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Abstract: The article presents the implementation of artificial intelligence algorithms to the problem 1

of discretization in Electrical Impedance Tomography (EIT) adapted for urinary tract monitoring. 2

The primary objective of discretization is to create a finite element mesh (FEM) classifier that will 3

separate the inclusion elements from the background. In general, the classifier is designed to detect 4

the area of elements belonging to an inclusion revealing the shape of that object. We show the 5

adaptation of the supervised learning methods such as logistic regression, decision trees, linear 6

and quadratic discriminant analysis to the problem of tracking the urinary bladder using EIT. Our 7

study focuses on developing and comparing various algorithms for discretization, which perfectly 8

supplement methods for an inverse problem. The innovation of the presented solutions lies in the 9

originally adapted algorithms for EIT allowing for the tracking of the bladder. We claim that a robust 10

measurement solution with sensors and statistical methods can track the placement and shape change 11

of the bladder, leading to effective information about the studied object. This article also shows 12

the developed device, its functions and working principle. The development of such a device and 13

accompanying information technology came about in response to particularly strong market demand 14

for modern technical solutions for urinary tract rehabilitation. 15

Keywords: electrical tomography; sensors; numerical calculation; machine learning; elastic net; 16

logistic regression; decision trees; discriminant analysis; image reconstruction; 17

1. Introduction 18

Lower urinary tract diseases are on the rise and reduce the quality of life of those 19

affected. It is estimated that up to 50% of the population will suffer from various forms 20

of incontinence at some stage in their lives [1,2]. In some cases, there will be a sponta- 21

neous regression, but approximately 70% of this group will develop persistent urinary 22

incontinence of varying severity. Approximately 50% of people with incontinence use pads 23

only to prevent leakage and soiling of underwear and do not attempt self-treatment. In 24

15% of patients with severe urinary incontinence, surgical treatment is resorted to, which 25

improves the quality of life to varying degrees. However, according to literature in the field 26

of functional disorders of the urinary system [3,4], it is argued that the rehabilitation of the 27

muscles responsible for the efficient emptying of the urinary tract should be performed 28

both before and after a surgery procedure. Nowadays, the treatment of bladder dysfunction 29

based on biofeedback and EMG therapy is a universal standard. However, the devices 30

currently available on the market struggle with poor comfort and mobility, which does not 31
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allow for daily and regular rehabilitation. In contrast to static imaging with ultrasound, CT, 32

or nuclear magnetic resonance, EIT allows continuous (up to a dozen hours) diagnostics 33

of urinary tract function. The great advantages of this method are its low invasiveness, 34

long-term evaluation of urinary tract function and the relatively low price of performing 35

the test [5–10]. 36

To face the aforementioned problems, we developed a device for non-invasive moni- 37

toring and diagnosis of lower urinary tract functional disorders, as presented in Figure 1. 38

The device will enable the measurement of muscle tension (EMG) with the possibility of 39

electrostimulation and biofeedback-type therapy. At the same time, the device has imple- 40

mented a system for visualization of the urinary tract, based on EIT and computational 41

intelligence algorithms. Due to its compact size, the device can be used in specialized 42

healthcare centers and at home.

(a) (b)

Figure 1. Panel a) shows a visualization of an innovative device for measuring EIT and EMG with a
module for muscle electrostimulation. Panel b) presents a prototype of a wearable EIT measurement
system with skin-safe sensors and a comfortable to-carry recording device.

43

In this article, we shortly introduce the concept of the developed device equipped 44

with the EIT imaging technique. Such a device can be equipped with optional EMG 45

diagnostics of muscle and nerve function or electrostimulation to allow for the required 46

muscle contractions. Firstly, we describe the principle of operation of the EIT system and 47

the equipment required to create such a device. In the further part, we present and compare 48

various mathematical algorithms for discretizing FEM elements. In principle, the main idea 49

is to construct a classifier allowing for assigning the FEM components to a class consisting 50

of the inclusion or background elements. Our study focuses on the reconstruction of 51

the urinary bladder with EIT using experimental data and applying machine learning 52

algorithms. Similar studies have been done in this field, but the results were obtained with 53

simulated data set [5,6,11] or reconstruction have been obtained with measurement data 54

using the Gauss-Newton method [12], known for its low quality results with experimental 55

data frames. 56

2. Materials and Methods 57

EIT is an imaging technique that exploits the different electrical properties of materials 58

[13–25]. In this method, a source of electric voltage is connected to an object, resulting in 59

current flows through its interior and electrical potential distributions at the surface of 60

that subject item. The gathered information is processed by an algorithm that reproduces 61

the internal impedance distribution. Such a method has a relatively low spatial image 62

resolution. The difficulty in obtaining high resolution is primarily due to the limited 63

number of measurements, the nonlinear current flow through the studied medium, and the 64

insufficient sensitivity of the voltage measurement apparatus to changes in conductivity in 65

a given area. Image reconstruction is very sensitive to pervasive modeling errors, which 66

are caused by inaccurately derived auxiliary variables of the measurement model. In 67
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practice, first and foremost, the shape of the object is inaccurately known - it has been 68

shown that, in particular, errors in its modeling cause divergence from the real object. From 69

a mathematical point of view, EIT belongs to the category of inverse problems designed 70

to study the distribution of electromagnetic fields. An inverse problem is a procedure of 71

traceability, development, or synthesis in which the parameters describing the electrical 72

field are predicated based on having some information specific to it. Such problems are 73

challenging and cumbersome to analyze. This is because there is usually not enough or 74

redundancy of information, which is sometimes contradictory or linearly dependent. The 75

numerical examination of the physical problem based on EIT is solved using the finite 76

element method (FEM). 77

2.1. Measurement System 78

The device presented in Figure 1b is equipped with 16 channels for measuring the 79

surface potential of the body with an accuracy of 1µV. Each of the channels is independently 80

programmable (measurement and stimulation parameters), allowing one to perform a 81

current simulation arbitrarily. During a single measurement, two of the attached electrodes 82

are used as charge injectors forcing the flow of AC current of constant amplitude through 83

the object under examination, while the remaining electrodes work as measuring electrodes 84

probing electrical voltages at points of contact with the object. After data is collected from 85

one sampling, the injecting electrodes are switched to the next in the sequence and the 86

procedure repeats until data is collected from all specified combinations. The developed 87

prototype is a compact, single-board EIT scanner capable of performing measurements on 88

16 electrodes in any desired configuration. In our setup, the electrodes are arranged in two 89

rows of eight electrodes, which allows for 2D (8 sensors) or 3D (16 sensors) reconstruction 90

by solving the inverse problem. The stimulation between injecting electrodes is performed 91

with a current in mA range at 100 kHz. The injection appears only between electrodes from 92

the same row. As a result, the device records 256 different voltages in a single attempt. 93

Figure 2. The main board with a programmable logic controller (PLC) used in EIT device

In detail, the device consists of a current source, a current measurement module, a 94

voltage measurement module, a set of multiplexers, and a control unit. The central unit 95

presented in Figure 2 is designed to fit into a modest ergonomic case and constructed with 96

multilayer circuits and assembled with BGA soldering. The block structure of this solution 97

is presented in Figure 3. The power source is connected to any electrode pair via an analog 98

dual 16-channel multiplexer. It consists of two independent digital-to-analog converters 99

where the voltage output of one of the converters generates the shape of the forced current 100

waveform and the voltage output of the other is the reference voltage. The converters 101

are controlled from the FPGA via a serial bus. Such a solution allows precise control of 102

the waveform shape and its amplitude. The current flow is tested on the measurement 103

resistor using a high-end ADC along with the necessary signal conditioning circuits. The 104

circuit has programmable gain, pre-filtering, and differential signal-forming capability. The 105

ADC sends the data to the FPGA via a parallel bus. Based on the reading of the value 106

from the converter, the logic regulates the value of the current obtained from the current 107
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source. The electrode voltages are tested with a measurement module consisting of a 108

series of signal conditioning circuits and an analog-to-digital converter similar to current 109

measurement. The electrodes are connected directly to a set of preamplifiers, followed 110

by a 16-channel multiplexer. The multiplexed signal is transferred to the amplifier with a 111

programmable enhancement, which is equipped with an additional module that enables 112

the signal conversion to a differential signal. The next step transfers the signal to an 113

analog-to-digital converter through a filter. The control unit in the device is an Altera 114

Cyclone IV FPGA with 144 leads and 10,000 logic elements. It controls all processes in 115

the measurement cycle and is used for data acquisition and transfer. The electronics and 116

housing are designed to fulfill the standard of EMC requirements. It was ensured that the 117

electronics did not have a negative impact on the surroundings and were not exposed to 118

electrostatic discharges from the environment. 119

Figure 3. The block diagram of a solution containing a field-programmable gate array (FPGA)

This high-end 16-bit digital-to-analog converter with a sampling rate of up to 25Msps, 120

and a signal conditioning circuit containing a measurement amplifier with adjustable 121

gain, and a differential amplifier that adjusts the signal under test to the inputs of the ADC 122

accordingly. The main component of the measurement part is the LTC2202 analog-to-digital 123

converter - a 16-bit ADC with a sampling frequency of 10Msps. This chip has a built-in 124

PGA front-end that allows changing the input range 1x or 1.5x, is powered by a single 3.3V 125

voltage, and has a high-speed parallel interface. A signal conditioning circuit consisting 126

of a measurement amplifier and a differential amplifier has been used at the input of the 127

transmitter, allowing 1 - 100x gain adjustment and signal adjustment to the differential 128

input of the transmitter. Digital gain control is realized with a digital potentiometer in an 129

adjustable resistor circuit with a resolution of 10-bit. 130

The device supports communication with a master device via Bluetooth or Wi-Fi 131

and integrates with PCs running the Microsoft Windows operating system and mobile 132

devices with Google Android or Apple iOS. The device is equipped with software for 133

superior devices that performs the function of control and programming of devices as well 134

as visualization and archiving of test results. An optional module with a touch screen that 135

allows you to control the operation of the device and change its settings without the need 136

to use a computer. This solution will be equipped with mechanisms allowing for remote 137

control of rehabilitation settings and control of its results. 138

2.2. Measurement Data Acquisition 139

The measurement data is collected and aggregated by the device, then transmitted as 140

data packets to an external unit. Fig. 4 shows an example of a measurement obtained on a 141
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patient under study, it shows voltages on the body surface (blue line) and corresponding 142

electrical potential differences between injection and ground electrodes (green line). This 143

frame presents measurement data recorded from 16 measurement electrodes. When the 144

device is connected to a computer via the USB port, the delay in communication is close to 145

6 ms, using wireless communication, the delay in sending commands is around 50 ms. At 146

the current stage of development, the designed device is able to perform 2.5 measurements 147

per second. 148

Figure 4. An example of a measurement data frame. The data frame consists of 256 components of
the recorded EIT voltages and the applied voltage for the injection current (marked with a green line)

3. Discriminant Algorithms 149

This part includes descriptions of various mathematical models used to solve the 150

discrimination problem. We begin by defining the problem of the discrete dataset consisting 151

of the mesh elements representing the torso cross-section at the urinary bladder level. For 152

the mesh, a dataset was prepared from the solution of the forward problem assuming 153

different shapes and positions of inclusions. As a result, the dataset contains 5000 different 154

examples of simulated measurements. 155

In the further section, we concentrate on the description and theoretical aspects of the 156

implemented methods. We present the algorithms based on the linear regression supported 157

by elastic net regularization, the linear, quadratic, and regularized discriminant analysis 158

with the possibility of application of principal component analysis (PCA). Moreover, we 159

include a short description of the decision tree method. 160

3.1. The finite element mesh and discretization problem 161

The main purpose of discriminant analysis (pattern classification) is to find a classifi- 162

cation rule [26,27]. This process involves identifying eligibility for a certain class based on 163

observations of the independent variable. The decision on class membership is made based 164

on knowledge of the distribution of the independent variable and the distribution of class a 165

priori. In the case of EIT, the elements of the field of view are a collection of such a class. 166

Figure 5 presents the finite element mesh composed of 848 nodes and 1555 triangles. This 167

model uses eight line electrodes that are placed in front of the torso. 168
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Figure 5. The finite element mesh of the torso cross-section at the urinary bladder level

Such a discrete set of finite elements with different inclusion positions and shapes 169

is a learning dataset for the models introduced below. This learning dataset can be writ- 170

ten as D = {(xi, yi) : xi ∈ Rm, yi ∈ {0, 1}, 1 ≤ i ≤ n}. The components of the sequence 171

{xi}1≤i≤n belong to two classes, where membership to the class is expressed as yi ∈ {0, 1} 172

for 1 ≤ i ≤ n. In the analyzed case of the presence of an inclusion for a finite element (a 173

pixel in the field of view), we assume yi = 1, while if the element does not represent an 174

inclusion we take yi = 0. Analyzing the signal received from the sensors x ∈ Rm, it is 175

possible to classify each finite element. Logistic regression was used to create a classifier 176

(finite element mapping) f : Rm → {0, 1}. 177

3.2. Logistic regression (LR) 178

Lets (Ω,F , P) will be a probabilistic space and Y a random variable with a discrete
distribution Y : Ω → {0, 1}. Then, the ratio of the probability of success to the probability
of failure can be defined as

θ(X) =
P(Y = 1|X )

1 − P(Y = 1|X )
. (1)

The main purpose of logistic regression (LR) is to evaluate the probability of success
P(Y = 1|X ), where X denotes the realization of predictors [26,28,29]. It can be assumed
that

P(Y = 1|X ) = p(X). (2)

Knowing that the probability of success p(X) ∈ (0, 1), therefore, form Eq. 1 it follows that
the chance of a success θ(X) ∈ (0, ∞), while the log-odds (also known as logit) ln θ(X) ∈
(−∞, ∞). Using the logistic regression method, we analyze the linear dependence of the
logarithm of chance on the independent variables X. For this purpose, we examine the
correlation specified by the following expression

ln θ(X) = ln
(

p(X)

1 − p(X)

)
= Xβ + ε, (3)

where ε is a random variable with a normal distribution N
(
0, σ2) and an estimator β = 179

(β1, β2, β3, ..., βm) ∈ Rm. 180

Using Eq. 3 we can derive the probability of success as 181

p(β, X)
de f
= p(X) =

eXβ

1 + eXβ
. (4)

In order to estimate β parameters Maximum-Likelihood Estimation (MLE) was used 182

[30]. 183
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3.2.1. Logistic regression with elastic net regularization 184

Due to the collinearity of independent variables (measurements obtained from the 185

sensors), certain regularization methods should be applied. In our work, we focus on 186

Elastic Net regularization [31], by definition is a linear combination of LASSO (Least Abso- 187

lute Shrinkage and Selection Operator) regression and Ridge regression called Tikhonov 188

regularization [32,33]. 189

To determine the linear regression parameters in the model defined in Eq. 3 one needs
to solve the following relation

max
β

{
N

∑
i=1

(
yix(i)β − ln

(
1 + ex(i)β

))
− λPα(β)

}
, (5)

where λ > 0, 0 ≤ α ≤ 1 and Pα represents the penalty given by the formula

Pα(β) = α∥β∥L1
+

1 − α

2
∥β∥L2

=
p

∑
j=1

(
α
∣∣β j

∣∣+ 1 − α

2
β2

j

)
. (6)

The penalty Pα(β) is the linear combination of the norms of the vector of estimators β in 190

L1 and L2 spaces. For α = 0 we have Ridge regression, while for α = 1 we obtain LASSO 191

regression. In order to adjust the regularization parameters, Eq. 5 is solved for each finite 192

element. First, the sequence of possible values of the λ parameter is determined. Then, 193

for different values of the regularization parameter, β coefficients are determined using 194

the K-fold cross-validation method. As λ parameter and β parameter estimators, we take 195

such values for which the cross-validation estimate of error is smallest (in the case under 196

consideration, we chose such values for which the cross-validation estimate of accuracy 197

was highest). 198

3.3. Linear discriminant analysis (LDA) 199

For the given learning dataset D, the probabilistic space (Ω,F , P) and random variable
Y, we can define the a priori distribution for Y as

πk =
nk
n

, (7)

where nk = #{i : yi = k} and π0 + π1 = 1. For k ∈ {0, 1}, we construct a decision rule on
the basis of Bayes’ theorem

P(Y = k|X = x) =
P(X = x|Y = k)πk

∑1
j=0 P(X = x|Y = j)πj

. (8)

Determining class affiliation based on Eq. 8 we compare values P(X = x|Y = k)πk, a larger
value of this product means a higher probability that the random variable Y will take the
value k (i.e. the observation x belongs to the k class) [26,27,29]. Considering the linear
discriminant analysis, we assume that the covariance matrix of the random variable X for
each group is identical, i.e. Σ0 = Σk = Σ. The conditional distribution of random variable
X belonging to the class k, k ∈ {0, 1} is given a formula

fk(x) = P(X = x|Y = k) =
1

(2π)m/2
√
|Σ|

exp
(
−1

2
(x − µk)

TΣ−1(x − µk)

)
. (9)

To compare the probabilities of belonging to two different classes presented in Eq. 8, it is
enough to analyze the logarithm of the quotient of these probabilities, i.e.

log
P(Y = 1|X = x)
P(Y = 0|X = x)

= log π1 − log π0 −
1
2

µT
1 Σ−1µ1 +

1
2

µT
0 Σ−1µ0 + xTΣ−1µ1 − xTΣ−1µ0.

(10)
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Moreover, for class k ∈ {0, 1} can be introduce a linear discriminant function in form

δi(x) = log πi + xTΣ−1µi −
1
2

µT
i Σ−1µi (11)

and definition of the plane separating the two classes as

H = {x ∈ Rm : P(Y = 1|X = x) = P(Y = 0|X = x)}. (12)

Combining Eq. 10 and Eq. 11 we obtain the plane H

H = {x ∈ Rm : δ1(x) = δ0(x)}, (13)

which splits the entire space Rm into two separable sets, where the membership of an
observed signal in a set is equivalent to membership in the corresponding class. Basing on
the introduced properties the decision rule can be expressed in the form

Ŷ =

{
1, δ1(x) ≥ δ0(x),
0, δ1(x) < δ0(x)

= argmax
k∈{0,1}

δk(x). (14)

As the estimators of the unknown parameters of the distributions of observations for each 200

class, we determine: 201

• expected values

µ̂k =
1
nk

∑
i:yi=k

xi

for k ∈ {0, 1}; 202

• covariance matrix

Σ̂ =
1

n − 2

1

∑
k=0

∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)
T .

It is important to remember that in the EIT experiment, the predictors are highly correlated, 203

so to overcome the problem of the singularity of the Σ matrix, it is necessary to use 204

regularization techniques [34,35]. 205

3.4. Quadratic discriminant analysis (QDA) 206

Quadratic discriminant analysis (QDA) presents an alternative approach to defining
the classification rule. Identical to the LDA, we assume that the conditional distribution
fk(x) = P(X = x|Y = k) of a random variable X is a normal distribution N(µk, Σk) for
k ∈ {0, 1}. The difference is that for LDA we assume the identical covariance matrix of
the random variable X for each group, ie. Σ0 = Σ1 = Σ, while in the case of QDA they
are different, and therefore for each class we determine the expected value vector and
covariance matrix:

µ̂k =
1
nk

∑
i:yi=k

xi, (15)

Σ̂k =
1

nk − 1 ∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)
T , (16)

where k ∈ {0, 1}. 207

Comparing the probabilities of belonging to two different classes in Eq. 8, we analyze 208

the logarithm of the quotient of these probabilities, i.e. 209

log
P(Y = 1|X = x)
P(Y = 0|X = x)

= log π1 −
1
2
(x − µ1)

TΣ−1
1 (x − µ1)−

1
2

log det(Σ−1
1 )

− log π0 +
1
2
(x − µ0)

TΣ−1
0 (x − µ0) +

1
2

log det(Σ0) (17)
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Like previously for LDA, we can define a quadratic discriminant function δi(x) for
QDA and class k ∈ {0, 1} in the following form

δi(x) = log πk −
1
2
(x − µk)

TΣ−1
k (x − µk)−

1
2

log det(Σ−1
k ). (18)

For QDA, the decision rule is expressed by Eq. 14. 210

3.5. Regularized discriminant analysis 211

When predictors are highly correlated with each other, the prediction with LDA and
QDA models is unstable. Friedman proposed a compromise (in the sense of co-integration)
between LDA and QDA that allows the covariance for QDA models to shrink toward
LDA [36]. Such a technique is called regularization, while the method is referred to as
RDA (Regularized Discriminant Analysis). This method is very similar to Ridge regression
allowing for shrinkage of covariances between characteristics, namely the covariance
matrices for each class are referred to as

Σα
k = αΣk + (1 − α)Σ (19)

for k ∈ {0, 1} and α ∈ [0, 1]. 212

In practice, the α parameter is chosen so that the classification error when applying
the model to validation data (or using cross-validation) is as small as possible. For LDA
models also the identical regularization technique can be used, the covariance matrix is
determined by the formula

Σγ = γΣ + (1 − γ)σ2 I, (20)

where γ ∈ [0, 1] and I ∈ Rm×m is an identity matrix. In the results section, the RDA was 213

used in the discrimination, where Eq. 20 was used to shrink the covariance matrix. 214

3.6. Principal Component Analysis (PCA) 215

As already described, our X signals can be highly correlated. Another method of 216

eliminating redundancy could be Principal Component Analysis. It relies on identifying 217

the factors (components) present in a dataset by creating linear combinations of the original 218

variables in such a way that the new components explain the largest part of the variation in 219

the original space [26,37,38]. We call the coordinates of the new system loads of the created 220

principal components. In the new auxiliary space, most variability is explained by the 221

initial factors. PCA is often used to reduce the size of a statistical dataset by discarding the 222

last factors [28]. 223

3.7. Decision trees 224

A decision tree is a hierarchical structure representing a classification or regression 225

model. They are used especially often when the functional form of the correlation between 226

predictors and the outcome variable is unknown or hard to determine. Each decision tree 227

consists of a root, nodes, and leaves. The root is called the initial node of the tree, from 228

which subsequent descendant nodes are formed through divisions. The terminal nodes 229

that do not undergo divisions are called leaves, and the lines connecting the nodes are 230

called branches. 231

If the tree is used for classification tasks, the leaves contain information about which 232

class in a given sequence of subdivisions is most likely to occur. On the other hand, if the 233

tree is for regression purposes, the leaves contain conditional measures of the outcome’s 234

central tendency (usually the mean). The condition represents a series of divisions leading 235

to a given terminal node (leaf). In both cases (classification and regression), the tree tends to 236

such a division that successive nodes, and leaves, are as homogeneous as possible regarding 237

the outcome variable. 238
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There are a variety of types of splitting rules used in decision trees. They are selected 239

so that subsequent nodes are characterized by less impurity. In classification trees, the most 240

commonly used measure of impurity is the Gini index 241

GiTn(c|t) = ∑
x∈Rt

|Tn,t=r|
|Tn|

GiTn,t=r (c), (21)

where 242

GiTn,t=r (c) = ∑
d∈C

PTn,t=r (c = d) · (1 − PTn,t=r (c = d)) = 1 − ∑
d∈C

P2
Tn,t=r

(c = d). (22)

Among the biggest advantages of using decision trees are: 243

• easy to interpret, 244

• do not require tedious data preparation (no standardization, introduction of binary 245

variables, allows for missing data), 246

• potential non-linearity of the relationship between the outcome variable and the 247

predictors, 248

• robust to deviations from assumptions, 249

• allows for a quick analysis of large data sets. 250

The biggest disadvantage of single decision trees is low predictive power, especially 251

in complex tasks. In such cases, it is recommended to use tree ensembles in the form of 252

random forests, bagging or boosting. 253

3.8. Measures of fit assessment 254

For each element in the dataset D, based on the readings of X, we determine the
probability of inclusion P(Y = 1|X) based on models prediction, assuming

Belonging to the area =

{
inclusion, P(Y = 1|X) ≥ t

background, P(Y = 0|X) < t
(23)

for the threshold t ∈ (0, 1). The most commonly accepted threshold value is 0.5. The 255

elementary terminology and factors describing the recognition of inclusions in the field 256

of view are presented below. As follows, we take the lack of inclusion in a finite element 257

location as a negative case (N), while the presence of inclusion is a positive case (P). 258

The confusion matrix should be specified with the following values: TP (True Positive) - 259

the number of finite elements for which inclusions were correctly recognized, TN (True 260

Negative) - the number of finite elements for which the lack of inclusion was correctly 261

identified, FP (False Positive) - the number of elements without inclusions, which are 262

assigned to have inclusions (false alarm), FN (False Negative) - the number of finite 263

elements with inclusions, for which they were considered to have no inclusions. 264

Positive Negative
Positive Prediction TP FP

Negative Prediction FN TN
Table 1. Confusion matrix

We use the standard definition of basic fit measures as follows [39]:

Accuracy =
TP + TN

TP + TN + FP + FN
, (24)

TruePositiveRate = Sensivity =
TP

TP + FN
, (25)
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Speci f icity = 1 − FalsePositiveRate =
TN

TN + FP
, (26)

PositivePredictiveValue =
TP

TP + FP
, (27)

NegativePredictiveValue =
TN

TN + FN
, (28)

Prevalence =
TP + FN

TP + TN + FP + FN
, (29)

DetectionRate =
TP

TP + TN + FP + FN
, (30)

DetectionPrevalence =
TP + FP

TP + TN + FP + FN
, (31)

BalancedAccuracy =
Sensivity + Speci f icity

2
. (32)

The use of so many measures of model fit was dictated by the fact that each measure 265

exposes a different aspect of model fit. Using them complementarily helps assess the 266

model’s performance. 267

In the EIT image reconstruction, it is also necessary to describe the ability to find 268

inclusions in the field of view. To evaluate the ability of the classifier based on the logistic 269

regression (see e.g. [39,40]) we determine the curve describing the Receiver Operating 270

Characteristic (ROC curve). This curve illustrates the relationship between sensitivity and 271

specificity for different threshold levels. The diagonal in the ROC figure describes a strategy 272

based on guessing inclusions during reconstruction. When the ROC is above the diagonal, 273

it means that the recognition technique is clearly better than guessing. The area under the 274

ROC curve in the literature is called AUC (Area under ROC curve) and denotes a measure 275

of predictability. This quantity is also included in the tables describing the reconstructions. 276

To determine the credibility of performed discretizations (consistency between the
inclusion and prediction), we rely on Cohen’s ratio κ defined as follows:

κ =
2(TP · TN − FN · FP)

(TP + FP)(FP + TN) + (TP + FN)(FN + TN)
, (33)

where κ ∈ [0, 1]. A larger value of κ determines greater consistency between inclusion and 277

discretization results. 278

On the other hand, to verify an inconsistency between inclusion and discretization
result we use McNemar’s test defined as follows:

χ2 =
(FP − FN)2

FN + FP
, (34)

This statistical test compares the sensitivity and specificity of discretization result. 279

4. Results 280

In this section, we present the results of the model classification and the tables with 281

the measures of fit describing the performance of acquired discretizations. For every of the 282

specified methods, we present the example of the result obtained for different regularization 283

approaches, and comparison the inclusion pattern corresponding to the used simulated 284

data frame. 285

The single data frame consists of 32 elements for 2D of simulated voltage at the edge 286

of the model presented in Figure 5. Due to the fact that in EIT the measurements of the 287

predictors are highly correlated, we present a covariance matrix in Figure 6 confirming this 288

statement. 289
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Figure 6. The heatmap of the covariance matrix showing correlations between predictors

In the last part of this section, we present the application of prepared algorithms to 290

the case of a healthy male in his 20s with an almost full bladder. We show a comparison of 291

results for all introduced discretization methods. 292

4.1. Results for Logistic regression 293

In Figure 7, we show the results obtained for logistic regression with applied reg- 294

ularization methods, where the higher brightness of the mesh element defines a bigger 295

probability of belonging such element to the inclusion. It can be noticed that the result with 296

Ridge or LASSO regularization roughly defines the position and shape of the inclusion. 297

Figure 7. The top left panel shows the shape of the inclusion. The other panels show the results
obtained by logistic regression with regularization methods as shown in the graphs

However, the result for ridge regularization is reasonably good and represents the 298

object’s center. The better result gives a combination of both methods, we observe visible 299

image quality enhancement. In this result, a constriction of the inclusion area towards the 300

center of the inclusion can also be noticed. 301
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Figure 8. ROC analysis for results shown in Figure 7

Figure 8 shows the ROC curve for the results in Figure 7 for the given regularization 302

methods. It can be seen that the lines for Elastic Net and Ridge regularization overlap 303

relatively well, where the ROC curve for LASSO differs from the other two. This result 304

shows that the best fit is obtained by ridge regularization and is the main component of the 305

discretization classifier that defines its diagnostic ability. 306

Table 2 shows the values of the basic coefficients, Cohen’s ratio, and McNemar’s test 307

for LR and every regularization method. The κ ratio shows that the highest credibility of 308

performed classifications is obtained by the LR method with Elastic Net regularization. On 309

the other hand, the smallest χ2 inconsistency between the snapshot and discretization is 310

also performed using this method. 311

Elastic Net Ridge LASSO
Accuracy 0.900 0.889 0.857
Sensitivity 1.000 1.000 1.000
Specificity 0.898 0.887 0.854

Pos Pred Value 0.170 0.157 0.126
Neg Pred Value 1.000 1.000 1.000

Precision 0.170 0.157 0.126
F1 0.291 0.271 0.224

Prevalence 0.021 0.021 0.021
Detection Rate 0.021 0.021 0.021

Detection Prevalence 0.121 0.131 0.163
Balanced Accuracy 0.949 0.944 0.927

AUC 0.996 0.997 0.985
κ 0.265 0.244 0.194

χ2 154.006 170.006 220.005
Table 2. Table of fit measures obtained for the reconstruction shown in Figure 7

4.2. Results for linear and quadratic discriminant methods 312

Figure 9 shows the results obtained for the discriminant methods without and with 313

applied dimensionality reduction. The top left panel in Figure 9 represents the inclusion 314

pattern. The next panels show the results for LDA, QDA, and RDA respectively. It can 315

be noticed that the predictions of those classifiers very well indicate the position of the 316

inclusion. Additionally, the QDA method almost perfectly illustrates the shape of the 317

predicted object. 318



Version January 27, 2023 submitted to Journal Not Specified 14 of 23

Figure 9. The top left panel shows the shape of the inclusion. The other panels show the results
obtained by the discriminant method without/with dimensionality reduction

The presence of noise can also be noted, randomly higher probability for single 319

elements near the mesh boundary in the result for the LDA and RDA methods. The last two 320

panels in Figure 9 represent the LDA and QDA methods with applied principal components 321

analysis (PCA). In the result, we observe the improvement of the discretization quality for 322

LDA, where QDA application of the PCA does not significantly affect the final probability 323

distribution. Comparing the results in Figure 9, one can notice that the QDA with PCA is 324

the best match of the prediction with an assumed inclusion pattern qualitatively. A closer 325

look at PCA, presented in Figure 10, reveals that the first 8 principal components can fully 326

explain the variance. 327

A closer look at PCA presented in Figure 10, reveals that the variance can be fully 328

explained by the first 8 principal components. 329

Figure 10. Principal component analysis explained variance plots. The left panel shows the percentage
of explained variance by particular components. The right panel presents the cumulative variance
explained by the first k components

In Figure 11 we show the ROC curve for the results presented in Figure 7, including 330

the dimensionality reduction method. It can be noticed that all of the used approaches 331
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result in the high-quality discretization of FEM components. This graph shows that the 332

RDA has the lowest diagnostic ability than the other methods in this attempt. 333

Figure 11. ROC analysis for results shown in Figure 9

LDA QDA RDA LDAPCA QDAPCA
Accuracy 0.943 0.995 0.947 0.947 0.995
Sensitivity 1.000 0.929 1.000 1.000 1.000
Specificity 0.942 0.996 0.946 0.946 0.995

Pos Pred Value 0.241 0.813 0.252 0.252 0.778
Neg Pred Value 1.000 0.999 1.000 1.000 1.000

Precision 0.241 0.812 0.252 0.252 0.778
F1 0.389 0.867 0.403 0.403 0.875

Prevalence 0.018 0.018 0.018 0.018 0.018
Detection Rate 0.018 0.017 0.018 0.018 0.018

Detection Prevalence 0.075 0.021 0.071 0.071 0.023
Balanced Accuracy 0.971 0.962 0.973 0.973 0.997

AUC 0.986 0.998 0.985 0.988 1.000
κ 0.371 0.864 0.385 0.385 0.872

χ2 86.011 1.125 81.012 81.012 6.125
Table 3. Table of fit measures obtained for the reconstruction shown in Figure 9

In Table 3, we present the fit measures for every discriminant method. The κ value 334

indicates that QDA obtains the best result with applied PCA. However, the lowest inconsis- 335

tency χ2 is provided by QDA without the application of PCA. This inconsistency is visible 336

in Figure 9, where the modest difference between the result of QDA and QDA with applied 337

PCA can be noticed, resulting in extra mesh elements (classified as the object) at the bottom 338

of the predicted inclusion. 339

4.3. Results for Classification and Regression Trees 340

In Figure 12, we present the use of regression trees in our classification problem. This 341

result clearly shows the high alignment between reconstruction and inclusion pattern, we 342

can observe almost one-to-one mapping. In this example, we can notice particular elements 343

incorrectly classified as pattern elements. However, comparing this graph with the results 344

obtained by previous methods, it can be seen that the decision trees algorithm shows the 345

best reconstruction quality. Since CART is robust to collinearity, none of the previously 346

mentioned methods of regularization or dimensionality reduction is needed. 347



Version January 27, 2023 submitted to Journal Not Specified 16 of 23

Figure 12. The first panel presents the inclusion shape. The second panel shows reconstruction
obtained by CART

In detail, Figure 13 shows the ROC curve for the results presented in Figure 12. This 348

result indicates high-quality discretization of FEM components. 349

Figure 13. ROC analysis for results shown in Figure 12.

In Table 4, we present the values of basics coefficients for the decision trees method. 350

The value of the κ ratio confirms the highest accuracy of the reconstruction, as well as the 351

small inconsistency defined by χ2 is also achieved. 352



Version January 27, 2023 submitted to Journal Not Specified 17 of 23

CART
Accuracy 0.999
Sensitivity 0.947
Specificity 1.000

Pos Pred Value 1.000
Neg Pred Value 0.999

Precision 1.000
F1 0.973

Prevalence 0.023
Detection Rate 0.022

Detection Prevalence 0.022
Balanced Accuracy 0.973

AUC 0.982
κ 0.972

χ2 2
Table 4. Table of coefficients obtained for the reconstruction shown in Figure 12

4.4. Reconstruction Performance 353

In order to assess the reconstruction performance, the following measures were used: 354

MSE =
1

nm

m−1

∑
i=0

n−1

∑
j=0

∥I(i, j)− K(i, j)∥2, (35)

MAE =
1

nm

m−1

∑
i=0

n−1

∑
j=0

∥I(i, j)− K(i, j)∥, (36)

PSNR = 10 · log10
(max xi)

2

MSE
, (37)

SSIM =
(2µIµK + c1)(2σIK + c2)

(µ2
1 + µ2

2 + c1)(σ
2
1 + σ2

2 + c2)
, (38)

where µI , µK are means of I, K, σ2
1 , σ2

2 are variances of I, K, and σIK is the covariance matrix 355

of I, K. c1, c2 are some constans, and I i K are the images of N × N. Assuming that I(i, j) 356

and K(i, j) are values of (i, j) pixel in the original and reconstructed image I, K respectively. 357

These are well known metrics used in assessing reconstruction quality [41–43]. 358
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Table 5. Table of measures that determines the quality of the reconstructions.

Model MAE MSE SSIM PSNR

Elastic 0.11 0.05 1.00 12.53
Ridge 0.15 0.05 1.00 10.89

LASSO 0.14 0.10 1.00 9.99
LDA 0.06 0.05 1.00 13.22
QDA 0.01 0.01 1.00 22.93
RDA 0.06 0.05 1.00 13.40

LDA PCA 0.07 0.03 1.00 14.84
QDA PCA 0.01 0.01 1.00 23.00

CART 0.00 0.00 1.00 28.92

DNN [44] - 0.0083 - -
CNN [45] - 0.0140 0.9011 18.5387

MMV-Net [46] - 0.049 0.9354 23.7423
Kernel method

[47] - - 0.7822 -

En-MSFCF-Net
[48] - - 0.9862 -

RCRC [49] - 33.177 0.68 -
TN-Net [50] - 0.0058 0.9657 30.709

VDD-Net [51] - 0.941 - -

Reconstructions obtained using different machine learning techniques produce dif- 359

ferent results in the context of the adopted measures of reconstruction quality. The best 360

reconstructions were obtained using decision trees (all measures have the best results). 361

QDA and QDAPCA methods give slightly worse results in the context of all analyzed mea- 362

sures. The worst results were obtained using Ridge regression and LASSO regularization 363

models. 364

Comparing the results with those obtained in other works[44–51] in the field of EIT 365

reconstruction using machine learning methods, it can be concluded that at least some of 366

the models presented in this work (especially the CART model) dominate the published 367

achievements in terms of the obtained measures of reconstruction quality. 368

The best of our models (CART) outperforms most models in the literature in terms 369

of the PSNR measure, except for TN-Net, which has a slightly higher value. In contrast, 370

none of the published models tops our models in terms of the SSIM measure. The less 371

frequently used MSE measure, on the other hand, shows that some models like DNN, CNN, 372

and TN-Net are better than most of our models except for the CART model, which also 373

dominates in terms of this measure. 374
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4.5. Application of the algorithms to a real case 375

Figure 14. Comparison of results obtained for real measurement data using introduced discretization
methods. As a reference, we show the USG image for the bladder superimposed on the finite element
mesh with the proportions maintained

The comparison of the results obtained using the developed discretization methods 376

with the actual measurement data is shown in Figure 14. The first row contains results for 377

logistic regression with regularization methods, the second row contains LDA, LDA with 378

PCA and RDA, and the last row contains data for QDA, QDA with PCA, and CART. These 379

results show that a finite element mesh represents the probability distribution of finding a 380

bladder in the abdominal cavity. 381

In the results, it can be seen that some methods do not give sufficient results due to the 382

discontinuity of the reconstructions and the irregularity of their shape. For example, the 383

logistic regression method gives a reconstruction with an oval shape of the studied object, 384

while Elastic Net and LASSO regularization result in a hollow area inside the bladder. 385

Moreover, it can be noted that the object reconstructed by logistic regression is too close 386

to the abdominal wall, which is biologically impossible due to the presence of abdominal 387

tissue. 388

The second row of the results presented in Figure 14 shows that the LDA method 389

does not give reliable reconstructions regardless of regularisation. We observe that the 390

reconstruction does not create a uniform structure and is divided into many fragments. It 391
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discredits the algorithm as a reliable source of information. Similar behavior is observed 392

with RDA. 393

The last line in Figure 14 contains the results for QDA, QDA with PCA, and CART. 394

The sensitivity of QDA methods allows to sufficiently capture the shape of the bladder. Due 395

to its real shape, it can be expected that the probability distribution should be larger in the 396

center of the object and smaller outside. This result is clearly visible in the reconstruction 397

plots. Contrary to the good quality of reconstructions for QDA methods, the results 398

obtained with the CART method are far from acceptable. We observe that the reconstruction 399

obtained with CART yields several separate regions. It is quite surprising because the 400

CART algorithm has a very high efficiency of reconstruction obtained from simulated 401

measurements (see Table 4). 402

5. Discussion 403

The main objective of our study is to find the best classifier for discrete elements 404

of the introduced FEM and real measurements. In this work logistic regression, linear 405

discriminant analysis, quadratic discriminant analysis, and decision trees were used to 406

reconstruct the inclusion image using the signal obtained from the simulation. In the next 407

step, those models were used to reconstruct the image of the bladder using a real data frame. 408

Since some of the methods are sensitive to redundancy various types of regularization 409

and dimensionality reductions have been applied. To give an answer to the question of 410

which method gives the best reconstruction, we show the results obtained for random 411

simulated inclusion patterns and collected measurement data. In order not to rely only on 412

visual data, many of fit measures were estimated: Accuracy, Sensitivity, Specificity, Positive 413

Predictive Value, Negative Predictive Value, Detection Rate, and AUC. Furthermore, tests 414

of the reliability of the reconstruction (Cohen’s kappa) and the discrepancy between the 415

model and the reconstruction (McNemar’s test) were performed. 416

Comparing such characteristics as Accuracy (the part of the field of view that the model 417

correctly recognized as inclusion) and Specificity (the part of the field of view belonging to 418

the background), we see that their values are quite accurate for all of the studied methods. 419

However, the visual analysis of the reconstructions indicates that reconstruction quality 420

drastically differs between the methods. The differences above stand out when comparing 421

Positive Predicted Value, Negative Predicted Value, Precision, and F1 measures between 422

models. The results for LR and LDA do not provide sufficient good reconstructions. On 423

the other hand, QDA with dimensionality reduction and decision trees present a very good 424

fit in this context. 425

To select the best qualitative results, we have to rely on more representative coefficients, 426

i.e. Cohen’s coefficient, and McNemar’s test. Comparing the results for κ and χ2 one can 427

notice that the best results provide the QDA method and decision trees. Comparing 428

models with regularization and dimensionality reduction with models without redundancy 429

correction clearly shows that the former has a better fit. To determine the final reliability of 430

the models, we compare their predictions gained from the real measurements. We observe 431

a significant advantage in the quality of reconstructions obtained by the QDA method to 432

decision trees. 433

6. Conclusions 434

The presented monitoring system is designed for automatic and unsupervised bladder 435

tracking using EIT. Besides tracking, this solution allows for bladder imaging using the 436

inverse problem solution. In this work, we focused on adapting statistical methods for 437

the problem of bladder discretization together with FEM representing the abdomen cross- 438

section at the bladder level. We have introduced several methods such as logistic regression 439

(LR), linear and quadratic discriminant methods (LDA, QDA), and decision trees. For LR, 440

LDA, and QDA we have implemented several regularization methods, eg.: ridge, LASSO, 441

and PCA. 442



Version January 27, 2023 submitted to Journal Not Specified 21 of 23

The underlying reason for our research was the implementation of the algorithm 443

for tracking the bladder, disregarding the problem of the impedance distribution in the 444

interior of the studied object. The reliable algorithms for high prediction accuracy provide 445

the ability to track the bladder, as well as the ability to monitor its filling. In addition, 446

those algorithms could work in hybrid mode together with deterministic methods for the 447

inverse problem to obtain the high-resolution impedance distribution in the studied case. 448

In our work, we placed the measuring electrodes on only one side of the patient’s abdomen. 449

This approach opens up new possibilities for creating more friendly and easier-to-use 450

monitoring devices, which are more comfortable for the patient to wear. 451

In conclusion, we have shown that the logistic regression is not sufficient for our task, 452

despite the use of the regularization method. The results obtained by LR are strongly 453

distorted, the reconstruction roughly determines the center of the object, but completely 454

loses information about the shape of the inclusion. The better performance gives the 455

discrimination result obtained by the LDA method, where the position and shape of the 456

prediction are fairly well defined. However, the LDA method does not achieve enough 457

high accuracy required for bladder tracking. In our study, the finest and most trustworthy 458

results are given by QDA, characterized by a high Cohen ratio and minor inconsistency χ2
459

defined by McNemar’s test. 460

Thus, the presented study results contain significant information that may accelerate 461

the development of bladder tracking methods in medical tomography. In addition, the 462

research contributes to improving the accuracy of tomographic imaging. The presented 463

algorithm can be used as a hybrid method for predicting an object’s electrical properties. 464
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20. Gnaś, D.; Adamkiewicz, P. INDOOR LOCALIZATION SYSTEM USING UWB. Informatyka, Automatyka, Pomiary w Gospodarce i 527
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