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ABSTRACT: We demonstrate a combined experimental and
computational approach to probe the electronic structure and atomic
environment of an ionic liquid, based on core level binding energies.
The 1-butyl-3-methylimidazolium thiocyanate [C4C1Im][SCN] ionic
liquid was studied using ab initio molecular dynamics, and results
were compared against previously published and new experimental X-
ray photoelectron spectroscopy (XPS) data. The long-held
assumption that initial-state effects in XPS dominate the measured
binding energies is proven correct, which validates the established
premise that the ground state electronic structure of the ionic liquid
can be inferred directly from XPS measurements. A regression model
based upon site electrostatic potentials and intramolecular bond
lengths is shown to account accurately for variations in core-level
binding energies within the ionic liquid, demonstrating the important effect of long-range interactions on the core levels and
throwing into question the validity of traditional single ion pair ionic liquid calculations for interpreting XPS data.

1. INTRODUCTION
Ionic liquids (ILs) are liquids composed exclusively of ions.
Their interesting potential properties, including large electro-
chemical windows, wide liquid ranges, tunability, and low
melting points,1,2 make then desirable for a range of
applications, from catalysis to batteries.3−7 Macro- and
mesoscopic properties, unique to each IL, are determined by
interactions between the cation and anions.8 A thorough study
of molecular-level interactions in ILs could lead to a method to
predict structure, properties, and reactivity9,10 and eventually
suitability for specific applications. The donation of electron
density from anion to cation, often termed charge transfer, has
been debated in the IL literature, along with the importance of
ion polarizability.11,12 The distance dependence of electronic
cation−anion interion interactions for ILs, particularly
important for understanding the dynamics of ILs, is currently
unclear. Furthermore, the range of electronic environments
present in the IL has been probed computationally, but not
compared to experimental data.13,14

X-ray photoelectron spectroscopy (XPS) is a very useful tool
to understand these interactions. XPS has traditionally been
used on solid or gaseous samples, due to the required
ultrahigh-vacuum conditions (UHV).15,16 XPS can, however,

be applied to ILs as they exhibit very low vapor pressure and
therefore are part of a limited group of liquids that can be
studied using standard UHV XPS apparatus.17−19 XPS has
been used for ILs to probe both surface geometric structure
(e.g., by varying the IL surface detector angle)20−22 and bulk
electronic structure.1 The study of ILs via XPS offers many
opportunities, but also faces several obstacles.
Core-level binding energies, EB, can be used to understand

the electronic structure of ILs as EB is the difference between
the ground state and an excited state with a core hole.23,24EB
shifts are caused by valence electron behavior, which in turn is
affected by the chemical environment around the ion. The
position of the core level in the ground state, relative to the
vacuum (or at times the Fermi level for experimental data),
determines what is called the initial-state (IS) effect in EB. The
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ground-state electronic structure is related to the atomic
environment, i.e., bonding and interactions. When an electron
is photoemitted from the core level, the other core and valence
electrons relax. The magnitude of this relaxation affects the EB
value and is called the final-state (FS) effect.
Interion electronic effects of the anion on the cation have

been demonstrated using XPS; however, whether this effect is
due principally to IS or FS effects is unclear.25 It is usually
assumed for XPS of ILs that IS effects dominate the measured
EB.

25−65 It is an important assumption because, if correct, it
means that experimental EB shifts give valuable clues about the
ground-state electronic structure of ILs. Many studies have
been performed under this assumption, relating EB of core
levels to atomic charge, oxidation state, or electronegativity, to
understand and potentially make predictions on structure and
reactivity.25−65 However, this assumption has so far proved
impossible to establish exclusively using experimental methods;
core-level EB values have been compared to shifts in near-edge
X-ray absorption fine structure (NEXAFS) spectroscopy edge
energies and Auger parameter values to try to determine the
relative influence of IS and FS effects in XPS for ILs.66,67

The combination of experimental EB and theoretical models
to study ILs has had limited use to date. It has been applied to
study partial charges and models of a single ion or a pair (one
anion with one cation).25,64,65,67,68 Two studies reported
calculations on larger model systems (ion “clusters”, up to
eight ion pairs), but comparisons were only made for valence
levels, not for core levels.69,70 Comparisons of core EB to
calculated atomic charges have also been made, which are
based on the assumption that IS effects dominate EB
shifts.25,64,66,67,69EB of core levels have been calculated for
ILs,65 but rarely are core holes explicitly included and only on
small scale systems such as lone ions or ion pairs.38,68

The XPS signal from an IL arises from contributions from a
distribution of EB values that reflects the range of chemical
environments coexisting in the IL. Thus, the broadening of an
experimental XPS core level peak has the potential to give
information about the geometric structure of a sample.71 The
full width at half-maximum (FWHM) of a measured core-level
peak will contain contributions from a range of factors,
including X-ray source and analyzer resolution from the
apparatus,72 charging,73 core-hole lifetime,74 and sample
geometric structure effects.75 For XPS of liquids, only water
FWHMs have been widely published; the structural disorder
contribution to the FWHM for liquid phase water and ions

solvated in water is around 1.0 eV.75,76 The experimental
FWHM was interpreted in relation to the liquid phase
geometric structure, e.g., the hydrogen bonding in liquid
water.76 For ILs, no investigations of the structural disorder
contribution to the FWHM have been made. Developments in
ab initio molecular dynamics (AIMD) have seen improvements
in speed and accuracy,77 which has allowed its use in the
simulation of ILs.77−92 Despite this, no theoretical studies of
core levels in bulk liquid phase with explicit ions have been
performed on ILs, to the best of our knowledge. A combined
approach is required, including computer simulations validated
by experimental data, such as peak positions and broadening.
In this work, we present a theoretical study of core-level EB

values and distribution in a bulk IL system, [C4C1Im][SCN].
Experimental XPS data are available for [C4C1Im][SCN] in
the literature.66,67 AIMD is used here to simulate a bulk model
of this IL, which was chosen due to desirable properties of
both the anion and the cation. [C4C1Im]+ is one of the most
commonly studied cations, and further understanding of its
behaviors will be an asset in several areas of research. Its
relatively small size is convenient for expensive AIMD
calculations. The anion, [SCN]−, is also small. The negatively
charged S and N atoms potentially allow for hydrogen bonds
to be created in the bulk system.66,67 [SCN]− is particularly
interesting as it is a pseudohalide, yet [C4C1Im][SCN] has one
of the lowest viscosities among ILs,93 in contrast to
[C4C1Im][PF6], for example.

94 Core EB values were calculated
using density functional theory according to two approx-
imations: (i) including IS effects only (we call this the IS
approximation) and (ii) including both IS and FS effects via
explicit consideration of the core hole (we call this the FS
approximation). We demonstrate an excellent match between
experiment and calculations. We show that IS effects are the
major contributor to experimental core level EB, a significant
contribution to the sphere of researching ILs using XPS
methods. Variation of EB(core) was assessed in relation to a
range of interactions, which is only possible in a calculation of
the bulk liquid, as opposed to considering only single ions or
ion pairs. A model that describes the variations of EB within the
IL is presented. The structural disorder contribution to
FWHM was compared between theory and experiment.

2. METHODS
2.1. X-ray Photoelectron Spectroscopy (XPS). Liquid

jet XPS measurements for K[SCN] in water were performed at

Figure 1. (a) Simulation cell used in this work, which is repeated under periodic boundary conditions. The cell consists of 32 pairs of
[C4C1Im][SCN] to create a disordered liquid phase. (b) Potential energy of the system at each time step over the course of the AIMD calculation.
A configuration for further core-hole calculations was taken at a step with average energy to produce 32 conformers.
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the U49/2 PGM-1 beamline (SOL3PES end-station) at the
BESSY II electron storage ring.95 The SOL3PES experimental
setup is equipped with a Scienta Omicron R4000 HIPP-2
hemispherical electron analyzer. K[SCN] (Sigma-Aldrich,
purity ≥99.0%) was dissolved in ultrapure water. The mole
fraction of K[SCN] in water was x = 0.01, i.e., 0.5 M.
Nonresonant XPS regions were recorded at hν = 700.0 eV.
The pass energy was 100 eV. The angle between the
polarization axis of the incoming photon beam and the
electron analyzer was 54.7° (magic angle geometry). All
nonresonant XP spectra were fitted using the CASAXPS
software. Fitting was performed using a Shirley background
and GL30 line shapes (70% Gaussian, 30% Lorentzian).
Photoelectron spectra EB for [C4C1Im][SCN] were effectively
charge referenced to the literature value of EB(Calkyl 1s) =
289.58 eV (which corresponds to alignment with vacuum).96

Photoelectron spectra EB for K[SCN] in water were charge
referenced to EB(Nanion 1s) = 402.37 eV, as EB(Nanion 1s) =
402.37 eV for [C4C1Im][SCN] when charge referenced to
EB(Calkyl 1s) = 289.58 eV. Experimental data for all
[C4C1Im][SCN] measurements were taken from an earlier
publication by our group,109 where all the experimental details
may be found.
2.2. Ab Initio Molecular Dynamics (AIMD). A 32 ion

pair model of [C4C1Im][SCN] with a density of 1.07 g cm−3 97

was simulated using AIMD with the Quickstep code in CP2K,
based on the Gaussian and plane waves method (GPW) and
using the direct inversion in iterative subspace (DIIS)
technique. After pre-equilibration using the classical force
field DREIDING, the AIMD simulation was run for 30 ps with
a time step of 1 fs. The potential energy variations were
equilibrated after <10 ps of AIMD. This simulation was
performed at 398 K controlled by a Nose ́ thermostat in the
NVT ensemble. The PBE functional98 was employed, with D2
corrections by Grimme99,100 to account for dispersion
interactions. A configuration at the end of the simulation,
with energy close to the average, was extracted to carry out
core-level calculations. An increased temperature of 398 K
reduces viscosity and allows for equilibrium to be achieved
faster, thus reducing the computational cost of the calculation
while remaining in a range safe from thermal decomposition.
2.3. Core-Level Calculations in Bulk Ionic Liquid.

Calculations of EB(core) were performed in the Vienna Ab
Initio Simulation Package (VASP).101 A snapshot config-
uration with an energy close to the AIMD average was chosen
to calculate the distribution of EB values across the 32 ion pairs.
The core-level calculations also used the PBE exchange
correlation functional employed for the AIMD. The core−
valence electron interactions were described using projector
augmented wave (PAW) potentials.102,103 The number of
plane waves in the basis set expansion of the wave functions
was chosen by setting the kinetic energy cutoff to 400 eV. All
core level energies of the system were calculated in this same
configuration, for IS and FS. Test calculations showed that the
distribution of binding energies was not significantly affected
by choosing or adding other configurations.
The IS approximation to calculating EB(core), as defined in

this work, is obtained from the Kohn−Sham (KS) orbital
energies. The KS orbital energies are calculated after a self-
consistent calculation of the valence charge density. No core
hole is produced, and therefore any core-hole-related effects
are omitted. Only IS effects influence EB and the orbital
energies, or core levels (CL), are converted to EB simply, by

(1)

These values, as obtained from VASP, are aligned with an
internal energy reference, so only relative values are mean-
ingful. Here, we shifted the calculated core-level values to
match experiment, as explained below.
In contrast, for the FS approximation, the calculation

involves creating a core hole explicitly. In the FS method
used in VASP, it is assumed the nuclei are static, due to the
time scale of the excitation of an electron. Additionally, the
other core electrons in the atom are not allowed to relax once
the core hole has been created. This may create a slight error,
specifically in relation to a lack of lifetime broadening of the
resultant peak. The energy extracted is the total energy of the
system, including the core hole. This means that the calculated
energy is again useless as an absolute energy, and only relative
energies can be used. In this work, we have aligned the average
FS energy with the average IS energy, to give FS values that are
comparable with experiment. This method provides an internal
comparison of values; i.e., the absolute value has no inherent
meanings, other than its relation to other EB values. Absolute
energies were not considered, but rather the difference
between energies (ΔEB).
2.4. Molecular Calculations. Test calculations of isolated

[SCN]− anions were performed using Gaussian16.104 These
single point energy calculations were performed with the 6-
31g(d, p) basis set105,106 and the B3LYP functional.107 These
tests were designed to separate intraion from interion
contributions to EB. Intraion interactions were characterized
by the lengths of S−C and N−C anion bonds. One bond was
kept constant while the other was modified. The constant bond
length was determined by taking an average of the 32 bond
lengths in the configuration. For S−C this was 1.65 Å, and for
N−C it was 1.20 Å. The same method in Gaussian16, as above,
was used to optimize the ions with the second bond length
varied at an interval of 0.02 Å, and the EB was extracted from
orbital energies. We studied short-range interactions by
extracting radial distribution functions (RDFs) and visually
assessing each anionic environment.
2.5. Gaussian−Lorentzian Peaks. A Gaussian−Lorent-

zian Product (GLP) function is one of several types of
functions used to fit peaks in experimental XPS measure-
ments.108 XPS peaks are typically expected to be Lorentzian,
but due to the various sources of broadening, this shape is
distorted and compensated for by including Gaussian mixing in
the function. To form a peak from the 32 data points for each
core level, eq 2 was applied to the values, where the mixing
parameter, m, was set to 0.3 as in experimental peak fitting.
Values 0 and 1 are pure Gaussian and pure Lorentzian,
respectively. The function width, F, was set at either 0.7 or 1
eV for high resolution and survey scan peaks, respectively.

(2)

In the investigation of ILs using XPS, survey scans are typically
used to determine the presence of impurities of the sample.
They are measured to see what elements are present, and their
abundance, using a high pass energy and low resolution. These
settings result in greater apparatus broadening contributions to
the peaks. High-resolution scans are measured with low pass
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energy. These are used to identify chemical states and typically
have lower broadening than survey scans. Calculated peaks
were slightly shifted in position and normalized by intensity for
improved comparison with experiment. Values were shifted by
+21.2 and +27.0 eV and intensities corrected by the height of
the C 1s peak.

3. RESULTS AND DISCUSSION
3.1. Initial-State vs Final-State Approximations to the

Core-Level Binding Energies. A comparison between
calculated binding energies in the IS and FS approximations
was performed to identify the dominant effects. Because the
calculation in the FS approximation includes both IS and FS
effects, a strong positive linear correlation (Figure 2) is

reasonable confirmation that FS effects are minor, and
therefore IS effects are the primary influence on EB(core).
EB(S 2p) values calculated in the FS approximation showed
strong correlations with the corresponding values calculated in
the IS approximation (R2 = 0.950). Correlation between results
in the IS and FS approximations was also good for EB(N 1s)
(R2 = 0.995), although the correlation is weaker if Nanion and
Ncation are considered separately (R2 = 0.77 and R2 = 0.74,
respectively). The reason the EB(N 1s) were more affected by
FS effects than EB(Sanion 2p) was investigated further, and it
will be discussed below.

The deviations from the y = x line in these plots are due to
final-state effects. However, these deviations are small in
comparison with the spread of the values: in Figure 2a (for S
2p core levels) the maximum absolute deviation is 0.19 eV, and
the mean absolute deviation is only 0.04 eV, in a range of 1.3
eV. In Figure 2b (for N 1s core levels), the maximum absolute
deviation is 0.54 eV, but the mean absolute deviation is only
0.09 eV, in a range of over 5 eV.
The conclusion about the absence of strong FS effects is

important because it means that XPS EB can be related directly
to the ground-state electronic structure of the IL, which is the
primary reason we turn to XPS to study these systems.
Furthermore, it facilitates our theoretical study of the
distribution of core-level binding energies in the IL bulk liquid
because calculations in the IS approximation are computation-
ally cheaper and much simpler: one single-point calculation is
enough, whereas in the FS approximation, individual
calculations explicitly including a core hole at each atom in
the liquid are required. In what follows, the reported binding
energies were obtained in the IS approximation, unless
otherwise stated.
Having established the validity of the IS approximation, the

accuracy of the calculated distribution of EB(core) was tested
against experiment. The experimental survey XP spectrum was
plotted and compared against our calculated survey spectrum
(Figure 3). Quantitative and qualitative analyses of neighbor-
ing peaks showed the overall accuracy of the computed results
to be high, despite the omission of FS effects. Most EB
separations are within a 3.5% deviation from experiment. In
particular, a high-resolution scan comparison shows ΔEB =
EB(Ncation 1s) − EB(Nanion 1s) is 4.1 eV in experiment and 4.0
eV in calculated peaks (Figure 3b), which are in excellent
agreement. The only significant discrepancy in the survey scan
plot is a calculated 55.2 eV separation between S 2s and S 2p
levels, whereas in experiment the separation was 64.2 eV; this
is almost a 9 eV change between the two sets of results, or a
14% error.
A comparison of C 1s peaks further confirmed the success of

the IS calculations in replicating experimental measurements.
Our new experimental data have shown the position of the C
1s anion peak from [SCN]−, previously unidentified, alongside
a fitting model used for the C 1s peak (Figure 4a).109 Visual

Figure 2. Linear correlations between binding energies calculated in
IS and FS approximations for (a) EB (S 2p) and (b) EB(N 1s). The y
= x line is plotted as a guide. R2 = 0.95 (a), 0.77 (b, anion), and 0.74
(b, cation).

Figure 3. Initial-state effect calculations. (a) Experimental survey scan (gray) overlaid with the calculated survey scan (red). Calculated scan was
shifted by +21.2 eV, and intensities were corrected using the C 1s peak. The calculated peaks were broadened with a width of 1 eV to mimic
experimental broadening. (b) High-resolution scan of N 1s peaks. The calculated peaks were broadened with a 0.7 eV width to mimic experimental
broadening.
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Figure 4. C 1s XPS. (a) Experimental C 1s peak fitting model for [C4C1Im][SCN] published in ref 93; fitted with peaks for Calkyl, Chetero, and C2.
Chetero is likely to contain contributions from the Canion peak, increasing its FWHM. Experimental peak of CSCN from K[SCN] in water. (b) Peaks
calculated in this work, with a width function of 1 eV (see Section 2.5 for more details), separated into Calkyl, Chetero, C2, and Canion. Calculated CSCN
extracted for comparison to experimental EB. Charge referencing for XP spectra is explained in Section 2.1.

Figure 5. Correlation of IS EB with site potential for (a) S 2p (yellow) and (b) Nanion 1s (blue). Contour maps of bilinear prediction models for (c)
S 2p (yellow) and (d) Nanion 1s (blue) with EB being a function of both the site potential and the bond length.
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comparison with calculated peaks (Figure 4b) of the same
species shows very good agreement�each peak position is
matched within 0.1 eV. The experimental FWHM of C bonded
to a single N (blue, Chetero) is larger than the calculated, due to
the unresolved [SCN]− contribution in the experimental
fitting.
3.2. Peak Broadening. In the DFT calculations,

instrumental and lifetime broadening are not simulated. A
comparison between measured and calculated data of Nanion 1s
and Ncation 1s peaks shows a very good Nanion 1s broadening
match and a good Ncation 1s match (Figure 3b). A visual
assessment of the same plot, but with a 0.5 eV width function,
shows that the peaks do not match as well, and some
asymmetry is present (ESI Figure S1). Experimental broad-
ening for this data set is estimated as apparatus contributions
of ∼0.45 to 0.65 eV and lifetime contributions of 0.054 and
0.115 eV for S 2p and N 1s, respectively, totaling ∼0.5
eV;110,111 charging contributions are negligible.109 Using an
apparatus broadening value of 0.65 eV, the calculated
structural broadening values were found to be in the range
of 0.55 to 0.82 eV.
Testing increased sample sizes did not increase the Ncation 1s

peak width to provide a better match to the experimental
width, and only a slight improvement in peak symmetry was
noted. There are two possible explanations for the slight peak
width discrepancy in the spectrum: (i) the AIMD calculation is
lacking accuracy in the disorder description of the system, or
(ii) the experimental broadening value is underestimated. As
the experimental broadening value is not an exact estimate and
is likely to fluctuate between calibration and successive
experiments, we believe the latter is the most likely source of
the slight discrepancy.
3.3. Effects of Intraion and Interion Interactions on

the Core-Level Binding Energies. Intraion interactions
were analyzed through comparison of S−C bond length to the
relevant EB(Sanion 2p) and N−C bond length to EB(Nanion 1s).
Both plots produced a weak linear correlation (ESI Figure S2).
Visual assessment and the RDFs for the analysis of short-range
interactions did not produce a clear pattern of short-range
interactions in relation to EB, and this was not investigated
further. Neither short-range nor intraion effects were found to
be the dominant influence over EB fluctuations. Longer-range
interactions were characterized by calculating the site potential
at each atom. The site potential is defined in VASP as the
average of the electrostatic potential in the core region of a
given atom. This site potential is affected by both short-range
and long-range interactions. Plots of site potentials against EB
for each atom clearly demonstrated that EB(Sanion 2p)
correlates almost perfectly with site potential, with very little
deviation (Figure 5a). Although EB(Nanion 1s) also correlates
very well with site potential, the deviation is slightly higher
than for S 2p (Figure 5b). We successfully interpreted these
patterns by further comparison with internal bond lengths in
the form of a multiple regression model for EB, based on both
site potential and bond length values. The multiple regression
produced a new model for EB prediction (Figure 5c,d) which
was compared against the actual calculated EB. The model was
found to be highly accurate, with a root-mean-square deviation
(RMSD) of only 0.01 and 0.02 eV for Sanion 2p and Nanion 1s,
respectively. In comparison to the linear regressions, which
have RMSD values of 0.03 and 0.10 eV, respectively, accuracy
is increased substantially, particularly for Nanion 1s.

The strong correlation of EB(S 2p) with site potential was
assumed to be the result of the large, highly polarizable nature
of the atom.112 The electron cloud is understood to be more
susceptible to the influence of collective electrons in a
disordered bulk IL system than an atom like nitrogen, which
is smaller and denser than sulfur. The valence and core
electrons of a nitrogen atom were expected to be influenced
more strongly by the N−C internal bond length than the sulfur
atom is by the S−C internal bond length, due to the higher
electron density in the N−C bond. Calculations found that
when the S−C or N−C bond was altered in turn, the EB(Nanion
1s) undergoes higher energy changes with the same % bond
length variation (Figure 6).

The finding that EB correlates very well with site potential
shows that single ion pair studies are insufficient to describe
the structure and interactions within a real IL system. Single
ion or ion pair calculations are, by definition, based on the
assumption that short-range intramolecular interactions
dominate EB broadening. Gas-phase models seem to over-
estimate the cation−anion interaction when the long-range
structure is missing.113 A slight improvement to this is an
implicit solvent model or ionic pair “clusters”; however, these
models cannot explicitly simulate long-range disorder of the
liquid system. Focusing on a single ion pair increases chances
of error when calculating EB. This study found an ∼1 eV range
in EB fluctuations for a single atom type (Figure 2). A single
ion pair, especially when optimized, could fall within the
extremes of this range, rather than in the middle, or average of
this range of EB. Particularly when resolving shifts of <0.5 eV,
this value has been shown to be within our error margin, and
any findings related to a shift of this size may be entirely
insignificant. This would likely result in inaccurate conclusions
on the bulk system.

4. CONCLUSIONS
This study found a strong correlation between experiment and
DFT calculations, demonstrating for the first time that IS
contributions were the primary contributor to EB values in the
IL [C4C1Im][SCN]. This system is representative of a wide
array of ILs, suggesting that IS effects would be the primary
contributor to most ILs. Our finding suggests that either FS
effects are negligible or are similar across all atoms, so do not
contribute to peak separations. Furthermore, we confirm that

Figure 6. Plot of EB change with variation of internal bond length in
the anion [SCN]−. Bond S−C for Sanion 2p and N−C for Nanion 1s.
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the effect of the anion on the cation, observed using XPS for
many ILs, was driven by an IS effect. We confirmed that EB was
closely linked to site potential in the anion of [C4C1Im][SCN].
The site potential is influenced by all (both short- and long-
range) interactions of the bulk system. We found no evidence
to show that short-range, intermolecular interactions are
sufficient on their own to describe the liquid phase EB
variation. Site potential did not offer a perfect correlation
with EB. The discrepancy was found to mostly correspond to
intramolecular bond length fluctuations. With both site
potentials and internal bond lengths, we produced a predictive
model for EB, which was found to be highly accurate for this IL.
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