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Abstract 

Simple, transparent rules are often frowned upon while complex, black-box models are seen as 

holding greater promise. Yet in quickly-changing situations, simple rules can protect against 

overfitting and adapt quickly. We show that the surprisingly simple recency heuristic forecasts 

more accurately than Google Flu Trends which used big data analytics and a black-box 

algorithm. This heuristic predicts that “this week’s proportion of flu-related doctor visits equals 

the proportion from the most recent week”. It is based on psychological theory of how people 

deal with rapidly changing situations. Other theory-inspired heuristics have outperformed big 

data models in predicting outcomes such as U.S. presidential elections, or uncertain events such 

as consumer purchases, patient hospitalizations and terrorist attacks. Heuristics are transparent, 

clearly communicating the underlying rationale for their predictions. We advocate taking into 

account psychological principles that have evolved over millennia and using these as a 

benchmark when testing big data models.  
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Introduction 

Simple forecasting rules can be surprisingly accurate in predicting events in sport, business and 

crime (Goldstein and Gigerenzer, 2009; Makridakis and Hibon, 2000). This appears to be 

happening for events that are difficult to predict because of a dynamic time course fraught with 

uncertainty. While simple rules do not fit past data as well as complex models, under uncertainty 

they can sometimes predict the future better by reducing error due to overfitting the past. At the 

same time, simple rules are transparent and can easily be applied, understood and taught. Yet 

since these less-is-more effects were shown (Dawes and Corrigan, 1974; Dawes 1979), they have 

met with reactions of disbelief by those who prefer “optimal” models with many free parameters 

and big data. For instance, when Makridakis and Hibon (1979) showed in the Journal of the 

Royal Statistical Society that simple models predicted better than complex models in 111 time 

series, the comments published along reveal disbelief and disinterest rather than scientific 

curiosity (Hogarth, 2012). Makridakis reacted with more competitions, where critical experts 

could submit their own forecasting methods to predict over thousands of time series, and 

obtained similar results (Makridakis and Hibon, 2000; Makridakis, Spiliotis and 

Assimakopoulos, 2020). He concluded that despite the empirical evidence, those developing 

complex statistical models “pay little attention or ignore such studies” (cited in Hogarth, 2012, p. 

68).  
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Medicine is also a field where uncertainties, in predicting the course of treatment or 

infection, abound. While simple rules such as bed-side rules and fast-and-frugal decision trees 

are widely practiced by doctors in diagnosis and prediction (Wegwarth, Gaissmaier and 

Gigerenzer, 2009; Gigerenzer, 2014), forecasting models used by academics tend to be complex 

and black-box, independent of whether the situation is fraught with uncertainty or not. In this 

article, we use a classic application of big data analytics to test how well, in a situation of 

uncertainty, an extremely simple rule can predict the time-course of health-related behavior.    

Big data, such as people’s web searches, have been used to capture important outcomes, 

including unemployment figures (Ettredge, Gerdes and Karuga, 2005), sales of consumer goods 

such as films and video games (Goel et al, 2010) and, prominently, the incidence of influenza 

(flu) (Ginsberg et al, 2009). To build Google Flu Trends, Ginsberg et al. (2009) selected 45 

variables from 50 million queries submitted to the Google search engine and combined them 

linearly to predict the proportion of flu-related doctor visits across the U.S. The model was 

trained on data from 2003 to 2007 and tested on data from 2007 to 2008. It achieved a 0.97 mean 

correlation1 with the weekly estimates from the Centers for Disease Control and Prevention 

(CDC) (Ginsberg et al, 2009). But in 2009 Google Flu Trends failed to predict the outbreak of 

the swine flu (Cook et al, 2011; Olson et al, 2013). As is often the case, if a model fails it is made 

more complex, and Google updated the model by increasing the number of variables to 

approximately 160 (Cook et al, 2011). The updated model overestimated the proportion of flu-

related doctor visits in 100 out of 108 weeks from August 2011 to September 2013, in some 

cases overshooting by more than 50% (Olson et al, 2013; Butler, 2013). In response, the Google 

 
1Correlation is a poor measure of accuracy because it ignores mean bias. For instance, predicted values of 
2, 3, 4, and 5 are perfectly correlated with observed values of 12, 13, 14, and 15. 
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engineers asked “is our model too simple?” and updated it once again in 2013 (Copeland et al, 

2013). After a third update in 2014, Google Flu Trends was shut down in 2015. 

 Beyond shortcomings in accuracy, Google Flu Trends has been also strongly criticized 

for its lack of transparency (Lazer et al, 2014). The search queries and variables used in the 

models were not revealed publicly, which prevents replication. For the three model updates, the 

exact number of variables was not reported. A further, important critique of Google Flu Trends is 

that there was no testing of alternative models from approaches different than big data analytics. 

Such testing was done elsewhere (Goel et al, 2010; Lazer et al, 2014). In one approach, the 

predictions of Google Flu Trends were linearly combined with CDC data. In a second approach, 

time-lagged CDC reports were inputted into a linear regression. One key finding was that Google 

Flu Trends was less accurate than regressions on time-lagged CDC reports, as measured by the 

mean absolute error (Lazer et al, 2014).       

 Although regression and other linear models have been labelled as “simple”, studies have 

shown that economists cannot correctly interpret regression weights (Soyer and Hogarth, 2012) 

and physicians reject the use of such models in their practice because they do not understand 

them (Green and Mehr, 1997). The solution would be to develop models that are understandable 

and accurate at the same time (Rudin and Radin, 2019). According to a common perception, 

however, this is not possible because of a purported tradeoff between making a model 

understandable and making it accurate.  

 

The Recency Heuristic 

We provide evidence that forecasting models can be both transparent and accurate. On the basis 

of theory from psychology and other behavioral sciences, one can build simple heuristics that are 
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accurate in the appropriate decision environments (Gigerenzer, Todd and the ABC research 

group, 1999; Hogarth and Karelaia, 2007; Todd, Gigerenzer and the ABC Research Group, 

2012; Hertwig et al, 2019; Katsikopoulos et al, 2020). Psychological research indicates that in 

cases of change and disruption people rely on recency. Brown’s (1838) law of recency states that 

recent experiences come to mind more easily than those from the distant past, and are often the 

sole information guiding human decisions. Furthermore, people use recency adaptively, 

depending on the structure of the environment (Anderson and Schooler, 1991). Here we propose 

the following recency heuristic for influenza incidence:  

“Predict that this week’s proportion of flu-related doctor visits equals the proportion from 

the most recent week”.  

More precisely, let 𝑝! be the prediction of the heuristic for week t and 𝑜! be the CDC 

report for week t. The prediction of the recency heuristic for week t equals the CDC report for 

week t – 1; that is, 𝑝! = 𝑜!"#. This calculation assumes that the prediction is made on a Friday, 

the day on which CDC releases the report for the previous week according to the official website 

of the CDC; see https://www.cdc.gov/flu/weekly/overview.htm#anchor_1539281266932.   

The recency heuristic relies on a single variable and uses zero free parameters. The 

heuristic is an instance of naïve forecasting, typically frowned upon despite evidence that simple 

forecasting methods often outperform more complex ones (Sherden, 1998; Hogarth, 2012; 

Katsikopoulos, Durbach and Stewart, 2018; Green and Armstrong, 2015; Dosi et al, 2020). For 

example, Green and Armstrong (2015) identified 97 quantitative comparisons between simple 

and more complex forecasting models in the literature. The authors found that, across the 

different error measures reported, complex models increased error on average by 27% compared 

to simple models.  
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Method and Results 

We compared the predictions of the recency heuristic with the predictions of Google Flu Trends, 

as well as with those of a two-parameter linear regression on the same variable, 𝑜!"#, employed 

by the heuristic (every week the two parameters of the linear regression were updated, as done 

by Lazer et al, 2014). Google Flu Trends nowcasts flu-related doctor visits and is not subject to 

the reporting lag of the CDC data2. We used all weeks for which Google Flu Trends predictions 

are available, from March 18, 2007 to August 9, 2015. To the best of our knowledge, this is the 

widest time window on which Google Flu Trends and alternative models have been compared.  

We computed three performance metrics for each model: mean absolute error (MAE), as 

was also done by Lazer et al (2014), mean absolute percentage error (MAPE) and median 

relative absolute error (MedRAE). More precisely, let 𝑜!, 𝑝! and 𝑒! denote respectively the 

observed value (CDC report), the predicted value and the error (of a model) in week t, with 𝑒! =

	𝑝! − 𝑜!. Then, over n weeks, MAE =  #
$
∑!%#$ |𝑒!| and MAPE =  100 × #

$
∑!%#$ |𝑒!/𝑜!|. When 

computing MedRAE, relative absolute error was computed by dividing the absolute error of a 

given model by the absolute error of the recency heuristic, |𝑒!/(𝑜!"# − 𝑜!)|; because the 

denominator of this ratio was often close to zero and thus the ratio had a skewed distribution 

with many extreme values, we used the median (Hyndman and Koehler, 2006). Recall that the 

 
2 Influenza surveillance data collection by CDC is based on a reporting week that starts on Sunday and 
ends on the following Saturday. The recency heuristic and Google Flu Trends both predict the percentage 
of flu-related doctor visits in the current Saturday–Sunday week. The prediction of the recency heuristic 
becomes available on the Friday of the week, when CDC releases the flu-related doctor visits of the 
previous week. The prediction from Google Flu Trends is taken from its archival website 
https://www.google.org/flutrends/about/, where the following is noted: “Each week begins on the Sunday 
(Pacific Time) indicated for the row. Data for the current week will be updated each day until Saturday 
(Pacific Time).” What was archived on the Google Flu Trends website is the final prediction for the week, 
which was presumably made on the Saturday of the week. 
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observed values are the proportions of doctor visits that are flu related, which can range from 0 

percent to 100 percent. We report prediction errors in percentage points. For example, if 

observed and predicted values are 5 percent and 2 percent, respectively, then the error is 3 

percentage points.  

  Figure 1 shows the performance of the recency heuristic and Google Flu Trends for each 

week. We do not show the performance of linear regression because it is basically 

indistinguishable from that of the heuristic. The upper panel shows the observed and predicted 

time series 𝑜! and 𝑝!, and the lower panel shows the percentage error time series 𝑃𝐸!	= 

100 × 𝑒!/𝑜! .  
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Figure 1. Performance of the recency heuristic and Google Flu Trends (GFT) for all weeks from March 

18, 2007 to August 9, 2015, the horizon for which GFT predictions are available; see 

https://www.google.org/flutrends/about/. The dashed vertical lines indicate the first week of each year. 

The solid vertical lines show the times of the three GFT updates. The predictions of GFT for each week 

are from the GFT model active at the time (i.e., the most recent GFT update). The upper panel depicts 

proportion of flu-related doctor visits, observed and predicted. The lower panel shows the percentage 

error time series,	where values above zero denote over-prediction and values below zero denote under-

prediction.  
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 Table 1 shows the values of the summary statistics MAE, MAPE and MedRAE for the 

recency heuristic, the linear regression and Google Flu Trends, as well as the benchmark model 

of predicting a zero percent of flu-related doctor visits for each week.     

 MAE MAPE MedRAE 
 

Recency Heuristic 
 

0.20 9% 1.00 

Linear Regression 
 

0.20 10% 0.99 

Google Flu Trends 
 

0.38 20% 1.87 

Benchmark Model: 
Predict Zero 

1.80 100% 13.62 
 

 

Table 1. Summary statistics for the performance of the recency heuristic, linear regression, Google Flu 

Trends, and the benchmark model of predicting a zero percent of flu-related doctor visits for each week, 

for all weeks from March 18, 2007 to August 9, 2015, the horizon for which GFT predictions are 

available. The numbers for MAE and MedRAE are in percentage points and for MAPE in percentages. In 

all cases, smaller numbers indicate smaller error.   

 

The MAE in percentage points is 0.20 for the recency heuristic and 0.38 for Google Flu 

Trends. Similar results hold across all ten surveillance regions of the U.S., with the heuristic 

having a smaller absolute error in the majority of weeks in all regions. The heuristic also predicts 

as accurately as the two-parameter linear regression, and in eight of the ten regions the heuristic 

has a smaller absolute error in the majority of weeks. As can be seen in Table 1, the comparative 

performance of the models is essentially the same for all three metrics, MAE, MAPE and 

MedRAE3.   

 
3 Kandula and Shaman (2019) point out that CDC reports are finalized after the conclusion of a 
surveillance week. The analyses presented here, and in previous work including Lazer et al (2014), used 
the final CDC reports. We obtained the initial CDC reports from Kandula and Shaman. Initial CDC 
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If we exclude the period before its first update in 2009 in the wake of the swine flu, the 

MAE of Google Flu Trends remains at 0.38. This result contradicts any expectation that this 

update actually improved the performance of Google Flu Trends. In this period (i.e., after the 

first update of Google Flu in the wake of the swine flu), the MAE of the heuristic and the 

regression also remain essentially the same; for both models, MAE = 0.19.  

A possible adjustment for the seasonality of the data would be to use the corresponding 

observation from the previous season. The difficulty is that it is not clear what a season is. If a 

season is taken to be a year, this seasonal version of the heuristic can be expected to not perform 

well because flu years are known to be often very different from each other. Indeed, we found 

that this model missed the swine flu and had a MAE of 0.73.  

     

Why Did the Recency Heuristic Outperform Google Flu Trends? 

In general, the higher accuracy of the recency heuristic compared with Google Flu Trends 

appears to result from the uncertainty of the behavior of viruses as well as the behavior of users 

who submit search queries. There are at least three specific reasons.     

First, Google Flu Trends was trained with years of data where influenza incidence was 

high in the winter and low in the summer and thus failed to predict any flu that does not follow 

this pattern, such as the swine flu (under-prediction in the summer of 2009; Figure 1). Any 

model which makes substantial use of past data would have the same problem. In contrast, the 

 
reports are not available for weeks 21-39 in 2007 and 2008, weeks 21-37 in 2010 and week 39 in 2013. 
For the weeks where initial CDC reports are available, we rerun our analyses. The MAE of the recency 
heuristic was 0.27, of the linear regression 0.24, of Google Flu Trends 0.42 and of the benchmark model 
1.94, all in percentage points. The MAPE for the four models were 13%, 12%, 20% and 100% 
respectively and the MedRAE 1.00, 1.20, 1.62 and 13.60 (all in percentage points) respectively.           
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recency heuristic, which ignores historical trends except for the most recent data point, is not 

susceptible to this problem and can quickly adapt to the outbreak of a new virus (Figure 1).  

Second, as the lower panel of Figure 1 shows, the recency heuristic has a fairly constant 

error over years because it is not influenced by any data except for the most recent observation. 

That is not so for Google Flu Trends, which has a more volatile error. The first two versions of 

Google Flu Trends perform worse as time increases from when they were introduced.  

Third, the accuracy of Google Flu Trends might be compromised by people entering 

search terms out of curiosity—motivated by media reports—rather than medical symptoms 

(Copeland et al, 2013). In contrast, the predictions of the recency heuristic are not susceptible to 

this kind of influence of human behavior.    

 

Simple Heuristics or Complex Models? 

Recency and other simple heuristics 

Since the 1910s, marketing practitioners have been using recency to forecast consumer behavior 

(Artinger et al, 2018). Wübben and von Wangenheim (2008) studied empirically the 

performance of a hiatus heuristic for predicting the future purchase behavior of past customers: 

“Predict that a past customer will continue buying if and only if she or he has made at least one 

purchase during the last t months.”  

The value of the parameter t of the hiatus heuristic was estimated to be 9 months via 

interviews with managers in an airline and an apparel firm. The accuracy of this fixed hiatus 

heuristic was assessed against the purchasing behavior of at least 2,330 customers for at least 1,5 

years per firm, and compared to that of a Pareto/negative binomial distribution model 

(Ehrenberg, 1998; this model’s parameters were estimated from half of the data). The heuristic 
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achieved lower error than the Pareto model in both comparisons: 23% vs. 27% for the airline and 

17% vs. 25% for the apparel firm. In a test with an online-CD retailer, the methods had equal 

error. Furthermore, in a study of 60 datasets where critical events may or may not be repeated, 

such as consumer purchases, patient hospitalizations and terrorist attacks, the hiatus heuristic 

predicted more accurately than random forests and logistic regression (Artinger et al, 2018).  

The recency and hiatus heuristics are examples of heuristics relying on a single cue 

(Hogarth and Karelaia, 2005; Şimşek and Buckmann, 2015). Other single-cue heuristics include 

the recognition heuristic (Goldstein and Gigerenzer, 2009) which has been used to predict, for 

example, financial returns of stocks or sport results such as the winners of the 2005 Wimbledon 

men’s singles’ matches, performing as well (70%) as the seedings of the Association of Tennis 

Professionals (Scheibehenne and Bröder, 2007).    

When more than one cue is used, heuristics combine the cues in simple ways, as by 

tallying the cues in a unit-weights linear model (Dawes, 1974) or ordering them in a fast-and-

frugal tree (Martignon, Katsikopoulos and Woike, 2008). According to psychological theory, 

adding and ordering are among people’s core cognitive capacities (Katsikopoulos et al, 2020). A 

tallying heuristic, derived from a deep study of the U. S. presidential elections from 1860 to 1980 

and fixed in 1984, correctly predicted that Donald Trump would win the 2016 U.S. presidential 

election (Lichtman, 2016), when big data analytics and polls had predicted a high probability of 

winning for Hilary Clinton (https://projects.fivethirtyeight.com/2016-election-forecast/). 

Lichtman’s heuristic has also correctly predicted all U.S. presidential elections since 1984. A 

fast-and-frugal tree for predicting bank failure, derived after consultation with a team of 

economists from the Bank of England, performed competitively with the usual tool of financial 
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economics, logistic regression, in out-of-sample prediction of the banks that failed during the 

2008 financial crisis (Aikman et al, in press).    

 

The ecological rationality of simple heuristics 

Simple heuristics tend to work well under uncertainty where the future might differ from the past  

in unpredictable ways, whereas more complex algorithms work well in more stable situations; 

this idea is called the unstable-world principle (Katsikopoulos et al, 2020). The big successes of 

the computationally intensive models of AI have been in well-defined games such as chess and 

Go and in relatively stable situations such as face recognition, while simple heuristics have been 

found to be more successful when the situation can change rapidly, as in policing, sports, and 

business (Gigerenzer and Brighton, 2007; Goldstein and Gigerenzer, 2009). Similarly, Sherden 

(1998, p. 64-65) concluded that economists’ forecasts outperformed simple heuristics for 

predicting highly stable variables such as government spending, while heuristics outperformed 

economists’ forecasts for highly volatile variables, such as interest rates, and the two were about 

as accurate in the “middle ground”, such as when predicting real GNP growth.  

The theory of ecological rationality (Todd et al, 2012) suggests that the performance of a 

strategy, be it simple or complex, should be evaluated in reference to the structure of the 

environment, as opposed to assuming that complex methods always predict better than simple 

ones. A more specific way to understand when simple heuristics are likely to predict as or more 

accurately than complex methods is the bias-variance decomposition of the prediction error into 

the sum of a bias and a variance term (Geman, Bienenstock and Doursat, 1992): Consider 

repeatedly sampling from a population. Bias is the difference between the mean prediction of a 

model and the true value in the population, and it tends to decrease by adding free parameters to 
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a model. Variance is the variability of the individual predictions of the model for each sample, 

around their mean. Variance tends to increase by adding free parameters to a model.  

It is the trade-off between bias and variance, not the bias per se, that determines a 

model’s predictive accuracy. A simple heuristic might compensate for relatively high bias by 

having low variance. Nikolopoulos and Petropoulos (2018) caution that complex forecasting 

methods might be focusing too much on minimizing bias and end up overfitting the training data. 

Furthermore, there exist precise conditions on the statistical structure of the environment, such as 

non-compensatoriness, simple and cumulative dominance, under which the bias of a heuristic is 

equal to the bias of an “optimal” linear model (Martignon and Hoffrage, 2002; Hogarth and 

Karelaia, 2005; Katsikopoulos and Martignon, 2006; Baucells, Carrasco and Hogarth, 2008; 

Katsikopoulos, 2011; Şimşek, 2013).  

Thus, the superior performance of the recency heuristic over the linear model used by 

Google Flu Trends can be understood in a couple of ways. First, consider the unstable-world 

principle. In situations where the future is not like the past but changes unexpectedly, the recency 

heuristic can adapt to the change much faster than big data analytics. Second, if the bias of the 

recency heuristic is similar or equal to that of the linear model, then the simple heuristic is likely 

to have smaller total error due to its smaller variance. How such factors interact is difficult to 

determine in the present case, one reason being that the Google Flu Trends algorithm and its 

various updates have been kept secret.   

 

Discussion 

Over-reliance on big data, which are processed by complex models based on mathematical 

convenience rather than domain theory, has led to failed forecasts in critical situations, such as 
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epidemics, including  COVID-19 (Ioannidis, Cripps and Tanner, 2020). For example, SIR 

(susceptible-infected-recovered) models require data that is not available such as the number of 

infected persons in a population, which differs from the available number of persons with a 

positive test. These models also make unreasonable assumptions such as that every person has 

the same probability of interacting with everyone else in the population. Furthermore, even if the 

data were perfect, it is not possible to uniquely identify the parameters of SIR models (Fokas, 

Cuervas-Maraver and Kevrekidis, 2020). On the other hand, simple heuristics, such as the 

recency heuristic, do not rely on big data from the past that may no longer be relevant in the 

future, avoid overfitting the past in parameter estimation, and are based on psychological theory. 

Finally, there is a virtue when simplicity and accuracy go together: those who use the algorithm 

can understand how it works.  

The investigation of simple heuristics remains the exception in big data analytics and 

machine learning. We recommend as a general rule the testing of complex models against simple 

heuristics that are based on behavioral and psychological theory (Lawrence et al, 2006). Testing 

alternative models from different approaches is key to designing meaningful forecasting studies, 

as for example in the CDC’s FluSight competition (Lutz et al, 2019). Such systematic 

investigations can provide solutions to the alleged accuracy-understandability tradeoff and 

indicate the situations in which we can expect algorithms that are both accurate and 

understandable.    
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