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Abstract: Fluid resonance inside a narrow gap between two side-by-side boxes is investigated based 12 

on an open-source CFD package, OpenFOAM. An upstream box heaves freely under wave actions 13 

and a downstream box remains fixed. The focus of this work is to study the influence of the motion 14 

of the upstream box on the hydrodynamic behavior of the resonant fluid inside the gap. The 15 

hydrodynamic behavior considered in this study includes the wave height inside the gap, heave 16 

displacement and their harmonic components, and reflection, transmission and energy loss 17 

coefficients. For comparison, the configuration in which the two boxes are fixed is considered. It 18 

was found that the heave motion of the upstream box increases the fluid resonant frequency and 19 

significantly reduces the resonant wave height in the gap. The frequencies at which the maximum 20 

and minimum heave displacements of the upstream box are observed to obviously deviate from the 21 

fluid resonant frequency. For the wave height in the gap and heave displacement, the effects of the 22 

incident wave height on their harmonic components are different. The heave motion of the upstream 23 

box results in a larger reflection coefficient and smaller energy loss coefficient. 24 

 25 
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1. Introduction 1 

Recently, as offshore oil and gas operations have advanced towards deeper water and harsher 2 

environments, floating production storage and offloading (FPSO) and floating liquefied natural gas 3 

(FLNG) production systems have been widely used in ocean engineering. For offloading operations 4 

from FPSO or FLNG to shuttle tanks, a key hydrodynamic issue lies in the occurrence of fluid 5 

resonance in the narrow gap between them under wave actions. The close proximity of the side-by-6 

side marine structures can generate drastic water surface oscillations at certain frequencies in the 7 

narrow gap under wave actions, which lead to violent variations of hydrodynamic forces on the 8 

structures. This phenomenon is referred to as “gap resonance”. In fact, similar resonance phenomena 9 

of the semi-enclosed water body with various spatial scales are common in the field of coastal and 10 

offshore engineering, such as harbor resonance (Gao et al., 2019c, 2020c) and moonpool resonance 11 

(Huang et al. 2020a, b).      12 

The gap resonance phenomenon between multiple bodies has been investigated extensively. 13 

Early studies focused on theoretical analyses and were mainly based on the linear potential theory 14 

(Miao et al., 2001; Molin, 2001). Subsequently, to better understand the gap resonance and validate 15 

the theoretical analyses, certain laboratory experiments were conducted. Saitoh et al. (2006) 16 

conducted a series of two-dimensional experiment tests in a wave flume to investigate the gap 17 

resonance and found that the resonant wave height inside the narrow gap is dependent on the body 18 

draft and gap breadth. This finding proved the analytical results of Molin (2001). Iwata et al. (2007) 19 

extended this work to the three-body problem and their studies indicated that the resonance 20 

phenomenon was significantly affected by the number of boxes. Ning et al. (2018) experimentally 21 

studied the fluid resonance in the gap between two barges of different draughts in a wave flume and 22 

confirmed that an increase in either barge draught would lead to a decrease in the fluid resonant 23 

frequency. Recently, certain three-dimensional physical tests have been conducted (Zhao et al., 24 

2017).   25 

Previous studies demonstrated that the potential flow theory can predict the resonance 26 

frequencies and capture resonant modes. However, the resonant wave height was reported to be 27 

over-predicted when compared with the experimental results because the potential flow theory fails 28 

to consider the energy dissipation caused by the fluid viscosity, vortex shedding, and turbulence. To 29 

overcome this problem, several numerical techniques, such as introducing an artificial damping term 30 
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in the linear potential flow theory, were developed for the over-predicted resonant wave height to 1 

be consistent with that of the experimental results (Chen, 2004; Newman, 2004; Ning et al., 2015; 2 

Tan et al., 2019). However, the artificial damping coefficient must be determined using physical 3 

experiments or computational fluid dynamics (CFD) simulations (Lu et al., 2011a, b). For the same 4 

structures and incident waves, different values of the artificial damping coefficient may be required 5 

for different physical quantities, such as wave forces on structures and wave heights in narrow gaps 6 

(Tan et al. 2014; Pauw et al. 2007).  7 

Recently, with the rapid development of computing and numerical technology, the CFD 8 

simulation has emerged as an alternative method to study the gap resonance problem. Using a two-9 

dimensional viscous numerical wave flume based on the Navier–Stokes equations and Clear-VOF 10 

technique, Lu et al. (2011a) investigated the fluid resonance in two fixed boxes with a gap and three 11 

fixed boxes with two gaps in between them. Based on an open-source CFD package, OpenFOAM, 12 

Moradi et al. (2015) systematically studied the influences of inlet configurations on the fluid 13 

resonance in the gap between two fixed bodies. Gao et al. (2019b) and Gao et al. (2020a) adopted 14 

the OpenFOAM to study the gap resonance between two fixed boxes induced by regular waves and 15 

focused wave groups, respectively. Gao et al. (2019a) and Gao et al. (2020b) investigated the 16 

resonant wave height inside the gap and wave forces in gap resonance between the fixed box and 17 

vertical wall, respectively. These investigations found that the numerical results predicted by the 18 

CFD simulations corresponded well with the existed experimental data.  19 

Although numerous studies have investigated the gap resonance, most studies have assumed 20 

that the structures are fixed in the wave flume (Feng et al., 2017; Gao et al., 2019a, 2020b; Gao et 21 

al., 2019b; Jiang et al., 2019; Jiang et al., 2018; Lu et al., 2011a; Lu et al., 2011b; Ning et al., 2018; 22 

Sun et al., 2010; Zhao et al., 2018). However, in practical engineering situations, marine structures 23 

are not fixed but have a certain degree of freedom. For example, a shuttle tank may heave on the 24 

sea during offloading operations under wave actions. Here, previous studies on the fluid resonance 25 

between two fixed boxes may not be applicable to floating structures because the latter moves under 26 

wave actions. To date, quite few studies on gap resonance have considered floating structures with 27 

a certain degree of freedom of motion (Li, 2019; Li and Zhang, 2016). However, in these studies, 28 

the potential flow method is used and its defects have not been overcome. It is unknown whether 29 

the results correspond with the practical situations. To the best of the authors’ knowledge, the 30 



4 

 

simultaneous and synchronous motion of two structures was primarily considered in previous 1 

studies, and studies that considered solely the motion of a single box have not been found. Thus, to 2 

understand the influence of free heave motion of an upstream box on gap resonance, this study 3 

focuses on the gap resonance formed inside a two-box system where the upstream box heaves freely 4 

and the downstream box remains fixed.  5 

The remainder of this paper is organized as follows: Sections 2 and 3 introduce the numerical 6 

model employed in this work and numerical wave tank setup, respectively. The validations of the 7 

numerical model are presented in Section 4. The numerical results and discussions are presented in 8 

Section 5. Finally, the conclusions are presented in Section 6.  9 

 10 

2. Description of numerical model 11 

A viscous flow solver is required to consider the physical energy dissipation near the gap due 12 

to the viscous effect. In this study, the viscous numerical wave flume is based on OpenFOAM, and 13 

the multiphase flow solver for dynamic mesh, waveDyMFoam, is selected. Regular waves are 14 

generated and absorbed using the relaxation-based wave generation toolbox waves2Foam proposed 15 

by Jacobsen et al. (2012).   16 

 17 

2.1. Governing equations 18 

The multiphase flow solvers, waveDyMFoam, use the Navier–Stokes equations to describe the 19 

motion of the fluid continuum. These equations can be expressed as: 20 

 ( )=0U
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where U is the flow velocity vector, ρ is the density of the fluid, μ is the dynamic viscosity, g  is 23 

the acceleration due to gravity, p is the pressure of the fluid, and f  is the surface tension.  24 

To track the shape and position of the free surface, the volume of fluid (VOF) method has been 25 

employed in OpenFOAM. In grid cells, the volume fraction used in the VOF method is defined as 26 

follows:  27 
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The velocity field can be obtained using the weighted averages using the equation 2 

( )1water airU U U = + − . According to this equation of the velocity field, the transport equation of 3 

the VOF field can be expressed as: 4 

 ( )( ) [ 1 ] 0rU U
t


  


+ + − =


 (4) 5 

where waterU   and airU   are the velocities of the corresponding water and air, respectively. 6 

r water airU U U= −  indicates the relative velocity between air and water.  7 

The spatial variation of any fluid property   (e.g., the fluid density ρ and dynamic viscosity 8 

μ) can be expressed as weighting using  : 9 

 = (1 )water air   + −  (5) 10 

where the subscripts “water” and “air” denote the corresponding fluid property of water and air, 11 

respectively. 12 

 13 

2.2. Body motion equations 14 

In this study, the motion of the floating body is restricted to one degree of freedom, allowing 15 

solely the heave motion (z-direction). The vertical position of the floating box is solved using 16 

Newton's second law at the current time step n+1:  17 

 1 1n nF ma+ +=  (6) 18 

where Fn+1 is the total vertical force (including gravity) calculated by integrating the pressure and 19 

shear forces acting on the body’s surface, and an+1 is the body’s vertical acceleration. Once the 20 

acceleration an+1 is known, the vertical velocity vn+1 and vertical position zn+1 at the current time step 21 

n+1 are calculated using an integration strategy:  22 

 1 1 1(1 )n n n nv Tv T aa + + + += + −  (7) 23 

 1 1(1 )n n n nT v Tz z v + += −  + +  (8) 24 

where n is the previous time step, T  is the time step, and   is a blending parameter. For 0 = , 25 

the forward Euler method, which is explicit in time arises, and for 1 =  , the backward Euler 26 
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method, which is fully implicit in time, are employed. 1 

 2 

2.3. Mesh motion 3 

The mesh motion of the computational domain is calculated by solving the cell-center Laplace 4 

smoothing equation (Jasak and Tukovic, 2006): 5 

 • ( ) 0  =u  (9) 6 

where   is the diffusion field and u  is the point velocity for modifying the point position of the 7 

mesh: 8 

 1n n T+ = + x x u  (10) 9 

where n
x  and 1n+

x  are the point positions before and after mesh motion, respectively, and T  10 

is the time step.  11 

Using the variable diffusion field  , the deformation of each grid point is scaled from the total 12 

body displacement to no deformation. Further,   is a function of the distance r between the center 13 

of the cell and nearest selected boundary, where ),( i orr r . 
ir  and 

or  are the inner and outer 14 

distances of the scaling, respectively. The details of the diffusion method and several sub-options 15 

can be found in OpenFOAM User’s Guide (Greenshields, 2015). In this study, the distance-based 16 

quadratic method was selected. The diffusivity of the field is based on the inverse of the distance 17 

from the selected boundary, and the variable diffusion field equals 1/r2. 18 

 19 

2.4. Boundary conditions and numerical implementations 20 

The relaxation-based toolbox waveDyMFoam developed by Jacobsen et al. (2015) was used to 21 

generate and absorb waves at the boundaries (see Fig. 1). For the inlet and outlet boundaries, the 22 

velocity was set as the incident wave velocity and zero, respectively, and the pressure gradients were 23 

set to zero. To absorb the reflected and transmitted waves, relaxation zones were provided at the 24 

inlet and outlet boundaries. The velocity boundary condition of the floating box is defined as 25 

movingWallVelocity.  26 

 27 
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 1 

Fig. 1. Sketch of the numerical flume: (a) boundary conditions and the coordinate system; (b) 2 

positions of wave gauges and the definition of the geometric parameters 3 

 4 

The finite volume method was used to solve the governing equations (1), (2), and the 5 

advection transport equation (3). The velocity−pressure coupling is resolved using the PISO 6 

(pressure implicit with splitting of the operator) algorithm (Jasak, 1996). Gradients are 7 

approximated using the Gaussian integration method based on a linear interpolation from cell 8 

centers to cell faces. The displacement and velocity of the floating box are obtained by solving 9 

equations (7) and (8), and the grid position in the deformation domain is calculated according to 10 

the floating box position and diffusion field.  11 

In the present numerical cases, the time step is automatically determined according to the 12 

Courant-Friedrichs-Lewy (CFL) condition, 13 

  min e ert C S u  , (11) 14 

where 
eS   and eu   are the area and absolute velocity in a computational cell, respectively. To 15 

produce accurate and stable results, the largest Courant number 
rC   was set to 0.25 in all 16 

simulations. 17 

 18 

3. Numerical wave flume 19 

Fig. 1 shows the two-dimensional numerical wave flume used in this study. The numerical 20 

(b) 

(a) 
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flume is 18.5 m long and 0.9 m high. According to the setting of the two-dimensional computational 1 

domain in OpenFOAM, the width of the numerical wave flume in this study is set as a grid cell with 2 

width W=0.02 m. The origin of the coordinate system is located at the static water level (SWL) of 3 

the left inlet boundary. The wave propagation direction is defined as the x-axis, and the upward 4 

direction is the z-axis. Two identical rectangular boxes were placed in the middle of the wave flume. 5 

The upstream and downstream boxes are Box A and Box B, respectively. The dimensions of the two 6 

boxes are: height H=0.5 m and breadth B=0.5 m, draft d=0.25 m, gap width Bg=0.05 m, and water 7 

depth h=0.5 m. And the density of boxes is 500 kg/m3. This configuration is similar to the numerical 8 

investigations reported by Lu et al. (2011a) and physical experimental tests conducted by Saitoh et 9 

al. (2006). Two series of numerical experiments were conducted to compare the effects of upstream 10 

box motion on gap resonance. In the first series, the two boxes are fixed in the wave flume. In the 11 

second series, Box A heaves freely under incident wave actions, while Box B remains fixed. For 12 

simplicity, in the following description, the two-box system in the first series is called “fixed 13 

structure system” and that in the second series is called “heave structure system”.  14 

Five groups of incident wave heights were numerically simulated, where the wave heights of 15 

regular incident waves were set as H0=0.01 m, 0.02 m, 0.03 m, 0.04 m, and 0.05 m, respectively. 16 

The wave frequency, ω, which was considered in all the simulations, ranges from 4.456 rad/s to 17 

6.323 rad/s. According to the linear dispersion relation: 18 

 2 tanh( )gk kh =  (12) 19 

the dimensionless wavenumber, kh, ranges from 1.21 to 2.10, where 2 /k L=   denotes the 20 

wavenumber and L denotes the incident wavelength. Five wave gauges, G1−G5, as shown in Fig. 1, 21 

were used to record the wave elevation. G1 and G2 were used to separate the incident and reflected 22 

waves, and the distance between them was set to 0.25 m. G3 and G4 were used to obtain the free-23 

surface elevation in front of Box A and wave elevation in the gap, respectively, and G5 was used to 24 

record the transmission wave. G4 was in the middle of the narrow gap, while G2, G3, and G5 were 25 

situated at 1.5 m and 0.05 m from the left side of Box A and 1.5 m from the right side of Box B, 26 

respectively. Two relaxation zones, whose lengths were 6.0 m, were arranged on the inlet and outlet 27 

boundaries to absorb the reflection and transmission waves, respectively. The length of 6 m is about 28 

twice the maximum wavelength of the incident regular wave.  29 

The built-in mesh generation utility provided by OpenFOAM, blockMesh, was used to generate 30 
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meshes. Fig. 2 shows a typical computational mesh. Non-uniform meshes were adopted to save 1 

computational time. Fine meshes with higher resolution were employed around the boxes, 2 

particularly in the vicinity of the narrow gap. To accurately capture the motion of the free surface, 3 

the mesh density was gradually increased from the atmosphere and bottom boundary to the still 4 

water level. 5 

 6 

Table 1. Details of coarse, middle, and fine meshes 7 

Mesh  No. of cells No. of points No. of faces 
Size of cells across the gap (m) 

Δ𝑥 Δ𝑧 

Coarse  136520 275602 547362 0.0042 0.0025 

Middle  211960 426970 849366 0.0031 0.0020 

Fine  317400 638338 1271370 0.0025 0.0016 

 8 

 9 

Fig. 2. Side view of typical meshes in the computational domain: (a) the meshes around the boxes; 10 

(b) the meshes close to the gap inlet 11 

 12 

The mesh dependency is examined using three different meshes, viz., coarse, middle, and fine 13 

meshes. The details of the three different meshes are listed in Table 1. Based on the numerical results 14 

presented in Section 5.1, for the fixed structure system subjected to incident waves with H0=0.01 m, 15 

the free-surface resonance inside the gap occurs at kh=1.556. For the heave structure system exposed 16 

to the same incident waves, the free-surface resonance occurs at kh=1.720. Fig. 3 presents the time 17 

histories of the free-surface elevation in the gap for the fixed and heave structure systems and the 18 

(a) 

Box A Box B (b) 
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heave displacement of Box A excited by the incident waves with H0=0.01 m. It can be observed that 1 

the time histories of the free-surface elevation inside the narrow gap and heave displacement of Box 2 

A exhibit very little discrepancy for the three meshes. In this study, the middle mesh was adopted in 3 

all numerical experiments. 4 

The total simulation time is 40.0 s for the fixed structure system and 50.0 s for the heave 5 

structure system. It can be seen from Fig. 3 that the free-surface elevation in the gap for the fixed 6 

structure system has reached a steady state at t=20.0 s, and the free-surface elevation in the gap and 7 

heave displacement for the heave structure system reached a steady state at t=30.0 s. All the 8 

numerical results in Section 4 and Section 5 are based on the simulated steady state results from 9 

20.0−40.0 s for the fixed structure system and 30.0−50.0 s for the heave structure system.  10 

 11 

 12 

Fig. 3. Dependence of the free surface elevation in the gap and heave displacement of Box A on the 13 

mesh resolution. (a) the free surface elevation inside the narrow gap induced by the incident waves 14 

with kh=1.556, H0=0.01 m for the fixed structure system. (b) and (c) the free surface elevation inside 15 

the narrow gap and heave displacement of Box A excited by incident waves with kh=1.720, H0=0.01 16 

m for the heave structure system, respectively. A0=H0/2 is the incident wave amplitude and ζ is the 17 
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heave displacement of Box A. 1 

 2 

Using the same model mentioned above, a free decay test has been numerically performed for 3 

obtaining the natural period of the heave motion. The initial displacement of Box A is set to 0.01 m 4 

and then it heaves freely. Box B still keeps fixed. Fig. 4 shows the time history and the corresponding 5 

amplitude spectrum of the free decay of the heave motion of Box A. The natural frequency of the 6 

heave motion is about 0.6 Hz (equivalently, the natural wave number is (kh)N≈0.97). 7 

 8 
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Fig. 4. (a) Time history and (b) corresponding amplitude spectrum of free decay of the heave motion 10 

of Box A. 11 

 12 

4. Validation of numerical model  13 

In this section, the previously mentioned numerical model and numerical wave flume are 14 

validated by comparing the simulation results of OpenFOAM with the available experimental data 15 

and numerical results presented in literature. Saitoh et al. (2006) and Lu et al. (2011b) studied the 16 

free-surface elevation in the narrow gap and wave forces on boxes using physical experiments and 17 

a viscous flow model, respectively. In Section 4.1, the numerical results of this study are compared 18 

with those of the two papers. However, their studies solely considered two fixed boxes. Because the 19 

free heave motion of Box A is allowed in the current study, the accuracy of the numerical model in 20 

simulating the motion of the structure should be further verified. Rodríguez and Spinneken (2016) 21 

measured the free heave motion of a single box under wave actions in the laboratory. A comparison 22 

between the present numerical results and their experimental data is presented in Section 4.2. 23 

 24 

4.1. Verification of wave height amplification in the narrow gap 25 

(a) (b) 
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Fig. 5 shows the wave height amplification in the gap provided by the proposed numerical 1 

model, physical experimental, and viscous flow model where the wave height H0=0.024 m. It can 2 

be seen that the proposed numerical model results correspond well with the experimental data 3 

measured by Saitoh et al. (2006) and viscous numerical solutions of Lu et al. (2011b). In addition, 4 

the resonant frequency predicted by the current numerical model is approximately equal to their 5 

results.  6 

 7 

 8 

Fig. 5. Wave height amplification inside the narrow gap for the cases with H0=0.024 m, where Hg 9 

denotes the wave height inside the narrow gap 10 

 11 

4.2. Verification of the heave displacement of the box 12 

Rodríguez and Spinneken (2016) conducted physical experiments in a wave tank of width=2.79 13 

m, length=63 m, and water depth=1.25 m. The sketch of the wave tank used in the experiments is 14 

shown in Fig. 6. In the middle of the tank, a rectangular box is placed at x=29 m, where x=0 m is 15 

the position of the wavemaker. To satisfy the two-dimensional flow conditions, the width of the 16 

rectangular box was set to 2.76 m, such that the distance between the rectangular box and side walls 17 

of the tank is 0.015 m. Further dimensions of the box are breadth 2b=0.5 m and draft d=0.25 m. Two 18 

steepness of the incident waves kA0=0.05 and kA0=0.10 are considered in the physical experiments. 19 

To examine the performance of the numerical model, a series of experiments with a steepness of 20 

kA0=0.10 were conducted using OpenFOAM. Considering that the box used in the physical 21 

experiments has equal breadth and draft as those of the boxes in the numerical wave flume used in 22 

this study, the numerical wave tank, which is very similar to that in Fig. 1, is used for the present 23 

simulation (not reported in this paper for brevity). When compared with the wave flume shown in 24 

Fig. 1, two main differences are observed in the current wave flume. First, there is solely one box 25 

in the middle of the wave flume. Second, the water depth increases from 0.5 m to 1.25 m. A grid 26 
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with a density similar to that of the middle mesh described in Section 3 is adopted. The length of 1 

the numerical wave flume need not be equal to that of the physical wave flume owing to the 2 

relaxation zone set at the inlet and outlet boundaries, and the length=18.5 m is sufficiently long. 3 

 4 

 5 

Fig. 6. Schematic of the wave flume setup of Rodríguez and Spinneken (2016): (a) plan view and 6 

(b) side elevation 7 

 8 

Fig. 7 shows the comparison between the numerical simulation results, experimental data and 9 

linear potential flow prediction on the heave displacement. Rodríguez and Spinneken (2016) also 10 

obtained the linear potential flow prediction by solving the frequency-domain equation of motion 11 

using WAMIT. The results show that the numerical simulation results correspond well with those of 12 

the physical experiments, and the overall trend was sufficiently captured. When combined with the 13 

numerical simulation results of Sections 4.1 and 4.2, it can be confirmed that the current numerical 14 

model and numerical results are sufficiently reliable and accurate. 15 

 16 

(a) 

(b) 
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 1 

Fig. 7. Comparison of the heave displacement between the numerical and experimental results 2 

 3 

5. Results and discussion 4 

To understand the effect of the heave motion of Box A on the hydrodynamic characteristics of 5 

gap resonance, Section 5.1 discusses the variation of the overall wave height amplification inside 6 

the narrow gap with respect to the incident wave frequency for the fixed and heave structure systems. 7 

Then, to determine the relative importance of different harmonic components, Section 5.2 analyzes 8 

the first three harmonic components of the wave height amplification inside the narrow gap. Section 9 

5.3 presents the variation of the heave displacement of Box A with respect to the incident wave 10 

frequency and attempts to understand the internal relationship between the heave motion of Box A 11 

and the characteristics of the free-surface resonance inside the gap. Subsequently, the harmonic 12 

analysis of the heave displacement of Box A is presented in Section 5.4. To better understand the 13 

similarities and differences in the gap resonant hydrodynamics for the fixed and heave structure 14 

systems, the transmission, reflection and energy loss coefficients for the two structure systems are 15 

discussed in Section 5.5.  16 

 17 

5.1. Overall wave height amplifications 18 

 19 
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 1 

Fig. 8. Time histories of the free-surface elevation inside the gap for the fixed and heave structure 2 

systems under the condition that the fluid resonance occurs inside the gap excited by incident waves 3 

with H0=0.01 m. For the fixed and heave structure systems, their fluid resonant frequencies are 4 

kh=1.556 and kh=1.720, respectively 5 

 6 

Fig. 8 shows the time histories of the free-surface elevation inside the gap under the condition 7 

that the fluid resonance occurs inside the gap excited by incident waves with H0=0.01 m. For the 8 

fixed and heave structure systems, their fluid resonant frequencies are kh=1.556 and kh=1.720, 9 

respectively, which can be seen from the following (i.e., Fig. 9). It can be observed from Fig.8 that 10 

the free-surface elevation in the gap of the heave structure system is smaller than that of the fixed 11 

structure system. It should be noted that the wave heights inside the gap, Hg, shown in Fig. 9 are 12 

computed using the averaged values of the simulated wave heights in the steady state between 20−40 13 

s for the fixed structure system and 30−50 s for the heave structure system.   14 

 15 

 16 

Fig. 9. Overall wave height amplification inside the gap for the fixed and heave structure systems 17 

excited by the incident waves with various wave heights 18 
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the fixed and heave structure systems, Fig. 9 shows the wave height amplifications inside the gap 1 

for various incident wave heights. Three phenomena can be observed. First, for the two structure 2 

systems, the variation trend of wave height amplification with respect to the incident wave 3 

frequency is similar. The two trends show a single-peak shape. For a certain incident wave height, 4 

the maximum wave amplification occurs at a single fluid resonant frequency, and as the incident 5 

wave frequency deviates from the fluid resonant frequency, the wave height amplification gradually 6 

decreases. Second, for the fixed structure system, the fluid resonant frequency seems insensitivity 7 

to the incident wave height. For the heave structure system, it decreases with respect to the incident 8 

wave height. Fig. 10 further shows the variation of the fluid resonant frequency, (kh)Hg, with respect 9 

to the incident wave height for the two structure systems, where the second phenomenon previously 10 

described can be seen more intuitively. Compare with the natural wave number ((kh)N≈0.97), the 11 

fluid resonant frequencies of the heave structure system on various incident wave heights 12 

((kh)Hg=1.72–1.67) are higher.  13 

 14 

 15 

Fig. 10. Variation of fluid resonant frequency with respect to incident wave height for the two 16 

structure systems 17 

 18 

Third, for the two structure systems, the wave height amplification inside the gap is affected 19 

by the incident wave height. To illustrate this phenomenon clearly, Fig. 11 further presents the 20 

variation of the resonant wave height, (Hg/H0)max, with respect to the incident wave height for the 21 

two structure systems. It can be observed that for the two structure systems, the maximum wave 22 

height amplification in the gap decreases continuously with an increase in the incident wave height. 23 

In addition, the value of (Hg/H0)max for the fixed structure system is always larger than that for the 24 

heave structure system.  25 
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 1 

Fig. 11. Variation of the amplification of resonant wave height, (Hg/H0)max, with incident wave 2 

height for two structure systems 3 

 4 

5.2. Harmonic analyses of wave height amplifications 5 

 6 

 7 

Fig. 12. First three order harmonic components of the wave height amplifications inside the gap 8 

under various incident wave heights. The black and red dashed lines represent the fluid resonant 9 

frequencies of the fixed and heave structure systems, respectively 10 
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Fig. 12 presents the first three order harmonic components of the wave height amplifications 12 
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inside the gap under various incident wave heights for the two structure systems. Hg
(i) (i=1, 2, and 1 

3) in the figure denotes the ith-order harmonic component of the wave height inside the gap. To 2 

clearly observe the high-order harmonic components, the second- and third-order components are 3 

magnified ten-fold. The following four phenomena can be observed. First, for the two structure 4 

systems, the first-order component of the wave height amplification is significantly larger than that 5 

of the corresponding second- and third-order components. Second, for the two structure systems, 6 

the first- and second-order harmonic components around the fluid resonant frequency are larger than 7 

the corresponding ones under non-resonant frequencies. As the incident wave height increases, this 8 

phenomenon can be observed for the third-order component. Third, the first- and second-order 9 

harmonic components around the fluid resonant frequency for the fixed structure system are larger 10 

than the corresponding ones for the heave structure system. This trend can be observed for the third-11 

order component under larger incident wave heights. Fourth, the first-order harmonic component 12 

around the fluid resonant frequency decreases with an increase in the incident wave height. In 13 

addition, the difference between Hg
(1)/H0 and the corresponding high-order values decreases with 14 

the incident wave height. The relative importance of the high-order components to the first-order 15 

component is analyzed further below.  16 

 17 
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 1 

Fig. 13. Ratios of the second- and third-order harmonic components to the first-order ones under 2 

various incident wave frequency for the fixed and heave structure systems with different wave 3 

heights. 4 

 5 

To quantify the relative importance of higher-order components to the first-order component, 6 

Fig. 13 further shows the ratios of the second- and third-order harmonic components to the 7 

corresponding first-order ones. The following three phenomena can be observed. First, for the fixed 8 

and heave structure systems, the ratios Hg
(2)/Hg

(1) and Hg
(3)/Hg

(1) around the fluid resonant frequency 9 

are significantly larger than the corresponding values for the non-resonant conditions, and their 10 

maximum occurs at or close to the fluid resonant frequency. Second, the ratios Hg
(2)/Hg

(1) and 11 

Hg
(3)/Hg

(1) at the fluid resonant frequency for the heave structure system are less than those for the 12 

fixed structure system. Third, Fig. 13 shows that the ratios Hg
(2)/Hg

(1) and Hg
(3)/Hg

(1) at the fluid 13 

resonant frequency increase with an increase in the incident wave height. To illustrate this 14 

phenomenon clearly, Fig. 14 illustrates the variations in the ratios Hg
(2)/Hg

(1) and Hg
(3)/Hg

(1) at the 15 

fluid resonant frequency with respect to the incident wave height. To illustrate the ratios Hg
(3)/Hg

(1) 16 

clearly, they are magnified five times. The ratios Hg
(2)/Hg

(1) and Hg
(3)/Hg

(1) at the fluid resonant 17 
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frequency for the fixed structure system increase significantly with an increase in incident wave 1 

height. For the heave structure systems, the ratios Hg
(2)/Hg

(1) and Hg
(3)/Hg

(1) at the resonant frequency 2 

increase with an increase in the incident wave height. However, their variation rates are lower than 3 

those of the fixed structure system. In addition, the ratios Hg
(2)/Hg

(1) and Hg
(3)/Hg

(1) at the resonant 4 

frequency for the fixed structure system are always larger than the corresponding values for the 5 

heave structure system. 6 

 7 

 8 

Fig. 14. Variations of the ratios Hg
(2)/Hg

(1) and Hg
(3)/Hg

(1) at the fluid resonant frequency with respect 9 

to the incident wave heights 10 

 11 

5.3. Heave displacement of Box A 12 

 13 

 14 

Fig. 15. Heave displacements of Box A excited by the incident regular waves with various wave 15 

heights, where (kh)ζm and (kh)ζn represent the incident wave frequencies at which the global 16 

maximum and minimum heave displacements occur for a certain incident wave height  17 
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Fig. 15 shows the heave displacements of Box A excited by the incident regular waves with 1 

various wave heights. The heave displacement ζ is normalized by the incident wave height H0. 2 

Further, the incident wave frequencies at which the maximum and minimum of the normalized 3 

displacement occur for a certain incident wave height are defined as (kh)ζm and (kh)ζn. The following 4 

four phenomena can be observed. First, the normalized displacements excited by regular waves with 5 

low frequencies (kh<1.4) are much larger than those with higher frequencies. The reasons for this 6 

phenomenon are as follows: If solely one box is placed in the middle of the wave flume, the 7 

theoretical heave displacement of the box under the action of low-frequency waves should be close 8 

to the wave height, i.e., ζ /H0 ≈ 1. When two boxes are placed side-by-side in the wave flume, if the 9 

incident waves are completely reflected by the downstream box, theoretically, ζ /H0 should be close 10 

to 2. However, because the downstream box is a truncated structure, a part of the incident wave 11 

energy is transmitted to the gap and behind the two-box system. Therefore, the normalized 12 

displacement cannot reach under incident waves with low frequencies.  13 

Second, when the normalized wave number kh is approximately less than 1.62, the normalized 14 

displacement gradually decreases with an increase in the wave frequency. When the wave frequency 15 

is roughly in the range of 1.62<kh<1.76, the normalized displacement increases rapidly with an 16 

increase in wave frequency. When the wave frequency is in the high-frequency range of kh>1.76, 17 

the normalized displacement at all incident wave heights decreases with an increase in the wave 18 

frequency. It can be observed that the variation trend of the normalized displacement with the wave 19 

frequency is different from that of the wave height amplification in the gap presented in Fig. 8.  20 

To understand the parameters that determine the movement of Box A, Fig. 16 shows the time 21 

history of the vertical force on the Box A and the heave displacement at three typical wave 22 

frequencies (kh=1.65, 1.72 and 1.76) for the incident wave height H0=0.01 m, in which Fv
A/(ρghA0W) 23 

is the memorialized vertical force of Box A. It can be observed from Fig. 16 that the heave 24 

displacement increases with the increase of the vertical force. Therefore, the vertical force on Box 25 

A has an important influence on the heave displacement. 26 

 27 
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 1 

Fig. 16. Time history of the vertical force on the Box A and the heave displacement at three 2 

conventional wave frequencies (kh=1.65, 1.72 and 1.76) for the incident wave height H0=0.01 m, in 3 

which Fv
A/(ρghA0W) is the normalized vertical force of Box A 4 

 5 

Third, by carefully observing the three frequencies of (kh)Hg, (kh)ζn, and (kh)ζm for each wave 6 

height in Fig. 15, it can be found that for all the incident wave heights considered, the frequencies 7 

of (kh)ζm and (kh)ζn are different from the corresponding fluid resonant frequencies (kh)Hg. These 8 

values are greater and less than the corresponding (kh)Hg values respectively. To further illustrate 9 

the similarities and differences between (kh)ζm, (kh)ζn, and (kh)Hg, their variations with the incident 10 

wave height are presented in Fig. 17. It can be observed that at the variation range of H0 considered, 11 

the frequency (kh)ζm seems insensitivity to H0, and slightly fluctuates at kh=1.760. The frequency 12 

(kh)ζn decreases continuously when H0<0.03 m and remains constant when H0>0.03 m. The fluid 13 

resonant frequency (kh)Hg presents a continuous decreasing trend for the entire variation range of 14 

H0. 15 
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 1 

Fig. 17. Variations of the frequencies (kh)ζm, (kh)ζn and (kh)Hg with the incident wave height 2 

 3 

Forth, as the incident wave height increases, the maximum and minimum values of normalized 4 

heave displacements present a decreasing and increasing trend, respectively, and as the incident 5 

wave height increases, the difference between them gradually decreases. Fig. 18 further shows the 6 

variations of the normalized displacements excited by the incident waves with frequencies of (kh)ζm, 7 

(kh)ζn, and (kh)Hg with respect to the incident wave heights. The normalized displacement under the 8 

resonant frequency (kh)Hg continuously decreases with an increase in the incident wave height. 9 

Similar to the normalized displacement under the resonant frequency (kh)Hg, the maximum 10 

normalized displacement decreases with an increase in the incident wave height. Similarly, the 11 

minimum of the normalized displacements continuously increases with an increase in the incident 12 

wave heights. 13 

 14 

 15 

Fig. 18. Variations of the normalized displacement excited by wave frequencies of (kh)ζm, (kh)ζn, and 16 

(kh)Hg 17 

 18 

In addition, because the frequencies of (kh)ζm, (kh)ζn, and (kh)Hg are not equal to each other at 19 

each incident wave height, it can be seen from Fig. 9 that the wave height amplifications excited by 20 
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these frequencies are different. Fig. 19 shows the variations in the wave height amplifications 1 

excited by wave frequencies of (kh)ζm, (kh)ζn, and (kh)Hg with incident wave height. It can be 2 

observed that the variation trends of Hg/H0 for the frequencies (kh)ζm, (kh)ζn, and (kh)Hg are 3 

continuously decreasing with an increase in the incident wave height. However, their decreasing 4 

degrees are different. Among them, the decreasing degrees of the wave height amplification inside 5 

the narrow gap excited by wave frequencies of (kh)ζm, (kh)ζn, and (kh)Hg decreases gradually, but for 6 

the frequency of (kh)ζn, the degree is smaller than other frequencies. 7 

 8 

 9 

Fig. 19. Variations of the wave height amplifications inside the narrow gap excited by wave 10 

frequencies of (kh)ζm, (kh)ζn, and (kh)Hg with the incident wave height 11 

 12 

5.4. Harmonic analyses of heave displacement  13 
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 1 

Fig. 20. First three harmonic components of the heave displacement under various incident wave 2 

heights, where the black dashed lines represent the fluid resonant frequency of the heave structure 3 

system 4 

 5 

Fig. 20 shows the variation of the first three harmonic components of the heave displacement 6 

of Box A with respect to the incident wave frequency. In the figure, ζ(i) (i=1, 2, and 3) represents the 7 

ith-order harmonic component of the heave displacement. Similar to Fig. 12, to illustrate the high-8 

order harmonic components clearly, their values are magnified ten-fold in this figure. The following 9 

three phenomena can be observed. First, the first-order harmonic component of the heave 10 

displacement is much larger than the corresponding high-order ones, and the latter are very small, 11 

as shown in Fig. 20, after the magnification. Moreover, the variation trend of the first-order 12 

component at each incident wave height first decreases, then increases, and then decreases. Second, 13 

the second-order components around the fluid resonant frequency are lower than the corresponding 14 

ones under non-resonant frequencies. Third, around the fluid resonant frequency, the third-order 15 

component of the heave displacement tends to approach or even exceed the corresponding second-16 

order one.  17 
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 1 

Fig. 21. Ratio of the second-order harmonic component of the heave displacement to the 2 

corresponding first-order one under various incident wave heights 3 

 4 

To quantify the relative importance of the high-order components to the first-order component, 5 

Fig. 21 shows the ratio of the second-order harmonic component of the heave displacement to the 6 

corresponding first-order one. Considering that the magnitude of the third-order harmonic 7 

component is very small over the entire frequency range, its ratio to the corresponding first-order 8 

one is not discussed here. The following three phenomena can be observed. First, at kh<1.62 and 9 

kh>1.71, the ratio of the second-order component to the first-order component increases 10 

continuously with the wave frequency. In the range of 1.62<kh<1.71, the ratio ζ(2)/ζ(1) decreases 11 

sharply with the wave frequency. The value of ζ(2)/ζ(1) for each wave height reaches the minimum 12 

value at or around the fluid resonant frequency, and the minimum value is between 0.2% and 1.5%. 13 

Second, generally, in the frequency range considered, the ratio ζ(2)/ζ(1) increases with an increase in 14 

the incident wave height. For all cases, the maximum value of the ratio ζ(2)/ζ(1) is 4.6% at kh=2.1, 15 

H0=0.05 m. Third, for the relatively large wave heights (H0=0.04 m and 0.05 m), the global 16 

maximum value of the ratio ζ(2)/ζ(1) occurs at kh=2.1. For relatively small wave heights (H0=0.01 17 

m―0.03 m), the maximum value of the ratio ζ(2)/ζ(1) occurs at or around the corresponding (kh)ζn. 18 

In addition, there is a local maximum at frequency (kh)ζn for relatively large wave heights (H0=0.04 19 

m and 0.05 m).  20 

 21 

5.5. Reflection, transmission and energy loss coefficients 22 
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 1 

Fig. 22. Reflection coefficient, Cr, for (a) the fixed structure system, and (b) the heave structure 2 

system. The black and red dashed lines represent the fluid resonant frequency for the fixed and 3 

heave structure systems, respectively, under H0=0.01 m. 4 

 5 

Fig. 22 shows the reflection coefficient, Cr, for the two structure systems. It should be motioned 6 

that the reflected and transmitted waves considered in this section include the radiated waves 7 

generated by the heave motion of the Box A, and the radiated waves is theoretically impossible and 8 

unnecessary to be explicitly separated from the reflected and transmitted waves. The variation trend 9 

of the reflection coefficient for the fixed structure system is different from that for the heave 10 

structure system. For the fixed structure system, the reflection coefficient first decreases and then 11 

increases with an increase in the wave frequency. For the heave structure system, the reflection 12 

coefficient first increases, then decreases, and then increases. Besides, there is always a global 13 

minimum value (for the fixed structure system) or a local minimum value (for the heave structure 14 

system) of the reflection coefficient around the fluid resonant frequency. Another phenomenon is 15 

that for the two structure systems, the reflection coefficients at the fluid resonant frequency increase 16 

with an increase in the incident wave height, but the degree of increase for the heave structure system 17 

is not as clear as that of the fixed structure system. 18 
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 1 

Fig. 23. Variations of the reflection coefficient at the resonant frequency for the two structure 2 

systems with the incident wave height 3 

 4 

To better demonstrate the third phenomenon mentioned above, Fig. 23 shows the variations of 5 

the reflection coefficient at the fluid resonant frequency for the fixed and heave structure systems 6 

with respect to the incident wave height. The reflection coefficient for the fixed structure system at 7 

the resonant frequency increases significantly with an increase in the incident wave height. For the 8 

heave structure systems, the variation of Cr at the fluid resonant frequency increases with the 9 

incident wave height. However, its variation rate is lower than that of the fixed structure system. In 10 

addition, the reflection coefficients at the fluid resonant frequency for the heave structure system 11 

are always larger than those for the fixed structure. This may be because the radiation waves 12 

generated by the heave motion of Box A contribute to the reflection waves, resulting in a more 13 

significant reflection coefficient.  14 
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 1 

Fig. 24. Transmission coefficient, Ct, for (a) the fixed structure system, and (b) the heave structure 2 

system. The black and red dashed lines represent the fluid resonant frequency for the fixed and 3 

heave structure systems, respectively, under H0=0.01 m. 4 

 5 

Fig. 24 shows the transmission coefficient, Ct, for the fixed and heave structure systems. The 6 

following three phenomena can be observed: First, for the two structure systems, the frequency at 7 

which the maximum transmission coefficient occurs is smaller than the resonant frequency. Second, 8 

for the fixed structure system, when the incident wave height is small, the transmission coefficient 9 

first increases and then decreases with the wave frequency. With the increase in incident wave height, 10 

this trend gradually decreases continuously. For the heave structure system, the variation of the 11 

transmission coefficient is completely different from that of the fixed structure system. The 12 

transmission coefficient almost continuously decreases with the wave frequency at all the incident 13 

wave heights considered. Third, by comparing Figs. 22 and 24, it can be found that for the fixed and 14 

heave structure systems, the reflection coefficients are always larger than the transmission 15 

coefficients for all the incident wave heights considered in this study. The larger the incident wave 16 

height is a clear difference between Cr and Ct. 17 
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 1 

Fig. 25. Energy loss coefficient, Le, for (a) the fixed structure system, and (b) the heave structure 2 

system. The black and red dashed lines represent the fluid resonant frequency for the fixed and 3 

heave structure systems, respectively, under H0=0.01 m. 4 

 5 

Fig.25 shows the energy loss coefficient, Le, for the fixed and heave structure systems. The 6 

energy loss coefficient is formulated as Le = 1 – Cr
2

 – Ct
2. There is always a global maximum value 7 

(for the fixed structure system) or a local maximum value (for the heave structure system) of the 8 

energy loss coefficient around the fluid resonant frequency. Besides, the energy loss coefficients at 9 

resonant frequency for two structure systems decrease with the increase of the incident wave height. 10 

To clearly demonstrate this phenomenon, Fig. 26 shows the variations of the energy loss coefficient 11 

at the fluid resonant frequency for two structure systems. The energy loss coefficients at the fluid 12 

resonant frequencies for the heave structure system are always less than those for the fixed structure 13 

system, which indicates that the heave motion of upstream box will lead to less energy dissipation. 14 

 15 

 16 

Fig. 26. Variations of the energy loss coefficient at the resonant frequency for the two structure 17 

systems with the incident wave height. 18 
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6. Conclusions  1 

A two-dimensional numerical wave tank based on OpenFOAM was used to study the gap 2 

resonance formed between two boxes under the action of regular waves. In contrast to several 3 

previous studies on gap resonance where the structures were assumed to be fixed, the heave motion 4 

of the upstream box was considered in this study, and the influence of the motion of the box on the 5 

hydrodynamic behavior of the gap resonance are systematically investigated. Two series of 6 

numerical experiments were conducted to compare the effects of upstream box motion on gap 7 

resonance. In the first series, the two boxes are fixed in the wave flume. In the second series, Box A 8 

heaves freely under incident wave actions, while Box B remains fixed. The two-box system in the 9 

first series is called “fixed structure system” and that in the second series is called “heave structure 10 

system.” The variations of the wave height amplification in the gap with the incident wave height 11 

and wave frequency for the fixed and heave structure systems are compared. Subsequently, the 12 

harmonic components of the wave height amplification are analyzed. Then, the variation in the 13 

heave displacement of the upstream box with respect to the incident wave height and frequency, and 14 

its harmonic characteristics are investigated. Finally, the reflection, transmission and energy loss 15 

coefficients of the fixed and heave structure systems are discussed.  16 

The following points summarize the results of this study: 17 

(1) For the fixed and heave structure systems, the wave height amplification always increases first 18 

and then decreases with respect to the wave frequency. When compared with the fixed structure 19 

system, the heave motion of the upstream box leads to a lower wave height amplification inside 20 

the gap and a higher fluid resonant frequency, and this resonant frequency is very close to the 21 

natural frequency of the heave free decay. In addition, the fluid resonant frequency decreases 22 

significantly with an increase in the incident wave height for the heave structure system.  23 

(2) For the fixed and heave structure systems, the first three harmonic components of the wave 24 

height inside the gap attain their respective peak values at or around the fluid resonant 25 

frequency. The ratios of the high-order components (including the second and third-order ones) 26 

to the corresponding first-order component near the resonant frequency are greater than those 27 

away from the resonant frequency. The ratios of the high-order components to the 28 

corresponding first-order component at the fluid resonant frequency for the fixed structure 29 

system are larger than those for the heave structure system. 30 
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(3) The heave displacement of the upstream box first decreases, then increases, and then decreases 1 

with an increase in the incident wave frequency. The maximum and minimum values of 2 

normalized heave displacements tend to decrease and increase with increasing incident wave 3 

height, respectively. The two frequencies at which the maximum and minimum displacements 4 

occur under each wave height deviate from the fluid resonant frequency obviously. Moreover, 5 

they are greater than and less than the fluid resonant frequency, respectively.   6 

(4) The high-order components of the heave displacement of the upstream box are significantly 7 

small, and the third-order component of the heave displacement around the resonant frequency 8 

tends to approach or exceed the corresponding second-order component. The ratio of the 9 

second-order component to the corresponding first-order component under each wave height 10 

reaches the minimum value at or around the fluid resonant frequency. The global maximum 11 

value (for small incident waves having heights of 0.01−0.03 m) or local maximum value (for 12 

the larger incident waves having heights of 0.04 m and 0.05 m) of this ratio occurs at or around 13 

the corresponding frequency where the minimum displacement occurs. 14 

(5) For all the incident wave heights considered in this study, the minimum reflection coefficient 15 

occurs at (or very close to) the resonant frequency for the two structure systems. The reflection 16 

coefficients at the fluid resonant frequency for the heave structure system are always larger 17 

than those for the fixed structure. The heave motion of upstream box will lead to less energy 18 

dissipation. 19 
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