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Abstract—This paper considers the application of the 
Elzaki Decomposition Method (EDM) for approximate 
solution of a one-dimensional heat model with axial 
symmetry. By the proposed EADM, the series solutions of 
the sampled cases are obtained with ease and high level of 
accuracy as regards less computational time. These results, 
therefore, show the effectiveness of the proposed method.
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I. INTRODUCTION

Differential models and their applications have been 
noted as building blocks in sciences and engineering. 
Though obtaining their exact or analytical solutions 
appears complicated and tedious in most cases [1-7]. In 
this work, a source-less heat model describing one-
dimensional unsteady thermal processes with axial 
symmetry will be considered. This is mostly represented 
in the form of:

,0
t

h
              (1.1)

where 0, controls the speed and spatial scale of the 
process; ,t and are time and spatial parameters 
respectively. The temperature (of the body) at point 

and time t is denoted by ,t . Numerical methods 
are being sought for approximate solutions of similar 
models [8-20]. 

Here, Laplace Decomposition Method (EADM) is 
employed for approximate solution of a one-dimensional 
heat model with axial symmetry.

II. ELZAKI ADOMIAN DECOMPOSITION METHOD [3]
Definition 2.1: Integral Transform:

Let ,  f t a t b , be a given function, then the 

general integral transform of f t is defined as:

,
b

a

I f t f t s t dt           (2.1)

where ,s t signifies the transformation kernel, 
depending on the differential types of kernels. This kernel 
tells the specific nature of the corresponding integral 
transform, such as Laplace transform, Elzaki transform, 
Fourier transform, Sumudu transform, and so on. In this 
paper, Elzaki transform will be considered as follows:

Definition 2.2: Elzaki Transform: Let A be a class of 
function such that

1, 2: exp ,  for , 0jA u t u t M t k M k k                             

                                                                                      (2.2)
then, the Elzaki transform of u t associated to A is 
presented as:

0
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E u t T v

tv u t dt
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              (2.3)          

The basic properties of the Elzaki Transform are 
presented as follows:
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A. Elzaki transform and  Adomian Decomposition
The Elzaki transform and  Adomian Decomposition

(EADM) is a combination of both the Elzaki approach 
and decomposition method (the Adomian decomposition 
method) to obtain solutions of differential and algebraic 
models. Consider the general first order non-linear partial 
differential equation of the form:

1

, ( , ) ( , ) ( , )

,0 , ,

Dh x t Rh x t Nh x t g x t

g x g h h x t
           (2.5)                         

where, D and R are linear operator (differential),  are 
the remaining part of the differential operator, N is the 
non-linear part of the differential operator, and g is the 
non-homogenous part of the differential operator. 
Therefore, the Elzaki transform of (2.5) is taken as 
follows:

E Dh E Rh E Nh E g

E Dh E g E Rh E Nh

2

1   ,

  , .

T x v vh E g E Rh Nh
v
T x v v h vE g vE Rh Nh

                                                                       (2.6)
Thus, 

, , ,T x v G x t vE Rh Nh                (2.7)                                                   

where ,G x t results from the initial condition and 
source term when used.
Inverse Elzaki transformation of (2.7) gives:

1 1 1, ,E T x v E G x t E vE Rh Nh
1 1,h E G x t E vE Rh Nh . (2.8)

By ADM and mA as Adomian polynomial, the series 
solution and the nonlinear term are defined as

0 0
,     .n m

n n

h h Nh A                         (2.9)

Hence, (2.8) becomes

1
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h g E v R h A . (2.10)                                                             

By comparing the terms in (2.11) we have:
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h g

h E vE Rh A
            (2.11)                                                      

III. NUMERICAL APPLICATIONS

Suppose (1.1) is defined with known initial conditions 
for cases I and II as follows:

Case I: Consider the IVP of the form:

2,0 2 .

t           (3.1)

Case II: Consider the IVP of the form:

2,0 1 2 .

t                    (3.2)

Then, by the proposed procedure in section 2, we have the 
following solutions for cases I and II respectively:

2, 2 4t t ,               (3.3)

          
2, 1 2 4t t .           (3.4)

IV. CONCLUSION

The application of the Elzaki Decomposition Method 
(EADM) for approximate solution of the one-dimensional 
heat model with axial symmetry has been successfully 
considered in the present work. The solutions were 
obtained easily by the proposed method, even with less 
computational time. Thus, it is remarked for effectiveness 
and therefore recommended for higher order models.
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