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Abstract

We investigate volatility spillovers from West Texas Intermediate (WTI) crude oil to carbon
emission allowance futures, focusing on the period surrounding the WTI negative pricing event of
April 2020. Results evidence, pre-negative WTI, a doubling of directional spillover from WTI oil
to carbon allowance futures upon the global spread of COVID-19, with a sharp elevation of direc-
tional spillover from WTI oil to carbon allowances during the specific period of negative WTI. This
extraordinary rise in directional spillover continued past the near-term contract through several
ensuing contracts. Results suggest that carbon futures markets are highly sensitive to periods of
fragility.
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1. Introduction and motivation

Carbon credit markets and cap-and-trade systems have received increasing attention from re-
searchers after the implementation of the EU emission trading system (EU ETS) in 2005. with
subsequent studies examining connections between European Union carbon allowances (EUA) and
energy markets [Bunn and Fezzi, 2007, Hintermann, 2010, Keppler and Mansanet-Bataller, 2010,
Koch, 2014, Ji et al., 2018, Wang and Guo, 2018, Zheng et al., 2015, Tan et al., 2020, Batten et al.,
2021]. Studies suggest that macroeconomic conditions, supply and demand conditions, and new
institutional information impact carbon credits [Chevallier, 2009, Alberola et al., 2008, Chesney
and Taschini, 2009, Aatola et al., 2013, Oberndorfer, 2009, Sousa et al., 2014, Zhu et al., 2020].
As understanding the co-movements between carbon emissions trading markets and crude oil mar-
kets is important for designing effective policies for reducing greenhouse gas emissions [Tol, 1999,
Fankhauser and Tol, 2005, Tol, 2005, Böhringer et al., 2009, Tol, 2018], we are motivated to inves-
tigate spillovers in the volatility of West Texas Intermediate crude oil (WTI) on the volatility of
carbon emission allowance futures products during times of great fragility.

We focus on the effects of the April 2020 dropping of WTI prices to negative values, applying
a generalised version of the spillover index proposed by Diebold and Yilmaz [2012], based on the
vector autoregressive (VAR) models of Sims [1980]. To identify the transmission mechanism of
volatility stock among oil prices and carbon credits, we build on the dynamic correlation model
of Engle [2002], focusing on the estimation of traditional dynamic conditional correlation of the
energy sector with that of WTI. The magnitude of volatility spillovers and co-movements of EUAs
during a time of both the COVID-19 pandemic and negative oil prices presents valuable information
regarding carbon futures markets during times of great financial distress. By examining spillovers
around the unprecedented extreme event of COVID-19 overlapping with negative oil prices, we add
to our understanding of how spillover relationships manifest during extreme circumstances.

We consider a risk premium channel of volatility spillover, in which a shock in one capital
market affects the willingness of participants in another market to hold risk, [Khalfaoui et al.,
2015, Du and He, 2015, Wang and Wu, 2018, Xu et al., 2019]. We apply the generalized spillover
index of Diebold and Yilmaz [2009] and DCC-GARCH approach of Engle [2002] to investigate the
possible transmission mechanism of volatility shocks across WTI and 12 different Thomson Reuters
Eikon classified energy future products. By incorporating both high-frequency and daily time series
from March 2019 through May 2020, we compare volatility spillovers among different periods: i)
pre-pandemic, defined to be the period 1 March 2019 through 31 December 2019; ii) during the
occurrence of pneumonia caused by unknown aetiology initially in Wuhan, but by 1 January 2020
identified as a pandemic, defined by us as Q1 2020 to represent the COVID-19 development phase;
and iii) the official occurrence of the significant period of oil price disruption and negative oil prices
during and after 20 April 2020, when the prices turned negative.

Our results evidence for the first period a doubling of directional spillover from WTI oil to
carbon allowance futures as COVID-19 initially manifested in western economies. Results for the
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subsequent periods are most striking, with an enormous spiking of directional spillover from WTI oil
to carbon allowances during the period surrounding negative WTI prices. This extraordinary rise
in directional spillover continues from the near-term contract through several ensuing contracts.
We interpret our results as consistent with COVID-19 establishing a platform for the fragility
concerning the interaction of WTI oil and carbon allowances. Subsequently, when an extraordinary
movement in WTI price occurred, the impact of this injection of uncertainty on carbon allowances
was enormous.1

To investigate the transmission mechanism of volatility shocks of oil prices to carbon credits, we
focus on the carbon future products traded under European Union Allowance or European Union
Aviation Allowance. The EU ETS, as with other carbon credit market systems, is designed to
encourage companies and individuals to reduce their greenhouse gas emissions and select greener
energy options. Previous evidence suggests that the most important determinants for carbon prices
are energy prices. Given this, it is important to consider the role of negative crude oil prices
concerning transitioning the world from fossil fuels to green energy. The EU ETS is a key component
of the European Union’s climate policy. Currently, the EU ETS is the single largest carbon pricing
item in the world, with the system encompassing about 45% of the EU’s greenhouse gas emissions.

We provide new evidence regarding how markets behave during times of heightened fragility. We
evidence that directional spillover from WTI oil to carbon-allowance futures extends well beyond
near-term contracts to subsequent contracts. Our findings complement recent work that investigates
how markets, in general, are prone to manifesting spikes of disruption during periods of downturn
and fragility [Anand and Venkataraman, 2016].

2. Data

We investigate the sample period March 2019 to May 2020, at both daily and hourly frequencies.
Overall, we have 868 daily observations2, as shown in Table 1. Data are from Thomas Reuters Eikon.
Descriptive statistics for hourly WTI prices and prices of the carbon future products are shown in
Table 1. Following Antonakakis et al. [2018] and Corbet et al. [2020], we define the price of stock
i as its absolute return, Vit = |lnPit − lnPit−1|, where Pit is the daily closing value of the stock oil
price on day t. The price of WIT is denoted by j.

Insert Table 1 and Figure 1 about here

Figure 1 presents the daily volatilities of the carbon future products, evidencing that each of
the carbon future products shared similar patterns in their price volatility through the sample

1Why WTI oil prices suddenly dropped negative in April 2020 is not the focus of this study but was likely caused
by a combination of COVID-19 and other geopolitical factors, as detailed by Corbet et al. [2020].

2We also note that similar analyses carried out on a variety of higher frequency data produced qualitatively similar
results. For brevity, these results are not presented in this analysis but are available from the authors upon request.
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period,with similar peaks and troughs. For example, there were peaks in volatility during the
third quarter in 2018 for every carbon future except for RPC Fuel Switching EUA TTF Monthly
Continuation (FSEUATTFMc1). There was another peak in the price volatility for all future
products at the beginning of the second quarter of 2020. This pattern is consistent with a connection
between crude oil prices and carbon future prices.

3. Methodology

Initially, we focus on estimating dynamic conditional correlations. We select the use of FI-
GARCH, because, as highlighted by Cont [2001], long memory is a stylised fact of financial time
series. Therefore, a hyperbolic decay in the autocorrelation of absolute returns may suggest per-
sistence in return volatilities. Ding et al. [1993] posit that absolute returns are found to display
higher autocorrelations than log returns. Consequently, initially, we employ Hurst exponent tests to
check for long memory in the return series. The results of these tests, presented in Table 2, suggest
persistence of return volatility. Consequently, we consider that the FIGARCH model, incorporating
fractional differencing to account for long memory, is preferred.

Insert Table 2 about here

To establish a FIGARCH model, we employ the dynamic conditional correlation methodology
(DCC-GARCH) of Engle [2002], decomposing the conditional covariance matrix:

Ht = DtRtDt (1)

Rt = diag(Qt)
− 1

2 .Qt.diag(Qt)
− 1

2 and Qt = Ω + αεt−1ε
′

t−1 + βQt−1 (2)

where Rt is defined as the conditional correlation matrix, and Dt is a diagonal matrix with
time-varying standard deviations

√
hi,t on the main diagonal. Additionally, Qt denotes the ap-

proximation of the conditional correlation matrix, displayed above in Eqs.1 & 2 as Rt. The positive
semi-definiteness of Qt is guaranteed if both α and β are both positive, and the sum of both α and
β is less than one, with the initial matrix (Q1) being positive. Ω = (1 − α − β)R̄, where R̄ repre-
senting the unconditional average correlation. Next, we estimate Dt, which denotes the conditional
volatility. We use the εt = D−1

t rt to estimate the quasi-conditional correlation matrix Qt. Qt is
re-scaled to obtain the conditional correlation matrix described in Eq.2 [Harris and Nguyen, 2013].
Additionally, the conditional volatility Dt and the conditional correlations Rt are then employed to
generate the conditional correlation matrix Ht. The h-step-ahead conditional covariance matrix is
:

Ht+h = Dt+hRt+hDt+h (3)
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We note that the forecast of each volatility in Dt+h can be estimated for the univariate case
using the function Ht+1:t+h = h

∑T
i=0 λ(h, i)rt−ir

′

t−i. Since Rt is described as a non-linear process,
the h-step-ahead forecast of Rt cannot be computed using the recursive procedure, however, the
forecasts of Qt+h and Rt+h are calculated as:

Qt+h =

h−2∑
j=0

(1− α− β)Q̄(α+ β)j + (α+ β)h−1Qt+1 (4)

Rt+h = diag(Qt)
− 1

2 .Qt+h.diag(Qt+h)−
1
2 (5)

We extend this structure with a fractionally-integrated GARCH methodology (FIGARCH).
The FIGARCH model offers adaptability to modelling conditional variance, as it allows for the
covariance stationary GARCH model when d = 0, along with that of the IGARCH model when
d = 1. For our FIGARCH modelling, the persistence of conditional variance shock is estimated
by the parameter d, also referred to as the fractional differencing parameter. This denotes a
long-memory process imposed through a fractional-difference operator. Therefore, for 0 < d < 1,
the FIGARCH methodology is sufficiently adaptable to accommodating an intermediate range of
persistence [Baillie et al., 1996]. The conditional volatility of the FIGARCH(1,d,1) model is shown
as:

ht = ω +
[
1− βL− (1− φL)(1− L)d

]
r2t + βht−1 (6)

where L is a lag operator. The FIGARCH process defaults to a GARCH process when d = 0,
while the h-step forward prognosis of the FIGARCH(1,d,1) model is:

ht+h = ω(1− β)−1 +
[
1− (1− βL)−1(1− φL)(1− L)d

]
r2t+h−1 (7)

When in a multivariate context, the same DCC approach is re-deployed with the same fore-
cast functions for Qt+h and Rt+h. The multivariate Student t distribution is employed since the
assumption of normality is rejected for each of the volatility series.

To investigate spillovers in the volatility of WTI during the COVID-19 pandemic, along with
subsequent impacts of negative oil prices on carbon pricing, we apply the spillover index of Diebold
and Yilmaz [2009]. This builds on the vector autoregressive (VAR) models developed by Sims
[1980]. The methodology culminates in the following net pairwise volatility spillover index:

NPSij(H) =

(
φ̃ji(H)∑N

i,m=1 φ̃i,m(H)
− φ̃ij(H)∑N

j,m=1 φ̃j,m(H)

)
x 100 =

(
φ̃ji(H)− φ̃ij(H)

N

)
x 100 (8)

where the net pairwise volatility spillovers (NPS) between markets i and j are consequently
determined as the difference between gross volatility shocks received by variable j from variable i,

5



while concomitantly acknowledging shocks transmitted from j to i (Eq.8).

4. Results

We analyse the co-movements and connectedness of WTI and selected carbon markets during the
period May 2019 to May 2020. To investigate co-movements, we apply the generalized spillover index
by Diebold and Yilmaz [2012]. We then investigate net-pairwise directional volatility spillovers of
WTI on stated carbon markets. Figure 2 highlights results of DCC-GARCH volatility co-movement
analysis, showing total directional volatility spillovers from WTI onto each carbon market product
before and after the outbreak of the COVID-19 pandemic. These results are obtained by applying
the generalised spillover index by Diebold and Yilmaz [2012], which is built on the VAR approach
developed by Sims [1980]. Figure 2 highlights the impact of the outbreak of the COVID-19 pandemic
and negative oil prices on carbon products. There was subsequent direct volatility spillover from
WTI prices to each carbon market product around the beginning of the second quarter in 2020.
Spillovers from the negative price shock on WTI correlated more than 20 with the price movements
of each carbon market product. For some carbon price products, the sharp increase in dynamic
correlation with WTI increased over five-fold in the period between January 2020 and May 2020,
and eight-fold based on the twelve months prior. Before 2020, the directional spillovers from WTI
to carbon markets were significantly lower, with the estimated directional correlation coefficient
estimate averaging 1.58.

Insert Figure 2 about here

Initial results suggest that during the outbreak of COVID-19 and negative oil prices, a large part
of the volatility fluctuations of carbon markets were driven by crude oil prices3. Sharp interactions
were perhaps due to concerns of traders regarding the sharp effects that negative oil price valuations
might present on the supply and demand for carbon futures products.4 Further evidence of the
directional volatility spillovers from WTI to the carbon market products during the COVID-19
pandemic is presented and analysed in the next subsection.

3On the other hand, fluctuations in carbon pricing might have been due to the reduced energy demand. According
to Corbet et al. [2020], renewable energy markets reacted to the drop in global energy demand during the pandemic,
while renewable energy output was increased. One particular view pertaining from such research is based upon the
possible scenario where businesses and firms re-evaluated to a view that renewables would be more likely to meet
future energy demand, and so, the threshold investment in fossils would be less likely to be needed, therefore, we
would expect a decline in carbon offsets.

4For example, the International Energy Agency (IEA) has reported that global carbon dioxide emissions fell 8% at
the beginning of the pandemic. In total, the annual energy demand has been estimated to decline by 1.5%. Previous
research has also shown that crude oil markets and carbon markets are connected. For example, Yu et al. [2015] find
strong spillover effects between EUA carbon and Brent crude oil markets on the medium-time scale. Similarly, Ji
et al. [2018] and Wang and Guo [2018] found that oil markets affect carbon price changes and risks.
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Our analysis next continues by investigating the volatility spillover relationship of WTI crude oil
prices to each carbon product used in our study. Having investigated total volatility spillovers from
the oil market to the carbon market, it is interesting to examine which of the carbon market products
received more spillover effects from WTI compared to other future products. Figure 3 illustrates
our estimation of net pairwise direct volatility spillovers from WTI crude oil price to selected carbon
market products for the period October 2017 through May 2020. This period includes observations
from both before and during the COVID-19 crises, as well during the negative oil pricing event, in
order to assess how such markets behaved under fragility versus ’normal’ periods.

Insert Figure 3 about here

Figure 3 highlights that net directional volatility spillover effects from WTI to each carbon
market product were respectively very similar, indicating that the efficiency of carbon futures
markets remained intact during this incredibly difficult period. While nominal differentials exist,
the differentials between the identified spillovers remain modest5. The net spillover effects fromWTI
to the carbon markets were negative for all other carbon products during the period throughout
Q3 and Q4 2019, through Q1 and Q2 2020, despite a short positive peak at the beginning of Q2
2020. These results indicate that WTI received more spillover effects than transmitted during the
COVID-19 pandemic. Furthermore, Figure 3 suggests that before 2020, the net volatility spillover
effects have been bi-directional. These findings are consistent with previous research, which has
identified bi-directional net volatility spillovers of oil markets to various stock markets before the
COVID-19 pandemic and unexpected negative prices [Arouri et al., 2011, 2012, Antonakakis et al.,
2018, Khalfaoui et al., 2015, Maghyereh et al., 2009].

Insert Table 3 about here

Further evidence on the connectedness of WTI and the selected carbon market products is
presented in Table 3. These results illustrate the net directional spillovers between the two markets
for the period March 2019 through May 2020, which includes the time of relative calm before, and
the significant period of market panic during the escalation and development of the COVID-19
pandemic, and the resulting negative oil price event. Examining Table 3, we can observe further
evidence of market correlations between oil and carbon markets. The results support our previous
finding that crude oil markets acted as source, rather than recipients, of net spillovers. Oil markets
dominate each respective carbon market, with the source of net directional connectedness in each

5Interestingly, there is one-carbon market product, based on RPC Fuel Switching EUA TTFMonthly Continuation
(FSEUATT), for which the net directional spillover effects of WTI appears to be quite different to for rest of the
selected carbon products, however, this can be explained through differentials of holdings and the creation of the
fuel-switching series when compared to the other analysed products.
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case over 93% from WTI to each carbon market product. However, the dynamic and time-varying
changes of such spillovers, Table 4, are of much interest. When presenting the average, intra-
period estimates of directional spillovers, pairwise spillovers and net directional connectedness, we
observe the differential behaviour between three distinct periods. We observe clear evidence of
differential behaviour between the pre-crisis and COVID-19 periods, however with again distinctly
differential behaviour evident in the period surrounding negative WTI prices. This indicates that
although financial market participants evaluated the effects of COVID-19 upon both WTI and
carbon futures markets, the event of negative WTI prices also catalyzed extreme market effects.

Insert Table 4 about here

Our results suggest that the WTI and EUA carbon markets shared substantial ‘confusion’
proximate to the early evolution of the COVID-19 pandemic6 and during the period surrounding
negative WTI prices. We infer more generally that carbon markets are vulnerable to extreme
macroeconomic and commodity market conditions.

5. Conclusions

We investigate spillovers in the volatility of West Texas Intermediate crude oil (WTI) on the
volatility of carbon emission allowance futures, specifically for the time when WTI prices became
negative during the onset of COVID-19. Applying a generalized spillover index, and employing
dynamic correlation modelling, we identify transmission of volatility between oil prices and carbon
credits during this extraordinary period. Results evidence, for the period preceding negative WTI,
a doubling of directional spillover from WTI oil to carbon allowance futures upon the global spread
of COVID-19. Subsequently, there is a spiking of directional spillover from WTI oil to carbon
allowances during the specific period of negative WTI, with this extraordinary rise in directional
spillover continuing from the near-term contract through several ensuing contracts. Our results
are consistent with COVID-19 establishing a fragile platform for other external conditions to affect
sudden spikes in directional volatility.

Results are consistent with the extreme fall in WTI prices catalysing a market reassessment of
the appropriate future cost of polluting, as has been suggested by recent studies [Corbet et al., 2020,
2021, 2022]. Our results also suggest that carbon futures are simply vulnerable to volatility conta-
gion from energy markets, without an attributable cause. More broadly, our findings complement
recent research highlighting how markets are prone to manifesting spikes of disruption during pe-
riods of downturn and fragility. We contribute both to an understanding of energy markets during

6Considered as a ’black-swan’ event of financial markets [Conlon et al., 2020, Corbet et al., 2020, 2021, Goodell,
2020, Yarovaya et al., 2020].
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COVID-19, as well as to understanding the vulnerability of carbon futures markets during periods
of heightened fragility.
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Figure 1: Carbon market price volatility

i) EAAc1 ii) CFI2Z0 iii) FEUAC1

iv) FEUAZ0 v) NEUAZ0 vi) FEUAZ1

vii) FEUAZ2 viii) FEUAZ3 ix) FEUAZ4

x) FEAAC1 xi) FSEUATTFMc1 xii) EAAC0

Note: The data sample used for the estimation covers the period from March 2019 through May 2020 and it includes both
daily and hourly observations.
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Figure 2: Total Directional Volatility Spillovers from WTI onto each Analysed Sector

i) EAAc1 ii) CFI2Z0 iii) FEUAC1

iv) FEUAZ0 v) NEUAZ0 vi) FEUAZ1

vii) FEUAZ2 viii) FEUAZ3 ix) FEUAZ4

x) FEAAC1 xi) FSEUATTFMc1 xii) EAAC0

Note: The above table represents the total directional volatility spillovers from WTI upon each carbon market product. To
examine spillovers of the volatility of WTI during COVID-19, we apply the generalized version of the spillover index
proposed by Diebold and Yilmaz [2009], and which builds on the vector autoregressive (VAR) models of Sims [1980].

13



Figure 3: Net pairwise directional volatility spillovers

i) EAAc1 ii) CFI2Z0 iii) FEUAC1 iv) FEUAZ0 v) NEUAZ0 vi) FEUAZ1

vii) FEUAZ2 viii) FEUAZ3 ix) FEUAZ4 x) FEAAC1 xi) FSEUATTFMc1 xii) EAAC0

Note: The above table represents the net pairwise directional volatility spillovers by carbon market. To examine spillovers of the volatility of WTI during the
COVID-19 pandemic, we apply the generalized version of the spillover index proposed by Diebold and Yilmaz [2009], and which builds on the vector
autoregressive (VAR) models developed by Sims [1980].
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Table 1: Descriptive Statistics

CLC1 CFI2Z0 FEUAC1 FEUAZ0 NEUAZ0 FEUAZ1 FEUAZ2 FEUAZ3 FEUAZ4 FEAAC1 EAAZ0 EAAC1 FSEUATT
Mean 0.0175 0.0212 0.0214 0.0211 0.0211 0.0206 0.0201 0.0197 0.0194 0.0215 0.0214 0.0216 0.1292
Median 0.0104 0.0166 0.0169 0.0162 0.0164 0.0159 0.0157 0.0154 0.0151 0.0170 0.0167 0.0169 0.0604
Maximum 0.3196 0.1888 0.1949 0.1888 0.1900 0.1813 0.1747 0.1698 0.1647 0.1960 0.1894 0.1950 4.7944
Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Std. Dev. 0.0291 0.0203 0.0207 0.0203 0.0207 0.0198 0.0193 0.0189 0.0185 0.0207 0.0205 0.0210 0.2901
Skewness 5.9850 2.5482 2.5430 2.5460 2.4734 2.5087 2.4795 2.4507 2.4174 2.5017 2.5315 2.5275 8.8336
Kurtosis 49.1277 14.9905 15.1336 14.9712 14.4557 14.5314 14.1754 13.9687 13.6897 14.8085 14.7711 14.6234 111.1740

Jarque-Bera 82,136.5 6,139.1 6,260.2 6,120.8 5,631.3 5,719.7 5,406.3 5,220.1 4,978.2 5,948.5 5,938.3 5,810.5 434,497.1
Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sum 15.15 18.46 18.62 18.32 18.38 17.91 17.52 17.18 16.84 18.72 18.57 18.80 112.12
Sum Sq. Dev. 0.7352 0.3607 0.3720 0.3600 0.3733 0.3430 0.3248 0.3096 0.2978 0.3750 0.3668 0.3846 73.0149

Observations 868 868 868 868 868 868 868 868 868 868 868 868 868

Note: The above data presents the carbon futures products used in this analysis for the period March 2019 through May 2020. Data was obtained from
Thomson Reuters Eikon.
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Table 2: Hurst Exponents

Type CLc1 CFI2Z0 FEUAc1 FEUAZ0 NEUAZ0 FEUAZ1 FEUAZ2 FEUAZ3 FEUAZ4 FEAAc1 EAAZ0 EAAc1 FSEUATT
Higuchi 0.89 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.88

0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02
Peng 0.52 0.68 0.67 0.67 0.67 0.67 0.66 0.66 0.65 0.67 0.68 0.67 0.76

0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03
R/S 0.56 0.83 0.82 0.84 0.82 0.84 0.84 0.84 0.84 0.83 0.83 0.83 0.76

0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03
Boxed Per. 0.77 0.63 0.61 0.62 0.61 0.61 0.61 0.61 0.61 0.62 0.63 0.61 0.67

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04

Note: The above data presents the carbon futures products used in this analysis for the period March 2019 through May 2020. Data was obtained from
Thomson Reuters Eikon.

Table 3: Net Directional Connectedness

WTI Carbon WTI Carbon WTI Carbon
CLc1 CFI2Z0 CLc1 EAAc1 CLc1 EAAZ0

WTI 94.30 5.70 94.36 5.64 94.17 5.83
Carbon Product 1.80 98.2 1.95 98.05 2.06 97.94
Directional TO Others 1.80 5.70 1.95 5.64 2.06 5.83
Directional Including Own 96.10 103.90 96.31 103.69 96.23 103.77
NET Directional Connectedness -3.9 3.90 -3.69 3.69 -3.77 3.77

CLc1 FEAAc1 CLc1 FEUAc1 CLc1 FEUAc0
WTI 94.57 5.43 94.35 5.65 94.18 5.82
Carbon Product 1.64 98.36 1.72 98.28 1.73 98.27
Directional TO Others 1.64 5.43 1.72 5.65 1.73 5.82
Directional Including Own 96.21 103.79 96.06 103.94 95.91 104.09
NET Directional Connectedness -3.79 3.79 -3.94 3.94 -4.09 4.09

CLc1 FEUAZ1 CLc1 FEUAZ2 CLc1 FEUAZ3
WTI 94.23 5.77 94.23 5.77 94.18 5.82
Carbon Product 1.79 98.21 1.88 98.12 1.94 98.06
Directional TO Others 1.79 5.77 1.88 5.77 1.94 5.82
Directional Including Own 96.02 103.98 96.11 103.89 96.12 103.88
NET Directional Connectedness -3.98 3.98 -3.89 3.89 -3.88 3.88

CLc1 FEUAZ4 CLc1 FSEUATT CLc1 NEUAZ0
WTI 94.14 5.86 94.26 5.74 93.64 6.36
Carbon Product 1.91 98.09 8.20 91.80 2.06 97.94
Directional TO Others 1.91 5.86 8.20 5.74 2.06 6.36
Directional Including Own 96.06 103.94 102.46 97.54 95.70 104.30
NET Directional Connectedness -3.94 3.94 2.46 -2.46 -4.30 4.30

Note: The above data presents the carbon futures products used in this analysis for the period March 2019 through May 2020. Data was obtained from
Thomson Reuters Eikon. Shown are estimates of net directional connectedness. For brevity, only significant results at the 1% level are presented. Further
results at varying time-frequencies and variation of methodological structure are available from the authors on request.
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Table 4: Differentials of market dynamics between WTI and carbon markets during the periods investigated

Directional Spillover Pairwise Spillover Net Directional Connectedness
2019 Q1 2020 Neg. WTI 2019 Q1 2020 Neg. WTI 2019 Q1 2020 Neg. WTI

CFI2Z0 2.152 3.915 21.733 0.254 -1.732 -5.191 91.780 95.502 97.484
EEAc1 2.101 4.026 21.496 0.198 -1.770 -4.749 91.600 96.054 97.868
EEAc0 2.102 4.017 21.508 0.201 -1.819 -4.895 91.840 95.513 97.741
FEAAc1 2.188 3.855 21.860 0.289 -1.848 -4.911 91.786 95.317 97.727
FEUAc1 2.173 3.885 21.800 0.273 -1.831 -4.867 91.737 95.496 97.766
FEUAc0 2.136 3.909 21.693 0.251 -1.851 -5.610 91.683 94.006 97.119
FEUAZ1 2.160 3.855 21.821 0.277 -2.145 -5.791 91.835 93.712 96.962
FEUAZ2 2.164 3.848 21.834 0.281 -2.178 -5.738 91.856 93.608 97.008
FEUAZ3 2.174 3.837 21.845 0.289 -2.239 -5.528 91.899 93.675 97.191
FEUAZ4 2.174 3.815 21.899 0.297 -2.250 -5.888 91.927 92.795 96.877
FSEUATT 1.391 8.499 11.425 -0.480 0.905 2.671 91.017 94.370 95.324
NEUAZ0 1.993 4.181 19.692 0.113 -2.298 -4.831 91.358 92.899 97.797

Note: The above data presents evidence of the differential behaviour between metrics as calculated by the averages of the
results in the periods inclusive of the entire sample between May 2019 and December 2019, that of January 2020 through
March 2020, and finally, that of the sample inclusive of April and May 2020, representing the period in which WTI prices
experienced negative pricing due to exceptional volatility associated with the COVID-19 pandemic financial market panic.
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