES, Quatumscape, Cuberg,

and Sion Power, aiming to deliver commercially viable solutions with energy

densities as high 417 Wh/kg [181] with a corresponding capacity of 107 Ah.

Additionally, multiple research institutes and funded consortia have been ad-

vancing lithium-metal capabilities such as the Battery500 [182], SOLBAT [183],

SAFELiMOVE [184], and HIDDEN [185]. Each of these projects has developed

experimental methodologies to advance lithium-metal battery manufacturing
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and design; however, there is still a large gap in model-based solutions for design

and performance predictions. This work contributes a coupled physics-based

phase-field and neural solver framework for modelling of lithium-metal batteries.

While experimental methods are commonly utilised to advance manufacturing,

there are multiple benefits from coupling numerical models, such as reducing

product iterations, improving underlying system understanding and enabling

advanced battery management.

One of the challenges in developing lithium-metal battery models is the

varying numerical domain caused by lithium electrodeposition. In an anode-free

cell, this can result in a domain size variation of 20 times or more, depending on

the cell size, due to the nature of electrodeposition compared to intercalation.

This domain change can be complex to mathematically represent as numerical

discretisation is commonly developed for fixed domains. An additional difficulty

that is experienced when modelling lithium-metal electrodeposition is the spatial

variation in lithium morphology across the current collector. This morphology

variation has been one of the main challenges in developing commercial lithium-

metal cells, as it can result in the isolation of electrodeposited lithium, which

exacerbates capacity degradation. Under certain operating conditions, this

morphology can evolve into a mossy, tree-like dendritic structure, as shown in

Figure 5.1 below.

5.1 Lithium-Anode Electrodeposition Model

The evolution of lithium morphology towards a dendritic, mossy structure is one

of the main challenges limiting lithium metal batteries’ long cycle life capability.

As introduced in Section 2.2.1, phase-field representation can provide a capable

method to predict this evolution. As the need for an improved continuum model

of lithium-metal evolution has been presented, the next step is to derive the
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Fig. 5.1 Mossy lithium morphology (left) and corresponding ideal dense, uniform
morphology (right)

system of equations and methodology utilised in this chapter. The derivation of

the system follows, with this work referencing the initial derivation in Jang et al.

[2].

First, the system represents phases as values of range (0,1), i.e. the first phase

corresponds to spatial values of zero, with the second phase represented through

values of one. This enables the prediction of the two-phase domain through the

translation to the bounded numerical range. Given this spatial representation,

the model’s initial geometry (Y0) can be defined spatially as an array of values

within this range. This system can be utilised in the two-dimensional case for

varying, non-uniform anode geometry aligning with experimental morphology

evolution. An example of this two-dimensional geometry is constructed for a

gaussian seed rectangular example representing the lithium metal anode; this is

mathematically represented as,

z0[x, y] = max

(
eps(), 0.5 + 0.5 ∗ tanh

(
(y − tr(x))√

w ∗ 2

))
, (5.1)

where eps() represents the minimum float value on the computational hardware

and is used to avoid ill-conditioned calculations. The variable y denotes the

spatial location in the vertical domain, and tr defines an initial gaussian seed in
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the vertical domain and is defined as,

tr(x) = T + exp(−B ∗ (x− C)2) (5.2)

where T defines the initial thickness in the corresponding domain and is of range

(0,1). B and C are the gaussian input variables defining the location and shape

in the domain. Finally, w = h/2 where h is the unit cell dimensions for the

simulated domain. A visual representation for a domain of length 40 µm by

40 µm, corresponding to h = 40e− 6 and a tr representation for three gaussian

seeds is shown in Figure 5.2.

Fig. 5.2 Two-dimensional phase-field representation of a lithium-metal anode
with varying gaussian seed geometry using BattPhase.jl

Once the numerical system has been initialised, the system dynamics are

represented with linear kinetics and Neumann boundary conditions. Two assump-

tions are made in the derivation of this model, (1) Only linear reaction kinetics,

and (2) The moving phase boundary is proportional to the flux at the interface

only. The second assumption follows that concentration gradients are ignored,
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resulting in the following second-order derivative for dimensionless electrolyte

potential, (
∂2ϕ

∂y2

)
+
(
∂2ϕ

∂x2

)
= 0, (5.3)

with a dimensionless applied current given at the cathode surface as δ bounding

the first-order derivate of dimensionless potential as,

∂ϕ

∂y

∣∣∣∣∣
y=1

= δ, (5.4)

with the corresponding Neumann condition at the current collector of the anode

(i.e. y=0),
∂ϕ

∂y

∣∣∣∣∣
y=0

= 0, (5.5)

as well as δ defined as,

δ = IappLF

κRT
, (5.6)

where Iapp is the applied current density, L is the domain length, and κ is the

electrolyte conductivity. The horizontal domain is bounded through Neumann

conditions at X = 0, and X = 1, shown as,

∂ϕ

∂x

∣∣∣∣∣
x=0

= 0, ∂ϕ
∂x

∣∣∣∣∣
x=1

= 0. (5.7)

Assuming linear second-order kinetics, it is possible to represent the boundary

condition at the electrolyte and anode interface as,

∂ϕ

∂y

∣∣∣∣∣
y=z

= kϕ, (5.8)

where k is defined as the dimensionless exchange current density and z is the initial

spatial location of the two-phase (anode/electrolyte) interface at initialisation.
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The equation governing k is introduced as,

k = i0LF

κRT
, (5.9)

where i0 is the exchange current density. The moving phase boundary can then

be represented as,
∂z

∂t
= νkϕ, (5.10)

where ν is defined as a constant relation between density, ρ, and molecular

mass,Mw of the electrodeposited species, Li and is calculated as,

ν = 3600 · MwIapp
ρFLnδ

, (5.11)

where n is the valiance electrons available for the reaction. The initial spatial

construction then defines initial conditions for the moving phase boundary as,

z(0) = z0. (5.12)

The next step in this derivation is to utilise the Landau transformation [186]

to modify the analytic solution for removal of the dependency on the moving

boundary,

Y = y − z

1 − z
, X = x− z

1 − z
, t = τ, (5.13)

with the corresponding change of variable in the time domain introduced as τ ,

measured in hours. Combining equation (5.13) with (5.3) results in the following

formation,  ∂2ϕ(Y,τ)
∂Y 2

(1 − z(τ))2

+
 ∂2ϕ(X,τ)

∂X2

(1 − z(τ))2

 = 0, (5.14)
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with a corresponding transformed of equations (5.4) and (5.8) for the Y domain

introduced as,

∂ϕ(Y,τ)
∂Y

1 − z(τ)

∣∣∣∣∣
Y=0

= kϕ(X, τ),
∂ϕ(Y,τ)
∂Y

1 − z(τ)

∣∣∣∣∣
Y=1

= δ. (5.15)

The X domain likewise has similar transformed equations,

∂ϕ(X,τ)
∂y

1 − z(τ)

∣∣∣∣∣
X=0

= 0,
∂ϕ(X,τ)
∂X

1 − z(τ)

∣∣∣∣∣
X=1

= 0. (5.16)

The moving phase boundary can then be represented in transformed form as,

∂z(τ)
∂τ

= νkϕ(Y, τ). (5.17)

This summarises the analytical formation of the electrodeposited lithium-metal

anode governing system for this work. The phase-field formation is now presented

as introduced in [2] through the following steps, with γ representing the phase-field

parameter due to the previous usage of the common phase-field parameter ϕ. For

this approach, an immersed-boundary method is utilised and enables movement

of boundary condition term equation (5.15) to the source term equation (5.14).

The two-dimensional potential equation then becomes,

(
∂

∂Y

)(
γ
∂ϕ

∂Y

)
+
(
∂

∂X

)(
γ
∂ϕ

∂X

)
= kϕ

√√√√( ∂γ
∂Y

)2

+
(
∂γ

∂X

)2

, (5.18)

with the moving phase boundary evolution becoming,

∂γ

∂τ
+ νkϕ

√√√√( ∂γ
∂Y

)2

+
(
∂γ

∂X

)2

= 0, (5.19)
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with a final set of boundary conditions for the phase field representation defined

as,
∂ϕ

∂X

∣∣∣∣∣
X=0

= 0, ∂γ

∂X

∣∣∣∣∣
X=0

= 0, ∂ϕ
∂X

∣∣∣∣∣
X=1

= 0, ∂γ

∂X

∣∣∣∣∣
X=1

= 0, (5.20)

∂ϕ

∂Y

∣∣∣∣∣
Y=0

= 0, ∂γ

∂Y

∣∣∣∣∣
Y=0

= 0, ∂ϕ
∂Y

∣∣∣∣∣
Y=1

= δ,
∂γ

∂Y

∣∣∣∣∣
Y=1

= 0, (5.21)

with initial moving phase boundary geometry as defined in 5.1 and mathematically

represented as,

z0 = γ(0) = 1
2 + 1

2 ∗ tanh
(

(y − tr)√
w ∗ 2

)
. (5.22)

In the next section, the numerical methods used to solve equations (5.18 - 5.19)

for the given boundary conditions (5.20- 5.21) and initial conditions (5.22) are

presented. This work follows the numerical path developed by Jang et al. [2], as

this section aims to improve the framework presented numerically.

5.1.1 Numerical Methods

Having defined the lithium-metal anode representation in the previous section,

the next step is investigating finite difference methods and numerical time

integrators to solve the system of partial differential equations. Previously, many

varying finite difference schemes have been utilised to approximate mathematical

differentiation numerically. Each of these schemes has characteristics that lend

them to improvements for specific system dynamics, such as the computational

efficiency of the forward difference scheme. The central difference scheme is

utilised in this work for numerical derivative approximation of the dimensionless

potential. The phase-field equations are then represented with an upwind scheme

providing improvements for non-oscillatory differential predictions around the

moving phase boundary. This section utilised an Intel i9 10980-XE workstation

with 64 GB of memory for computational performance investigations.
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5.1.1.1 Central difference

Utilising the 3-point central difference scheme, the phase-field formation of

potential equation (5.18) becomes,

(γi+1,j + γi,j)(ϕi+1,j − ϕi,j) − (γi,j + γi−1,j)(ϕi,j − ϕi−1,j)
2h2

+ (γi,j+1 + γi,j)(ϕi,j+1 − ϕi,j) − (γi,j + γi,j−1)(ϕi,j − ϕi,j−1)
2h2

− kϕi,j

√(
γi+1,j − γi−1,j

2h

)2
+
(
γi,j+1 − γi,j−1

2h

)2
= 0,

(5.23)

with corresponding boundary condition forms as,

(
γ1,j + γ0,j

2

)(
ϕ1,j − ϕ0,j

h

)
= 0,

(
γN+1,j + γN,j

2

)(
ϕN+1,j − ϕN,j

h

)
= 0,

(
γi,1 + γi,0

2

)(
ϕi,1 − ϕi,0

h

)
= 0,

(
γi,N+1 + γi,N

2

)(
ϕi,N+1 − ϕi,N

h

)
= δ.

(5.24)

5.1.1.2 Upwind scheme

For the moving phase boundary parameter, an upwind scheme is utilised to

discretise the Hamiltion-Jacobian equation to minimise oscillations during the

computation. This is utilised as the discontinuities in the Hamilton-Jacobi would

pose oscillatory challenges for the phase-field formation. The upwind formation

is summarised below,

dγi,j
dt

+ ν2kϕi,jni,j = 0,
γ1,j − γ0,j

h
= 0, γN+1,j − γN,j

h
= 0,

γi,1 − γi,0
h

= 0, γi,N+1 − γi,N
h

= 0,

(5.25)

where j = 1, ..., N and i = 1, ..., N with initial conditions defined as,

γi,j(0) = 1
2 + 1

2 ∗ tanh
(

(j − tr)√
w ∗ 2

)
. (5.26)
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Equations (5.23) - (5.25) represent a differential algebraic system of equations

that can be numerically solved via time-discretisation methods shown in the

next section. As this system does not have stiff properties, the explicit numeri-

cal schemes introduced below are adequate; however, future expansion of this

derivation towards nonlinear concentration diffusion will require reassessment.

5.1.1.3 Time discretisation and approximation

Time integration of the differential-algebraic equation (DAE) set is handled

through the third-order strong stability preserving Runge-Kutta (SSP-RK3)

[187] method for BattPhase.jl. As denoted in the name, these methods provide

stability improvements over the conventional Runge-Kutta algorithm for time

integration when numerically solving systems of DAEs. These algorithms were

initially introduced in literature as the total variation diminishing (TVD) spatial

discretisation for use with hyperbolic conservation laws, which contained discon-

tinuous solutions [188, 178]. This method includes a stability property in the

forward Euler integration method,

∥un+1∥ = ∥un + f(un)∆t∥ ≤ ∥un∥, (5.27)

while maintaining a step size restriction such that,

0 ≤ ∆t ≤ ∆tlim. (5.28)

In this work, this stability enables improved dimensionless electrolyte potential

predictions and large-time discretisation steps when appropriate. Mathematically,
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for the system of equations defined above, the SSP-RK3 is represented as,

γk1 = γj + f(γj, ϕj) ∆t,

0 = g(γk1, ϕk1),

γk2 = 3γj + γk1 + f(γk1, ϕk1) ∆t
4 ,

0 = g(γk2, ϕk2),

γj+1 = γj + 2γk2 + 2f(γk2, ϕk2) ∆t
3 ,

0 = g(γj+1, ϕj+1),

(5.29)

where f(γ, ϕ) = dγ/dt and g(γ, ϕ) = 0. While providing a stable method for

time integration, the SSP-RK3 requires a linear solution at each step for ϕ,

which greatly increases the computational burden for this method. A numer-

ical reduction of the SSP-RK3 has been previously completed to improve the

computational performance further [2]. As this work aims to further improve

the computational performance for the above-introduced phase-field model, the

third-order approximation introduced by Jang et al. is also presented. This

approximation of the strong stability preserving Runge-Kutta third-order is

introduced as,

γk1 = γj + f(γj, ϕj) dt,

0 = g(γk1, ϕk1),

γk2 = 3γj + γk1 + f(γk1, ϕk1) dt
4 ,

ϕk2 = 1
2ϕk1 + 1

2ϕj,

γj+1 = γj + 2γk2 + 2f(γk2, ϕk2) dt
3 ,

ϕj+1 = ϕk1.

(5.30)
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This introduced approximation removes the linear solve in the ϕk2 and ϕj+1

steps, enabling the removal of two linear solves from the time integration. Pro-

vided the prediction fidelity is maintained, this approximation removes a large

computational burden from the numerical solution. To validate BattPhase.jl’s

implementation of these schemes, both are numerically created in BattPhase.jl

with a modular architecture enabling easy selection of the time-descritisation

method. Figure 5.3 below presents the numerical prediction difference between

the third-order SSP Runge-Kutta and its introduced approximation. The di-

mensionless root mean square difference between the SSP-RK3 and SSP-RK3

approximation across the two-hour prediction is 3.468 × 10−6.
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Fig. 5.3 Phase-field predicted electrolyte potential comparison between strong
stability preserving Runge Kutta third order (SSP-RK3) and the presented
approximation (SSP-RK3a) for δ = 0.255, k = 1.557, and ν = 0.475

To further confirm the numerical performance improvement, the approxima-

tion and the original SSP-RK3 were benchmarked across a range of grid sizes,
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with results displayed in Table 5.1 below. For this investigation, the system is

configured with the initial seed geometry presented in Figure 5.2 above. The

simulation comprises one hour of electrodeposition, followed by a one-hour strip-

ping operation. This is completed without any additional numeric optimisations

completed to the Julia 1.7.2 installation, i.e. inclusive of the standard linear

algebra package, OpenBLAS.

Table 5.1 Time comparison (in seconds) of the SSP-RK3 time integration scheme
to its numerical approximation across a range of domain sizes.

Domain Size SSP-RK3
SSP-RK3

Approximation

102 3.14 × 10−3 1.03 × 10−3

202 21.6 × 10−3 7.12 × 10−3

402 129 × 10−3 44.1 × 10−3

802 1.21 × 100 422 × 10−3

1602 1.16 × 101 4.16 × 100

3202 1.30 × 102 4.45 × 101

6402 1.41 × 103 4.82 × 102

From the above results, the approximated SSP-RK3 offers improved perfor-

mance across the investigated grid ranges of 65.9% over the full-order implementa-

tion. Additionally, the predicted potential aligns well with the full-order scheme.

Given these results, the approximation will be utilised in the remainder of this

chapter to reduce the computational requirements while maintaining the predic-

tion fidelity. In the next section, the numerical linear algebra implementation is

further optimised.
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5.1.2 Linear algebra packages

Given the above system derivation and discretisation for both the dimensionless

potential and moving phase parameter, a Julia-based computational package,

BattPhase.jl, was created to solve the system of differential-algebraic equations

numerically. Julia was selected for this to achieve high computational performance

while maintaining code readability and comprehension. As the computational

requirements to provide solutions for this system grow with the size of N, Julia’s

JIT compilation enables a final solution that exceeds conventional interpreted

languages such as MATLAB and Maple. The open-source code repository for

BattPhase.jl can be found at https://github.com/BradyPlanden/BattPhase.jl.

To showcase the capabilities of this package, an initial example investigation

is presented for a simplistic anode formation. For this example, the anode is

simulated for τ = 2 [hr], split into one hour of deposition and one hour of

stripping. The exchange current density, δ, is set at 0.1, ν = k = 1, N = 200,

and with an initial seed thickness of 5 µm. The resultant evolution shown in

Figure 5.4 is predicted, with an electrodeposited anode thickness growth of 18 µm

resulting in a maximum thickness of 23 µm at the end of the electrodeposition

cycle. After the stripping cycle, the thickness reduces back to 5 µm; however,

the moving boundary gradient has been reduced, resulting in a larger transition

between the two phases. This is expected, with the results still maintaining mass

conservation as seen when comparing Figure 5.4.a and Figure 5.4.c below.

https://github.com/BradyPlanden/BattPhase.jl
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Fig. 5.4 Numerical evolution of lithium-metal phase-field model at time-step zero
(a), 1-hour (b), and 2-hours (c).

For the simplistic geometry displayed above, an investigation into the compu-

tational time required for various grid sizes is completed. This grid exploration

aims to understand further the computational requirements for fine microstruc-

ture evolution, such as the previously described mossy lithium composition. In

parallel to this investigation, an alternative computational implementation of the

linear algebra package utilised by Julia is introduced. Specifically, the Intel-based

Pardiso solver was implemented in BattPhase.jl to improve the Jacobian matrix

solution time. This implementation was completed through the open-source

package Pardiso.jl coupled with the Intel Math Kernal Library (MKL). The

results for both the grid investigation and the linear algebra implementations

are included in Table 5.2 below. To showcase the performance improvements of

BattPhase.jl, these results are also compared to a Maple language implementation

[2], which was numerically implemented with similar hardware (Intel i9-11900K,

64 GB RAM) to work presented in this section.
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Table 5.2 Comparison (in seconds) of BattPhase.jl utilising OpenBLAS and
Pardiso to Maple language implementation across a range of domain grid sizes
with the third order SSP Runge-Kutta approximation.

Domain Size OpenBLAS Pardiso

Maple

Implementation

(w/ Pardiso)

102 1.03 × 10−3 1.76 × 10−3 582 × 10−3

202 7.12 × 10−3 1.10 × 10−2 1.00 × 100

402 4.41 × 10−2 5.98 × 10−2 1.99 × 100

802 4.22 × 10−1 3.72 × 10−1 4.15 × 100

1602 4.16 × 100 3.11 × 100 1.20 × 101

3202 4.45 × 101 2.88 × 101 5.80 × 101

6402 4.82 × 102 2.30 × 102 4.01 × 102

As shown in the above results, the Pardiso linear algebra implementation

provides a mean improvement over the standard OpenBLAS implementation

of 11.55 % across the grid range presented above. Due to OpenBLAS’ fast

implementation at low grid sizes, Pardiso’s implementation performance is rela-

tively worse; however, a large improvement over the OpenBLAS occurs for grid

sizes larger than 802 with a reduction in prediction time of 52.3% at a grid size

of 6402. Given these results, both Pardiso and OpenBLAS are implemented

in BattPhase.jl with a selection mechanism developed for the end-user. This

concludes the adaptions for the computational time reduction of the conven-

tional BattPhase.jl package with a prediction reduction of 72.8% over the initial

OpenBlas/SSP-RK3 implementation for a grid size of 1602. Finally, the Pardiso

implementation of BattPhase.jl provides a 74.1% prediction time reduction over

the Maple equivalent implementation for the 1602 grid size. This confirms the
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improvements that BattPhase.jl provides for fast, performant lithium-metal

anode modelling predictions over alternative approaches.

5.1.3 Concluding Remarks

An open-source Julia-based package has been developed in the work above for

fast numerical predictions of lithium-metal anode evolution utilising a phase-field

representation. This package provides improvements over alternative languages

while maintaining a user-friendly dynamic typeset. A strong stability-preserving

Runge-Kutta third-order approximation was introduced as described in [2] aimed

to reduce the required linear solutions of the Jacobian matrix and showed improve-

ments in the full-order implementation and equivalent Maple implementation.

Furthermore, the presented framework was coupled with the linear algebra pack-

age Pardiso through the underlying Intel Math Kernal Library (MKL), which

enabled further performance improvements over the conventional OpenBLAS im-

plementation. These implementations, plus the underlying Julia language, have

provided a performant framework for lithium-metal phase-field representations

and have exceeded the Maple implementation presented in [2]. Further optimisa-

tion of this framework is expected through improvements in thread parallelisation

and investigation into higher-order Runge-Kutta pairs for potential improvements

in fidelity. Future work for this framework would include coupling the phase-field

electrodeposition method with a porous electrode representation to create a

full-cell model. The first step in this coupled implementation would be utilising

the one-dimensional representation with modified cathode boundary conditions

for the porous representation. A coupled numerical solver with time-aligned steps

would be required, in addition to ensuring the conservation of mass and charge

at the interface. Overall, this section has improved phase-field lithium-metal

modelling by presenting a fast, performant open-source package.
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The next section uses the above numerical model to achieve even higher

numerical performance by developing a message-passing graph neural network

representation. This work aims to expand the prediction capabilities past con-

ventional numeric solutions while ensuring underlying physics is maintained.

5.2 Neural solver methods

As anode-free lithium-metal cells become available for consumer usage, advance-

ments in online capable electrochemical models are required. These models are

needed to inform the battery management system of potential degradation oper-

ating states while ensuring the optimal utilisation of these highly performant cells.

This poses a challenge; as discussed in the previous section, this system requires

applying numerical moving boundaries to the system definition to capture the

evolving negative electrode thickness accurately. An alternative to conventional

numerical methods must be investigated to achieve fast predictions capable of

design space investigation of corresponding (δ, ν, and k), potential onboard

predictions, and cell design development.

In this section, an alternative machine-learning-based solution for domain

predictions is presented as a method to achieve performance improvements while

maintaining underlying system knowledge. As previously discussed in 2.2.2,

neural solvers can provide strong capabilities in predicting partial differential

solutions for a trained domain. In Chapter 2, an introduction to neural solvers was

presented, with a discussion on the benefits and capabilities of each framework.

This section presents a framework for coupling the previously introduced lithium-

metal phase-field model, BattPhase.jl and auto-regressive neural solvers. This

work aims to enable improved usage of lithium evolution models for design-space

iterations and reduce the computational burden for lengthy cycle degradation

predictions.
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5.2.1 Auto-regressive neural solver framework

This section introduces a message-passing graph neural network (MP-GNN) to

accomplish the auto-regressive neural solver methodology. Originally introduced

by Scarselli et al. [189], graph neural networks have previously shown improved

flexibility over alternative neural architectures. The flexibility to construct the

underlying graph in such a way that it aligns with the features in the trained

dataset has enabled these improvements, which have further resulted in the

expansion of GNNs across multiple fields such as visual scene understanding [190,

191], predictions in chemical molecular properties [192, 193, 194], traffic pattern

predictions [195, 196], and classification problems for both images and videos [197,

198]. Due to these improvements, MP-GNNs have been previously introduced to

capture physical system dynamics [199, 200, 201] to varying success. This section

builds off previous work from Brandstetter et al. [145] following the expansion of

the open-source Pytorch-based [202] code repository for implementation enabling

phase-field architectures.

For a given grid domain of (X, Y), the graph representation can be formed

as G = (ν, ε) where i ∈ ν is the node mapping and (i, j) ∈ ε defines the indices

of connected edges. For this grid, the individual cells are represented as graph

node features, fi. In this work, the framework follows the encode-process-decode

methodology previously introduced in Battaglia et al. [203] and Sanchez-Gonza

et al. [204]. This framework is introduced as,

Encoding for each node of (i) maps, [1] the last K number of solutions for

corresponding phase-field element (uk−K:k), [2] the node’s corresponding element

position (xi), [3] current timestep (tk), and [4] the PDE coefficients, (ν, κ),

boundary conditions, (δ), and initial conditions, (T ), as (θPDE). The final node

embedding vector comprises each of these elements as f0
i = ε([uk−K:k,xi, tk,θPDE].

Without encoding θPDE, it would not be possible to predict across PDE system
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parameterisations; this would then require retraining for each specific case. This

encoding is completed with a multilayer perceptron network.

Processing computes M steps forward with intermediate graph representa-

tions {G1, G2, ..., GM}. The message, mm
i,j and feature update,fm+1

i are computed

as,

edge j-> i message: mm
i,j = ϕ(fmi ,fmj , (uk−K:k

i − uk−K:k
j ), (xi − xj),θPDE)

node i update: fm+1
i = ψ(fmi ,

∑(mm
ij ,θPDE)),

where ϕ and ψ are multi-layer perceptrons, xi − xj is the grid location

difference and enables relative relation training, and ui − uj is the solution

difference, much like conventional numerical derivative operators. θPDE includes

the PDE information for this given step.

Decoding with a shallow 1D convolutional network comprised of shared

weights. This CNN is used across spatial locations to output the next time-step

predictions at grid-point xi. Each node has a vector fmi corresponding to the

time predictions utilised in the CNN to decode future spatial values. This benefits

the framework’s performance by providing a time-series-like input that enforces

smoothing. This operation performs similarly to the conventional multistep

method but avoids stability issues through the nonlinearity and flexibility of

the time-series input. As introduced in [145], a new vector, dli, is created

through this mechanism and encapsulates the future predicted time-steps, i.e.

dli = {d1
i , d

2
i , ..., d

K
i }, the updated solution is introduced via,

uk+l
i = uki + (tk+l − tk) · dli for 1 < l < K. (5.31)
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This chapter investigates the one-dimensional and two-dimensional phase-field

representations, each offering a different use case. For the one-dimensional repre-

sentation, the main identified use case is coupling with similar low-dimensional

electrochemical models, such as the single particle model (SPM), the single

particle with electrolyte model (SPMe), and the Doyle-Fuller-Newman (DFN)

model. This couple would create a hybrid representation of the lithium-metal

cell, with the neural solver providing the anode solution and the coupled model

providing the cathode solution. For the two-dimensional case, the identified

utilisation is in lithium anode morphology predictions, as this would enable future

insights into degradation mechanisms and material compositions. For this use

case, the underlying phase-field model needs to be representative of these system

dynamics; however, given improvements in BattPhase.jl, this is achievable and

can offer improved design exploration performance of the conventional numerical

methods. As the phase-field model developed in the previous section utilises

linear kinetics and forgoes concentration gradients, the training dataset won’t

include dendritic, tree-like structures; however, the training dataset framework

developed is expected to be agnostic to those underlying microscale mechanics.

Finally, the neural solver framework is visually represented in Figure 5.5.
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Fig. 5.5 Training and neural solver architecture representation, with an unrolling
size of K steps, and corresponding phase-field spatial input data mapped forwards
by dτ . The prime notation indicates predicted values for the corresponding spatial
location.

5.2.2 Training structure

The training structure for the autoregressive message-passing graph neural

network architecture follows previous work completed by Brandstetter et al. [145],

with modifications to improve the performance of the phase-field representation.

As autoregressive solvers commonly map the solution at time-step k to a future

solution k + 1, the simplest implementation of this method is to train one time-

step forward. The loss to minimise for this implementation comprises the random

selected initial conditions from the training dataset to form the distribution

denoted as p0(u0), the corresponding ground truth distribution at time-step k,

[pk(uk) =
∫
pk(uk|u0) p0(u0) du0] and is introduced as,

Lstep = EkEuk+1|uk,uk∼pk
[L(A(uk),uk+1)], (5.32)
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where uk+1|uk is the distribution of future predictions given the current solution,

Ek is the expectation function, and L is the corresponding loss function. For

this work, a squared L2 norm loss function is utilised. Challenges included in

this implementation include error propagation due to deviations in the predicted

solution at uk+1 from the ground truth distribution pk+1(uk+1) for each iteration

of the autoregressive solver, A. This propagation accumulates throughout the

prediction time domain for the system and results in poor model performance and

overfitting issues from the numerical error. An alternative to improve stability

for autoregressive neural solver predictions is to introduce an adversarial-style

element to the loss as,

Lstabilty = EkEuk+1|uk,uk∼pk
[Eϵ|uk [L(A(uk + ϵ),uk+1)]]. (5.33)

The final loss is computed as Ltotal = Lstep + Lstability and has been previously

introduced as the "push-forward" trick by Brandstetter et al. Next, the data

structure methodology for multi-dimensional training is presented. A multi-

dimensional concatenation to a single dimension is performed to provide a robust

framework. To achieve this while maintaining the structure required for the graph

neural network, the two-dimensional grid was vertically concatenated, as shown

in Figure 5.6 below, into a single-dimensional input with reverse indexing for the

column dimension. The ordering of this vector is critical to ensure encoded nodes

align with corresponding nearest neighbours for accurate edge propagation.
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Fig. 5.6 Visual representations of the multi-dimensional grid concatenation for
input into the neural solver architecture. Extension of this methodology enables
expansion into high-order dimensionality.

In addition to the "push-forward" trick, the temporal bundling method intro-

duced by Brandstetter et al. [145] is coupled into the neural solver framework.

Temporal bundling enables coupled forward predictions determined through a

time-window range and draws parallels to the optimal time horizon methodology

utilised in model predictive control. This is expanded in the next subsection,

with further discussion around improvements to the loss function defined above,

concluding the remainder of this section. To improve the numerical stability

of the autoregressive MP-GNN architecture, the prediction length is unrolled

from a single step to multiple forward steps. This multi-step prediction horizon

has been shown to reduce numerical error propagation when loss propagated is

constrained from the final prediction step.

Additionally, a design space exploration methodology to generate a dataset

across varying initial conditions was completed to capture the system dynamics

across the operating regime. To ensure this dataset was representative of the
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operating conditions, the normalised design space for the lithium seed thickness

(T ), defined in equation (5.2), was initialised dependent on the system operation,

i.e. for negative applied current densities, the initial seed thickness space was

biased high and vice-verse for positive. The design space algorithm used to

generate the datasets was a Latin hypercube, as it provides capabilities in filling

expansive spaces given a minimal number of cases. The other parameters included

in the model parameterisation include the dimensionless exchange current density,

k, the density-molecular mass ratio, ν, set by equation (5.11), the applied current

density, δ, the timestep increment, dτ , and the prediction length, τ . Table 5.3

below presents the design space ranges utilised for the loss-function assesment in

the next section.

Table 5.3 Latin-hypercube variable ranges to generate training dataset for loss-
function performance assesment.

Parameter Range
Tδ≥0 0 – 30 µ m
Tδ<0 28 µ m – 38 µ m
δ -3.0 – 3.0
τ 1.0 hr
dτ 0.66 min
k 1.0
ν 1.0

5.2.3 Results

This section presents the autoregressive message passing graph neural network

framework results. This starts with an activation function optimisation for the

given dataset and a graph connectivity assessment for the connected neighbour

and corresponding prediction performance. A one-dimensional case is presented

that compresses the phase-field representation to a single dimension for simplistic
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lithium-metal predictions. Next, the multi-dimensional data structure presented

in the above section is verified to the one-dimensional case. To verify the

neural solver’s performance with complex morphology, a standardised gaussian

seed is included in the training dataset, with location determined from the

Latin-hypercube design space. Finally, the computational performance of the

neural solver is discussed and compared to the BattPhase.jl method presented

in the previous section. For the work presented in this section, a deep-learning

workstation was utilised comprising of an Intel Xeon W-2275 14-core processor,

512 gigabytes of memory, and four Nvidia RTX 3090 graphics cards. Unless

otherwise specified, the results presented in this section were performed on this

system utilising a single 3090 graphics card.

5.2.3.1 Training performance

In this section, the training performance for the framework is assessed, with an

investigation into the multi-dimensional dataset structure performed. Utilising

the training structure defined in section 5.2.2 above, the first optimisation

performed in this framework is modifications in the activation function for the

neural architecture. In this work, two different activation functions are compared,

the swish [205], and the rectified linear unit (ReLU) [206, 207, 208]. The swish

activation function operates as,

f(x) = x · σ(βx), (5.34)

where β is a scalar parameter that can be predetermined or integrated into the

training regime. The sigmoid function, σ is defined as,

σ(z) = (1 + exp(−z))−1, (5.35)
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where the swish activation function becomes a linear function if β = 0, a step

function when β → ∞, and a sigmoid weight linear unit function [209] when

β = 1. This capability provides flexibility while maintaining integration with

larger network architecture due to the simplistic definition. The ReLU function

is defined as,

f(x) = max(0, x). (5.36)

For a given input, x, the ReLU function acts as a step function between the input

value and zero, depending on the corresponding input sign. By inspection, it is

clear that as β → ∞, the swish function closely represents the ReLU function.

Due to this trend, using the swish function improves training flexibility over

the ReLU, as β can be preselected to match the ReLU response while enabling

modifications during training. Figure 5.7 below presents both activation functions,
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Fig. 5.7 Corresponding outputs for Swish and ReLU activation functions for
three given β values.
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A comparison of the ReLU and Swish activation functions during the auto-

regressive neural solver training is completed to quantify potential performance

benefits. For this investigation, the training dataset comprised 512 training

samples, 64 validation samples, and 64 testing samples completed through an

optimised Latin hypercube space-filling algorithm [210]. This Latin hypercube

algorithm has been selected to provide an optimised design space-filling routine

for a given sampling number. The design space selected for this architecture

comprises the phase-field system parameterisation, specifically, the applied cur-

rent density, δ, initial seed thickness, T , the introduced density-molecular mass

constant, ν, and dimensionless exchange current density, k. This training distri-

bution results in a 66.6% partition for training and 16.6% each for testing and

validation. Figure 5.8 below displays the training loss for this investigation for

15 training epochs, corresponding to 75 loss function assessments.
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Fig. 5.8 Corresponding outputs for Swish and ReLU activation functions for
three given β values.
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For the remainder of this chapter, unless specified otherwise, the training

regime for the autoregressive neural solver includes the generation of the op-

erating dataset from the BattPhase.jl full-order representation, followed by a

loss minimisation across 15 epochs, with a batch size of one, and finally, graph

connectivity spanning across three neighbours. The next section presents the

neural performance based on this training configuration.

5.2.3.2 The one-dimensional case

First, the one-dimensional phase-field representation is tackled to verify the

neural solver’s capabilities for predicted microscale evolution. For this verification,

the introduced training methodology above is utilised with a spatial grid size

of 40, corresponding to L = 40 µm, which is fed into the training structure.

Each of these spatial locations is augmented to include the system of equation

parameterisation, which is generated through the Latin hypercube design space

comprising 1024 cases explored. This design space covers parameter ranges

introduced in Table 5.3. Figure 5.9 presents the one-dimensional neural solver

predicted trajectory unrolled twice corresponding to 50-time steps compared to

the ground truth Battphase.jl trajectory.

In Figure 5.9, the neural solver was trained for 15 epochs with a batch size

of two and an immediate neighbour connection of three. Due to the reduced

complexity of the graph structure for the one-dimensional case, as well as the

increased number of training points, this lower number of epochs was required

for training. An RMSE of 3.83 × 10−5 between the neural solver and the ground

truth model was obtained across the 25 predicted time-steps for the phase-field

representation (0,1). A further use case for the one-dimensional model is online

capable deployments that provide the anode thickness for state-of-power (SOP)

predictions. In high-performance applications, state-of-power is commonly solved

by forward integration of a simplistic numerical model, such as an ECM, to
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Fig. 5.9 One-dimensional neural solver unrolled twice for a 50 time-step prediction
(30 minutes) compared ground truth model for ν = 1.0, k = 1.0, δ = 0.337, and
an initial seed thickness of 14µm acquired from the testing allocated dataset.

provide the control structure with future information for a given power request.

This time integration, coupled with the control structure interactions, enforces

terminal voltage limits for the operated energy storage system; however, for

lithium-metal batteries, this terminal voltage doesn’t guarantee anode thickness
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values for optimal coulombic efficiency. By deploying a lithium evolution model,

the online control structure would gain access to underlying anode thickness,

enabling the potential for optimal control structures for reductions in degradation

mechanisms. In the next section, the architectures domain dimensionality is

increased to cover the two-dimensional case utilising the methodology introduced

in 5.2.2 above.

5.2.3.3 The two-dimensional case

As the one-dimensional case has been introduced, the two-dimensional extension

will be discussed in this section. The multi-dimensional training methodology

introduced is combined with a Latin hypercube space exploration, similarly

completed for the one-dimensional case. Due to the additional numerical cost

for the two-dimensional forward model, the number of cases is reduced to 512

across an equivalent parameter space. This dataset is fed into the training regime

for 15 epochs with an immediate neighbour connection of three and a domain

grid size of 402. This verification initialises a seed thickness of 6.0 µm with

δ = 2.015, k = 1.557 and ν = 0.060 to complete a plating prediction. The results

of this prediction are compared to the ground truth model in Figure 5.10 below,

comprising of predicted time-steps across the electrodeposited operation from the

testing allocation of data. This confirmation also aligns with the one-dimensional

case with an RMSE of 9.52 × 10−3 between the ground truth and prediction.
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Fig. 5.10 Two-dimensional neural solver unrolled forward prediction (bottom)
comparison to ground truth (top) for time-steps (0,12 and 25) corresponding to
15 minutes of forward prediction.

These results confirm the auto-regressive solver’s flexibility to initial seed

geometry for a given applied current density, exchange current density, and

molecular mass-density ratio. The next section presents a discussion on the

neural solver’s computational performance.

5.2.3.4 Computational performance

As the fidelity for both single and two-dimensional predictions has been presented

and verified to the ground truth model, the computational requirements for the

autoregressive neural solver will be discussed in this section. The objective for

this chapter has been to reduce the computational lithium-metal anode models

while maintaining fidelity, aligning with the thesis aims presented in Chapter 1.

As the neural solver requires training before deployment, two numerical results

are presented and compared to the conventional BattPhase.jl implementation.

The training portion of the neural solver presented is computationally more

expensive than the conventional Battphase.jl implementation as it requires

system data generation, as well as the loss function minimisation training;
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however, the trained solver provides extremely fast predictions which are not

achievable from BattPhase.jl or conventional numerical solvers. Table 5.4 below

presents the training and the final prediction time requirements for the neural

architecture presented in the previous section. This is compared to the phase-

field representation for an identical parameterisation. For these results, the

BattPhase.jl prediction was computed on the Intel i9 10980XE workstation, with

the neural solver utilising an Nvidia RTX 3090 graphics card.

Table 5.4 Computational timing for both training and prediction for a grid size
of 902 compared to BattPhase.jl

Method Training Time
per Epoch [hr]

Prediction Time
per Step [ms]

Neural Solver 5.25 3.94
BattPhase.jl N/A 6.6

Overall, the training requirements for the autoregressive neural solver are quite

high; however, a 40.3% decrease in computational time per time-step is achieved

for the trained solver. This fast prediction time offers valuable capabilities

for deployment in low-computation applications. This includes design space

exploration for battery material discovery and optimisation, modular coupling

to traditional cathode models for cell-scale battery predictions, and deployment

in embedded or interactive applications where prediction speed is the highest

requirement. It should also be noted that the neural solver is implemented

utilising Pytorch, and thus the underlying function call is in Python, minus the

CUDA API; however, BattPhase.jl is developed in Julia and is, therefore, fully

compiled before execution.

5.2.4 Concluding Remarks

This section presents an autoregressive neural solver framework that enables

fast surrogate model capabilities for the evolution of lithium-anode morphology.
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This framework utilises an encode-process-decode methodology with temporal

bundling and an adversarial style push-forward operator, as presented in the liter-

ature. A methodology for physics-informed data generation from the BattPhase.jl

phase-field framework was developed as an improvement over conventional meth-

ods. This included a design space investigation, with insight into an optimised

variable space presented. Additionally, the activation functions’ effect on the

model predictions was presented with the final model training structure aligned

with the findings. For the single-dimension case, the trained architecture was

presented with performance matching the ground truth phase-field predictions

showcasing the potential for online prediction capabilities, such as state-of-power

calculations. Next, the two-dimensional case was assessed utilising a more com-

plex gaussian seed initial geometry showcasing the two-dimensional capabilities of

the framework, with an RMSE of 9.52 × 10−3 between the neural prediction and

the ground truth across the 25 presented time steps. Finally, the computational

requirements for the neural solver were compared to the ground truth model,

showcasing improvements post-training that enables both online capabilities

and fast design space explorations for future material compositions. Future

improvements for this work include further training requirements to reduce the

large overhead needed to achieve the performance presented. The development

of a computationally informed architecture that could utilise the one-dimensional

results for systems with symmetry is also an area for future developments. Over-

all, this chapter introduced two methods that, when coupled together, improve

physics-informed lithium morphology predictions.



Chapter 6

Conclusions

This thesis presented advancements in physics-informed battery models for

lithium-ion and lithium-metal batteries. Improvements in operational perfor-

mance and application-informed battery design are showcased alongside lithium

morphology domain predictions for fast degradation investigations. The work

presented has delivered novelty in these areas and has provided improvements

to real-time capable battery models and micro-scale lithium-metal predictions.

Additionally, this thesis has provided improvements in fast open-source soft-

ware that lowers the barrier of entry to investigating and utilising lithium-metal

batteries for researchers and aids in disseminating the novelty to potential end

users. This chapter will conclude the presented improvements and comment on

limitations and potential future improvements.

6.1 Summary of novelty

Computationally informed discrete realisation algorithm

In Chapter 3, a computationally informed realisation algorithm (CI-DRA) is pre-

sented with an open-source implementation (LiiBRA.jl). This work advances the

previous work in realisation algorithms for physics-based lithium-ion modelling
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capable of real-time deployment. First, an assessment of the state-of-the-art meth-

ods for realisation algorithms is presented, highlighting a gap in the literature for

onboard capable realisation. An assessment of the current methods for generating

the reduced order models was undertaken to fill this gap. This assessment pro-

vided two achievable improvements in the current state-of-the-art reduction and

alignment of the numerical algorithm to optimise the process for faster solutions

and implementation of the algorithm in an advanced computational language

capable of online compilation.

The improved realisation algorithm was created and numerically verified to

the full-system model through comparison to the Python battery mathematical

modelling package (PyBAMM), displaying an excellent voltage prediction result

of 7.54 mV RMSE to the full-order PyBAMM implementation for a WLTP 3B

drive cycle. Further investigations into the architectural initialisation variable

sensitivities were completed with a corresponding recommendation for end-user

configuration dependent on available computation performance. The CI-DRA is

then compared to the conventional DRA, with both implemented in LiiBRA.jl,

showcasing a model creation performance increase of 21.7%. This confirms the

numerical improvement of the CI-DRA without sacrificing fidelity in the final

reduced-order model. The second aim of this thesis was to enable online reduced

order model creation, which was verified through the implementation of LiiBRA.jl

on ARM-based hardware. This implementation provides a viable method for the

deployment of reduced-order models in-situ, enabling battery parameterisation

updates throughout the available lifetime.

To complete a final validation of the numerical framework showcased above,

the final reduced-order models are deployed onto an embedded target for real-time

control. This included an additional investigation to improve the computational

performance of the in-situ linearisation of the low-frequency D state-space array.

This improved real-time performance as the surrogate model utilised for the
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linearisation reduced the online computations by 13.5%. The deployed model was

compared to the equivalent circuit model, which provides a relative benchmark to

the current industry standard. Overall, the work presented improves lithium-ion

battery realisation algorithms in three key ways: (1) The CI-DRA provides

an improved algorithm to achieve faster realisation and (2) LiiBRA.jl enables

fast offline and online realisation and is available freely, and third, the online

computational time has been reduced through usage of surrogate machine learning

techniques.

Application informed battery design

Multi-scale effects of system-level characterisations have been investigated, and

a novel open-source package for model-informed design decisions is presented

in Chapter 4. This work enables physics-geometry-based predictions across

different lithium storage methods for the anode, providing key benefits for future-

generation battery analysis. Utilising BattCalc.jl, the microscale parameter effects

can be scaled to system-level characteristics that enable DC internal resistance

predictions, energy density, and capacity for individual cells to multiple-cell

battery packs.

This work presents fundamental equations that enable the coupling of length

scales to achieve multi-scale predictions. First, the electrode length scale is intro-

duced, summarising the lowest scale calculations. At this scale, the fundamental

electrochemical parameters are modelled with corresponding assumptions used

to reduce the complexity to a manageable level for fast approximations. The

electrode scale is expanded to the unit stack, coupling multiple electrodes and

the non-active material, such as current collectors and separators. The step

to the cell level includes multiple unit stacks and the inclusion of non-active

packing material. This scale provides the first benchmark for BattCalc.jl to



6.1 Summary of novelty 153

experimentally tested batteries, with predicted results including an uncertainty

analysis to investigate parameter sensitivities. Finally, the system-level battery

pack is formed through the addition of non-active material for safety systems

and packaging.

As this chapter introduces the benefits of lithium-metal batteries, the first step

is to investigate the characteristics of two comparable lithium-based battery packs.

An example high-power application is selected as it currently provides difficulty

for lithium-ion-based chemistries, with system targets of 600V and 5.5 kWh.

Three cell configurations are selected, comparing lithium-ion and lithium-metal

storage mechanisms as well as different lithium-metal designs. This investigation

resulted in a mass reduction of 9.1 kg for the anode-free lithium-metal cell

while achieving an energy density improvement of 55 Wh/kg compared to the

lithium-ion configuration. A transient vehicle dynamic simulation was created

and validated, capable of predicting drive-cycle completion time dependent on

transient vehicle parameters. The corresponding system-level characteristics were

imported into this framework, with results displaying a 7.62-second improvement

for the anode-free lithium-metal chemistry while reducing energy consumption

by 28.8 Wh.

BattPhase and autoregressive neural solver

In Chapter 5, a microscale phase-field-based model is introduced for lithium-

metal morphology predictions in single and two-dimensional cases. As presented

in Chapter 4, next-generation lithium-metal batteries offer improvements in

energy density not previously attainable for conventional lithium-ion chemistries;

however, there is a multitude of challenges that need to be solved before they

will be able to achieve cycle life’s equivalent to lithium-ion. To advance these

challenges and provide further insight, the presented phase-field model allows
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microscale evolution predictions while achieving fast numerical performance. An

open-source framework was introduced with numerical optimisation completed.

A prediction time reduction of 72.8% over the initial model was achieved while

maintaining fidelity, as shown in Figure 5.3.

An autoregressive message passing graph neural network solver was also

implemented for lithium-metal phase-field representations. Chapter 5 presented

an optimal data alignment methodology for multi-dimensional compression to

the neural solver framework, as well as optimisation and further development of

the neural architecture. An assessment of the framework’s activation functions

for phase-field representations was presented, with a further comparison of the

hidden layer dimensions. Finally, the predictive performance of this autoregressive

solver was presented, showcasing its capabilities for fast, flexible predictions

for lithium-metal evolution. The autoregressive neural solver was numerically

verified to the phase-field electrodeposition model and showed a performance of

3.83 × 10−5 for the one-dimensional case and 9.52 × 10−3 for the two-dimensional

case. The numerical performance was also presented with a 40.3% reduction in

computational time per step achieved over the phase-field representation for the

trained model; however, it should be noted that the training requirements for

the neural solver limit its current usage.

6.2 Perspectives and future directions

Limitations of the presented work above have been discussed in their respective

chapters; however, some limitations are consistent between these elements of

work. The author believes that improvements in open-source software packages

should be completed to achieve field-wide improvements in electrochemical

modelling. As previously described, multiple open-source methods exist to solve

the Doyle-Fuller-Newman model numerically; however, each provides a different
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interface and convention to the end user. Integration of naming conventions and

standardisation of architectural interfaces would lower the barrier of entry for

new researchers and enable larger improvements for the field. For the presented

packages in this thesis, future implementation of a shared ontology is planned to

enable an easy transition for end-users.

The popularity of physics-based battery realisation algorithms has varied since

the first publications. The author suspects that penetration into the field will

depend heavily on future cell chemistries and the attainable benefits for physics-

informed online plant models. To further lower the barrier to entry for realisation

algorithms, the author recommends future work be developed inside previously

implemented open-source packages when possible. An automated method to

apply the CI-DRA inside of PyBAMM, or PETLION.jl, would provide a single

platform for users to model the full system and the reduced-order derivation.

This provides a challenge, as an automated derivation of the corresponding

transfer functions is not straightforward. Julia’s symbolic mathematics package,

JuliaSymbolic.jl [211], provides a potential method for this integration; however,

difficulties are expected due to the complexity of the derived equations. The

currently implemented LiiBRA.jl package utilises the transfer function derivation

originally presented in [152], which assumes that the electrolyte potential is

independent of the electrolyte concentration when deriving the reaction flux

transfer function; however, more recent work by Rodriguez et al. [166] has

removed this assumption and shown improved reduced-order fidelity. Future

work to integrate this derivation into LiiBRA.jl is planned with a final aim

to provide the end-user with the functionality to select the transfer function

derivation. Finally, the implementation of degradation models coupled with

the state output from the CI-DRA for online capable degradation predictions is

planned.
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The open-source multi-scale package, BattCalc.jl presented in Chapter 4

provides capabilities in first-principle-based predictions; however, due to the

underlying assumptions, this package has a limited design space for accurate

predictions. Future work areas for this work include the integration of this

methodology with an experimental data framework to improve automated pre-

dictions for material discovery and application-informed design. Due to the

prediction limitations of this package, integration with a continuum model such

as the DFN or SPMe to achieve informed parameterisation from experimental

cell characterisation would provide improvement for battery engineers.

The presented work on lithium-metal anode modelling, BattPhase.jl and the

corresponding autoregressive neural solver methodology have shown capabilities

in fast numerical morphology predictions. As the underlying phase-field deriva-

tion assumes linear kinetics and omits concentration gradient effects, further work

is required to achieve the recommended experimental validation of the numerical

predictions. Future development in automated coupling the BattPhase.jl frame-

work with the neural solver would provide a framework for easier deployment of

the neural solver. Additional optimisation of the autoregressive neural solver for

phase-field implementation is planned, with the aim of achieving an open-source

framework for fast design-space explorations. Finally, verification of the neural

solver’s capabilities to capture varying length-scale effects, such as dendritic

lithium morphology, is recommended for this methodology.



Appendix A

State space model generation

This appendix presents the model generation procedure utilising LiiBRA.jl for the

real-time deployment discussed in section 3.3.6. To produce the deployed state-

space models, LiiBRA.jl is first parameterised with the following architecture

specifications, This architecture definition is consistent with the experimentally

Table A.1 Architecture variable specification for deployed LiiBRA.jl models.

Variable Definition Value
H Size of square Hankel matrix 2500
Se,m Number of spatial particles in electrolyte 4
M System order 4
Ss,m Number of spatial particles in electrodes 2
Tlen Length of transfer function sampling time [hr] 4.5

Fs / Ts System sampling frequencies [Hz] 4

validated and numerically verified specifications introduced in Chapter 3. The

process for generation follows the LiiBRA.jl example introduced in Figure 3.3,

with the corresponding state-space array output from the Realise! function call.

The dimensionality for the generated state space models in this configuration

results in a single input dimension (applied current), and a twenty-one dimension

output vector, comprising four spatial elements for concentration and potential
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in the electrolyte and two spatial elements for each solid phase transfer function

spanning both the negative and positive domains. The first output is the A

matrix and is presented as,

A =



1.0 0.0 0.0 0.0 0.0

0.0 0.9984 -0.002437 -0.001114 0.001483

0.0 -0.003446 0.9945 -0.002623 0.002791

0.0 -0.002875 -0.00674 0.9923 0.01182

0.0 0.006684 0.01605 0.02642 0.9443


(A.1)

with the first index set to a value of one for time integration of the state variables. Next

the B matrix is,

B =



0.25

0.3276

0.4399

0.2947

−0.6498


(A.2)
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where B[1] is the time period for the generated model. The C matrix is formed as,

C =



0.0 0.9485 1.521 0.4695 0.4606

0.0 -0.01827 -0.004873 0.08019 -0.1869

0.0 -0.1244 -0.1896 -0.03122 -0.09665

0.0 -0.7102 -1.18 -0.4931 -0.09483

0.0 -6.529e-9 3.37e-9 -8.425e-10 -1.929e-10

0.0 -6.529e-9 3.37e-9 -8.425e-10 -1.929e-10

0.0 7.721e-7 1.61e-6 2.145e-6 -4.775e-6

2.007 4.342 5.003 1.965 -7.01

2.007 4.157 4.622 1.452 -5.861

0.0 1.467e-6 3.028e-6 4.044e-6 -8.999e-6

0.0 -0.0002099 -0.0002345 -7.594e-5 0.0003002

0.0 -0.0002077 -0.0002299 -6.975e-5 0.0002865

0.0 9.552e-9 1.998e-8 2.746e-8 -6.235e-8

0.0 1.069e-9 2.386e-9 3.718e-9 -9.122e-9

-1.579 -0.7813 -1.194 -0.9805 1.604

-1.579 -0.9918 -1.236 -1.071 1.75

0.0 5.544e-12 -2.862e-12 7.155e-13 1.638e-13

0.0 1.147e-11 -5.922e-12 1.48e-12 3.389e-13

0.0 -2.318e-11 1.196e-11 -2.991e-12 -6.847e-13

0.0 -3.045e-9 1.574e-9 -3.917e-10 -9.223e-11

0.0 3.489e-9 -1.799e-9 4.515e-10 1.008e-10



(A.3)
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and finally, the D which corresponds to the low-frequency system response and is linearised

online for the deployed system is defined as,

D =



0.0

0.0

0.0

0.0

-0.003447

-0.003829

-0.005977

0.0

0.0

0.00345

-0.004455

-0.003108

-5.406e-6

-3.771e-6

0.0

0.0

-3.013e-6

2.996e-6

3.265e-6

0.03834

0.04178



(A.4)
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