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,e heterogeneous resource-required application tasks increase the cloud service provider (CSP) energy cost and revenue by
providing demand resources. Enhancing CSP profit and preserving energy cost is a challenging task. Most of the existing
approaches consider task deadline violation rate rather than performance cost and server size ratio during profit estimation, which
impacts CSP revenue and causes high service cost. To address this issue, we develop two algorithms for profit maximization and
adequate service reliability. First, a belief propagation-influenced cost-aware asset scheduling approach is derived based on the
data analytic weight measurement (DAWM) model for effective performance and server size optimization. Second, the mul-
tiobjective heuristic user service demand (MHUSD) approach is formulated based on the CPS profit estimation model and the
user service demand (USD) model with dynamic acyclic graph (DAG) phenomena for adequate service reliability. ,e DAWM
model classifies prominent servers to preserve the server resource usage and cost during an effective resource slicing process by
considering each machine execution factor (remaining energy, energy and service cost, workload execution rate, service deadline
violation rate, cloud server configuration (CSC), service requirement rate, and service level agreement violation (SLAV) penalty
rate).,eMHUSD algorithmmeasures the user demand service rate and cost based on the USD and CSP profit estimationmodels
by considering service demand weight, tenant cost, and energy cost. ,e simulation results show that the proposed system has
accomplished the average revenue gain of 35%, cost of 51%, and profit of 39% than the state-of-the-art approaches.

1. Introduction

Nowadays, cloud computing has become a backbone for
government enterprises and education sectors because of
providing continuous resource (memory, CPU, and band-
width) allocation service to ensure their application service
reliability. ,e cloud service supplier shares the resources
among end-users based on cost function’s value (CF) tomeet

the demand of system performance. Many service suppliers
estimate the server cost based on bandwidth usage rate
(BUR) and energy usage rate (EUR). As per the Gartner
report, the cloud service provider (CSP) market would grow
approximately 331.2 billion dollars in 2022 [1]. ,e cloud
global report [2] confines 623.3-billion-dollar market
growth rate in 2023 for data computation. ,e statistical
analysis states that cloud computing has a notable impact on

Hindawi
Security and Communication Networks
Volume 2021, Article ID 6688162, 16 pages
https://doi.org/10.1155/2021/6688162

mailto:sashraf@gelisim.edu.tr
https://orcid.org/0000-0002-1313-285X
https://orcid.org/0000-0003-4878-1988
https://orcid.org/0000-0002-2703-0213
https://orcid.org/0000-0003-4118-2480
https://orcid.org/0000-0003-3428-9802
https://orcid.org/0000-0002-9321-6956
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6688162


the Internet of,ings (IoT), blockchain, and soft computing
measurement systems with artificial intelligence models.,e
tasks are divided into subtasks with relative attribute defi-
nitions through DAG theory. ,e DAG approach shows a
prominent impact while dealing with complex workflow
applications such as systematic mathematical applications
[3–5]. Data analytic languages such as Hive and Pig [6–8]
platforms handle the MapReduce model queries. ,us, the
DAG theory’s importance tremendously changed over the
past decade since it influences the service execution time and
resource usage. ,erefore, this issue is formulated as NP-
hard [9], and many heuristic approaches resolved the same
issue through resource usage consolidation [10–12].

Each machine enables a list of resource attributes (e.g.,
CPU, RAM size, and hard disc space) provided by CSP. In our
solution, the cloud resource cost is optimized by estimating
user service demands (such as CPU, IOPS, memory, and
storage). For instance, an online incremental learningmethod
has been designed in [13–15] to estimate service completion
time based on heuristic algorithms by allocating the arrived
service requests to the correct VM. However, these ap-
proaches have not considered server size and machine re-
source usage rates which causes performance delay.
,erefore, in our approach, we consider CSC size, effective
resource management of machines, and resource autoscaling
methods; these are not present in state-of-the-art approaches.
Several examinations were carried out for designing effective
resource allocation methods to reduce allocation cost by
satisfying service request requirements. Most current studies
[16] have not considered the pricing models and data analysis
models; some on-demand pricing models are considered with
an inadequate measurement index. Several recent studies [17]
recognize the importance of both on-demand data analytical
models and reserved pricing models to minimize resource
allocation costs. However, our solution assesses the server
resource capacity rate, profit, and cost based on the data
analysis model. ,e user service demand measurement al-
gorithm is essential for profitmaximization by autoscaling the
resource allocation certainty.

Our research work aim is to design a novel profit opti-
mization model for CSPs to enhance their revenue maxi-
mization (RM) by maintaining reliable quality of service
(QoS). ,e profit optimization model must impact active
server count, cost, and speed tomeet the end-user satisfaction,
influencing their service continuity. If there is no precise
profit optimization model, then the profit and service quality
and revenue generation factors will be affected. However, CSP
revenuemaximization has become a billion-dollar question in
the competitive service computing market because of het-
erogeneous resource-required application tasks.

To address the listed issues, we develop two algorithms
for profit maximization and adequate service reliability.
First, a belief propagation-influenced cost-aware asset
scheduling approach is derived based on the data analytic
weight measurement (DAWM) model for effective perfor-
mance and server size optimization. Second, the multi-
objective heuristic user service demand (MHUSD) approach
is formulated based on the CPS profit estimation model and
the user service demand (USD) model with dynamic acyclic

graph (DAG) phenomena for adequate service reliability.
,e DAWM model classifies prominent servers to preserve
the server resource usage and cost during an effective re-
source slicing process by considering each machine exe-
cution factor (remaining energy, energy and service cost,
workload execution rate, service deadline violation rate,
cloud server configuration (CSC), service requirement rate,
and service level agreement violation (SLAV) penalty rate).
,e MHUSD algorithm measures the user demand service
rate and cost based on the USD and CSP profit estimation
models by considering service demand weight, service
tenant cost, and machine energy cost.

1.1. Key Contributions. ,e trade-off between cost optimi-
zation and revenue maximization models is extensively
examined in Section 2. Our manuscript’s key contributions
are summarized as follows:

(1) Develop a data analytic weight measurement
(DAWM) approach to optimize service quality and
price of CSP during an effective resource slicing
process by considering each machine cost and rev-
enue, and profit.

(2) Develop a multiobjective heuristic user service de-
mand (MHUSD) based on the CPS profit estimation
model and the user service demand (USD) model to
measure the user demand service rate cost by con-
sidering service demand weight, service tenant cost,
andmachine energy cost. Subsequently, theMHUSD
algorithm also considers maximum baring wait-time
of end-user to maximize CSP revenue and optimize
operational energy cost.

(3) Simulation results confirm the advantage of the
proposed approaches, enhancement rate of revenue,
and the CSP’s profit attributes. ,e impacts of
mathematical key factors are being analyzed theo-
retically and practically.

,e manuscript’s respite is designed as Section 2 briefly
explains research gaps and problem statements of extant
approaches. Section 3 describes the proposed system and its
mathematical models with an algorithm in detail. Section 4
evaluates the investigation outcomes, and Section 5 con-
cludes the manuscripts.

2. Related Work

,is section describes the examination of related research
work, which is classified into 3 steps, such as profit maxi-
mization, green data center, and graph theory-based task
consolidation approaches.

2.1. Profit Maximization. Several profit maximization
methods are proposed for the sustainability of green com-
puting. We can observe the current scenario and require-
ment analysis of revenue in Figure 1. In [18], the broker
management system has been designed to maximize the VM
cost and minimize user cost. ,e author formulates
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multiserver configuration cost as a profit maximization is-
sue, and a heuristic method has been designed to solve this
issue. ,e delay-sensitive workload dimensionality has been
examined based on a novel online heuristic approach to
optimize the system’s cost and profit [19]. Subsequently, the
offline issue is formulated as NP-hard, and it has been re-
solved by a linear programming concept. In [20], a dynamic
cost charging method has been designed to fix specific prices
to servers as per the resource demand. A pricing approach
has been designed to regulate the prices dynamically as per
the demand of a kind. In [21, 22], the service penalty has
diminished and enhances the profit by VM replacement
approach through a mixed-integer nonlinear program called
NP-hard; subsequently, a novel heuristic method has been
designed to optimize the penalties and profits.

CPS profit maximization approaches have been ex-
tensively examined in this literature survey. In [23], the
authors designed a stochastic programming scheme for
the subscription of computing resources to maximize
service providers’ profit during user request uncertainty.
In [24], a profit control policy has been designed to assess
machine computing capacity, which decides to maximize
the service provider profit. In [25–27], an SLA-based
resource allocation issue has formulated with profit
maximization objective with the consideration of 3 di-
mensions (processing, storage, and communication). In
[28], a service request (SR) distribution approach is
designed to enhance the profit with quality of service rate
as per the service demand. In [29], the author has
addressed the service provider revenue maximization
issue by consolidating the service tenant cost and power
consumption cost. A joint optimization scheduling model
has been designed to manage delay-tolerant batch services
based on pricing decisions to maximize service provider
revenue [30]. In [31], the authors designed a model to
maximize the service provider revenue based on the
machine’s tenant cost, resource demand size, and the
application workload. A suitable online algorithm has
been designed for the geo-distributed cloud with an
adaptive VM resource cost scheme to maximize the ser-
vice provider revenue [32]. ,e relationship between load

balance, revenue, and the cost has concentrated on
maximizing the service provider revenue than state-of-
the-art approaches [33]. In [34, 35], a virtual resource
rental strategy has been designed based on tenant cost,
task urgency, and task uncertainty to enhance provider
profit.

A hill-climbing algorithm has been designed to estimate
customer service satisfaction by analyzing demandmark and
profit fluctuations [36]. It assesses the customer satisfaction
from economic growth ratio by leveraging the cloud server
configuration (CSC), task arrival rate, and profit up-downs.
,erefore, the CSC directly impacts the cloud user service
satisfaction rate and the inadequate customer satisfaction
also has a direct impact on service request arrival rate.
However, there is a lack of an accurate decision-making
system and data analysis system that affects the server’s
profit and performance cost. A profit estimation model has
been designed by considering CSC, service requirement rate,
SLA, SLAV penalty rate, energy cost, tenant cost, and
current CSP margin profit [37]. A server task execution
speed-based power usage model is also designed to assess the
CSP profit.

2.2. Green Data Centre. In [38], a mixed-integer linear
program has been designed for resource allocation to op-
timize the data center cost and energy consumption. Green
computing accomplishes the proficient process and usage of
assets by limiting the vitality utilization. An enhanced ant
colony approach for optimal VM execution has been de-
veloped to enhance vitality utilization and to optimize the
cost of cloud environment [39–42]. ,e practical swarm
optimization (PSO) approach resolves the task allocation
issue by consolidating data center count and task demand. In
distributed computing, the assets have to schedule effectively
to achieve a high-performance rate. Accordingly, the mul-
titarget PSO approach remains preferable to enhance the
resource usage rates. ,erefore, this approach effectively
increases the usage of assets and lessens energy and
makespan. ,e outcomes delineated that the proposed
strategy multiobjective practical swarm optimization
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Figure 1: Formulation of revenue maximization. (a) Haphazard cost impact. (b) Expected cost importance.
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(MOPSO) performance is quite beneficial than concerned
existing models. A VM scheduling approach has been
designed based on multidimensional resource imperatives,
for example, link capacity, to diminish the quantities of
dynamic PMs to preserve energy utilization. ,e 2-step
heuristic approach resolves the VM scheduling through
migration and VM positioning models [43, 44]. ,e
designed method has consolidated the execution time than
extant systems in a simulation platform. Asset over-
burdening is still an issue, and live relocation does not
uphold the change of VM performance. In [45], the energy-
aware asset allocation approach has been investigated to
improve the energy productivity of a server farm without
SLA negotiations. An asset scheduling strategy with a he-
reditary method has been proposed to improve the usage of
assets and save the expense of energy in distributed com-
puting [46, 47]. It utilizes a migration approach dependent
on 3 load degrees (CPU usage, the throughput of organi-
zation, and pace of circle I/O). ,e calculation succeeds in
improving the usage of assets, and saving energy by run-time
asset scheduling is high. An energy preservation system is
classified by assorting the asset into four distinct classifi-
cations (CPU, memory, storage, and networks). Addition-
ally, the author designed a unique asset scheduling system
dependent on cloud assets’ energy streamlining with as-
sessment technique [48]. ,e study [49] evaluates every
machine’s fitness value, which helps assess the machine rank
based on the performance and resource usage rate. However,
the machine rank evolution process consumes more time
which influences the performance, and task scheduling
policy leads to high-performance cost.,e complexity rate is
high over large-scale frameworks.

2.3. Graph <eory-Based Resource/Task Scheduling.
Dynamic acyclic graph (DAG) has been used for task
scheduling by considering PM capacity and task resource
weight to formulate the issue [50]. Here, X[i, j] matrix
identifies the errand evolution time of all VMs under
different instances. To address all these issues, we design a
data analytic weight measurement (DAWM) approach to
optimize a cloud service provider’s quality and price during
an effective resource slicing process by considering each
machine’s cost and revenue, and profit. ,e entire cost does
not iteratively consider traditional DAG-based models
during the measurement of data analysis. Subsequently, we
design a multiobjective heuristic user service demand
(MHUSD) algorithm based on the CPS profit estimation
model and the user service demand (USD) model to
measure the user demand service rate and cost by con-
sidering service demand weight, service tenant cost, and
machine energy cost.

3. DAWM System Model

A belief propagation-influenced data analysis model is
designed for CSP profit maximization by formulating
DAG task and resource scheduling policy, as shown in
Figure 2. ,e CSP receives a service request from the cloud

user, and by default, the CSP has three service modes: on-
demand, advanced reservation, and spot resource allo-
cation, which helps to slice the resources as per resource
demand. As per the received service request, the CSP
assesses its demand, cost, performance, profit, and re-
quired server size factors. ,e CSP consolidates the
overprovisioning machines by optimizing the service
execution cost and machine asset usage. Cloud service
suppliers drive the data utility analytic method on ma-
chines to classify the high- and low-resource usage rate
machines, preserve CDC usage and performance cost, and
avoid instant repudiations/migrations.

It classifies adaptive servers after the first iteration by
concocting an exact data analytic weight measurement
(DAWM) model. First, a belief propagation influences a
cost-aware asset scheduling approach based on the data
analytic weight measurement (DAWM) model, which ef-
fectively optimizes the performance cost and server size.
,e DAWMmodel classifies prominent servers to preserve
the server resource usage and cost during an effective re-
source slicing process by considering each machine exe-
cution factor (remaining energy, energy and service price,
workload execution rate, service deadline violation rate,
cloud server configuration (CSC), service requirement rate,
and service level agreement violation (SLAV) penalty rate).
Second, the multiobjective heuristic user service demand
(MHUSD) approach is processed based on the CPS profit
estimation model and the user service demand (USD)
model with dynamic acyclic graph (DAG) phenomena for
adequate service reliability. ,e MHUSD algorithm
prognosticates the user demand service rate and cost based
on the USD and CSP profit estimation models by con-
sidering service demand weight, service tenant cost, and
machine energy cost. ,e USD model estimates the re-
source service demand to estimate the profit and revenue
gain and the system’s performance cost. ,e CSP profit
estimation model helps assess the service profit by fore-
casting the server’s performance cost, energy usage, and
resource tenant cost. Each subsection describes a sub-
component of the framework mathematically and
theoretically.

3.1. Cloud Service Provider Model. ,e CSP offers various
services to cloud end-users. For instance, infrastructure is a
service, where the resources are being offered as VMs to
meet the end-user satisfaction by running their applications.
,e user service request (USR) is submitted to the service
provider, which runs on a multiserver system to deliver the
response for the received service requests. Consider a
multiserver system (MSS) enables N homogeneous servers
with m speed, and these are modeled based on the
(M/M/M) queuing system. Assume that the MSS frame-
work receives a number of user service requests with a rate of
u. ,e service time v � (x/m), where x refers to required
instruction count to execute the USR and mean v � (x/m).
,e service rate of the USR is denoted as q � (1/v) � (m/x).
,e server utilization rate is estimated with equation (1), and
it is denoted with Z:
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where ρr refers to probability of r service requests which
are executing at a server. In case if there are no tasks/
service requests, then the probability of zero service re-
quest is

ρ0 � 

N− 1

r�0

(N · ρ)
r

r!
+

(N · ρ)
N

N!
·

1
1 − Z
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Subsequently, ρb is the probability of new arrived SRs,
which should wait when the server system is busy exe-
cuting assigned tasks where ρN refers to probability of all

N SRs. ,e probability density function is defined with
equation (5), and d refers to service waiting time:

ρa � 

∞

r�N

ρr �
ρN

1 − N
, (4)

ρden(t) � 1 − ρa(  · d + N · q · ρN · e
− (1− ρ)N·q(t)

.

(5)

Figure 3 illustrates the DAG task classification and
scheduling scheme that accomplishes by evaluating cost
price/unit of the machine, which is magnified with ample of
time required for task completion. ,erefore, for instance, n

is the number of VMs of F[i] type with weight W[r[i]],
∴∀1≤ i≤ n. Let τ be the required time to finish all the errands
on a set of VMs through the DAG-based approach. ,e
collected value/unit time is 1≤i≤nW[r[i]]. Appropriately,
the complete performance weight is (φ, ϑ(t),ϖ(t)), and it is
characterized as
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Weight(φ, ϑ(t),ϖ(t)) � 
1≤i≤n

W[r[i]] × τ. (6)
3.2. Service Level Agreement Model. ,e SLA is a method
which maintains a trade-off between price and service
quality between end-user and CSP. Here, the required
service attribute x is executed within the response time T, to
meet the application deadline:

S(x, T) �

cx, if 0≤d≤
b

m0
−
1
m

  · x,

c +
b · p

m0
−

p

m
 x − p · d, if

b

m0
−
1
m

  · x<d≤
c

p
+

b

m0
−
1
m

  · x,

0, if d>
c

p
+

b

m0
−
1
m

  · x,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where a is the service cost/unit, d is the penalty cost if any
SLA violation, b is the constant weight of SLA, and m0 is the
expected service processing speed. ,ere are three condi-
tions listed even the service request has under waiting time.
,erefore, T � ((d + x)/m):

(1 )If d has low value than bc × m0, it provides high-
quality, reliable service

(2) If d is in-between the ((b/m0) −

(1/m)) · x< d≤ ((c/p) + (b/m0) − (1/m)) · x, time
interval leads to moderate service quality

(3) If d is longer than ((c/p) + (b/m0) − (1/m)) · x, then
the service is free because the service request waited
long time in queue

Equation (7) is used to assess the prognosticated
service charge of the CSP based on 5 parameters:

c, p, b, d, andm. Here, c refers to service cost/unit, p

refers to SLAV penalty cost, m0 refers to expected service
speed, b refers to SLA constant weight, and d is the average
service waiting time.

3.3. User Service SatisfactionModel. User service satisfaction
(USS) is estimated in two ways: quality of service (QoS) and
price of service (PoS). QoS describes the discrepancy be-
tween users’ expectations (how to server SR) and users’
perceptions (how to perform service). ,e user’s quality of
service (ηsq

i (x, T)) is evaluated with

ηsq
i (x, T) �

1, if Jac ≥ Jex,

e
− Jac − Jex( )/Jex| |, if Jac ≥ Jex.

⎧⎨

⎩ (8)
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Figure 3: Belief propagation-influenced MRS cost assessment submodel.
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,e ηtc
i � e((Sex− Sac)/Sex) is a fundamental expression to

assess the price of service (PoS) with equation (9). Here,
Sexand Sac refer to expected cost and actual cost, respectively:

(1 )If Sex � Sac, then ηtc
i � 1, shows there is not impact

on user satisfaction

(2) If Sex > Sac, then it leads to the higher service cost
(ηtc

i < 1), and it decreases by increasing the actual
price

(3) If Sex < Sac, then it leads to the lower service cost
(ηtc

i > 1), and it increases by decreasing the actual
price

ηtc
i (x, T) �

1, if 0≤ d≤
b

m0
−
1
m

  · x

e
(1/m)+(d/x)− b/m0( )( )·(p/c)

, if
b
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1
m

  · x<d≤
c

p
+

b

m0
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1
m

 ,
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c

p
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b
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1
m

  · x.
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(9)

,e USS (ηsa
i ) is defined as product of service price and

quality of service (ηsa
i � ηsq

i (x, T) + ηtc
i (x, T)) with (10).

Such that,

ηsa
i �
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1
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e
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b
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1
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  · x<d≤
c

p
+

b
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1
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 ,

e
2− d/ b/m0( )− (1/m)( )·x

, if d>
c

p
+

b

m0
−
1
m

  · x.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

,e product of sum is calculated with equation (8) and
equation (9).

3.4. User Demand Service Estimation Model and Algorithm.
,e user service demand weight factor (ηexpeci,k ) assessment
plays an essential role to optimize the cost of cloud service
provider, and it is estimated with equation (11):

ηexp ec

i,k � 
x

k�1
Ki χk − ck( , (11)

where x refers to a list of service attributes, Ki refers to the
service attribute weight, χk refers to the attribute perception,
and ck refers to the attribute expectation.

,e service demand is formulated as the product of
potential demand and user service demand weight factor. It
is defined as

ηdema
i,k � 0.25 × α + β × ηexpeci,k , (where α, β> 0), (12)

where α and β refer to constant basic demand and constant
potential demand. Subsequently, both values must be greater
than >0, such as α, β> 0.

MHUDS algorithm 1 assesses the user service demand
adequately. Lines 1-2 define the entail parameters and at-
tributes for estimation of the user service demand. Line 4
assesses all the service attributes of the cloud service provider
and also checks the CPS set. Line 5 helps assess the lower and
upper bound value that should not be less than <R. Line 6
estimates the median value of the service attribute demand.
Line 7 assesses the ηdema

i,x (uk
m) which should not be less than

0. ηdema
i,x (uk

m) refers to user service demand of attribute k with
middle-range value. Similarly, the rest of the two variables
refer to higher and lower values of the user service demand
rate. Lines 12–15 are used to update the concerned value at
each iteration of time.
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3.5. CPS Profit EstimationModel. ,e CSP profit is assessed
based on the gap between the profits gained by acquiring
services to users and the monetary cost of processing user
SRs. Equation (13) is defined with function number and

server speed (i.e., N and m). ,e average revenue of CSP is
estimated as a product of the expected cost of SR and user
service demand:

S � − 0.25 ×
ρa · c · x

ρa · c · x (N · m − ux) × b/m0(  − (1/m)(  + 1( 
2

⎛⎝ ⎞⎠ � S(N,m), (13)

φ � S(N,m) × ηdema
i,k , (14)

where ηdema
i,k refers to USD based on user service attribute

value. ,e CSP cost is defined as a paid infrastructure tenant
cost and the power cost of system function, and it is assessed
with equation (15). ,e server energy consumption is also
estimated with equation (17):

ϑ(t) � N · s × t, (15)

ξ(t) � N · Ωnst × z +Ωst(  · t · ξn
s , (16)

where z refers to server usage, Ωnst refers to dynamic power
usage, and Ωst refers to static power usage. Assuming that
ξn

s (t) refers to energy usage cost at processing time t, the
electricity bill (ϖ(t)) is defines as

ϖ(t) � ξ(t) × ξn
s (t). (17)

,e CSP profit at t is described as the revenue minus
from the rental and electricity cost, and it is estimated with
equation (18):

G(N,m) � φ − ϑ(t) − ϖ(t). (18)

3.5.1. CSP Profit Maximization Factor. ,e probability of
having N SRs is described with equation (19). ,e Taylor
series influences approximately (N! ≈

����
2πN

√
(N/e)N) to

assess the CSP profit as follows:

ρN � ρ0 ×
(N · Z)

N

N!
, (19)

ρN �
1 − Z

1 − Z ×
����
2πN

√
e

Z− 1/Z  
N

+ 1
, (20)

updated derivation

ρN �
1

����
2πN

√
e

Z− 1/Z  
N

+ 1
. (21)

,e CSP maximized profit assess as follows:

S(N,m) � − 0.25 × ρa · c · x ×
1

(N · m − ux) × b/m0(  − (1/m)(  + 1( 
2

× 1/
����
2πN

√
e

Z− 1/Z  
N

+ 1 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. (22)

3.6. DAG Task Scheduling Methodology. ,e errands are
assigned through a computational method, which comes
under the DAG-based process by considering the frame-
work’s performance weight. It can be observed in Figure 4.
We characterize a graph G � V, E{ }. V � v1, v2, v3, . . . , vn 

where vi speaks to a comparing errand ti and it executes
consecutively on a machine. E � e1, e2, e3, . . . , em remains
priority connection among errands because of information
reliability. An errand is not initiated until the last errand
remains finished.

Because of dissimilar conditions in the cloud, each PM
ability remains to differ. ,erefore, we consider the X[i, j]

matrix to identify and for a keen track of each errand
processing time ti on jth VM. Here, we have not considered
weight and performance factors to measure the assets. In our
system, we deliberately utilize a matrix to measure perfor-
mance time on various VMs, rather than utilizing a con-
sistent weight factor to estimate execution time. As per the
data analysis model dataset, wemeasure each level (Li) of the
convolution network with DAG-based spark. Specifically,
each spark stage alludes a vertex, and the connection among
2 phases is compared with organized point. ,e apexes with
0 degree remain reflected as phases that complete in parallel
(Pi). ,e 0-degree vertices of DAG indicate with L. ,e
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organizing system remains recursively performed and for-
wards the outcome to any phase of DAG. According to
equation (23), we measure most outrageous performance
time of all processing phases in parallel (Pi) and that re-
cursively upgrades the task finish time:

Max
i∈S

T
i
L ≤TTask ≤ 

i∈S
T

i
L. (23)

3.7. Estimation ofOptimal Price. ,e price-demand function
estimates optimal price of service by considering the trade-
off between service price ϕ and the concern service demand
Δ based on their service request mode such as on-demand
service, reserved service, and spot instance service. It is
formulated as

Δ � Δre + Δod − Δre(  ×
ϕ − ϕre

ϕod − ϕre

 , (24)

where Δod refers to price-demand of on-demand service and
Δre refers to price-demand of reserved service, and similarly,
for price, ϕod refers to price for on-demand service and ϕod

refers to price for reserved service.

Theorem 1. Let us assume that the CSP considers Z units of
time. If service price is φ and average service execution time is
t, then the anticipated service price is

ϕexp e � Zϕ
1

1 − e
− (Z/t)

⎛⎝ ⎞⎠. (25)

Proof. ,e CSP considers Z units of time, the optimal price
is measured with average service execution time t, and it can
be measured as

ϕ(t) � Z⌈
t

Z
⌉ × ϕ. (26)

It is defined as follows: the service request price is (n +

1)Zϕ in (nZ, (n + 1)Z] time interval.
,e probability distribution function of t is

g(τ) �
1
τ

× e
− (Z/t)

. (27)

,e expected price is

ϕexp e � 
∞

0
ϕ(t) · g(t)dt,

� 
∞

0


(n+1)Z

nZ
g(t)(n + 1) · Z · ϕ dt

� 
∞

0
(n + 1) · Z · ϕ − e

− (Z/t)
 

(n+1)Z

nZ

� Z · ϕ
∞

0
e

− (nZ/t)
,

� Z · ϕ lim
n⟶∞

1 − e
− (n/t)

 
n

1 − e
− (n/t)

 

� Z · ϕ
1

1 − e
− (n/t)

 

.

(28)

Hence, the theorem is proved and the forecasting service
arrival demand is approximately
u � Δumax � Δre + (Δod − Δre) × ((ϕ − ϕre)/ϕod − ϕre)umax.

,e forecasting service price is
Sexpec � φ − CSPcost � φ − nϕre. So, the maximum price
must have to measure (zsexpec/zϕ) � 0, such that

1. Vertice as a task (Vj
i) = t j

i (δ j
i)

V1
L

V2
L

V5
L

V4
LV3

L

2. Here, L = 1 (for first PL)

Level 1

Level 2

Level 3

EL
4,5

EL
2,5

EL
3,5

EL
1,3

EL
1,2 EL

1,4

3. EL
i, j⌃ = wL

i 
,i+1 (δ ′j

i)

Figure 4: Representation of DAG task, where v1⟶ v5 entry and exit nodes with weight factor.
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zu

zϕ
�
Δod − Δre

ϕod − ϕre

 umax, where
zuϕ
zϕ

� u +
Δod − Δre

ϕod − ϕre

 umaxϕ,

(29)

where slos � ((Znen(1− Z))/
����
2πn

√
) refers to loss of server

profit, but the probability of expected server profit loss is

zs
los
exp ec

zϕ
�

1
����
2πn

√
z e

n(1− Z)
 

zϕ
Z

n
+ e

n(1− Z)zZ
n

zϕ
⎡⎢⎣ ⎤⎥⎦

�
1
����
2πn

√ Z
n
e

n(1− Z)
−
1
ℓ

zu

zϕ
  

+ Z
n− 1

· n · e
n(1− Z)

−
1
nℓ

zu

zϕ
 

�
Z

n
e

n(1− Z)

����
2πn

√
1 − Z

ℓZ
zu

zϕ

� s
los1 − Z

ℓZ
zu

zϕ
, since s

los
�

Z
n
e

n(1− Z)

����
2πn

√ .

(30)

Subsequently, the probability of forecasting service price
is

zsexpec

zϕ
� u +

zu

zϕ
ϕ 1 − s

los
(t)  + uϕt − s

los1 − Z

ℓZ
zu

zϕ
  

� u 1 − s
los

(t) 

+ ϕt
zu

zϕ
1 − s

los
(t)  − s

los
(t)n(1 − Z) .

(31)
□

3.8. Estimating Optimal Price. In Algorithm 2, the partial
derivative is formulated through slos. It formulates accurate
service price though the service arrival rate is high with low
profit loss. Lines 1–3 define the input variables, and line 4
applies the models to all arrived service requests. Lines 6–9
estimate the optimal price demand, and lines 10–19 estimate
optimal price value based on equations (31) and (13).

3.9. DAWM Algorithm for Cloud Server Size and Cost
Analysis. Algorithm 3 assess the server size and perfor-
mance cost. It assesses the customer satisfaction from the
machine economic growth ratio by leveraging the cloud
server configuration (CSC) called server size, task arrival
rate, and performance cost of the machine. ,erefore, the
CSC has a direct impact on the cloud user service satisfaction
rate and the inadequate customer satisfaction, and it also has
direct impact on service request arrival rate. Line 1 defines
the essential input parameters to accomplish the objectives.
Lines 2–5 assess the service execution cost using equation
(13) and update the machine matrix H[i, j], for effective
prognostication of server configuration size. Lines 6 and 7

update the all machine execution speed rates andmaintained
in an array. Lines 8 to 10 assess the performance cost in
association with CSC (s), service resource requirement rate
(K), SLAV penalty rate (L), and energy and resource tenant
cost. Lines 12–15 update the iterative value to mitigate
performance rate and system execution cost.

4. Experimental Result Analysis

,e proposed DAWM is simulated with real data in
MATLAB R2017b, and the system specifications are 8GB
DDR4 memory and an Intel Core i7-6700HQ CPU with
2.6GHz. We consider DAG [V, E] consisting 25–150 sen-
sors. Every network enables 5% of data centres in the net-
work size, and its capacity varies from 5000 to 75000GHz.
,e active servers are varying from 1000 to 1500. ,e idle
server constant energy consumption is 90 − 180Watt; else
the energy consumption is measured based on its energy
usage rate, and it is in range [0.5, 1.5]; energy price is
([15, 55]/Mwh). ,e link bandwidth between sensors varies
from 1500 to 25, 000Mbps and delay transmission is
3 − 6ms. ,e revenue gain is [0.15, 0.25], which is not static.
Each service execution bandwidth is set from 15 − 25Mbps,
computing demand is 3 − 5GHz, and the execution of each
service is 5 − 30 (data packets/ms). ,e simulation param-
eters related to power cost, constant workloads, CSC, service
requirement rate, SLAV penalty rate, energy cost, tenant
cost, and current CSP margin profit are listed in Table 1.

Figure 5 illustrates the average execution time required
to process the user service request. It has been compared
with four state-of-the-art approaches (SPEA2, COMCPM,
NSGA-II, and OMCPM) which are published recently. It is
noticed that the proposed approach has high-performance
rate than remaining approaches such as 41.2%, 55.56%,
59.89%, and 61.52% faster than SPEA2, COMCPM, NSGA-
II, and OMCPM, respectively.

Figure 6 illustrates profit, revenue, and cost of the
proposed system and SPEA2, COMCPM, NSGA-II, and
OMCPM approaches. ,e proposed system achieved
moderately high revenue by 10%, 8.1%, 8.9%, and 8.91% than
SPEA2, COMCPM, NSGA-II, and OMCPM approaches.
Subsequently, our approach achieves 2.31%, 2.01%, 1.7%,
and 1.37% high profit than four approaches, since our ap-
proach estimates the demand of service request and it an-
alyses the machine performance before assigning the load.
,e reason is that user service request (USR) is submitted to
the service provider, which runs on a multiserver system to
deliver the response for the received service requests. ,e
CSP assesses the machine data with our deep learning data
analytical model. It makes an accurate decision to enhance
the system performance by preserving service cost and to
enhance the revenue gain consolidating each machine
performance. ,e second reason is that the task is being
scheduled base on DAG theory which influences the energy
and resource of the system leads to enhance the revenue and
optimizes the service request cost.

Figure 7 shows the user service demand flexibility im-
pact. We can observe that the active cloud server (from 15 to
75) count and the processing speed m of active servers are
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high, but there is no impact on the service execution demand
rate. If the server count increases, then the user service
demand execution rate does not increase, and it is sometimes
stable to cope up the reliable quality of service with adequate
computing performance. If the USD is high, the server
system is frequently unable to meet the service demand
requirement synchronously. In such cases, if the customer
waits for a long time, then the USD rate becomes low due to
low service demand. Usually, the USD may remain constant
when the USDmarket is stable, which would not affect third-
party factors.

Figure 8 shows CSP profit outcomes. As we can observe,
the profit rate is drastically decreased when the active servers
are increased from 15 to 75.,e high server processing speed
m has no impact as we expected. ,e profit ratio is increased
due to the USD rate increment than the new active server
cost. ,e revenue enhancement and server size factors are
not impacting server cost, but USD will get diminished due
to the decrement of CSP profit. Consequently, the profit
returns stable when the USD becomes constant. Figure 9
shows the server processing speed comparative study. ,e
server processing speed is decreased when the server size

input: CPS: N � N1 + N2 + N3 + · · · + Nn 

output: user demand service
(1) Let initialize α≠ 0, β≠ 0, ηexpeci,k ≠ 0;
(2) Int u, define range [uk

l , uk
h], ηdema

i,x (uk
l )> 0, ηdema

i,x (uk
h)< 0;

(3) for each Ni ∈ N do
(4) Estimate ηdema

i,k � 0.25 × (α + β × ηexpeci,k ) − u;
(5) while (ηdema

i,x (uk
l ) − ηdema

i,x (uk
h))>R do

(6) ηdema
i,k (uk

m) � ((ηdema
i,k (uk

l ) − ηdema
i,k (uk

h))/2);
(7) if ηdema

i,x (uk
m)< 0 then

(8) Assign ηdema
i,x (uk

h)⟵ ηdema
i,x (uk

m);
(9) else
(10) Assign ηdema

i,x (uk
l )⟵ ηdema

i,x (uk
m);

(11) end
(12) Update ηdema

i,x (uk
l ) and ηdema

i,x (uk
m);

(13) Estimate ηdema
i,k (uk

m) � ((ηdema
i,k (uk

l ) − ηdema
i,k (uk

h))/2);
(14) end
(15) Confine it as potential value for next iteration ηdema

i,k (uk
m);

(16) Return user demand service value.
(17) end

ALGORITHM 1: MHUDS algorithm.

input: u, t, n,ϕre,ϕod,Δre,Δod

output: optimal price of service
(1) Let ϕopti � − ∞,Δopti � − ∞;
(2) ϕst⟵ least price, server usage<1;
(3) ϕen⟵ ϕod;
(4) for each Ni ∈ N do
(5) Estimate Δst and Δst using equations (30) and (13);
(6) if Δst × Δst > 0 then
(7) ϕopti � ϕst;
(8) Estimate Δopti using (13) and with Sexpec � φ − CSPcost � φ − nϕre;
(9) end
(10) while Δst × Δed > error do
(11) ϕmid � ((ϕst + ϕen)/2);
(12) Estimate Δmid using (13) and (31);
(13) if Δst × Δst > 0 then
(14) ϕst⟵ϕmid;
(15) else
(16) ϕen⟵ ϕmid;
(17) end
(18) end
(19) ϕopti � ((ϕst + ϕe d)/2);
(20) end

ALGORITHM 2: Optimal price estimation algorithm.
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increases; the computation size is fixed, which restricts the
execution of the services. ,e increased server count de-
mands to decrease the systems service execution speed.
Figure 10 illustrates the increased profit during server size,
and USD rates are increased. ,e high-computation-re-
quired USDs are led to enhance the CSP profit. We can
observe that the USD is moderate due to server size en-
hancement. We noticed that if active servers are less but the
server speed is high, the profit increases. If we maintain

input: (1) Host set: N � N1 + N2 + N3 + · · · + Nn ,
(2) Ex : execution time matrix of host
(3) C : cost weight matrix of host/VM

output: performance cost of server
(1) Let T � T1 + T2 + T3 + · · · + Tt 

(2) for each Ni ∈ N do
(3) Find minimum cost-effective host (6) and (13)
(4) Nj[i] � Nj + H[i, j]

(5) end
(6) Ttot � ∀Ti

Ti

(7) Update Nj[i], ⟵ SortHostCostQueue(φ, ϑ(t),ϖ(t))
(8) for each i to hm do
(9) λ�Cost(K, S, L) � 1≤i≤KC[S[i]] × TToT

(10) Ri � Cost(Nj) − λi

(11) end
(12) K′ � K − λi

(13) for each Ri ∈ Nn do
(14) λ++

i

(15) end
(16) Return performance cost of server

ALGORITHM 3: DAWM algorithm.

Table 1: Simulation parameters.

S. no. Notation Value
1. m0 1.5 BIPS
2. b 5
3. x 1.5 BI
4. c 20 units/BI
5. s 20 units/sec
6. Nc 9.5
7. p 5
8. Ωst 2Watts/sec
9. ξn

s (t) 0.1 unit/Watt× sec
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Figure 5: Average execution time of DAWM, SPEA2, COMCPM,
NSGA-II, and OMCPM.
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constant computing capacity, the server speed is impacted
by the increase of active server count, which causes a de-
crease in the profit. ,erefore, if the server size is peak and
speed remains constant, it saves the energy cost and impacts
CSP profit.

Figure 11 shows the comparative analyses of the server
size and profit by regulating the server speed and USD rate.
To assess the outcomes, we have used Table 1 listed pa-
rameters. If we increase the m value, then the active server
size gets low due to m value increment under USD certainty.
,e profit gets impact when the energy cost is high and
influences service execution speed to diminish CSP profit.

Table 2 shows the comparative study analysis concerning
all state-of-the-art approaches. ,e proposed system has
outstanding profit, such as a 35.5% average. Subsequently,
the profit is accomplished due to the data analysis model,
and also performance rate of our system remains increased
than existing approaches. ,e machine performance and
execution cost measurement estimations played an essential
role to gain adequate noticeable profit for CSP.

Table 3 illustrates our approach’s simulation outcomes
with the unit price 0.6$ and average execution time 0.6ms.
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Figure 7: User service demand analysis over server infrastructure
size with various service execution speeds.
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,e service price, service price-demand, maximum average
service arrival rate, error rate, and user cost are assessed with
average service execution time.

5. Conclusion

,e proposed approach has been designed based on a belief
propagation-influenced analytical data model to enhance
CSP profit through DAG-based task and resource sched-
uling policy. It optimizes the CDC asset usage rate by
consolidating overprovisioning machines. Cloud service
suppliers drive the data utility analytic method on machines
with low-resource usage rates to preserve CDC usage and

performance cost and avoid instant repudiations/
migrations.

It initially recognizes feasible servers after the first it-
eration by concocting the data analytic weight measurement
(DAWM) model. ,e DAWM model optimizes the cloud
service provider’s average cost by 51% due to considering
eachmachine’s cost and revenue during an effective resource
slicing process. ,e multiobjective heuristic user service
demand (MHUSD) algorithm accomplished average server
performance by 41% and average CSP revenue gain by 35%
due to CPS profit estimation model and the user service
demand (USD) model with dynamic acyclic graph (DAG)
phenomena by providing adequate service reliability. It
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Figure 11: Profit analysis over server infrastructure size with various user service demands (ηdema
i,k ).

Table 2: Profit comparative analysis based on server size and server speed.

Server size
DAWM SPEA2 COMCPM NSGA-II OMCPM

SS Profit SS Profit SS Profit SS Profit SS Profit
m2.6xlarge 4.5 590 3.9 520 3.5 480 3 440 2.8 530
m2.2xlarge 3.5 510 3.3 480 2.9 415 2.2 395 2.1 490
m1.2xmedi 2 440 2.2 315 2.5 335 1.8 360 1.9 450
m1.xsmall 1.5 370 1.9 255 1.75 290 1.7 300 1.5 320
Note: SS, server speed.

Table 3: Simulation outcome with the unit price 0.6$ and average execution time 0.6ms.

umax nopti ϕopti Δopti User cost (%) Error (%)

50 110 7.59 251.32 48.912 2.15
60 118 7.21 310.68 48.245 1.91
70 125 7.84 372.98 48.329 1.88
80 167 7.99 415.25 49.786 1.52
90 182 7.23 490.89 49.791 1.49
100 195 7.51 525.15 51.012 1.32
110 229 7.58 590.69 40.452 1.31
120 250 7.32 610.15 45.697 1.28

14 Security and Communication Networks



considers service demand weight, service tenant cost, and
machine energy cost. Subsequently, the MHUSD algorithm
also considers maximum baring wait-time of end-user to
maximize CSP revenue and optimize operational energy
cost. Google cloud tracer confines the optimized average
system profit by 590$, and service execution speed is 4.5 sec/
MIPS with the m2.6X large core system. ,e simulation
results show that our system has an average service exe-
cution speed faster than the remaining approaches, such as
41.2%, 55.56%, 59.89%, and 61.52% faster than SPEA2,
COMCPM, NSGA-II, and OMCPM, respectively. Subse-
quently, the proposed system achieved moderately high
revenue by 10%, 8.1%, 8.9%, and 8.91% than SPEA2,
COMCPM, NSGA-II, and OMCPM approaches and profit
by 2.31%, 2.01%, 1.7%, and 1.37% than the state-of-the-art
approaches.
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