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Abstract

COVID-19 pandemic has resulted in an inflow of patients into the hospitals and

overcrowding of healthcare resources. Healthcare managers increased the capacities

reactively by utilizing expensive but quick methods. Instead of this reactive capacity

expansion approach, we propose a proactive approach considering different realiza-

tions of demand uncertainties in the future due to COVID-19. For this purpose,

a stochastic and dynamic model is developed to find the right amount of capacity

increase in the most critical hospital resources. Due to the problem size, the model

is solved with Approximate Dynamic Programming. Based on the data collected

in a large tertiary hospital in Turkey, the experiments show that ADP performs

better than a benchmark myopic heuristic. Finally, sensitivity analysis is performed

to explore the impact of different epidemic dynamics and cost parameters on the

results.
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1. Introduction

At the time of writing in late August 2020, the acute respiratory syndrome coronavirus

2 (COVID-19) has affected more than 24 million people worldwide and caused more

than 800,000 lives so far. The inflow of the patients led to inefficiency of the available

resources and resulted in higher death rates. The governments then behaved reactively

and adopted very expensive but quick strategies for treating patients such as building

new temporary critical care hospitals or renting private healthcare capacity for buffer-

ing. However, these reactive approaches result in a huge burden on public spending

as one-time investment and associated running costs. Nevertheless, they are quicker

than the usual procedures of increasing capacities, especially for public hospitals, that

require long processes of bidding and contracting.

The future of the pandemic is still unknown but second waves in several countries

are already observed after the relaxation of the restrictions put in the first place.

Governments’ decisions on lockdown measures are likely to cause large deviations on

the transmission rate and in consequence demand on healthcare. Instead of behaving

reactively to the inflow of the patients, the capacity management can be done in a

proactive manner considering different possibilities in the future. Using mathematical

programming, we can generate optimum policies for all possible scenarios in the future,

and thus get prepared for the uncertainties beforehand. Such a proactive approach

considers both the normal and fast ways of increasing the capacities while modelling

the uncertainties in the demand.

The most vital resources at hospitals during the COVID-19 pandemic are the ven-

tilators and intensive care unit (ICU) beds for the critically ill patients. Both of these

resources are quite expensive and production of which are subject to long lead times.

Another resource that is needed for moderate COVID-19 patients is separate COVID-

19 wards that need to be isolated from the rest of the inpatient wards. Though the

beds in COVID-19 wards are not different than normal wards, they require special

equipment for the staff and should be separated, thus takes much space. Not only

these resources bring extra costs, they also lead to lack of resources and puts a strain

on the non-COVID patients’ treatments. The UK National Health Service (NHS), for
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instance, have advised hospitals to postpone or cancel elective surgeries for 3 months

through the peak period, resulting 516,000 surgery cancellation (Negopdiev, Covid-

Surg Collaborative, & Hoste, 2020). Approximately 36000 of these cancellations were

cancer-related procedures, delay of which are likely to cause otherwise prevented deaths

(Shin et al., 2013).

COVID-19 has undoubtedly created a large backlog in healthcare systems, clearing

of which will take a long time due to the shortage of resources. Thus, it is of critical

importance to implement capacity management strategies during and after the pan-

demic in order to clear backlogs in the system quickly and efficiently. Accordingly, this

paper proposes a stochastic and dynamic mathematical model to find the best capac-

ity increment policy over a fixed planning period. The proposed policy finds both the

right amount of capacity change at each time period and whether the increase should

be made in the usual procedures or expensive but quickly.

Our model comprises the capacity management of the three most distressed re-

sources of a hospital during the pandemic: ventilators, ICU beds and COVID ward

beds. The uncertainty considered in the model is the patient admissions, discharges

and deaths, that are aggregated as net changes of demand for each resource separately.

The model aims to minimize the total cost comprising the variable and fixed costs of

the capacities as well as the penalty for the lack of enough capacity. Due to the large

size of the resulting model, we use an Approximate Dynamic Programming (ADP)

method to obtain approximately optimum policies.

An alternative approach for this problem is to model it in a reactive fashion: find

the best capacity expansions as the uncertainties (demand) is realized, such as in on-

line optimization. However, such an approach would not be able to consider all the

possibilities beforehand, and thus would produce inferior decisions compared to the

proactive approach, as considered in this paper. On the other hand, the proactive ap-

proach leads to developing a stochastic dynamic programming model that is also called

as multi-stage stochastic programming. These problems usually suffer from computa-

tional difficulties due to large problem sizes. Applying exact optimization methods,

such as classical backward recursion (Powell, 2007), require significant computational

efforts, and thus not practical for realistic size instances. Therefore, we utilize ADP,
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the most popular approximate solution method for these problems (Powell, 2007). This

method combines the powers of simulation and optimization and does not require any

conditions on the uncertain parameters or the problem structure (e.g. constrained) as

in Roohnavazfar, Manerba, De Martin, and Tadei (2019). More details regarding the

ADP algorithm are provided in Section 4.

The contributions of the paper can be summarized as:

(1) To the best of our knowledge, we model a significant operational problem related

to COVID-19 for the first time,

(2) By developing a computationally efficient solution algorithm, we solve the re-

sulting model, and thus can support the decisions of the authorities,

(3) Based on the computational experiments, we reveal important managerial in-

sights that can reduce the costs of managing the COVID-19 and at the same

time improve the patient experience.

2. Literature Review

As expected, the literature on mathematical modelling for decision support regarding

COVID-19 is scarce. The extant literature focused on the prediction of the disease dy-

namics for different countries. For instance, building on the past data of the outbreak,

Manca, Caldiroli, and Storti (2020) developed a mathematical model to estimate the

ICU bed demand. Other scholars, on the other hand, assessed the impact of alternative

mitigation strategies using mathematical modelling (e.g. Ambikapathy and Krishna-

murthy (2020); Silva et al. (2020); Van Zandvoort et al. (2020)).

However, to the best of our knowledge, the dynamic capacity planning of a hospi-

tal’s resources is not studied with mathematical modelling in the literature yet. The

healthcare related capacity planning studies are mostly static (Ordu, Demir, Tofallis,

& Gunal, 2020) which do not fit well with volatile nature of the COVID-19 pan-

demic. Static capacity planning problems do not require to use dynamic programming

approaches. Thus, they mostly constitute mixed-integer linear or nonlinear program-

ming models. In these models, the computational difficulties due to the large problem
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size is not an eminent issue as in the dynamic programming models. Therefore, they

can be solved with a classical exact method such as branch-and-bound, branch-and-

cut, column generation, etc. (Ben Abdelaziz & Masmoudi, 2012; Pehlivan, Augusto,

Xie, & Crenn-Hebert, 2012).

Most capacity planning studies for healthcare facilities are static; they aim to find

the best capacity levels considering the demand and service rates. Among those static

models, location-allocation problem is the most popular one (Ben Abdelaziz & Mas-

moudi, 2012). In this problem, the purpose is to find where to have the clinical sites

among a set of feasible locations and then allocate the patient groups to these facilities

to achieve certain service targets. These models are usually integer programming mod-

els and static; for example see Santibáñez, Bekiou, and Yip (2009) and Ben Abdelaziz

and Masmoudi (2012). Another example for static capacity planning is that of Y. Li,

Zhang, Kong, and Lawley (2016) who aim to find the best capacity levels in a network

of long-term care facilities. They mostly focus on population dynamics and how much

demand would change for each location. Simulation is another method used in the

static capacity management problems to especially handle the demand uncertainties.

Being closer to the problem studied in this paper, there are few dynamic capac-

ity management studies within healthcare settings (Hutzschenreuter, Bosman, & La

Poutré, 2009; Vermeulen et al., 2009). However, they do not consider the demand

uncertainty explicitly as scenarios, but rather utilize queuing formulations to arrive

approximate performance measures. Pehlivan et al. (2012) develop a multi-period, dy-

namic model to determine the acceptable level of capacity to achieve certain service

target (e.g. patient rejection probability) in a perinatal network. They have computed

the service performance using a queuing theory approach. Although their model is

dynamic as in ours, the demand uncertainty is dealt with the queuing theory rather

than explicitly included in the model as in the forms of scenarios. In a similar study,

Pehlivan, Augusto, and Xie (2014) deal with dynamic capacity update and relocation

of services for a perinatal network of hospitals. They also aim to keep the patient re-

jection probability (modelled as a non-linear function of the service rates and servers)

below a certain level for hospitals. They assume that the demand at each time period

is known beforehand. By developing a dynamic, integer, linear programming problem,
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they could solve the instances with Cplex. Jang (2019) develop a similar approach for

neonatal care services. They compute the delay probability of a patient using queuing

formulations and assume that the demand rates are known.

Possibly the closest paper to ours is that of Akcali, Coˆté, and Lin (2006). They aim

to find the optimum changes in the bed capacity of a hospital in a multi-period fashion.

However, they also incorporate the demand uncertainty with a queueing formulation

that provides the patient waiting times for the beds if the capacity is lower than the

demand. They model the problem as a network flow problem where the decisions lead

to different states, i.e. nodes of the network. By using existing algorithms for network

planning optimization such as Dijktra, they solve the problem. Their model also does

not have the delay between acquiring the new capacity and start using it which allowed

them to represent the problem as a network flow that would not be possible otherwise.

Dynamic programming studies aforementioned above do not deal with COVID-19

situation. Hence, they have not captured unusual characteristics of the uncertainties

brought by COVID-19: the demand is very volatile and behaves in stochastic cy-

cles in the COVID-19 pandemic. Also, the amount of this demand is significant and

life-threatening and thus requires frequent and carefully planned capacity increases.

Therefore, hospital capacity planning during the COVID-19 pandemic requires signif-

icantly different methods than the ones used in the existing studies in the literature.

This paper fulfills this gap in the literature by developing a stochastic dynamic pro-

gramming model and solving it with ADP.

In healthcare related studies, ADP has been mainly used for stochastic and dy-

namic problems such as surgical scheduling (Astaraky & Patrick, 2015), tactical re-

source planning for patient admission (Hulshof, Mes, Boucherie, & Hans, 2016), capac-

ity planning/appointment planning of rehabilitation centres (Bikker, Mes, Sauré, &

Boucherie, 2020), appointment scheduling (X. Li, Wang, & Fung, 2018; Wang & Fung,

2015), ambulance dispatching and relocation problem (Maxwell, Restrepo, Hender-

son, & Topaloglu, 2010; Schmid, 2012), overflow problem in inpatient beds (Dai &

Shi, 2019). However, to the best of our knowledge, ADP has not been used for dy-

namic capacity expansion problem of a hospital. Note that ADP is a solution method

for stochastic dynamic problems that can also be called as multi-stage stochastic pro-
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gramming. The main motivation to adopt ADP over other possible methods is the

computational difficulty of solving the resulting models.

3. Dynamic Capacity Management Model for Critical Hospital Resources

3.1. Problem Description

We consider the capacity management of the most crucial resources in a large tertiary

hospital during the COVID-19 pandemic which are (i) ICU beds, (ii) ventilators, and

(iii) normal ward beds allocated for COVID-19 patients, that is labelled as ‘C-ward’

thereafter. As the disease spreads, several patients get directly admitted to the ICU,

some of which require ventilators, and mild patients are admitted to the C-ward.

Similarly, patients get discharged, move to the C-ward from the ICU or die due to

the COVID-19. These changes in the patient demand are aggregated as ‘net changes’

indicating how much the demand increases (positive) or decreases (negative) for each

resource at each week of the planning period, e.g. half a year.

The admissions due to COVID-19 has been high and unpredictable in many coun-

tries. Since the hospital capacities were not sufficient to meet the demand, extra and

expensive measures have been taken such as renting private hospitals’ resources or

building new hospitals. To represent these measures in a concrete way, we assume

that a hospital has two main options for capacity expansion: (i) buying expensive but

quickly available resources or (ii) increasing the resources from the default ways in a

time-consuming but comparatively cheaper manner. More specifically, the first (fast)

option involves renting these resources from private providers or importing them from

the countries that have excess capacities. The default ways include going through the

usual procurement process, getting company bids, and putting formal agreements with

the company with the best bid.

3.2. Problem Formulation

The problem summarized above is a stochastic and dynamic problem that is mod-

elled as a finite, discrete Markov Decision Process (MDP). The planning horizon is
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denoted with T , where each time period is t = 1, · · · , T . The number of main re-

sources considered is denoted with I, where each resource is shown with i, such that

i ∈ {V entilators, ICU beds,Ward beds}.

Assumptions:

• The capacity of a resource can be increased with a certain percentage, in the

multitudes of u%.

• The capacity considered in this paper is not only physical resources but also

comprises of hiring necessary staff along with the resources to satisfy minimum

care requirements. These human resources represent the source of a variable cost.

The human resources such as nurses cannot be changed so quickly depending

on the number of patients. For example, the NHS operates in a way that the

necessary number of nurses is computed based on the number of beds; there

should be one nurse for at least three beds in an ICU (Hugonnet, Chevrolet, &

Pittet, 2007).

• The duration of the delay for a capacity order is independent of the amount

of the order. This is due to the fact that the delays are mainly caused by the

bureaucratic administrative tasks.

• Since the capacities can only be increased as a percentage of the current capaci-

ties, they cannot be increased to a very large value or infinity. On the other hand,

we have not assumed that the capacities cannot be increased after a certain level

as this was not a real concern in the hospital. However, these type of limitations

can be easily added to the model with additional constraints if needed.

• A new order is not possible until the waiting time for the previous one is com-

pleted. This assumption is mainly due to the administration concern of the hos-

pital management. These orders are significant and expensive ones and a limited

number of human resources make the capacity changes happen, namely the pro-

curement teams and facilities & estates teams. Therefore, instead of putting the

new order one week after the previous one, making it when the previous order

is realized is a better approach since the delivery dates would be similar, while

the later decision is affected by less uncertainty. Because of this, the hospital

management discourages the teams to put a new order before the other one is
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realized as this leads to ineffectiveness and extra unused capacity.

Uncertainties: The uncertainties in the problem are the net changes in the de-

mands of the ICU beds, ventilators and C-ward beds. The net change is computed

as admissions - deaths - discharges, and is denoted with z̃it indicating % of the cur-

rent number of patients for resource i at period t. Note that an uncertain variable is

denoted with a˜above, while its realization would be without a .̃

State: The state at period t is denoted with St and comprises of St =

{Ct,Ot,wt, ζt,kt, zt}, where,

• Cit is the capacity of resource i at period t,

• Oit is the actual number of patients using resource i at period t,

• wit represents the number of periods passed since the capacity increase is ordered

for resource i at period t,

• ζit is the amount of the order that has not been delivered yet for resource i in

period t,

• kit is the form of the order that has not been delivered yet for resource i in period

t, and can be either usual or the fast form represented with 1 and 2, respectively.

• zit is the % net change in the demand of resource i at period t.

Action: The action at period t, denoted with at consists of (i) the factor of capacity

increase in resource i at period t, denoted with ∆it ∈ {0, 1, · · · ,∆}, and (ii) the form

of capacity increase, denoted with mit ∈ {0, 1, 2}, where the usual and fast forms are

represented with 1 and 2, respectively. For example, when u = 15 and ∆ = 2, the

capacity of a resource can be increased by maximum 30%. When a resource is already

waiting for a capacity increase, i.e. kit > 0, then capacity increase is not possible

for that resource. Thus, the feasible action space can be defined as At = {∆it ∈

{0, 1, · · · ,∆},mit ∈ {0, 1, 2} for i|kit = 0}.

Cost: The total cost at period t in state St is denoted with φt that consists of (i)

the fixed cost of action, at, (ii) the variable cost of current capacity Ct, and (iii) the
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penalty due to excess patients and formulated as:

φ(St,at) =
∑
i

cviCit + cfi,mit
∆it + cpi |Oit − Cit|+, (1)

where cvi , cfi,mit
and cpi represent the variable cost of one unit of capacity of resource

i, cost of one unit of capacity bought in the form mit and penalty due to each excess

patient, respectively. Also, the function |.|+ takes the value inside if that value is

positive, and 0, otherwise. There is no cost at the end of the planning period. The end

of horizon cost is more applicable to the problems that have a clear finite planning

period such as scheduling for a project or surgery scheduling of a day. However, our

problem is not such type, in the sense that the capacity planning can continue even

after the current planning horizon (in such a case, the whole approach can be repeated

for another planning horizon).

State update: The state at period t+1, St+1, depends on the state at period t, and

the action taken in the current time period, i.e. St+1(St,at). The capacity is increased

when the waiting time for the capacity realization reaches to its limit, denoted with

wkit,i. The update on the state variables can be formulated as follows:

Oi,t+1 = Oit(1 + zit), ∀i,

Ci,t+1 =


bCit(1 + ζitu%)c, if wit = wkit,i,

Cit, otherwise

wi,t+1 =


wit + 1 if wit < wkit,i,

0, otherwise

ζi,t+1 =


∆it, if ∆it ≥ 1 & wit < wkit

,

0 if wit = wkit
,

ζit, otherwise
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ki,t+1 =


mit, if mit ≥ 1 & wit < wkit

,

0 if wit = wkit
,

kit, otherwise

Finally, zit is updated as zi,t+1, i.e. the exogenous information based on the re-

alization of the demand uncertainty. Note that although we have not modelled the

correlation between demand changes of different resources, this is implicitly ensured

because the distribution parameters of the demand are estimated from the historical

data.

A summary of the model notation is provided in Table 1.

Table 1. Model Notation

Notation Decription
Indices

i Resources i = 1, · · · , I,
t Time periods t = 1, · · · , T .

Parameters
cvi Variable cost (per time period) of one unit capacity of resource i.

cfim Cost of increasing the capacity of resource i by one unit using the mode m.
cpi Penalty cost for each patient that is over the capacity of resource i.
u % increase in the capacity in one unit of capacity change.
∆ Maximum units of increase in capacity.
wmi Delay in capacity expansion for resource i in mode m.

Variables (Decisions)
∆it Factor of capacity increase for resource i in period t.
mit Form of capacity increase for resource i in period t.
ait Action at period t for resource i comprising of {∆it,mit}.
St State at period t.
V (St) Value of state St.
Cit Capacity of resource i at period t.
Oit Actual number of patients using resource i at period t.
wit Periods passed since the capacity increase is ordered for resource i at period t.
ζit Amount of the order that has not yet delivered for resource i in period t,
kit Form of the order that has not yet delivered for resource i in period t,
z̃it Net change in the demand of resource i at period t, denoted as % of the patient level.

Each state, St has a value denoted with Vt(St) that depends on the value of the
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possible future states and can be formulated as follows:

Vt(St) = max
at∈At

{
E[Vt+1(St+1|St,at)]− φ(St,at)

}
, ∀St, t = 1, · · · , T − 1, (2)

which gives the optimum action that maximizes the subtraction of the action cost

from the expected future (state) value. The expected state value is computed first

by multiplying the probability of corresponding future state, P (z̃t+1 = zt+1), and the

estimated value of that state, Vt+1(St+1|zt+1), and summing them for all possible z̃t+1.

The values of the states in the final periods are assumed to be zero: VT (ST ) = 0.

For the sake of computational efficiency, we assume that z̃t can take only a finite

number of values, denoted with S. For example, S = 3 corresponds to only 3 net

demand change scenarios at each time period: low, normal, and high.

4. Solution Approach: Approximate Dynamic Programming

The mathematical formulation outlined in the previous section is computationally

difficult to solve due to the large state space. Several state variables, such as current

capacities and number of patients, can take a large range of integer values. On the

other hand, due to few possible actions and the feasibility conditions, the action space

is relatively smaller. Therefore, we use enumeration to find the optimal action at each

decision point.

ADP is an algorithm based on forward simulation used to solve large stochastic

dynamic programming problems (Powell, 2009). We develop a lookup table based,

value iteration ADP algorithm. A linear programming (LP) based ADP is not applied

since the value function (2) is complex (Powell, 2009). For the LP-based ADP to

work efficiently, the problem should naturally lend itself to a linear problem. However,

in our case, there are many non-linear formulations as in the form of if statements.

Besides, almost all variables in our model are integer, and thus classical LP methods

to reduce the problem size are not applicable to our problem. Also, the value iteration

is preferred over policy iteration because of the large state space and a comparatively

small action set (Sun & Li, 2013).
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The probability distributions of net changes, the number of iterations, N , are given

as the inputs to the algorithm. The initial state, S0, is the same in each iteration, and

its value V (S0
n=1) is initialized as zero in the first iteration. After initialization, two

main stages are repeated for each simulated planning horizon: forward and backward

passes. In the forward pass, net changes are simulated for each time period and an

action is chosen based on value function (2) or randomly based on the probability Γ in

the first half of the run, i.e. n < N/2. If there are multiple optima, the action is chosen

randomly among them. Each visited state, its estimated value and the selected action

are entered to a table, called as a lookup table. Note that the costs incurred in the

later time periods should be taken into account in an earlier state. To overcome this

problem, a backward pass is implemented to update the value function estimations by

moving backwards in time in the simulated trajectory in each iteration (Powell, 2007).

Algorithm 1 shows the pseudo-code of the ADP algorithm with value iteration, lookup

table and double pass.

There are two main value-function related variables: the value function approxi-

mations stored in the lookup table, V
n
t , and the state values computed during the

algorithm, vnt . In each iteration, after the forward pass, the algorithm goes backward

in time and recursively adds the values of the future states (in the sample path) into vnt

for t = T −1, · · · , 1. If a state Sn
t is visited for the first time by the algorithm, then its

computed value vnt is directly added to the lookup table, i.e. V
n
t (Sn

t ) = vnt (Sn
t ). Oth-

erwise, V
n
t (Sn

t ) is computed as the weighted sum of its computed value and the most

recent value of the state from the lookup table: V
n
t (Sn

t ) = αnV
n−1
t (Sn

t )+(1−αn)vnt (Sn
t ),

where αn is a smoothing parameter. Because the state values are expected to approach

their true levels through iterations, αn is formulated as linearly dependent on the it-

eration counter n: αn = a + bαn where a and b are estimated by trial-and-error for

best convergence (Powell, 2007). Since the algorithm does not assume independence

of demand for different resources, it is not affected by the internal features of the

simulated dataset.

Basis function approximation: The lookup table based ADP algorithm provides

an action for the states generated by the simulation. In other words, it does not guar-

antee to find the right action for each possible state, but for most of them. Therefore,
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Algorithm 1 Pseudo-code of the ADP algorithm

Step 0: Initialization: Fix number of iterations N and parameter Γ, initialize n = 1,

set the value function at initial state as V
0
1(S

0
1) = 0.

Step 1. Set V
n
t (St

k) = V
n−1
t (St

k) for k = 1, · · · , n− 1 and t = 1, · · · , T .

Step2. Forward Pass:
for t = 1, 2, · · · , T − 1, do
− Generate zn

t .

− Generate a random number ω and,

if n ≤ N/2 and ω ≤ Γ then

Randomly select an
t among the feasible action set At, and compute vnt (Sn

t ) by
using (2).

else

− Find the action an
t and vnt (Sn

t ) by solving (2) based on the state values stored
in the lookup table.

− If a state value does not exist in the lookup table, then its value is assumed
to be computed based on (1) but without the cost of capacity expansion.

end if
− Update state variables based on the action an

t and Sn
t : Sn

t+1 = St+1(S
n
t ,a

n
t ).

end for

Step3. Backward Pass:
for t = T − 1, · · · , 1 do

− Compute vnt (Sn
t ) = vnt+1(S

n
t+1)−ϕ(an

t ,S
n
t ), where ϕ(an

t ,S
n
t ) is defined as in (1).

if state Sn
t exists in the lookup table, then

− Update V
n
t (Sn

t ) = (αn−1)V
n−1
t (Sn

t ) + (1− αn−1)vnt (Sn
t ),

else
− Set V

n
t (Sn

t ) = vnt (Sn
t ).

end if
end for

Step 4. Update iteration number n := n+ 1. If n ≤ N , go to Step 1. Otherwise, go
to Step 5.

Step 5. Return all value function approximations (V
N
t , i.e. lookup table) for t =

1, · · · , T .

we also implement a basis function based ADP algorithm which approximates the

state values using a linear weighted formulation of few state variables (Powell, 2007)

and the value estimations from the lookup table. After trying several formulations,

the best fit for the state-value pairs in the lookup table (with R2 of 0.88) is achieved
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by:

V (St) = w0 + w1t+
∑
i

w2i|Oit − Cit|+,

where w1 and w2i for i = 1, · · · , I represent the weights of the basis functions. This

approximation only considers the extra patients and the current time period, and used

for the states not visited by the lookup table ADP. Note that the value of the weight

parameters need to be recomputed for each problem instance.

5. Computational Experiments

This section first analyses the computational performance of the ADP algorithm and

then presents the results for different scenarios. All the experiments are conducted in

Intel Core i7-6700K CPU @ 4.00 Ghz with 32 GB memory and x64 based processor.

The ADP algorithm is coded in Matlab 2018b with the following parameters: Γ = 0.6,

a = 0.05 and b = 0.95/n, where N is 4000. More details regarding the algorithm tuning

are provided in the Supplementary material.

Comparison with Exact Algorithm: As mentioned before, we use ADP be-

cause it is not possible to solve the problem to optimality within reasonable times

for realistic size instances. However, to provide an insight regarding the performance

of the algorithm, we implement the backward recursion algorithm to solve the model

to optimality for a small instance. This method enumerates all possible states and

computes the best action for each one starting from the last period. To be able to

solve the problem in a reasonable time, we gradually decreased the problem size by

reducing the number of possible scenarios and time periods. First, the mode of possible

demand changes in a period is limited to 2 for each resource. The length of planning

horizon was dropped to 7 periods which requires to also decrease the waiting times

for capacity realizations (such that the capacities are realized before the end of the

planning horizon). Finally, the number of possible capacity increase was limited with

1 instead of 2. Even with these reductions, the model has more than 264 million pos-

sible states (requiring more than 40GB storage in Matlab). Thus, we had to drop the
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planning horizon to 6 periods to overcome the memory problem. With efficient coding

techniques, we solved this small instance in a couple of hours. The same small instance

was also solved with the ADP within a couple of seconds. To understand the perfor-

mance of the ADP, we computed the difference in the (initial) state values computed

with the ADP and the backward recursion algorithm which was less than 1%. This

result proves that the ADP produces almost optimum policies.

5.1. Input Data

The pandemic behaves in certain cycles with three main phases: (i) stability, where the

net change of the demand is stable, (ii) decline, where the net change of the demand

is negative, and (iii) escalation, where the net change of the demand is positive. In

any phase, the net changes are still uncertain. For example, in an escalation phase,

the net demand changes has a positive mean and a certain standard deviation. The

order, duration, means, and standard deviations of different phases can vary between

countries. Usually, an escalation phase is much intense and shorter than a decline or a

stability phase. Also, the escalation is either followed by a stability or a decline phase

depending on the restriction policies in countries.

The case study is based on a large public tertiary hospital in Turkey. The disease

dynamics are computed based on the historical trajectory of the pandemic in Turkey

starting from the beginning of June, after which detailed data are available (Republic of

Turkey Ministry of Health, 2020). Note that the net changes are simulated based on the

estimations from the real data, and thus the natural correlation between the demands

of different resources are implicitly ensured. Furthermore, the possibility of generating

unrealistic cases are prevented with the appropriate coding of the simulation.

Hospital related parameters such as the initial capacities and patient volumes are

estimated based on an expert opinion from a hospital in Ankara, Turkey. The fast

form of capacity increase involves utilizing the private hospital resources. In the case

of overcrowding, the existing resources are shared between patients, such as switching

one ventilator between two patients. To deal with the overcrowding in ICU beds, three

actions are taken in the following order: (i) delayed discharges from ICU are expedited,

(ii) extra beds are requested from other departments until the new orders are realized,
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and (iii) older beds (stored for these possible extreme scenarios) are used.

Table 2 shows the input data used for the base case. The planning period (horizon)

is assumed to be 20 weeks where the duration of one time period is assumed to be

one week, i.e. decisions are taken at each week. For the base case, we solve a setting

with the following disease trend: stability, increase, and decline. The weekly mean and

standard deviation of the net changes in C-ward, ICU, and ventilator demand of the

country is computed using the publicly available official reports (Republic of Turkey

Ministry of Health, 2020). These distribution related parameters are provided in the

Supplementary material. In the second part of the experiments, we analyse the impact

of different disease trajectories on the results.

Table 2. Input data used for the base case

Resource Ventilators ICU beds C-Ward beds
Mode of capacity increase Normal Fast Normal Fast Normal Fast

Waiting times (weeks) 12 4 10 2 7 2
Cost of each additional capacity 20,000 40,000 187,500 360,000 900 1,800
Penalty cost for each extra patient 10,000 5,000 50
Variable cost of capacity 100 300 10
Initial capacities 25 50 200
Initial number of patients 18 40 170

Unit of capacity increase (u) 15%
Duration of escalation phase 5
Duration of decline phase 8
Duration of stability phase 7
Probabilities of scenarios 0.25, 0.5, 0.25

The unit of capacity increase (u) is set to 15%. In other words, the capacity of a

resource can be increased by 15% or 30% of the existing capacity or not increased

at all. The scenarios of the net demand changes is assumed to be the same for all

resources: low, usual, and high.

In addition to the expert opinion, we collected some of the cost parameter levels

from publicly available sources. The cost of a ward bed and an ICU bed are estimated

from NHS Wales (n.d.) and then checked with the expert for the Turkish case. The cost

of establishing a new ICU is estimated from Güngör et al. (2013) which is then updated

based on the inflation rate. The fast and normal costs of ventilators are supported by

Anadolu Ajansi (2020). We define a very large cost for capacity shortage because it
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can create life-threatening conditions for COVID-19 patients.

5.2. Results

In this section, we summarize the computational performance of the ADP and analyze

a policy generated by the ADP for a single scenario.

Computational Performance of the ADP: The computational time required to

obtain the approximate policy with the ADP is around 5 minutes for 4000 iterations.

Since the policy is generated for a planning period of half a year, the computation

time is acceptable.

As a benchmark solution method to the ADP, we also implement a myopic heuris-

tic that only considers the cost in equation (1) to find the best action, assuming that

the capacity expansions are realized immediately, i.e. the demand not satisfied by the

capacity is computed based on the expansions. Next, we generate 1000 scenarios and

apply the ADP policy as well as the myopic heuristic. The costs by two policies are

then compared. In addition to the base case explained in Section 5.1, we also compare

two approaches in five other hypothetical cases obtained by varying several parameters

from their default levels. First three cases represent different initial hospital capacity

and/or utilization rate, i.e. patients/capacities. The last two cases have shorter and

longer planning periods than the base case, respectively. The gap between two ap-

proaches, computed as (value of myopic - value of ADP)/value of ADP, is presented

in Table 3 for each case. In the base case, ADP generates 29% less cost compared to

the myopic heuristic. In all cases, the myopic approach performs worse than the ADP.

The gap between the performances of two methods increases when (i) initially empty

capacity is higher, and (ii) the planning horizon is longer. These results suggest that

ADP is a more efficient technique than a simple heuristic.

Table 4 shows the policy computed by the ADP for a randomly chosen scenario. The

fast and usual forms are shown with 1 and 2, respectively, while the amount of increase

represents the multitudes of 15%. Although the initial weeks have a stable pandemic

dynamics, the capacity increases are made in the first two weeks to be able to get

prepared for an escalation phase in the coming weeks. The ICU beds are increased in

a fast form since the penalty for overcrowding in the ICU is quite high. Due to the
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Table 3. Comparison of ADP with the myopic approach for various cases

Case Explanation Gap between myopic and ADP
Base 29%
1 The initial capacities are

doubled
-40.89%

2 Both initial capacities
and patient levels are
doubled

-36.38%

3 The initial capacities are
the same, the initial pa-
tient levels are halved

-41.58%

4 Planning period is
dropped to 20

-17.35%

5 Planning period is in-
creased to 35

-64.33%

low level of the ventilator demand, the capacity is increased once by the usual form,

but the amount of increase is 30% to ensure enough fit for the demand.

The capacity of C-ward beds is increased in the fast form at periods 9 and 10,

through the middle of the escalation phase, where the net demand for the C-ward

beds has increased significantly. However, in most of the periods, the policy generated

by the ADP takes a proactive approach instead of a reactive one.

To provide additional insight regarding the decision-making, we analysed the policies

obtained for 500 scenarios. For ventilators, the capacity increases were mostly done in

period 3, very rarely in period 4 and 5 where the patient demand was higher, i.e. 18

and 19. Also, the capacity increase was mostly double amount (77%), instead of single,

while the form of the capacity increase was fast in 72% of the scenarios. This may be

because this resource has a higher penalty and longer waiting times than the others

which leads to a more cautious decision-making. There was no relationship between

the amount of capacity and the form of increase: the % of decisions with fast form was

not affected by the amount of capacity in that decision.

For ICU beds, the capacity increase is only done in the initial period and always

as double capacity and default form. This may be because this resource has a higher

penalty than the third one, and thus the decision-maker is less willing to take the risk

of overcrowding in this resource, and thus become cautious. Also, it takes longer to

arrive than the third resource.

19



Table 4. Policy generated by the ADP for a randomly chosen scenario

Time Period Net change in demand Amount of increase Form of increase
Ventilator ICU bed C-ward bed

1 0 0 0 0,1,2 0,2,1
2 0 2 -12 2,0,0 1,0,0
3 0 2 11 0,0,0 0,0,0
4 0 0 12 0,0,0 0,0,0
5 0 0 13 0,0,0 0,0,0
6 0 0 -14 0,0,0 0,0,0
7 2 4 18 0,0,0 0,0,0
8 0 5 20 0,0,0 0,0,0
9 2 5 37 0,1,0 0,2,0
10 1 6 26 0,0,1 0,0,2
11 2 3 48 0,0,0 0,0,0
12 -1 -7 -46 0,0,0 0,0,0
13 -2 -9 -40 0,0,0 0,0,0
14 -1 -5 -17 0,0,0 0,0,0
15 -1 -2 -32 0,0,0 0,0,0
16 0 -4 -27 0,0,0 0,0,0
17 -2 -4 -35 0,0,0 0,0,0
18 0 -1 -10 0,0,0 0,0,0
19 0 -2 -12 0,0,0 0,0,0
20 -1 -1 -8 0,0,0 0,0,0

We see the highest variation on the capacity decisions of C-ward beds: 7% of the

increases are made in period 4, very few on periods 5 and 10, and the rest in the first

period. Most of the increases (96%) are single capacity increase which are mostly in

the fast form, indicating a rush response to the demand. When the capacity increase

is made in a later period, such as 4, mostly it is double amount (no difference in the

form), indicating a cautious cover for the expected demand rise in these scenarios.

Overall, the decision trends for this resource indicate that mostly an initial capacity

increase is needed and enough to cover the demand fluctuations over the planning

horizon.

5.3. Sensitivity Analysis

In this section, we analyse the impact of several parameters on the results. For this

purpose, we develop a discrete-event simulation model of the problem which applies

the ADP policy to 10000 randomly generated scenarios.

Impact of Pandemic Dynamics: The most significant parameter setting is the dy-

20



namics of the pandemic, i.e. the order and duration of decline, expansion and stability

phases. Therefore, this experiment aims to investigate alternative pandemic dynam-

ics and their impact on the results. Table 5 shows four different pandemic scenarios

developed based on different cases around the world. The ‘escalation’, ‘stability’ and

‘decline’ phases are represented with 1, 0, and -1, respectively, in the table. We in-

crease the planning period by 5 weeks in these experiments to allow longer trajectories.

These additional 5 weeks are added to the stability phase in the base case. The mean

and standard deviation of the net demand changes in each phase is assumed to be the

same as those in the base case, which were computed from the Turkish database.

• Scenario 1: follows the same trajectory as in the base case, but experiences

a second wave (an escalation) instead of a stability. With this scenario, we can

examine the impact of a second wave on the results.

• Scenario 2: represents a country that is in the beginning of a phase that will

decline before a second peak. This scenario is inspired from the Spanish case.

• Scenario 3: represents a country that is also in the beginning of a phase that

will be placed by a second phase before the first one declines. This situation

resembles the US case where the restrictions were not strong in the initial phase

and an almost unnoticable decline is experienced before a second wave.

• Scenario 4: resembles a country that just started a decline phase and will

experience a second wave.

Table 6 shows the means ± standard errors of the most significant outputs obtained

from the simulation using the ADP policy in these scenarios. In the table, Cost refers

to total cost of the capacity increases during the planning period. Difference is the

total difference between the patient population and the capacity during the planning

period. The final capacity is the sum of the resource capacities in the final period.

Figure 1 shows the normalized values of those results based on 100 for the base case

results (i.e. each output is divided by the respective base case value and multiplied by

100). Note that the figure only provides the normalized means, not standard errors

which are negligibly small also the since the value is negative, a normalized value with

less than 100 is better.
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Table 5. The structure of pandemic trajectory scenarios

Base case
Phase 0 1 -1 0
Duration 6 4 8 0
Scenario 1
Phase 0 1 -1 1
Duration 6 4 8 4
Scenario 2
Phase 1 0 -1 0 1
Duration 3 2 8 5 4
Scenario 3
Phase 1 0 1 -1
Duration 3 8 4 8
Scenario 4
Phase -1 0 1 0 -1
Duration 5 6 4 3 6

Comparing the base case with Scenario 1, we see that the objective value decreases

significantly with a second wave. Similarly, the cost as well as the final capacity increase

due to higher capacity increases. Additionally, the difference is larger in a second

wave scenario possibly because the capacity increases were not enough to satisfy the

demand from the second wave. These results show the importance of keeping the safety

measures tight and preventing a second wave after the first wave (i.e. Scenario 1).

Table 6. Simulation outputs for different scenarios using ADP

Scenario Objective value Cost Difference Final capacity
Base -616272.6 ± 643.5 1562.7 ± 1.0 62.2 ± 0.7 321.1 ± 0.1
1 -651047.2 ± 1123.3 1591.4 ± 1.1 85.5 ± 1.1 325.4 ± 0.2
2 -671244.7 ± 1115.2 1572.1 ± 1.1 169.1 ± 1.2 321.3 ± 0.0
3 -789138.3 ± 1519.2 7027.7 ± 21.3 359.8 ± 2.9 364.2 ± 0.1
4 -538600.3 ± 64.5 1509.3 ± 0.7 0.3 ± 0.0 319.4 ± 0.0

Among other scenarios, the worst is Scenario 3, where the second phase starts just

after the first one without a decline of the first phase. The hospital experienced a

significant overcrowding problem although the capacity is increased in the fast form

with maximum amount. Because of this large capacity expansion, the cost is almost

4.5 times of the base case.

The best objective value is achieved in Scenario 4, where the disease trajectory

allowed enough time to get prepared for a single wave. Although the amount of
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Figure 1. Relative value (compared to 100) of the simulation outputs obtained in
different disease scenarios

capacity increases is similar to that in the base case, the overcrowding problem is

almost never observed.

Impact of Capacity Increase Unit: The unit of capacity increase, 15% in the base

case, significantly depends on the conditions of the country such as the production

or service capabilities of the producers and contractors. Thus, in this experiment we

examine the impact of this parameter on the results. For this purpose, the unit of

increase is set to a smaller (10%) value than the base case, and the ADP policy is

obtained again, where the maximum increase (30%) is kept the same. Note that the

number of feasible actions increases by 1 in this new setting. The simulation results

of the base case and the case with smaller unit increase are shown in Table 7. Figure

2 shows the normalized values of the same outputs (compared to 100% for the base

case outputs) as in the previous experiment.

Table 7. Simulation outputs of the base case and with smaller unit increase

Setting Value Cost Difference Final capacity
Base -616272.6 ± 643.5 1562.7 ± 1.0 62.2 ± 0.7 321.1 ± 0.1
10% unit change -603215.7 ± 700.4 1010.5 ± 0.7 97.7 ± 1.0 305.9 ± 0.2

The results indicate that a smaller unit provides more flexibility to the decision-
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makers and leads to a slightly better objective value. The cost decreases significantly

although the final capacity does not differ much. This implies that the capacity is

increased in the usual form more often compared to the base case. With smaller unit,

the overcrowding is higher than the base case possibly because the ward capacity, that

has a low penalty, is increased less than the base case. In other words, a smaller unit

gives the ADP the flexibility to choose 10% increase for the states where a smaller

capacity increase brings a better objective value.

Figure 2. Relative value (compared to 100) of the simulation outputs obtained by 10%
unit of change

Impact of Penalty Cost: The level of the penalty for overcrowding is a subjective

measure and can differ based on the available solutions in an overcrowding situation,

i.e. a safer solution to the overcrowding would mean a lower penalty cost. To investigate

such a situation, we solve two additional settings: the penalty cost in the base case is

(i) doubled, and (ii) halved for all resources. The simulation outputs are presented in

Table 8 and in Figure 3 (in the normalized version as in the previous experiments).

Table 8. Simulation outputs of the base case and different penalty costs

Scenario Value Cost Difference Final capacity
Base -616272.6 ± 643.5 1562.7 ± 1.0 62.2 ± 0.7 321.1 ± 0.1
Doubled penalty -627516.3 ± 1016.3 2596.5 ± 15.9 55.2 ± 0.8 320.6 ± 0.1
Halved penalty -576710.6 ± 326.2 1510.5 ± 1.0 81.7 ± 1.0 319.2 ± 0.3

Comparing three settings, the final capacities are very close to each other indicating
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Figure 3. Relative value (compared to 100) of the simulation outputs obtained by
different penalty costs

that total amount of capacity increase is the same in all settings. On the other hand, the

difference and the cost are quite different. Thus, we can infer that when the penalty

is harsher, the policy chooses the fast form more often, rather than increasing the

capacity amount. When the fast form is used, there is no need to increase the amount

of the order too, since the fast form allows to make a new order fairly soon.

6. Conclusions

Instead of acting reactively to COVID-19 patient inflow, healthcare providers can

plan capacity expansions in a more proactive manner that would reduce the patient

deaths as well as the expenditures. To obtain proactive capacity policies, we present a

stochastic dynamic programming model that considers the uncertainties in the patient

demand and the dynamic nature of the actions. The experiments conducted with data

collected from various resources indicate that ADP is a quick solution method that

generates approximately optimum policies compared to a benchmark method. The

experiments with different disease trajectory scenarios indicate the heavy burden of a

second wave even when the best policies are applied. On the other hand, if a decline

phase is observed before another cycle, the overcrowding is almost not observed at

all, while the expenditures are quite low. When the unit of expansion is lowered, the
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policy has higher flexibility which leads to a better objective value. It suggests that

large capacity expansions are not always the best. Also, due to its quick availability,

the fast form allows the capacity expansions in smaller amounts which leads to lower

under-utilization of the capacity.
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Retrieved from https://www.aa.com.tr/tr/bilim-teknoloji/aa-yerli

-solunum-cihazinin-uretim-asamalarini-goruntuledi/1821021{\#}

Astaraky, D., & Patrick, J. (2015, aug). A simulation based approximate dynamic

programming approach to multi-class, multi-resource surgical scheduling. Euro-

pean Journal of Operational Research, 245 (1), 309–319. Retrieved from http://

www.sciencedirect.com/science/article/pii/S0377221715001332

Ben Abdelaziz, F., & Masmoudi, M. (2012, apr). A multiobjective stochastic program

for hospital bed planning. Journal of Operational Research Society , 63 (4), 530–

538. Retrieved from http://dx.doi.org/10.1057/jors.2011.39
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