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Abstract 
 
Fitting an FFM via NLS in practice assumes that a unique optimal solution exists and can be found by 
the algorithm applied. However, this idealistic scenario may not hold for two reasons: 1) the absolute 
minimum may not be unique; and 2) local minima, saddle points, and/or plateau features may exist that 
cause problems for certain algorithms. If there exist different parameter sets in the domain that share 
the same global minimum under standard NLS, then there is a situation where parameters aren’t 
uniquely identified without additional constraints or regularisation terms. However, more likely is that 
problems with the typical FFM fitting process will stem from the existence of local minima, saddles, or 
plateau features that cause the algorithm to converge to a solution not equal to the global minimum. 
Local optima can provoke sensitivities in the fitting process for first and second-order algorithms that 
are by definition local optimisers. This manifests as sensitivity to initial parameter estimates (i.e., the 
starting point the algorithm initialises the search from). The extent of starting point sensitivity is largely 
unknown in the context of FFMs for common algorithms adopted and has not been studied directly. 
Given this concern, research reporting a single model solution derived from ‘one shot’ minimisation of 
NLS via typical first and second-order algorithms is fundamentally limited by possible uncertainty as to 
the suitability of fitted estimates as global minimisers. Therefore, the primary aim of this study was to 
investigate the sensitivity of a classical first-order search algorithm to selection of initial estimates when 
fitting a fitness-fatigue model (FFM) via nonlinear least-squares (NLS), and to subsequently assess the 
existence of local optima. A secondary aim of this study was to examine the implications of any findings 
in relation to previous research and provide considerations for future experimentation. The aims of the 
study were addressed through a computer experiment (in silico) approach that adopted a deterministic 
assumption the FFM completely specified athlete response. Under this assumption, two FFMs 
(standard, and fitness-delay) were simulated under a set of hypothetical model inputs and manually 
selected ‘true’ parameter values (for each FFM), generating a set of synthetic performance data. The 
two FFMs were refitted to the synthetic performance data without noise (and under the same model 
inputs) by the quasi-Newton L-BFGS-B algorithm in a repetitive fashion initiated from multiple starting 
points in the parameter space, attempting to at each search recover the true parameter values. 
Estimates obtained from this process were then further transformed into prediction errors quantifying 
in-sample model fit across the iterations and non-true solutions. Within the standard model scenarios, 
69.1-70.3% of solutions found were the true parameters. In contrast, within the fitness-delay model 
scenarios, 17.6-17.9% of solutions found were the true parameters. A large number of unique non-true 
solutions were found for both the standard model (N=275-353) and the fitness-delay model (N=383-
550) in this idealistic environment. Many of the non-true extrema found by the algorithm were local 
minima or saddles. Strong in-sample model fit was also observed across non-true solutions for both 
models. Collectively, these results indicate the typical NLS approach to fitting FFMs is harder for a hill-
climbing algorithm to solve than previously recognised in the literature, particularly for models of higher 
complexity. The findings of this study add weight to the hypothesis that there exists substantial doubt 
in reported estimates across prior literature where local optimisers have been used or models more 
complex than the standard FFM applied, particularly when optimisation procedures reported have 
lacked the relevant detail to indicate that these issues have been considered. Future research should 
consider the use of global optimisation algorithms, hybrid approaches, or different perspectives (e.g., 
Bayesian optimisation). 
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1 Introduction 
 
The standard FFM emerges from a linear system of first-order ordinary differential equations (Banister 
et al., 1975). When solved, this ODE system yields a nonlinear function in the unknown model 
parameters (Busso et al., 1990; Clarke & Skiba, 2013; Morton et al., 1990). Other FFMs arise from 
similar ODE systems, although some involve non-linear system dynamics (Turner et al., 2017), higher 
derivatives (Calvert et al., 1976) (see appendix A), and recursion (Matabuena & Rodríguez-López, 
2016, 2019). Therefore, fitting an FFM constitutes a nonlinear optimisation problem in its model 
parameters. FFMs dependent on time-invariant parameters (Banister et al., 1975), or in special cases 
time-varying parameters (Busso et al., 1997; Kolossa et al., 2017) that cannot be inferred from 
observation and must instead be estimated from quantified training load and measured performance 
data (Stephens Hemingway et al., 2021). The fitting process takes as input a time-series of measured 
performances (denoted 𝑝) and training load values (denoted 𝜔) and provides as output model 
parameter estimates (𝜃 ∈ ℝ!) that give good or preferably the best possible agreement between 
iteratively computed model values (denoted �̂�) and measured data (𝑝). Essentially, to fit an FFM, a 
researcher or practitioner requires a series of suitable training load and performance measurement 
data, and a method to alter the parameters to best match these through an optimisation perspective.  
 
The most common optimisation approach for fitting FFMs has been NLS (eq. 1) (Clarke & Skiba, 2013; 
Connor & O’Neill, 2020; Hellard et al., 2006; Pfeiffer, 2008; Proshin & Solodyannikov, 2018), or a 
maximum likelihood perspective (Busso, 2017; Scarf et al., 2019). Least-squares and maximum 
likelihood estimation coincide under the assumption of independent and identically distributed Gaussian 
model errors. Of the two, NLS has represented the most accessible approach across prior research 
and involves minimising the sum of squared deviations (also called errors) between modelled and 
measured performance (eq. 1) (a twice differentiable function) using some iterative algorithm. 

min-(�̂�" − 𝑝")#
$

"%&

	 (1) 

Where in (eq. 1) 𝑖 is an index over a set of 𝑚 of data points {(𝑝&, �̂�&), (𝑝#, �̂�#), … , (𝑝$, �̂�$)} that represent 
measured (𝑝) and modelled (�̂�) criterion performance values at specific integer time points 𝑡" ∈ ℕ. The 
term �̂�" is determined by the FFM function 𝑓;𝑡" , 𝜃, <𝜔&, … , 𝜔'!=> that not only depends on the time-step 

input (i.e., Δ' = 1) up to time 𝑡" (i.e. training load series) <𝜔&, 𝜔#, … , 𝜔'!= but also on 𝑛 model parameters 
(𝜃) with 𝑚 ≥ 𝑛. For example, with the standard FFM (eq. 2) the parameters 𝜃 comprise the set 
{𝑝∗, 𝑘), 𝜏), 𝑘*, 𝜏*}, where 𝑝∗ is an additive term representing baseline performance, 𝜏), 𝜏* are the decay 
time constants on fitness and fatigue, respectively, and 𝑘), 𝑘* are the associated scaling factors. NLS 
regression problems are typically solved using general minimisation methods, where the algorithm 
evaluates the cost function (eq. 1) and uses specific update and stopping criteria to travel the available 
parameter space to search for the best possible set (i.e., the absolute minimum of the function). 
 
Fitting an FFM via NLS in practice assumes that a unique optimal solution exists and can be found by 
the algorithm applied. However, this idealistic scenario may not hold for two reasons: 1) the absolute 
minimum may not be unique; and 2) local minima, saddle points, and/or plateau features may exist that 
cause problems for certain algorithms. The FFM in basic form is a model in five dimensions (Banister 
et al., 1975), or six if a delay on fitness is also included (Calvert et al., 1976). Therefore, the parameter 
surface cannot be plotted or visually inspected via standard techniques to assess convexity. If there 
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exist different parameter sets in the domain that share the same global minimum under standard NLS, 
then there is a situation where parameters aren’t uniquely identified without additional constraints or 
regularisation terms. However, more likely is that problems with the typical FFM fitting process will stem 
from the existence of local minima, saddles, or plateau features that cause the algorithm to converge 
to a solution not equal to the global minimum, or become lost (Philippe et al., 2018). Local optima can 
provoke sensitivities in the fitting process for first and second-order algorithms that are by definition 
local optimisers. This manifests as sensitivity to initial parameter estimates (i.e., the starting point the 
algorithm initialises the search from). The extent of starting point sensitivity is largely unknown in the 
context of FFMs for common algorithms adopted and has not been studied directly. Given this concern, 
research reporting a single model solution derived from ‘one shot’ minimisation of NLS via typical first 
and second-order algorithms is fundamentally limited by possible uncertainty as to the suitability of fitted 
estimates as global minimisers. Therefore, the primary aim of the experiment was to study the sensitivity 
of a quasi-Newton algorithm to selection of initial estimates, and the existence of local optima, when 
fitting an FFM under an NLS perspective. A secondary aim was to examine the implications of any 
findings in relation to previous research as well as considerations for future investigations. The aims of 
the experiment were addressed through an in silico (computer experiment) approach that adopted a 
deterministic assumption that the FFM completely specified athlete response. Under this assumption, 
two FFMs (standard, and fitness-delay model) were simulated under a set of hypothetical model inputs 
and manually selected parameter values (for each model), generating in the process a set of synthetic 
performance data. The parameter values represented true values for the model under the deterministic 
assumption, associated with the synthetic performance data. The two FFMs were refitted to the 
synthetic performance data without any noise by a quasi-Newton algorithm, under the same training 
load inputs, in a repetitive fashion starting from multiple points in the parameter space. This allowed 
starting point sensitivity of the algorithm to be assessed under best case conditions (no noise), and 
identification of the presence of local optima in the search space. 
 

2 Materials and methods 

2.1 Experimental approach to the problem 

An in silico approach was developed, employing a first-order search algorithm (with second-order 
approximation) to fit two FFMs (eq’s. 2, 3) from multiple starting values to associated synthetic 
performance data, in an iterative fashion. The performance data (a set of) was generated for each 
model under pre-defined true parameters and training loads (model inputs) via model simulation. At 
each iteration in the experiment, the algorithm was initialised from a different starting point (selected 
sequentially from a large grid of pre-determined values) and the appropriate model fit to the associated 
performance data via successive minimisation of the NLS objective function (eq. 1). The goal of the 
optimisation algorithm at each iteration was to try and recover the true parameters (global minimum) in 
the case where no additional noise exists. A scenario was defined as the combination of the model 
involved, and the proportion of simulated data used in the fitting process, with this latter factor described 
shortly. The total number of iterations in each scenario was equal to the total number of starting sets in 
the grid, which was therefore also equivalent to the total number of fitted estimates obtained. The 
synthetic model input values (i.e., daily training loads) used in the experiment were manually 
constructed to exhibit a realistic distribution (with regard to pattern, shape, and relative magnitude). 
Additionally, the true parameter values were selected such that the simulated performance values 
represented realistic performance change and variation over time. 
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Although the assumption of a completely deterministic model of athlete response is unrealistic due to 
simplification by design within the modelling process, this experimental approach is believed to be 
reasonable in a research context to enable lower-bound study of the fitting process in a manner not 
possible with real data. Furthermore, the simulated performance data were not unreasonable with 
regard to change in the performance profile, and true parameters (such as the decay constants) were 
chosen as to be interpretable with regard to model dynamics (Stephens Hemingway et al., 2021). In the 
real world, fitting FFMs involves non-zero (possibly large) residual solutions that make it impossible to 
be sure that the fitted estimates represent a unique global minimum. In contrast, the approach 
developed in this experiment allows the convergence to the true parameters representing a global 
minimum to be reliably assessed for different initial estimates (starting values) used by the algorithm, 
and when fitting to different proportions of the data (i.e., a lower measurement frequency). In the 
experiment, this second factor in each scenario (proportion of fitting data used) was contextually 
referred to as the measurement frequency based on its correspondence with the availability of data in 
practice. A reduction in measurement frequency was reflected by repeating the process described 
above for each model whilst fitting to a reduced subset of the simulated data. Three frequencies were 
studied: 1) Every day (ED) equivalent to 100% of the data; 2) Every 2 days (E2D) equivalent to 
approximately 50% of the data; and 3) Every 3 days (E3D) equivalent to approximately 33% of the data. 
At the heart of the research is to determine whether the fitting algorithm adopted is suitable for use in 
practice based on its ability (or lack of) to consistently recover the true parameters regardless of starting 
point or a decrease in volume of data supplied (given that no additional noise is incorporated). A 
flowchart detailing the computational process is presented in Figure 1, and the algorithm for the 
experimental flow stated in Appendix A, part A-1. 
 
The standard model (Banister et al., 1975) 

�̂�(𝑡) = 𝑝∗ + 𝑘)-𝜔"

'+&

"%&

⋅ 𝑒
+('+")
."#

HIIIIJIIIIK
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"%&

⋅ 𝑒
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(2) 

The fitness-delay model (Calvert et al., 1976) 
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Where for both models, 𝑔(0) = ℎ(0) = 𝜔7 = 0. 
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Figure 1: Flowchart describing the experimental approach to the problem (for both models) 

2.2 Development of the synthetic model inputs (training loads) 

The series of model input (training loads) used in the experiment were constructed based on concepts 
of daily variation and a subtle wave-like profile (Baker, 1998). Pre-simulation scaling of the load series 
was set to a maximum of 5% of the true baseline performance (additive term 𝑝∗), to avoid excessively 
small values of the scaling parameters (𝑘), 𝑘*), but the values were otherwise arbitrary. Primary 
emphasis was placed on the shape of the distribution (Baker, 1998) and reasonable relative differences 
in magnitude (i.e., between session), rather than absolute scale.  Figure 2 provides a visual plot of the 
training loads developed over a 150-day time-series. 
 
 

 
Figure 2: Hypothetical training load values for the experiment with realistic variation and wave-like 
profile 
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2.3 Simulated performance data 

As described, the set of simulated daily performance data for each model were developed by first 
selecting a set of ‘true parameters’ associated with each model (Table 1) that produced a realistic profile 
with regard to magnitude and shape of performance change under the training load series. To assess 
magnitude, improvement in the maximum bench press (kg) for a moderately trained athlete over a 150-
day period was used as a guide. Although the introduction of context is useful, it is also recognised that 
is it not necessary here and that these values could be left undefined without affecting validity of the 
experiment. The data used to fit (train) the model were developed by isolating a proportion of the model-
generated performance values according to the measurement frequency condition in the scenario. In 
contrast to the experiment in Stephens Hemingway et al. (2019), no noise was introduced to the training 
data as this would disrupt the presence and purpose of establishing a known global minimum. The total 
proportion of values isolated from the simulated data and used to fit the model was defined by three 
measurement frequency conditions described previously (ED, E2D, E3D) and reflected by subsets of 
100%, ~50% and ~33% respectively. Figure 3 shows the set of simulated performance data for each 
model, and figure 4 illustrates the underlying component profile. 

 
Figure 3: Simulated performance data generated for each model: Standard model (left) and fitness-
delay model (right) 

 
Figure 4: Simulated model component states: standard model (left) and fitness-delay model (right); 
fitness component (green), fatigue component (red), training load (grey) 
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Table 1: True parameters used in the experimental (simulated data) for each model 

 𝑝∗ 𝑘) 𝑘* 𝜏* 𝜏)# 𝜏)% 

Standard model 100 0.72 1.2 8.6 28.5 - 

Fitness-delay model 100 0.72 1.05 8.6 32.5 4.3 

2.4 Computation framework 

A total of 6 scenarios were investigated comprising conditions of two factors (model [2] × measurement 
frequency [3]), and the following process was employed for each: 1) reasonable bounds on the 
parameter space were established on each parameter (see Table 2, equivalent across scenarios); 2) 
between the bounds, a discrete grid of feasible parameter combinations was constructed, with equally 
spaced step changes in each parameter (See Figure 5); 3) the value of each parameter set in the 
discrete grid was evaluated via the objective function (eq. 1) representing the ‘fitness’ (cost) of each 
starting point prior to fitting; 4) in an iterative and parallelised model fitting process, each parameter set 
in the grid was applied as the starting point of the quasi-Newton algorithm; that takes as input the 
training load series and simulated criterion performance values (fitting data, see section 2.3), and 
returns as output a set of fitted parameter estimates via minimisation of NLS; 5) fitted parameter 
estimates were combined with the training load series to generate fitted model predictions (project 
performance) and these were transformed into in-sample goodness-of-fit statistics: the root mean 
percentage error (RMSE), and mean absolute percentage error (MAPE). 
 
Bounds on the parameter space were imposed in the form of box-constraints and these were chosen 
to not be too tight nor to close to the true parameters, but also not too large as to be physiologically 
non-interpretable (in particular for decay constants and additive term) or more than five times the 
magnitude of the difference between the performance values and the training load values (for scaling 
factors). For the scenarios comprising the standard model (eq. 2), each grid of starting values comprised 
a total of 105 parameter sets, and for the fitness-delay model scenarios (eq. 3) each grid comprised a 
total of 76 sets. A slightly larger size of grid for the fitness-delay model allowed for a reasonable step-
size between changes in parameter values over the bounds to be maintained. A toy example of this 
method used to construct the grid is illustrated in Figure 5. 

Table 2: Bounds on the parameter space and starting grid for each model 

 Standard model (eq. 2) Fitness-delay model (eq. 3) 

Parameter Lower Bound Upper Bound Lower Bound Upper Bound 

𝒑∗ 60 140 60 140 

𝒌𝒈 0.01 5 0.01 5 

𝒌𝒉 0.01 5 0.01 5 

𝝉𝒉 1 50 1 50 

𝝉𝒈𝟏 1 50 1 50 

𝝉𝒈𝟐 - - 1 50 
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Figure 5: An illustration of the method used to construct the grids (generalised example) 

2.5 The quasi-Newton algorithm 

Most iterative algorithms to find minimisers of smooth NLS problems require computation and storage 
of first or second-order derivatives of the objective function (Mohammad & Waziri, 2019). For example, 
Newton-type methods require the exact Hessian, Gauss-Newton (GN) and Levenberg-Marquardt (LM) 
methods make use of the first-derivative information and ignore the second-order part of the Hessian, 
and quasi-Newton (QN) methods approximate the Hessian rather than having to iteratively compute 
and store it at each step (Mohammad & Waziri, 2019). However, each of these methods have 
associated limitations. For example, the exact second-order derivatives of the objective function are not 
normally available at a reasonable cost, and the analytic expression is often intractable for non-linear 
problems (Dennis Jr & Schnabel, 1996; Sun & Yuan, 2006). Thus, exact Newton-type methods that use 
on the exact Hessian (reflecting a description of the curvature of the function) are not typically suitable. 
GN and LM methods are expected to perform well with zero-residual problems, however when solving 
large-residual problems these methods can perform poorly and may not be suitable (Dennis Jr & 
Schnabel, 1996; Mohammad & Waziri, 2019). Quasi-Newton methods are a class of methods similar 
to the full Newton method but instead these approximate the Hessian, with approximations generally 
improving at each step. Quasi-Newton methods are typically computationally cheap, for example the 
Broydon-Fletcher-Goldfarb-Shannon (BFGS) algorithm (Byrd et al., 1995) requires 𝒪(𝑛#) operations 
per iteration, compared to the full Newton method that requires 𝒪(𝑛;) (Henao, 2014). Quasi-Newton 
methods have represented a popular choice for NLS optimisation in data fitting problems and are often 
available across a multiple of programming languages and mathematical suites (e.g., Mathematica, 
MATLAB, GNU Octave, R, SciPy). In particular, the BFGS algorithm is a standard tool for the 
optimisation of smooth functions (Wright & Nocedal, 1999) and includes an exact or inexact line search 
method to determine step size (Henao, 2014). The algorithm used in this experiment to solve the least-
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squares problem at each iteration was an implementation of the limited memory modification of the 
BFGS method (L-BFGS) in R, with the inclusion of a further modification to incorporate box constraints 
(L-BFGS-B). The limited memory modification variant of the BFGS method uses less computer memory 
to update the approximation to the inverse of the Hessian, by only storing a record of the last 𝑚 iterations 
rather than an 𝑛 × 𝑛 matrix where 𝑚 is a small number and 𝑛 is the number of parameters (Henao, 
2014). As such, L-BFGS only requires 𝒪(𝑚𝑛) operations per iteration so is well suited to problems 
where the number of free parameters 𝑛 is large. The inclusion of bounding however increases the cost 
of the line search slightly due to extra necessary steps to ensure the algorithm remains in the defined 
box with each step (Henao, 2014). The algorithm is available as part of the optim function included as 
part of the stats library included in the standard R environment (R Core Team, 2020). Analytic gradients 
were not supplied to the function, for reasons described above, and therefore the algorithm attempts to 
approximate the gradient using finite differencing, and this increases the possibility that in some 
instances abnormal (unsuccessful) termination in the line search may occur. Algorithm convergence is 
reported by the optim function as part of the convergence code and message returned following the 
search (Henao, 2014). Although supplying precise analytic gradient functions may improve the success 
of the algorithm, this is a challenging to intractable task and unrealistic approach for a sport science 
researcher when fitting FFMs Readers are referred to the works of Henao (2014) and Wright and 
Nocedal (1999) for more in-depth analysis of the behaviour of this algorithm. The parallelised searches 
were run on an 8-Core Intel® Xeon® Gold 6230 CPU @ 2.10GHz, with 8.0GB available RAM (80% 
average usage). Note, successful termination (convergence) refers to achieving an iterative reduction 
of the objective function that is within a factor (1e7) of the machine tolerance (2.2e-16), giving an 
approximate tolerance of 2e-9. 

2.6 Analyses 

Given that the procedure was evaluated on a large deterministic grid, it is sufficient to treat the results 
as a “complete population” given that no stochastic element was introduced and therefore there is no 
intention to perform inference about a superpopulation. Findings were best communicated by 
descriptive statistics and visualisations to summarise spread, shape, and centrality of fitted parameter 
estimates, prediction errors, and the rate of convergence to the true parameters (and other local optima) 
in each scenario. Local optima were appraised based on the definiteness of the Hessian matrix. For 
solutions where the associated Hessian was positive semi-definite and objective value (RSS) not 
equivalent to the known global extremum (i.e., 0 at the true parameters), the critical point was indicated 
to be a local minimum. Similarly, if the Hessian at a given solution was indefinite this indicated the point 
was a saddle. Appendix A provides further distributional summary tables of solutions at a resolution of 
each parameter.  

Experimental code and analysis files can be found at: github.com/bsh2/experiments/qNewtonNLS 
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3 Results 

3.1 Parameter estimates (convergence) 

Within each scenario (i.e., model [standard, fitness-delay] × proportion of data [100%, ~50%, ~33%]), 
the L-BFGS-B algorithm terminated successfully during 99.71-99.97% of the iterations. The estimates 
from searches that terminated successfully are referred to as “solutions”, although this term does not 
imply whether the estimates reached the true parameters. For all models, a reduction in the amount of 
data did not appear to influence the number of solutions that reached the true parameters (i.e., the 
number of fitting iterations that recovered the true global minimum). Within the standard model 
scenarios, 69.1-70.3% of solutions found were the true parameters. In contrast, within the fitness-delay 
model scenarios, 17.6-17.9% of solutions found were the true parameters. Within the standard model 
scenarios, the remaining non-true solutions resolved to other critical points including saddles (27.6-
28.8%) and a small number of local minima (2-2.1%). Within the fitness-delay model scenarios, the 
remaining non-true solutions resolved to predominantly local minima (76.1-78.3%) and a small number 
of saddle points (4.0-5.9%). Table 3 provides comparison between the scenarios with respect to the 
results outlined so far. The parameter distributions of the solutions that did not find the true parameters 
were similar between the three standard model scenarios (i.e., 100%, 50%, 33% of fitting data) (see 
Figure 6). This was also the case for the fitness-delay model scenarios (figure 6). Tables of summary 
statistics describing the fitted parameter estimate distributions are provided in Appendix A parts A-2 
and A-3. Tables of the highest frequency (non-true) solutions found for each scenario (model × data 
proportion) are given in Appendix A parts A-4 and A-5. 

Table 3: Convergence rates of the solutions found by the L-BFGS-B algorithm (to critical points in the 
parameter space) 

Scenario Totals Convergence rates (Critical points) 

Model Data 
(%) 

Data 
points 

Iterations 
(total 
sets) 

Successful 
termination 

Abnormal 
termination 

True 
parameters 

Other 
local 

minima 
Saddle 
points 

Standard 100 % 147 105 99967 
(99.97%) 

33 
(0.03%) 

69204 
(69.2%) 

2047 
(2.1%) 

28716 
(28.7%) 

Standard 50 % 74 105 99968 
(99.97%) 

32 
(0.03%) 

69145 
(69.1%) 

1995 
(2.0%) 

28828 
(28.8%) 

Standard 33 % 49 105 99960 
(99.96%) 

40 
(0.04%) 

70284 
(70.3%) 

2056 
(2.1%) 

27620 
(27.6%) 

Fitness-
delay 100 % 147 76 117305 

(99.71%) 
344 

(0.29%) 
20588 

(17.6%) 
91909 

(78.1%) 
4808 

(4.1%) 

Fitness-
delay 50 % 74 76 117492 

(99.87%) 
157 

(0.13%) 
20651 

(17.6%) 
92127 

(78.3%) 
4714 

(4.0%) 

Fitness-
delay 33 % 49 76 117551 

(99.92%) 
98 

(0.08%) 
21065 

(17.9%) 
89518 

(76.1%) 
6968 

(5.9%) 
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Figure 6: Parameter estimate distributions from the solutions that did not reach the true values (i.e., 
global minimum), for the standard and fitness-delay models. The red line indicates the true value. 
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Figure 7: Objective function values (RSS) associated with solutions that did not reach the true values 
(i.e., global minimum), for the standard and fitness-delay models (A). The (B) plots offer a ‘zoomed in’ 
picture of the distribution following removal of large values (outliers, RSS < 500). 

3.2 Prediction errors (model fit) 

In-sample median model fit across solutions that did not reach the true parameters were similar and 
strong in all scenarios and metrics including root-mean-squared error (RMSE) and mean average 
percentage error (MAPE). For example, RMSE(median) for the standard FFM ranged from 0.24-0.28 and 
RMSE(median) for the fitness-delay model was 0.03-0.06 across all proportions of fitting data. Median 
absolute deviation RMSE(m.a.d) was ~0 for the standard  model and 0.01- 0.03 for the fitness-delay model 
searches. Although there were a small number of solutions in each scenario that resolved to poor model 
fit (i.e., RMSE = 5.27 and correspondingly high RSS values) (seen visually as the outliers in the fitted 
model traces plotted in Figure 8 and 10). Figures 8 and 10 also illustrate visually that the range of daily 
prediction errors (performance profiles) across fitted parameter sets that did not reach the true 
parameter values was low, and figures 9 and 11 provide the associated distributional plots for the errors. 
In each scenario, parameter sets returned by the algorithm from searches that resulted in abnormal 
termination also resolved to good model fit (RMSE = 0.01 - 1.77, MAPE = 0.01 - 1.30%, across all 
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scenarios for both models) (Table 4) despite differences in the parameter values in these sets relative 
to the global minimum point (Tables A-2, A-3, appendix A). 

Table 4: Model fit (in-sample) summary statistics for the fitted solutions 

m.a.d : median absolute deviation 
 

 

 

  Descriptive 
statistic 

Standard model Fitness-delay model 
Data Converged RMSE MAPE RMSE MAPE 

100% Non-true 
solutions 

minimum 0.28 0.21 0.01 0.01 

maximum 4.53 3.18 5.46 3.87 

median 0.28 0.22 0.03 0.02 

m.a.d 0.00 0.00 0.02 0.02 

100% Abnormal 
termination 

minimum 0.28 0.22 0.01 0.01 

maximum 0.28 0.22 0.06 0.05 

median 0.28 0.22 0.06 0.04 

m.a.d 0.00 0.00 0.01 0.01 

50% Non-true 
solutions 

minimum 0.28 0.21 0.00 0.00 

maximum 5.27 3.98 5.46 3.87 

median 0.28 0.21 0.03 0.02 

m.a.d 0.00 0.00 0.03 0.02 

50% Abnormal 
termination 

minimum 0.28 0.21 0.01 0.01 

maximum 0.28 0.21 0.71 0.54 

median 0.28 0.21 0.05 0.04 

m.a.d 0.00 0.00 0.02 0.02 

33% Non-true 
solutions 

minimum 0.24 0.19 0.01 0.01 

maximum 5.29 4.06 5.56 3.94 

median 0.24 0.19 0.03 0.02 

m.a.d 0.00 0.00 0.03 0.02 

33% Abnormal 
termination 

minimum 0.24 0.19 0.01 0.01 

maximum 1.77 1.30 0.07 0.05 

median 0.24 0.19 0.06 0.04 

m.a.d 0.00 0.00 0.01 0.01 
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Figure 8: Fitted model predictions (in-sample) reflecting the range of performance profiles generated 
by the non-true solutions – Standard model scenarios (green) 

 
Standard Model 

Figure 9: Comparison of in-sample goodness-of-fit (RMSE, MAPE) for non-true solutions, obtained 
for the standard model searches across the three proportions of fitting data 

100% Data 50% Data 33% Data

1
2

3
4

5

RMSE

100% Data 50% Data 33% Data

1
2

3
4

MAPE



DOI: 10.31236/osf.io/dx7gm  SportR𝜒iv Preprint V.1.2  

Stephens Hemingway, Swinton, Ogorek (2021)  Last updated: 20/04/21 

16 

 
Figure 9: Fitted model predictions (in-sample) reflecting the range of performance profiles generated 
by the non-true solutions – Fitness-delay model scenarios (blue) 

 
Fitness-delay model 

Figure 5.11: Comparison of in-sample goodness-of-fit (RMSE, MAPE) for non-true solutions, 
obtained for the fitness-delay model searches across the three proportions of fitting data trialled. 
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3.3 Runtime 

There were large differences in the fitting time between the two models, and within each model when 
fitting to additional data. An increase in data for both models (%) resulted in an approximately directly 
proportional increase (%) in fitting time per search. The fitness-delay model was also substantially 
slower to fit per search (approximately 2.8-2.96 times slower) in comparison to the standard model, 
likely due to the presence of the additional free parameter. These results are summarised in table 5. 

 
Table 5: Fitting runtime across all scenarios for L-BFGS-B algorithm 

Model Data points Iterations (N) Runtime (Total) Mean runtime (per search) 
Standard 100% (N=147) 100,000 74 Hours 2.7 Seconds 
Standard 50% (N=74) 100,000 38 Hours 1.4 Seconds 

Standard 33% (N=49) 100,000 28 Hours 1.0 Seconds 

Calvert 100% (N=147) 117,649 263 Hours 8.0 Seconds 

Calvert 50% (N=74) 117,649 133 Hours 4.1 Seconds 

Calvert 33% (N=49) 117,649 90 Hours 2.8 Seconds 
 Runtime (total) given to the approximate hour 

4 Discussion 
 
This study investigated the typical model fitting process for two common fitness-fatigue models under 
a well-known quasi-Newton algorithm (BFGS), with limited memory modification and bounding (L-
BFGS-B). To enable direct study of the effectiveness of the optimisation algorithm, each model was 
assumed to fully specify the training response and simulated under pre-selected true parameters and 
synthetic load inputs to derive performance data without additional error. It was argued that for this 
common algorithm to be robust for FFM fitting problems, it should as a basic capability be able to find 
the true minimum (zero residual) known (only) to exist in this simulation framework. It was known prior 
to the study that the convexity of the objective function over its domain would influence the effectiveness 
of a local optimisation algorithm such as BFGS, but the implications of local optima had previously never 
been recognised in prior work and ignored as a possible issue with reported solutions. 
 
When initiated from a wide array of initial points spanning the parameter space in a uniform fashion, the 
L-BFGS-B algorithm was successful at finding the true solution in approximately 69-70% of the 
searches in each of the standard model scenarios but was only successful in between 15-18% of 
searches in the fitness-delay model scenarios (Table 5.3). These results demonstrate concerns with 
the algorithms ability to obtain suitable fitted estimates for both models even under the idealistic 
condition of no model error. These concerns were further exacerbated for the fitness-delay model, 
where the optimiser was only able to find the true values in less than 18% of the searches, with a high 
frequency of local optima across the search space demonstrated. It is likely that a substantial reduction 
in the rate of successful convergence to the true solution in this experiment in the fitness-delay model 
scenarios is due to the added complexity in the search space as a result of the additional fitness 
parameter (𝜏)%) and its relationships with other parameters in the model creating a higher incidence of 
local optima. There were no discernible patterns in the distribution of initial estimates with respect to 
starting error (RSS) for the standard (appendix A-3, figure A-3.1, 3.2) and fitness-delay model scenarios 
(appendix A-4, figure A-4.1, 4.2). 
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Collectively, these results indicate that the typical NLS fitting approach is a harder optimisation problem 
for a typical Hill-climbing algorithm to solve than previously recognised in the literature, and in particular 
when fitting the fitness-delay model. However, these results would benefit from further confirmatory 
experimentation under different input distributions to determine average rates across varying inputs, 
and alternative standard algorithms (first and second-order methods). It is likely however, that more 
advanced global optimisation algorithms such as differential evolution, and genetic algorithms, may be 
required to adequately solve the NLS data fitting problem within fitness-fatigue modelling. 
 
A reduction in the amount of data used to fit the models did not appear to affect the algorithms 
convergence rates to the true solution in this experiment, or the distributions of the non-true solutions 
(parameter values) and associated model fit (Table 5, Figure 6). As would be expected, a reduction in 
fitting data did improve fitting time. In isolation, this reduction in fitting time is of little practical interest, 
as fitting an individual model to data via the method used in this experiment is relatively short (i.e., 
seconds), and researchers would always be expected to maximise available data even at the expense 
of runtime. However, fitting time may become important when incorporating robust observational or 
tuning-based cross-validation approaches to evaluate model validity, and/or when using complex 
optimisation algorithms (e.g., genetic algorithms). In these instances, researchers are advised to 
allocate reasonable compute resources and sufficient time to the fitting process and consider the use 
of parallelisation. 
 
Many unique (non-true) solutions (to 1.d.p {𝑝∗, 𝜏), 𝜏*} and 2.d.p {𝑘), 𝑘*}) were found in each of the 
scenarios involving the standard model (range = 275-353 per scenario) (Appendix A-4). The set of 
unique solutions collectively spanned most of the search space in all parameters, and the most were 
saddle points. The frequency of each unique solution was highly variable (for example, a given unique 
solution appeared between 1 and 25838 times in one standard model scenario). Appendix D-3 
demonstrates the top 10 most frequent solutions across each standard model scenario, and 
supplementary file 1 (SF-1)1 contains the entire set of unique solutions for the standard model and 
fitness-delay model scenarios. In contrast to the standard model scenarios, most of the unique solutions 
found in the fitness-delay model scenarios (range = 383-550 per scenario) (Appendix A-5) were local 
minima, rather than saddle points. The frequency at which a given unique solution appeared also 
demonstrated high variation (for example between 1 and 39401 times in one fitness-delay model 
scenario). Collectively, these results demonstrate that there appear to be many points in the search 
space at which the algorithm can become stuck, but also that local solutions can be found across the 
search space.  
 
The implications of these results on prior and future research are that unless efforts were (or are) made 
to improve the likelihood that a solution found is the absolute minimiser of the NLS problem, then 
subsequent results relating to prediction accuracy under solutions carried forward may not be 
interpretable or robust generalisations of model error. Although, quite obviously, there is never a known 
comparator solution (as is the case in a simulation approach) within real world experiments due to 
model misspecification and noise, an appropriate recommendation arising from the results of this 
experiment is the re-running of first and second-order algorithms that require starting points from a large 
grid of stochastically generated points covering most of the parameter space between the bounds. The 
second recommendation arising from this study is further scientific investigation of global optimisation 

 
1 SF-1 can be found at the following repository link: 
  github.com/bsh2/experiments/qNewtonNLS/SF-1.xlsx 
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methods, such as evolutionary strategies for fitting FFMs via NLS, and in particular the prospective use 
of global methods with integrated random local search (via first and second-order methods). 
 
Another notable result of this study was that strong model fit was observed across most solutions that 
did not converge to the true solutions for each model (and the associated scenarios) (Table 4, Figures 
5.8-5.11). This finding would benefit from further confirmatory experimentation under different input 
distributions. However, it is highly conceivable that in prior applications of FFMs, researchers may have 
ignored the possibility that solution obtained is not the absolute minimiser, specifically when measures 
of in-sample model fit are particularly strong (e.g., R2, RMSE, MAPE), and where no estimate of fitted 
estimate uncertainty or starting point sensitivity has been determined. Therefore, the findings in this 
experiment add weight to the hypothesis that there exists substantial doubt in reported estimates across 
prior research; particularly where optimisation procedures have not been stated clearly or have lacked 
the relevant procedural detail to indicate that these issues have been considered or addressed. The 
negative implications of this are primarily placed on the interpretation of prior model validity work, and 
subsequent decisions made by researchers with regard to the collective optimism (or lack thereof) 
toward further study of FFMs. 
 
The main limitation of this study is that there exists a possibility that results may differ under different 
input (training load) distributions, and that the exact assumptions required to enable study of the 
optimisation process via computation are too unrealistic in the real world, due to extensive model 
misspecification. Specifically, fitting to measured performance data is unlikely to ever be zero residual 
optimisation problem due to the presence of noise and inherent simplification within the modelling 
process resulting in model misspecification. Further, it is unclear the role that model misspecification 
will play in these results, and it is possible that algorithm performance may be considerable worse such 
that changes in local minima have substantive differences in predictions and model fit. However, it 
seems unlikely they would be better. It appears clear that further work in the application of optimisation 
approaches for FFM problems is required, and that alterative algorithmic approaches (e.g., evolutionary 
or genetic algorithms) should be evaluated, and different perspectives (e.g., the use of priors under a 
Bayesian approach) represent sensible pathways for future work. 

5 Conclusions 

Collectively, this experiment highlights that significant care must be taken in future research and 
practice to ensure that the optimisation problem is appropriately posed, and that the algorithmic 
approach selected to fit the selected FFM is sufficient, due to the high likelihood of local optima. In 
particular, solutions may not be all that they appear following one-shot minimisation using a hill-climbing 
algorithm such as L-BFGS-B, even in the presence of very good in-sample fit. At a minimum, multiple 
runs of optimisation should be performed under this approach, starting from many points spanning the 
breadth of the search space (sensitivity), and include some form of observational cross-validation as 
discussed to estimate uncertainty. Notably, both fitness-fatigue models demonstrated that different non-
true solutions may exhibit the same model behaviour and achieve strong model fit. This creates a series 
of challenges for researchers in obtaining solutions in real-world experiments via similar approaches, 
as absolute minimisation cannot be confirmed, and uncertainty only estimated. It also casts doubt 
across correctness of solutions reported in prior FFM literature. This experiment has highlighted that 
the search space of the standard model, and in particular the fitness-delay model are more complex 
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and challenging for standard algorithms than previously recognised; and it is likely that we require better 
algorithmic approaches to solve FFM data fitting problems. Bayesian methods and evolutionary 
algorithms may offer two possible routes toward improved fitting of FFMs. However, the role of cross-
validation (out-of-sample testing) in the model evaluation process can also not be ignored going 
forward. Out-of-sample testing may also offer a qualitative approach for flagging solutions that are 
clearly incorrect, or it may also be used in a more modern sense within tuning-based cross-validation 
frameworks. This work, although extensive, is an n-of-1 with respect to the input distribution, and so 
would benefit from further replication under different training load distributions and performance profiles. 
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Appendix A 

A-1 Experiment algorithm 

Requirements: 

• Let 𝑓(𝜃, 𝜔) denote the fitness-fatigue model function 

• Let 𝜃 be the parameter space 𝜃 = (𝜃&, 𝜃#, 𝜃;, … , 𝜃$) ∈ ℝ! of 𝑓 

• Let 𝜔 denote the training load series	𝜔 = {𝜔&, 𝜔#, … , 𝜔<} of length 𝑛 and time-step 1 day. 

BEGIN MAINPROGRAM 
  SET lower bound on θ: l = (l!, l", l#, … , l$), l% ∈ ℝ& 
  SET upper bound on θ: u = (u!, u", u#, … , u$), u% ∈ ℝ&, u% > l%  
  SET η where η$ is the total size of the grid (η,m ∈ ℕ) 
  SET γ where n$ mod γ ≠ 0, γ ∈ ℕ 
  COMPUTE Sample η equally spaced points from each open interval (l%, u%), i ∈ [1,m] 
  COMPUTE Make grid' of size η$ by taking all combinations 

  COMPUTE Partition grid'	into γ equal segments grid' ≡ <grid'
(!), grid'

("), … . , grid'
(*)> 

  SET θ+,-. ∈ (l, u) 
  INPUT ω 
  COMPUTE vector p ∈ ℝ of length n by computing f(θ+,-., ω) 
  FOR ν = 1 to 3 
 INITALISE empty array RESULT/ of dim In$ × (m+ 3)M 
   COMPUTE the sequence s, where s goes from 1 to n by ν 

COMPUTE p0 by sampling p at each point s 
FOR j = 1 to γ 

    INPUT grid'
(1) into working memory 

   DO IN PARALLEL FOR k = 1 to n$/γ 

              COMPUTE pR2 from f(θ2, ω), θ2 ∈ grid'
(1) 

              COMPUTE pR20 by sampling pR2 at each point s 

              COMPUTE RSSINIT = ∑IpR20 − p0M
"
 

              OUTPUT Store RSSINIT to array RESULT/ 
INITIALISE The quasi-Newton method at starting point θ2 
SOLVE min∑(f(θ34+, ω) − p0)" s.t. θ34+ ∈ [u, l] 
OUTPUT Row-bind θ34+ and RSSFIT to array RESULT/ 
COMPUTE pR'34+ from the model for {θ34+, ω} 

COMPUTE Fit statistic ϵ = X∑IpR'!"# − p0M
"
 (example RMSE) 

OUTPUT Store ϵ to array RESULT/ 
   END PARALLEL FOR 

     INPUT Pull grid segments <grid'
(!), … , grid'

(*)> into working memory 

     Recombine grid' and remove segments 
          Columnar-bind grid' with RESULT/: yields array of dim In$ × (2m+ 3)M 
 END FOR    
  END FOR  
END MAINPROGRAM 
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Algorithm Notes 

• The algorithm was written in pseudocode to make it language agnostic and therefore most 
understandable. 

• R stores and manipulates all objects in the physical memory and therefore to conserve working 
memory during the implementation we opted to split and save the grid into smaller segments 
that would be loaded in sequential order. In our experiment we only had 8GB of RAM available 
on the machine. The constant 𝛾 is the number of smaller grids used to conserve memory. 

• DO IN PARALLEL indicates that the operations were distributed to available nodes (via multi-
core) and executed in parallel. In our experiment we used 8 available nodes within a single 
machine. 

• Dimensions of arrays are given in rows × column format. 
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A-2 Parameter estimate distributions (standard model) 

Table A-2: Parameter estimate and RSS distributions of solutions obtained for the standard model 

Scenario Convergence Summary 
statistics 𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝒌𝒉 𝝉𝒉 RSSsolutions RSSinitial 

Standard 
model 

 
100% 
data 

True 
parameters 
(N = 69204) 

Min 100.00 0.72 28.47 1.20 8.58 0.00 288 
Max 100.00 0.72 28.54 1.20 8.61 0.00 12893022 

Median 100.00 0.72 28.50 1.20 8.60 0.00 529882 
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 710954 

Other 
solutions 

(N = 30763) 

Min 90.55 0.01 1.19 0.01 1.93 11.17 457 
Max 116.97 5.00 50.00 5.00 50.00 3019.36 12771646 

Median 100.16 4.60 18.82 5.00 15.37 11.17 616682 
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 845510 

Abnormal 
termination 

(N = 33) 

Min 100.16 4.60 18.82 5.00 15.37 11.17 13268 
Max 100.16 4.60 18.82 5.00 15.37 11.17 7401559 

Median 100.16 4.60 18.82 5.00 15.37 11.17 655974 
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 860297 

Standard 
model  

 
(50% 
data) 

True 
parameters 
(N = 69145) 

Min 100.00 0.72 28.47 1.20 8.57 0.00 135 
Max 100.00 0.72 28.56 1.20 8.62 0.00 6470310 

Median 100.00 0.72 28.50 1.20 8.60 0.00 267974 
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 359878 

Other 
solutions 

(N = 30823) 

Min 90.55 0.01 1.19 0.01 1.93 0.00 457 
Max 116.97 5.00 50.00 5.00 50.00 3019.36 12858865 

Median 100.16 3.81 18.82 5.00 15.37 11.17 609208 
M.A.D. 0.24 1.18 14.35 0.00 10.04 16.56 830985 

Abnormal 
termination 

(N = 32) 

Min 100.09 4.61 18.91 5.00 15.47 5.66 7159 
Max 100.09 4.61 18.91 5.00 15.47 5.66 4484160 

Median 100.09 4.61 18.91 5.00 15.47 5.66 480631 
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 555066 

Standard 
model 
(33% 
data) 

True 
parameters 
(N = 70284) 

Min 100.00 0.72 28.43 1.20 8.57 0.00 101 
Max 100.00 0.72 28.57 1.20 8.63 0.00 4266927 

Median 100.00 0.72 28.50 1.20 8.60 0.00 178693 
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 239610 

Other 
solutions 

(N = 29676) 

Min 91.75 0.01 1.00 0.01 1.68 2.89 306 
Max 116.14 5.00 50.00 5.00 50.00 1370.32 4018048 

Median 99.94 4.62 18.98 5.00 15.57 2.89 197519 
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 269993 

Abnormal 
termination 

(N = 40) 

Min 93.74 0.33 18.98 0.01 15.57 2.89 1920 
Max 99.94 5.00 50.00 5.00 49.64 154.04 2239363 

Median 99.94 4.62 18.98 5.00 15.57 2.89 415359 
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 477229 

M.A.D refers to the median absolute deviation. Data % refers to the proportion of data used in the fitting process 
(i.e., 100% corresponds to a measurement frequency of every day, 50% to every second day, 33% to every 3rd 
day). Other solutions include all non-true critical points (i.e., saddle and local minima). All parameter estimates 
rounded to 2.d.p, fitted RSS values to 3.d.p. 
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A-3 Parameter estimate distributions (fitness-delay model) 

Table A-3: Parameter estimate and RSS distributions of solutions obtained for the fitness-delay model 

Scenario Convergence Summary 
statistics 𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝝉𝒈𝟐 𝒌𝒉 𝝉𝒉 RSSsolutions RSSinitial 

Fitness-
delay 
model 

 
100% 
data 

True 
parameters 
(N = 20588) 

Min 100.00 0.72 32.45 4.29 1.05 8.55 0.000 544 
Max 100.00 0.72 32.56 4.32 1.05 8.65 0.001 35463988 

Median 100.00 0.72 32.50 4.30 1.05 8.60 0.000 897537 
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.000 1180419 

Other 
solutions 
(N = 96717) 

Min 99.94 0.65 1.04 2.06 0.71 1.00 0.010 143 
Max 121.18 5.00 44.70 19.29 1.97 50.00 4380.976 41612914 

Median 100.04 1.53 32.16 6.17 1.05 21.87 0.121 1060962 
M.A.D. 0.04 0.17 5.94 0.53 0.00 25.09 0.164 1454207 

Abnormal 
termination 

(N = 344) 

Min 100.01 0.74 27.86 5.65 1.04 4.84 0.011 2648 
Max 100.10 1.69 44.69 10.45 1.05 50.00 0.598 15290067 

Median 100.09 1.68 32.23 6.36 1.04 31.11 0.457 1090636 
M.A.D. 0.01 0.02 5.72 0.06 0.00 11.20 0.130 1479867 

Fitness-
delay 
model 

 
(50% 
data) 

True 
parameters 
(N = 20651) 

Min 100.00 0.72 32.43 4.28 1.05 8.54 0.000 273 
Max 100.00 0.72 32.57 4.32 1.05 8.66 0.000 18983885 

Median 100.00 0.72 32.50 4.30 1.05 8.60 0.000 451439 
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.000 592054 

Other 
solutions 
(N = 96184) 

Min 99.94 0.65 1.04 2.06 0.71 1.00 0.000 143 
Max 121.18 5.00 44.70 19.29 1.97 50.00 4380.976 41612914 

Median 100.04 1.53 32.16 5.81 1.05 21.86 0.121 1060179 
M.A.D. 0.04 0.25 5.94 0.90 0.00 19.65 0.164 1453494 

Abnormal 
termination 

(N = 157) 

Min 99.96 0.73 19.34 5.64 0.80 4.88 0.006 539 
Max 100.48 5.00 41.40 14.23 1.06 45.27 37.537 8804668 

Median 100.06 1.65 30.65 6.29 1.04 26.70 0.181 540733 
M.A.D. 0.02 0.06 2.32 0.14 0.00 5.42 0.144 743087 

Fitness-
delay 
model 

 
(33% 
data) 

True 
parameters 
(N = 21065) 

Min 100.00 0.72 32.41 4.28 1.05 8.53 0.000 181 
Max 100.00 0.73 32.58 4.32 1.05 8.68 0.001 10781682 

Median 100.00 0.72 32.50 4.30 1.05 8.60 0.000 307321 
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.000 403900 

Other 
solutions 
(N = 96486) 

Min 94.31 0.65 1.00 1.78 0.01 1.78 0.004 46 
Max 119.93 5.00 44.71 30.11 1.94 50.00 1514.567 13746207 

Median 100.04 1.51 32.12 6.16 1.05 21.53 0.042 348259 
M.A.D. 0.04 0.26 6.02 0.59 0.00 24.62 0.058 476901 

Abnormal 
termination 

(N = 98) 

Min 100.01 0.74 27.83 5.63 1.05 4.87 0.004 2255 
Max 100.11 1.69 38.48 10.33 1.05 40.99 0.227 7949920 

Median 100.09 1.66 30.37 6.24 1.05 27.20 0.154 429570 
M.A.D. 0.02 0.05 1.97 0.15 0.00 4.25 0.083 593110 

M.A.D refers to the median absolute deviation. Data % refers to the proportion of data used in the fitting process 
(i.e., 100% corresponds to a measurement frequency of every day, 50% to every second day, 33% to every 3rd 
day). Other solutions include all non-true critical points (i.e., saddle and local minima). All parameter estimates 
rounded to 2.d.p, fitted RSS values to 3.d.p.  
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A-4 Unique solutions (standard model) 

Below are tables of the top 10 highest frequency solutions (to 1.d.p for 𝑝∗, 𝜏; 2.d.p for 𝑘) found across 
the searches applying the standard model. The complete set of unique solutions for each scenario are 
available in spreadsheet form at the following repository link, but to conserve space are not copied in 
entirety here. 

Proportion of fitting data Total unique solutions (N) Link (to all solutions) 
100% 353 

github.com/bsh2/experiments/qNewtonNLS/SF-
1.xlsx 50% 275 

33% 275 

 
100% Fitting Data 

Table A-4A: Top 10 highest frequency solutions (standard model, 100% fitting data) 

𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝒌𝒉 𝝉𝒉 Type Frequency RSS 
100.2 4.6 18.8 5 15.4 saddle 25838 21.42 
117 3.8 1.2 5 1.9 minimum 1933 2896.74 
94 5 50 4.7 49.7 saddle 164 395.04 

93.4 0.34 50 0.01 50 saddle 88 406.15 
93.4 0.34 50 0.01 48.7 saddle 77 405.69 
93.4 0.34 50 0.01 48.6 saddle 76 405.65 
93.4 0.34 50 0.01 48.9 saddle 75 405.76 
93.4 0.34 50 0.01 49.9 saddle 64 406.12 
93.4 0.34 50 0.01 49.8 saddle 59 406.08 
93.4 0.34 50 0.01 48.8 saddle 58 405.72 

50% Fitting Data 

Table A-4B: Top 10 highest frequency solutions (standard model, 50% fitting data) 

𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝒌𝒉 𝝉𝒉 Type Frequency RSS 
100.1 4.61 18.9 5.00 15.5 saddle 26359 8.52 
116.5 3.65 1.3 5.00 1.9 minimum 1922 1487.52 
94.1 5.00 50.0 4.70 49.6 saddle 177 191.12 
93.4 0.34 50.0 0.01 50.0 saddle 94 194.69 
93.4 0.34 50.0 0.01 48.7 saddle 73 194.41 
93.4 0.34 50.0 0.01 49.8 saddle 71 194.65 
93.4 0.34 50.0 0.01 48.8 saddle 69 194.43 
93.4 0.34 50.0 0.01 48.9 saddle 65 194.45 
93.4 0.34 50.0 0.01 48.5 saddle 56 194.37 
93.4 0.34 50.0 0.01 49.9 saddle 55 194.67 

 
33% Fitting Data 

Table A-4C: Top 10 highest frequency solutions (standard model, 33% fitting data) 

𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝒌𝒉 𝝉𝒉 Type Frequency RSS 
100.2 4.6 18.8 5 15.4 saddle 14394 6.24 
100 0.72 28.5 1.2 8.6 minimum 12798 0.00 
117 3.8 1.2 5 1.9 minimum 1834 1018.39 
94 5 50 4.7 49.7 saddle 115 150.38 

93.4 0.34 50 0.01 50 saddle 48 154.93 
117 3.81 1.2 5 1.9 minimum 44 1019.40 
93.4 0.34 50 0.01 48.9 saddle 43 154.83 
93.4 0.34 50 0.01 48.6 saddle 43 154.81 
93.4 0.34 50 0.01 48.7 saddle 41 154.82 
93.4 0.34 50 0.01 49.9 saddle 40 154.92 
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Figure A-4.1: Starting value (initial solution) distributions across iterations that successfully reached 
the true parameters in the standard model scenarios 
  

 
Figure A-4.2: RSS values associated with initial solution distributions across iterations that successfully 
reached the true parameters in the standard model scenarios.  
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A-5 Unique solutions (fitness-delay model) 

Below are tables of the top 10 highest frequency solutions (to 1.d.p for 𝑝∗, 𝜏; 2.d.p for 𝑘) found across 
the searches applying the fitness-delay model. The complete set of unique solutions for each scenario 
are available in spreadsheet form at the following repository link, but to conserve space are not copied 
in entirety here. 
 

Proportion of fitting data Total unique solutions (N) Link (repository) 
100% 383 

github.com/bsh2/experiments/qNewtonNLS/SF-
1.xlsx 50% 504 

33% 550 

100% Fitting Data 
Table A-5A: Top 10 highest frequency solutions (fitness-delay model, 100% fitting data) 

𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝝉𝒈𝟐 𝒌𝒉 𝝉𝒉 Type Frequency RSS 
100 0.74 32.2 10 1.05 4.9 minimum 39401 0.10 
100 1.53 28.1 5.8 1.05 21.9 minimum 33266 1.03 
100 1.53 28.2 5.8 1.05 21.9 minimum 5811 0.94 

100.1 1.64 44 6.2 1.04 49 minimum 4380 2.03 
121.2 5 1.2 2.1 1.97 2.1 minimum 1519 4417.29 
100 1.52 28.1 5.8 1.05 21.8 minimum 1505 7.01 
100 1.52 28.1 5.8 1.05 21.9 minimum 953 15.93 

100.1 1.64 44.7 6.1 1.04 50 minimum 940 30.56 
100 5 22.4 19.3 1.06 4.1 saddle 621 8.27 

100.7 5 19.2 14 0.82 19.2 saddle 613 98.30 

50% Fitting Data 
Table A-5B: Top 10 highest frequency solutions (fitness-delay model, 50% fitting data) 

𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝝉𝒈𝟐 𝒌𝒉 𝝉𝒉 Type Frequency RSS 
100 0.74 32.2 10 1.05 4.9 minimum 34291 0.05 
100 1.53 28.1 5.8 1.05 21.9 minimum 31140 0.52 
100 0.72 32.5 4.3 1.05 8.6 minimum 8089 0.00 
100 1.53 28.2 5.8 1.05 21.9 minimum 5434 0.47 

100.1 1.64 44 6.2 1.04 49 minimum 4320 1.02 
121.2 5 1.2 2.1 1.97 2.1 minimum 1510 2298.04 
100 1.52 28.1 5.8 1.05 21.8 minimum 1411 3.53 

100.1 1.64 44.7 6.1 1.04 50 minimum 924 15.31 
100 1.52 28.1 5.8 1.05 21.9 minimum 894 8.01 
100 5 22.4 19.3 1.06 4.1 saddle 604 4.16 

33% Fitting Data 
Table A-5C: Top 10 highest frequency solutions (fitness-delay model, 33% fitting data) 

𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝝉𝒈𝟐 𝒌𝒉 𝝉𝒉 Type Frequency RSS 
100 0.74 32.1 10 1.05 4.9 minimum 38922 0.12 
100 1.51 28.1 5.8 1.05 21.6 minimum 17384 2.95 
100 1.51 28.1 5.8 1.05 21.5 minimum 12086 0.98 
100 1.52 28.1 5.8 1.05 21.6 minimum 8634 0.11 

100.1 1.64 44.7 6.1 1.05 50 minimum 4099 0.25 
119.9 5 1 1.8 1.94 1.8 minimum 1636 1515.64 
100 1.51 28 5.8 1.05 21.5 minimum 1332 3.75 

100.1 5 19.4 14.4 0.76 19.4 saddle 913 19.93 
99.9 5 22.3 19.2 1.03 4.2 saddle 587 2.33 
100 1.52 28.1 5.8 1.05 21.7 minimum 409 0.59 
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Figure A-5.1: Starting value (initial solution) distributions across iterations that successfully reached 
the true parameters in the fitness-delay model scenarios 

 
Figure A-5.2: RSS values associated with initial solution distributions across iterations that successfully 
reached the true parameters in the fitness-delay model scenarios. 
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