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A B S T R A C T

Transportation is one of the main factors when global total energy consumption is considered and is a
significant contributor to emissions of harmful gases including carbon dioxide (CO2). Due to their lower
tailpipe CO2 emissions compared to the vehicles with internal combustion engines, electric vehicles provide an
opportunity to reduce environmental impacts of transportation. In this direction, a problem for plug-in electric
vehicles (PEVs) is studied where the aim is to find an energy efficient path. Given an origin–destination pair
over a directed network, this problem involves determining a path joining origin and destination, the speed
of the PEV on each road segment, i.e., arc, along the path, the charging stations the PEV will stop by, and
how much to recharge at each stop so as to minimize the total amount energy consumption. There are speed
limits on each road segment, and PEV has to arrive at the destination on or before a given total time limit.
For this problem, firstly, a mixed-integer second order cone programming formulation (MISOCP) is proposed.
Secondly, to be able to solve larger size instances, a matheuristic is developed. Lastly, an iterated local search
(ILS) algorithm is designed for this problem. Solution quality and computation times of the heuristics and
the exact algorithm are compared on different instances. Differently from the literature, the speed values of
the PEV on the arcs are considered as continuous decision variables in all proposed solution approaches.
Moreover, consideration of the speed limits which can be legal limits or limits imposed by congestion makes
our problem more realistic. The analysis of the results of the computational experiments gives the user an
insight to select the proper solution approach based on the instance settings. MISOCP formulation becomes
inadequate for larger instances. On the other hand, the heuristic solution approaches can solve such instances
within reasonable computational times and therefore they have the potential to be integrated in some software
to dynamically find energy efficient paths.
1. Introduction

In recent years, due to increased environmental and social aware-
ness, sustainability related studies have gained popularity. Due to their
adverse effects to the environment, greenhouse gas emission reduction
has been a major concern in several areas of studies. A recent study
shows that transportation is responsible for 24% of global total energy
consumption (IEA, UNSD, et al., 2019). Hence, governments start to
take preventive actions to reduce transportation originated harmful
gases which cause global warming and extinction of living creatures
in the long term. For example, Energy Union put some obligations
and targets on emissions for new cars produced in European countries
between 2025 and 2030, and it is estimated that these limitations will
provide 15% to 37.5% reductions in emissions (Regulation, 2018). In
this direction, the use of electric vehicles has a great potential due
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to their lower tailpipe carbon dioxide emissions compared to vehicles
with internal combustion engines. By using fewer vehicles or adopting
advanced engine technologies, e.g., electric engines, transportation
related energy consumption and emissions sourced by transportation
can be reduced.

There are three types of electric vehicles that are currently in use
worldwide. The first one is the plug-in electric vehicle (PEV) which uses
electricity as its only energy resource to recharge its limited-capacity
batteries. The second one is the hybrid electric vehicle (HEV) which
uses two types of energy resources, electricity and fuel, and two types
of engines, electric and internal combustion. In HEVs, the mechanical
energy, when available, is converted to electric energy to recharge the
batteries. The third one is the plug-in hybrid electric vehicle (PHEV).
Similar to HEVs, PHEVs also include both internal combustion and
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Table 1
Electric vehicle types.

Vehicle type Engine type Energy outsource

Plug-in Electric Vehicle (PEV) Electric engine Electricity

Hybrid Electric Vehicle (HEV) Electric engine
Internal combustion engine

Fuel

Plug-in Hybrid Electric Vehicle (PHEV) Electric engine
Internal combustion engine

Electricity & Fuel
electric engines. Differently, PHEVs can be recharged by plugging in
like PEVs. The classification described in this paragraph is summarized
in Table 1.

Electric vehicles have several economic, environmental, and social
benefits including reduced air and noise pollution. However, they
have also some limitations for users. PEV users need to have an un-
derstanding of driving ranges, driving costs, and tax-related issues,
e.g., governmental incentives. With their limited battery capacities,
PEVs cannot make long distance trips without recharging. Thereby, the
PEV users need extensive information about the recharging stations’
locations to plan their trips. On the other hand, HEVs provide longer
driving ranges as they can recharge themselves while driving. HEV
users visit only the fuel refilling stations when needed. PHEVs can have
even more driving ranges since they can be plugged in to recharge the
batteries when stopped at a charging station. Thereby, PHEV users may
use both electric recharging stations and fuel refilling stations.

PEVs have low life cycle energy consumption and GHG emissions
even if the charging and battery production are taken into account
and do not have any exhaust pipe (Tiwari, Aditjandra, & Dissanayake,
2020). Another interesting fact is that when all types of electric vehicles
were commercially available in the U.S. for the first time in 2011,
18,000 electric vehicles were sold among which more than 50% were
PEVs (Krause, Carley, Lane, & Graham, 2013). Their usage still has a
great potential to grow in the near future.

In this study, we focus specifically on PEVs as path planning is
more critical in PEVs than other electric vehicles. As far as our knowl-
edge, there is a gap in the literature in terms of energy efficient path
construction and continuous speed optimization for electric vehicles.
Thereby, we introduce a problem that seeks the most energy efficient
path of a PEV which is to travel from a predetermined origin node
to a destination node in a directed network within a given total time
limit. There are lower and upper speed limits on each arc limiting
the vehicle speed and recharging stations at some of the nodes of
the network which can be visited by the PEV to get recharged. In
addition to contributing to the literature by considering an energy
efficient path problem for PEVs; namely, the PEVEEP, we also make
contributions in terms of solution approaches. We propose exact and
heuristic solution approaches which involve novel aspects including
the use of mixed-integer second order cone programming. The PEVEEP
includes the following decisions: finding the most energy efficient path
joining the origin and destination such that the given total time limit is
not exceeded; determining the speed of the PEV on each arc along the
chosen path; and determining where to stop to recharge the battery and
how much to recharge. Here, the total time limit refers to the restriction
that limits the amount of time between the departure from the origin
and arrival to the destination, i.e., the sum of the total travel time and
the time spent for recharging the battery.

A mixed-integer second order cone programming (MISOCP) for-
mulation is provided to solve the PEVEEP. As this formulation is
inadequate in solving large size instances to optimality within reason-
able times, a matheuristic and an iterated local search (ILS) algorithm
are developed for the problem. The solution methods are compared in
terms of solution quality and computational time.

The rest of the paper is organized as follows: we first review the
related literature in Section 2. Then, we provide the description of the
PEVEEP and the procedure for the energy calculation of an electric
vehicle in Section 3. In Section 4, we formulate the PEVEEP as an
2

MISOCP problem. The matheuristic and ILS algorithm proposed for
the PEVEEP are described in Section 5. Computational experiments are
discussed in Section 6. Finally, conclusions and future directions are
given in Section 7.

2. Literature review

In this section, we provide a literature review of studies on min-
imum cost path problems with electric vehicles, the electric vehicle
routing problems, the behavior of electric vehicle batteries considered
in these problems, and some related classical vehicle routing problems.

First, studies including minimum cost path problems with electric
vehicles (EVs) are reviewed. These problems have been studied widely
in recent years where the aim is to find the most desirable path
(with respect to some objective such as energy consumption, cost,
or number of stops) of an EV that joins the origin and destination
nodes. Sachenbacher, Leucker, Artmeier, and Haselmayr (2011) intro-
duce an extension of the classical shortest path problem which looks for
the energy-optimal route of an EV, joining the origin and destination
nodes. The problem is formulated as a shortest path problem on an
energy network for HEVs with energy recuperation options on the
arcs. The cost of each arc on this network is defined as the energy
consumption along the arc. The authors provide a heuristic which is
a modified version of the Dijkstra’s Algorithm (Dijkstra et al., 1959)
and implement it on a real-life instance. To the best of our knowledge,
this is the first study that aims to construct an energy efficient route
for electric vehicles. Sweda and Klabjan (2012) study a minimum cost
path problem for EVs which is derived from the refueling needs of fuel-
powered vehicles. In this problem, the EV may stop and recharge its
battery at the nodes of the network to arrive at the destination. Cost
terms are traveling cost, recharging cost, and a function of the charge
level of the battery at each node of the network. Backward recursion
and approximate dynamic programming are proposed as the solution
methods whose performances are not evaluated with computational
experiments. Arslan, Yıldız, and Karaşan (2015) study a minimum cost
path problem where the total cost of a PHEV on its path from the origin
node to the destination is composed of the electricity cost, gasoline cost,
battery degradation cost, vehicle depreciation cost, and the stopping
cost. A mixed-integer quadratically constrained programming (MIQCP)
formulation, a discrete approximation dynamic programming heuristic,
and a shortest path heuristic are proposed for the problem. The shortest
path heuristic is composed of two steps. In the first step, the shortest
path from the origin to the destination is found. In the second step,
the MIQCP formulation is solved for the found shortest path to decide
on where to stop along the shortest path to recharge and how much
to recharge. Strehler, Merting, and Schwan (2017) study the problem
of finding a minimum-cost route between the origin and destination
nodes where the vehicle is allowed to go over an arc of the network
more than once. Recharging options are available at the nodes and the
arcs of the network for PEVs and HEVs, respectively. The objective is
to minimize the total travel time including recharging times for PEVs,
and total fossil fuel consumption over the network for HEVs. In all
studies covered in this paragraph speed decisions are not incorporated,
and energy consumption of EVs are not explicitly considered in the
objective functions.

Kucukoglu, Dewil, and Cattrysse (2021) provide a comprehensive
literature review of the electric vehicle routing problems (EVRPs).
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Different objectives have been considered in EVRPs such as total travel
distance, total travel time, total number of stations used, total recharg-
ing cost, and total energy consumption. In most of the studies, energy
consumption of an EV is computed as a function of travel distance
only; whereas, in real-life, it is a function of not only travel distance
but also some other parameters such as vehicle load, vehicle speed,
vehicle characteristics, and road conditions. The most commonly used
exact solution methods for the EVRPs are mathematical programming
formulations, dynamic programming, column generation, and branch
and bound approaches. On the other hand, the (adaptive) large neigh-
borhood search (LNS) and iterated local search (ILS) algorithms are the
most commonly used heuristics for EVRPs. Recently, Liu et al. (2021)
provide a survey of energy management strategies for HEVs and PHEVs.
Factors affecting the energy consumption of these vehicles including
travel distance, travel time, average speed, and average acceleration
are discussed in addition to the urban and rural road conditions. The
survey also includes a list of solution methodologies for the energy
management problem of HEVs and underline that artificial intelligence
plays a significant role in the development of energy systems of HEVs.

An electric vehicle routing problem (EVRPTW) is defined for the
first time by Schneider, Stenger, and Goeke (2014). The authors study
a single PEV routing problem with time windows where the vehicle
can recharge its electric battery at some stations on its route to be
able to complete its tour. A mixed-integer linear programming (MILP)
formulation is developed to minimize the total distance traveled by the
PEV and to determine the stations at which the PEV stops to recharge.
Moreover, a heuristic combining two metaheuristics, that are variable
neighborhood search (VNS) and tabu search (TS), is proposed. A time-
dependent electric vehicle routing problem with a fleet of PEVs is
studied by Lu, Chen, Hao, and He (2020). The authors consider time-
dependent traffic congestion on the arcs which affects the speeds of
the vehicles and provide an MILP formulation for the problem whose
objective function consists of three parts: energy consumption cost,
drivers’ wages, and acquisition cost of the vehicles. In this formulation,
the possible speed values belong to a discrete set. In addition to the
exact formulation, an iterated variable neighborhood search (IVNS), a
variable neighborhood descent method (VND), and a speed optimiza-
tion method are proposed. Bruglieri, Pezzella, Pisacane, and Suraci
(2015) study the EV routing problem with time windows. In this prob-
lem, the objective minimizes a function of the number of vehicles used
and the total travel times of the vehicles. The authors provide an MILP
formulation and a variable neighborhood search branching matheuris-
tic for the problem. Montoya, Guéret, Mendoza, and Villegas (2017)
propose an EV routing problem with nonlinear recharging functions for
the first time which is approximated by piecewise linear functions to
develop an MILP formulation for the problem. Bac and Erdem (2021)
study an extension of the EVRPTW with a heterogeneous EV fleet where
partial recharging is allowed. A mixed integer linear programming
formulation is proposed in which the objective is the minimization
of total charging time, travel time, and penalty cost of unscheduled
jobs, overtime, and the violation of the time windows. Two heuristic
approaches; namely, the VNS and VND, are proposed for the problem
which perform well even on large size instances. Recently, an extension
of the EVRPTW is also studied by Zhou and Zhao (2022). The problem
considers battery swap decisions under time window restrictions. The
provided mathematical formulation aims to minimize total costs and
maximize the average utilization of the batteries. Differently from the
literature, PEVs visit the battery swap stations for power replenishment.
A whale optimization algorithm, a nature-inspired metaheuristic, is
proposed for this multi-objective problem.

Abousleiman and Rawashdeh (2014) study an energy efficient rout-
ing problem for EVs and propose particle swarm optimization for its
solution. The authors argue that the traditional shortest path algorithms
(those that find paths with the least travel time or distance) fail to
find energy efficient routes. Abousleiman, Rawashdeh, and Boimer
3

(2017) propose an ant colony optimization metaheuristic for an energy
efficient routing problem of EVs. They use the routes suggested by
Google Maps or MapQuest, and compare them with the routes con-
structed by the proposed metaheuristic. It is shown that in several cases,
the solutions of the proposed metaheuristic yields significant savings
in the energy consumption of EVs. The objective function in both
of these papers is the minimization of total net energy consumption
which is calculated by taking the difference between the total energy
consumption and the energy gained with the regenerative braking on
each arc.

A simulated annealing algorithm for a green vehicle routing prob-
lem with time windows for PHEVs is proposed by Vincent, Redi,
Hidayat, and Wibowo (2017). This problem minimizes the electric
energy and fuel consumption cost considering the limited availability
of electric charging and fuel stations on the network. In a recent
study, Ma, Hu, Chen, Wang, and Wu (2021) consider a vehicle routing
problem for shared autonomous electric vehicles which can swap their
batteries at certain stations. The objective minimizes a function of
travel distance, total time, and energy consumption of all vehicles
under given tour time limitations. An MILP formulation where speed
is a discrete decision variable, and an adaptive large neighborhood
search heuristic combined with a speed optimization algorithm are
proposed. This is one of the few studies in the literature that controls
environmental impacts of EVs via speed optimization.

There are different models in the literature for energy consumption
estimation of PEVs. In the study by De Cauwer, Van Mierlo, and Coose-
mans (2015), an estimation function is suggested based on the real
world data. The proposed energy consumption model considers energy
loss due to heating and air-conditioning systems as well as energy
requirement at the wheels of a PEV which includes five parts: the
rolling resistance, potential energy, aerodynamic losses, kinetic energy,
and the energy needed for the acceleration of rotational parts. Wu,
He, Yu, Harmandayan and Wang (2015) solve an analytical model to
determine time-dependent optimal speed profile for an EV such that
the electricity usage along the path considering route characteristics
and traffic conditions is minimized. It is observed that the energy con-
sumption is lower with smoother acceleration and deceleration values.
The authors use the parameters provided by Wu, Freese, Cabrera and
Kitch (2015) who establish a data collection system, which is installed
in a test EV, in order to specify the values of vehicle weight, resistance
of motor, radii of tires etc. Finally, in a recent study, Li et al. (2017)
provide an estimation of the energy consumption behavior of the EV
battery which is the one that is used in our study. In this model,
the energy consumption of an EV is a function of several parameters
including the speed of the vehicle and its mass. The details of this model
is discussed in Section 3.

The classical vehicle routing problem (VRP) is one of the most
widely studied problems in the literature. We refer the reader to survey
papers (Erdelić & Carić, 2019; Kumar & Panneerselvam, 2012; Lin,
Choy, Ho, Chung, & Lam, 2014) for applications and variations of
classical VRP and solution approaches. The most related extension
of the classical VRP (with time windows) to the problem studied in
our paper is the Pollution-Routing Problem (PRP) (Bektaş & Laporte,
2011) which aims to control cost and emission. In PRP, speed is a
decision variable affecting the fuel consumption, and the objective
is the minimization of the drivers’ wages and costs of fuel-emission.
The authors formulate the PRP as an MILP problem using discretized
speed values. After the PRP is introduced, several follow-up studies
considered this problem and its extensions. For example, Demir, Bektaş,
and Laporte (2012) and Kramer, Subramanian, Vidal, and Lucídio dos
Anjos (2015) propose an adaptive large neighborhood search (ALNS) al-
gorithm and a matheuristic approach for the PRP, respectively. Demir,
Bektaş, and Laporte (2014) introduce the bi-objective PRP, where the
minimization of drivers’ wages and fuel-emission costs are considered
as two conflicting objectives. Franceschetti, Honhon, Van Woensel,
Bektaş, and Laporte (2013) propose time-dependent PRP as another

extension of the PRP and develop a tabu search procedure to solve it.
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Our Contribution. In this study, a minimum cost path problem is
studied for a PEV which aims to minimize the energy consumption
of a PEV unlike most of the studies in the literature. In this problem,
given origin and destination nodes, locations of charging stations in
the network, a limit on the total travel time, and speed limits on each
arc of the network; the PEV aims to find a path between origin and
destination nodes, decide at which charging stations to stop by and
how much to recharge at each, and determine the vehicle speed on
each arc on this path so as to minimize the total energy consumption
while making sure that the destination is reached within the given
total time limit. This is one of the few studies where the speed is
a continuous decision variable. For the considered problem, an exact
solution approach is proposed which is an MISOCP formulation that
is able to solve medium-size instances to optimality. To be able to
solve larger instances, a matheuristic approach and an ILS algorithm
are developed. It is experimentally shown that these heuristics provide
good quality solutions in reasonable computational times.

3. Problem description

In this section, we define the energy efficient path problem for a
PEV (PEVEEP), which aims to find the most energy efficient path of a
PEV joining predetermined origin and destination nodes in a network.
In this network, there are electric recharging stations at some nodes
and speed limits on each arc. PEV starts its travel at the origin and
has to arrive at the destination within some given total time limit by
following a path. In PEVEEP, we determine which path to follow, at
what speed to drive on each arc, at which nodes of this path to stop for
recharging, and how much to recharge at each stop so as to minimize
the total energy consumption of the PEV while making sure that the
destination is reached within the total time limit. The total time limit
restricts the sum of total driving time spent on the arcs and the total
time spent for recharging the vehicle at the recharging stations.

In order to estimate the energy consumption of a PEV traveling
at some constant speed, we use the formulation provided by Li et al.
(2017). According to this formulation, the instantaneous power loss, 𝑃 ,
of an EV is calculated as

𝑃 = (𝐴𝑉 2+𝑓𝑟𝑀𝑔+𝐵𝑉 ∕𝑅𝑡)𝑉 +𝑟𝑅2
𝑡 ∕𝐾

2(𝐴𝑉 2+𝑓𝑟𝑀𝑔+𝐵𝑉 ∕𝑅𝑡)2+𝑃𝑎, (1)

where 𝑉 is the speed of the vehicle, 𝑟 is the resistance of the conductor,
𝑀 is the mass of the vehicle, 𝑔 is the gravitational acceleration, 𝐴 is the
aerodynamic constant, 𝑓𝑟 is the rolling resistant constant, 𝐵 is bearings’
damping coefficient, 𝐾 is armature constant, 𝑅𝑡 is tire radius, and 𝑃𝑎
is the ancillary loss including the loss sourcing from air condition,
external lights, and audio.

The energy consumption, 𝐸, of an EV traveling at constant speed 𝑉
for a distance of 𝐷 units, is calculated by multiplying the right hand
side of Eq. (1) by 𝑡 = 𝐷

𝑉 , where 𝑡 denotes the driving time. After
simplifications, 𝐸 is obtained as

𝐸 = 𝐷 (𝑎 𝑉 3 + 𝑏 𝑉 2 + 𝑐 𝑉 + 𝑑 + 𝑒∕𝑉 ), (2)

where 𝑎 = 𝐴2(𝑟 𝑅2
𝑡

𝐾2 ), 𝑏 = 𝐴 + ( 2𝐴𝐵𝑟𝑅𝑡
𝐾2 ), 𝑐 = 𝐵

𝑅𝑡
+ (2𝑀𝑔𝐴𝑓𝑟+𝐵2)𝑟

𝐾2 , 𝑑 =

𝑓𝑟𝑀𝑔(1 + 2𝐵𝑟𝑅𝑡
𝐾2 ), 𝑒 = ( 𝑓

2
𝑟 (𝑀𝑔)2𝑟𝑅2

𝑡
𝐾2 + 𝑃𝑎). This function is convex on 𝑉

and its global minimum is denoted as 𝑉𝑜𝑝𝑡.
As an example, we consider a specific EV which has the parameter

values given in Table 2 taken from Li et al. (2017). For this vehicle,
the values of 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are given in Table 3. Fig. 1 shows how
the energy consumption rate per unit travel distance (in Joule/m) of
this EV changes with respect to speed (in m/s), according to Eq. (2).
As it can be seen in Fig. 1, 𝐸 is a convex function of 𝑉 and its global
minimum 𝑉 is equal to 13.04 m/s (46.93 km/h).
4

𝑜𝑝𝑡
Table 2
Energy consumption function parameter values (Li et al., 2017).

Parameter Value Unit

𝑀 1500 kg
𝑓𝑟 0.015 –
𝑟 0.110 Ω
𝐴 1.800 m2

𝑔 9.810 m∕s2

𝑅𝑡 0.300 m
𝑃𝑎 2.000 kW

Table 3
The values of coefficients in energy consumption model.

Coefficient Value Unit

𝑎 1.023 × 10−5 kg s∕m
𝑏 0.324 kg
𝑐 3.348 kg m∕s
𝑑 220.868 kg m2/s2
𝑒 2004.747 kg m3/s3

Fig. 1. Energy consumption of a PEV per unit travel distance as a function of speed.

4. Mathematical formulations for the PEVEEP

We now provide a mixed-integer nonlinear programming (MINLP)
formulation for the PEVEEP. We use the notation, parameters, and
the energy calculation descriptions given in Section 3. Moreover, 𝐺 =
( ,) represents the directed network where  = {1,… , 𝑁} denotes
the set of nodes and  the set of arcs. We assume that 1 is the origin and
𝑁 is the destination. We denote the subset of the nodes with recharging
stations by  , ⊆  . If the PEV stops at a recharging station and gets
𝑒𝑐 units of energy (Joule), then this takes 𝐴 + 𝑒𝑐 𝐵 seconds, where 𝐴
is the fixed time spent in seconds to recharge and 𝐵 is the time spent
in seconds per unit energy recharged. The other parameters used to
formulate the PEVEEP are given below:
𝑈𝑖𝑗 : Upper speed limit on arc (𝑖, 𝑗) ∈  (m/s)
𝐿𝑖𝑗 : Lower speed limit on arc (𝑖, 𝑗) ∈  (m/s)
𝐶: Capacity of the battery (Joule)
m: Minimum charge level of the battery (Joule)
𝐼 : Initial charge level of the battery at the origin node (Joule)
𝐷𝑖𝑗 : Length of arc (𝑖, 𝑗) ∈  (𝑚)
𝑇 : Total time limit to travel from the origin node to the destination (s)

The variables used to formulate the PEVEEP are as follows.
𝐸𝑖𝑗 : Electric energy consumption of the EV on arc (𝑖, 𝑗) ∈  (Joule)
𝑉𝑖𝑗 : Speed of the EV on arc (𝑖, 𝑗) ∈  (m/s)
𝑒𝑐𝑖: Recharging amount of the EV’s battery at node 𝑖 ∈  (Joule)
𝑒𝑎𝑖: Charge level of the EV’s battery when it arrives at node 𝑖 ∈ 
(Joule)
𝑒𝑑𝑖: Charge level of the EV’s battery when it departs from node 𝑖 ∈ 
(Joule)
𝑡 : Driving time of the EV on arc (𝑖, 𝑗) ∈  (s)
𝑖𝑗
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𝑐𝑡𝑖: Amount of time spent for recharging the EV’s battery at node 𝑖 ∈ 
(s)

𝑥𝑖𝑗 =

{

1, if (𝑖, 𝑗) ∈  is included in the path,
0, otherwise

𝑦𝑖 =

{

1, if PEV stops at node 𝑖 ∈  to recharge,
0, otherwise

4.1. An MINLP formulation for the PEVEEP

Using the parameters, variables and the energy consumption func-
tions described so far, we provide a mixed-integer nonlinear program-
ming (MINLP) formulation for the PEVEEP below.

(PEVEEP-MINLP)

Minimize
∑

(𝑖,𝑗)∈
𝐸𝑖𝑗 (3)

subject to

𝐸𝑖𝑗 ≥ 𝐷𝑖𝑗 (𝑎 𝑉 3
𝑖𝑗 + 𝑏 𝑉 2

𝑖𝑗 + 𝑐 𝑉𝑖𝑗 + 𝑑 𝑥𝑖𝑗 + 𝑒∕𝑉𝑖𝑗 ) ∀(𝑖, 𝑗) ∈  (4)
∑

𝑖∶(1,𝑖)∈
𝑥1𝑖 = 1 (5)

∑

𝑖∶(𝑖,𝑁)∈
𝑥𝑖𝑁 = −1 (6)

∑

𝑖∶(𝑖,𝑗)∈
𝑥𝑖𝑗 −

∑

𝑖∶(𝑗,𝑖)∈
𝑥𝑗𝑖 = 0 ∀𝑗 ∈  ⧵ {1, 𝑁}

(7)
∑

𝑖∶(𝑖,𝑗)∈
𝑥𝑖𝑗 ≤ 1 ∀𝑗 ∈  (8)

𝑀 (1 − 𝑥𝑖𝑗 ) ≥ 𝑒𝑎𝑗 − 𝑒𝑑𝑖 + 𝐸𝑖𝑗 ∀(𝑖, 𝑗) ∈  (9)

𝑀 (𝑥𝑖𝑗 − 1) ≤ 𝑒𝑎𝑗 − 𝑒𝑑𝑖 + 𝐸𝑖𝑗 ∀(𝑖, 𝑗) ∈  (10)

𝑉𝑖𝑗 ≤ 𝑈𝑖𝑗 𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈  (11)

𝑉𝑖𝑗 ≥ 𝐿𝑖𝑗 𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈  (12)

𝑥𝑖𝑗 𝐷𝑖𝑗 = 𝑉𝑖𝑗 𝑡𝑖𝑗 ∀(𝑖, 𝑗) ∈  (13)

𝑡𝑖𝑗 ≤ 𝑥𝑖𝑗 𝐷𝑖𝑗∕𝐿𝑖𝑗 ∀(𝑖, 𝑗) ∈  (14)

𝑦𝑗 ≤
∑

𝑖∶(𝑖,𝑗)∈
𝑥𝑖𝑗 ∀𝑗 ∈  (15)

𝑒𝑑𝑖 = 𝑒𝑎𝑖 + 𝑒𝑐𝑖 ∀𝑖 ∈  (16)

𝑒𝑑𝑖 = 𝑒𝑎𝑖 ∀𝑖 ∈  ⧵  (17)
𝑒𝑑𝑗 ≤ 𝐶

∑

𝑖∶(𝑖,𝑗)∈
𝑥𝑖𝑗 ∀𝑗 ∈  ⧵ {1, 𝑁}

(18)

𝑒𝑎𝑗 ≥ 𝑚
∑

𝑖∶(𝑖,𝑗)∈
𝑥𝑖𝑗 ∀𝑗 ∈  ⧵ {1} (19)

𝑒𝑐𝑖 ≤ 𝑦𝑖 (𝐶 − 𝑚) ∀𝑖 ∈  (20)

𝑎1 = 𝐼 (21)

𝑐𝑁 = 0 (22)

𝑡𝑖 = 𝐴 𝑦𝑖 + 𝐵 𝑒𝑐𝑖 ∀𝑖 ∈  (23)
∑

𝑖,𝑗)∈
𝑡𝑖𝑗 +

∑

𝑖∈
𝑐𝑡𝑖 ≤ 𝑇 (24)

𝑖𝑗 , 𝑡𝑖𝑗 , 𝐸𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈  (25)

𝑑𝑖, 𝑒𝑎𝑖,≥ 0 ∀𝑖 ∈  (26)

𝑐𝑖, 𝑐𝑡𝑖 ≥ 0 ∀𝑖 ∈  (27)

𝑖 ∈ {0, 1} ∀𝑖 ∈  (28)

𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈  (29)

The objective function of (PEVEEP-MINLP) minimizes the total
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mount of electric energy consumed by the PEV on its path from the c
rigin to destination. Constraints (4) are used to calculate the amount
f energy consumed by the EV on each arc. The objective function
nforces that they hold at equality at an optimal solution. Constraints
5), (6), (7), and (8) are the classical shortest path constraints that are
sed to construct a path over the network while making sure that no
ubtours appear with the help of the objective function. Constraints (9)
nd (10) make sure that if arc (𝑖, 𝑗) is on the constructed path, then
he energy level upon the arrival at node 𝑗 is equal to the sum of the
nergy level when departing from node 𝑖 and the energy consumed on
rc (𝑖, 𝑗). The speed of the PEV on each arc satisfies the speed limits by
onstraints (11) and (12). By constraints (13), we establish the relation
etween distance, speed, and driving time on each arc if the arc is used.
onstraints (11) and (14) make sure that 𝑉𝑖𝑗 and 𝑡𝑖𝑗 are both equal to
ero if 𝑥𝑖𝑗 = 0 for every arc (𝑖, 𝑗). Note that, it can be assumed that
𝑖𝑗 > 0 as in any optimal solution that uses arc (𝑖, 𝑗) the speed of the
V will be at least 𝑚𝑖𝑛{𝑈𝑖𝑗 , 𝑉𝑜𝑝𝑡}. Hence, if 𝐿𝑖𝑗 is less than 𝑚𝑖𝑛{𝑈𝑖𝑗 , 𝑉𝑜𝑝𝑡},
hen it can be updated to this value without affecting the optimal
olution. Constraints (15) ensure that the EV can recharge its battery
t node 𝑗 ∈  if 𝑗 is on the constructed path. Constraints (16) are used
o make the energy level of the EV when departing from a node equal
o the sum of the energy level upon its arrival to the node and the
echarging amount at that node. Constraints (17) guarantee that the
nergy level when departing from a non-station node is equal to its
nergy level at arrival to that node. By constraints (18) and (19), the
nergy levels of the EV when arriving at a node and departing from it
hould be between the minimum and maximum allowed charge levels
f the node is on the constructed path, respectively. If the EV does not
top at a station node, then the constraints (20) make sure that the
echarging amount is equal to zero at that node. The predetermined
nitial charge level of the EV’s battery at the origin node and the final
harge level at the destination node are enforced by the constraints (21)
nd (22), respectively. Constraints (23) are used to compute the amount
f time spent at a recharging station which consists of a fixed time
nd a variable time depending on the recharging amount. Constraints
24) make sure that the EV arrives at the destination before the total
ime limit 𝑇 . Constraints (25), (26), and (27) are the non-negativity
onstraints and constraints (28) and (29) enforce binary restrictions on
he other decision variables.

The PEVEEP aims to find a path with minimum energy consumption
etween the origin and destination nodes while satisfying time and
nergy constraints. The weight constrained shortest path problem (WC-
PP) is an NP-hard problem (Arslan et al., 2015). In this problem, each
rc in the network has an associated weight in addition to distance. The
CSPP aims to find a shortest path between the origin and destination

odes in a directed network such that the total weight of the path is
ess than some predetermined value. Now, assuming that the EV can
ravel at any speed, we show that the PEVEEP is NP-hard even when
he speed values of the EV are fixed on each arc by demonstrating that it
s a generalization of the WCSPP. To observe this, consider an instance
f the WCSPP, where each arc has a positive length and weight. The
nergy consumption rate of an EV per unit time can be any value
reater than or equal to some constant 𝛿. We scale the distances of arcs
n the WCSPP such that the distance over weight is at least 𝛿 for every
rc. Now the weights in WCSPP become the driving times in PEVEEP
nd distances become energy consumption values, where the speed is
ixed in each arc to make energy consumption rate per unit time equal
o the distance of the arc divided by its weight. Furthermore, we assume
hat the initial charge amount of the EV’s battery is large enough so
hat there is no need to stop at a station to recharge. Thus, we have
onverted an instance of the WCSPP to an instance of PEVEEP, proving
hat the PEVEEP is NP-hard as well even when the speed values are
ixed in every arc.

The formulation (PEVEEP-MINLP) in its current form has nonlinear
onstraints which are (4) and (13). In the next section, we formulate the
EVEEP as a mixed-integer second order cone programming (MISOCP)
roblem by rewriting the nonlinear constraints as second order cone

onstraints.
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4.2. An MISOCP formulation for the PEVEEP

We now provide an MISOCP formulation of the PEVEEP. A second
order cone programming (SOCP) problem is a convex optimization
problem where a linear objective function is minimized over second
order cone constraints which are of the from ‖𝐴𝑥 + 𝑏‖ ≤ 𝑟𝑇 𝑥 +
𝑑. Note that, linear constraints are second order cone constraints.
Linear programs, convex quadratic programs, and quadratically con-
strained convex quadratic programs are some of the problems which
can be recast as SOCP problems (Alizadeh & Goldfarb, 2003). An
MISOCP problem is an SOCP problem where a subset of the variables
is restricted to take on integer values.

Recall the nonlinear constraints (4) and (13) in (PEVEEP-MINLP).
Constraints (4) are nonlinear because of the terms 𝑉 3

𝑖𝑗 , 𝑉 2
𝑖𝑗 , and 𝑉 −1

𝑖𝑗 ;
and the constraints (13) are so because of the term 𝑉𝑖𝑗 𝑡𝑖𝑗 . We can
rewrite these constraints as second order cone constraints as follows.
First, we introduce new variables, 𝑓𝑖𝑗 ≥ 0 and 𝑙𝑖𝑗 ≥ 0, to substitute
the terms 𝑉 3

𝑖𝑗 and 𝑉 2
𝑖𝑗 , in (4), respectively. Second, we substitute the

term 𝑉 −1
𝑖𝑗 in (4) by 𝐷𝑖𝑗∕𝑡𝑖𝑗 . After these substitutions, (4) becomes 𝐸𝑖𝑗 ≥

𝐷𝑖𝑗 (𝑎 𝑓𝑖𝑗 + 𝑏 𝑙𝑖𝑗 + 𝑐 𝑉𝑖𝑗 + 𝑑 𝑥𝑖𝑗 ) + 𝑒 𝑡𝑖𝑗 and we have the following new
constraints to be added to the formulation: 𝑙𝑖𝑗 ≥ 𝑉 2

𝑖𝑗 and 𝑓𝑖𝑗𝑉𝑖𝑗 ≥ 𝑙2𝑖𝑗 . The
newly added constraints can be rewritten in the form of second order
cone constraints as given in (30)–(32).
‖

‖

‖

‖

‖

(

𝑉𝑖𝑗
(𝑙𝑖𝑗 − 1)∕2

)

‖

‖

‖

‖

‖

≤ (𝑙𝑖𝑗 + 1)∕2 ∀(𝑖, 𝑗) ∈  (30)

‖

‖

‖

‖

‖

(

𝑙𝑖𝑗
(𝑓𝑖𝑗 − 𝑉𝑖𝑗 )∕2

)

‖

‖

‖

‖

‖

≤ (𝑓𝑖𝑗 + 𝑉𝑖𝑗 )∕2 ∀(𝑖, 𝑗) ∈  (31)

𝑙𝑖𝑗 , 𝑓𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈  (32)

Using the fact that 𝑥𝑖𝑗 = 𝑥2𝑖𝑗 , the constraints (13) can be rewritten
as 𝑥2𝑖𝑗𝐷𝑖𝑗 ≤ 𝑉𝑖𝑗 𝑡𝑖𝑗 ,∀(𝑖, 𝑗) ∈ . To see this, assume that in an optimal
solution 𝑥2𝑖𝑗𝐷𝑖𝑗 < 𝑉𝑖𝑗 𝑡𝑖𝑗 holds true. In this case, one can obtain a solution
with a better objective function value by decreasing 𝑡𝑖𝑗 . The constraints
𝑥2𝑖𝑗𝐷𝑖𝑗 ≤ 𝑉𝑖𝑗 𝑡𝑖𝑗 ,∀(𝑖, 𝑗) ∈  can now be rewritten as the following second
order cone constraints.
‖

‖

‖

‖

‖

(

𝑥𝑖𝑗
√

𝐷𝑖𝑗
(𝑡𝑖𝑗 − 𝑉𝑖𝑗 )∕2

)

‖

‖

‖

‖

‖

≤ (𝑡𝑖𝑗 + 𝑉𝑖𝑗 )∕2 ∀(𝑖, 𝑗) ∈  (33)

After all these modifications, an MISOCP formulation of the PEVEEP
is given in (PEVEEP-MISOCP).

(PEVEEP-MISOCP)

Minimize
∑

(𝑖,𝑗)∈
𝐸𝑖𝑗 (3)

subject to

𝐸𝑖𝑗 ≥ 𝐷𝑖𝑗 (𝑎 𝑓𝑖𝑗 + 𝑏 𝑙𝑖𝑗 + 𝑐 𝑉𝑖𝑗 + 𝑥𝑖𝑗 𝑑) + 𝑒 𝑡𝑖𝑗 ∀(𝑖, 𝑗) ∈  (34)
(5)–(12), (14)–(33)

The objective function in (PEVEEP-MISOCP) is linear and all its
constraints are second order cone constraints (including the linear
constraints). Therefore, this formulation is an MISOCP formulation.
There are several off-the-shelf solvers that can solve MISOCP problems.
Our computational experiments show that we can solve medium-size
instances of the PEVEEP to optimality in reasonable times using the
formulation (PEVEEP-MISOCP) and the CPLEX solver (IBM, 2021). For
larger instances this formulation becomes inefficient. For this reason,
we propose some heuristic solution algorithms in the next section to be
able to solve large-size instances.

5. Heuristic approaches

In this section, we present two heuristic solution approaches for the
PEVEEP. The first solution approach, which is a matheuristic, starts
with an initial path and aims to improve it by trying alternative paths
6

which are evaluated using the (PEVEEP-MISOCP) with a fixed subset
of the variables. The second solution approach is an iterated local
search (ILS) algorithm in which an initial path is constructed and three
different neighborhood definitions are used to obtain better solutions
(paths).

5.1. A matheuristic algorithm

We propose a matheuristic for the PEVEEP which uses different
mathematical programming formulations and neighborhood search
methods. These formulations are based on the mathematical pro-
gramming formulations of the PEVEEP with different groups of fixed
variables and different objective functions. (PEVEEP-MINLP) becomes
an MILP when the speed decision variables are fixed in advance and
some constraints are accordingly updated. Moreover, based on our
computational experiments, the (PEVEEP-MISOCP) formulation finds
the optimal solution much faster when the path is determined in
advance, i.e., when the binary variables determining the path are
fixed. With these observations, a matheuristic approach is proposed
to solve the PEVEEP. Before the matheuristic is explained in more
detail, we need to make two definitions. From now on, when we talk
about a solution, we mean that we are given a path joining origin and
destination nodes and all the values of the decision variables of the
formulation (PEVEEP-MINLP).

Definition 1. A solution is said to be energy feasible if it satisfies all
the constraints of (PEVEEP-MINLP) except possibly the total time limit
constraint (inequality (24)). Otherwise, the solution is said to be energy
infeasible.

Definition 2. An energy feasible solution is said to be time feasible
if it satisfies the total time limit constraint (inequality (24)) as well.
Otherwise, the solution is said to be time infeasible.

Next, we discuss two different initialization methods that we use
within the matheuristic to find an initial path. Then, we explain how
this initial path is improved by the improvement algorithms. In both
initialization methods and improvement algorithms, some mathemati-
cal programming formulations are utilized.

5.1.1. Initial path construction
In the first initialization method, we fix all the speed values in

advance, and aim to find an energy feasible solution by minimizing
total travel time of the PEV. The speed of the PEV on arc (𝑖, 𝑗) is fixed
to the speed value which results in the lowest energy consumption,
i.e., 𝑉𝑖𝑗 = 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑉𝑜𝑝𝑡, 𝐿𝑖𝑗}, 𝑈𝑖𝑗}. The resulting problem which aims
o find a Time Efficient Path is an MILP problem which is given in the

formulation (TEP-MILP). If (TEP-MILP) is infeasible, then the PEVEEP
is infeasible as well. Otherwise, it returns an energy feasible solution
which is taken as an initial solution by our matheuristic. Note that this
initial solution may or may not be time feasible.

(TEP-MILP)

Minimize
∑

(𝑖,𝑗)∈
𝑡𝑖𝑗 +

∑

𝑖∈
𝑐𝑡𝑖 (35)

ubject to

𝑖𝑗 ≥ 𝐷𝑖𝑗 𝑥𝑖𝑗 (𝑎 𝑉 3
𝑖𝑗 + 𝑏 𝑉 2

𝑖𝑗 + 𝑐 𝑉𝑖𝑗 + 𝑑 + 𝑒∕𝑉𝑖𝑗 ) ∀(𝑖, 𝑗) ∈  (36)

5)–(10), (13)–(29)

In the second initialization method, we enumerate the first 𝑘 short-
st paths joining origin and destination nodes, and select one of them
niformly at random. For the selected path, total travel time of the
EV is minimized by solving the formulation (TEFP-MISOCP) which
ims to find a Time Efficient solution on the selected Fixed Path. This
ormulation decides on the speed of the PEV on each arc on the path,
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the station(s) at which to stop by, and how much to recharge at each
stop. If (TEFP-MISOCP) is feasible, then the selected path is energy
feasible and is taken as the initial path of the matheuristic. On the other
hand, if (TEFP-MISOCP) is infeasible, then the selected path is energy
infeasible. In this case, another path from the first 𝑘 shortest paths is
selected uniformly at random, and the same steps are repeated until an
energy feasible path is found.

(TEFP-MISOCP)

Minimize
∑

(𝑖,𝑗)∈
𝑡𝑖𝑗 +

∑

𝑖∈
𝑐𝑡𝑖 (35)

subject to
(9)–(12), (14)–(23), (25)–(28), (30)–(34)

5.1.2. Improvement algorithms
After an energy feasible initial solution is constructed by one of the

initialization methods, the matheuristic aims to improve it. If the initial
solution is time infeasible, the matheuristic calls the T-Improvement pro-
cedure which aims to obtain a time feasible solution. On the other hand,
if the initial solution is time feasible or if T-Improvement procedure finds
a time feasible solution, then the matheuristic calls the E-Improvement
procedure to obtain an energy improved path.

The pseudocode of the proposed matheuristic is given in Algorithm
1. In Step 3 of Algorithm 1, one of the initialization methods is called. If
MIP Initialization method is called, and (TEP–MILP) turns out to be in-
feasible, then the PEVEEP is infeasible and the matheuristic terminates
(see Steps 4 and 5). On the other hand, if the Short Path Initialization
method is called, and none of the 𝑘 shortest paths is energy feasible,
then the matheuristic terminates, yet the PEVEEP may or may not be
infeasible (see Steps 4 and 5). Once an energy feasible initial solution
is constructed, the matheuristic checks whether it is time feasible or
not at Step 7. If the initial solution is time infeasible, the T-Improvement
procedure is called (see Step 8). If the T-Improvement procedure returns
a time feasible solution, then the E-Improvement procedure is called to
further decrease the energy consumption of the PEV if possible (see
Step 12). On the other hand, if the T-Improvement procedure cannot
find a time feasible solution, then the matheuristic terminates with no
feasible solution at hand (see Steps 9 and 10). If the initial solution
obtained at Step 3 is time feasible, then the matheuristic directly calls
the E-Improvement procedure at Step 15. Note that the E-Improvement
procedure is called at most once by the matheuristic whose output is
returned as the output of the matheuristic (see Step 18).

We now provide the details of two improvement procedures used
within the proposed matheuristic; namely, the T-Improvement and E-
Improvement procedures.

A pseudocode of the T-Improvement procedure is provided in Algo-
rithm 2. The inputs of the procedure are a time infeasible path, all
parameters of the PEVEEP, and two positive integers 𝑘 and 𝐾. The
procedure outputs a time feasible path if it can find one. At Step 3 of
the procedure, the current path is taken as the initial time infeasible
path. Then (TEFP-MISOCP) formulation is solved for the current path
at Step 4. If the optimal solution is time feasible, then the procedure
returns this solution and terminates (see Steps 5 and 6). Otherwise,
the procedure selects two nodes 𝑖 and 𝑗 uniformly at random from the
nodes that are on the current path, and enumerates 𝑘 shortest paths
between 𝑖 and 𝑗 using the Yen’s algorithm (Yen, 1971), at Steps 10 and
11, respectively. The current path is modified using the enumerated
shortest paths one by one starting with the shortest one and if any of
the modified paths is energy feasible and has a shorter total travel time,
then the current path is updated with the modified one (see Steps 13–
16). In this case, if the current path becomes time feasible, then it is
returned by the procedure and the procedure terminates (see Steps 17
and 22). Otherwise, the procedure selects another pair of nodes on the
current path and continues looking for modified paths with less total
travel time. In the T-Improvement procedure, at most 𝐾 pairs of nodes
7

Algorithm 1 Matheuristic for PEV
1: Input: All parameters in the (PEVEEP-MINLP) formulation, 𝑉𝑜𝑝𝑡
2: Output: An energy efficient and time feasible path, the values of

all decision variables of (PEVEEP-MINLP) including speed of the
PEV on each arc, stations the PEV stops at, recharge amounts, total
energy consumption, and total travel time.

3: Call one of the initialization methods (MIP or Short Path
Initialization).

4: if the initialization method cannot find an energy feasible solution
then

5: Terminate the Matheuristic.
6: else
7: if the initial solution (path) is time infeasible then
8: Call 𝑇 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 procedure for the initial path.
9: if 𝑇 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 procedure returns empty then
0: Terminate the Matheuristic.
1: else
2: Call 𝐸 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 procedure for the solution (path)

returned by 𝑇 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 procedure.
3: end if
4: else
5: Call 𝐸 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 procedure for the initial path.
6: end if
7: end if
8: Return output of 𝐸 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 procedure.

are selected (see Step 8) and for each selected pair, 𝑘 shortest paths are
enumerated (see Step 11).

The E-Improvement procedure, summarized in Algorithm 3, gets a
time feasible path, all parameters of the PEVEEP, and two positive
integers 𝑘 and 𝐾, as the inputs. The procedure aims to reduce the
energy consumption of the PEV by evaluating neighboring paths and
hopefully outputs an energy efficient time feasible path. At Step 3,
the inputted path is taken as the current path. The (EEFP-MISOCP)
formulation is solved for the current path at Step 4 with the aim of
obtaining the lowest possible energy consumption of the PEV over the
current path while making sure that the total time limit constraint is not
violated. Then, the procedure selects a pair of nodes 𝑖 and 𝑗 uniformly at
random from the nodes that are on the current path, and enumerates
𝑘 shortest paths between 𝑖 and 𝑗, at Steps 7 and 8, respectively. The
current path is modified using the enumerated shortest paths one by
one starting with the shortest one and if any of the modified paths
is energy feasible and has a smaller total energy consumption value
for the PEV, then the current path is updated with the modified one
(see Steps 10–13). In this case, the remaining modified paths are not
evaluated and the procedure continues by selecting a pair of nodes
from the newly updated current path. On the other hand, if none of
the modified paths decreases the energy consumption of the PEV, then
the procedure selects a new pair of nodes on the current path to look
for another set of neighboring paths with less energy consumption for
the PEV. Overall, in the E-Improvement procedure, 𝐾 pairs of nodes are
selected (see Step 5) and for each selected pair, 𝑘 shortest paths are
enumerated (see Step 8). Note that the procedure is a descent method as
the current solution is updated whenever an improvement is observed
in terms of the energy consumption of the PEV and finally the best
solution is returned at Step 20.

(EEFP-MISOCP)

Minimize
∑

(𝑖,𝑗)∈
𝐸𝑖𝑗 (3)

subject to
(9)–(34)
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Table 4
Comparison of (PEVEEP-MISOCP) and the mathematical programming formulations used within the matheuristic.

Formulation Objective function Fixed path or network Time limit applied? Speed on each arc

PEVEEP-MISOCP Energy minimization Network Yes DV
TEP-MILP Total time minimization Network No Parameter
TEFP-MISOCP Total time minimization Fixed path No DV
EEFP-MISOCP Energy minimization Fixed path Yes DV
1

1

1

Algorithm 2 T-Improvement Procedure
1: Input: A time infeasible path, all parameters of the PEVEEP, 𝑘, and

𝐾.
2: Output: A time feasible path, the values of all decision variables of

(PEVEEP-MINLP) including speed of the PEV on each arc, stations
the PEV stops at, recharge amounts, total energy consumption, and
total travel time.

3: Let the current path be the initial path at hand, 𝑎 ← 0.
4: Solve the (TEFP-MISOCP) formulation for the current path and let

𝑇𝐵𝐸𝑆𝑇 be the optimal objective function value.
5: if 𝑇𝐵𝐸𝑆𝑇 ≤ 𝑇 then
6: Return current path and related output.
7: else
8: while 𝑎 < 𝐾 do
9: 𝑏 ← 0.
0: Choose two nodes 𝑖 and 𝑗 uniformly at random from the

nodes that are on the current path.
1: List 𝑘 shortest paths from 𝑖 to 𝑗 and sort them from the

shortest one to the longest.
2: while 𝑏 < 𝑘 do
3: Replace the path between 𝑖 and 𝑗 in the current path with

the 𝑏𝑡ℎ shortest path and call the resulting path as 𝑃 ′.
4: Solve (TEFP-MISOCP) formulation for 𝑃 ′ and denote its

optimal objective function value by 𝑇 𝑏.
5: if 𝑇 𝑏 < 𝑇𝐵𝐸𝑆𝑇 then
6: Current path ← 𝑃 ′ and 𝑇𝐵𝐸𝑆𝑇 ← 𝑇 𝑏.
7: break
8: end if
9: 𝑏 = 𝑏 + 1.
0: end while
1: if 𝑇𝐵𝐸𝑆𝑇 ≤ 𝑇 then
2: Return current path and related output.
3: end if
4: 𝑎 = 𝑎 + 1.
5: end while
6: Return ∅
7: end if

Now, we would like to summarize the mathematical programming
ormulations used within the matheuristic. Table 4 compares MISOCP
ormulation of the PEVEEP; namely, (PEVEEP-MISOCP), and the math-
matical programming formulations used within the matheuristic in
erms of their objective functions, whether each formulation is run
n a fixed path or over the whole network, whether total time limit
onstraint is imposed or not, and whether the speed values for the PEV
n each arc are decision variables (DVs) or parameters.

.2. ILS algorithm

As an alternative to the proposed matheuristic, we consider an
terated local search (ILS) algorithm for the PEVEEP. ILS algorithm has
een successfully used in different routing problems in the literature,
see e.g., Hashimoto, Yagiura, & Ibaraki, 2008; Lourenço, Martin, &
tützle, 2003). The algorithm is an iterative procedure which starts
ith different initial solutions and aims to improve them by neigh-
orhood search procedures. When the stopping condition is met, the
8

lgorithm returns the best solution found.
Algorithm 3 E-Improvement Procedure
1: Input: A time feasible path, all parameters of the PEVEEP, 𝑘, and

𝐾.
2: Output: An energy efficient time feasible path, the values of all

decision variables of (PEVEEP-MINLP) including speed of the PEV
on each arc, stations the PEV stops at, recharge amounts, total
energy consumption, and total travel time.

3: Let the current path be the inputted path, 𝑎 ← 0.
4: Solve the (EEFP-MISOCP) formulation for the current path and let

𝐸𝐵𝐸𝑆𝑇 be the optimal objective function value.
5: while 𝑎 < 𝐾 do
6: 𝑏 ← 0.
7: Choose two nodes 𝑖 and 𝑗 uniformly at random from the nodes

that are on the current path.
8: List 𝑘 shortest paths from 𝑖 to 𝑗 and sort them from the shortest

one to the longest.
9: while 𝑏 < 𝑘 do
0: Replace the path between 𝑖 and 𝑗 in the current path with

the 𝑏𝑡ℎ shortest path and call the resulting path as 𝑃 ′.
1: Solve (EEFP-MISOCP) formulation for 𝑃 ′ and denote its

optimal objective function value by 𝐸𝑏.
2: if 𝐸𝑏 < 𝐸𝐵𝐸𝑆𝑇 then

13: Current path ← 𝑃 ′ and 𝐸𝐵𝐸𝑆𝑇 ← 𝐸𝑏.
14: break
15: end if
16: 𝑏 = 𝑏 + 1.
17: end while
18: 𝑎 = 𝑎 + 1.
19: end while
20: Return current path and related output.

We now describe the initialization method and the three neighbor-
hood search procedures that we use in the proposed ILS algorithm.

5.2.1. Initial path construction
The initialization methods used within the proposed matheuristic

construct an initial path by the help of some mathematical program-
ming formulations. In our ILS algorithm, we construct the initial path
differently and get rid of the use of such formulations. The initialization
method of the ILS algorithm starts with the origin node and moves to
an adjacent node in such a way that the distance to the destination is
now shorter. If among the adjacent nodes of the origin there are more
than one such node, one of them is selected uniformly at random. In
the following steps, we continue connecting the lastly added node to
an adjacent node which brings us closer to the destination. If there
are more than one such candidate node, we again choose one of them
uniformly at random. At some point, this procedure will end up with a
path which joins the origin and destination nodes. This path will be the
initial path of the ILS algorithm which may be neither energy feasible
nor time feasible.

5.2.2. Neighborhood search procedures
The PEVEEP has three main concerns: energy feasibility, time feasi-

bility, and energy optimization. In our ILS algorithm, we consider three
neighborhood search procedures in order to handle these concerns.
Before explaining the neighborhood search procedures, we make a
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definition. Given a solution (i.e., a path joining origin and destination
nodes, speed values of the PEV on each arc of the path, the charging
stations the PEV stops by, and the recharging amounts), the energy
slack of a node on this solution is the amount of energy the PEV needs
to bring its energy level to the minimum charge level of the battery
(𝑚) at the arrival to the node. To clarify this, let us assume that for a
given solution and a node on the path of this solution, the PEV either
does not have enough energy to reach this node, or it reaches the node
with an energy level which is less than the minimum charge level of
the battery. In this case, the energy slack of this node would be the
minimum amount of additional energy the PEV needs in order to arrive
at the node with an energy level equal to the minimum charge level of
the battery. On the other hand, if the PEV is able to reach the node
with an energy level that is at least the minimum charge level of the
battery, then the energy slack of this node would be equal to zero. For
a given solution, we define the total energy slack (𝑇𝐸𝑆) of it as the
um of the energy slacks of all the nodes on the path of this solution. If
𝐸𝑆 = 0, then the solution is energy feasible. Otherwise (if 𝑇𝐸𝑆 < 0),

he solution is energy infeasible. We use 𝑇𝐸𝑆 as one of the criteria to
valuate a newly generated neighborhood solution.

We now explain how the proposed ILS algorithm improves the
nitial solution using three neighborhood search procedures. Once a
ath is obtained by the initialization method, the initial solution is
onstructed considering that the speed value on each arc (𝑖, 𝑗) is equal
o 𝑉𝑖𝑗 = 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑉𝑜𝑝𝑡, 𝐿𝑖𝑗}, 𝑈𝑖𝑗}. Moreover, the PEV can recharge
he battery whenever a station is visited on the path in case there
s a requirement. To determine the recharging amounts, an energy
onsumption routine is defined which first calculates the energy con-
umption on each arc assuming that the speed of the PEV is equal to
𝑖𝑗 = 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑉𝑜𝑝𝑡, 𝐿𝑖𝑗}, 𝑈𝑖𝑗}. Let us assume that the station nodes are
isited in the order 𝑠1, 𝑠2, . . . , 𝑠𝓁 on this path from origin to destination.
tarting with the destination, we go backward and calculate the sum,
𝑠𝓁 , of all energy consumptions on the arcs visited between 𝑠𝓁 and the

destination. If 𝑒𝑠𝓁 exceeds (𝐶 − 𝑚), the PEV stops at 𝑠𝓁 and charges
its battery up to 𝑚𝑖𝑛{𝐶, 𝑒𝑠𝓁 + 𝑚}. Otherwise, the PEV may or may
not stop at 𝑠𝓁 . For this case, we evaluate the sum, 𝑒𝑠𝓁−1 + 𝑒𝑠𝓁 , of
all energy consumptions of the arcs visited between the destination
and 𝑠𝓁−1. If this sum exceeds (𝐶 − 𝑚), then the PEV stops at 𝑠𝓁 and
charges its battery up to 𝑚𝑖𝑛{𝐶, 𝑒𝑠𝓁 + 𝑚} at this node. Otherwise, the
PEV does not stop at 𝑠𝓁 and the backward procedure continues until
the origin is reached. The energy consumption routine just explained
helps us construct the initial solution which may be energy infeasible or
time infeasible. Hence, the developed neighborhood search procedures
are defined not only to improve the solution in terms of the energy
consumption of the PEV but also to obtain an energy and a time feasible
solution.

Once an initial solution is constructed, first, Station Insertion (SI)
procedure is applied. Then, the Replacement of Expensive Nodes (REN)
and Short Cut (SC) procedures are applied successively on the solution
returned by the immediately previous procedure. All these procedures
makes the energy calculations using the energy consumption routine
defined previously. Before giving the details of the Algorithm, we first
define the neighborhood search procedures.

Station Insertion: Once an initial solution is generated, the station
insertion (SI) procedure checks its energy feasibility. If the solution is
energy feasible (i.e., if 𝑇𝐸𝑆 = 0), then the SI procedure terminates.
Otherwise, the procedure generates neighborhood solutions one after
another by selecting two nodes on the given path and one recharging
station, say 𝑠, which is not on the path, uniformly at random. The
neighborhood solution is generated by connecting the selected two
nodes via a shortest path including node 𝑠. The energy feasibility of
the new solution is checked. If 𝑇𝐸𝑆 of the new solution improves, it is
taken as the best solution. If 𝑇𝐸𝑆 > 0, iterations continue in a similar
way. On the other hand, if 𝑇𝐸𝑆 = 0 or the number of iterations reaches
a predetermined value, 𝐾, the procedure terminates. An illustration of
9

one iteration of the SI procedure is provided in Fig. 2. In this example, a
path starts at node 1 and ends at node 5 (see Fig. 2(a)). The SI procedure
selects nodes 2 and 4 on the path (see Fig. 2(b)), and 𝑠 from the set .
The initial path is then modified by rerouting the vehicle from node 2
to node 4 through a shortest path including node 𝑠 (see Fig. 2(c)).

Replacement of Expensive Nodes: The replacement of expensive
nodes (REN) procedure is applied as the second neighborhood gen-
erating structure on the solution returned by the SI procedure. The
REN procedure tries to find a neighborhood solution that has a lower
amount of energy consumption by exchanging some parts of the path
and does not have a worse 𝑇𝐸𝑆 value. If the energy consumption value
of the neighborhood solution is not lower or its 𝑇𝐸𝑆 value is larger,
then the neighborhood solution is not accepted and the procedure
looks for another neighborhood solution. Otherwise, the neighborhood
solution is accepted as the best solution if it is either time feasible or
the corresponding total travel time is lower. The procedure continues
until the number of iterations reaches a predetermined value, 𝐾 ′.
The neighborhood solutions are constructed by selecting two nodes
on the given path uniformly at random, removing the partial path
between them, and reconnecting the selected nodes via the shortest
path between them. An illustration of the REN procedure is shown in
Fig. 3. Fig. 3(a) shows a complete path starting at node 1 and ending
at node 5. Nodes 2 and 4 are selected (see Fig. 3(b)), and they are
reconnected by the shortest path between them (see Fig. 3(c)).

Short Cut: The solution returned by the REN procedure is finally
given to the shortest cut (SC) procedure to generate new neighborhood
solutions. The SC procedure generates a neighborhood solution by
connecting two non-adjacent nodes (selected uniformly at random) on
the path of the given solution by a direct arc between them if such an
arc exists. The new solution is accepted as the best solution if the same
criteria in the REN procedure are met. That is, if the new solution is not
better than the current one in terms of the total energy consumption
or has a worse 𝑇𝐸𝑆 value (which corresponds to degree of energy
infeasibility), the procedure looks for other neighborhood solutions.
Otherwise, if the new solution is time feasible or its corresponding
total travel time is better than that of the current solution, then it is
accepted as the best solution. The procedure continues until the number
of iterations reaches a predetermined value, 𝐾 ′′, or there is no direct
arc between any two non-adjacent nodes on the path. Fig. 4 depicts
how an iteration of the SC procedure is performed on an example path.
In Fig. 4(a), a path starting and ending at nodes 1 and 5, respectively,
is shown. On this path, two non-adjacent nodes, 2 and 4, are selected
(see Fig. 4(b)), and the path is modified by directly connecting them
(see Fig. 4(c)).

The pseudocode of the proposed ILS algorithm is given in Algorithm
4. Step 3 represents a loop corresponding to different starting points. In
Step 4 of Algorithm 4, the initial path construction is called to construct
the 𝑎th initial path. Once an initial path is constructed, its total energy
consumption value is calculated via the energy consumption procedure
and accepted as the best energy consumption value on hand. Then, 𝑆𝐼 ,
𝑅𝐸𝑁 , and 𝑆𝐶 procedures are called sequentially (see Steps 5, 6, and
7). All these procedures take the output of the immediately previous
procedure as their input. After all the procedures are applied, (EEFP-
MISOCP) formulation is called to calculate the decision variables and
the objective function value in Step 8. If the recently calculated objec-
tive function value is better than the 𝐸𝐵𝐸𝑆𝑇 , then Current Path and
𝐸𝐵𝐸𝑆𝑇 are updated (see Steps 9 and 10). Note that all the procedures
are called 𝑀 times (see Step 11). At the end, current path and its related
output are returned.

At the beginning of the ILS algorithm, the solution returned by the
SI procedure can be energy feasible or not. If the given solution for
the REN procedure is energy feasible it is guaranteed that the returned
solution by the REN procedure which is given to the SC procedure
is energy feasible as well. Similarly, if the given solution for the SC
procedure is energy feasible, the returned solution will be so as well.
Moreover, energy consumption improvement and time feasibility are

two criteria that are considered in the REN and SC procedures. In other
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Fig. 2. An illustration of the SI procedure, (a) An energy infeasible path from node 1 to node 5, (b) Selection of two nodes, 2 and 4, and station 𝑠 (not shown in figure), (c)

eighborhood solution obtained by connecting nodes 2 and 4 via the shortest path including 𝑠.
Fig. 3. An illustration of the REN procedure on a path from node 1 to node 5 (a), Selection of nodes 2 and 4 (b), Modifying the path between 2 and 4 (c).
Fig. 4. An illustration of the SC procedure on a path from node 1 to node 5 (a), Selection of two nodes, 2 and 4 (b), Replacing the path between 2 and 4 by a direct arc (c).
Algorithm 4 ILS Algorithm
1: Input: All parameters in the (PEVEEP-MINLP) formulation, 𝑉𝑜𝑝𝑡.
2: Output: A path, the values of all decision variables of (PEVEEP-

MINLP) including speed of the PEV on each arc, stations the PEV
stops at, recharge amounts, total energy consumption, and total
travel time.

3: while 𝑎 ≤ 𝑀 do
4: Call the initial path construction method and let 𝐸𝐵𝐸𝑆𝑇 be the

total energy consumption value and Current path is the resulted
path.

5: Call 𝑆𝐼 for the initial path.
6: Call 𝑅𝐸𝑁 for given path by 𝑆𝐼 procedure.
7: Call 𝑆𝐶 for given path by 𝑅𝐸𝑁 procedure and denote the

resulted path by 𝑃 ′.
8: Call (𝐸𝐸𝐹𝑃−𝑀𝐼𝑆𝑂𝐶𝑃 ) for 𝑃 ′ and denote its optimal objective

function value by 𝐸𝑎.
9: if 𝐸𝑎 ≤ 𝐸𝐵𝐸𝑆𝑇 then

10: Current path ← 𝑃 ′ and 𝐸𝐵𝐸𝑆𝑇 ← 𝐸𝑎.
11: end if
12: 𝑎 = 𝑎 + 1.
13: end while
14: Return the current path and related output.
10
words, the returned solutions by these two procedures cannot be worse
than their given solutions in terms of the total energy consumption and
𝑇𝐸𝑆. Once an initial solution is processed by these three neighborhood
solution generating procedures, the (EEFP-MISOCP) formulation (see
Section 5.1.2) is called for the path corresponding to the resulting best
solution. If the solution is feasible, then the ILS algorithm returns this
solution as the best one. Otherwise, the algorithm returns empty. In
total time, the ILS algorithm is called for 𝑀 number of initial solutions,
i.e., replications. The best solutions of all replications are evaluated,
and the overall best solution is returned at the end.

6. Computational experiments

In this section, we discuss our observations on solving numerous in-
stances of the PEVEEP using the PEVEEP-MISOCP formulation and the
proposed heuristic solution approaches, i.e., the proposed matheuristic
and ILS algorithm. The PEVEEP-MISOCP formulation as well as the
involved formulations in the matheuristic are solved by CPLEX 12.10.0,
while C++ language is used to code the algorithms. All experiments are
performed in an environment with an Intel(R) Core(TM) i7-8550U CPU
@ 1.80 GHz, 8 GB RAM and Windows 10.

In the rest of this section, all experimental settings including in-
stance generation methods and parameter settings in the algorithms are



Computers & Industrial Engineering 176 (2023) 108987B. Erdoğan et al.

1

p
m
c

8
v

5
t
a
f

a
m

a
e

6

p
t
(
p
i
i

a
a

t
s
w
s
f

3
k
s
w
m

described in Section 6.1. The PEVEEP-MISOCP formulation, matheuris-
tic, and ILS algorithm are compared in terms of solution quality and
time in Section 6.2.

6.1. Experimental settings

To the best of our knowledge, there is no study in the literature that
considers speed optimization and energy efficiency for PEVs simultane-
ously. Therefore, there is no available benchmark instances suitable for
the PEVEEP in the literature. Hence, we use available network instances
defined for the mixed capacitated arc routing problem that are publicly
accessible (see Belenguer, Benavent, Lacomme, & Prins, 2006; Gouveia,
Mourão, & Pinto, 2010). All the networks are incomplete, and have
directed arcs with predetermined costs on each. We use arc costs in the
provided instances as the distances of the corresponding arcs in our
problem. In total, instances with 6 different node sizes, 24, 41, 50, 146,
95, and 321, are used.

The vehicle-dependent parameter values are the same as those
rovided in Section 3 for all instances. Moreover, the values of the
inimum battery capacity, maximum battery capacity, and the initial

harge level of the vehicle, are taken as 𝑚 = 1.5 × 108, 𝐶 = 2𝑚, and
𝐼 = 1.5𝑚 J, respectively. For all networks, lower and upper speed limits
on each arc are generated uniformly at random where the lower speed
limit, 𝐿, is selected uniformly at random between 40 and 70 km/h, and
the upper speed limit, 𝑈𝑖𝑗 , is selected uniformly at random between
0 and 120 km/h. Remember that with the parameters used, the speed
alue, 𝑉𝑜𝑝𝑡, which minimizes the energy consumption of the PEV, is

equal to 46.93 km/h (see Fig. 1 in Section 3). If for an arc (𝑖, 𝑗), 𝐿 is less
than 𝑉𝑜𝑝𝑡, then the best speed value minimizing the energy consumption
of the PEV is equal to min{𝑉𝑜𝑝𝑡, 𝑈𝑖𝑗} assuming that there are no total
time limits. Otherwise, the best speed value is 𝐿 if the total time limit,
𝑇 , allows. When there is a total time limit restriction, the best speed
value of the PEV may be different from the stated values.

In our instances, there are recharging stations on some of the nodes,
namely the station nodes. In order to analyze the effect of the number
of station nodes on solutions, we define different station densities (SDs),
which are 20%, 30%, and 40%, for each node size. SD represents the
probability that a node on the network will be a recharging station. In
this regard, the expected total number of station nodes on a network is
equal to SD × |𝑁|. To be able to make a better analysis for the effect of
SDs on the solutions, 3 sub-instances are generated from each instance
using each SD value. Total time limit, 𝑇 , is taken as loose in the initial
experiments (for the networks whose node sizes are lower than 195,
𝑇 is selected as 106 s, while for the remaining networks 𝑇 is taken as
× 106 s). In a following experiment the effects of making the total

ime limit tighter are investigated on the energy consumption and the
verage speed values of the PEV and the optimal path the PEV should
ollow.

The proposed heuristic solution approaches, i.e., the matheuristic
nd the ILS algorithm, have a few parameters to be set. For the
atheuristic, two parameters, 𝑘 and 𝐾, are used in both of the improve-

ment algorithms (𝐸 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 and 𝑇 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡). We selected
𝑘 = 𝐾 = 5 for both improvement algorithms based on some preliminary
experiments. In the ILS algorithm, the values of the parameters, 𝑀 , 𝐾 ′

nd 𝐾 ′′, are taken as 5, 15, and 5, respectively after some preliminary
xperiments.

.2. Computational results

In this section, we analyze the performances of all solution ap-
roaches we propose for the PEVEEP. For each instance and each SD,
hree sub-instances are used. First, the PEVEEP is solved using the
PEVEEP - MISOCP) formulation under loose total time limits. Table 5
rovides the average values for the optimal results over three sub-
nstances for each instance setting, i.e., specific size and SD. The values
n the table are obtained by solving 5 × 3 × 3 = 45 sub-instances.
11
Table 5
Optimal solutions using (PEVEEP - MISOCP) formulation under loose total time
limits.
|N| SD Average energy consumption value

(J × 106)
Average solution time
(s)

24 20 58.2 1.5
30 60.2 1.8
40 58.2 1.5

41 20 194.0 48.8
30 194.0 9.3
40 204.0 87.2

50 20 95.3 17.4
30 94.3 26.9
40 91.4 23.6

146 20 117.1 3938.2
30 116.1 4582.2
40 114.2 4597.2

195 20 252.0 22 312.4
30 251.6 20 482.8
40 252.2 37 098.1

Each row corresponds to an instance setting with node size in the
first column (titled as ‘‘|N|’’) and SD in the second column. The third
nd fourth columns provide the average objective function values and
verage solution times.

Table 5 shows that the average solution times are less than 2 s for
he instances whose node sizes are 24. For the instances whose node
izes are less than or equal to 50, the optimal solution can be reached
ithin 100 s on average. In general, as the instance sizes get larger, the

olution times get larger as well (one exception to this is when we go
rom instances with 41 nodes to 50 nodes). While we can solve instances

with 146 nodes within 1.5 h, instances with 195 nodes take much longer
to solve. We also tried three sub-instances with 321 nodes, and observed
that CPLEX is not able to solve any of them in three days.

Second, the PEVEEP is solved using the matheuristic and ILS algo-
rithm using loose total time limits. The matheuristic is solved with two
different initialization methods. Average optimality gaps and solution
times over three sub-instances are provided in Table 6. For all but
sub-instances with 321 nodes, the optimality gaps are calculated as
the difference between the objective function values of the heuristic
solutions and exact solutions divided by the objective function values
of the exact solutions multiplied by 100. For the sub-instances with
21 nodes, the optimality gaps are calculated with respect to the best
nown objective function values. In Table 6, rows correspond to in-
tance settings and three groups of columns correspond to matheuristic
ith first initialization method, matheuristic with second initialization
ethod, and ILS algorithm. The resulting average solution times over 3

sub-instances and optimality gaps are provided in the related columns.
Bold numbers in the table reflect the best solution approach in terms of
optimality gap where ties are broken by looking at the average solution
times.

For the node size 24, all solution approaches solve the sub-instances
to optimality. When the node size is 41, all sub-instances are solved
to optimality by all solution approaches except the ones with SD
= 40% that are solved by ILS algorithm. Instances with 50 nodes
are solved to optimality except the ones with SD = 20% that are
solved by the matheuristic with second initialization method. For the
node sizes less than or equal to 50, the performances of all solution
approaches are almost perfect. All sub-instances are solved within 27
s by all solution approaches, and almost all of the optimality gaps are
0. Matheuristic with first initialization method stands out from other
approaches by finding the optimal solutions for all these sub-instances.
For the instances with 146 nodes, the ILS algorithm finds better quality
solutions, while matheuristic with second initialization method finds
solutions faster. For the instances with 195 and 321 nodes, the best
solution approach is matheuristic with second initialization method
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Table 6
Comparison of the performances of heuristic solution approaches under loose total time limits.
|N| SD Matheuristic with first initialization method Matheuristic with second initialization method ILS algorithm

Average solution time
(s)

Average optimality
gap (%)

Average solution time (s) Average optimality
gapa (%)

Average solution
time (s)

Average optimality
gapa (%)

24 20 5.3 0.0 6.8 0.0 9.1 0.0
30 5.8 0.0 6.7 0.0 7.9 0.0
40 5.9 0.0 5.7 0.0 9.7 0.0

41 20 17.0 0.0 11.5 0.0 21.2 0.0
30 16.5 0.0 18.7 0.0 20.4 0.0
40 14.8 0.0 9.1 0.0 21.8 0.5

50 20 21.2 0.0 18.3 1.6 25.3 0.0
30 16.4 0.0 17.3 0.0 26.5 0.0
40 19.8 0.0 14.9 0.0 25.1 0.0

146 20 219.8 0.9 138.8 5.7 225.2 0.5
30 415.7 0.9 130.8 5.7 155.2 0.0
40 412.7 0.0 155.6 0.0 209.8 0.0

195 20 – – 255.2 0.0 272.2 0.5
30 – – 209.0 0.0 249.1 0.0
40 – – 175.3 0.0 236.1 0.1

321 20 – – 288.1 0.0 1000.2 0.2
30 – – 288.3 0.1 721.4 0.2
40 – – 278.0 0.0 646.1 0.1

aOptimality gaps for sub-instances with 321 nodes are calculated with respect to the best known solutions.
followed by the ILS algorithm. On the other hand, matheuristic with
first initialization method cannot return any solution within one hour
because (TEP-MILP) formulation cannot construct the initial solution in
the given time. This is represented via a dash, ‘‘–’’, in the table.

When we compare the solution times of the (PEVEEP-MISOCP)
formulation with the heuristic approaches for instances with ≥146
nodes (see Tables 5 and 6), it can be seen that matheuristic with
second initialization method and the ILS algorithm find solutions much
faster than the exact method. It is remarkable that matheuristic with
second initialization method solve all sub-instances with 195 nodes to
ptimality within 5 min on average while the same takes more than 5
for the exact method.

Third, the effect of the total time limit on the average speed and
otal energy consumption of the PEV, the constructed path, and the
olution time is analyzed on some sub-instances with 50 and 146 nodes
ith selected values of SDs. It is expected that the PEV may need

o go faster on average under tighter total time limits which may
esult in an increase in the total energy consumption. Also, the chosen
ath may subject to change with the change in total time limit. In
hese experiments, first the total travel time of the PEV under a loose
otal time limit is computed. When the total time limit is loose, there
re alternative optimal solutions where the PEV may stop and wait
nnecessarily at some charging stations. To get rid of unnecessary stops,
e multiply the total travel time of the PEV with a small positive

onstant 𝜖 and add this to the objective function. In our experiments,
is taken as 10−3. Once the total travel time of the PEV under a loose

ime limit is obtained, we multiply this with a parameter 𝛼 ∈ (0, 1] and
btain a tighter total time limit. If 𝛼 equals one, the total time limit is
t its original level. Note that 𝛼 values are chosen in such a way that
he problem is still feasible.

For each sub-instance, the constructed path, objective function
alue (energy cons. val.), average speed, and solution time are given in
able 7. Each row shows us the instance properties including different
values. Node sizes, SDs, and sub-instance numbers are shown in the

irst, second, and third columns of the table, respectively. Average
peed values are calculated over the network by dividing the sum of the
peed values of all arcs to the total number of arcs on the constructed
ath. It can be seen from the table that the smaller the 𝛼 values, the
arger the average speed values. Solution times are not much affected
y changes in the total time limit. In some cases, a decrease in 𝛼
esulted in a change in the constructed path. For example, if we look at
12

he solutions of the sub-instance 3 with 50 nodes, 30% SD and 𝛼 values
equal to 1 and 0.93, it can be seen that PEV changes its path to achieve
lower energy consumption within the given total time limit. These two
solutions are shown in Fig. 5 for illustration purposes. In Fig. 5, a subset
of all arcs and nodes of the network are displayed and some possible
paths between nodes are represented via dashed lines. The origin node
is node 1 and the destination node is node 50. Solid thin lines show
some of the real arcs of the network while solid thick lines are the
arcs of the optimal path of the PEV. Nodes 5, 23, 39, 41, 42, and 49
are among the station nodes. Note that as all nodes are not shown in
the figure, there may be some other station nodes in the network. The
optimal path is found as 1− 15− 23− 29− 37− 44− 45− 50, when 𝛼 = 1
(see Fig. 5(a)) and is found as 1 − 15 − 23 − 24 − 29 − 37 − 44 − 45 − 50,
when 𝛼 = 0.93 (see Fig. 5(b)).

In both cases, the PEV stops at node 23 in order to recharge its
battery. When 𝛼 = 1, the total time limit is not restrictive and therefore
the PEV drives at a speed which is equal to 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑉𝑜𝑝𝑡, 𝐿𝑖𝑗}, 𝑈𝑖𝑗}
(𝑉𝑜𝑝𝑡 = 13.04 m/s) on each arc (𝑖, 𝑗) on the constructed path. On the
other hand, when 𝛼 = 0.93, the PEV changes its path and needs to speed
up on some of the arcs. The speed values of the PEV for both 𝛼 values
are shown in Table 9 together with the upper and lower speed limits of
the arcs. The first column in this table shows the arcs, while the second
and third columns give the lower and upper speed limits, respectively,
the fourth and fifth columns show the speeds of the PEV on the arcs of
the constructed path when 𝛼 equals 1 and 0.93, respectively. A dash,
‘‘–’’, represents that the arc is not on the constructed path. When 𝛼 = 1,
while the PEV goes at 𝑉𝑜𝑝𝑡 on arcs (44, 45) and (45, 50), it needs to speed
up when 𝛼 = 0.93. In addition, when 𝛼 = 0.93, the PEV also goes faster
than 𝑚𝑎𝑥{𝑉𝑜𝑝𝑡, 𝐿𝑖𝑗} on arcs (1, 15), (23, 24), (24, 29), and (29, 37).

A more significant change occurs in the optimal path when we look
at the solutions of the sub-instance 2 with 146 nodes, 30% SD and 𝛼
values equal to 1 and 0.92. In this case, all the nodes except the origin
and destination nodes have changed in the optimal constructed path.

To illustrate the trade off between the total time limit and the
increase in energy consumption and the average speed, the percent
changes in average speed and energy consumption are presented in
Fig. 6. The Figs. 6(a), 6(b), and 6(c), from left to right in this figure
correspond to the three groups of sub-instances with 50 nodes shown
in Table 7 from top to bottom, respectively. Each dot in each sub-figure
corresponds to an 𝛼 value shown in Table 7 (where dot on the origin
corresponds to 𝛼 = 1), while the 𝑥 and 𝑦 axes show the percent changes
in average speed values and the percent changes in the total energy

consumption of the PEV, respectively, with respect to the values when
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Table 7
Analysis of PEV speed with changing T on networks with 50 and 146 nodes.
|N| SD Sub-instance 𝛼 Path found Energy Cons.

Val. (J × 106)
Average
speed (m∕s)

Solution
time (s)

50 20 1 1 1-15-23-28-27-35-36-38-46-45-50 100.3 14.3 14.9
0.98 1-15-23-28-27-35-36-38-46-45-50 100.4 14.6 32.5
0.93 1-15-23-28-27-35-36-38-46-45-50 101.3 15.9 43.7
0.87 1-15-24-29-37-44-45-50 105.2 18.4 38.8

50 30 2 1 1-15-24-29-37-44-45-50 91.4 14.8 32.5
0.91 1-15-24-29-37-44-45-50 93.5 17.3 218.3
0.90 1-15-24-29-37-44-45-50 94.3 17.8 31.7
0.89 1-15-24-29-37-44-45-50 95.6 18.6 36.9

50 30 3 1 1-15-23-29-37-44-45-50 96.5 15.6 15.5
0.99 1-15-23-29-37-44-45-50 96.5 15.7 32.9
0.94 1-15-23-29-37-44-45-50 97.3 16.7 39.7
0.93 1-15-23-24-29-37-44-45-50 98.1 17.2 219.7

146 20 1 1 1-69-70-71-72-83-98-99-112-113-127-135-146 117.1 14.9 2482.9
0.96 1-69-70-71-72-83-98-99-112-113-127-135-146 117.8 15.9 6446.6
0.94 1-69-70-71-72-83-98-99-112-113-127-135-146 118.7 16.6 6616.4
0.92 1-69-70-71-72-83-98-99-112-113-127-135-146 120.7 17.7 11 591.1

146 30 2 1 1-69-70-71-72-83-98-99-112-113-127-135-146 117.1 14.9 3549.1
0.96 1-69-70-71-72-83-98-99-112-113-127-135-146 117.7 15.9 5777.9
0.94 1-69-70-71-72-83-98-99-112-113-127-135-146 118.7 16.6 6868.4
0.92 1-79-80-94-108-121-122-123-124-144-145-146 120.7 17.6 5835.4

146 30 3 1 1-79-80-94-95-122-123-124-144-145-146 114.2 15.9 5307.3
0.98 1-79-80-94-95-122-123-124-144-145-146 114.7 16.6 3289.3
0.96 1-79-80-94-95-122-123-124-144-145-146 116.2 17.6 4896.1
0.94 1-79-80-94-95-122-123-124-144-145-146 121.9 20.1 1773.3
Table 8
Comparison of the performances of heuristic solution approaches under changing T values.
|N| SD Sub-instance Matheuristic with first initialization method Matheuristic with second initialization method ILS algorithm

Average solution time
(s)

Average optimality
gap (%)

Average solution time (s) Average optimality
gap (%)

Average solution
time (s)

Average optimality
gap (%)

50 20 1 21.7 0.0 27.0 0.0 21.7 0.0
30 2 19.4 0.0 21.2 0.0 20.8 0.0
30 3 16.9 0.0 33.4 0.0 22.7 0.0

146 20 1 182.0 1.5 125.9 7.0 184.2 0.0
30 2 224.2 1.9 137.6 1.8 107.3 3.4
30 3 157.3 0.0 171.9 0.0 132.5 0.0
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Table 9
Speed values of the sub-instance 3 with 50 nodes and 30% SD, 𝛼 = 1 and 𝛼 = 0.93.

Arc (𝑖, 𝑗) 𝐿𝑖𝑗 (m∕s) 𝑈𝑖𝑗 (m∕s) 𝑉𝑖𝑗 (m∕s)
𝛼 = 1

𝑉𝑖𝑗 (m∕s)
𝛼 = 0.93

(1, 15) 14.17 26.11 14.17 16.55
(15, 23) 18.89 23.61 18.89 18.89
(23, 29) 14.72 29.72 14.72 –
(23, 24) 16.39 22.22 – 16.55
(24, 29) 15.28 30.00 – 16.55
(29, 37) 15.83 24.17 15.83 16.55
(37, 44) 19.17 22.50 19.17 19.17
(44, 45) 11.67 22.78 13.04 16.55
(45, 50) 11.11 33.06 13.04 16.55

𝛼 = 1. For example, Fig. 6(a) shows that if the value of 𝛼 decreases from
to 0.98, 0.93, and 0.87 for sub-instance 1 with 20% SD, the average

peed increases by 2.4, 11.6, and 29.0%, respectively, resulting in an
ncrease in average energy consumption levels, by 0.1, 1.0, and 4.9%,
espectively. This expected change is due to the shape of the energy
onsumption function. The first derivative of this function with respect
o speed is positive for speed values that are above the optimal speed
𝑉𝑜𝑝𝑡) which means that the change in energy consumption per unit
ncrease in speed is positive if the speed is above the optimal speed.
oreover, the second derivative of this function with respect to speed

s also positive which means that the change in energy consumption
er unit increase in speed gets larger with higher speed values (that
13

re above the optimal speed).
Fourth, performances of heuristic algorithms are compared on
edium (50) and large (146) size instances under tight total time limits

n the instances in Table 7. Average optimality gaps and solution
imes over 𝛼 values used for that instance are provided in Table 8.
n Table 8, rows correspond to instance settings and three groups of
olumns correspond to matheuristic with first initialization method,
atheuristic with second initialization method, and ILS algorithm. The

esulting average solution times and optimality gaps are provided in
he related columns. Bold numbers in the table reflect the best solution
pproach in terms of optimality gap where ties are broken by looking
t the average solution times. For the node size 50, all instances are
olved optimally at most within 34 s. Matheuristic with the second
nitialization method is dominated by the other alternatives in terms
f solution time. For the node size 146, the second sub-instance is
olved with small optimality gaps by all heuristic algorithms. The other
ub-instances are solved with 0 optimality gap by the ILS algorithm
hich is the fastest one in this case. Moreover, matheuristic with second

nitialization method is not able to solve 5 out 24 sub-instances. This
s because none of the shortest 𝑘 paths is time feasible for these 5 sub-
nstances. In this case, optimality gaps and solution times are calculated
xcluding these ones.

Lastly, a special network, shown in Fig. 7, is constructed in order
o show that the shortest paths are not necessarily the most energy
fficient paths. This network has 40 nodes clustered into two groups
here the first cluster includes nodes 1 to 20, and the second nodes
1 to 40. These two clusters are connected by the help of bridges
ntroduced between the last six nodes (from 15 to 20) of the first cluster
nd the first six nodes (from 21 to 26) of the second cluster. Each
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Fig. 5. Solution of the sub-instances 3 with 50 nodes, 30% SD, 𝛼 = 1 (a) and 𝛼 = 0.93 (b).
Fig. 6. Average percent change in energy consumption values with respect to changes in average speed values based on different 𝛼 values for three sub-instances with 50 nodes
((a), (b), and (c) correspond to sub-instances 1, 2, and 3, resp.).
node except nodes 15 to 20 has at most four outgoing arcs. In the first
cluster, the arc lengths are distributed uniformly at random between
15 and 20 km. This cluster is assumed to be in a rural area whose
road segments are short and not appropriate to drive very fast. In this
cluster, for each arc (𝑖, 𝑗), 𝐿𝑖𝑗 follows a uniform distribution between
30 and 50 km/h, and 𝑈𝑖𝑗 follows a uniform distribution between 60
and 90 km/h. No recharging station is included in this cluster. The
second cluster is assumed to be in an urban area whose road segments
are longer and appropriate to drive faster. In this cluster, the arc
lengths are distributed uniformly at random between 40 and 60 km.
Moreover, for each arc (𝑖, 𝑗), 𝐿𝑖𝑗 follows a uniform distribution between
60 and 80 km/h, and 𝑈𝑖𝑗 follows a uniform distribution between 90
and 120 km/h. As the network is sparse and the arc lengths and speed
14
limits are randomly generated, some nodes turn out to never appear
in short paths. For example, nodes 23 and 26 do not show up in the
shortest 10,000 paths. Assuming that the charging stations are located
at nodes 23 and 26 and taking an appropriate tight total time limit, all
of the shortest 10,000 paths are infeasible. This instance shows that
enumerating the short paths does not guarantee a feasible solution for
the PEVEEP.

For the constructed network, as there are only a few feasible paths
between origin and destination, the proposed solution approaches
have difficulties in finding a solution. The solutions obtained by using
PEVEEP-MISOCP, matheuristic with first initialization method, and ILS
algorithm are given in Table 10. In addition to the network properties
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Fig. 7. A special network example.
Table 10
Analysis on a special network with 40 nodes.
|N| SD Algorithm used Path found Energy consumption

value (J × 106)
Solution
time (s)

Optimality
gap (%)

40 40
Exact algorithm 1-4-7-10-13-16-23-27-28-32-36-40 163.4 433.5 0.0
Matheuristic with first initialization 1-4-6-9-12-15-23-27-34-35-39-40 165.0 41.7 1.0
ILS algorithm 1-4-7-10-13-16-23-27-34-35-39-40 164.2 20.0 0.5
displayed in the first two columns, one can see the used solution ap-
proaches, the constructed paths, the total energy consumption values,
the solution times, and the optimality gaps in the remaining columns
of Table 10. The objective function value is equal to 163.4 × 106 J in
the optimal solution. This solution is obtained in approximately 434 s
using PEVEEP-MISOCP formulation. If we compare this network with
the other networks of similar node sizes in Table 6, the solution time is
much larger here. This may be because of the mentioned complexity of
the constructed network. Moreover, the ILS algorithm performs better
than the matheuristic with first initialization method. Its optimality gap
and solution time are smaller. ILS algorithm is preferable when it is
compared to the matheuristic with first initialization method, but both
heuristic methods can be used in place of PEVEEP-MISOCP in order to
get a solution in a shorter period of time. As matheuristic with second
initialization method starts with a randomly chosen shortest path, it is
unable to solve this instance. When it is executed, it cannot construct
an initial solution when 𝑘 is ≤10,000 due to not being able to find an
energy feasible path.

7. Conclusion

Electric vehicles are important in decarbonizing transportation.
Their usage rates increase day by day because of the economic and
environmental benefits. Both theoretically challenging and practically
important problems arise in routing electric vehicles. In this direction,
a problem about energy optimization of a plug-in electric vehicle (PEV)
that aims to find a path between origin and destination over a network
is studied in this paper; namely, the PEVEEP. The stations the PEV
stop by, the charge amounts, and the speed the PEV goes along each
arc are decided in addition to the path joining origin and destination.
In the literature, all of the studies trying to find an energy efficient
path use speed as a parameter. Here, it is considered as a continuous
decision variable. The energy consumption function used in this study is
a nonlinear function of the speed. This function represents the behavior
of the battery on the PEV based on some parameters.

An MISOCP formulation is used to optimally solve the PEVEEP. It
15

is seen that the formulation becomes inadequate for larger instances.
Hence, some heuristic approaches are developed for the problem as
well. The developed matheuristic is composed of three steps each
using a different mathematical formulation. Based on the initialization
method, two versions of the matheuristic are proposed. The matheuris-
tic usually returns optimal solutions quickly for small size instances for
both initialization methods. For larger size instances, matheuristic with
second initialization method outperforms the other. In addition, an ILS
algorithm is developed for the PEVEEP which is good at finding optimal
or near optimal solutions faster for large size instances compared to the
exact algorithm.

Computational experiments show that the PEV needs to go faster
under tighter total time limits by sacrificing some energy. Another
managerial insight of the results of our experiments is that the optimal
path of a PEV may be affected by the total time limit restriction. An
optimal path may become non-optimal with a decrease in total time
limit which shows that one cannot fix a path in advance and always
use it independent of the total time limit. Hence, solving the PEVEEP
after speed limits (legal or based on congestion) and the total time limit
are realized is crucial for energy efficiency.

The studied problem and the proposed solution approaches may
find use in energy efficient path finding for EVs in real life. The
heuristic solution approaches may even be integrated in some software
to dynamically find energy efficient paths thanks to their reasonable
computational times. For example, instances with 321 nodes can be
solved within 5 min using the matheuristic with second initialization
method. For problems involving a fleet of PEVs, e.g., an electric bus
fleet of a municipality, the solution approaches proposed in this paper
can be used as a foundation. Likewise, they can be adapted to solve
similar problems involving different types of vehicles with electric
engines, e.g., auto-guided vehicles (AGV), unmanned aerial vehicles
(UAV), and autonomous mobile robots (AMR).

The problem and the solution approaches studied in this paper may
have some limitations. In this study, the provided speed limits are not
time dependent. However, in real life, due to traffic congestion, the
speed limits may dynamically change over time and hence decisions

should be updated under dynamically changing speed limits. Moreover,
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there may be some uncertainties in charging infrastructures in real life.
During the trip of the PEV, if a charging station is out of service or
occupied by a crowd of other users, the problem instance may need to
be updated accordingly.

As a future work, a time-dependent version of this problem can
be studied where the speed limits of the arcs are subject to change
by time. In our problem, we only considered a single PEV. In future
studies, a fleet of PEVs can be considered and different versions of
the vehicle routing problem can be studied. Moreover, the developed
solution approaches may be modified to find energy efficient paths for
different types of vehicles including AGVs, AMRs, and UAVs.
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