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Abstract
This work performs a non-asymptotic analysis of the generalized Lasso under the
assumption of sub-exponential data. Our main results continue recent research on
the benchmark case of (sub-)Gaussian sample distributions and thereby explore what
conclusions are still valid when going beyond. While many statistical features remain
unaffected (e.g., consistency and error decay rates), the key difference becomes man-
ifested in how the complexity of the hypothesis set is measured. It turns out that
the estimation error can be controlled by means of two complexity parameters that
arise naturally from a generic-chaining-based proof strategy. The output model can
be non-realizable, while the only requirement for the input vector is a generic con-
centration inequality of Bernstein-type, which can be implemented for a variety of
sub-exponential distributions. This abstract approach allows us to reproduce, unify,
and extend previously known guarantees for the generalized Lasso. In particular, we
present applications to semi-parametric output models and phase retrieval via the
lifted Lasso. Moreover, our findings are discussed in the context of sparse recovery
and high-dimensional estimation problems.
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1 Introduction

This paper is concerned with the following common inference problem in statistical
learning: Let (x1, y1), . . . , (xn, yn) ∈ R

p×R be samples of a random input-output pair
(x, y) ∈ R

p × R, whose joint probability distribution is unknown. What information
about the relationship between x and y can we retrieve only based on the knowledge
of (x1, y1), . . . , (xn, yn)?

A classical instance of this problem is linear regression, where y depends linearly
on x , say y = 〈x, β0〉+ ν for an unknown parameter vector β0 ∈ R

p and independent
additive noise ν. While the resulting task of estimating β0 is nowadays fairly well
understood in the low-dimensional regime n ≥ p, it is still subject of ongoing research
in the high-dimensional regime n � p. In the latter scenario, it is indispensable to
impose additional conditions on the input-output model. A typical assumption is that
β0 belongs to a known, convex hypothesis set K ⊂ R

p that is of low complexity
in a certain sense. In such a model setup, a natural estimation procedure is based on
solving the generalized Lasso:1

min
β∈K

1
n

n∑

i=1

(yi − 〈xi , β〉)2. (LSK )

The popularity of Lasso-type estimators is due to several desirable properties. Perhaps
most importantly, many efficient algorithmic implementations are available for (LSK )
due to the convexity of K (e.g., see [12, 56, 66]), accompanied by the suitability for
a statistical analysis due to its simple variational formulation (e.g., see the textbooks
[6, 13, 23]). A more astonishing feature of the generalized Lasso (LSK ) is its ability
to deal with non-linear relations between x and y. In fact, inspired by a classical
result of Brillinger [5], a recent work of Plan and Vershynin [42] shows that for
Gaussian input vectors, (LSK ) yields a consistent estimator for single-index models,
i.e., y = f (〈x, β0〉) with an unknown, non-linear distortion function f : R → R.
This finding has triggered a lot of related and follow-up research, e.g., see [14, 16,
19, 38, 46, 52–54]. We note that these works form only a small fraction of a whole
research area on non-linear observation models, lying at the interface of statistics,
learning theory, signal processing, and compressed sensing. A comprehensive review
of the literature goes beyond the scope of this paper, and we refer the reader to [15,
Sec. 4.2] and the references therein for more details in that regard.

The present work is inspired by the general framework developed in [15], which
enables a theoretical analysis of (LSK ) for a large class of semi-parametric observation
models (see also the technical report [17]). More specifically, we will not assume an
explicit functional relationship between x and y, such as for single-index models;
note that a similar viewpoint is taken by Sattar and Oymak [46], who refrain from

1 We adopt the common term ‘generalized Lasso’ from the literature (e.g., see [42]), as a tribute to the
original Lasso estimator introduced by Tibshirani [55], where the hypothesis set corresponds to a scaled
�1-ball, serving as a convex relaxation of sparse parameter vectors. Taking the viewpoint of statistical
learning, (LSK ) is a specific instance of (constraint) empirical risk minimization, but this terminology
appears somewhat too general for the purpose of this paper.
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a realizable model connecting the input and output. Adopting this abstract setup, we
intend to address the following parameter estimation problem:

Problem 1.1 Under what conditions is the generalized Lasso (LSK ) capable of esti-
mating a certain target vector β� ∈ K that carries information about the relationship
between x and y? What is the impact of the sample size n and the complexity of the
(convex) hypothesis set K ⊂ R

p?

For the moment, it is convenient to assume that the vector which provides the desired
‘information’ is an expected risk minimizer, i.e., we set β� := β∗ where β∗ ∈ K is a
solution to the expected risk minimization problem (on K ):

min
β∈K E[(y − 〈x, β〉)2]. (1.1)

Indeed, this simplification reduces the above problem to a well-known challenge in
statistical learning theory, namely finding the best possible (linear) predictor of y
by empirical risk minimization.2 However, we wish to emphasize that the absolute
magnitude of the prediction error is only of minor importance to our approach, since
the predictive capacity of the Lasso is likely to be poor unless y follows a linear
model. On the other hand, one can still hope for a satisfactory outcome in the sense
of Problem 1.1, which explains why all guarantees presented in this paper concern
the (parameter) estimation error. More details on relevant scenarios, where β� is not
necessarily equal to the expected risk minimizer, are discussed later in the context of
semi-parametric (non-linear) output models; see Sect. 3.1.

The first author’s dissertation [15] gives a far-reaching answer to Problem 1.1 for
(sub-)Gaussian input vectors—an assumption that is made in almost all of the above-
mentioned works on the generalized Lasso and related estimators. However, the setup
of [15] does not adequately address output models with even non-linearities, most
prominently, the phase retrieval problem where y = |〈x, β0〉|.3 The initial motivation
of the present article was to address this fundamental shortcoming by applying the
“phase lift trick” [7, 8] to the Lasso. A key feature of the lifted Lasso is that the input
vector x ∈ R

p is replaced by the tensor product xxT , see Sect. 3.5 for details. If x is
an isotropic sub-Gaussian random vector, then xxT is a (generally anisotropic) sub-
exponential randommatrix satisfying amixed-tail inequality of Bernstein type (whose
precise form depends on the exact assumptions on x). The strategy we follow here
is tailored to this problem, but abstracts away from all irrelevant details. Therefore,
going clearly beyond non-asymptotic error bounds for phase-retrieval-like models,
we obtain a general solution to Problem 1.1 if the sample data have sub-exponential
tails. Indeed, research on this subject is still in its infancy, and we intend to make
progress by presenting a unified approach. This particularly includes the derivation
of new and extension of known results on statistical estimation with sub-exponential

2 To simplify the presentation even further, one might simply assume a noisy linear model y = 〈x, β0〉+ν.
In this case, the key messages of our main results remain valid; in particular, our conclusions on heavier
tailed input data are also of interest to high-dimensional linear regression.
3 More specifically, if x is standard Gaussian, then (LSK ) becomes a useless estimator in this case, since
the expected risk minimizer β∗ in (1.1) is just the zero vector.
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data (see Sect. 3). Before outlining our general approach in Sect. 1.2, we would like
to familiarize the reader with the setup of this paper by presenting a prototypical
estimation guarantee for sub-exponential input vectors.

1.1 A simple error bound for sub-exponential input vectors

Let us begin with the formal definition of sub-Gaussian and sub-exponential random
variables:

Definition 1.2 (Sub-Gaussian/sub-exponential random variables) For α ∈ {1, 2}, we
define the exponential Orlicz norm of a random variable Z : � → R by4

‖Z‖ψα := inf
{
t > 0 | E

[
exp

( |Z |α
tα

)]
≤ 2

}
.

The exponential Orlicz space Lψα is then denoted by

Lψα := {Z : � → R | ‖Z‖ψα < ∞}.

The elements of the exponential Orlicz spaces Lψ1 and Lψ2 are called sub-exponential
and sub-Gaussian random variables, respectively.

The notions of sub-exponentiality and sub-Gaussianity impose restrictions on the
tails of a random variable, which must not be “too heavy”. This intuition gives rise to
several equivalent versions ofDefinition 1.2, which are summarized in PropositionA.1
in Appendix A; for a more detailed introduction, we refer to [58, Chap. 2 & 3].

The definition of sub-Gaussian and sub-exponential randomvectors is characterized
by their one-dimensionalmarginals (i.e., projections ontoone-dimensional subspaces):

Definition 1.3 (Sub-Gaussian/sub-exponential random vectors) For a random vector
x ∈ R

p and α ∈ {1, 2}, we set

‖x‖ψα := sup
v∈Sp−1

‖〈x, v〉‖ψα .

If ‖x‖ψ2 < ∞, we say that x is (uniformly) sub-Gaussian, and if ‖x‖ψ1 < ∞, we say
that x is (uniformly) sub-exponential.

The following result states a non-asymptotic error bound for the generalized Lasso
(LSK ) with sub-exponential input vectors. Its proof is provided in Sect. 5.6, being a
“by-product” of one of our main results, Corollary 2.15 in Sect. 2.3. For the sake of
simplicity, we restrict ourselves to a polytopal hypothesis set K here, as this allows
for explicit bounds on the complexity parameters. Moreover, it is worth emphasizing
that for linear models, i.e., if y = 〈x, β0〉, we simply obtain an estimation guarantee
for β∗ = β0.

4 We do not explicitly mention the underlying probability space here. In fact, our analysis does not require
any treatment of measure theoretic issues and we simply assume that the probability space is rich enough
to model all random quantities and processes that we are interested in.
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Proposition 1.4 Let (x, y) ∈ R
p × R be a joint random pair such that y ∈ R is sub-

exponential and x ∈ R
p is isotropic and sub-exponential with ‖x‖ψ1 ≤ κ for some

κ > 0. Let K ⊂ R
p be a convex polytope with D vertices and Euclidean diameter


2(K ), and let β∗ ∈ K be the expected risk minimizer on K , i.e., a solution to (1.1).
Finally, let the observed sample pairs (x1, y1), . . . , (xn, yn) ∈ R

p×R be independent
copies of (x, y). Then there exists a universal constantC > 0 such that for every u ≥ 8,
the following holds true with probability at least 1−5 exp(−C ·u2)−2 exp(−C ·√n):
If the sample size obeys

n �
(
κ10 · 
2(K ) ·

(
log(D)√

n
+ √

log(D)
)
+ κ6 · u

)2
,

then every minimizer β̂ of (LSK ) satisfies

‖β̂ − β∗‖2 � κ18 ·max{1, u2 · σ(β∗)} ·
√

κ · 
2(K ) · log(D)

n1/4
,

where σ(β∗) := ‖y − 〈x, β∗〉‖ψ1 .

Informally speaking, Proposition 1.4 shows that estimation of the expected risk
minimizer succeeds with overwhelmingly high probability as long as n � 
2(K )2 ·
log(D)2. Such a statement is particularly appealing to high-dimensional problems such
as sparse recovery. Another remarkable conclusion is that the estimator (LSK ) essen-
tially performs as well as if the sample data were sub-Gaussian (cf. [15, Thm. 4.3]).
Our main results in Sect. 2 confirm this observation in much greater generality, but
they will also reveal several important differences to the sub-Gaussian case; first and
foremost, we will be concerned with defining appropriate complexity measures for K ,
which do not explicitly appear in the polytopal setting of Proposition 1.4. In this
respect, it is important to note that there are relevant special cases of sub-exponential
vectors (e.g., those with independent coordinates) for which the above estimate is too
pessimistic and can be improved. The elaboration of this aspect is a key concern of this
article and motivates the introduction of a generic tail condition that takes the under-
lying “geometry” of the problem into account. Apart from this, let us also emphasize
that the simplifications of Proposition 1.4 come along with a suboptimal behavior
regarding, (a), the error decay rate O(n−1/4), (b), the sub-exponential parameter κ ,
and (c), the model deviation parameter σ(β∗).

To the best of our knowledge, Proposition 1.4 is a new result, but it bears resem-
blance with a recent finding of Sattar and Oymak [46, Thm. 3.4], who consider a
similar model setup with sub-exponential input vectors. Their analysis focuses on the
projected gradient descent method, as an algorithmic implementation of (LSK ), and
is therefore related to our estimation guarantees; see Sect. 3.4 for a more detailed
comparison.
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1.2 Contributions and overview

The main purpose of this work is to shed more light on the estimation capacity of the
generalized Lasso (LSK ) when the sample data are not sub-Gaussian. While Proposi-
tion 1.4 already gives a first glimpse into the prototypical situation of sub-exponential
input vectors, we intend to address this problem in a more systematic and abstract way
(cf. Problem 1.1). At the heart of our statistical analysis stands the so-called generic
Bernstein concentration, which is introduced in Sect. 2.1 (see Definition 2.2). This
concept is the outcome of a somewhat uncommon proof strategy: Instead of assuming
a specific (sub-exponential) distribution for x , we study the associated excess risk of
(LSK ) in an abstract sense, relying on an advanced generic chaining argument due
to Mendelson [32]. Consequently, the key step of our approach is to understand the
increment behavior of the underlying stochastic processes, and in fact, this precisely
leads to generic Bernstein concentration as a natural condition for x . In that way, we
are able to explore (LSK ) for a whole class of input distributions and thereby to refine
the assumption of uniform sub-exponentiality in Proposition 1.4. Another important
outcome of our analysis are two general complexity parameters for the hypothesis
set K (see Definition 2.5 and 2.6), which are compatible with the notion of generic
Bernstein concentration.

With these preliminaries at hand, we formulate our main result in Sect. 2.2 (see
Theorem 2.10), which provides a novel, non-asymptotic error bound for (LSK ) under
generic Bernstein concentration. However, a direct application of this guarantee to
specificmodel situations is not always straightforward, since the aforementioned com-
plexity parameters are of local nature, implicitly depending on the desired precision
level. For this reason, we present two more easily accessible corollaries of Theo-
rem 2.10 in Sect. 2.3. These results are based on simplified complexity parameters
(see Definition 2.11 and 2.13, respectively), but come with the price of looser error
bounds and sample-size conditions.

While the purpose of Sect. 2 is to develop a unified analysis for the generalized
Lasso (LSK ), Sect. 3 is devoted to various applications and examples of our find-
ings. We begin with a brief discussion on semi-parametric modeling in Sect. 3.1,
demonstrating how our general results may be applied to specific parameter estima-
tion problems. This is followed by several relevant examples of generic Bernstein
concentration (see Sects. 3.2–3.4), leading to off-the-shelf guarantees for (LSK ) with
sub-exponential and sub-Gaussian sample data; these parts also provide a comparison
to related approaches in the literature. In Sect. 3.5, we then revisit our motivating case
study on the lifted Lasso for phase-retrieval-like problems—a scenario where sub-
exponential distributions arise naturally. Finally, Sect. 3.6 contains a more detailed
discussion of the complexity parameters from Sect. 2. In this context, it will become
clearer that measuring complexity beyond sub-Gaussianity is a delicate issue and
comes along with unexplored difficulties. Nevertheless, we are able to establish sim-
ple bounds in the prototypical case of �1-balls, making our error bounds applicable to
high-dimensional estimation and sparse recovery. Some concluding remarks are made
in Sect. 4.
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1.3 Differentiation from previous works

Apart from enabling heavier-tailed data, a crucial feature of generic Bernstein con-
centration is that it does not require any type of isotropy. Instead, the “geometric”
behavior of the input vectors is captured by selecting two appropriate semi-norms (see
Definition 2.2). This relaxation is key to the applicability of our results, as it allows
us to handle structured, but anisotropic input vectors, such as arising in the phase lift
approach (see Sect. 3.5). It is not clear to us how this important challenge could be
addressed with other techniques, especially those suggested in [15] and related arti-
cles mentioned above.5 The concept of generic Bernstein concentration therefore also
presents a novel and systematic solution to this open problem, which is arguably one
of the most significant achievements compared to previous works.

We close this part with another clarification: The present article is concerned
with the generalized Lasso (LSK ) when the sample data are heavier tailed than sub-
Gaussian, in particular, the underlying distribution may be unbounded. An alternative
strategy is to first truncate the raw data at an appropriate threshold and then to apply
(LSK ) or a similar estimator. In fact, the latter approach is quite common in practice,
but it also facilitates a theoretical study due to the boundedness of the involved random
variables, e.g., see [19, 60, 62–64] for related results on non-linear observationmodels.
However, the (concentration-based) machinery for bounded sample data is certainly
not applicable to the model setup of the present paper. Instead, we rather follow the
conceptual ideas of Mendelson [31, 33], who points out the downsides of the bounded
framework and develops a general theory for heavy-tailed problems. Although our
analysis is concerned with more specific model assumptions, it is just general enough
to allow for a rigorous understanding of estimation with sub-exponential data, thereby
unifying and improving a series of previously known results from the literature (see
Sect. 3). Thus, to a certain degree, our work can be seen as a “connecting piece”
between such highly customized approaches and the abstract theory of Mendelson
[31, 33].

1.4 Notation

The letter C is reserved for constants, whose values could change from time to time,
and we say that C is universal if its value does not depend on any other involved
parameter. If an inequality holds true up to a universal constant C > 0, we usually
write A � B instead of A ≤ C · B; the notation A � B means that both A � B and
B � A hold true. Furthermore, the positive part of a real number s ∈ R is denoted by
[s]+ := max{s, 0}.

The cardinality of a finite set I is denoted by |I |. The j-th entry of a vector v ∈ R
p

is denoted by v j and the support of v is defined as supp(v) := { j | v j �= 0}. The
cardinality of supp(v) is referred to as the sparsity ofv andwewrite‖v‖0 := | supp(v)|.
For 1 ≤ q ≤ ∞, we denote the �q-norm on R

p by ‖ · ‖q and the associated unit ball
by B p

q . The Euclidean unit sphere is given by S
p−1 := {v ∈ R

p | ‖v‖2 = 1}.
5 Unfortunately, the idea of [15] to capture anisotropic and correlated structures through mixing matrices
is no remedy in our situations of interest, e.g., phase-lifted input vectors.
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The Frobenius norm is denoted by ‖ · ‖F and the spectral norm by ‖ · ‖op. We write
Ip ∈ R

p×p for the identity matrix.
Let L ⊂ R

p. By span(L), cone(L), and conv(L), we denote the linear hull, conic
hull, and convex hull, respectively. The diameter of L with respect to a (pseudo-)metric
d is defined as 
(L) := supv1,v2∈L d(v1, v2).

Let x be a randomvector inRp .We say that x is centered ifE[x] = 0, it is symmetric
if x has the same distribution as−x , and it is isotropic ifE[xxT ] = Ip. The Lq -norm of
a real-valued random variable Z is ‖Z‖Lq := (E[|Z |q ])1/q for 1 ≤ q < ∞. Moreover,
we write g ∼ N (0, Ip) if g is a standard Gaussian random vector in Rp.

For v ∈ R
p, we use the notation v∗ for the linear functional 〈·, v〉, i.e., v∗ is the

image of v under the Riesz isomorphism; analogously, we write A∗ for the image of
a subset A ⊂ R

p under the Riesz isomorphism. Furthermore, if Rp is equipped with
a probability measure μ, we can interpret v∗ as a random variable, i.e., v∗ = 〈x, v〉,
where x is distributed according toμ. In particular, we have that ‖v∗‖qLq = E[|〈v, x〉|q ]
for 1 ≤ q < ∞.

2 Main results

This section presents themain results of thiswork.We beginwith several technical pre-
liminaries in Sect. 2.1, including the central concept of genericBernstein concentration
(see Definition 2.2) as well as the related complexity parameters (see Definition 2.5
and 2.6). The most general estimation guarantee is then formulated and discussed in
Sect. 2.2 (see Theorem 2.10). This is followed by two corollaries in Sect. 2.3, employ-
ing simplified variants of our complexity parameters. Note that all proofs for this
section are postponed to Sect. 5.

2.1 Preliminaries and generic Bernstein concentration

An error bound for the generalized Lasso (LSK ) is a statement about the minimizer
of the following function:

Definition 2.1 (Empirical risk, excess risk) The objective function minimized in
(LSK ), i.e.,

L̄(β) := 1
n

n∑

i=1

(yi − 〈xi , β〉)2,

is called the empirical risk of β ∈ K . Given β, β� ∈ K , we call

E(β, β�) := L̄(β) − L̄(β�)

the excess risk of β over β�.

Since the map β �→ L̄(β) depends on the random pairs (xi , yi ), it can be seen as a
stochastic process on the hypothesis set K . If the excess risk is strictly positive on
a subset of K , the minimizer must be outside of this subset. In other words, we can
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localize the empirical risk minimizer in a certain set L ⊂ K if we have a positive
lower bound for the excess risk on K \ L (see Fact 2.4 below). A powerful technique
for proving such lower bounds is generic chaining for stochastic processes (see [50,
51]).

The following definition introduces a generic concentration inequality for linear
functions on the parameter space, which leads to an increment condition for the
involved stochastic processes. Based on this condition, we will use chaining argu-
ments to derive a generic error bound for (LSK ) (see Theorem 2.10 and its proof
in Sect. 5.2). Estimation guarantees for specific classes of input vectors can be then
obtained by considering concrete instances of this condition (see Sect. 3).

Definition 2.2 (Generic Bernstein concentration) Let x ∈ R
p be a random vector and

let ‖ · ‖g and ‖ · ‖e be two semi-norms onRp. We say that x exhibits generic Bernstein
concentration with respect to (‖ · ‖g, ‖ · ‖e) if for every v ∈ R

p and every t ≥ 0, we
have that

P(|〈x, v〉| ≥ t) ≤ 2 exp
(
−min

{
t2

‖v‖2g , t
‖v‖e

})
, (2.1)

where exp(−∞) := 0 and
t

0
:=

{
∞ for t > 0,

0 for t = 0.

The prototypical instance of generic Bernstein concentration is a centered ran-
dom vector x = (x1, . . . , xp) ∈ R

p with independent, sub-exponential coordi-
nates: indeed, such an x exhibits generic Bernstein concentration with respect to
( R√

CB
‖ · ‖2, R

CB
‖ · ‖∞) where R := max1≤ j≤p ‖x j‖ψ1 and a universal constant

CB > 0. In this case, (2.1) simply corresponds to the classical Bernstein’s inequality
(see Theorem A.3), justifying the terminology of Definition 2.2. More generally, (2.1)
can be seen as an example of mixed-tail conditions, which are quite common in the
generic chaining literature, e.g., see [11, Thm. 3.5] or [51, Thm. 2.2.23]. To be more
specific, the semi-norm ‖ · ‖g governs the Gaussian-like (‘g’) tail, while ‖ · ‖e governs
the exponential-like (‘e’) tail.

The central idea of generic chaining is that the expected infimum (or supremum)
of a stochastic process depends on the “size” of the underlying index set, which is
equipped with a (pseudo-)metric that reflects the increment behavior of the stochastic
process. For certain classes of canonical processes, the appropriate way of measuring
the size is given by the well-known γ -functional:

Definition 2.3 (γ -functional; [51, Def. 2.2.19]) Let L be a set equipped with a pseudo-
metric d. We call a sequence (As)s∈N of partitions6 of L an admissible partition
sequence if |A0| = 1 and |As | ≤ 22

s
for s ≥ 1 and if the sequence is increasing, i.e.,

for every A ∈ As+1 there is some B ∈ As with A ⊂ B. For α ∈ {1, 2}, we set

γα(L, d) := inf sup
v∈L

∑

s∈N
2s/α
(As(v)),

6 As usual, by a partition of L , we mean a family of pairwise disjoint, non-empty subsets of L whose union
is L .
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where As(v) is the unique set in As containing v and the infimum is taken over all
admissible partition sequences. In this work, we will only deal with pseudo-metrics
induced by semi-norms. Hence, we may write γα(L, ‖ · ‖) := γα(L, d‖·‖) where d‖·‖
is the pseudo-metric induced by a semi-norm ‖ · ‖.

Returning to the issue of finding an error bound for (LSK ), let us now fix some
precision level t > 0 and an arbitrary target vector β� ∈ K (see also Problem 1.1). At
the present level of abstraction, it is beneficial to leave the notion of the ‘estimation
error’ as general as possible. For the sake of mental convenience, β� can be seen as
a desirable outcome of an estimation procedure (e.g., the expected risk minimizer on
K ), but this interpretation is mathematically irrelevant. The error measure that will
concern us in this section is the Euclidean distance ‖β̂ − β�‖2, where β̂ ∈ K is the
estimate of the generalized Lasso, i.e., aminimizer of (LSK ). Since E(·, β�) is a convex
function (on K ), one can make use of the following basic, yet important fact:

Fact 2.4 Let K ⊂ R
p be a convex set. For β� ∈ K and t > 0, we set

Kβ�,t := {β ∈ K | ‖β − β�‖2 = t} = K ∩ (tSp−1 + β�).

If E(β, β�) > 0 for all β ∈ Kβ�,t , then every minimizer β̂ of (LSK ) satisfies the error

bound ‖β̂ − β�‖2 < t .

Consequently, it suffices to control E(·, β�) on the spherical subset Kβ�,t of radius
t around β�. To this end, we loosely follow the approach of Mendelson [31] and
decompose the excess risk as follows:

E(β, β�) = 1
n

n∑

i=1

(yi − 〈xi , β〉)2 − 1
n

n∑

i=1

(yi − 〈xi , β�〉)2

= 1
n

n∑

i=1

〈xi , β − β�〉2
︸ ︷︷ ︸

=:Q(β−β�)

+ 2
n

n∑

i=1

(〈xi , β�〉 − yi )〈xi , β − β�〉
︸ ︷︷ ︸

=:M(β,β�)

. (2.2)

In this decomposition, the excess risk is expressed as a sum of two empirical processes
Q(β − β�) and M(β, β�), both indexed by β ∈ Kβ�,t , which we call the quadratic
process and themultiplier process, respectively. Note that this corresponds to a second-
order Taylor expansion of E(·, β�) = L̄(·) − L̄(β�): the quadratic process is the
second-order term7

Q(β − β�) = 1
2 (β − β�)T HL̄(β�)(β − β�)

7 Since theHessianmatrix HL̄(β�) ∈ R
p×p is actually independent ofβ� for the squared loss, the quadratic

process is translation-invariant in the sense that it only depends on β − β�. Hence, we write Q(β − β�)

rather than Q(β, β�).
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Fig. 1 An illustration of the local q-complexity q(g,e)
t,n (L) from Definition 2.5: (a) in order to measure

the complexity of L locally at scale t , we consider the set L ∩ tSp−1. (b) L ∩ tSp−1 is contained in the
convex hull of the four points indicated by small black dots. (c) Defining S as these four points, the quantity
1
t · (γ1(S, ‖ · ‖e)/

√
n + γ2(S, ‖ · ‖g + ‖ · ‖e)

)
is an upper bound for the local q-complexity of L at scale

t , which is defined as the infimum over all such upper bounds

and the multiplier process is the first-order term

M(β, β�) = 〈(∇L̄)(β�), β − β�〉.

With this notation at hand, the desired uniform lower bound E(β, β�) > 0 amounts to
the event that Q(β − β�) dominates −M(β, β�) on the whole index set Kβ�,t .

Based on the γ -functional, we now define two general complexity parameters,
which are adapted to the analysis of the quadratic process and the multiplier process,
respectively. Both parameters are tailored to the above notion of generic Bernstein
concentration and have in common that they measure the complexity of a set locally,
i.e., at a certain scale t > 0. This reflects the fact that we are only interested in the
behavior of the empirical processes on Kβ�,t and not on the full hypothesis set K .

Definition 2.5 (Local q-complexity) Let L ⊂ R
p and let ‖ · ‖g and ‖ · ‖e be semi-

norms on R
p. For t > 0, we define the local q-complexity of L at scale t and sample

size n with respect to (‖ · ‖g, ‖ · ‖e) by

q(g,e)
t,n (L) := 1

t
inf

{
γ1(S,‖·‖e)√

n
+γ2(S, ‖ · ‖g+‖ · ‖e) | S ⊂ R

p, conv(S) ⊃ L∩tSp−1
}
.

Remarkably,wedonot simplymeasure the size of the set L∩tSp−1 inDefinition 2.5,
but optimize over all “skeletons” S of this set; see Fig. 1 for an illustration and [36,
Appx. A] for a related approach in the literature.

Definition 2.6 (Local m-complexity) Let L ⊂ R
p and let ‖ · ‖g and ‖ · ‖e be semi-

norms on Rp. For t > 0, we define the local m-complexity of L at scale t with respect
to (‖ · ‖g, ‖ · ‖e) by

m(g,e)
t (L) := 1

t
inf

{
γ1(S, ‖ · ‖e) + γ2(S, ‖ · ‖g) | S ⊂ R

p, conv(S) ⊃ (L ∩ tSp−1) ∪ {0}
}
.

It is worth noting that in the well-understood case of sub-Gaussian sample data,
the q-complexity and m-complexity can be both identified with the notion of local
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Gaussian width; see also Sect. 3.2 for more details. In general, however, this simple
geometric interpretation is no longer valid and the behavior of both parameters is
highly non-trival. We will return to this important issue later in Sect. 3.6.

In order to control the quadratic process (in Sect. 5.2.1), wewill apply the small-ball
method, which is a powerful tool to establish uniform lower bounds for non-negative
empirical processes (see [26, 31, 33]). For this purpose, the notion of a small-ball
function is required:

Definition 2.7 (Small-ball function; [26, p. 12995]) Let L ⊂ R
p and let x be a random

vector in Rp. For θ ≥ 0, we define the small-ball function

Qθ (L, x) := inf
v∈L P(|〈x, v〉| ≥ θ).

Since we are aiming at an error bound relative to an arbitrary target vector β� ∈ K ,
it is natural that this error bound depends on how well the associated linear hypothesis
〈x, β�〉 predicts the actual output variable y (which may depend on x in a non-linear
way). In other words, the estimation performance of (LSK ) is also affected by the
behavior of the model mismatch y − 〈x, β�〉, measuring how much y deviates from
the linear model 〈x, β�〉. The following parameters allow us to make this precise:

Definition 2.8 (Mismatch parameters) Given β� ∈ R
p and a random pair (x, y) ∈

R
p × R, the mismatch deviation of β� is defined by

σ(β�) := ‖y − 〈x, β�〉‖ψ1

and the (global) mismatch covariance of β� by

ρ(β�) := ∥∥E
[
(y − 〈x, β�〉)x]∥∥2.

Moreover, for t ≥ 0 and K ⊂ R
p, we define the (local) mismatch covariance of β� at

scale t by
ρt (β

�) := sup
v∈K t

〈
E
[
(y − 〈x, β�〉)x], v〉,

where K t := 1
t (K − β�) ∩ S

p−1 for t > 0 and K 0 := cone(K − β�) ∩ S
p−1.

As the name suggests, the mismatch covariance captures the covariance between the
input vector x and the model mismatch y − 〈x, β�〉. Inspired by linear regression
problems, it is useful to think of the model mismatch as “noise” that perturbs the linear
model 〈x, β�〉. In particular, ifE[(y−〈x, β�〉)x] = 0, this noise is uncorrelatedwith all
input variables (but not necessarily independent), implying that ρ(β�) = ρt (β

�) = 0.
In contrast, the mismatch deviation measures the sub-exponential tail behavior of the
model mismatch. Note that in the noisy linear case, i.e., y = 〈x, β�〉 + ν, we simply
have that σ(β�) = ‖ν‖ψ1 . The interested reader is referred to Appendix B.1 for further
remarks on the above notions of the mismatch covariance.
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2.2 A local error bound for (LSK)

Before stating the error bound, let us formally summarize our assumptions about the
sampling process:

Assumption 2.9 (Model setup) Let (x, y) ∈ R
p × R be a joint random pair where

x ∈ R
p satisfies generic Bernstein concentration with respect to (‖ · ‖g, ‖ · ‖e) and

y ∈ R is sub-exponential. Moreover, let K ⊂ R
p be a convex hypothesis set. We

define the set K
 := span(K − K ) ∩ S
p−1 and assume that x satisfies the small-ball

condition
Q2τ (K


, x) > 0 (2.3)

for some τ > 0. Finally,we assume that the observed sample pairs (x1, y1), . . . , (xn, yn)
are independent copies of (x, y).

Although it can be helpful to imagine a semi-parametric relationship between x and
y (see Sect. 3.1), such an assumption is not required at the current level of abstraction.
Indeed, our main result, which is presented next, provides a generic error bound for
the generalized Lasso (LSK ) without any specific observation model.

Theorem 2.10 (General error bound for (LSK ), local version) Let Assumption 2.9
be satisfied and fix a vector β� ∈ K. Then there exists a universal constant C > 0
such that for every u ≥ 8 and t ≥ 0, the following holds true with probability at least
1− 5 exp(−C · u2) − 2 exp(−C · √n): If the sample size obeys8

n �
(
q(g,e)
t,n (K − β�) + τ · u

τ · Q2τ (K
, x)

)2

(2.4)

and we have that

t � 1

(τ · Q2τ (K
, x))2
·
[
ρt (β

�) + u2 · σ(β�) · m
(g,e)
t (K − β�)√

n

]

+
, (2.5)

then every minimizer β̂ of (LSK ) satisfies ‖β̂ − β�‖2 ≤ t .

The interpretation of the error bound established in Theorem 2.10 is not straight-
forward, since the right-hand side of (2.5) depends on the precision level t and the
right-hand side of (2.4) depends on both t and n. But regardless of these implicit
dependencies, the above statement has almost the same syntactic form as in the case
of sub-Gaussian sample data, e.g., see [15, Thm. 3.6], and we can rely on the inter-
pretation suggested there. The following way of reading Theorem 2.10 is quoted from
[15, p. 41], except that the mathematical terms and the equation numbers have been
altered accordingly:

8 For the case of exact recovery, i.e., t = 0, the corresponding complexity parameters q(g,e)
0,n (K − β�) and

m(g,e)
0 (K − β�) are introduced further below in Definition 2.11 in Sect. 2.3.
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A convenient way to read the above statement is as follows: First, fix an estima-
tion accuracy t that can be tolerated. Then adjust the sample size n and β� ∈ K
such that (2.4) and (2.5) are both fulfilled (if possible at all). In particular, if n is
chosen such that (2.5) just holds with equality (up to a constant), we obtain an
error bound of the form

‖β̂ − β�‖2 � 1

(τ · Q2τ (K
, x))2
·
[
ρt (β

�) + u2 · σ(β�) · m
(g,e)
t (K − β�)√

n

]

+
.

(2.6)

With that in mind, one might be tempted to think that not much changes when
going beyond sub-Gaussianity—but this is far from being true. The key difference
becomes manifested in our generalized complexity parameters q(g,e)

t,n (K − β�) and

m(g,e)
t (K − β�). In fact, their behavior can be significantly more complicated than in

the sub-Gaussian case. We defer a more detailed discussion to Sect. 3.6, but also the
applications in Sects. 3.2–3.5 can be helpful for a better understanding of this issue.
Finally, several additional remarks on Theorem 2.10 and possible refinements can be
found in Appendix B.2.

2.3 Global and conic error bounds for (LSK)

The local complexity parameters in Theorem 2.10 lead to a fairly strong, but implicit
error bound for (LSK ). In this subsection, we state two corollaries of Theorem 2.10
which achieve a better interpretability at the price of suboptimality. The first one
replaces the local complexity terms by their (more pessimistic) conic versions:

Definition 2.11 (Conic q- and m-complexity) Let L ⊂ R
p and let ‖ · ‖g and ‖ · ‖e

be semi-norms on R
p. We define the conic q-complexity of L at sample size n with

respect to (‖ · ‖g, ‖ · ‖e) by

q(g,e)
0,n (L) := inf

{
γ1(S,‖·‖e)√

n
+ γ2(S, ‖ · ‖g + ‖ · ‖e) | S ⊂ R

p, conv(S) ⊃ cone(L) ∩ S
p−1

}
.

Similarly, we define the conic m-complexity of L with respect to (‖ · ‖g, ‖ · ‖e) by

m(g,e)
0 (L) := inf

{
γ1(S, ‖ · ‖e) + γ2(S, ‖ · ‖g) | S ⊂ R

p, conv(S) ⊃ (cone(L) ∩ S
p−1) ∪ {0}

}
.

The subscript ‘0’ in q(g,e)
0,n (L) andm(g,e)

0 (L) indicates that one can imagine the conic q-
andm-complexity as the limit case t = 0 of their local counterparts fromDefinition 2.5
and 2.6.

The conic complexity parameters allow us to remove the dependence of the right-
hand sides of (2.4) and (2.5) on t in Theorem 2.10:

Corollary 2.12 (General error bound for (LSK ), conic version) The assertion of The-
orem 2.10 remains valid if q(g,e)

t,n (K − β�) is replaced by q(g,e)
0,n (K − β�) in (2.4),
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while m(g,e)
t (K −β�) and ρt (β

�) are replaced by m(g,e)
0 (K −β�) and ρ0(β

�) in (2.5),
respectively.

While leading to an explicit error bound for the generalized Lasso (cf. (2.6)),
Corollary 2.12 has the following drawback: If β� is an interior point of K , then
cone(K −β�) = R

p, and the complexity terms q(g,e)
0,n (K −β�) andm(g,e)

0 (K −β�) are

equal to q(g,e)
0,n (Rp) and m(g,e)

0 (Rp), respectively, i.e., they no longer reflect any com-
plexity reduction due to the restricted hypothesis set K . Hence, unless the hypothesis
set K is perfectly tuned such that β� is located on the boundary of K , Corollary 2.12
fails to provide a useful estimation guarantee in the high-dimensional regime p � n.
Evidently, this tuning problem affects the local error bound in Theorem 2.10 as well,
but the situation is much less severe there, at least when β� is close to the boundary of
K (more precisely, if infβ∈Rp\K ‖β� − β‖2 < t). This fact particularly explains why
(LSK ) is a stable estimator (cf. [15, Prop. 2.6 and Cor. 3.15]).

Our second approach to simplify Theorem 2.10 is to measure the complexity of the
hypothesis set “globally”, rather than in a local neighborhood of β�.

Definition 2.13 (Global q- and m-complexity) Let L ⊂ R
p and let ‖ · ‖g and ‖ · ‖e

be semi-norms on R
p. We define the global q-complexity of L at sample size n with

respect to (‖ · ‖g, ‖ · ‖e) by

q(g,e)
n (L) := inf

{
γ1(S,‖·‖e)√

n
+ γ2(S, ‖ · ‖g + ‖ · ‖e) | S ⊂ R

p, conv(S) ⊃ L
}
.

Similarly, we define the global m-complexity of L with respect to (‖ · ‖g, ‖ · ‖e) by

m(g,e)(L) := inf
{
γ1(S, ‖ · ‖e) + γ2(S, ‖ · ‖g) | S ⊂ R

p, conv(S) ⊃ L
}
.

The following lemma provides some basic facts about the global complexity param-
eters and relates them to their local counterparts.

Lemma 2.14 Let L ⊂ R
p, v ∈ R

p, and t > 0. Then we have the following:

(i) q(g,e)
t,n (L) ≤ 1

t q
(g,e)
n (L) and m(g,e)

t (L) ≤ 1
t m

(g,e)(L ∪ {0}),
(ii) q(g,e)

n (L) = q(g,e)
n (L + v) and m(g,e)(L) = m(g,e)(L + v),

(iii) q(g,e)
n (L) � m(g,e)(L),

(iv) q(g,e)
0,n (L) = q(g,e)

n (cone(L)∩ S
p−1) and m(g,e)

0 (L) = m(g,e)((cone(L)∩ S
p−1)∪

{0}),
(v) q(g,e)

t,n (L) = q(g,e)
n ( 1t L ∩ S

p−1) and m(g,e)
t (L) = m(g,e)(( 1t L ∩ S

p−1) ∪ {0}).
The second claim of Lemma 2.14 states that the global complexity parameters are
translation-invariant. This allows us to decouple the complexity terms in Theorem2.10
from β�, leading to the following error bound:

Corollary 2.15 (General error bound for (LSK ), global version) Let Assumption 2.9
be satisfied and fix a vector β� ∈ K. Then there exists a universal constant C > 0 such
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that for every u ≥ 8, the following holds true with probability at least 1− 5 exp(−C ·
u2) − 2 exp(−C · √n): If the sample size obeys

n �
(
q(g,e)
n (K ) + τ · u
τ · Q2τ (K
, x)

)2

, (2.7)

then every minimizer β̂ of (LSK ) satisfies

‖β̂−β�‖2 � max
{
1,

(
τ ·Q2τ (K


, x)
)−2

}
·
[
ρ0(β

�)+max{1, u2·σ(β�)}·
√
m(g,e)(K )

n1/4

]

+
. (2.8)

If the complexity terms q(g,e)
n (K ) and m(g,e)(K ) are sufficiently small, then (2.8)

provides a useful error bound in the high-dimensional regime p � n, independently
of the location of β� in K . Note that a prototypical application of Corollary 2.15
was already presented in Proposition 1.4 where K is a convex polytope (see also
Proposition 3.13 in Sect. 3.6). However, the simplification of Corollary 2.15 has its
price: the second summand in the error bound (2.15) exhibits a decay rate O(n−1/4),
which is substantially worse that the rate of O(n−1/2) achieved in Theorem 2.10 and
Corollary 2.12. Moreover, the dependence on σ(β�) is suboptimal in the “low-noise”
regime, i.e., when σ(β�) � 1.

3 Applications and examples

This section is devoted to specific applications of the generic error bounds presented
in Sect. 2. We begin with a discussion of semi-parametric estimation problems in
Sect. 3.1, in particular, how the generalized Lasso (LSK ) performs with non-linear
output models. In Sects. 3.2–3.5, we then demonstrate that generic Bernstein con-
centration covers a whole “spectrum” of relevant distributions, where (uniformly)
sub-exponential and sub-Gaussian input vectors appear just as marginal cases. Finally,
we continue our discussion on the notions of q- andm-complexity in Sect. 3.6, thereby
focusing on the prototypical situation of sparse recovery via �1-constraints.

3.1 Semi-parametric estimation problems and themismatch principle

We intentionally did not make a concrete choice of the target vector β� in Sect. 2.
This strategy has led to very flexible (generic) error bounds for (LSK ), but it does
not address any specific estimation problem. As already pointed out subsequently to
the initial Problem 1.1, a valid choice of β� is the expected risk minimizer. Indeed,
assuming that x is isotropic and β� := E[yx] ∈ K , then β� is the expected risk
minimizer (on both K and R

p) and we have that ρ(β�) = ρt (β
�) = 0 (see Appendix

B.1 and Fig. 2 there). Hence, according to Theorem 2.10 (or its corollaries), (LSK )
yields a consistent estimator of β�.
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While such a statement is common in statistical learning, a much less obvious
phenomenon is the capability of (LSK ) to solve semi-parametric estimation problems.
In the context of this article, we may express a semi-parametric observation model as
follows:

y = F(x, β0),

where β0 ∈ R
p is an unknown parameter vector and F : (Rp × R

p) → R a scalar
output function which can be non-linear, random, and unknown. Agreeing on this
model setup, the ultimate hope is now that (LSK ) is a (consistent) estimator of β0.9

It turns out that this is often possible at least to a certain extent, even though fitting a
linear model to non-linear observations might appear counterintuitive at first sight. A
typical example is the simple classification rule y = sign(〈x, β0〉), where there is still
hope to recover the direction of β0, but not its magnitude. This limitation gives rise to
a relaxed estimation problem:

Problem 3.1 Is the generalized Lasso (LSK ) capable of estimating any element from
a certain target set Tβ0 ⊂ R

p, which contains all those parameter vectors that allow
us to extract the information of interest?

Similarly to the more general formulation of Problem 1.1, the term ‘information’ is
left unspecified here and depends on what a user considers as a desirable outcome
of an estimation procedure. In the above example of binary classification, a natural
choice of target set would be Tβ0 := span({β0}), if one is interested in the recovery of
any scalar multiple of β0.

Our guarantees from Sect. 2 allow us to tackle Problem 3.1 in a very systematic
way:

Select β� ∈ Tβ0 ∩ K such that the mismatch covariance ρ(β�) becomes as small
as possible.10,11 Then apply Theorem 2.10 (or one of its corollaries) to obtain
an error bound for the estimation error ‖β̂ − β�‖2.
This strategy ensures that the resulting target vector β� encodes the desired infor-

mation, while the (asymptotic) bias of (LSK ) is brought under control. In particular,
if ρ(β�) = 0, we achieve a consistent estimator of β�; note that the corresponding
mismatch deviation σ(β�) can still be large, but its size only affects the variance of the
error ‖β̂ −β�‖2. The approach just described was developed by Genzel [15, Chap. 4],
where it is referred to as the mismatch principle (see also the technical report [17]).
It is worth pointing out that there is an important conceptual difference to the “naive”
idea of first explicitly computing the expected risk minimizer (on K ) and then finding
the closest point on the target set Tβ0 : indeed, we measure the complexity of K locally
at β�, which enables us to exploit beneficial geometric features directly on Tβ0 .

9 If F is non-linear, this can be very different from asking for the expected risk minimizer, which would
simply yield the best linear predictor of y.
10 For the sake of clarity, we only consider the global mismatch covariance here, which is easier to interpret
and forms an upper bound for ρt (β

�) according to Appendix B.1; but refinements are certainly possible
when analyzing ρt (β

�) instead of ρ(β�).
11 If x is isotropic, this selection procedure has a nice geometric interpretation due to Appendix B.1: The
mismatch covariance ρ(β�) is minimized on Tβ0 ∩ K if and only if β� is a Euclidean projection of the
(global) expected risk minimizer E[yx] onto Tβ0 ∩ K .
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We refer the reader to [15, Chap. 4] for a more extensive discussion of the mismatch
principle and various applications to semi-parametric estimation problems. In the
present work, we confine ourselves to an illustration in the prototypical situation of
single-index models.

Proposition 3.2 ([15, Prop. 4.6]) Let x ∈ R
p be a centered, isotropic random vector.

We assume that y obeys a single-index model of the form

y = f (〈x, β0〉) + ν, (3.1)

where β0 ∈ R
p\{0} is an unknown parameter vector, f : R → R is a scalar output

function, and ν is independent noise with E[ν] = 0. Moreover, we choose Tβ0 :=
span({β0}) as target set. Then β� = μβ0 with

μ := 1
‖β0‖22

· E[ f (〈x, β0〉) · 〈x, β0〉]

minimizes the (global) mismatch covariance over Tβ0 and we have that

ρ(β�) = ∥∥E[ f (〈x, β0〉)P⊥
β0
x]∥∥2,

where P⊥
β0

∈ R
p×p is the projection onto the orthogonal complement of span({β0}).

In particular, if x is a standard Gaussian random vector, we have that ρ(β�) = 0.

In the special case of a Gaussian input vector, Proposition 3.2 reproduces the original
finding of Plan and Vershynin [42]: despite an unknown, non-linear distortion, the
generalized Lasso still allows for consistent estimation of the parameter vector, or at
least a scalar multiple of it. When combining Proposition 3.2 with the results from
Sect. 2 (for an appropriately tuned hypothesis set K ), we observe that their conclusion
remains essentially valid for non-Gaussian inputs as long as the mismatch covariance
ρ(β�) vanishes or gets sufficiently small. On the other hand, if ρ(β�) is too large, it can
be useful to employ an adaptive estimator instead (e.g., see [61–63]), but there also
exist worst-case scenarios where an asymptotic bias is inevitable, regardless of the
considered estimator (see [2]). For an overview of the extensive literature on single-
index models as well as historical references, we refer the reader to [43, Sec. 6] and
[63, Subsec. 1.2]. Moreover, see [15, Subsec. 4.2.2] and the references therein for
related works in 1-bit compressed sensing.

Finally, it is worth pointing out that we did not make any (explicit) assumptions
on the tail behavior of the distribution of x in this subsection. Therefore, one can
easily combine the above described approach with the findings of the forthcoming
subsections, which investigate specific instances of generic Bernstein concentration.

3.2 Sub-Gaussian input vectors

The current and subsequent subsections are devoted to several examples of generic
Bernstein concentration (see Definition 2.2). Let us begin with the situation of (uni-
formly) sub-Gaussian input vectors. A characteristic property of sub-Gaussian random
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variables is that their tails are essentially not heavier than those of the normal distri-
bution (see Proposition A.1(i)). Combining this property with Definition 1.3, one can
easily verify that a sub-Gaussian random vector x ∈ R

p with sub-Gaussian norm
‖x‖ψ2 exhibits generic Bernstein concentration with respect to (C‖x‖ψ2‖ · ‖2, 0) for
a universal constant C > 0. Since the sub-exponential part of the mixed-tail condition
is effectively erased here by setting ‖ · ‖e := 0, we observe that sub-Gaussian input
vectors form a degenerate limit case at the lighter-tailed end of the “spectrum” of
generic Bernstein concentration. Regarding the q- and m-complexities, the identity
‖ · ‖e = 0 implies that the γ1-functional effectively vanishes in their respective defi-
nitions, so that we end up with a rescaled version of the functional γ2(·, ‖ · ‖2). The
celebrated Majorizing Measure Theorem of Talagrand [51, Thm. 2.4.1] relates this
functional to a well-known complexity parameter:

Definition 3.3 (Gaussian width) Let L ⊂ R
p and let g ∼ N (0, Ip) be a standard

Gaussian random vector. The Gaussian width of L is defined by

w(L) := E

[
sup
v∈L

〈g, v〉
]
.

The Gaussian width originates from classical results in geometric functional analysis
and asymptotic convex geometry, e.g., see [18, 20, 35].More recently, it has emerged as
a useful tool for the analysis of high-dimensional estimation problems, e.g., see [3, 10,
34, 37, 44, 49, 57]. The connection to our analysis, which is provided by Talagrand’s
Majorizing Measure Theorem, is the fact that for every subset L ⊂ R

p, we have

γ2(L, ‖ · ‖2) � w(L). (3.2)

Apart from a simple geometric interpretation of the resulting complexity parameters,
(3.2) implies that the optimization over the “skeleton” is irrelevant (up to constants) in
the sub-Gaussian case, since the Gaussian width is invariant under taking the convex
hull. This explains why such an optimization is uncommon in the literature dealing
with sub-Gaussian input data.

The following fact summarizes the above considerations and allows us to relate the
generic (global) error bound from Corollary 2.15 to the sub-Gaussian setting:

Fact 3.4 Let x ∈ R
p be a (uniformly) sub-Gaussian random vector, i.e., ‖x‖ψ2 < ∞.

Then x exhibits generic Bernstein concentration with respect to (
√
C2‖x‖ψ2‖ · ‖2, 0),

whereC2 > 0 is the constant fromPropositionA.1(i). Theglobal q- andm-complexities
satisfy

q(g,e)
n (L) � ‖x‖ψ2 · inf

{
γ2(S, ‖ · ‖2) | S ⊂ R

p, conv(S) ⊃ L
}

︸ ︷︷ ︸
=:q(2,0)

n (L)

� ‖x‖ψ2 · w(L),

m(g,e)(L) � ‖x‖ψ2 · inf
{
γ2(S, ‖ · ‖2) | S ⊂ R

p, conv(S) ⊃ L
}

︸ ︷︷ ︸
=:m(2,0)(L)

� ‖x‖ψ2 · w(L).

(3.3)
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The comparison of our results with existing ones is facilitated by introducing the
normalized complexities q(2,0)

n and m(2,0) in (3.3). Indeed, both parameters are unaf-
fected by a rescaling of the input vector, which is a common feature of complexity
measures defined in the literature. In contrast, their “unnormalized” counterparts q(g,e)

n
and m(g,e) “absorb” the norm ‖x‖ψ2 as a scalar pre-factor for the generic semi-norms
‖ · ‖e and ‖ · ‖g .

With regard to the local and conic q- and m-complexities, Talagrand’s Majorizing
Measure Theorem leads to similar conclusions. The (normalized) local q-complexity
corresponds to the notion of local Gaussian width (cf. [14, 42]):

q(2,0)
t,n (L) := 1

t
inf

{
γ2(S, ‖ · ‖2) | S ⊂ R

p, conv(S) ⊃ L∩tSp−1
}
� 1

t
w(L∩tSp−1).

Since the definition of the (normalized) local m-complexity requires that conv(S)

also contains the origin, it is not strictly equivalent to the local Gaussian width, but
incorporates an additional constant term (cf. Appendix B.25.6):

m(2,0)
t (L) := 1

t
inf

{
γ2(S, ‖ · ‖2) | S ⊂ R

p, conv(S) ⊃ (L ∩ tSp−1) ∪ {0}
}
� 1

t
w(L ∩ tSp−1) + 1.

Analogously, the (normalized) conic q-complexity and m-complexity correspond to
the notion of conic Gaussian width (cf. [3, 10]). A combination of these identifications
with the corresponding error bounds from Sect. 2 (Theorem 2.10, Corollary 2.12,
and Corollary 2.15) allows us to reproduce known estimation guarantees for (sub-)
Gaussian sample data, e.g., see [15, 42].

3.3 Input vectors with independent sub-exponential features

Although it is reassuring that the generic error bounds from Sect. 2 are consistent
with existing results for the sub-Gaussian case, this setup does not constitute a proper
example of the mixed-tail condition in Definition 2.2. A more natural example is
given by input vectors with centered, independent, sub-exponential coordinates. In
this case, generic Bernstein concentration can be simply implemented by the classical
Bernstein’s inequality (see Theorem A.3). The following fact is a direct consequence
of Theorem A.3.

Fact 3.5 Let x ∈ R
p be a random vector with centered, independent, sub-exponential

coordinates. Set R := max1≤ j≤d ‖x j‖ψ1 . Then x exhibits generic Bernstein concen-
tration with respect to

( R√
CB

‖ · ‖2, R
CB

‖ · ‖∞
)
, where CB > 0 is the constant from

Theorem A.3. The global q- and m-complexities satisfy

q(g,e)
n (L) � R · inf

{
γ1(S,‖·‖∞)√

n
+ γ2(S, ‖ · ‖2) | S ⊂ R

p, conv(S) ⊃ L
}
,

m(g,e)(L) � R · inf
{
γ1(S, ‖ · ‖∞) + γ2(S, ‖ · ‖2) | S ⊂ R

p, conv(S) ⊃ L
}

︸ ︷︷ ︸
=:m(2,∞)(L)

.
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Remarkably, there exists a geometric interpretation of m(2,∞) that is very similar
to (3.2). To this end, let L ⊂ R

p and let Y = (Y1, . . . ,Yp) be a random vector
with independent, symmetric coordinates satisfying P(|Y j | ≥ t) = exp(−t) for all
j = 1, . . . , p. By a result of Talagrand [51, Thm. 10.2.8], we then have

γ1(L, ‖ · ‖∞) + γ2(L, ‖ · ‖2) � E

[
sup
v∈L

〈v,Y 〉
]
. (3.4)

Inspired by the notion of ‘Gaussian’ width, the expression on the right-hand side
is referred to as the exponential width of L . Similarly to the sub-Gaussian case in
Sect. 3.2, the relation (3.4) shows that the optimization over the “skeleton” does not
make a difference in the present scenario, at least when ignoring universal constants.
Therefore, we can conclude that the normalized m-complexity is equivalent to the
exponential width, i.e., m(2,∞)(L) � E

[
supv∈L〈v,Y 〉].

The idea of using the exponentialwidth as a complexitymeasure for sub-exponential
input vectors was proposed by Sivakumar et al. [48]. In contrast to the Gaussian width,
the exponential width is not rotation-invariant: only the sub-Gaussian component of
the complexity is tied to the Euclidean structure on R

p, whereas the sub-exponential
component of the complexity is described by the �∞-norm. Based on results by Tala-
grand, it follows from [48, Thm. 1] that for every subset L ∈ R

p, we have

m(2,∞)(L) � E

[
sup
v∈L

〈v,Y 〉
]

�
√
log(p) · w(L). (3.5)

Regarding the feasibility of estimation in the high dimensions, this shows that the situ-
ation for input vectors with independent, sub-exponential features is not substantially
worse than for sub-Gaussian sample data.

According to Lemma 2.14(iii), the normalized global q-complexity q(2,∞)
n (defined

analogously to m(2,∞)) can also be controlled by the exponential width. With this
in mind, our lower bound for the quadratic process in Proposition 5.5 resembles a
result of Sivakumar et al. [48, Thm. 3], if we assume input vectors with independent,
sub-exponential entries. In contrast, [48, Thm. 3] just requires isotropy and uniform
sub-exponentiality. Due to a lack of published proofs, wewere unable to verify that the
exponential width is the correct complexity measure for this more general scenario.

3.4 (Uniformly) sub-exponential input vectors

We were already concerned with the situation of (uniformly) sub-exponential input
vectors in Sect. 1.1 (see Proposition 1.4). Taking the more abstract viewpoint from
Sect. 2, this setting corresponds to a degenerate limit case at the heavier-tailed end of
the “spectrum” of generic Bernstein concentration. Indeed, an application of Propo-
sition A.1(i) leads to the following fact:

Fact 3.6 Let x ∈ R
p be a (uniformly) sub-exponential random vector, that is,

‖x‖ψ1 < ∞. Then x exhibits generic Bernstein concentration with respect to
(0,C1‖x‖ψ1‖ · ‖2), where C1 > 0 is the constant from Proposition A.1(i). The global
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q- and m-complexities satisfy

q(g,e)
n (L) � ‖x‖ψ1 · inf

{
γ1(S,‖·‖2)√

n
+ γ2(S, ‖ · ‖2) | S ⊂ R

p, conv(S) ⊃ L
}

︸ ︷︷ ︸
=:q(0,2)

n (L)

,

m(g,e)(L) � ‖x‖ψ1 · inf
{
γ1(S, ‖ · ‖2) | S ⊂ R

p, conv(S) ⊃ L
}

︸ ︷︷ ︸
=:m(0,2)(L)

.

According to Talagrand’s Majorizing Measure Theorem, we have that

q(0,2)
n (L) � inf

{
γ1(S,‖·‖2)√

n
+ w(S) | S ⊂ R

p, conv(S) ⊃ L
}
. (3.6)

The right-hand side of (3.6) agrees with the notion of perturbed width that was con-
sidered by [36, 46]. Since Sattar and Oymak [46] focus on the projected gradient
descent as an algorithmic implementation of the generalized Lasso (LSK ), their error
bounds are not directly comparable to ours (in the special case of sub-exponential input
vectors), but they bear a resemblance. A remarkable difference is that we achieve an
exponentially decaying probability of failure. This is due to the fact that we handle
the multiplier process by Mendelson’s chaining approach (see Sect. 5.2.2), which also
explains why the notion of m-complexity does not appear in the results of [46].

Unlike in the settings of Sects. 3.2 and 3.3, a simple geometric interpretation of
the complexity parameters is not available in the case of uniformly sub-exponential
input vectors. In particular, there is no reason to believe that the optimization over the
“skeleton” is unnecessary in general. Compared to the γ2-functional, which can be
controlled by means of the Gaussian width, the γ1-functional seems more mysterious
and intangible. However, it is at least possible to derive informative upper bounds in
the important special case where K is a scaled �1-ball (see Sect. 3.6).

3.5 The lifted Lasso and phase retrieval

Another relevant example of generic Bernstein concentration occurs when applying
the so-called lifted Lasso to sub-Gaussian input vectors. The lifted Lasso introduced
below can be seen as a variant of the phase lift approach (see [7, 8]), which is tailored
to the phase retrieval problem (e.g., see [47] for an overview). Our statistical analysis
is not limited to this specific model setup and covers the more general scenario consid-
ered by Thrampoulidis and Rawat [52], namely single-index models with even output
functions. In fact, Proposition 3.2 indicates that this is a highly non-trivial task: if y
obeys (3.1) with Gaussian inputs and an even function f , then we would simply have
μ = 0, so that the ordinary Lasso (LSK ) fails to recover the direction of the parameter
vector β0.

Phase lifting follows a different approach that allows us to reduce the non-linear
phase retrieval problem to a more accessible linear problem. It is based on the simple,
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yet crucial observation that

〈x, β〉2 = tr(xxTββT ) = 〈xxT , ββT 〉F for allx, β ∈ R
p,

where tr(·) denotes the trace and 〈·, ·〉F the Hilbert-Schmidt inner product. The lifted
Lasso then corresponds to the following convex optimization problem:

min
B∈H

1
n

n∑

i=1

(
yi − 〈xi xTi − E[xxT ], B〉F

)2
, (LLSH )

where H ⊂ R
p×p is a convex subset of the positive semidefinite cone inRp×p which

contains all “lifted” hypotheses, i.e., H ⊃ {ββT | β ∈ K } for some K ⊂ R
p. Note

that the centering term E[xxT ] in (LLSH ) is important to achieve consistency (see
also Proposition 3.11 below).

If the input vector x ∈ R
p is sub-Gaussian, then xxT ∈ R

p×p is sub-exponential.12

In this sense, the lifted Lasso is a typical application where sub-exponential vec-
tors occur naturally. The connection between the lifted setting and the notion of
generic Bernstein concentration is given by the Hanson-Wright inequality (cf. [58,
Thm. 6.2.1]):

Fact 3.7 Let x ∈ R
p be a random vector with centered, independent, sub-Gaussian

coordinates. Moreover, let B ∈ R
p×p and set R := max1≤ j≤p ‖x j‖ψ2 . Then

xxT − E[xxT ] ∈ R
p×p exhibits generic Bernstein concentration with respect to( R2√

C
‖ · ‖F , R2

C ‖ · ‖op
)
, where C > 0 is a universal constant. In particular, the global

q- and m-complexities satisfy13

q(g,e)
n (L) � R2 · inf

{
γ1(S,‖·‖op)√

n
+ γ2(S, ‖ · ‖F ) | S ⊂ R

p×p, conv(S) ⊃ L
}

︸ ︷︷ ︸
=:q(F,op)

n (L)

,

m(g,e)(L) � R2 · inf
{
γ1(S, ‖ · ‖op) + γ2(S, ‖ · ‖F ) | S ⊂ R

p×p, conv(S) ⊃ L
}

︸ ︷︷ ︸
=:m(F,op)(L)

.

It is noteworthy that a similar result can be achieved under different assumptions
on x . For instance, Adamczak [1, Thm. 2.5] proves a Hanson-Wright inequality under
the assumption of a convex concentration property, while Jeong et al. [24, Thm. 1.5]
provide a somewhat different version under the additional assumption of unit variance.
Alternatively, if the input vector x is just uniformly sub-Gaussian, we can make use
of a result by Zajkowski [65, Prop. 2.7, Rem. 2.8] to obtain the following:

12 Here and in the following, the matrix space Rp×p is canonically identified with R
p2 . In particular, we

interpret xxT as a random vector in R
p2 , rather than a random matrix.

13 Note that the operator norm is absorbed by the Frobenius norm in the γ2-part of the q-complexity, which
is possible due to ‖ · ‖F + ‖ · ‖op � ‖ · ‖F .



15 Page 24 of 55 M. Genzel, C. Kipp

Fact 3.8 Let x ∈ R
p be a centered, (uniformly) sub-Gaussian random vector and let

B ∈ R
p×p. Then xxT −E[xxT ] exhibits generic Bernstein concentration with respect

to (0,C‖x‖2ψ2
‖ · ‖F ), where C > 0 is a universal constant.

All aforementioned results can be integrated into our framework. The following
error bound is a direct application of Corollary 2.15 to the setup of Fact 3.7:

Corollary 3.9 (Error bound for (LLSH ), global version) Let x ∈ R
p be as in Fact 3.7

and let y be sub-exponential. Let the sample pairs (x1, y1), . . . , (xn, yn) be indepen-
dent copies of (x, y). Moreover, let H ⊂ R

p×p be convex and fix B� ∈ H. We also
assume that

Q := Q2τ (span(H − H) ∩ S
p2−1, xxT − E[xxT ]) > 0.

Then there exists a universal constant C > 0 such that for every u ≥ 8, the following
holds true with probability at least 1−5 exp(−C ·u2)−2 exp(−C ·√n): If the sample
size obeys

n �
(
R2 · q(F,op)

n (H) + τ · u
τ · Q

)2

,

then every minimizer B̂ of (LLSH ) satisfies

‖B̂−B�‖F � max
{
1, (τ ·Q)−2}·

[
ρ0(B

�)+max{1, u2 ·σ(B�)}·R ·
√
m(F,op)(H)

n1/4

]

+
,

(3.7)
where the mismatch parameters ρ0(B�) and σ(B�) are defined with respect to the
“lifted” random pair (xxT − E[xxT ], y).
Obviously, one can derive analogous estimation guarantees for the local and conic
complexity parameters based on Theorem 2.10 and Corollary 2.12, respectively.

Remark 3.10 From a practical viewpoint, the error bound for the lifted Lasso in Corol-
lary 3.9 is only of indirect interest, since the actual goal is to construct an estimator
for an appropriate target vector β� ∈ R

p with B� = β�(β�)T . For this purpose, one
may simply extract the rank-one component from a solution B̂ to (LLSH ). Indeed,
let β̂ ∈ S

p−1 be a unit-norm eigenvector of B̂ corresponding to the largest eigen-
value λ̂1 of B̂ (recall that B̂ is positive semidefinite). Then, on that same event as in
Corollary 3.9, the following error bound holds true:

min
{
‖λ̂1β̂ − β�‖2, ‖λ̂1β̂ + β�‖2

}
� min

{
‖β�‖2, Err

‖β�‖2
}
,

where Err is the error term on the right-hand side of (3.7); see [8, Sec. 6] and [52,
Subsec. 2.1] for more details. In other words, λ̂1β̂ is an estimator of either β� or−β�,
due to sign ambiguities.

Since the error bound (3.7) is affected by the (constant) additive term ρ0(B�), it is
natural to study situations where it vanishes. The following proposition concerns two
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model setups where this is the case. In conjunction with Corollary 3.9, this shows that
the lifted Lasso (LLSH ) can provide a consistent estimator for phase-retrieval-like
problems.

Proposition 3.11 1. Let x ∈ R
p be a random vector with finite second moments

(so that the centering term E[xxT ] is well-defined). We assume that y obeys a
quadratic observation model of the form

y = (〈x, β0〉 + ν)2,

where β0 ∈ R
p is an unknown parameter vector and ν is independent noise with

E[ν] = 0. Then we have that ρ0(B�) = 0 for B� := β0β
T
0 .

2. Let x ∼ N (0, Ip). We assume that y obeys a single-index model the form

y = f (〈x, β0〉) + ν,

where β0 ∈ S
p−1 is an unknown parameter vector, f : R → R is a scalar output

function, and ν is independent noise with E[ν] = 0. Set μ := 1
2E[ f (Z)(Z2 − 1)]

with Z ∼ N (0, 1). Then, we have that ρ0(B�) = 0 for B� := μβ0β
T
0 .

For the sake of brevity, we omit a proof of Proposition 3.11; it is straightforward but
especially the second part requires some lengthy calculations, see [52, Appx. B.2]
for more details. While the first statement of Proposition 3.11 addresses the classical
phase retrieval problemunder no additional assumptions on the input vector, the second
one indicates that the lifted Lasso can handle much more general non-linearities, at
least in the Gaussian case. In fact, one can achieve a consistent estimator of ±β0
as long as μ �= 0, which includes a large subclass of even output functions. This
observation allows us to reproduce a main result of Thrampoulidis and Rawat [52],
thereby integrating it into a more general statistical framework for the lifted Lasso.
They also investigate the important special case of sparse recovery, where β0 is sparse
and H is a subset of a scaled �1-ball in Rp2 . A detailed analysis of this situation goes
beyond the scope of this paper, but we emphasize that the complexity bounds presented
in the next subsection could be used to derive results in that regard.14 Finally, we refer
to [52, Subsec. 1.3] for further reading on recent approaches to phase retrieval and
related problems.

3.6 Sparse recovery and the complexity of polytopes

In this subsection, we discuss our complexity parameters in the context of high-
dimensional estimation problems where n � p, with a particular emphasis on sparse
recovery; for a comprehensive introduction to high-dimensional statistics, we refer to
the textbooks [6, 13, 23, 58, 59]. The common ground of sparse recovery problems
is the assumption that the underlying parameter vector is sparse in a certain sense. In

14 However, this would produce a further example of the observation that “the same k2-barrier appears in
most of the algorithms that have been proposed for sparse recovery from quadratic measurements”; quote
from [52, Subsec. 2.1]; see also [39].



15 Page 26 of 55 M. Genzel, C. Kipp

this part, we focus on the specific case where the target vector β� ∈ R
p is k-sparse,

i.e., at most k of its coordinates are non-zero. Since the set of k-sparse vectors in R
p

is non-convex for k < p, it cannot be used as hypothesis set for the generalized Lasso
(LSK ), and one has to come up with an appropriate convex relaxation. Probably the
most natural choice is a scaled �1-ball, which precisely leads to the standard Lasso
studied by Tibshirani [55].

Let us begin with the situation where the hypothesis set is perfectly tuned in the
sense that the target vector lies exactly on its boundary. The following result for the
�1-ball provides bounds for the local and conic m- and q-complexities in settings of
Sects. 3.2–3.4. A proof is given in Appendix 5.6.

Proposition 3.12 Let t ≥ 0 and assume that k � p. Let β� ∈ R
p be a k-sparse vector

and let K := ‖β�‖1B p
1 (i.e., β� lies on the boundary of K ). Then the following holds

true:15

(i) The local and conic m- and q-complexities with respect to (‖ · ‖2, 0) satisfy

q(2,0)
t,n (K − β�) � m(2,0)

t (K − β�) �
√
k log

( p

k

)
.

(ii) The local and conic m- and q-complexities with respect to (‖ · ‖2, ‖ · ‖∞) satisfy

q(2,∞)
t,n (K − β�) � m(2,∞)

t (K − β�) �
√
k log

( p

k

)
log(p).

(iii) The local and conic m- and q-complexities with respect to (0, ‖ · ‖2) satisfy

q(0,2)
t,n (K − β�) � m(0,2)

t (K − β�) �
√
k · log(2p).

Since all upper bounds in Proposition 3.12 scale only logarithmically with the ambi-
ent dimension p, we can conclude that sparse recovery is feasible in the settings of
Sects. 3.2–3.4. Moreover, the square-root-dependence on the sparsity k is optimal in
each of the above cases. In particular, the sample-size condition (2.4) of Theorem 2.10
takes the familiar form

n � k · Polylog(p, k),
where we have ignored other model-dependent parameters for the sake of clarity.

In situations where the hypothesis set is not perfectly tuned, it can be more appro-
priate to apply the global error bound from Corollary 2.15 instead of Theorem 2.10
(or Corollary 2.12). In this context, the “skeleton” optimization in the m- and q-
complexities proves very useful. To this end, let us assume that K ⊂ R

p is a convex
polytope, i.e., K = conv(F) for a finite set of vertices F ⊂ R

p. For α ∈ {1, 2}, we
then have

γα(F, d) � 
(F) · ( log(|F |)) 1
α . (3.8)

15 The notations for the m- and q-complexities are adopted from the respective settings of Sects. 3.2–3.4;
see also Lemma 2.14(iv) and (v) for the relation to their global counterparts.
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This rather crude bound is proved straightforwardly by constructing an admissible
partition sequence whose partitions contain all elements of F as singletons “as soon
as admissible”, and by bounding every diameter trivially by
(F). With (3.8) at hand,
we immediately obtain the following bounds for the global complexity parameters in
the case of polytopal hypothesis sets:

Proposition 3.13 Let K ⊂ R
p be a convex polytope with D vertices. Then we have

q(g,e)
n (K ) � 
e(K ) · log(D)√

n
+ (


g(K ) + 
e(K )
) · √log(D),

m(g,e)(K ) � 
e(K ) · log(D) + 
g(K ) · √log(D),

where
e(K ) and
g(K ) are the diameters of K with respect to the semi-norms ‖ · ‖e
and ‖ · ‖g, respectively.
Since the �1-ball inRp has only D = 2p vertices, Proposition 3.13 implies that sparse
recovery is possible in the high-dimensional regime n � p for all variants of generic
Bernstein concentration discussed in this section, even if the hypothesis set K is not
perfectly tuned. For example, ifβ� is k-sparse and has unit norm, K = √

kB p
1 would be

a valid choice for Corollary 2.15. Bypassing perfect tuning is in fact a desirable feature
in statistics, but we point out that the error bound (2.8) in Corollary 2.15 exhibits a
suboptimal decay rate of O(n−1/4).

The above findings indicate a noteworthy phenomenon of our complexity param-
eters, and generic chaining in general. The argument behind Proposition 3.13 is
especially effective for those polytopes with few vertices because we then only have to
control the empirical processes over this small subset (cf. (3.8)). For the γ2(·, ‖ · ‖2)-
functional, this simplification is irrelevant, since it is equivalent to the Gaussian width
according to (3.2).However, the general geometricmechanismsbehind this fact remain
largely mysterious, e.g., see [51, Sec. 2.4]. In particular, the situation is much less
understood beyond this special case and the involved γ -functionals are not neces-
sarily invariant under taking the convex hull. Consequently, controlling the m- and
q-complexities in any specific situation is a highly non-trivial task.

4 Conclusion and outlook

Leaving aside the specific aspects and applications discussed in the previous sections,
the overall conclusion of ourmain results reads as follows: The benchmark case of sub-
Gaussian sample data can be seen as a “barrier” behind which the estimation behavior
of the generalized Lasso (LSK ) can change significantly. The key difference becomes
manifested in what way the complexity of the hypothesis set K is measured. Indeed,
the m- and q-complexities do not generally enjoy a simple geometric interpretation
similar to the Gaussian width, and except for some specific scenarios, the underlying
chaining functionals are difficult to control (see Sect. 3.6). On the other hand, we
have observed that several statistical and conceptual features remain valid beyond
sub-Gaussianity. In particular, semi-parametric estimation problems can be treated as
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before, since the consistency of the generalized (or lifted) Lasso is not affected by the
tail behavior of the input vectors (see Sects. 3.1 and 3.5).

On the technical side of this paper stands an application of generic chaining, as a
means of controlling the quadratic and the multiplier process according to the under-
lying geometry of their index sets. In our specific analysis, this paradigm appears
explicitly in the notion of generic Bernstein concentration: the correct way to measure
complexity is determined by the tail behavior of the input vector, which is captured
by two (appropriate) semi-norms.

We close our discussion with a short list of open problems and possible extensions
of our approach:

• Beyond sub-exponentiality. Are our results extendable to input vectors for which
generic Bernstein concentration is simply too restrictive? An obvious relaxation
would be that x obeys only a α-sub-exponential distribution, i.e., ‖x‖ψα < ∞
for some 0 < α < 1 (cf. Theorem 5.10). For instance, such distributions occur
naturally when studying higher-order variants of the lifted Lasso, where the input
data consist of tensor products. We believe that our basic proof strategy would not
break down in such scenarios. In fact, even though ‖ · ‖ψα

is just a quasi-norm for
0 < α < 1, concentration inequalities are available, similarly to the case α = 1,
e.g., see [4, 21, 45]. Hence, a careful adaptation of generic Bernstein concentration
and the related chaining argument might lead to similar estimation guarantees as
in Sect. 2. It is worth pointing out that lower bounds for the quadratic process
under heavier tailed inputs are subject of recent research, e.g., see [25, 27, 30, 48],
while the behavior of the multiplier process remains largely unclear.

• The multiplier process. The conclusion of the previous point gives rise to another
relevant issue: How tight is our bound for the multiplier process (in Proposi-
tion 5.15)? Can it be improved in general or at least in specific model setups? Let
us be a little more precise about this concern: Our approach to controlling the mul-
tiplier process is based on a powerful concentration inequality byMendelson [32],
formulated in Theorem 5.12. In contrast, the multiplier process is handled with
more elementary arguments in most related works on the generalized Lasso, e.g.,
see [42, 46, 52]. These approaches suffer from a more pessimistic probability of
success and may lead to different error bounds in some situations. We suspect that
there exists a certain trade-off between the probability of success and the size of
the related complexity terms. In this regard, a particularly interesting phenomenon
is that—in contrast to the sub-Gaussian case—the complexities of the multiplier
process and the quadratic process may be measured in a different way.

• Beyond linearity and convexity. The results of this paper are limited to convex
hypothesis sets consisting of linear functions. Indeed, convexity is an important
ingredient of Fact 2.4, while linearity enables the optimization over the “skeleton”
in the proofs of Proposition 5.5 and 5.15. We expect that it is possible to drop the
convexity assumption on K by analyzing the projected gradient descent method as
an algorithmic implementation of (LSK ), e.g., see [38, 40, 46]. However, it is not
clear to us whether our complexity terms would still adequately capture the non-
convex nature of the hypothesis set; for instance, recall that the Gaussian width
is invariant under taking the convex hull. In general, the analysis of non-convex
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optimization problems is very subtle, due to the possible presence of spurious local
optima or saddle points. On the other hand, non-convex methods often perform
better in both theory and practice, e.g., see [9]. These benefits have triggered a
large amount of research in the last decade, but it is fair to say that many important
issues in this field remain widely open.

5 Proofs of themain results

This part is dedicated to the proofs for Sects. 1 (provided in Sects. 5.6) and 2 (provided
in Sects. 5.1–5.5).

5.1 Implications of generic Bernstein concentration

Webeginwith two implications of genericBernstein concentration (seeDefinition2.2),
which are required for the proof of Theorem 2.10 in the next subsection, but might
be also of independent interest. The proofs of both lemmas can be found in Appendix
D. The first one concerns the q-th moment of the marginals of a random vector that
satisfies generic Bernstein concentration; recall the notation v∗ from Sect. 1.4.

Lemma 5.1 Let q ≥ 1. Let x be a random vector inRp that exhibits generic Bernstein
concentration with respect to (‖ · ‖g, ‖ · ‖e), and we equip R

p with the pushforward
measure P ◦ x−1. Then for all v ∈ R

p, we have that

‖v∗‖Lq � q · ‖v‖e +√
q · ‖v‖g.

The second lemma addresses the symmetrized sum of i.i.d. random vectors that satisfy
generic Bernstein concentration. The resulting random vector still exhibits generic
Bernstein concentration but with respect to different semi-norms.

Lemma 5.2 Let x be a random vector in R
p that exhibits generic Bernstein concen-

tration with respect to (‖ · ‖g, ‖ · ‖e) and let x1, . . . , xn be independent copies of
x. Furthermore, let ε1, . . . , εn be independent Rademacher random variables (also
independent of the xi ). Then the rescaled symmetrized sum

Sn := 1√
n

n∑

i=1

εi xi

exhibits generic Bernstein concentration with respect to
(
C(‖ · ‖g+‖ · ‖e), C√

n
‖ · ‖e

)
,

where C > 0 is a universal constant.

5.2 Proof of Theorem 2.10

Throughout this subsection and unless otherwise stated, we assume that the hypotheses
of Theorem 2.10 are satisfied, especially Assumption 2.9. Let us recall the decompo-
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sition of the excess risk from (2.2):

E(β, β�) = 1
n

n∑

i=1

〈xi , β − β�〉2
︸ ︷︷ ︸

=Q(β−β�)

+ 2
n

n∑

i=1

(〈xi , β�〉 − yi )〈xi , β − β�〉
︸ ︷︷ ︸

=M(β,β�)

.

According to Fact 2.4, our main goal is to show that E(β, β�) > 0 for all β ∈ Kβ�,t .
For this purpose, we will first treat the quadratic and multiplier process separately in
Sects. 5.2.1 and 5.2.2 below. The outcome of this analysis are Proposition 5.5 and 5.15,
respectively,which eventually allows us to derive the desired error bound in Sect. 5.2.3.
We note that some results in Sects. 5.2.1 and 5.2.2 are presented in a slightly more
general setting, considering a generic set L ⊂ R

p instead of specific subsets of K .

5.2.1 The quadratic process

Wenow address the issue of finding a lower bound for the quadratic processQ(β−β�).
Setting v := β −β� ∈ K − K , the square root of the quadratic process takes the form

√
Q(β − β�) = 1√

n

( n∑

i=1

〈xi , v〉2
) 1

2

.

Evidently, the quadratic process describes an interaction of the input vectors xi with
the difference of two hypotheses β, β� ∈ K . In this sense, it is intrinsic to K—it does
not depend in any way on y, and in particular not on the model mismatch y − 〈x, β�〉
(cf. Appendix B.2(3)).

SinceQ(β − β�) is a non-negative empirical process, it is suited for an application
of the small-ball method. We state a version by Tropp [57, Prop. 5.1] here, but it should
be emphasized that the original idea is due to Mendelson (e.g., see [31, Thm. 5.4]);
recall the notion of small-ball function from Definition 2.7.

Theorem 5.3 (Small-ball method; [57, Prop 5.1]) Let L ⊂ R
p. Let x be a random

vector in Rp and let x1, . . . , xn be independent copies of x. Then for every θ > 0 and
u > 0, we have that

inf
v∈L

( n∑

i=1

〈xi , v〉2
) 1

2 ≥ θ · √n · Q2θ (L, x) − 2Wn(L, x) − θ · u

with probability at least 1− exp(−u2/2), where

Wn(L, x) := E

[
sup
v∈L

〈
1√
n

n∑

i=1

εi xi , v
〉]

is the empiricalwidthof L with independentRademacher randomvariables ε1, . . . , εn.
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In fact, Theorem 5.3 is a remarkable result because it holds true without a strong tail
assumption on x . However, its significance is closely linked to finding an appropriate
(upper) bound for the empirical width Wn(L, x), which is usually not a simple task.
In the specific context of this paper, where x exhibits generic Bernstein concentration,
the following generic chaining bound by Talagrand will prove useful; recall the γ -
functional from Definition 2.3.

Theorem 5.4 [51, Thm. 2.2.23] Let d1, d2 be two pseudo-metrics on a set L. Consider
a real-valued stochastic process (Xv)v∈L which satisfies the increment condition

P(|Xv1 − Xv2 | ≥ t) ≤ 2 exp
(
−min

{
t2

d2(v1,v2)2
, t
d1(v1,v2)

})

for all v1, v2 ∈ L and all t > 0. Then, we have that

E

[
sup

v1,v2∈L
|Xv1 − Xv2 |

]
� γ1(L, d1) + γ2(L, d2).

Moreover, if (Xv)v∈L is symmetric, we have that

E

[
sup
v∈L

Xv

]
� γ1(L, d1) + γ2(L, d2).

An appropriate combination of Theorems 5.3 and 5.4 leads to the following lower
bound for the quadratic process:

Proposition 5.5 Let x, x1, . . . , xn, K ⊂ R
p, and τ > 0 be as in Assumption 2.9. For

t > 0, let L ⊂ (K − K ) ∩ tSp−1. Then for every u > 0, we have that

inf
v∈L

( n∑

i=1

〈xi , v〉2
) 1

2 ≥ t ·
(√

n · τ · Q2τ (K

, x) − CQ · q(g,e)

t,n (L) − τ · u
)

with probability at least 1− exp(−u2/2), where CQ > 0 is a universal constant.

Proof Let θ := t · τ . Then, Theorem 5.3 states that

inf
v∈L

( n∑

i=1

〈xi , v〉2
) 1

2 ≥ t ·
(√

n · τ · Q2θ (L, x) − 2

t
· Wn(L, x) − τ · u

)

holds true with probability at least 1 − exp(−u2/2). The claim of Proposition 5.5
follows from the bounds on Q2θ (L, x) andWn(L, x) that we establish in the following.
Lower bound for Q2θ : We have that

Q2θ (L, x) = inf
v∈L P(|〈x, v〉| ≥ 2θ)

≥ inf
v∈(K−K )∩ (tSp−1)

P(|〈x, v〉| ≥ 2θ)
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≥ inf
ṽ∈span(K−K )∩Sp−1

P(|〈x, t ṽ〉| ≥ 2t · τ)

= inf
ṽ∈K


P(|〈x, ṽ〉| ≥ 2τ) = Q2τ (K

, x).

Upper bound for Wn : According to the definition of the local q-complexity, there
exists a set S̃ ⊂ R

p with

conv(S̃) ⊃ L ∩ tSp−1 (= L)

that satisfies

γ1(S̃, ‖ · ‖e)√
n

+ γ2(S̃, ‖ · ‖g + ‖ · ‖e) ≤ 2t · q(g,e)
t,n (L). (5.1)

Now let v ∈ L . Since L ⊂ conv(S̃), the point v can be expressed as a convex
combination in S̃:

v =
M∑

j=1

λ j s j , where λ j ≥ 0,
M∑

j=1

λ j = 1, s j ∈ S̃. (5.2)

Conditioning on the random variables εi , xi , the function

h : Rp → R, w �→
〈

1√
n

n∑

i=1

εi xi , w

〉

is linear. Hence, we have that

h(v) =
M∑

j=1

λ j h(s j ) ∈ conv
({h(s1), . . . , h(sM )}).

In particular, at least one of the h(si ) is not smaller than h(v). This implies

sup
v∈L

〈
1√
n

n∑

i=1

εi xi , v

〉
≤ sup

v∈S̃

〈
1√
n

n∑

i=1

εi xi , v

〉

and therefore Wn(L, x) ≤ Wn(S̃, x). To obtain an upper bound for Wn(S̃, x), we
consider the associated stochastic process

(Xv)v∈S̃ :=
(〈

1√
n

n∑

i=1

εi xi , v

〉)

v∈S̃
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and intend to apply Theorem 5.4: Since the xi and the εi are independent, the distri-
bution of (Xv)v∈S̃ only depends on the individual distributions of the xi and the εi .
Observing that

(−Xv)v∈S̃ =
(〈

1√
n

n∑

i=1

(−εi )xi , v

〉)

v∈S̃
and that −εi has the same distribution as εi for each i , we conclude that (Xv)v∈S̃ is
indeed symmetric. Regarding the increment condition, let v1, v2 ∈ S̃ and set v :=
v1 − v2. Then, Lemma 5.2 implies that

P(|Xv1 − Xv2 | ≥ t) ≤ 2 exp
(
−min

{
t2

C2(‖v‖g+‖v‖e)2 ,
√
nt

C‖v‖e
})

.

Finally, Theorem 5.4 yields

Wn(S̃, x) � γ1(S̃, 1√
n
‖ · ‖e) + γ2(S̃, ‖ · ‖g + ‖ · ‖e)

= γ1(S̃, ‖ · ‖e)√
n

+ γ2(S̃, ‖ · ‖g + ‖ · ‖e)
(5.1)≤ 2t · q(g,e)

t,n (L),

and therefore Wn(L, x) ≤ Wn(S̃, x) � t · q(g,e)
t,n (L). ��

5.2.2 The multiplier process

We now turn our attention to the multiplier process. Setting v := β − β� and ξi :=
〈xi , β�〉 − yi , the process takes the form

M(β, β�) = 2
n

n∑

i=1

ξi · 〈xi , v〉.

Unlike the quadratic process, the multiplier process is not intrinsic to the hypothesis
set K , but (empirically) describes an interaction of the difference of two hypotheses
β, β� ∈ K with the model mismatch ξ := 〈x, β�〉 − y (cf. Appendix B.2(3)).

In order to control the multiplier process, we adapt another result by Mendelson
[32], which is based on a refined chaining approach: Instead of applying the traditional
generic chaining to the function class {ξ · 〈·, β〉 | β ∈ K }, Mendelson isolates the
effect of the multiplier term ξ , which leads to a bound in terms of ‖ξ‖Lq and geometric
properties of the class {〈·, β〉 | β ∈ K }. In fact, his result holds true for more general
(non-linear) function classes, but in view of the objectives of this article, we only recite
the special case of linear functions. In order to state this result, several definitions are
required.

Definition 5.6 [32, Def. 1.6] For a real-valued random variable Z and q ≥ 1, we define
the (q)-norm by

‖Z‖(q) := sup
1≤r≤q

‖Z‖Lr√
r

.
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It is worth comparing the above definition to the moment characterization of sub-
Gaussian variables (see Proposition A.1(ii)). Mendelson [32, p. 3658] remarks that
the (q)-norm “measure[s] the subgaussian behaviour of the functions involved, but
only up to a fixed level, rather than at every level”.

Definition 5.7 Let L be a set. We call a sequence (Ls)s∈N ⊂ 2L of subsets of L an
admissible approximation sequence if |L0| = 1 and |Ls | ≤ 22

s
for s ≥ 1.

The following definition introduces a relative of Talagrand’s γ -functional (see Defi-
nition 2.3). For this purpose, also recall the notation of dual vectors from Sect. 1.4;
more precisely, we equip R

p with the pushforward measure P ◦ x−1 of a (generic)
random vector x ∈ R

p, so that for every v ∈ R
p, we have ‖v∗‖qLq = E[|〈x, v〉|q ].

Definition 5.8 [32, Def. 1.7] For L ⊂ R
p and u ≥ 1, we define

�̃u(L, x) := inf

{
sup
v∈L

‖(π0v)∗‖(u2) + sup
v∈L

∑

s≥0

2s/2 · ‖v∗ − (πsv)∗‖(u22s )

}
,

where the infimum is taken over all admissible approximation sequences (Ls)s∈N and
(πsv)∗ is a nearest point to v∗ in (Ls)

∗ with respect to the (u22s)-norm.

With these definitions at hand, we can now state Mendelson’s result, which provides
a powerful concentration inequality for multiplier processes. We emphasize that the
feature vector x and the multiplier ξ are not necessarily independent here, which is
crucial for our analysis and an important difference to related results in the literature,
e.g., see [22].

Theorem 5.9 [32, Thm. 1.9] Let L ⊂ R
p and let (x, ξ) ∈ R

p × R be a random
pair such that ‖ξ‖Lq < ∞ for some q > 2. We assume that (x1, ξ1), . . . , (xn, ξn)
are independent copies of (x, ξ). Then there exist constants C0,C1, . . . ,C4 > 0
(only depending on q) such that for every w, u > C0, the following holds true with
probability at least 1− C1 · w−q · n−(q/2)+1 · logq(n) − 4 exp(−C2 · u2):

sup
v∈L

∣∣∣∣∣

n∑

i=1

(ξi · 〈xi , v〉 − E[ξ · v∗])
∣∣∣∣∣ ≤ C3 · w · u · √n · ‖ξ‖Lq · �̃C4u(L).

The term C1 · w−q · n−(q/2)+1 · logq(n) in the probability of success arises from
a concentration inequality for the random vector (ξi )

n
i=1 ∈ R

n , for which we only
assume that the q-th moment of its components exists for some q > 2. In fact, better
rates can be achieved by more restrictive assumptions on the tails of ξ . For example,
Mendelson proves a sub-Gaussian variant of Theorem 5.9 using Bernstein’s inequality
(see [32, Thm. 4.4]). If we assume that ξ is just sub-exponential (as inAssumption 2.9),
Bernstein’s inequality cannot be applied to the squared coordinates appearing in the
Euclidean norm of (ξi )

n
i=1. However, the following recent result of Götze et al.[21]

allows us to derive a concentration inequality in the sub-exponential case:
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Theorem 5.10 [21, Prop. 1.1] Let X1, . . . , Xn be independent, centered random vari-
ables with σ 2

i := E[X2
i ] < ∞ and ‖Xi‖ψα ≤ R for some α ∈ (0, 1] ∪ {2}.16 Let

B = [bi j ] ∈ R
n×n be a symmetric matrix. Then there exists a universal constant

C > 0 such that for every t > 0, we have that

P

(∣∣∣∣
n∑

i, j=1

bi j Xi X j −
n∑

i=1

σ 2
i bii

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− C ·min

{
t2

R4‖B‖2F
,
(

t
R2‖B‖op

) α
2
})

.

Corollary 5.11 Let ξ1, . . . , ξn be i.i.d. sub-exponential random variables. Then there
exists a universal constantC > 0 such thatwith probability at least 1−2 exp(−C ·√n),
we have that

‖(ξi )ni=1‖2 =
( n∑

i=1

ξ2i

) 1
2

�
√
n · ‖ξ1‖ψ1 .

Proof We apply Theorem 5.10 for Xi := ξi − E[ξi ], B := In , t := R2 · n, and obtain

P(E) := P

(∣∣∣∣
n∑

i=1

(ξi − E[ξi ])2 − n · σ 2
1

∣∣∣∣ ≥ n · ‖ξ1 − E[ξ1]‖2ψ1

)

≤ 2 exp(−C ·min{n,
√
n}) = 2 exp(−C · √n).

Let us assume that the complement of the event E has occurred. Then, using Propo-
sition A.1(ii), it follows that

n∑

i=1

(ξi − E[ξi ])2 < n · (‖ξ1 − E[ξ1]‖2ψ1
+ σ 2

1 ) � n · ‖ξ1 − E[ξ1]‖2ψ1
� n · ‖ξ1‖2ψ1

,

where the last step is due to

‖X − E[X ]‖ψα � ‖X‖ψα

for α ∈ {1, 2}; see [58, Lem. 2.6.8] for a proof, which also works for α = 1. Conse-
quently, we have that

‖(ξi )ni=1‖2 ≤ ‖(ξi − E[ξi ])ni=1‖2 + ‖(E[ξi ])ni=1‖2 �
√
n · ‖ξ1‖ψ1 .

��
The bound of Corollary 5.11 leads to the following sub-exponential version of

Theorem 5.9:

16 As discussed by Götze et al. [21], our Definition 1.2 can be extended to the more general case α > 0,
leading to the notion of α-sub-exponential random variables. But note that if 0 < α < 1, the exponential
Orlicz “norm” ‖ · ‖ψα

violates the triangle inequality.
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Theorem 5.12 Let L ⊂ R
p and let (x, ξ) ∈ R

p × R be a random pair such that
‖ξ‖ψ1 < ∞. We assume that (x1, ξ1), . . . , (xn, ξn) are independent copies of (x, ξ).
Then there exist universal constants C,C ′, C̃ > 0 such that for every u ≥ 8, the
following holds true with probability at least 1− 2 exp(−C · √n) − 4 exp(−C · u2):

sup
v∈L

∣∣∣∣
n∑

i=1

(ξi · 〈xi , v〉 − E[ξ · v∗])
∣∣∣∣ ≤ C ′ · u · √n · ‖ξ‖ψ1 · �̃C̃u(L, x).

Proof Analogously to the proof of [32, Thm. 4.4], it is enough to adapt the last step
of the proof of [32, Thm. 1.9]. To this end, we set the variables arising in the proof of
[32, Thm. 4.4] to the values q := 6 and w := 1, which entails r = r ′ = 2 and q1 = 8.
Then, with probability at least 1− 2 exp(−C · √n), Corollary 5.11 implies that

‖(ξi )ni=1‖2 �
√
n · ‖ξ1‖ψ1 .

Since ‖ξ‖L6 � ‖ξ‖ψ1 , we also have that

( ∑

i≥ j0

(ξ∗
i )2r

) 1
2r =

( ∑

i≥ j0

(ξ∗
i )4

) 1
4

� ‖ξ‖L6 · n1/4 � ‖ξ‖ψ1 · n1/4,

with probability at least 1 − 2 exp(−C · u2), where ξ∗ and j0 are objects defined in
the proof of [32, Thm. 1.9]. The rest of the proof remains unchanged. ��

The following lemma is a centerpiece of our statistical analysis, as it allows us to
control the complexity term �̃u(L, x) via generic Bernstein concentration:

Lemma 5.13 Let L ⊂ R
p with 0 ∈ conv(L) and u ≥ 1. Let x be a random vector in

R
p that exhibits generic Bernstein concentration with respect to (‖ · ‖g, ‖ · ‖e). Then,

we have that
�̃u(L, x) � u · γ1(L, ‖ · ‖e) + γ2(L, ‖ · ‖g).

Proof From Lemma 5.1, we obtain

‖v∗‖(u22s ) = sup
1≤q≤u22s

‖v∗‖Lq√
q

� sup
1≤q≤u22s

q · ‖v‖e +√
q · ‖v‖g√

q
= u2s/2·‖v‖e+‖v‖g

(5.3)
for every v ∈ R

p. Adopting the notation from [32, Def. 1.7], we set

�u(L, x) := inf sup
v∈L

∑

s≥0

2s/2 · ‖v∗ − (πsv)∗‖(u22s ),

which implies that
�̃u(L, x) ≤ �u(L, x) + sup

v∈L
‖v∗‖(u2). (5.4)
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According to (5.3), the second summand of (5.4) can bounded as follows:

sup
v∈L

‖v∗‖(u2) � sup
v∈L

(u · ‖v‖e + ‖v‖g) ≤ sup
v∈L

(u · ‖v‖e) + sup
v∈L

‖v‖g
0∈conv(L)≤ u · 
e(L) + 
g(L) ≤ u · γ1(L, ‖ · ‖e) + γ2(L, ‖ · ‖g),

where 
e(L) and 
g(L) are the diameters of L with respect to ‖ · ‖e and ‖ · ‖g ,
respectively. To handle the first summand of (5.4), we apply (5.3) once again:

�u(L, x) = inf sup
v∈L

∑

s≥0

2s/2 · ‖v∗ − (πsv)∗‖(u22s )

≤ inf sup
v∈L

∑

s≥0

2s/2 · ‖v∗ − (π+
s v)∗‖(u22s )

� inf sup
v∈L

∑

s≥0

(
u2s · ‖v − π+

s v‖e + 2s/2 · ‖v − π+
s v‖g

)
,

where π+
s : L → Ls is an arbitrary map (depending on the respective admis-

sible approximation sequence (Ls)s∈N indexed by the infimum); note that we can
indeed replace πs by π+

s here, since by definition, (πs)s∈N is an optimal (functional-
minimizing) sequence of projections with respect to the (u22s)-norms.

We now show that the above expression is upper bounded by

5 ·
(
u · γ1(L, ‖ · ‖e) + γ2(L, ‖ · ‖g)

)
,

which would imply the claim of Lemma 5.13. For this purpose, let (Es)s∈N and
(Gs)s∈N be two admissible partition sequences which approximate γ1(L, ‖ · ‖e) and
γ2(L, ‖ · ‖g) up to a factor of 2, respectively. Furthermore, let (Fs)s∈N be given by
F0 = {L} and

Fs := {E ∩ G | E ∈ Es−1,G ∈ Gs−1} for s ≥ 1. (5.5)

It is not hard to see that (Fs)s∈N is indeed an admissible partition sequence.
Next, we use the sequence (Fs)s∈N to construct an admissible approximation

sequence (Ls)s∈N and a corresponding sequence of maps (π◦
s )s∈N: For each s ∈ N,

the set Ls ⊂ L is obtained by selecting exactly one (arbitrary) point vF from every
F ∈ Fs , while π◦

s maps every point in F to the respective vF . This construction
ensures that for s ≥ 1 and v ∈ L , we have

‖v − π◦
s v‖e ≤ 
e(Fs(v)) ≤ 
e(Es−1(v))

and
‖v − π◦

s v‖g ≤ 
g(Fs(v)) ≤ 
g(Gs−1(v)).
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This implies

�u(L, x) � sup
v∈L

∑

s≥0

(
u2s · ‖v − π◦

s v‖e + 2s/2 · ‖v − π◦
s v‖g

)

≤ u · sup
v∈L

∑

s≥0

2s · ‖v − π◦
s v‖e + sup

v∈L

∑

s≥0

2s/2 · ‖v − π◦
s v‖g

≤ u ·
(

e(L) + sup

v∈L

∑

s≥1

2s · 
e(Es−1(v))
)
+ 
g(L) + sup

v∈L

∑

s≥1

2s/2 · 
g(Gs−1(v))

= u ·
(

e(L) + sup

v∈L

∑

s≥0

2s+1 · 
e(Es(v))
)
+ 
g(L) + sup

v∈L

∑

s≥0

2(s+1)/2 · 
g(Gs(v))

≤ u · (1+ 4) · γ1(L, ‖ · ‖e) + (1+ 2
√
2) · γ2(L, ‖ · ‖g),

where we have used in the last line that (Es)s∈N and (Gs)s∈N approximate γ1(L, ‖ · ‖e)
and γ2(L, ‖ · ‖g) up to a factor of 2, respectively. ��
Remark 5.14 The proof of Lemma 5.13 is inspired by [32, Subsec. 4.3], where the
upper bound �̃u(L, x) � u ·γ1(L, ‖ · ‖∞)+γ2(L, ‖ · ‖2) is derived under the assump-
tion that x obeys anunconditional, isotropic, log-concave distribution. This assumption
implies that x is stochastically dominated by a random vector with i.i.d. standard expo-
nential coordinates, which enables a bound for ‖v∗‖(q) in terms of ‖v‖2 and ‖v‖∞
(cf. Sect. 3.3).

The estimate fromLemma 5.13 leads us to our final result for themultiplier process:

Proposition 5.15 Let L ⊂ tSp−1 for some t > 0 and let (x, ξ) ∈ R
p×R be a random

pair such that ‖ξ‖ψ1 < ∞ and x exhibits generic Bernstein concentration with respect
to (‖ · ‖g, ‖ · ‖e). We assume that (x1, ξ1), . . . , (xn, ξn) are independent copies of
(x, ξ). Then there exist universal constants C,C ′ > 0 such that for every u ≥ 8, the
following holds true with probability at least 1− 2 exp(−C · √n) − 4 exp(−C · u2):

sup
v∈L

∣∣∣∣
n∑

i=1

(ξi · 〈xi , v〉 − E[ξ · v∗])
∣∣∣∣ ≤ C ′ · t · u2 · √n · ‖ξ‖ψ1 · m(g,e)

t (L).

Proof According to the definition of the local m-complexity, there exists a set S̃ ⊂ R
p

with
conv(S̃) ⊃ (L ∩ tSp−1) ∪ {0} (= L ∪ {0})

that satisfies
γ1(S̃, ‖ · ‖e) + γ2(S̃, ‖ · ‖g) ≤ 2t · m(g,e)

t (L). (5.6)

By Theorem 5.12, with probability at least 1− 2 exp(−C · √n)− 4 exp(−C · u2), we
have that

sup
v∈S̃

∣∣∣∣
n∑

i=1

(ξi · 〈xi , v〉 − E[ξ · v∗])
∣∣∣∣ � u · √n · ‖ξ‖ψ1 · �̃C̃u(S̃, x). (5.7)
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Now let v ∈ L . Since L ⊂ conv(S̃), the point v can be expressed as a convex
combinationof points s1, . . . , sM ∈ S̃ as in (5.2).Conditioningon the randomvariables
xi and ξi , the function

h : Rp → R, w �→
∣∣∣∣∣

n∑

i=1

(ξi · 〈xi , w〉 − E[ξ · w∗])
∣∣∣∣∣ =

∣∣∣∣∣

〈 n∑

i=1

(ξi xi − E[ξ x]), w
〉∣∣∣∣∣

is a composition of a linear function and the convex function z �→ |z|. Hence, h is
convex and we can apply Jensen’s inequality to obtain

h(v) = h

⎛

⎝
M∑

j=1

λ j s j

⎞

⎠ ≤
M∑

j=1

λ j h(s j ) ≤
M∑

j=1

(
λ j · sup

w∈S̃
h(w)

)
= sup

w∈S̃
h(w).

Since v ∈ L was arbitrarily chosen, we can conclude that the following bound holds
true if the event from (5.7) has occurred:

sup
v∈L

∣∣∣∣
n∑

i=1

(ξi · 〈xi , v〉 − E[ξ · v∗])
∣∣∣∣ � u · √n · ‖ξ‖ψ1 · �̃C̃u(S̃, x).

Finally, Lemma 5.13 implies

�̃C̃u(S̃, x) � C̃ · u ·
(
γ1(S̃, ‖ · ‖e) + γ2(S̃, ‖ · ‖g)

) (5.6)

� u · t · m(g,e)
t (L),

where we have also used that u ≥ 8 > 1. ��

5.2.3 Controlling the excess risk

With the results of Propositions 5.5 and 5.15 at hand, we are now ready to prove
Theorem 2.10. Let us first consider the case t > 0. According to Fact 2.4, it suffices
to show that E(β, β�) > 0 for all β ∈ Kβ�,t . Remarkably, this argument is actually
the only point in our proof where we rely on the convexity of the hypothesis set K .
The remainder of the proof is divided into several substeps.
Step 1 (quadratic process): Applying Proposition 5.5 to L := Kβ�,t − β� = (K −
β�)∩ tSp−1, the following holds with probability at least 1− exp(−u2/2): For every
β ∈ Kβ�,t , we have that

√
Q(β − β�) =

(
1
n

n∑

i=1

〈xi , β − β�〉2
) 1

2

≥ t ·
(

τ · Q2τ (K

, x) − CQ · q(g,e)

t,n (K − β�) + τ · u√
n

)

≥ 1
2 · t · τ · Q2τ (K


, x),
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where the last step follows from the condition (2.4) for an appropriate hidden constant.
Step 2 (multiplier process): Applying Proposition 5.15 to L := Kβ�,t − β� = (K −
β�) ∩ tSp−1 and ξ := 〈x, β�〉 − y, the following holds with probability at least
1− 2 exp(−C · √n) − 4 exp(−C · u2): For every β ∈ Kβ�,t , we have that

1
2 ·M(β, β�) = 1

n

n∑

i=1

(〈xi , β�〉 − yi )〈xi , β − β�〉

≥ E
[
(〈x, β�〉 − y)〈x, β − β�〉] − C ′ · u2 · ‖〈x, β�〉 − y‖ψ1 · t · m

(g,e)
t (K − β�)√

n

= −t ·
(
E

[
(y − 〈x, β�〉)

〈
x, β−β�

t

〉]
+ C ′ · u2 · ‖〈x, β�〉 − y‖ψ1 · m

(g,e)
t (K − β�)√

n

)

≥ −t ·
(

ρt (β
�) + C ′ · u2 · σ(β�) · m

(g,e)
t (K − β�)√

n

)

≥ −t ·max{1,C ′} ·
(

ρt (β
�) + u2 · σ(β�) · m

(g,e)
t (K − β�)√

n

)
,

where the second inequality is due to

E

[
(y − 〈x, β�〉)

〈
x, β−β�

t

〉]
=

〈
E
[
(y − 〈x, β�〉)x], β−β�

t︸ ︷︷ ︸
∈ 1
t (K−β�)∩Sp−1=K t

〉
≤ ρt (β

�).

If the aforementioned event has occurred and if t satisfies the condition (2.5) for an
appropriate hidden constant, it follows that

M(β, β�) ≥ − t2

8
· (τ · Q2τ (K


, x)
)2 for allβ ∈ Kβ�,t .

Step 3 (excess risk): Finally, we assume that the events from Step 1 and Step 2 have
occurred jointly, which indeed happens with probability at least 1−2 exp(−C ·√n)−
5 exp(−C · u2) for an appropriately chosen constant C > 0. Then, we obtain

E(β, β�) = Q(β − β�) +M(β, β�)

≥ t2

4
· (τ · Q2τ (K


, x)
)2 − t2

8
· (τ · Q2τ (K


, x)
)2

> 0

for all β ∈ Kβ�,t , which concludes the proof for t > 0. It remains to consider the case
t = 0.
Step 4 (t = 0): In this case, q(g,e)

t,n (K − β�) and m(g,e)
t (K − β�) correspond to the

conic complexities from Definition 2.11.
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Applying Propositions 5.5 and 5.15 simultaneously (as in the preceding steps) to
L := cone(K − β�) ∩ S

p−1 and radius t̃ := 1, we have that with probability at least
1− 2 exp(−C · √n) − 5 exp(−C · u2), both

inf
v∈L Q(v)

(2.4)≥ 1

4
· (τ · Q2τ (K


, x)
)2

> 0

and

inf
v∈L M(v + β�, β�) ≥ −1 ·max{1,C ′} ·

(
ρ0(β

�) + u2 · σ(β�) · m
(g,e)
0 (K − β�)√

n

)
(2.5)≥ 0,

where we have also used that q(g,e)
1,n (L) = q(g,e)

0,n (K−β�) andm(g,e)
1 (L) = m(g,e)

0 (K−
β�). Finally, let us assume that this event has occurred and let β ∈ K \ {β�}. Then, we
have

E(β, β�) = ‖β − β�‖22 ·Q
(

β−β�

‖β−β�‖2︸ ︷︷ ︸
∈L

)
+ ‖β − β�‖2 ·M

(
β−β�

‖β−β�‖2︸ ︷︷ ︸
∈L

+ β�, β�
)

> 0,

which implies that β� is the only solution to (LSK ). ��

5.3 Proof of Corollary 2.12

For t > 0 and L ⊂ R
p, we have that 1

t L ⊂ cone(L). Due to the homogeneity of the

semi-norms ‖ · ‖g and ‖ · ‖e, we can rewrite the definition of q(g,e)
t,n (L) as

q(g,e)
t,n (L) = inf

{
γ1(S,‖·‖e)√

n
+γ2(S, ‖ · ‖g+‖ · ‖e) | S ⊂ R

p, conv(S) ⊃ 1
t L∩S

p−1
}
,

which coincides with the definition of q(g,e)
0,n (L) except that the infimum is taken over

an inclusion-wise larger domain of sets. Therefore, it holds that q(g,e)
t,n (L) ≤ q(g,e)

0,n (L),

and analogously, we havem(g,e)
t (L) ≤ m(g,e)

0 (L). It follows that the replacement of the
local complexities by the conic complexities (and ρt (β

�) by ρ0(β
�)) leads to stronger

conditions in (2.4) and (2.5), which obviously cannot harm the validity of the theorem.
��

5.4 Proof of Lemma 2.14

The claim of (i) follows from the fact that the infima in the global complexity param-
eters are taken over inclusion-wise smaller domains of sets. The claim of (ii) follows
from the fact that the affine term v does not affect the pseudo-metrics induced by the
semi-norms ‖ · ‖g and ‖ · ‖e.
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For the claim of (iii), we first observe that

γ2(L, ‖ · ‖g + ‖ · ‖e) � γ2(L, ‖ · ‖g) + γ2(L, ‖ · ‖e), (5.8)

which is stated as an exercise by Talagrand [51, Exc. 2.2.24]; its proof is based on
the same strategy as the proof of Lemma 5.13: based on two admissible partition
sequences that approximate γ2(L, ‖ · ‖g) and γ2(L, ‖ · ‖e) up to a factor of 2, a third
partition sequence is defined as in (5.5). Making use of (5.8), we obtain

q(g,e)
n (L) � inf

S

{
γ1(S, ‖ · ‖e) + γ2(S, ‖ · ‖g) + γ2(S, ‖ · ‖e)

}

� inf
S

{
γ1(S, ‖ · ‖e) + γ2(S, ‖ · ‖g)

}

= m(g,e)(L),

where the second inequality is due to the fact that γ2(L, d) ≤ γ1(L, d) holds true for
all sets L and pseudo-metrics d.

The claims of (iv) and (v) follow directly from the respective definitions. ��

5.5 Proof of Corollary 2.15

We apply Theorem 2.10 for the precision level

t := C̃ ·max
{
1,

(
τ ·Q2τ (K


, x)
)−2

}
·
[
ρ0(β

�)+max{1, u2 ·σ(β�)}·
√
m(g,e)(K )

n1/4

]

+
,

where the universal constant C̃ ≥ 1 will be specified later.
For this specific choice of t , Lemma 2.14(i)-(iii) imply that

q(g,e)
t,n (K − β�) ≤ 1

t
· q(g,e)

n (K )

≤ C̃ ·min
{
1,

(
τ · Q2τ (K


, x)
)2} · n1/4√

m(g,e)(K )
· q(g,e)

n (K )

�
√

τ · Q2τ (K
, x) · n1/4√
q(g,e)
n (K )

· q(g,e)
n (K )

=
√

τ · Q2τ (K
, x) · n1/4 ·
√
q(g,e)
n (K ), (5.9)

where we have used that

min
{
1,

(
τ · Q2τ (K


, x)
)2} ≤

√
τ · Q2τ (K
, x).
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This implies

q(g,e)
t,n (K − β�) + τ · u �

√
τ · Q2τ (K
, x) · n1/4 ·

√
q(g,e)
n (K ) + τ · u

(2.7)

�
√

τ · Q2τ (K
, x) · n1/4 ·
√

τ · Q2τ (K
, x) · n1/4 + τ · Q2τ (K
, x) · √n

≤ 2 · √n · τ · Q2τ (K
, x),

and if the hidden constant in (2.7) is appropriately chosen, then the condition (2.4) is
indeed fulfilled.

Analogously to the estimates in (5.9), we obtain from Lemma 2.14 that (note that
0 ∈ K − β�)

m(g,e)
t (K − β�) ≤

√
τ · Q2τ (K
, x) · n1/4 ·

√
m(g,e)(K ).

This implies

1

(τ · Q2τ (K
, x))2
·
[
ρt (β

�) + u2 · σ(β�) · m
(g,e)
t (K − β�)√

n

]

+

≤ max
{
1,

(
τ · Q2τ (K


, x)
)−2

}
·
[
ρ0(β

�) + u2 · σ(β�) ·
√
m(g,e)(K )

n1/4

]

+
≤ C̃−1 · t,

where we have used the definition of t and the fact that

√
τ · Q2τ (K
, x)

(
τ · Q2τ (K
, x)

)2 = (
τ · Q2τ (K


, x)
)− 3

2 ≤ max
{
1,

(
τ · Q2τ (K


, x)
)−2

}
.

Finally, if the constant C̃ is chosen sufficiently large, then the condition (2.5) is fulfilled
and Theorem 2.10 yields the claim. ��

5.6 Proof of Proposition 1.4

Proposition 1.4 is a direct consequence of Corollary 2.15 with the following specifi-
cations. Since β� := β∗, we have ρ0(β

∗) ≤ 0 according to Appendix B.1. The global
complexity terms can be bounded according to Proposition 3.13. Finally, we make use
of the bound (B.3) from Appendix B.2(2). Let α and δ be as in (B.2) and set τ := α/4.
Since x is isotropic, we have δ = 1. To see that α � κ−3, observe that

1 = E[〈x, v〉2]2 ≤ E[|〈x, v〉|] · E[|〈x, v〉|3] ≤ E[|〈x, v〉|] · 33 · κ3 for all v ∈ S
p−1,

where we have used the isotropy of x , the Cauchy-Schwarz inequality, and Proposi-
tion A.1(ii). Now, (B.3) implies that τ · Q2τ (K
, x) � κ−9. Since τ = α/4, (B.3)
is equivalent to Q2τ (K
, x) ≥ α2/(4δ), which implies that Q2τ (K
, x) � κ−6.
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Finally, note that due to the isotropy of x , we have that κ � 1. This concludes the
proof. ��

Appendix A: Basic facts on sub-Gaussian and sub-exponential random
variables

The following proposition provides two characterizations of sub-exponential and sub-
Gaussian random variables. The first one concerns the exponential decay behavior of
their tails, while the second one addresses the growth of their absolute moments. Note
that the dependence of the constants on α can be dropped here, since we consider only
two values of α.

Proposition A.1 [58, Prop. 2.5.2, Prop. 2.7.1] For α ∈ {1, 2}, let Z ∈ Lψα . Then the
following holds true:

(i) Z satisfies the concentration inequality

P(|Z | ≥ t) ≤ 2 exp
(
−

(
t

Cα ·‖Z‖ψα

)α)
for all t ≥ 0,

where Cα > 0 is a constant depending on α.
(ii) The moments of Z satisfy

‖Z‖Lq ≤ Cα · ‖Z‖ψα · q1/α for all q ≥ 1,

where Cα > 0 is a constant depending on α.

The following two results are well-known inequalities for sub-Gaussian and sub-
exponential random vectors, respectively. A comparison of both shows that the
(weighted) sum of independent sub-exponential variables exhibits a mixed-tail behav-
ior, as if it “were a mixture of sub-gaussian and sub-exponential distributions”; quote
from [58, p. 35].

Theorem A.2 (Hoeffdings’s inequality; [58, Thm. 2.6.3]) Let x = (x1, . . . , xp) ∈ R
p

be a centered random vector with independent, sub-Gaussian coordinates and R :=
max1≤ j≤p ‖x j‖ψ2 . Then, for every v ∈ R

p and t ≥ 0, we have that

P(|〈x, v〉| ≥ t) ≤ 2 exp
(
− CH · t2

R2‖v‖22

)
,

where CH > 0 is a universal constant.

Theorem A.3 (Bernstein’s inequality; [58, Thm. 2.8.2]) Let x = (x1, . . . , xp) ∈ R
p

be a centered random vector with independent, sub-exponential coordinates and R :=
max1≤ j≤p ‖x j‖ψ1 . Then, for every v ∈ R

p and t ≥ 0, we have that

P(|〈x, v〉| ≥ t) ≤ 2 exp
(
− CB ·min

{
t2

R2‖v‖22
, t
R‖v‖∞

})
,

where CB > 0 is a universal constant.
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Appendix B: Further details on Sect. 2

B.1: Remarks on themismatch covariance (Definition 2.8)

In this part, we adopt the notation ofDefinition 2.8, which has introduced themismatch
parameters. Since K t ⊂ K 0 ⊂ S

p−1, we observe that the mismatch covariance
satisfies

ρt (β
�) ≤ ρ0(β

�) ≤ ρ(β�). (B.1)

These bounds imply that all estimation guarantees presented in Sect. 2 remain true
when replacing the local mismatch covariance by its global variant. However, there
exist relevant scenarios where the second inequality in (B.1) becomes strict, so that
considering ρ(β�) leads to suboptimal results. To this end, it is useful to first relate the
mismatch covariance to the expected risk minimization problem (1.1): Let L(β) :=
E[(y−〈x, β〉)2] be the objective function in (1.1) and assume that K ⊂ R

p is compact
and convex. Then, we have that ∇L(β�) = 2E[(〈x, β�〉 − y)x] and therefore

ρt (β
�) = sup

v∈K t

〈− 1
2∇L(β�), v

〉
and ρ(β�) = ∥∥ 1

2∇L(β�)
∥∥
2.

Now, let β� ∈ K be an expected risk minimizer on K , i.e., a solution to (1.1). A
well-known optimality condition in convex analysis then implies that ρt (β�) ≤ 0. On
the other hand, if K does not contain a global expected risk minimizer, i.e., a solution
to minβ∈Rp L(β), we have that ∇L(β�) �= 0 and therefore ρ(β�) > 0; and vice versa,
ρ(β�) = 0 implies that K contains a global expected risk minimizer. We refer to Fig. 2
for an illustration of this argument when x is isotropic.17

In view of our main result, Theorem 2.10, the local mismatch covariance measures
the asymptotic impact of the model mismatch. When positive, ρt (β

�) can be seen
as an asymptotic bias term, while a negative value can have favorable effects on the
estimation performance of (LSK ); see Appendix B.2(3).

B.2: Remarks on Theorem 2.10

This part compiles several additional remarks on our main result, Theorem 2.10.

1. Possible extensions. Theorem 2.10 is amenable to various extensions and gener-
alizations. For instance, replacing the �2-norm by an arbitrary semi-norm ‖ · ‖
in Fact 2.4 would lead to an error bound in terms of ‖ · ‖; note that such a
step would also require an adaptation of the spherical intersections in the q- and
m-complexities and the small-ball condition (2.3). This extension becomes partic-
ularly useful when the covariancematrix of the input vector x is poorly conditioned

17 In the isotropic case, there also exists a nice functional-analytic interpretation: The mapping β �→ 〈x, β〉
is an isometric embedding of the Hilbert spaceRp into L2(�,P). Then the components x1, . . . , xp ∈ L2 of
the random vector x constitute an orthonormal basis for the subspace G := {〈x, β〉 | β ∈ R

p}. This implies
ρ(β�) = ‖(〈y − 〈x, β�〉, x j 〉L2 )pj=1‖2 = ‖PG (y − 〈x, β�〉)‖L2 , where PG is the orthogonal projection

onto G; in other words, ρ(β�) corresponds to the “linear component” of the expected risk of β�.
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Fig. 2 An illustration of the argument in Appendix B.1 when x is isotropic: in this case, we have 1
2∇L(β) =

β − E[yx], implying that β∗ := E[yx] is the (unique) global expected risk minimizer. The above figure
shows a situation where β∗ /∈ K and β� is the expected risk minimizer on K . This implies that the
negative gradient at β� points out of K in the direction of β∗, or more geometrically, the dashed supporting
hyperplane separates K and β∗. Hence, we have that 〈−∇L(β), v〉 ≤ 0 for all v ∈ K−β�, and in particular,
ρt (β

�) ≤ 0. On the other hand, it holds that ρ(β�) = ‖ 1
2∇L(β�)‖2 = ‖β∗ − β�‖2 > 0

or even degenerate.18 In this case, an appropriate linear transform of the �2-error
can account for the underlying covariance structure; see [15, Chap. 3 and Sec. 4.3]
for a detailed discussion of this issue.
Apart from that, it is possible to incorporate different loss functions or adversarial
noise into Theorem 2.10; cf. [14] and [15, Chap. 3]. Working out the details goes
beyond the scope of this paper, but is expected to be relatively straightforward.
Furthermore, onemight show similar estimation guarantees for the “basis-pursuit”
version or the unconstrained version of the generalized Lasso; cf. [15, Chap. 3] and
[28, 29]. Finally, it is worthmentioning that the sub-exponentiality of y inAssump-
tion 2.9 could be replaced by a less restrictive tail condition. This modification
would concern the analysis of the multiplier process in Sect. 5.2.2; for example,
a finite moment assumption for y would be sufficient when using Theorem 5.9
instead of Theorem 5.12.

2. Small-ball condition. The small-ball condition (2.3) in Assumption 2.9 is based
on Mendelson’s more general condition (see [31, Asm. 3.1]), which reads

∃u > 0 : QF−F (u) := inf
f ∈F−F

P(| f (x)| ≥ u‖ f ‖L2) > 0,

where F is a class of (not necessarily linear) hypothesis functions. We empha-
size that the small-ball condition (2.3) is stated relative to the hypothesis set K ,
and it particularly suffices for x to be non-degenerate relative to the subspace
span(K − K ). This reflects the fact that the input vectors xi are only of interest to
us insofar as they enable us to discern differences between the hypotheses in K .
Furthermore, one can easily replace the small-ball function Q2τ (K
, x) in The-
orem 2.10 by a more explicit expression. For instance, the Paley-Zygmund

18 In principle, Assumption 2.9 imposes no explicit conditions on the covariance structure of x , but if it
becomes too degenerate, the small-ball condition (2.3) might become unrealizable for ‖ · ‖ = ‖ · ‖2.
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inequality implies the following lower bound (cf. [57, Subsec. 2.6.5]): Let

α := inf
v∈K


E[|〈x, v〉|] and δ := sup
v∈K


E[〈x, v〉2] (B.2)

and set τ := α/4. As long as α > 0, we have that

τ · Q2τ (K

, x) ≥ α3

16δ
. (B.3)

This lower bound is amore convenient expression, sinceαmeasures the degeneracy
of x relative to K
 while δ can be seen as an (an-)isotropy parameter.

3. Low- and high-noise regime. The statement of Theorem 2.10 could be further
refined by specifying the smallest value of t such that the conditions (2.4) and
(2.5) still hold true, while all other model parameters remain fixed. Such an opti-
mization strategy is elaborated in the general learning framework of Mendelson
[31]. Although the latter has certainly a wider scope than ours, there are important
conceptual overlaps. Indeed, (2.4) is closely related to what Mendelson refers to
as the “low-noise” regime: this condition is intrinsic to the hypothesis set K and
does not depend on the model mismatch (the “noise”) y− 〈x, β�〉; in particular, it
specifies how many samples are required for (LSK ) to recover a linear hypothesis
function exactly. In contrast, the condition (2.5) is associatedwith the “high-noise”
regime, as it strongly depends on themodelmismatch in terms ofρt (β�) andσ(β�).
A remarkable conclusion is possible when ρ0(β

�) < 0 (cf. Appendix B.1): in this
case, we may simply set t = 0, while (2.5) can be even satisfied if σ(β�) > 0.
In other words, exact recovery of β� is feasible in certain scenarios, despite the
presence of noise or model misspecifications.

4. Alternativem-complexity.An important detail in the definition of them-complexity
m(g,e)

t is that conv(S) needs to contain the origin as well. Without this minor
modification, an extra term would have to be added to m(g,e)

t in the error bound
of (2.5), capturing the radii of (K − β�) ∩ tSp−1 with respect to ‖ · ‖g and ‖ · ‖e
(see the proof of Lemma 5.13). The appearance of such an additive term is in fact
quite common in the literature, e.g., see [11, 32].

Appendix C: Proof of Proposition 3.12

For the claims of (i) and (ii), we first apply Lemma 2.14(iii)–(v) to observe that

q(g,e)
t,n (K − β�) � m(g,e)

t (K − β�) ≤ m(g,e)
0 (K − β�) = m(g,e)((cone(K − β�)︸ ︷︷ ︸

=:D1(β�)

∩ S
p−1) ∪ {0}),

(C.1)
where the second inequality is due to 1

t (K − β�) ⊂ cone(K − β�) for all t > 0.
Moreover, according to (3.3) and (3.5), it holds that

m(2,0)((D1(β
�) ∩ S

p−1) ∪ {0}) � w((D1(β
�) ∩ S

p−1) ∪ {0})
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and

m(2,∞)((D1(β
�) ∩ S

p−1) ∪ {0}) �
√
log(p) · w((D1(β

�) ∩ S
p−1) ∪ {0}).

Since D1(β
�) corresponds to the descent cone of ‖ · ‖1 at a k-sparse vector β�, the

claims of (i) and (ii) now follow from a standard bound for the conic Gaussian width
(e.g., see [57, Eq. 2.11]):

w((D1(β
�) ∩ S

p−1) ∪ {0}) �
√
k log

( p

k

)
.

The proof of (iii) is a little more involved. In a first step, we intend to show that

D1(β
�) ∩ S

p−1 ⊂ conv(S) (C.2)

with S := {v ∈ R
p | ‖v‖0 ≤ k, ‖v‖2 ≤ 3}. In order to verify this inclusion, we adapt

the proof of Pilanci and Wainwright [41, Lem. 13]: Writing A := D1(β
�) ∩ B p

2 , we
define the support functions hA, hS : Rp → R by

hA(z) := sup
v∈A

〈z, v〉 and hS(z) := sup
v∈S

〈z, v〉 = sup
v∈conv(S)

〈z, v〉.

If there would exist a point v ∈ A\conv(S), then a variant of the hyperplane separation
theorem implies that there exists some z ∈ R

p with 〈z, v〉 > hS(z) and therefore
hA(z) > hS(z). Consequently, it suffices to show that hA(z) ≤ hS(z) holds true for
all z ∈ R

p.
To this end, let z ∈ R

p \ {0} be fixed and let I1 ⊂ {1, . . . , p} contain k indices
whose corresponding entries in z have the k largest absolute values. Then, it is not
hard to see that hS(z) = 〈z, v〉 for

v = 3

‖PI1(z)‖2
· PI1(z) ∈ S,

where PI1(z) ∈ R
p×p denotes the orthogonal projection onto the coordinate space

associated with I1. Consequently, we obtain

hS(z) = 3 ·
√∑

j∈I1
z2j ,

and for every j /∈ I1, we have that

|z j | ≤ 1

k
·
∑

j ′∈I1
|z j ′ | ≤ 1√

k
·
√∑

j ′∈I1
z2j ′ .

Now let v ∈ A. We denote by I2 ⊂ {1, . . . , p} the set of indices corresponding to the
non-zero entries of β�, which satisfies |I2| ≤ k. Since v belongs to descent cone of
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‖ · ‖1 at β� and to the Euclidean unit ball, it follows that

∑

j /∈I2
|v j | ≤

∑

j∈I2
|v j | ≤

√
k
√∑

j∈I2
v2j ≤

√
k.

Combining these observations, we obtain

〈z, v〉 =
∑

j∈I2
z jv j +

∑

j /∈I2
j∈I1

z jv j +
∑

j /∈I2
j /∈I1

z jv j

≤ 2 · ‖v‖2 ·
√∑

j∈I1
z2j +max

j /∈I1
|z j | ·

√
k ≤ 3 ·

√∑

j∈I1
z2j = hS(z),

which concludes the proof of (C.2).
Next, we observe that S ⊂ 3

√
kB p

1 , which is a consequence of the Cauchy-
Schwarz inequality. Now, consider the finite set F := 3

√
k · {±u1, . . . ,±u p}, where

u1, . . . , u p ∈ R
p denote the Euclidean unit vectors. Then, we have that

D1(β
�) ∩ S

p−1 ⊂ conv(S) ⊂ conv(3
√
kB p

1 ) = 3
√
kB p

1 = conv(F). (C.3)

Finally, we make use of (3.8) to obtain the following bound:

γ1(F, ‖ · ‖2) � 
2(F) · log(|F |) �
√
k · log(2p).

The claim of (iii) follows directly from a combination of this bound with (C.1), (C.3),
and the definition of the m-complexity. ��

Appendix D: Proofs for Sect. 5.1

Proof of Lemma 5.1 Using the generic Bernstein concentration of x , we observe that

‖v∗‖qLq = E[|〈v, x〉|q ] =
∫ ∞

0
P(|〈v, x〉|q ≥ s) ds

=
∫ ∞

0
P(|〈v, x〉| ≥ r) · qrq−1 dr

≤
∫ ∞

0
2 exp

(
−min

{
r2

‖v‖2g , r
‖v‖e

})
· qrq−1 dr

=
∫ ∞

0
2max

{
exp

(
− r2

‖v‖2g
)
, exp

(
− r

‖v‖e
)}

· qrq−1 dr

≤
∫ ∞

0
2 exp

(
− r2

‖v‖2g
)
· qrq−1 dr +

∫ ∞

0
2 exp

(
− r

‖v‖e
)
· qrq−1 dr

= 2q · ‖v‖qg ·
∫ ∞

0
exp(−r2) · rq−1 dr + 2q · ‖v‖qe ·

∫ ∞

0
exp(−r) · rq−1 dr

Definition of �-function= q · ‖v‖qg · �(q/2) + 2q · ‖v‖qe · �(q)
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Stirling’s approximation≤ 2q · ‖v‖qg · (q/2)q/2 + 2q · ‖v‖qe · qq .

Since (a + b)1/q ≤ a1/q + b1/q for all a, b ≥ 0 and q ≥ 1, this implies

‖v∗‖Lq ≤ q
√
2q ·

(
‖v‖g ·

√
q√
2
+ ‖v‖e · q

)
. (D.1)

Observing that q �→ q
√
2q is bounded on the interval [1,∞), the claim follows. ��

Proof of Lemma 5.2 Our basic proof strategy is adapted from the proof of Bernstein’s
inequality by Vershynin [58, Thm. 2.8.1]. Let x̃i := εi xi and S := ∑n

i=1 x̃i . Then, the
generic Chernoff bound (for arbitrary v ∈ R

p, λ ∈ R, and t ≥ 0) reads as follows:

P(〈v, S〉 ≥ t) = P

( n∑

i=1

〈v, x̃i 〉 ≥ t

)
≤ exp(−λt) ·

n∏

i=1

E[exp(λ〈v, x̃i 〉)].

To proceed, we need an upper bound for the moment generating function
E[exp(λ〈v, x̃1〉)]. Since x̃1 is centered, we have that

E[exp(λ〈v, x̃1〉)] = E

[
1+ λ〈v, x̃1〉 +

∞∑

q=2

(λ〈v, x̃1〉)q
q!

]
= 1+

∞∑

q=2

λq · E[〈v, x̃1〉q ]
q! .

Due to symmetry, (2.1) also holds true for the symmetrized random vector x̃1 and from
the proof of Lemma 5.1, we therefore obtain

E[exp(λ〈v, x̃1〉)] ≤ 1+
∞∑

q=2

λq · E[|〈v, x̃1〉|q ]
q!

≤ 1+
∞∑

q=2

λq · (2q · ‖v‖qg · (q/2)q/2 + 2q · ‖v‖qe · qq)
q!

= 1+
∞∑

q=2

λq · 2q · ‖v‖qe · qq
q!

︸ ︷︷ ︸
=:A

+
∞∑

q=2

λq · 2q · ‖v‖qg · (q/2)q/2

q!
︸ ︷︷ ︸

=:B

.

Upper bound for A: According to Stirling’s approximation, we have q! ≥ (q/e)q ,
which implies

A ≤ 1+
∞∑

q=2

2q · (λ‖v‖e)q · qq
(q/e)q

= 1+
∞∑

q=2

2q · (eλ‖v‖e)q .
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If λ < 1
2e‖v‖e , the above series is convergent and we have

A ≤ 1+ 2 · (eλ‖v‖e)2 · (2− eλ‖v‖e)
(1− eλ‖v‖e)2 ≤ 1+ 16(eλ‖v‖e)2 ≤ exp(16(λ‖v‖e)2).

Upper bound for B: Since we do not want to introduce further restrictions on λ,
let us distinguish two cases: If λ < 1/(2e‖v‖g), we use that (q/2)q/2 ≤ qq (due
to q ≥ 2) and apply the same strategy as for the bound for A, which yields B ≤
exp(16(λ‖v‖g)2). Now, let λ ≥ 1/(2e‖v‖g). In this case, we use the basic inequality
2q(q/2)q/2 ≤ 3q!/�q/2 !, which holds true for all q ≥ 2. This implies

B ≤ 3
∞∑

q=2

(λ‖v‖g)q
� q2  !

.

Splitting this series into even and odd indices then yields

B ≤ 3

( ∞∑

j=1

(λ‖v‖g)2 j
� 2 j2  ! +

∞∑

j=1

(λ‖v‖g)2 j+1

� 2 j+1
2  !

)
= 3

( ∞∑

j=1

(λ‖v‖g)2 j
j !

︸ ︷︷ ︸
=exp((λ‖v‖g)2)−1

+
∞∑

j=1

(λ‖v‖g)2 j+1

j !
︸ ︷︷ ︸
≤λ‖v‖g exp((λ‖v‖g)2)

)
.

By (1+ λ‖v‖g) ≤ exp((λ‖v‖g)2), it follows that

B ≤ 3 exp(2(λ‖v‖g)2) − 3.

Since λ‖v‖g ≥ 1/(2e), there exists a universal constant C ′ > 0 with 3 ≤ exp(C ′ ·
(λ‖v‖g)2), so that we obtain

B ≤ exp
(
(2+ C ′) · (λ‖v‖g)2

) − 3.

Next, we combine the above bounds for A and B: the basic inequality exp(a) +
exp(b) − 3 ≤ exp(a + b) for all a, b ≥ 0 implies that

E[exp(λ〈v, x̃1〉)] ≤ exp
(
max{2+C ′, 16}·(λ‖v‖g)2+16(λ‖v‖e)2

)
≤ exp(Cλ2(‖v‖g+‖v‖e)2)

for all λ < 1/(2e‖v‖e) and a universal constant C > 0. Plugging this into (5.6) and
assuming that λ < 1/(2e‖v‖e), we have that

P(〈v, S〉 ≥ t) ≤ exp(−λt)·
n∏

i=1

E[exp(λ〈v, x̃1〉)] = exp
(−λt+nCλ2(‖v‖g+‖v‖e)2

)
.

Setting

λ := min
{

t
2nC(‖v‖g+‖v‖e)2 ,

1
4e‖v‖e

}
<

1

2e‖v‖e ,
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we finally obtain

P(〈v, S〉 ≥ t) ≤ exp
(
− C̃ ·min

{
t2

n(‖v‖g+‖v‖e)2 ,
t

‖v‖e
})

for a universal constant C̃ > 0. Now, the claim follows if we replace t by
√
nt . ��
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