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Abstract
Let K be a number field, let A be a finite-dimensional K-algebra, let J(𝐴) denote the Jacobson radical of A and let
Λ be an O𝐾 -order in A. Suppose that each simple component of the semisimple K-algebra 𝐴/J(𝐴) is isomorphic
to a matrix ring over a field. Under this hypothesis on A, we give an algorithm that, given two Λ-lattices X and Y,
determines whether X and Y are isomorphic and, if so, computes an explicit isomorphism 𝑋 → 𝑌 . This algorithm
reduces the problem to standard problems in computational algebra and algorithmic algebraic number theory in
polynomial time. As an application, we give an algorithm for the following long-standing problem: Given a number
field K, a positive integer n and two matrices 𝐴, 𝐵 ∈ Mat𝑛 (O𝐾 ), determine whether A and B are similar over O𝐾 ,
and if so, return a matrix 𝐶 ∈ GL𝑛 (O𝐾 ) such that 𝐵 = 𝐶𝐴𝐶−1. We give explicit examples that show that the
implementation of the latter algorithm for O𝐾 = Z vastly outperforms implementations of all previous algorithms,
as predicted by our complexity analysis.
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1. Introduction

Let K be a number field with ring of integers O𝐾 . Let A be a finite-dimensional K-algebra, and let Λ be
an O𝐾 -order in A. A Λ-lattice is a (left) Λ-module that is finitely generated and torsion-free over O𝐾 .
We will consider the following problem.

Problem (IsIsomorphic). Given two Λ-lattices X and Y, decide whether X and Y are isomorphic, and if
so, return an isomorphism 𝑋 → 𝑌 .

AΛ-lattice contained in A is said to be full if it contains a K-basis of A. We will show that IsIsomorphic
is polynomial-time reducible (see §5) to the following problem.

Problem (IsPrincipal). Given a full Λ-lattice X in A, decide whether there exists 𝛼 ∈ 𝑋 such that
𝑋 = Λ𝛼, and if so, return such an element 𝛼.

Let J(𝐴) denote the Jacobson radical of A. Note that the quotient algebra 𝐴 := 𝐴/J(𝐴) is semisimple.
Let ℎ : 𝐴 → 𝐴 denote the canonical projection map, and let Λ = ℎ(Λ). We will show that the problem
IsPrincipal for a full Λ-lattice X in A is polynomial-time reducible to the problem IsPrincipal for the full
Λ-lattice 𝑋 in 𝐴, where 𝑋 = ℎ(𝑋).

Let

𝐴/J(𝐴) �
𝑟⊕
𝑖=1

𝐴𝑖

be the Wedderburn decomposition. Each simple component 𝐴𝑖 is isomorphic to a matrix ring Mat𝑛𝑖 (𝐷𝑖),
where 𝐷𝑖 is a skew field extension of K. Let 𝐾𝑖 denote the centre of 𝐷𝑖 . In order to make progress on
the above problems, we impose the following hypothesis.

(H) Each component 𝐴𝑖 of the Wedderburn decomposition 𝐴/J(𝐴) �
⊕𝑟

𝑖=1 𝐴𝑖 is isomorphic to a
matrix ring over a field.

In the above notation, this is equivalent to the assertion that 𝐷𝑖 = 𝐾𝑖 for each i.
Under hypothesis (H), we give algorithms that solve both IsIsomorphic and IsPrincipal. Moreover,

we give the first complexity analysis of these problems and thus prove the following result. For precise
definitions and statements, we refer the reader to §5 and §8.

Theorem. The problem IsIsomorphic for lattices over orders in algebras satisfying hypothesis (H)
reduces in probabilistic polynomial time to

(a) Wedderburn, the problem of computing explicitly the Wedderburn decomposition,
(b) Factor, the problem of factoring integers,
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(c) IsPrincipal in the special case of rings of integers of number fields,
(d) UnitGroup, the computation of unit groups for rings of integers of number fields,
(e) Primitive, the computation of primitive elements in finite fields and
(f) DLog, the computation of discrete logarithms in finite fields.

A number of articles have considered IsIsomorphic, IsPrincipal or closely related problems in special
cases. In particular, [BE05] applies in the case that A is commutative and semisimple; [BW09] applies
to group rings O𝐾 [𝐺], where G is a finite group, but only decides whether two lattices are both
locally free and stably isomorphic; and [DD08, KV10, Pag14] apply to maximal or Eichler orders
in quaternion algebras. The series of articles [Ble97, BJ08, BJ11, HJ20] consider progressively more
general situations, culminating in a solution to IsIsomorphic when A is semisimple, but they all involve
a very expensive enumeration step, which in many cases renders the algorithm impractical. We refer the
reader to the introduction of [HJ20] for a more detailed overview. By contrast, Algorithm 8.3 replaces
this enumeration step by a new method combining results of [BB06, BW09] with an idea of Husert
[Hus17].

The original motivation for the study of these problems comes from the Galois module structure of
rings of integers. Let 𝐿/𝐾 be a finite Galois extension of number fields, and let 𝐺 = Gal(𝐿/𝐾). An
interesting but difficult problem is to determine whether O𝐿 is free over its so-called associated order
A𝐿/𝐾 = {𝛼 ∈ 𝐾 [𝐺] | 𝛼O𝐿 ⊆ O𝐿} and, if so, to determine an explicit generator. We refer the reader to
§10 and to the introduction of [HJ20] for a more detailed overview of this question and related problems.

The main application of IsPrincipal in the present article is to the following problem.

Problem (IsSimilar). Given a number field K with ring of integers O = O𝐾 , an integer 𝑛 ∈ Z>0 and two
matrices 𝐴, 𝐵 ∈ Mat𝑛 (O), determine whether A and B are similar over O, and if so, return a conjugating
matrix 𝐶 ∈ GL𝑛 (O) such that 𝐵 = 𝐶𝐴𝐶−1.

As a special case, this problem includes the so-called conjugacy problem for GL𝑛 (O). A number of
authors have considered the problem IsSimilar (or special cases), including Latimer–MacDuffee [LM33],
Sarkisyan [Sar79], Grunewald [Gru80], Husert [Hus17] and Marseglia [Mar20]. Eick–O’Brien and the
second named author of the present article gave the first practical algorithm that solves this problem in
full generality [EHO19]. We refer the reader to §9.4 and §9.5 for a more detailed discussion of these
results.

In §9, we give an efficient algorithm that solves IsSimilar in full generality and a complexity analysis
showing that it is polynomial-time reducible to standard problems in algorithmic algebraic number
theory, including the principal ideal problem in certain rings of integers and the computation of their
unit groups (see Algorithm 9.13 and Theorem 9.14). As a corollary we obtain the following result (see
Corollary 9.15 and Remark 5.1).

Theorem. The problem IsSimilar reduces in probabilistic subexponential time to the problems IsPrincipal
and UnitGroup for rings of integers of number fields.

We first adapt ideas of Faddeev [Fad66] to recast IsSimilar in terms of lattices over orders in a certain
K-algebra satisfying hypothesis (H). We then show how to explicitly compute the Jacobson radical of
this K-algebra as well as the Wedderburn decomposition of the semisimple quotient from the rational
canonical forms of the input matrices. Thus, we show that IsSimilar is reducible to IsPrincipal. In
particular, Algorithm 9.13 avoids any expensive enumeration step. For a detailed comparison with other
algorithms and implementations, including explicit examples and timings, we refer the reader to §9.5.
As these comparisons and our complexity analysis suggest, the implementation of Algorithm 9.13 in the
computer algebra package Hecke [FHHJ17] vastly outperforms implementations of other algorithms.

2. Preliminaries on lattices and orders

For further background on lattices and orders, we refer the reader to [Rei03, §4, §8]. Henceforth, all
rings considered will be associative and unital.
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Let R be an Noetherian integral domain with field of fractions K. To avoid trivialities, we assume
that 𝑅 ≠ 𝐾 . An R-lattice is a finitely generated torsion-free module over R. Since R is Noetherian,
any R-submodule of an R-lattice is again an R-lattice. For any finite-dimensional K-vector space V, an
R-lattice in V is a finitely generated R-submodule M in V. We define a K-vector subspace of V by

𝐾𝑀 := {𝛼1𝑚1 + 𝛼2𝑚2 + · · · + 𝛼𝑟𝑚𝑟 | 𝑟 ∈ Z≥0, 𝛼𝑖 ∈ 𝐾, 𝑚𝑖 ∈ 𝑀}

and say that M is a full R-lattice in V if 𝐾𝑀 = 𝑉 . We may identify 𝐾𝑀 with 𝐾 ⊗𝑅 𝑀 .
Now, let A be a finite-dimensional K-algebra. Then A is both left and right Artinian and Noetherian.

An R-order in A is a subring Λ of A (so in particular has the same unit element as A) such that Λ is a full
R-lattice in A. Note that Λ is both left and right Noetherian, since Λ is finitely generated over R. A left
Λ-lattice X is a left Λ-module that is also an R-lattice; in this case, 𝐾𝑋 may be viewed as a left A-module.

Henceforth, all modules (resp. lattices) will be assumed to be left modules (resp. lattices) unless
otherwise stated. Two Λ-lattices are said to be isomorphic if they are isomorphic as Λ-modules. The
following two lemmas generalise [HJ20, Lemma 2.1].

Lemma 2.1. Let S be a Noetherian integral domain such that 𝑅 ⊆ 𝑆 � 𝐾 . Let Γ be an S-order in A. Let
V be a finitely generated A-module. For any R-lattice M in V, the set

Γ𝑀 := {𝛾1𝑚1 + 𝛾2𝑚2 + · · · + 𝛾𝑟𝑚𝑟 | 𝑟 ∈ Z≥0, 𝑚𝑖 ∈ 𝑀, 𝛾𝑖 ∈ Γ}

is a Γ-lattice in V containing M.

Proof. That 𝑀 ⊆ Γ𝑀 is clear. Note that K is the field of fractions of both R and S. Write 𝑀 =
〈𝑣1, . . . , 𝑣𝑙〉𝑅 and Γ = 〈𝑤1, . . . , 𝑤𝑚〉𝑆 . An easy calculation shows that

Γ𝑀 = 〈𝑤𝑖𝑣 𝑗 | 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑙〉𝑆 ,

and hence Γ𝑀 is an S-lattice in V. Moreover, it is straightforward to see that Γ𝑀 is also a Γ-module
and therefore is a Γ-lattice in V. �

Lemma 2.2. Let S be a Noetherian integral domain such that 𝑅 ⊆ 𝑆 � 𝐾 . Let Λ be an R-order in A, let
Γ be an S-order in A and suppose that Λ ⊆ Γ. Let 𝑓 : 𝑋 → 𝑌 be a homomorphism of Λ-lattices. Then
the following hold.

(a) There exists a unique homomorphism of A-modules 𝑓 𝐴 : 𝐾𝑋 → 𝐾𝑌 extending f.
(b) There exists a unique homomorphism of Γ-lattices 𝑓 Γ : Γ𝑋 → Γ𝑌 extending f.
(c) If f is injective (resp. surjective), then 𝑓 𝐴 and 𝑓 Γ are injective (resp. surjective).

Proof. This is straightforward. The key points are to (a) extend f to 𝐾𝑋 using K-linearity; (b) restrict
𝑓 𝐴 to Γ𝑋; (c) (injectivity) check that ker( 𝑓 ) is a full R-lattice in ker( 𝑓 𝐴) and (c) (surjectivity) use the
definitions of 𝐾𝑌 and Γ𝑌 . �

We will often use the following result without explicit mention.

Lemma 2.3. Let Λ be an R-order in A, and let X be a Λ-lattice such that dim𝐾 𝐾𝑋 = dim𝐾 𝐴. Let
𝛼 ∈ 𝑋 . Then 𝑋 = Λ𝛼 if and only if 𝛼 is a free generator of X over Λ.

Proof. Suppose 𝑋 = Λ𝛼. Then the map 𝑓 : Λ → 𝑋 given by 𝑓 (𝜆) = 𝜆𝛼 is a surjective homomorphism
of Λ-lattices. By Lemma 2.2 f extends uniquely to a surjective map 𝑓 𝐴 : 𝐴 → 𝐾𝑋 . The hypotheses
imply that 𝑓 𝐴 is injective, thus f is an isomorphism and so 𝛼 is a free generator of X over Λ. The
converse is trivial. �

3. Reduction steps for the lattice isomorphism problem

Let R be a Noetherian integral domain with field of fractions K and assume that 𝑅 ≠ 𝐾 . Let Λ be an
R-order in a finite-dimensional K-algebra A.
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3.1. Reduction to the free rank 1 case via homomorphism groups

Let X and Y be Λ-lattices. Let 𝑉 = 𝐾𝑋 and 𝑊 = 𝐾𝑌 , which we regard as A-modules. We have

HomΛ (𝑋,𝑌 ) = { 𝑓 |𝑋 | 𝑓 ∈ Hom𝐴(𝑉,𝑊) such that 𝑓 (𝑋) ⊆ 𝑌 }

where 𝑓 |𝑋 denotes the restriction of f to a map 𝑓 : 𝑋 → 𝑌 . This follows from the fact that every
element in HomΛ(𝑋,𝑌 ) extends uniquely to an element in Hom𝐴(𝑉,𝑊) (see Lemma 2.2). Since a map
𝑓 ∈ Hom𝐴(𝑉,𝑊) is also R-linear, we have 𝑓 (𝑋) ⊆ 𝑌 if and only if 𝑓 ∈ Hom𝑅 (𝑋,𝑌 ). Therefore,

HomΛ(𝑋,𝑌 ) = Hom𝐴(𝑉,𝑊) ∩ Hom𝑅 (𝑋,𝑌 ).

Since X and Y are finitely generated over R, so is Hom𝑅 (𝑋,𝑌 ). Therefore, HomΛ(𝑋,𝑌 ) is a full R-lattice
in Hom𝐴(𝑉,𝑊). Similarly, EndΛ (𝑌 ) is a full R-lattice in End𝐴(𝑊).

In fact, EndΛ (𝑌 ) is an R-order in End𝐴(𝑊) and HomΛ (𝑋,𝑌 ) is a (left) EndΛ(𝑌 )-lattice in
Hom𝐴(𝑉,𝑊) via postcomposition. The following result underpins the main results of the present article;
it is a straightforward generalisation of [HJ20, Proposition 3.7].

Proposition 3.1. Two Λ-lattices X and Y are isomorphic if and only if

(a) the EndΛ (𝑌 )-lattice HomΛ (𝑋,𝑌 ) is free of rank 1, and
(b) every (any) free generator of HomΛ (𝑋,𝑌 ) over EndΛ(𝑌 ) is an isomorphism.

Proof. If (a) and (b) hold, then it is clear that X and Y are isomorphic. Suppose conversely that X and
Y are isomorphic. Fix an isomorphism 𝜑 ∈ HomΛ (𝑋,𝑌 ). Then for any 𝑔 ∈ HomΛ (𝑋,𝑌 ), we have
ℎ𝑔 := 𝑔 ◦ 𝜑−1 ∈ EndΛ (𝑌 ) and so 𝑔 = ℎ𝑔 ◦ 𝜑. Hence, 𝜑 is a generator of HomΛ(𝑋,𝑌 ) over EndΛ(𝑌 )
and by Lemma 2.3 it is in fact a free generator. Thus, (a) holds. Now, let f be any free generator of
HomΛ (𝑋,𝑌 ) over EndΛ (𝑌 ). Then there exists 𝜃 ∈ AutΛ(𝑌 ) = EndΛ (𝑌 )× such that 𝑓 = 𝜃 ◦ 𝜑, and hence
f is an isomorphism. Thus, (b) holds. �

We now state and prove a closely related ‘folklore’ result that appears to be well known but whose
proof is difficult to locate in the literature. We include this result for completeness, and it will not be
applied in the present article. For any full R-lattice M in A, we define O𝑟 (𝑀) = {𝜇 ∈ 𝐴 | 𝑀𝜇 ⊆ 𝑀}.
This is an R-order in A and is called the right order of M in A (see [Rei03, §8]). The following result
may be viewed as a corollary of Proposition 3.1, but it is easier to give a direct proof.

Proposition 3.2. Let X and Y be full Λ-lattices in A. Then𝐶 := {𝜆 ∈ 𝐴 | 𝑋𝜆 ⊆ 𝑌 } is a full O𝑟 (𝑋)-lattice
in A. Moreover, X and Y are isomorphic if and only if

(a) there exists 𝛼 ∈ 𝐴× such that 𝐶 = O𝑟 (𝑋)𝛼, and
(b) we have 𝑌 = 𝑋𝐶.

Furthermore, when this is the case, 𝑌 = 𝑋𝛼.

Proof. Set O := O𝑟 (𝑋). Clearly, C is both an R-module and an O-module. Since X and Y are both
full R-lattices in A, there exist nonzero 𝑟, 𝑠 ∈ 𝑅 such that 𝑌𝑠 ⊆ 𝑋 and 𝑋𝑟 ⊆ 𝑌 (see [Rei03, §4]). Thus,
O𝑟 ⊆ 𝐶 ⊆ O𝑠−1, where O𝑟 and O𝑠−1 are both full R-lattices in A. Hence, C is a full R-lattice and
therefore a full O-lattice in A.

Suppose (a) and (b) hold. Then 𝑌 = 𝑋𝐶 = 𝑋 (O𝛼) = (𝑋O)𝛼 = 𝑋𝛼. Hence, X and Y are isomorphic
since 𝛼 ∈ 𝐴×. Suppose conversely that 𝑓 : 𝑋 → 𝑌 is a Λ-isomorphism. Then by Lemma 2.2 f extends
uniquely to an A-isomorphism 𝑓 𝐴 : 𝐴 → 𝐴 and hence is given by right multiplication by an element
𝛼 ∈ 𝐴×. Thus, 𝑌 = 𝑋𝛼. Moreover, 𝐶 = {𝜆 ∈ 𝐴 | 𝑋𝜆 ⊆ 𝑋𝛼} = O𝛼 and 𝑌 = 𝑋𝛼 = (𝑋O)𝛼 =
𝑋 (O𝛼) = 𝑋𝐶. �
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3.2. An alternative approach via localisation

We give an alternative version of Proposition 3.1 that uses localisation. This will be useful later for
understanding the relation of some of our results to other results in the literature. For a nonzero prime
ideal 𝔭 of R, we let 𝑅𝔭 denote the localisation (not completion) of R at 𝔭. We define the localisation 𝑀𝔭

of M at 𝔭 to be 𝑅𝔭𝑀 and note that this is an 𝑅𝔭-lattice in 𝐾𝑀 . The localisation Λ𝔭 is an 𝑅𝔭-order in A,
and localising a Λ-lattice X at 𝔭 yields a Λ𝔭-lattice 𝑋𝔭. Two Λ-lattices X and Y are said to be locally
isomorphic if the Λ𝔭-lattices 𝑋𝔭 and 𝑌𝔭 are isomorphic for all maximal ideals 𝔭 of R.

Proposition 3.3. Two Λ-lattices X and Y are isomorphic if and only if

(a) X and Y are locally isomorphic, and
(b) the EndΛ (𝑌 )-lattice HomΛ (𝑋,𝑌 ) is free of rank 1.

Furthermore, when this is the case, every free generator of HomΛ(𝑋,𝑌 ) over EndΛ(𝑌 ) is an isomorphism.

Proof. If X and Y are isomorphic, then (a) clearly holds and (b) holds by Proposition 3.1. Suppose
conversely that (a) and (b) hold. Let f be a free generator of HomΛ(𝑋,𝑌 ) over EndΛ(𝑌 ). Let 𝔭 be a
maximal ideal of R. Then there exists an isomorphism 𝑔𝔭 ∈ HomΛ𝔭 (𝑋𝔭, 𝑌𝔭). Moreover, f extends to
a free generator 𝑓𝔭 of HomΛ𝔭 (𝑋𝔭, 𝑌𝔭) over EndΛ𝔭 (𝑌𝔭), and so there exists ℎ𝔭 ∈ EndΛ𝔭 (𝑌𝔭) such that
𝑔𝔭 = ℎ𝔭 ◦ 𝑓𝔭. Note that ℎ𝔭 is surjective and thus is in fact an automorphism of 𝑌𝔭 by [CR81, (5.8)].
Therefore, 𝑓𝔭 is an isomorphism. Since this is true for all choices of 𝔭, we have that f itself is an
isomorphism by [CR81, (4.2)(ii)]. �

3.3. Reduction to the case of lattices in semisimple algebras

Let J(𝐴) denote the Jacobson radical of A, and note that 𝐴 := 𝐴/J(𝐴) is a semisimple K-algebra by
[CR81, (5.19)]. Let ℎ : 𝐴 → 𝐴 denote the canonical projection map. For an element 𝑎 ∈ 𝐴, write 𝑎 for
ℎ(𝑎), and for a subset 𝑆 ⊆ 𝐴, write 𝑆 for ℎ(𝑆). Then Λ is an R-order in 𝐴. The following result may be
viewed as a variant of [Fad66, Theorem 3].

Theorem 3.4. Let X be a full Λ-lattice in A. Then 𝑋 is a full Λ-lattice in 𝐴. Moreover, the following
statements hold for 𝛼 ∈ 𝑋 .

(a) If 𝑋 = Λ𝛼, then 𝑋 = Λ𝛼.
(b) If 𝑋 = Λ𝛼, then either 𝑋 = Λ𝛼 or 𝑋 ≠ Λ𝛽 for all 𝛽 ∈ 𝑋 .

Proof. The first claim and part (a) are both clear. Suppose that 𝑋 = Λ𝛼 and that there exists 𝛽 ∈ 𝑋 such
that 𝑋 = Λ𝛽. Since 𝛼 ∈ 𝑋 = Λ𝛽, there exists 𝜀 ∈ Λ such that 𝛼 = 𝜀𝛽. Hence, 𝛼 = 𝜀𝛽, and since each
of 𝛼 and 𝛽 is a free generator of 𝑋 over Λ, we must have 𝜀 ∈ Λ

×
. Let 𝜂 ∈ Λ such that 𝜂 = 𝜀−1. Then

𝜀𝜂 = 1 + 𝜌, where 𝜌 ∈ J(𝐴). Moreover, 𝜌 = 𝜀𝜂 − 1 ∈ Λ. Since A is Artinian, J(𝐴) is a nilpotent ideal
(see [CR81, (5.15)]), and so 𝜌 is a nilpotent element. Therefore,

𝜀−1 = 𝜂(1 + 𝜌)−1 = 𝜂(1 − 𝜌 + 𝜌2 − 𝜌3 + · · · ) ∈ Λ,

where the alternating sum is finite. Hence, 𝜀 ∈ Λ× and so Λ𝛼 = Λ𝜀𝛽 = Λ𝛽 = 𝑋 . �

4. A necessary and sufficient condition for freeness

Let K be a number field with ring of integers O = O𝐾 , and let A be a finite-dimensional semisimple
K-algebra. Let Λ be an O-order in A. By [Rei03, (10.4)] there exists a (not necessarily unique) maximal
O-order M in A containing Λ.

Lemmas 4.1 and 4.2, as well as part of Proposition 4.3, are based on [Hus17, §1.6].

Lemma 4.1. Let 𝔠, 𝔡, 𝔣 be left ideals of Λ such that 𝔠 ⊆ 𝔡. Then 𝔡 ∩ (𝔠 + 𝔣) = 𝔠 + (𝔡 ∩ 𝔣).
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Proof. We follow the proof of [Hus17, Lemma 1.37]. If 𝑐 ∈ 𝔠 and 𝑓 ∈ 𝔣 with 𝑐 + 𝑓 ∈ 𝔡, then 𝑓 ∈ 𝔡
since 𝑐 ∈ 𝔡. Hence, 𝑐 + 𝑓 ∈ 𝔠 + (𝔡 ∩ 𝔣). Therefore, 𝔡 ∩ (𝔠 + 𝔣) ⊆ 𝔠 + (𝔡 ∩ 𝔣). For the reverse inclusion,
note that both 𝔠 and 𝔡 ∩ 𝔣 are contained in 𝔡 ∩ (𝔠 + 𝔣), and thus the same is true for their sum. �

An ideal of a ring will be said to be proper if the containment is strict. Henceforth, let 𝔣 be any proper
full two-sided ideal of M that is contained in Λ. For 𝜂 ∈ M we write 𝜂 for its image in M/𝔣.

Lemma 4.2. Let X be a left ideal of Λ. If 𝑋 + 𝔣 = Λ and 𝛽 ∈ M such that M𝑋 = M𝛽, then 𝛽 ∈ (M/𝔣)×
and M𝑋 ∩ Λ = 𝑋 .

Proof. We adapt the proof of [Hus17, Lemma 1.38]. Clearly, 𝔣𝑋 ⊆ M𝑋 ∩ 𝔣. We now show the reverse
inclusion. Let 𝛾 ∈ M𝑋 ∩ 𝔣. Then we write 𝛾 = 𝜆𝛽 with 𝜆 ∈ M and we have

𝑋 + 𝔣 = Λ =⇒ M(𝑋 + 𝔣) = M
=⇒ M𝛽 + 𝔣 = M
=⇒ 𝛽 ∈ (M/𝔣)×

=⇒ 𝜆 = 𝛾𝛽
−1

= 0(𝛽)−1 = 0 in M/𝔣
=⇒ 𝜆 ∈ 𝔣

=⇒ 𝛾 = 𝜆𝛽 ∈ 𝔣𝛽 = 𝔣M𝛽 = 𝔣M𝑋 = 𝔣𝑋.

Therefore, 𝔣𝑋 = M𝑋 ∩ 𝔣. Moreover, we have

M𝑋 ∩ Λ = M𝑋 ∩ (𝑋 + 𝔣) = 𝑋 + (M𝑋 ∩ 𝔣) = 𝑋 + 𝔣𝑋 = 𝑋,

where the second equality holds by Lemma 4.1. �

Define

𝜋 : (M/𝔣)× −→ (M/𝔣)×/(Λ/𝔣)×

to be the map induced by the canonical projection, where the codomain is the collection of left cosets of
(Λ/𝔣)× in (M/𝔣)×. Note that (Λ/𝔣)× is a subgroup of (M/𝔣)× but is not necessarily a normal subgroup,
and so 𝜋 is only a map of sets in general.

Part of the following result is a variant of [Hus17, Theorem 1.39].

Proposition 4.3. Let X be a left ideal of Λ. Suppose that 𝑋 + 𝔣 = Λ and that there exists 𝛽 ∈ M such that
M𝑋 = M𝛽. Let 𝑢 ∈ M×, and let 𝛼 = 𝑢𝛽. Then 𝛼, 𝛽, 𝑢 ∈ (M/𝔣)× and the following are equivalent:

(a) 𝑋 = Λ𝛼,
(b) Λ𝛼 + 𝔣 = Λ,
(c) 𝛼 ∈ (Λ/𝔣)×,
(d) 𝜋(𝛽) = 𝜋(𝑢−1),
(e) 𝛼 ∈ 𝑋 and X is locally free over Λ.

Proof. Lemma 4.2 and the definitions of u and 𝛼 imply that 𝛼, 𝛽, 𝑢 ∈ (M/𝔣)×. It is clear that (b) ⇔
(c). Since 𝛽 = 𝑢−1𝛼, that (c) ⇔ (d) follows from the definition of 𝜋. Since 𝑋 + 𝔣 = Λ, we also have (a)
⇒ (b). Assume (b) holds. By two applications of Lemma 4.2, we have

𝑋 = M𝑋 ∩ Λ = M𝛽 ∩ Λ = M𝛼 ∩ Λ = M(Λ𝛼) ∩ Λ = Λ𝛼,

where the first equality uses the hypothesis that 𝑋 + 𝔣 = Λ and the last equality uses the assumption that
(b) holds; thus (a) holds. Therefore, (a) ⇔ (b). Finally, a special case of [BJ08, Proposition 2.1] shows
that (a) ⇔ (e). �
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Much of the following notation is adopted from [BB06] and [HJ20]. Denote the centre of a ring R
by 𝑍 (𝑅). Let 𝐶 = 𝑍 (𝐴), and let O𝐶 be the integral closure of O in C. Let 𝔤 = 𝔣 ∩ 𝐶, and note that this
is a proper full ideal of O𝐶 . Let 𝑒1, . . . , 𝑒𝑟 be the primitive idempotents of C and set 𝐴𝑖 = 𝐴𝑒𝑖 . Then

𝐴 = 𝐴1 ⊕ · · · ⊕ 𝐴𝑟 (1)

is a decomposition of A into indecomposable two-sided ideals (see [CR81, (3.22)]). Each 𝐴𝑖 is a simple
K-algebra with identity element 𝑒𝑖 . The centres 𝐾𝑖 := 𝑍 (𝐴𝑖) are finite field extensions of K via 𝐾 → 𝐾𝑖 ,
𝛼 ↦→ 𝛼𝑒𝑖 , and we have K-algebra isomorphisms 𝐴𝑖 � Mat𝑛𝑖 (𝐷𝑖), where 𝐷𝑖 is a skew field with
𝑍 (𝐷𝑖) � 𝐾𝑖 (see [CR81, (3.28)]). The Wedderburn decomposition (1) induces decompositions

𝐶 = 𝐾1 ⊕ · · · ⊕ 𝐾𝑟 and O𝐶 = O𝐾1 ⊕ · · · ⊕ O𝐾𝑟 , (2)

where O𝐾𝑖 denotes the ring of algebraic integers of 𝐾𝑖 . By [Rei03, (10.5)] we have 𝑒1, . . . , 𝑒𝑟 ∈ M
and each M𝑖 := M𝑒𝑖 is a maximal O-order (and thus a maximal O𝐾𝑖 -order) in 𝐴𝑖 . Moreover, each
𝔣𝑖 := 𝔣𝑒𝑖 is a full two-sided ideal of M𝑖 , each 𝔤𝑖 := 𝔤𝑒𝑖 is a nonzero integral ideal of O𝐾𝑖 and we have
decompositions

M = M1 ⊕ · · · ⊕ M𝑟 , 𝔣 = 𝔣1 ⊕ · · · ⊕ 𝔣𝑟 and 𝔤 = 𝔤1 ⊕ · · · ⊕ 𝔤𝑟 . (3)

The reduced norm map nr : 𝐴 → 𝐶 is defined componentwise (see [Rei03, §9]) and restricts to a
group homomorphism nr : M× → O×

𝐶 .

Lemma 4.4. There exists a surjective group homomorphism nr : (M/𝔣)× −→ (O𝐶/𝔤)× that fits into
the commutative diagram

M× nr ��

��

O×
𝐶

��
(M/𝔣)× nr �� (O𝐶/𝔤)×,

where the vertical maps are induced by the canonical projections.

Proof. The decompositions (1), (2) and (3) and the componentwise definition of the reduced norm mean
that we can and do assume without loss of generality that 𝑟 = 1, that is, A is simple, M = M1, 𝔣 = 𝔣1,
𝔤 = 𝔤1 and 𝐶 = 𝐾 = 𝐾1. Let 𝔭 be a prime ideal of O𝐾 dividing 𝔤, and let 𝐾𝔭 denote the completion (not
localisation) of K at 𝔭. If M is an O𝐾 -module or an O𝐾 -algebra, then we write 𝑀𝔭 := 𝑀 ⊗O𝐾 O𝐾𝔭 .
By [Rei03, (7.6),(11.6)], M̂𝔭 is a maximal O𝐾𝔭 -order in the central simple 𝐾𝔭-algebra 𝐴 ⊗𝐾 𝐾𝔭. Let
nr𝔭 : M̂×

𝔭 → O×
𝐾𝔭

denote the restriction of the reduced norm map. Then by [BB06, Corollary 2.4], we
have that nr𝔭 (1 + �̂�𝔭) = 1 + �̂�𝔭 and nr𝔭 (M̂×

𝔭 ) = O×
𝐾𝔭

. Hence, we have a commutative diagram

1 ��1 + �̂�𝔭 ��

nr𝔭

��

M̂×
𝔭

��

nr𝔭

��

(M̂𝔭/̂𝔣𝔭)× ��

nr𝔭

��

1

1 ��1 + �̂�𝔭 ��O×
𝐾𝔭

�� (O𝐾𝔭 /̂𝔤𝔭)× ��1,

where nr𝔭 is induced by the other two vertical maps and is surjective by the snake lemma.
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The Chinese remainder theorem gives canonical isomorphisms

(M/𝔣)× �
∏
𝔭 |𝔤

(M̂𝔭/̂𝔣𝔭)× and (O𝐾 /𝔤)× �
∏
𝔭 |𝔤

(O𝐾𝔭 /̂𝔤𝔭)×.

Let nr =
∏

𝔭 |𝔤 nr𝔭, and observe that the desired result now follows since the reduced norm map commutes
with completion by [Rei03, (9.29)]. �

Let SL(M) = ker(nr : M× → O×
𝐶 ) and SL(M/𝔣) = ker(nr). (Note that in the literature the set

SL(M), which is the group of units of reduced norm one, is sometimes also denoted by M1.) Then by
Lemma 4.4 and the definitions, we have the following commutative diagram

1 ��SL(M) ��

𝑓1

��

M× nr ��

𝑓

��

nr(M×) ��

𝑓2

��

1

1 ��SL(M/𝔣) �� (M/𝔣)×

𝜋

��

nr �� (O𝐶/𝔤)×

𝜋2

��

��1

(M/𝔣)×/(Λ/𝔣)× (O𝐶/𝔤)×/nr( (Λ/𝔣)×),

(4)

where the rows are exact and the vertical maps are induced by the canonical projections. Note that all
the maps are group homomorphisms, apart from 𝜋, which is only a map of sets in general.

Theorem 4.5. Let X be a left ideal of Λ such that 𝑋 + 𝔣 = Λ. Suppose that there exists 𝛽 ∈ M such that
M𝑋 = M𝛽. Then the following statements hold.

(a) If X is free over Λ, then 𝜋2 (nr(𝛽)) is in the image of 𝜋2 ◦ 𝑓2.
(b) If 𝑓1 is surjective, then the converse of (a) holds. More precisely, if 𝑢 ∈ M× and 𝑎 ∈ (Λ/𝔣)× satisfy

nr(𝛽) = nr(𝑢)nr(𝑎), then for any 𝑣 ∈ SL(M) with 𝑓1(𝑣) = 𝛽𝑎−1𝑢−1, we have 𝑋 = Λ𝛼, where
𝛼 := (𝑣𝑢)−1𝛽.

Proof. (a) Suppose that X is free over Λ. Then there exists 𝛼 ∈ 𝑋 such that 𝑋 = Λ𝛼. Thus, M𝛽 =
M𝑋 = M(Λ𝛼) = M𝛼, and so there exists 𝑢 ∈ M× such that 𝛼 = 𝑢𝛽. Hence, 𝜋(𝛽) = 𝜋(𝑢−1) by
Proposition 4.3. In other words, there exists 𝑎 ∈ Λ such that 𝑎 ∈ (Λ/𝔣)× and 𝛽 = 𝑢−1𝑎. Thus,

nr(𝛽) = nr(𝑢−1𝑎) = nr(𝑢−1)nr(𝑎) = 𝑓2 (nr(𝑢−1))nr(𝑎),

and so 𝜋2 (nr(𝛽)) = 𝜋2 ( 𝑓2(nr(𝑢−1))).
(b) Suppose that 𝑓1 is surjective and 𝜋2 (nr(𝛽)) is in the image of 𝜋2 ◦ 𝑓2. Then there exist 𝑢, 𝑎 and v

as in (b), and so 𝜋(𝛽) = 𝜋(𝑣𝑢). Hence, by Proposition 4.3 we have 𝑋 = Λ𝛼 where 𝛼 := (𝑣𝑢)−1𝛽. �

5. Preliminaries on complexity

We briefly recall the conventions that we will use for the complexity analysis of our algorithms. For
details we refer the reader to Lenstra [Len92] or Cohen [Coh93, §1.1].

Let l be the size of the input data measured by the number of required bits. Then an algorithm is
polynomial time if the running time is 𝑂 (𝑃(𝑙)) for a polynomial P. An algorithm is subexponential time
if there exists 0 ≤ 𝑎 < 1 and 𝑏 ∈ R>0 such that the running time is 𝑂 (exp(𝑏 · 𝑙𝑎 (log 𝑙)𝑎−1)).

A probabilistic algorithm may call a random number generator. In this case we say that the algorithm
is probabilistic polynomial time if the expected running time is 𝑂 (𝑃(𝑙)) for a polynomial P. We adopt
the same convention for probabilistic subexponential time algorithms.
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Given two computational problems A and B, a (probabilistic) polynomial-time reduction from A
to B is an algorithm that solves A using a polynomial number of calls to an oracle solving B and is
(probabilistic) polynomial time outside of those calls to the oracle.

Let K be a number field with ring of integers O = O𝐾 . We follow the convention of [Len92] for
representing our input data. In some more detail, if 𝑉 = 𝐾𝑛 is an n-dimensional vector space over K,
we represent an O-module 𝑀 ⊆ 𝑉 by a pseudobasis of M, that is, by elements 𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 and
fractional O-ideals 𝔞1, . . . , 𝔞𝑘 such that 𝑀 = 𝔞1𝑣1 ⊕ · · · ⊕ 𝔞𝑘𝑣𝑘 for some 𝑘 ≤ 𝑛. A K-algebra A of
dimension d is represented as a d-dimensional vector space together with the K-linear multiplication
map 𝐴 ⊗𝐾 𝐴 → 𝐴, which is represented using 𝑑3 elements of K. Given a finite-dimensional K-algebra
A, an O-order of A is represented using a pseudobasis. An n-dimensional A-module V is represented as
a vector space over K together with d matrices in Mat𝑛 (𝐾), one for each basis element of A describing
the action on elements of V. Given an O-order Λ, a Λ-lattice is represented by an O-submodule of a
finite-dimensional A-module, invariant under the action of Λ.

We will be mainly interested in solving the following two problems.

Problem (IsIsomorphic). Given a finite-dimensional K-algebra A, an O-order Λ in A and two Λ-lattices
X and Y, decide whether X and Y are isomorphic, and if so, return an isomorphism 𝑋 → 𝑌 .

Problem (IsPrincipal). Given a finite-dimensional K-algebra A, an O-order Λ in A and a full Λ-lattice
X in A, decide whether there exists 𝛼 ∈ 𝑋 such that 𝑋 = Λ𝛼, and if so, return such an element 𝛼.

Under the assumption that A satisfies hypothesis (H), we will reduce these questions to well-studied
problems in algorithmic number theory. These include IsPrincipal in the case where 𝐴 = 𝐾 and Λ = O,
as well as the following problems:

◦ Factor: Given an ideal or element of the ring of integers O𝐹 of a number field F, determine its
factorisation into prime ideals.

◦ Primitive: Given a finite field F𝑞 , determine 𝛼 ∈ F×𝑞 such that F×𝑞 = 〈𝛼〉.
◦ DLog: Given a finite field F𝑞 and 𝛼, 𝛽 ∈ F×𝑞 with F×𝑞 = 〈𝛼〉, determine 𝑛 ∈ Z≥0 such that 𝛼𝑛 = 𝛽.
◦ UnitGroup: Given the ring of integers O𝐹 of a number field F, determine a system of fundamental

units for O×
𝐹 .

We will use the following standard convention and notation to denote variations and instances
of computational problems. For example, for an O-order Λ, we denote by IsIsomorphicΛ the set of
instances of IsIsomorphic restricted to Λ-lattices. Similarly, we use IsPrincipalΛ for the set of instances
of IsPrincipal for Λ-lattices. Moreover, given a Λ-lattice X, we use IsPrincipal(𝑋) to denote the instance
of IsPrincipal for the lattice X. Note that in this case we still consider Λ part of the input.

Remark 5.1. Currently, the following complexity statements are known.

(a) The problem FactorZ can be solved in probabilistic subexponential time ([LP92, Theorem 10.5]).
Given an ideal I of the ring of integers O𝐹 of a number field F, the prime ideals of O𝐹 lying
above the rational prime factors of Norm𝐹/Q(𝐼) can be determined in probabilistic polynomial time
([Coh93, §6.2]); hence, there is a probabilistic polynomial-time reduction from Factor to FactorZ.
Since Primitive(F𝑞) is probabilistic polynomial-time reducible to Factor(𝑞 − 1), the same holds for
Primitive. Moreover, DLog can be solved in subexponential time; see [Odl00] and the references
therein. While it is conjectured that IsPrincipal and UnitGroup can also be solved in subexponential
time, so far this has been established only under additional hypotheses and heuristics, including the
generalised Riemann hypothesis (GRH); see [Buc90, Bia14, BF14].

(b) There exist quantum polynomial-time algorithms for solving each of the problems FactorZ, DLog,
Primitive ([Sho97, §5, §6]), UnitGroup ([EHKS14, Theorem 1.2]) and IsPrincipal for rings of integers
of number fields ([BS16, Theorem 1.3]).
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Our approach to solving IsIsomorphic and IsPrincipal for noncommutative algebras A satisfying
hypothesis (H) relies crucially on the solution of the following two subproblems.

Problem (Wedderburn). Given a number field K and a finite-dimensional semisimple K-algebra A
satisfying hypothesis (H), determine number fields 𝐾𝑖 , integers 𝑟, 𝑛𝑖 ∈ Z>0 and an explicit isomorphism
𝐴 �

∏𝑟
𝑖=1 Mat𝑛𝑖 (𝐾𝑖).

Problem (SplittingMatrixAlgebra). Given a number field K and a split central simple K-algebra A,
determine an isomorphism 𝐴 � Mat𝑛 (𝐾) for some 𝑛 ∈ Z>0.

Remark 5.2. For a finite-dimensional semisimple K-algebra A, an explicit decomposition 𝐴 �
∏𝑟

𝑖=1 𝐴𝑖
into simple K-algebras 𝐴𝑖 , as well as the centre 𝐾𝑖 of each 𝐴𝑖 , can be computed in polynomial
time by [FR85, 1.5 B]. Thus, Wedderburn reduces to SplittingMatrixAlgebra. The decision problem of
checking whether 𝐴𝑖 � Mat𝑛𝑖 (𝐾𝑖) for some 𝑛𝑖 ∈ Z>0 is polynomial-time reducible to the computation
of (the discriminant of) a maximal order in 𝐴𝑖 by [NS09, Corollary 3.4], hence to Factor by [IR93,
Corollary 5.3]. The problem of finding an explicit isomorphism appears to be a much harder problem.
In [IRS12, Theorem 1] it was shown that for algebras of bounded dimension over a fixed number
field, SplittingMatrixAlgebra is probabilistic polynomial-time reducible to the problem of computing a
maximal order, hence to Factor.

6. Complexity of algorithms related to orders and their lattices

Let K be a number field with ring of integers O = O𝐾 . The aim of this section is to establish the
complexity of certain algorithms related to O-orders and their lattices. These algorithms have already
appeared in the literature, either implicitly or explicitly, but with either no or only partial analysis of
their complexity.

6.1. Computing maximal orders

Let A be a finite-dimensional semisimple K-algebra, and let Λ be an O-order in A. Let 𝑑 = dim𝐾 𝐴 and
let tr : 𝐴 → 𝐾 denote the reduced trace map (see [CR81, §7D]). Following [CR81, §26A], we define
Disc(Λ) to be the ideal of O generated by all elements

det
(
tr(𝑥𝑖𝑥 𝑗 )1≤𝑖, 𝑗≤𝑑

)
with 𝑥1, . . . , 𝑥𝑑 ∈ Λ.

By applying a result of [FR85], the following is straightforward to deduce from the results
of [Fri00].

Proposition 6.1. Let Λ and A be as above. Then the problem of computing a maximal O-order M in A
containing Λ is probabilistic polynomial-time reducible to Factor(Disc(Λ)).

Proof. Let 𝔭 be a maximal ideal of O dividing Disc(Λ), and write 𝑣𝔭 (−) for the 𝔭-adic valuation.
It follows from [Fri00, (3.17)] that the computation of an order Λ(𝔭) such that 𝑣𝔭 ([Λ(𝔭) : Λ]O) is
maximal reduces in polynomial time to the problem of computing the maximal two-sided ideals of
an order containing 𝔭. Now, fix an order Γ. Then the maximal two-sided ideals of Γ containing 𝔭 are
the preimages of the maximal two-sided ideals under the canonical projection Γ → (Γ/𝔭Γ)/J(Γ/𝔭Γ)
(see [Fri00, (5.23)]). As a decomposition of this (O/𝔭)-algebra into simple components and there-
fore the maximal two-sided ideals can be found in probabilistic polynomial time by [FR85, 1.5
B], an order Λ(𝔭) can be determined in probabilistic polynomial time. By [Fri00, (3.19)] the or-
der

∑
𝔭 Λ

(𝔭) is maximal, where 𝔭 runs over the maximal ideals of O dividing Disc(Λ). Therefore,
the computation of a maximal order M containing Λ reduces in probabilistic polynomial time to
Factor(Disc(Λ)). �
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6.2. Nice maximal orders

Let 𝑛 ∈ Z>0, and let 𝐴 = Mat𝑛 (𝐾) be a full matrix algebra. For a nonzero fractional ideal 𝔞 of O, let

M𝔞,𝑛 :=
�����
O . . . O 𝔞−1

...
. . .

...
...

O . . . O 𝔞−1

𝔞 . . . 𝔞 O

������
denote the O-order in A consisting of all 𝑛× 𝑛 matrices (𝑥𝑖 𝑗 )1≤𝑖, 𝑗≤𝑛, where 𝑥11 ranges over all elements
of O, . . . , 𝑥1𝑛 ranges over all elements of 𝔞−1 and so on. (In the case 𝑛 = 1, we take M𝔞,𝑛 = O.) We
say that a maximal O-order in A is nice if it is equal to M𝔞,𝑛 for some choice of 𝔞. By [Rei03, (27.6)]
every maximal O-order in A is conjugate to a nice maximal order.

Lemma 6.2. There exists a probabilistic polynomial-time algorithm that, given a maximalO-orderM in
𝐴 = Mat𝑛 (𝐾), determines a nonzero fractional ideal 𝔞 ofO and 𝑆 ∈ GL𝑛 (𝐾) such that 𝑆M𝑆−1 = M𝔞,𝑛.

Proof. The algorithm is presented in [BJ08, §5] and works by reducing the problem to the computation
of a Steinitz form of an O-lattice of rank n, which can be performed in probabilistic polynomial time
by Corollary A.3. �

6.3. Norm equations and principal ideals

Let 𝑟 ∈ Z>0, and let 𝐴 =
∏𝑟

𝑖=1 Mat𝑛𝑖 (𝐾𝑖), where 𝐾𝑖 is a finite field extension of K and 𝑛𝑖 ∈ Z>0 for
each i. In particular, A is a finite-dimensional semisimple K-algebra satisfying hypothesis (H). Let C be
the centre of A, which we can and do identify with

∏𝑟
𝑖=1 𝐾𝑖 . Let M be a maximal O-order in A, and let

O𝐶 = M ∩ 𝐶 =
∏𝑟

𝑖=1 O𝐾𝑖 .

Lemma 6.3. The reduced norm map nr : M× → O×
𝐶 is surjective. Moreover, there exists a probabilistic

polynomial-time algorithm that given M and 𝑎 ∈ O×
𝐶 determines 𝛼 ∈ M× such that nr(𝛼) = 𝑎.

Proof. By decomposing M using the central primitive idempotents of A, it suffices to consider the case
𝐴 = Mat𝑛 (𝐾), in which we must have O𝐶 = O. Then the reduced norm map nr : 𝐴 → 𝐾 is just the
usual determinant map. Moreover, using Lemma 6.2, we can and do assume that M = M𝔞,𝑛 is a nice
maximal order. Since 𝛼 = diag(𝑎, 1, . . . , 1) ∈ M×

𝔞,𝑛 satisfies nr(𝛼) = 𝑎, the claim follows. �

An algorithm for solving the principal ideal problem for M-lattices was given in [BJ08, §5]. We
now analyse its complexity.

Proposition 6.4. The problem IsPrincipalM is probabilistic polynomial-time reducible to one instance
of IsPrincipalO𝐾𝑖 for each 𝑖 = 1, . . . , 𝑟 .

Proof. By decomposing M using the central primitive idempotents of A, it suffices to consider the case
𝐴 = Mat𝑛 (𝐾), in which we must have O𝐶 = O. Let X be a full M-lattice in A. Let 𝑒11 ∈ 𝐴 be the
matrix with the top-left entry equal to 1 and all other entries equal to 0. Using Lemma 6.2, we can and
do assume that M = M𝔞,𝑛 is a nice maximal order. By [BJ08, Corollary 5.4], it is sufficient to check
whether the Steinitz class of the O-module 𝑒11𝑋 is equal to [𝔞−1], which amounts to testing whether a
certain ideal of O is principal. �

6.4. Computing isomorphisms between localised lattices

Let Λ be an O-order in a finite-dimensional K-algebra A. Given two Λ-lattices X and Y and a maximal
ideal 𝔭 of O, we wish to determine whether there exists an isomorphism 𝑋𝔭 � 𝑌𝔭 of Λ𝔭-lattices and to
compute such an isomorphism if so. By computing an isomorphism we mean computing a Λ-morphism
𝑓 : 𝑋 → 𝑌 such that its localisation 𝑓𝔭 : 𝑋𝔭 → 𝑌𝔭 is an isomorphism.
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We first consider the case where X is a full Λ-lattice in A and 𝑌 = Λ, for which an algorithm was
presented in [BW09, §4.2] (although the algorithm was presented only in the context of semisimple
algebras, the semisimplicity hypothesis is in fact unnecessary). We now outline the algorithm and
analyse its complexity.
Proposition 6.5. There exists a probabilistic polynomial-time algorithm that, given A, Λ and𝔭 as above
and a full Λ-lattice X in A, decides whether 𝑋𝔭 is free over Λ𝔭 and, if so, returns 𝛼 ∈ 𝑋 such that
𝑋𝔭 = Λ𝔭𝛼.
Proof. Consider the finitely generated O/𝔭-algebra 𝑅𝔭 := Λ/𝔭Λ � Λ𝔭/𝔭Λ𝔭. It follows from [FR85,
1.5 A] that the Jacobson radical 𝐽𝔭 = J(𝑅𝔭) can be determined in polynomial time. Let 𝑅𝔭 = 𝑅𝔭/𝐽𝔭.
By Lemma 2.3 and Nakayama’s lemma, 𝑋𝔭 is free over Λ𝔭 if and only if 𝑋𝔭 := (𝑋/𝔭𝑋)/𝐽𝔭 (𝑋/𝔭𝑋) �
(𝑋𝔭/𝔭𝑋𝔭)/𝐽𝔭 (𝑋𝔭/𝔭𝑋𝔭) is free of rank 1 over 𝑅𝔭. Using algorithms of Friedl–Rónyai [FR85, 1.5 B]
and Ronyai [Ron87, Theorem 6.2], one can determine an isomorphism of 𝑅𝔭 with a product of matrix
algebras over finite fields 𝑘𝑖 in probabilistic polynomial time. The final steps are just linear algebra over
finite fields. �

The following algorithm without the complexity statement was given in [HJ20, §8.4].
Corollary 6.6. There exists a probabilistic polynomial-time algorithm that, given A, Λ and 𝔭 as above
and Λ-lattices X and Y, decides whether 𝑋𝔭 and 𝑌𝔭 are isomorphic as Λ𝔭-lattices and, if so, returns
𝑓 ∈ HomΛ (𝑋,𝑌 ) such that the localisation 𝑓𝔭 : 𝑋𝔭 → 𝑌𝔭 is an isomorphism.
Proof. We use Proposition 6.5 together with the reduction to the free rank 1 case given by Proposition 3.1.
Both EndΛ(𝑌 ) and HomΛ(𝑋,𝑌 ) can be determined as described in [HJ20, §7.3] using pseudo-Hermite
normal form and pseudo-Smith normal form computations, which are probabilistic polynomial time
by [BFH17, Theorem 34, Proposition 43]. Using Proposition 6.5 one can determine in probabilistic
polynomial time whether the (EndΛ(𝑌 ))𝔭-lattice (HomΛ (𝑋,𝑌 ))𝔭 is free of rank 1. If not, then 𝑋𝔭 and
𝑌𝔭 are not isomorphic over Λ𝔭. If so, then the algorithm returns a free generator 𝑓 ∈ HomΛ (𝑋,𝑌 ) of
(HomΛ(𝑋,𝑌 ))𝔭 over (EndΛ (𝑌 ))𝔭. Then 𝑋𝔭 � 𝑌𝔭 over Λ𝔭 if and only if the localisation 𝑓𝔭 : 𝑋𝔭 → 𝑌𝔭 is
an isomorphism. �

Remark 6.7. Given two Λ-lattices X and Y, Corollary 6.6 can be used to decide if X and Y are in the
same genus, that is, whether 𝑋𝔭 and 𝑌𝔭 are isomorphic Λ𝔭-lattices for every nonzero prime ideal 𝔭 of O.
Note that a necessary condition is that 𝐾𝑋 and 𝐾𝑌 are isomorphic as A-modules. By [CIK97, Corollary
3] there is a polynomial-time algorithm that decides whether 𝐾𝑋 and 𝐾𝑌 are isomorphic as A-modules
and, if so, computes an isomorphism; hence, the problem reduces to the case 𝐾𝑋 = 𝐾𝑌 . In this situation,
X and Y are in the same genus if and only if 𝑋𝔭 and 𝑌𝔭 are isomorphic Λ𝔭-lattices for the finitely many
prime ideals 𝔭 dividing the module index [𝑋 : 𝑌 ]O (see [Frö67, §3]). Hence, checking whether X and
Y are in the same genus is polynomial-time reducible to Factor([𝑋 : 𝑌 ]O).

6.5. Finding a suitable choice of locally free left ideal

Let A be a finite-dimensional semisimple K-algebra, and let Λ be an O-order in A. By [Rei03, (10.4)]
there exists a (not necessarily unique) maximal O-order M in A containing Λ. Let 𝔣 be any proper full
two-sided ideal of M that is contained in Λ. The following result without the complexity statements is
a consequence of a special case of the argument given in [BJ11, §5.1].
Proposition 6.8. Given A, Λ and 𝔣 as above and a full Λ-lattice X in A, the problem of determining
whether X is locally free over Λ and, if so, computing an element 𝜉 ∈ 𝐴× such that 𝑋𝜉 ⊆ Λ and
𝑋𝜉 + 𝔣 = Λ, is probabilistic polynomial-time reducible to Factor(O ∩ 𝔣).
Proof. Let MaxSpec(O) denote the set of all maximal ideals of O. Let 𝔖 = {𝔭1, . . . ,𝔭𝑛} be the
subset consisting of ideals that divide O ∩ 𝔣 (note that this is a proper nonzero ideal of O), and let
𝔗 = MaxSpec(O) \𝔖. Observe that, for every 𝔭 ∈ 𝔗, we have 𝔣𝔭 = Λ𝔭 = M𝔭, and so 𝑋𝔭 is free over Λ𝔭
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by [Rei03, (18.10)]. Moreover, for each i, checking whether 𝑋𝔭𝑖 is free over Λ𝔭𝑖 and, if so, computing
𝜔𝑖 ∈ 𝑋 such that 𝑋𝔭𝑖 = Λ𝔭𝑖𝜔𝑖 , can be performed in probabilistic polynomial time by Proposition 6.5.
In particular, if this step is completed successfully, then X is locally free over Λ.

By [Coh00, Proposition 1.3.11], elements 𝛽1, . . . , 𝛽𝑛 ∈ O such that for each i, we have

𝛽𝑖 ≡ 1 mod 𝔭𝑖 and 𝛽𝑖 ≡ 0 mod 𝔭 𝑗 for 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑖

can be computed in polynomial time. For each i, let 𝜈𝑖 ∈ O \ 𝔭𝑖 be an element such that 𝑋𝜔−1
𝑖 𝜈𝑖 ⊆ Λ.

Then 𝑋𝜉 ⊆ Λ, where 𝜉 :=
∑𝑛
𝑖=1 𝛽𝑖𝜔

−1
𝑖 𝜈𝑖 . By construction we have (𝑋𝜉)𝔭𝑖 = Λ𝔭𝑖 for each i. Moreover,

𝔣𝔭 = Λ𝔭 for all 𝔭 ∈ 𝔗. Therefore, (𝑋𝜉 + 𝔣)𝔭 = Λ𝔭 for all 𝔭 ∈ MaxSpec(O), and so 𝑋𝜉 + 𝔣 = Λ by [Rei03,
(4.21)]. �

6.6. Computing generators of (Λ/𝔣)× and 𝐾1(Λ/𝔣)

We first recall some definitions from algebraic K-theory and refer the reader to [CR87, §40] for more
details. For any ring R, the Whitehead group 𝐾1(𝑅) is defined as GL(𝑅)/[GL(𝑅),GL(𝑅)], where
GL(𝑅) = lim−−→GL𝑛 (𝑅) and GL𝑛 (𝑅) embeds into GL𝑛+1(𝑅) via

𝛼 ↦→
(
𝛼 0
0 1

)
.

In particular, there is a canonical map 𝑅× → GL(𝑅) → 𝐾1(𝑅).
Now, assume the notation and setting of §6.5. Since Λ/𝔣 is of finite cardinality, it is semilocal, and

so the canonical map

(Λ/𝔣)× −→ 𝐾1(Λ/𝔣)

is surjective by [CR87, (40.31)]. We consider the problems of computing generators of (Λ/𝔣)× and of
𝐾1(Λ/𝔣), where the latter task means computing elements 𝑥1, . . . , 𝑥𝑛 ∈ (Λ/𝔣)× such that their images
generate 𝐾1(Λ/𝔣).

An algorithm for computing generators of 𝐾1(Λ/𝔣) is described in [BB06, §3.4–3.7]. With minor
modifications, this algorithm also computes a generating set of (Λ/𝔣)×. In this subsection, we will
analyse the complexity of both these algorithms. To treat both cases simultaneously, for a ring R we let
G(𝑅) denote either 𝐾1(𝑅) or 𝑅×.

Let C denote the centre of A, and let O𝐶 be the integral closure of O in C. Let 𝔤 = 𝔣 ∩ 𝐶, and note
that this is a proper full ideal of O𝐶 and of Λ ∩ O𝐶 = Λ ∩ 𝐶. Let 𝔤 =

∏
𝔓∈P𝔓𝑒𝔓 be the prime ideal

decomposition of 𝔤 in O𝐶 , where the set P of prime ideals of O𝐶 is defined by the decomposition. Set
P′ := {𝔓 ∩ Λ | 𝔓 ∈ P}, a set of prime ideals of Λ ∩O𝐶 . For each 𝔭 ∈ P′ consider the ideal

𝔮 :=
⋂
𝔓∈P,
𝔓∩Λ=𝔭

(𝔓𝑒𝔓 ∩ Λ).

We write Q for the set of ideals 𝔮. Then by [BE05, Proposition 3.2]

𝔤 =
∏
𝔮∈Q

𝔮 =
⋂
𝔮∈Q

𝔮

is the unique primary decomposition of 𝔤 when considered as an ideal of Λ∩O𝐶 . Moreover, by [BB06,
Lemma 3.5], we have

𝔣 =
⋂
𝔮∈Q

(𝔮Λ + 𝔣) =
∏
𝔮∈Q

(𝔮Λ + 𝔣),
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and by the Chinese remainder theorem we obtain an isomorphism

Λ/𝔣 �
∏
𝔮∈Q

Λ/(𝔮Λ + 𝔣).

This induces a decomposition

G(Λ/𝔣) �
∏
𝔮∈Q

G(Λ/(𝔮Λ + 𝔣)).

Thus, given Q, it suffices to compute generators of G(Λ/(𝔮Λ + 𝔣)) for each 𝔮 ∈ Q.
Now, fix 𝔮 ∈ Q, and let 𝔭 = 𝔓 ∩ Λ ∈ P′ be the associated prime ideal of Λ ∩O𝐶 for some 𝔓 ∈ P.

As shown in [BB06, §3.7], we have an exact sequence

(1 + 𝔭Λ + 𝔣)/(1 + 𝔮Λ + 𝔣) −→ G(Λ/(𝔮Λ + 𝔣)) −→ G(Λ/(𝔭Λ + 𝔣)) −→ 1. (5)

We consider the problems of computing generators for the first and third terms in this sequence. Let
𝑑 := dim𝐾 𝐴.

Lemma 6.9. Given Λ, 𝔣 and 𝔭 as above, the problem of computing generators of

(Λ/(𝔭Λ + 𝔣))× or 𝐾1(Λ/(𝔭Λ + 𝔣))

is probabilistic polynomial-time reducible to at most d instances of the problem Primitive for extensions
of O/(O ∩𝔓) of degree at most d. The number of generators is at most 𝑑 ([𝐾 : Q] + 2).

Proof. Let k denote the finite field O/(𝔭 ∩O). Let 𝑅 = Λ/(𝔭Λ + 𝔣), and note that this is annihilated by
𝔭 ∩O. Thus, R is a k-algebra such that dim𝑘 𝑅 ≤ 𝑑. In particular, R is Artinian, so its Jacobson radical
𝐽 = J(𝑅) is nilpotent by [CR81, (5.15)]. Since we have a decreasing filtration 𝐽 ⊇ 𝐽2 ⊇ · · · ⊇ 𝐽𝑑 and
dim𝑘 (𝐽) ≤ 𝑑 − 1, we obtain 𝐽𝑑 = 0. By [BB06, Lemma 3.6] and the same reasoning as in [BB06, §3.7],
we have an exact sequence

1 + 𝐽 −→ G(𝑅) −→ G(𝑅/𝐽) −→ 1.

We first discuss the computation of generators for 1 + 𝐽. To this end, let 𝑙 ∈ Z≥0 be minimal subject to
the condition 𝐽2𝑙 = 0 and note that 2𝑙 ≤ 2𝑑. Consider the filtration

1 + 𝐽 ⊇ 1 + 𝐽2 ⊇ · · · ⊇ 1 + 𝐽2𝑙−1 ⊇ 1.

Generators of J can be determined in polynomial time using the algorithms of [FR85, 1.5 A]. For each
𝑖 = 0, . . . , 𝑙 − 1, the map 𝑥 ↦→ 𝑥 − 1 induces an isomorphism

(1 + 𝐽2𝑖 )/(1 + 𝐽2𝑖+1) −→ 𝐽2𝑖/𝐽2𝑖+1

of abelian groups, and so it follows that we can find generators of 1 + 𝐽 in polynomial time. For each
𝑖 = 0, . . . , 𝑙 − 1 the number of generators of 𝐽2𝑖/𝐽2𝑖+1 is bounded by dim𝑘 (𝐽2𝑖/𝐽2𝑖+1) [𝐾 : Q]. Now,
summing over 𝑖 = 0, . . . , 𝑙−1 shows that 1+𝐽 is generated by at most dim𝑘 (𝐽) [𝐾 : Q] ≤ (𝑑−1) [𝐾 : Q]
elements.

Using algorithms of [FR85, 1.5 B] and [Ron87, Theorem 6.2], one can determine an isomorphism
𝑅/𝐽 �

∏
1≤𝑖≤𝑟 Mat𝑛𝑖 (𝑘𝑖) with a product of matrix algebras over finite fields 𝑘𝑖 in probabilistic polyno-

mial time. Since

G(𝑅/𝐽) �
∏

1≤𝑖≤𝑟
G(Mat𝑛𝑖 (𝑘𝑖)),
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this problem reduces to the computation of each G(Mat𝑛𝑖 (𝑘𝑖)), which we claim is generated by at
most 2 elements. If G = 𝐾1, then the claim follows from the fact that the canonical maps 𝑘×𝑖 →
𝐾1(𝑘𝑖) → 𝐾1(Mat𝑛𝑖 (𝑘𝑖)) are isomorphisms. If G = (−)×, then the claim follows from [Tay87], where
it is shown that given a primitive element of 𝑘𝑖 one can write down directly a two element generating
set of GL𝑛𝑖 (𝑘𝑖). Since dim𝑘 (𝑅/𝐽) ≤ 𝑑 we have 𝑟 ≤ 𝑑 and [𝑘𝑖 : 𝑘] ≤ 𝑑 for each i. Finally, note that
O/(O ∩𝔭) = O/(O ∩𝔓) since O ⊆ Λ implies O ∩𝔭 = O ∩𝔓∩Λ = O ∩𝔓. In particular, 𝐺 (𝑅/𝐽) is
generated by at most 2𝑟 ≤ 2𝑑 elements. �

Lemma 6.10. Given Λ, 𝔣, 𝔭 and 𝔮 as above, we set

𝑒𝔭 = max{𝑒𝔓 | 𝔓 ∈ P, 𝔓 ∩ Λ = 𝔭}.

Then there exists a polynomial-time algorithm that returns m elements of Λ whose classes generate
(1 + 𝔭Λ + 𝔣)/(1 + 𝔮Λ + 𝔣). If 𝑒𝔭 = 1; we have 𝑚 = 0. If 𝑒𝔭 > 1, the number m of generators is bounded
by 𝑑 (1 + log2(𝑒𝔭)) [𝐾 : Q].

Proof. If 𝑒𝔭 = 1, we clearly have 𝔭 = 𝔮, and so 𝑚 = 0. If 𝑒𝔭 > 1, we let 𝑙 ∈ Z>0 be minimal subject to
the condition 𝔭2𝑙 ⊆ 𝔮. Then there exists a filtration

𝔭Λ + 𝔣 ⊇ (𝔮 + 𝔭2)Λ + 𝔣 ⊇ · · · ⊇ (𝔮 + 𝔭2𝑙−1 )Λ + 𝔣 ⊇ 𝔮Λ + 𝔣.

For each 𝑖 = 0, . . . , 𝑙 − 1, the map 𝑥 ↦→ 𝑥 − 1 induces an isomorphism

1 + (𝔮 + 𝔭2𝑖 )Λ + 𝔣

1 + (𝔮 + 𝔭2𝑖+1 )Λ + 𝔣
−→ (𝔮 + 𝔭2𝑖 )Λ + 𝔣

(𝔮 + 𝔭2𝑖+1)Λ + 𝔣

of abelian groups. Hence, any Z-basis of the right-hand side yields generators of the left-hand side. It
remains to bound l. For every𝔓 ∈ Pwith𝔓∩Λ = 𝔭, the inclusion𝔭𝑒𝔭 = (𝔓∩Λ)𝑒𝔭 ⊆ 𝔓𝑒𝔭∩Λ ⊆ 𝔓𝑒𝔓∩Λ
holds. Hence, 𝔭𝑒𝔭 ⊆ 𝔮 and therefore 2𝑙 ≤ 2𝑒𝔭, which gives 𝑙 ≤ 1 + log2 (𝑒𝔭).

Since any quotient ((𝔮 +𝔭2𝑖 )Λ + 𝔣)/((𝔮 +𝔭2𝑖+1)Λ + 𝔣) is generated by at most 𝑑 [𝐾 : Q] elements, the
quotient (1 + 𝔭Λ + 𝔣)/(1 + 𝔮Λ + 𝔣) is generated by at most (1 + log2 (𝑒𝔭))𝑑 [𝐾 : Q] elements. �

Proposition 6.11. Given Λ and 𝔣 as above, the problem of computing generators of (Λ/𝔣)× and 𝐾1(Λ/𝔣)
is probabilistic polynomial-time reducible to the factorisation of 𝔤 := 𝔣∩O𝐶 as an ideal of O𝐶 and, for
each prime ideal divisor 𝔓 of 𝔤, at most d instances of Primitive for extensions of O/(O ∩𝔓) of degree
at most d. The number of generators is bounded by 5𝑑 [𝐾 : Q] log2 |O𝐶/𝔤|.

Proof. Using the factorisation of 𝔤 = 𝔣 ∩ O𝐶 , one can determine the sets of ideals P, P′ and Q in
polynomial time. Since |Q| = |P′ | ≤ |P| ≤ log2 |O𝐶/𝔤|, the claim follows from the reduction to the
computation of G(Λ/(𝔮Λ + 𝔣)) for each 𝔮 ∈ Q discussed at the beginning of the section, the exact
sequence (5), Lemmas 6.9 and 6.10 and the following computation

𝑑 |P′ | ( [𝐾 : Q] + 2) + 𝑑 [𝐾 : Q]
∑

𝔭∈P′,𝑒𝔭>1
(1 + log2(𝑒𝔭))

≤ 𝑑 [𝐾 : Q]��3|P′ | +
∑

𝔭∈P′,𝑒𝔭>1
2 log2(𝑒𝔭)

���
≤ 𝑑 [𝐾 : Q]��3|P′ | + 2

∑
𝔓∈P

log2(𝑒𝔓)
���

(∗)
≤ 𝑑 [𝐾 : Q]

(
3|P′ | + 2 log2 |O𝐶/𝔤|

)
≤ 5𝑑 [𝐾 : Q] log2 |O𝐶/𝔤|.
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The inequality (∗) is a consequence of∑
𝔓∈P

log2 (𝑒𝔓) ≤
∑
𝔓∈P

𝑒𝔓 ≤
∑
𝔓∈P

𝑒𝔓 log2 |O𝐶/𝔓| = log2 |O𝐶/𝔤|,

which, in turn, is immediate from O𝐶/𝔤 �
∏

𝔓∈P O𝐶/𝔓𝑒𝔓 . �

Remark 6.12. In the setup above, we start with a proper full two-sided ideal 𝔣 of M contained in Λ and
set 𝔤 := 𝔣∩𝐶. Under hypothesis (H) on A, we may instead start with a proper full ideal 𝔤 of O𝐶 such that
𝔤M is contained inΛ and then set 𝔣 := 𝔤M. In this situation, we then have 𝔤 = 𝔣∩O𝐶 by [Rei03, (27.6)].

7. Lifting units of reduced norm one

Let K be a number field with ring of integers O = O𝐾 . Let 𝑟 ∈ Z>0, and let 𝐴 =
∏𝑟

𝑖=1 Mat𝑛𝑖 (𝐾𝑖),
where 𝐾𝑖 is a finite field extension of K and 𝑛𝑖 ∈ Z>0 for each i. In particular, A is a finite-dimensional
semisimple K-algebra satisfying hypothesis (H). Let C be the centre of A, which we can and do identify
with

∏𝑟
𝑖=1 𝐾𝑖 . In this situation, the reduced norm map nr : 𝐴 → 𝐶 is equal to the product of maps

det : Mat𝑛𝑖 (𝐾𝑖) → 𝐾𝑖 .
Let M be a maximal O-order in A, and let O𝐶 = M ∩ 𝐶 =

∏𝑟
𝑖=1 O𝐾𝑖 . Then nr restricts to a group

homomorphism nr : M× → O×
𝐶 , which is surjective since A satisfies the Eichler condition relative to

O (see [CR87, (45.4), (45.6)]). Let 𝔤 be a proper full ideal of O𝐶 , and let 𝔣 = 𝔤M. Then by Lemma 4.4
there exists a commutative diagram of groups

1 ��SL(M) ��

𝑓1

��

M× nr ��

𝑓

��

O×
𝐶

��

𝑓2

��

1

1 ��SL(M/𝔣) �� (M/𝔣)× nr �� (O𝐶/𝔤)× ��1,

(6)

where the rows are exact, SL(M) and SL(M/𝔣) are defined by the exactness of these rows, and the
vertical maps are induced by the canonical projections. Note that this is consistent with diagram (4), but
we do not require an order Λ for the above setup.

The aim of this section is to show that, under the above assumptions on A and 𝔣, the map 𝑓1 is surjective,
and there exists a polynomial-time algorithm that given an element of SL(M/𝔣) = SL(M/𝔤M) returns
a preimage under 𝑓1.

7.1. Lifting unimodular matrices

We first consider the case where 𝐴 = Mat𝑛 (𝐾) and M = Mat𝑛 (O) for some 𝑛 ∈ Z>0. In this situation,
we have O = O𝐶 and M/𝔣 = Mat𝑛 (O/𝔤). Moreover, both the maps nr and nr in diagram (6) are just
the usual determinant maps, SL(M) = SL𝑛 (O), and SL(M/𝔣) = SL𝑛 (O/𝔤). Thus, 𝑓1 is the canonical
map 𝑓1 : SL𝑛 (O) → SL𝑛 (O/𝔤). Note that this map is trivial when 𝑛 = 1, so we henceforth suppose
that 𝑛 ≥ 2.

We use the following notation for a commutative ring R. Given 1 ≤ 𝑖, 𝑗 ≤ 𝑛 with 𝑖 ≠ 𝑗 , and 𝑟 ∈ 𝑅,
we denote by 𝑒𝑖 𝑗 (𝑟) ∈ SL𝑛 (𝑅) the matrix with ones on the diagonal and entry r at position (𝑖, 𝑗). We
refer to these matrices as elementary matrices. Let E𝑛 (𝑅) denote the subgroup of SL𝑛 (𝑅) generated by
all elementary matrices.

Since O/𝔤 is semilocal, SL𝑛 (O/𝔤) = E𝑛 (O/𝔤) by [Bas68, Chapter V, Corollary 9.2]. Thus, every
element of SL𝑛 (O/𝔤) can be expressed as a product of elementary matrices, and every such matrix can
easily be lifted to an elementary matrix in SL𝑛 (O). This immediately implies the theoretical part of
Corollary 7.6 below. However, we will need a constructive proof that then translates into an efficient
algorithm.

https://doi.org/10.1017/fms.2022.74 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.74


18 Werner Bley, Tommy Hofmann and Henri Johnston

We will show that, given the factorisation of 𝔤, there exists a polynomial-time algorithm for lifting
unimodular matrices over O/𝔤 to O. The idea is to reduce to the local case and then apply the Chinese
remainder theorem.

For any matrix M, let 𝑀 𝑡 denote its transpose. A vector v = (𝑣1, . . . , 𝑣𝑛)𝑡 of elements of a commu-
tative ring R is said to be unimodular if

∑𝑛
𝑖=1 𝑅𝑣𝑖 = 𝑅. In the following we denote by 𝔮 = 𝔭𝑙 , 𝑙 ∈ Z>0,

the power of a nonzero prime ideal of O. Note that O/𝔮 is a local ring.

Lemma 7.1. There exists a polynomial-time algorithm that given a unimodular vector v ∈ (O/𝔮)𝑛
returns elementary matrices 𝐸1, . . . , 𝐸𝑘 ∈ Mat𝑛 (O/𝔮) such that 𝐸1 · · · 𝐸𝑘v = (𝑥, 0, . . . , 0)𝑡 for some
𝑥 ∈ (O/𝔮)×.

Proof. Write v = (𝑣1, . . . , 𝑣𝑛)𝑡 . Note that as O/𝔮 is local; v being unimodular implies that there exists
1 ≤ 𝑖 ≤ 𝑛 such that 𝑣𝑖 ∈ (O/𝔮)×.

Case 1: If 𝑣1 ∈ (O/𝔮)×, then 𝑒21(−𝑣−1
1 𝑣2) · · · 𝑒𝑛1 (−𝑣−1

1 𝑣𝑛)v has the required form.
Case 2: If 𝑣𝑖 ∈ (O/𝔮)× with 1 < 𝑖 ≤ 𝑛, then after multiplying v by 𝑒1𝑖 (1)𝑒𝑖1(−1)𝑒1𝑖 (1) on the left,

the first entry will be invertible and we are in the first case. �

Lemma 7.2. There exists a polynomial-time algorithm that given a matrix 𝑉 ∈ SL𝑛 (O/𝔮) returns
elementary matrices 𝐸1, . . . , 𝐸𝑘 ∈ Mat𝑛 (O/𝔮) such that 𝐸1 · · · 𝐸𝑘𝑉 is upper triangular. If V is lower
triangular, then 𝐸1 · · · 𝐸𝑘𝑉 is diagonal.

Proof. The first part follows by repeatedly applying Lemma 7.1 to V and submatrices of V. If V is lower
triangular, then we are always in Case 1 of the proof of Lemma 7.1 and thus easily see that the resulting
matrix is diagonal. �

As we will see below, the previous results allow us to transform unimodular matrices into diagonal
matrices. Thus, it remains to consider unimodular diagonal matrices.

Lemma 7.3. There exists a polynomial-time algorithm that given 𝑉 = diag(𝑣1, . . . , 𝑣𝑛) ∈ Mat𝑛 (O/𝔮)
with

∏
1≤𝑖≤𝑛 𝑣𝑖 = 1 returns elementary matrices 𝐸1, . . . , 𝐸𝑘 ∈ Mat𝑛 (O/𝔮) such that 𝐸1 · · · 𝐸𝑘𝑉 is the

𝑛 × 𝑛 identity matrix.

Proof. From [Ros94, 2.1.3 Corollary] it follows that a diagonal matrix with diagonal
(1, . . . , 1, 𝑣, 𝑣−1, 1, . . . , 1) with 𝑣 ∈ (O/𝔮)× is the product of six elementary matrices since(

𝑣 0
0 𝑣−1

)
=

(
1 𝑣
0 1

) (
1 0

−𝑣−1 1

) (
1 𝑣
0 1

) (
1 −1
0 1

) (
1 0
1 1

) (
1 −1
0 1

)
.

Hence, we can left-multiply V with 6(𝑛 − 1) elementary matrices to obtain (1, 1, . . . , 1)𝑡 . �

Proposition 7.4. There exists a polynomial-time algorithm that given a matrix 𝑉 ∈ SL𝑛 (O/𝔮) returns
elementary matrices 𝐸1, . . . , 𝐸𝑘 , 𝐹1, . . . , 𝐹𝑙 ∈ Mat𝑛 (O/𝔮) such that 𝐸1 · · · 𝐸𝑘𝑉𝐹1 . . . 𝐹𝑙 is the 𝑛 × 𝑛
identity matrix.

Proof. Using Lemma 7.2 there exist elementary matrices 𝐸1, . . . , 𝐸𝑘′ such that 𝑈 := 𝐸1 · · · 𝐸𝑘′𝑉 is an
upper triangular matrix. Using Lemma 7.2 again, this time applied to the lower diagonal matrix 𝑈𝑡 , we
can find elementary matrices 𝐹1, . . . , 𝐹𝑙 such that 𝐷 = 𝑈𝐹1 · · · 𝐹𝑙 is a diagonal matrix. Finally, invoking
Lemma 7.3 yields elementary matrices �̃�1, . . . , �̃� �̃� such that �̃�1 · · · �̃� �̃�𝐷 is the 𝑛×𝑛 identity matrix. �

Corollary 7.5. There exists a polynomial-time algorithm that given the factorisation of 𝔤 and a matrix
𝑉 ∈ SL𝑛 (O/𝔤) returns elementary matrices 𝐸1, . . . , 𝐸𝑘 ∈ Mat𝑛 (O/𝔤) such that 𝑉 = 𝐸1 · · · 𝐸𝑘 .

Proof. In the case that 𝔤 is a prime ideal power, this follows from Proposition 7.4. Now, let 𝔤 = 𝔮1 · · ·𝔮𝑚
be the product of m coprime prime ideal powers, and consider a matrix 𝑉 ∈ SL𝑛 (O/𝔤). For each
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1 ≤ 𝑖 ≤ 𝑚 we can determine in polynomial time a factorisation of 𝑉 ∈ SL𝑛 (O/𝔮𝑖) into elementary
matrices. The result follows by observing that the canonical map

E𝑛 (O/𝔤) →
𝑚∏
𝑖=1

E𝑛 (O/𝔮𝑖)

is an isomorphism by the Chinese remainder theorem which can be made effective in polynomial time
([Coh00, Proposition 1.3.11]). �

Since we can trivially lift elementary matrices along the canonical map 𝑓1 : SL𝑛 (O) → SL𝑛 (O/𝔤),
the same is true for arbitrary matrices in SL𝑛 (O/𝔤).

Corollary 7.6. There exists a polynomial-time algorithm that given the factorisation of 𝔤 and a matrix
𝑉 ∈ SL𝑛 (O/𝔤) returns 𝑈 ∈ SL𝑛 (O) such that 𝑓1 (𝑈) = 𝑉 .

7.2. Lifting norm one units for nice maximal orders

We now consider the case in which 𝐴 = Mat𝑛 (𝐾) and M = M𝔞,𝑛 is a nice maximal order as defined
in §6.2, where 𝔞 is a nonzero fractional ideal of O and 𝑛 ∈ Z≥2. (As in §7.1, the case 𝑛 = 1 is trivial.)
Some of the ideas used here are based on [BJ08, §6].

Let 𝔟 be an integral ideal of O such that 𝔟 + 𝔤 = O and 𝔞 = 𝜉𝔟 for some 𝜉 ∈ 𝐾×. Such an ideal 𝔟 and
element 𝜉 can be computed in probabilistic polynomial time, as shown in Corollary A.2. Let 𝑏 ∈ 𝔟, 𝑦 ∈ 𝔤
such that 𝑏+ 𝑦 = 1, and let 𝑅 = O/𝔤. Then we have an isomorphism O/𝔤 → 𝔞/𝔞𝔤 of R-modules defined
by 𝑧 + 𝔤 ↦→ 𝑧𝑏𝜉 + 𝔞𝔤, with the inverse map given by 𝑥 + 𝔞𝔤 ↦→ 𝜉−1𝑥 + 𝔤. The first of these maps induces
an isomorphism 𝜃1 : 𝑅⊕𝑛 → 𝑅⊕𝑛−1 ⊕ 𝔞/𝔞𝔤 of R-modules, and the second map induces an inverse 𝜃2.
Define 𝑛 × 𝑛 diagonal matrices Φ1 = diag(1, . . . , 1, 𝜉−1) and Φ2 = diag(1, . . . , 1, 𝑏𝜉). Then we have
maps

𝜓1 : Mat𝑛 (O) −→ M, 𝑋 ↦→ Φ2𝑋Φ1 and 𝜓2 : M −→ Mat𝑛 (O), 𝑌 ↦→ Φ1𝑌Φ2.

These maps are not multiplicative in general. However, since 𝜃1 and 𝜃2 are mutually inverse isomor-
phisms, we see that 𝜓1 and 𝜓2 induce mutually inverse isomorphisms

𝜓1 : GL𝑛 (O/𝔤) → (M/𝔤M)× and 𝜓2 : (M/𝔤M)× → GL𝑛 (O/𝔤).

Lemma 7.7. Let 𝐸 ∈ SL𝑛 (O/𝔤) be an elementary matrix. Then 𝜓1(𝐸) can be lifted to an element
𝑈 ∈ M× with nr(𝑈) = 1.

Proof. For 𝑉 ∈ Mat𝑛 (O) we write

𝑉 =

(
𝑉1 𝑥

𝑦 𝑑

)
with 𝑉1 ∈ Mat𝑛−1(O), 𝑥, 𝑦𝑡 ∈ O𝑛−1 and 𝑑 ∈ O. Then

𝜓1 (𝑉) =
(
𝑉1 𝜉−1𝑥

𝜉𝑏𝑦 𝑏𝑑

)
.

Let 𝐼𝑚 ∈ Mat𝑚 (O) denote the identity matrix.
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Case 1: If 𝐸 =

(
𝑒𝑖 𝑗 (�̄�) 0

0 1

)
with 𝑎 ∈ O, then 𝜓1(𝐸) =

(
𝑒𝑖 𝑗 (�̄�) 0

0 �̄�

)
and a lift is given by

(
𝑒𝑖 𝑗 (𝑎) 0

0 1

)
.

Case 2: If 𝐸 =

(
𝐼𝑛−1 𝑥

0 1

)
with 𝑥𝑡 = (0, . . . , 0, �̄�, 0, . . . , 0), 𝑎 ∈ O, then 𝜓1(𝐸) =

(
𝐼𝑛−1 𝜉−1𝑥

0 �̄�

)
and a

lift is given by (
𝐼𝑛−1 𝜉−1𝑥

0 1

)
.

Note that in this case 𝜉−1𝑎 ∈ 𝔟𝔞−1 ⊆ 𝔞−1.

Case 3: If 𝐸 =

(
𝐼𝑛−1 0
�̄� 1

)
with �̄� = (0, . . . , 0, �̄�, 0, . . . , 0), 𝑎 ∈ O, then 𝜓1 (𝐸) =

(
𝐼𝑛−1 0
𝜉𝑏𝑦 �̄�

)
and a lift is

given by (
𝐼𝑛−1 0
𝜉𝑏𝑦 1

)
.

Here we note that 𝜉𝑏𝑎 ∈ 𝜉𝔟 = 𝔞. �

Proposition 7.8. For 𝐴 = Mat𝑛 (𝐾) let M = M𝔞,𝑛 ⊆ 𝐴 be a nice maximal order. Then there exists a
probabilistic polynomial-time algorithm that given the factorisation of 𝔤 and 𝑉 ∈ SL(M/𝔤M) returns
𝑈 ∈ SL(M) with 𝑓1 (𝑈) = 𝑉 .

Proof. By Corollary 7.5 we can find elementary matrices 𝐸1, . . . , 𝐸𝑟 ∈ Mat𝑛 (O/𝔤) with 𝜓2 (𝑉) =
𝐸1 · · · 𝐸𝑟 . Applying𝜓1 we obtain𝑉 = 𝜓1 (𝐸1) · · ·𝜓1 (𝐸𝑟 ). Moreover, by Lemma 7.7, each of the matrices
𝜓1(𝐸𝑖) can be lifted to a matrix 𝑈𝑖 ∈ M× with nr(𝑈𝑖) = 1. Thus, we can and do take 𝑈 :=

∏
𝑖𝑈𝑖 . �

7.3. Lifting norm one units in maximal orders

We now consider an arbitrary maximal order M of 𝐴 =
∏𝑟

𝑖=1 Mat𝑛𝑖 (𝐾𝑖).

Theorem 7.9. The map 𝑓1 : SL(M) → SL(M/𝔤M) is surjective. Moreover, there exists a probabilistic
polynomial-time algorithm that given the factorisation of 𝔤 and 𝑉 ∈ SL(M/𝔤M) returns an element
𝑈 ∈ SL(M) with 𝑓1 (𝑈) = 𝑉 .

Proof. By decomposing M using the central primitive idempotents, it is sufficient to consider the case
𝐴 = Mat𝑛 (𝐾). By Lemma 6.2, we can and do assume that M = M𝔞,𝑛 is a nice maximal order. Thus,
the result follows from Proposition 7.8. �

8. Isomorphism testing and the principal ideal problem

Let K be a number field with ring of integers O = O𝐾 , and let A be a finite-dimensional K-algebra
satisfying hypothesis (H). Let Λ be an O-order in A. In this section, we present the main algorithm for
solving the isomorphism problem IsIsomorphic for lattices over Λ.

We begin with two straightforward reductions which together show that it suffices to consider the
problem IsPrincipal in the case that A is semisimple. Note that these reductions are valid when A is an
arbitrary finite-dimensional K-algebra that does not necessarily satisfy hypothesis (H).
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Proposition 8.1. The problem IsIsomorphic is polynomial-time reducible to IsPrincipal. More precisely,
for Λ-lattices X and Y, the problem IsIsomorphic is polynomial-time reducible to IsPrincipal for an
EndΛ(𝑌 )-lattice in End𝐴(𝐾𝑌 ).
Proof. Let X and Y be twoΛ-lattices. By [CIK97, Corollary 3] we can check in polynomial time whether
the A-modules 𝐾𝑋 and 𝐾𝑌 are isomorphic and, if so, compute an isomorphism 𝑓 : 𝐾𝑌 → 𝐾𝑋 . Then
Φ : Hom𝐴(𝐾𝑋, 𝐾𝑌 ) → End𝐴(𝐾𝑌 ), 𝑔 ↦→ 𝑔 ◦ 𝑓 is an isomorphism of End𝐴(𝐾𝑌 )-modules. Recall from
§3.1 that we consider HomΛ (𝑋,𝑌 ) as a subset of Hom𝐴(𝐾𝑋, 𝐾𝑌 ). Thus, by Proposition 3.1, the Λ-
lattices X and Y are isomorphic if and only if the full EndΛ (𝑌 )-lattice Φ(HomΛ(𝑋,𝑌 )) in End𝐴(𝐾𝑌 ) is
free of rank 1 and for every (any) free generator 𝛼 the morphism 𝛼◦ 𝑓 −1 : 𝑋 → 𝑌 is an isomorphism. �

Let J(𝐴) denote the Jacobson radical of A, and recall that 𝐴 := 𝐴/J(𝐴) is a semisimple K-algebra by
[CR81, (5.19)]. For any full Λ-lattice X in A, let 𝑋 denote its image under the canonical projection map
𝐴 → 𝐴. Note that Λ is an O-order in 𝐴.

Proposition 8.2. The problem IsPrincipal for an arbitrary finite-dimensional K-algebra is polynomial-
time reducible to IsPrincipal for a finite-dimensional semisimple K-algebra. More precisely, for a full
Λ-lattice X in A, the problem IsPrincipal is polynomial-time reducible to the problem IsPrincipal for the
full Λ-lattice 𝑋 in 𝐴.

Proof. The Jacobson radical of A can be computed in polynomial time by [FR85, 1.5 A]. The result
then follows from Theorem 3.4. �

The main algorithm of the present article is as follows.

Algorithm 8.3. Suppose that A is semisimple and satisfies hypothesis (H). Let X be a full Λ-lattice in
A. The following steps solve IsPrincipal(𝑋), that is, they determine whether there exists 𝛼 ∈ 𝑋 such that
𝑋 = Λ𝛼 and, if so, return such an element 𝛼.

(1) Determine the centre C of A, the decomposition 𝐴 =
∏

𝑖 𝐴𝑖 into simple K-algebras 𝐴𝑖 and, for
each i, an isomorphism 𝐴𝑖 � Mat𝑛𝑖 (𝐾𝑖).

(2) Compute a maximal O-order M in A containing Λ and its centre O𝐶 := M ∩ 𝐶.
(3) Compute the central primitive idempotents 𝑒𝑖 and the components M𝑖 := M𝑒𝑖 .
(4) Compute the central conductor 𝔤 := {𝑥 ∈ 𝐶 | 𝑥M ⊆ Λ} of Λ in M and 𝔣 := 𝔤M.
(5) Check whether M𝑋 is free over M, and if so, compute 𝛽 such that M𝑋 = M𝛽.
(6) Check whether X is locally free over Λ.
(7) Replace X by 𝑋𝜉, where 𝜉 ∈ 𝐴× is such that 𝑋𝜉 ⊆ Λ and 𝑋𝜉 + 𝔣 = Λ.
(8) Compute a set of generators for (Λ/𝔣)×.
(9) Let nr : (M/𝔣)× −→ (O𝐶/𝔤)× be the map of Lemma 4.4. Compute (O𝐶/𝔤)× as an abstract abelian

group and compute nr((Λ/𝔣)×) as a subgroup of (O𝐶/𝔤)×.
(10) Let 𝜋2 and 𝑓2 be the maps defined in the commutative diagram (4). Decide whether nr(𝛽) is in the

image of 𝜋2 ◦ 𝑓2, and if so, compute �̄� ∈ (Λ/𝔣)× and 𝑢 ∈ M× such that nr(𝛽𝑎) = nr(�̄�).
(11) Compute 𝑣 ∈ SL(M) such that 𝛽𝑎𝑢−1 = 𝑣.

If any of steps (5), (6) or (10) fail, then X is not free over Λ. If all these steps succeed, then 𝑋 = Λ𝛼
where 𝛼 := (𝑣𝑢)−1𝛽.

Proof of correctness of Algorithm 8.3. Failure of steps (5) or (6) immediately implies that X is not free
over Λ. Otherwise, we use the local bases computed in step (6) to replace X by 𝑋𝜉 in step (7), as
described in Proposition 6.8 and its proof. After successful completion of steps (1) to (7), we then can
and do assume that X is a locally free full Λ-lattice in A such that 𝑋 + 𝔣 = Λ and M𝑋 = M𝛽. These
are the assumptions needed for Theorem 4.5. Moreover, since A is semisimple and satisfies hypothesis
(H), the map 𝑓1 in diagram (4) is surjective by Theorem 7.9, and so Theorem 4.5 (b) can be applied.
Hence, X is free over Λ if and only if nr(𝛽) is contained in the image of 𝜋2 ◦ 𝑓2. This is precisely what
is checked in step (10). In addition, the second part of Theorem 4.5 (b) implies that 𝑋 = Λ𝛼 with 𝛼 as
at the end of Algorithm 8.3. �
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The following result analyses the complexity of Algorithm 8.3, and further details on each step are
given in the proof.

Theorem 8.4. LetΛ be anO-order in a finite-dimensional semisimple K-algebra A satisfying hypothesis
(H), and let 𝐾1, . . . , 𝐾𝑟 be the simple components of the centre of A. Let M be any choice of maximal
O-order in A containing Λ, and let 𝔥 = [M : Λ]O be the module index of Λ in M. Then for a full
Λ-lattice X in A, Algorithm 8.3 reduces the problem IsPrincipal(𝑋) in probabilistic polynomial time to

(a) Wedderburn(𝐴), the computation of the Wedderburn decomposition of A,
(b) Factor(Disc(Λ)), the factorisation of the discriminant of Λ,
(c) for each i with 1 ≤ 𝑖 ≤ 𝑟 , one instance of IsPrincipalO𝐾𝑖 ,
(d) for each i with 1 ≤ 𝑖 ≤ 𝑟 , UnitGroup(O𝐾𝑖 ),
(e) for each prime ideal divisor 𝔭 of 𝔥, the problem DLog for extensions of O/𝔭 and
(f) for each prime ideal divisor 𝔭 of 𝔥, the problem Primitive for extensions of O/𝔭.

Note that M and 𝔥 are not part of the input and 𝔥 is only needed for the above complexity statement.
Moreover, 𝔥 does not depend on the choice of M.

Proof. In the following, the steps refer to those of Algorithm 8.3. LetM be the maximal order computed
in step (2), and let 𝔣 be the ideal computed in step (4). Before analysing the steps, we make the following
observations. By [Rei03, (25.3)], Disc(M) is independent of the choice of M. Moreover, by [CR81,
(26.3)(iii)], we have Disc(Λ) = 𝔥2Disc(M), and so Disc(Λ) and 𝔥 are also independent of the choice
of M. Since 𝔥M ⊆ Λ, we have 𝔥 ⊆ 𝔤 for any choice of M. Therefore, Disc(Λ) ⊆ 𝔥 ⊆ 𝔤 and 𝔥Λ ⊆ 𝔣.
In particular, Factor(O ∩ 𝔣) and Factor(𝔤) reduce in polynomial time to Factor(Disc(Λ)).

Step (1) is an instance of Wedderburn. In step (2), the problem of computing a maximal O-order
M in A containing Λ reduces in probabilistic polynomial time to Factor(Disc(Λ)) by Proposition 6.1.
It is then trivial to determine O𝐶 = M ∩ 𝐶. Step (3) can be easily performed using the isomorphisms
𝐴𝑖 � Mat𝑛𝑖 (𝐾𝑖) from step (1). In step (4), the central conductor 𝔤 can be computed as the intersection
(M : Λ)𝑙 ∩ 𝐶, where (M : Λ)𝑙 := {𝑥 ∈ M | 𝑥M ⊆ Λ} is the left conductor of Λ into M. As the left
conductor can be determined using a pseudo-Hermite normal form computation (see [Fri00, (2.16)]),
this step can also be performed in polynomial time. Step (5) is probabilistic polynomial-time reducible to
one instance of IsPrincipalO𝐾𝑖 for each 1 ≤ 𝑖 ≤ 𝑟 , by Proposition 6.4. Steps (6) and (7) are probabilistic
polynomial-time reducible to Factor(O ∩ 𝔣) by Proposition 6.8.

Step (8): Proposition 6.11 shows that this is probabilistic polynomial-time reducible to Factor(𝔤)
and for each prime ideal divisor 𝔓 of 𝔤 at most d instances of Primitive in extensions of O/(O ∩𝔓) of
degree at most d. Now, for each prime ideal 𝔭 dividing 𝔤 ∩O, there are at most d prime ideals 𝔓 of O𝐶

satisfying 𝔓 ∩O = 𝔭. Finally, note that 𝔤 ∩O divides 𝔥.
Step (9): It follows from [Coh00, Algorithms 4.2.2 and 4.2.17] that the computation of generators

and the structure of (O𝐶/𝔤)× as an abelian group is polynomial-time reducible to Factor(𝔤) and for
each prime ideal divisor 𝔓 of 𝔤 one instance of Primitive in an extension O/(O ∩ 𝔓) of degree at
most d. Estimating the number of prime ideal divisors as in the previous paragraph shows that this part
contributes d instances of Primitive in (e). Let 𝑉 = {�̄�1, . . . , �̄�𝑚} be a set of generators of (Λ/𝔣)×. Let e
denote the exponent of (O𝐶/𝔤)×, and let G :=

∏𝑚
𝑖=1 Z/𝑒Z · �̄�𝑖 be the Z/𝑒Z-free abelian group on V. Let

𝜈 : G → (O𝐶/𝔤)× be the homomorphism induced by �̄�𝑖 ↦→ nr(�̄�𝑖). Then im(�̄�) = nr((Λ/𝔣)×) and we
apply algorithms for finite abelian groups (see [Coh00, §4.1]) to compute the image. For this we have to
solve the discrete logarithm in (O𝐶/𝔤)× for each of the m generators �̄�1, . . . , �̄�𝑚. By Proposition 6.11,
the number m is bounded by 5𝑑 [𝐾 : Q] log2 |O𝐶/𝔤|. Thus, the claim in part (f) follows from

|O𝐶/𝔤| ≤ |O𝐶/𝔥O𝐶 | =
𝑟∏
𝑖=1

|O𝐾𝑖/𝔥O𝐾𝑖 | =
𝑟∏
𝑖=1

N𝐾𝑖/Q(𝔥O𝐾𝑖 ) =
𝑟∏
𝑖=1

N𝐾/Q(𝔥) [𝐾𝑖 :𝐾 ]

= N𝐾/Q(𝔥) [𝐶:𝐾 ] ≤ N𝐾/Q(𝔥)𝑑 .
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Note that solving the discrete logarithm in (O𝐶/𝔤)× requires solving the discrete logarithm problem in
(O𝐶/𝔓)× for all prime ideals 𝔓 dividing 𝔤. As in step (8), for each prime ideal 𝔭 dividing 𝔤 ∩O there
are at most d prime ideals 𝔓 of O𝐶 with 𝔓 ∩ O = 𝔭 and for each of those prime ideals O𝐶/𝔓 is an
extension of O/𝔭 of degree at most d.

Step (10): The reduced norm map nr : M× → O×
𝐶 is surjective by Lemma 6.3. The computation

of O×
𝐶 is performed componentwise and thus reduces to UnitGroup(O𝐾𝑖 ) for 1 ≤ 𝑖 ≤ 𝑟 . We then

determine the image of the canonical projection O×
𝐶 → (O𝐶/𝔤)×/im(�̄�) as an abstract subgroup of

(O𝐶/𝔤)×/im(�̄�). This again requires an instance of solving the discrete logarithm in (O𝐶/𝔤)× for each
of the generators of O×

𝐶 . By Dirichlet’s unit theorem the number of these generators can be bounded by
d. Applying standard algorithms for finite abelian groups it is then straightforward to decide whether
nr(𝛽) is contained in the image of O×

𝐶 → (O𝐶/𝔤)×/im(�̄�) and, if so, to compute 𝜖 ∈ O×
𝐶 , 𝑎 ∈ (Λ/𝔣)×

such that 𝜖 ≡ 𝛽𝑎(mod 𝔤). An element 𝑢 ∈ M× such that nr(𝑢) = 𝜖 can be found using Lemma 6.3
in probabilistic polynomial time. Note that this step requires one more instance of solving the discrete
logarithm in (O𝐶/𝔤)×, which was already analysed in step (9).

Step (11): As the factorisation of 𝔤 is known, this can be done in probabilistic polynomial time by
Theorem 7.9. �

We now consider the case in which we allow certain precomputations that only depend on the order
Λ and not on the Λ-lattice X.
Corollary 8.5. Fix an O-order Λ in a finite-dimensional semisimple K-algebra A satisfying hypothesis
(H), and let 𝐾1, . . . , 𝐾𝑟 be the simple components of the centre of A. Then for a full Λ-lattice X in A, the
problem IsPrincipal(𝑋) reduces in probabilistic polynomial to IsPrincipal for O𝐾𝑖 , 1 ≤ 𝑖 ≤ 𝑟 , and DLog.
Proof. In Algorithm 8.3 we may consider all steps which do not depend on X as precomputations. Then
for each lattice X only steps (5), (6), (7), (10) and (11) have to be performed. The claim follows as in
the proof of Theorem 8.4. �

Remark 8.6. In Theorem 8.4 better results can be obtained by describing the complexity in terms of the
central conductor 𝔤 (which depends not only on the order Λ but also on the maximal order computed
during the algorithm) instead of 𝔥. More precisely, (e) and (f) can be replaced by

(e′) for each prime ideal divisor 𝔓 of 𝔤, the problem DLog for extensions of O/(O ∩𝔓),
(f′) for each prime ideal divisor 𝔓 of 𝔤, the problem Primitive for extensions of O/(O ∩𝔓).

Remark 8.7. By Remark 5.2, in Theorem 8.4, (a) can be replaced by
(a′) SplittingMatrixAlgebra(𝐴𝑖) for 1 ≤ 𝑖 ≤ 𝑟 , where 𝐴 =

⊕𝑟
𝑖=1 𝐴𝑖 is the decomposition into simple

K-algebras.
Note that we have formulated Theorem 8.4 using Wedderburn since for certain families of algebras, one
can directly solve Wedderburn in polynomial time (which would not necessarily be true after passing to
the simple components). This happens, for example, for certain algebras of the form 𝐴/J(𝐴) that appear
in the similarity problem for matrices over rings of integers of number fields (see §9.3).
Remark 8.8. In view of Remarks 5.1 and 5.2, as well as the reductions of Propositions 8.1 and 8.2,
the problems IsPrincipalΛ and IsIsomorphicΛ for orders Λ in finite-dimensional K-algebras A satisfying
hypothesis (H) reduces
(a) in probabilistic subexponential time to UnitGroup and IsPrincipal for rings of integers of number

fields, and Wedderburn or SplittingMatrixAlgebra,
(b) in quantum polynomial time to Wedderburn or SplittingMatrixAlgebra.

9. Application: similarity of matrices over rings of integers

After proving some general results on the similarity of matrices over commutative rings, we will give
an application of Algorithm 8.3 to the similarity problem for matrices over rings of integers of number
fields.
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9.1. Similarity of matrices over commutative rings

Let R be a commutative ring, and let 𝑛 ∈ Z>0. Recall that two matrices 𝐴, 𝐵 ∈ Mat𝑛 (𝑅) are said to be
similar over R if there exists a conjugating matrix 𝐶 ∈ GL𝑛 (𝑅) such that 𝐵 = 𝐶𝐴𝐶−1.

We will adopt the setup of Faddeev [Fad66]. For 𝐴, 𝐵 ∈ Mat𝑛 (𝑅) we define

𝐶𝑅 (𝐴, 𝐵) = {𝑋 ∈ Mat𝑛 (𝑅) | 𝑋𝐴 = 𝐵𝑋} and 𝐶𝑅 (𝐵) = 𝐶𝑅 (𝐵, 𝐵).

Note that 𝐶𝑅 (𝐵) is an R-algebra and that 𝐶𝑅 (𝐴, 𝐵) is a (left) 𝐶𝑅 (𝐵)-module.

Lemma 9.1. Suppose there exists 𝐶 ∈ GL𝑛 (𝑅) such that 𝐵 = 𝐶𝐴𝐶−1. Then the maps

𝜃𝐶 : 𝐶𝑅 (𝐵) −→ 𝐶𝑅 (𝐴, 𝐵), 𝑋 ↦−→ 𝑋𝐶,

𝜃𝐶−1 : 𝐶𝑅 (𝐴, 𝐵) −→ 𝐶𝑅 (𝐵), 𝑋 ↦−→ 𝑋𝐶−1,

are mutually inverse 𝐶𝑅 (𝐵)-module isomorphisms.

Proof. If 𝑋 ∈ 𝐶𝑅 (𝐵), then 𝐵(𝑋𝐶) = 𝑋𝐵𝐶 = 𝑋 (𝐶𝐴𝐶−1)𝐶 = (𝑋𝐶)𝐴 and so 𝑋𝐶 ∈ 𝐶𝑅 (𝐴, 𝐵). Hence,
the map 𝜃𝐶 is well defined. Similarly, the map 𝜃−1

𝐶 is also well defined and it is clear that 𝜃𝐶 and 𝜃𝐶−1

are mutually inverse. �

Proposition 9.2. Two matrices 𝐴, 𝐵 ∈ Mat𝑛 (𝑅) are similar over R if and only if

(a) the 𝐶𝑅 (𝐵)-module 𝐶𝑅 (𝐴, 𝐵) is free of rank 1, and
(b) every (any) free generator C of 𝐶𝑅 (𝐴, 𝐵) over 𝐶𝑅 (𝐵) is in GL𝑛 (𝑅).

Furthermore, when this is the case, C as in part (b) satisfies 𝐵 = 𝐶𝐴𝐶−1.

Proof. Suppose that (a) and (b) hold, and let C be a free generator of𝐶𝑅 (𝐴, 𝐵) over𝐶𝑅 (𝐵). In particular,
𝐶 ∈ 𝐶𝑅 (𝐴, 𝐵) ∩ GL𝑛 (𝑅), and it easily follows that 𝐵 = 𝐶𝐴𝐶−1. Suppose conversely that there exists
𝐶 ∈ GL𝑛 (𝑅) such that 𝐵 = 𝐶𝐴𝐶−1. Then 𝜃𝐶 is an isomorphism by Lemma 9.1, and so C is a free
generator of 𝐶𝑅 (𝐴, 𝐵) over 𝐶𝑅 (𝐵). Thus, (a) holds. Now, let D be any free generator of 𝐶𝑅 (𝐴, 𝐵) over
𝐶𝑅 (𝐵). Then there exists 𝐸 ∈ 𝐶𝑅 (𝐵)× ⊆ GL𝑛 (𝑅) such that 𝐷 = 𝐸𝐶 and so 𝐷 ∈ GL𝑛 (𝑅). Thus, (b)
holds. �

The following result was proven by Faddeev [Fad66, Theorem 2] in the case 𝑅 = Z, though it was
expressed in terms of ideals rather than modules. Moreover, Guralnick [Gur80, Theorem 6] observed
that the proof works for any integral domain. We include a short proof for the convenience of the reader
and for comparison as per Remark 9.4.

Proposition 9.3. Suppose that R is an integral domain. Two matrices 𝐴, 𝐵 ∈ Mat𝑛 (𝑅) are similar over
R if and only if

(a) the 𝐶𝑅 (𝐵)-module 𝐶𝑅 (𝐴, 𝐵) is free of rank 1, and
(b) for every maximal ideal 𝔭 of R, the matrices A and B are similar over 𝑅𝔭.

Furthermore, when this is the case, any free generator C of 𝐶𝑅 (𝐴, 𝐵) over 𝐶𝑅 (𝐵) satisfies 𝐵 = 𝐶𝐴𝐶−1.

Proof. Suppose that 𝐴, 𝐵 ∈ Mat𝑛 (𝑅) are similar over R. Then (b) clearly holds and (a) holds by
Proposition 9.2. Suppose conversely that (a) and (b) hold. Let C be a free generator of 𝐶𝑅 (𝐴, 𝐵) over
𝐶𝑅 (𝐵). Let 𝔭 be a maximal ideal of R. Then there exists 𝐶𝔭 ∈ GL𝑛 (𝑅𝔭) such that 𝐵 = 𝐶𝔭𝐴𝐶

−1
𝔭 and so

𝐶𝔭 ∈ 𝐶𝑅𝔭 (𝐴, 𝐵). Since C is also a free generator of 𝐶𝑅𝔭 (𝐴, 𝐵) over 𝐶𝑅𝔭 (𝐵), there exists 𝐷𝔭 ∈ 𝐶𝑅𝔭 (𝐵)
such that 𝐶𝔭 = 𝐷𝔭𝐶. Then det(𝐷𝔭) det(𝐶) = det(𝐶𝔭) ∈ 𝑅×

𝔭 and so det(𝐶) ∈ 𝑅×
𝔭 . Moreover, by [CR81,

(4.2)(iv)], we have 𝑅 = ∩𝔭𝑅𝔭 which implies that 𝑅× = ∩𝔭𝑅
×
𝔭 , where in both cases the intersection

ranges over all maximal ideals 𝔭 of R. Therefore, det(𝐶) ∈ 𝑅× and so 𝐶 ∈ GL𝑛 (𝑅). In particular,
𝐶 ∈ 𝐶𝑅 (𝐴, 𝐵) ∩ GL𝑛 (𝑅), and it easily follows that 𝐵 = 𝐶𝐴𝐶−1. �
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Remark 9.4. Propositions 9.2 and 9.3 and their proofs are analogues of Propositions 3.1 and 3.3,
respectively. Indeed, in the case that R is a Noetherian integral domain, the former can be deduced from
the latter, though it is easier to give more direct proofs of more general results. Moreover, as well as having
weaker hypotheses, Proposition 9.2 is better suited to algorithmic applications than Proposition 9.3.

9.2. The similarity problem in terms of modules over polynomial rings

Let R be a commutative ring, and let 𝑛 ∈ Z>0. Let 𝑅[𝑥] be a polynomial ring in one variable over R.
For 𝐴 ∈ Mat𝑛 (𝑅), we define 𝑇𝑅 (𝐴) to be the 𝑅[𝑥]-module 𝑅𝑛 with the action 𝑥𝑣 = 𝐴𝑣 for 𝑣 ∈ 𝑅𝑛.

Lemma 9.5. Let 𝐴, 𝐵, 𝐶 ∈ Mat𝑛 (𝑅). Define𝜓𝐴,𝐵,𝐶 : 𝑇𝑅 (𝐴) → 𝑇𝑅 (𝐵) by 𝑣 ↦→ 𝐶𝑣. Then𝐶 ∈ 𝐶𝑅 (𝐴, 𝐵)
if and only if 𝜓𝐴,𝐵,𝐶 is an 𝑅[𝑥]-module homomorphism. In particular, we have canonical isomorphisms

(a) 𝐶𝑅 (𝐴, 𝐵) � Hom𝑅 [𝑥 ] (𝑇𝑅 (𝐴), 𝑇𝑅 (𝐵)) of R-modules;
(b) 𝐶𝑅 (𝐴) � End𝑅 [𝑥 ] (𝑇𝑅 (𝐴)) of R-algebras.

Proof. The function 𝜓𝐴,𝐵,𝐶 is an 𝑅[𝑥]-module homomorphism if and only if 𝐶 (𝐴𝑣) = 𝐵(𝐶𝑣) for all
𝑣 ∈ 𝑅𝑛, which in turn is equivalent to 𝐶 ∈ 𝐶𝑅 (𝐴, 𝐵). This gives the first claim; the remaining claims
now follow easily. �

The following result is well known and is an easy consequence of Lemma 9.5.

Lemma 9.6. Let 𝐴, 𝐵, 𝐶 ∈ Mat𝑛 (𝑅). Then the following are equivalent:

(a) 𝐶 ∈ 𝐶𝑅 (𝐴, 𝐵) ∩ GL𝑛 (𝑅),
(b) 𝐶 ∈ GL𝑛 (𝑅) and 𝐵 = 𝐶𝐴𝐶−1,
(c) 𝜓𝐴,𝐵,𝐶 is an 𝑅[𝑥]-module isomorphism.

In particular, A and B are similar over R if and only if 𝑇𝑅 (𝐴) � 𝑇𝑅 (𝐵) as 𝑅[𝑥]-modules.

9.3. Jacobson radicals of certain endomorphism algebras

Let F be a field. We now explicitly compute the Jacobson radical J(End𝐹 [𝑥 ] (𝑉)) of End𝐹 [𝑥 ] (𝑉) for a
finitely generated 𝐹 [𝑥]-module V. The motivating application is Proposition 9.11 below.

Lemma 9.7. Let 𝑓 ∈ 𝐹 [𝑥] be an irreducible polynomial, and let 𝑗 , 𝑘 ∈ Z>0. Let

𝜆 ∈ Hom𝐹 [𝑥 ] (𝐹 [𝑥]/( 𝑓 𝑗 ), 𝐹 [𝑥]/( 𝑓 𝑘 )) and 𝜇 ∈ Hom𝐹 [𝑥 ] (𝐹 [𝑥]/( 𝑓 𝑘 ), 𝐹 [𝑥]/( 𝑓 𝑗 )).

(a) If 𝑗 ≤ 𝑘 then im(𝜆) ⊆ 𝑓 𝑘− 𝑗 ·
(
𝐹 [𝑥]/( 𝑓 𝑘 )

)
.

(b) For any choice of 𝑗 , 𝑘 we have im(𝜆 ◦ 𝜇) ⊆ 𝑓 |𝑘− 𝑗 | ·
(
𝐹 [𝑥]/( 𝑓 𝑘 )

)
.

Proof. Suppose 𝑗 ≤ 𝑘 . We have 𝜆(𝑥 + ( 𝑓 𝑗 )) = 𝑦 + ( 𝑓 𝑘 ) for some 𝑦 ∈ 𝐹 [𝑥]. Then

𝑓 𝑗 𝑦 + ( 𝑓 𝑘 ) = 𝑓 𝑗 (𝑦 + ( 𝑓 𝑘 )) = 𝑓 𝑗𝜆(𝑥 + 𝑓 𝑗 ) = 𝜆( 𝑓 𝑗𝑥 + ( 𝑓 𝑗 )) = 𝜆(0) = 0,

so 𝑓 𝑗 𝑦 ∈ ( 𝑓 𝑘 ) and hence 𝑦 ∈ ( 𝑓 𝑘− 𝑗 ). Thus, (a) follows from the fact that the image of 𝜆 is uniquely
determined by the image of 𝑥 + ( 𝑓 𝑗 ). Part (b) follows easily from (a). �

Proposition 9.8. Let 𝑓 ∈ 𝐹 [𝑥] be an irreducible polynomial. Let 𝑚 ∈ Z>0, let 𝑑1, . . . , 𝑑𝑚 ∈ Z≥0 and
let 𝑉 =

⊕𝑚
𝑗=1 (𝐹 [𝑥]/( 𝑓 𝑗 ))𝑑 𝑗 . Then we have a canonical isomorphism

End𝐹 [𝑥 ] (𝑉) � 𝐸 :=
𝑚⊕
𝑗=1

𝑚⊕
𝑘=1

𝑒 𝑗𝑘Hom𝐹 [𝑥 ] ((𝐹 [𝑥]/( 𝑓 𝑘 ))𝑑𝑘 , (𝐹 [𝑥]/( 𝑓 𝑗 ))𝑑 𝑗 ), (7)
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where the right-hand side denotes the 𝑚 × 𝑚 ‘matrix ring’ with ( 𝑗 , 𝑘)-th entries in
Hom𝐹 [𝑥 ] ((𝐹 [𝑥]/( 𝑓 𝑘 ))𝑑𝑘 , (𝐹 [𝑥]/( 𝑓 𝑗 ))𝑑 𝑗 ). For 1 ≤ 𝑗 , 𝑘 ≤ 𝑚, define 𝛾 𝑗𝑘 = 𝑓 if 𝑗 = 𝑘 and 𝛾 𝑗𝑘 = 1
otherwise. Then the isomorphism End𝐹 [𝑥 ] (𝑉) � 𝐸 induces isomorphisms

J(End𝐹 [𝑥 ] (𝑉)) � 𝐼 :=
𝑚⊕
𝑗=1

𝑚⊕
𝑘=1

𝑒 𝑗𝑘𝛾 𝑗𝑘Hom𝐹 [𝑥 ] ((𝐹 [𝑥]/( 𝑓 𝑘 ))𝑑𝑘 , (𝐹 [𝑥]/( 𝑓 𝑗 ))𝑑 𝑗 ), and (8)

End𝐹 [𝑥 ] (𝑉)/J(End𝐹 [𝑥 ] (𝑉)) � 𝐸/𝐼 �
𝑚∏
𝑗=1

Mat𝑑 𝑗 (𝐹 [𝑥]/( 𝑓 )). (9)

Proof. The decomposition (7) follows from standard properties of Homs and direct sums. It follows
from Lemma 9.7 (b) that I is a two-sided ideal of E. Moreover, it is straightforward to check that 𝐸/𝐼 is
canonically isomorphic to the right-hand side of equation (9). Thus, 𝐸/𝐼 is Artinian semisimple and so
J(𝐸/𝐼) = 0 by [CR81, (5.18)]. Hence, J(𝐸) ⊆ 𝐼 by [CR81, (5.6)(ii)]. Lemma 9.7 (a) and the definition
of 𝛾 𝑗𝑘 implies that each element 𝜆 = (𝜆 𝑗𝑘 ) ∈ 𝐼 is an upper triangular matrix in the sense that for 𝑗 ≥ 𝑘
the image of 𝜆 𝑗𝑘 is contained in 𝑓 · 𝐹 [𝑥]/( 𝑓 𝑗 ). Hence, for 𝜇 = (𝜇 𝑗𝑘 ) ∈ 𝐼𝑚 the image of each 𝜇 𝑗𝑘 is
contained in 𝑓 · 𝐹 [𝑥]/( 𝑓 𝑗 ). It follows that 𝐼𝑚2

= 0, and thus I is nilpotent. Thus, since E is Artinian,
𝐼 ⊆ J(𝐸) by [CR81, (5.15)]. Therefore, J(𝐸) = 𝐼, as claimed. �

Corollary 9.9. Let 𝑟 ∈ Z>0, and let𝑉 =
⊕𝑟

𝑖=1𝑉𝑖 , where𝑉𝑖 =
⊕𝑚𝑖

𝑗=1 (𝐹 [𝑥]/( 𝑓
𝑗
𝑖 ))

𝑑𝑖, 𝑗 for some𝑚𝑖 ∈ Z>0,
𝑑𝑖, 𝑗 ∈ Z≥0, and some distinct monic irreducible polynomials 𝑓𝑖 ∈ 𝐹 [𝑥]. Then there are canonical
isomorphisms

End𝐹 [𝑥 ] (𝑉) �
𝑟∏
𝑖=1

End𝐹 [𝑥 ] (𝑉𝑖) �
𝑟∏
𝑖=1

𝑚𝑖⊕
𝑗=1

𝑚𝑖⊕
𝑘=1

𝑒 𝑗𝑘Hom𝐹 [𝑥 ] ((𝐹 [𝑥]/( 𝑓 𝑘𝑖 ))𝑑𝑖,𝑘 , (𝐹 [𝑥]/( 𝑓
𝑗
𝑖 ))

𝑑𝑖, 𝑗 )

and

End𝐹 [𝑥 ] (𝑉)/J(End𝐹 [𝑥 ] (𝑉)) �
𝑟∏
𝑖=1

𝑚𝑖∏
𝑗=1

Mat𝑑𝑖, 𝑗 (𝐹 [𝑥]/( 𝑓𝑖)).

In particular, if F is a number field, then End𝐹 [𝑥 ] (𝑉) satisfies hypothesis (H).

Proof. The desired result follows from Proposition 9.8 together with the observation that
Hom𝐹 [𝑥 ] (𝑉𝑖 , 𝑉 𝑗 ) = 0 for 𝑖 ≠ 𝑗 . �

Proposition 9.10. Let 𝑛 ∈ Z>0, and let 𝐴 ∈ Mat𝑛 (𝐹).

(a) The minimal polynomial of A is squarefree if and only if 𝐶𝐹 (𝐴) is semisimple.
(b) The minimal polynomial of A is equal to the characteristic polynomial of A if and only if

𝐶𝐹 (𝐴)/J(𝐶𝐹 (𝐴)) is isomorphic to a finite product of fields.
(c) The characteristic polynomial of A is squarefree if and only if 𝐶𝐹 (𝐴) is isomorphic to a finite

product of fields.
(d) If A is nilpotent, then 𝐶𝐹 (𝐴)/J(𝐶𝐹 (𝐴)) is isomorphic to

∏𝑚
𝑗=1 Mat𝑑 𝑗 (𝐹) for some 𝑚, 𝑑1, . . . , 𝑑𝑚 ∈

Z>0.

Proof. Let 𝑓 ∈ 𝐹 [𝑥] denote the characteristic polynomial of A. It is a standard result in linear algebra
that there is an isomorphism of 𝐹 [𝑥]-modules

𝑇𝐹 (𝐴) � 𝐹 [𝑥]/(𝑔1) ⊕ · · · ⊕ 𝐹 [𝑥]/(𝑔𝑠), (10)

where 𝑔1, . . . , 𝑔𝑠 ∈ 𝐹 [𝑥] are the invariant factors of A and 𝑔1 | 𝑔2 | · · · | 𝑔𝑠 . Thus, 𝑔𝑠 is the minimal
polynomial of A and 𝑓 = 𝑔1 · · · 𝑔𝑠 . Moreover, by Lemma 9.5 (b), there is a canonical isomorphism
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𝐶𝐹 (𝐴) � End𝐹 [𝑥 ] (𝑉) of F-algebras, where 𝑉 := 𝑇𝐹 (𝐴). Let 𝑓1, . . . , 𝑓𝑟 ∈ 𝐹 [𝑥] denote the distinct
monic irreducible factors of f. Then there exists a decomposition 𝑉 =

⊕𝑟
𝑖=1𝑉𝑖 and isomorphisms

𝑉𝑖 �
⊕𝑚𝑖

𝑗=1 𝐹 [𝑥]/( 𝑓
𝑗
𝑖 )

𝑑𝑖, 𝑗 for some 𝑚𝑖 ∈ Z>0 and 𝑑𝑖, 𝑗 ∈ Z≥0. (a) Observe that 𝑔𝑠 is squarefree if and
only if each 𝑔𝑘 is squarefree if and only if 𝑚𝑖 = 1 for 𝑖 = 1, . . . , 𝑟 . By Corollary 9.9, this in turn is
equivalent to the triviality of J(End𝐹 [𝑥 ] (𝑉)), which is equivalent to the semisimplicity of End𝐹 [𝑥 ] (𝑉)
by [CR81, (5.18)]. (b) Observe that 𝑔𝑠 = 𝑓 if and only if 𝑠 = 1 if and only if 𝑑𝑖,1 = 1 for 𝑖 = 1, . . . , 𝑟 .
By Corollary 9.9, this in turn holds if and only if End𝐹 [𝑥 ] (𝑉)/J(End𝐹 [𝑥 ] (𝑉)) is isomorphic to a finite
product of fields. (c) This follows from the previous two parts, once one obverses that if f is squarefree
then it must be equal to 𝑔𝑠 . (d) If A is nilpotent, then f is some power of x, and so 𝑟 = 1 and 𝑓1 = 𝑥.
Thus the claim follows from Proposition 9.8 and the canonical isomorphism 𝐹 [𝑥]/(𝑥) � 𝐹. �

Proposition 9.11. Let K be a number field, let 𝑛 ∈ Z>0, and let 𝐴 ∈ Mat𝑛 (𝐾). Let f be the characteristic
polynomial of A, and let 𝑓 = 𝑓 𝑛1

1 · · · 𝑓 𝑛𝑟𝑟 be its factorisation, where 𝑓1, . . . , 𝑓𝑟 ∈ 𝐾 [𝑥] are distinct monic
irreducible polynomials and 𝑛𝑖 ∈ Z>0 for each i. Let 𝐾𝑖 = 𝐾 [𝑥]/( 𝑓𝑖) for 𝑖 = 1, . . . , 𝑟 . Then there exists
a polynomial-time algorithm that computes the factorisation of f, computes 𝐶𝐾 (𝐴) and J(𝐶𝐾 (𝐴)) and
computes an explicit homomorphism of K-algebras

𝜌 : 𝐶𝐾 (𝐴) −→ 𝐶𝐾 (𝐴)/J(𝐶𝐾 (𝐴)) �−→
𝑟∏
𝑖=1

𝑚𝑖∏
𝑗=1

Mat𝑑𝑖, 𝑗 (𝐾𝑖)

for some 𝑚𝑖 ∈ Z>0 and 𝑑𝑖, 𝑗 ∈ Z≥0 such that
∑𝑚𝑖

𝑗=1 𝑗 𝑑𝑖, 𝑗 = 𝑛𝑖 for each i. In particular, this solves
Wedderburn for 𝐶𝐾 (𝐴)/J(𝐶𝐾 (𝐴)), which satisfies hypothesis (H).
Proof. Assume the setup and notation of the proof of Proposition 9.10 with 𝐹 = 𝐾 . The isomorphism
of (10) is obtained when computing the rational canonical form, which can be performed in polynomial
time (see [Vil93, Theorem 4]). Moreover, polynomials in 𝐾 [𝑥] can be factored in polynomial time by
the algorithm of [Len83, (4.5) Theorem]. Thus, we can explicitly compute a decomposition 𝑇𝐾 (𝐴) =⊕𝑟

𝑖=1𝑉𝑖 and isomorphisms 𝑉𝑖 �
⊕𝑚𝑖

𝑗=1 (𝐾 [𝑥]/( 𝑓 𝑗𝑖 ))
𝑑𝑖, 𝑗 for some 𝑚𝑖 ∈ Z>0 and 𝑑𝑖, 𝑗 ∈ Z≥0. Note that,

for each i, we have
∑𝑚𝑖

𝑗=1 𝑗 𝑑𝑖, 𝑗 = 𝑛𝑖 since 𝑓 = 𝑔1 · · · 𝑔𝑠 . Since 𝐶𝐾 (𝐴) is canonically isomorphic to
End𝐾 [𝑥 ] (𝑇𝐾 (𝐴)) by Lemma 9.5 (b), the desired result now follows from Corollary 9.9. �

9.4. An algorithm for determining similarity and computing a conjugating matrix

We now consider the following problem.
Problem (IsSimilar). Given a number field K with ring of integers O = O𝐾 , an integer 𝑛 ∈ Z>0 and two
matrices 𝐴, 𝐵 ∈ Mat𝑛 (O), determine whether A and B are similar over O, and if so, return a conjugating
matrix 𝐶 ∈ GL𝑛 (O) such that 𝐵 = 𝐶𝐴𝐶−1.

Let 𝑛 ∈ Z>0, and let 𝐴, 𝐵 ∈ Mat𝑛 (Z). Assume that there exists 𝐷 ∈ GL𝑛 (Q) such that 𝐵 = 𝐷𝐴𝐷−1.
Thus, A and B have the same minimal polynomial 𝑓 ∈ Z[𝑥], and so the Z[𝑥]-modules 𝑇Z (𝐴) and 𝑇Z (𝐵)
are in fact Z[𝑥]/( 𝑓 )-lattices. In view of Lemma 9.6, this implies that IsSimilar over Z can be reduced to
the problem of determining whether the Z[𝑥]/( 𝑓 )-lattices 𝑇Z (𝐴) and 𝑇Z (𝐵) are isomorphic and, if so,
of computing an isomorphism between them.

Using this observation, Sarkisyan [Sar79] and Grunewald [Gru80] independently showed that the
conjugacy problem over Z for arbitrary pairs of matrices is decidable. Moreover, Applegate and Onishi
[AO81, AO82] considered the cases of 2×2 and 3×3 matrices, and Behn and Van der Merwe [BVdM02]
also considered the 2 × 2 case.

In the case that the characteristic polynomial of A (and B) is squarefree (and thus the minimal and
characteristic polynomials coincide), the above approach viaZ[𝑥]/( 𝑓 )-lattices is equivalent to a classical
result of Latimer–MacDuffee [LM33]. This last result was recently generalised in the dissertation of
Husert [Hus17] to the case where the minimal polynomial is squarefree but the characteristic polynomial
is arbitrary. See Proposition 9.10 for properties of the Q-algebra 𝐶Q(𝐴) in both of these special cases.
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For a discussion of practical algorithms that have been implemented on a computer, see §9.5.
Proposition 9.12. Let R be a Noetherian integral domain with field of fractions 𝐾 ≠ 𝑅. Let 𝑛 ∈ Z>0,
and let 𝐴, 𝐵 ∈ Mat𝑛 (𝑅). Suppose that 𝐷 ∈ GL𝑛 (𝐾) satisfies 𝐵 = 𝐷𝐴𝐷−1. Then A and B are similar
over R if and only if
(a) the 𝐶𝑅 (𝐵)-lattice 𝐶𝑅 (𝐴, 𝐵)𝐷−1 in 𝐶𝐾 (𝐵) is free of rank 1, and
(b) every (any) free generator 𝐶 ′ of 𝐶𝑅 (𝐴, 𝐵)𝐷−1 over 𝐶𝑅 (𝐵) satisfies 𝐶 ′𝐷 ∈ GL𝑛 (𝑅).
Furthermore, when this is the case, 𝐵 = 𝐶𝐴𝐶−1, where 𝐶 := 𝐶 ′𝐷.
Proof. By Lemma 9.1 the map 𝜃𝐷−1 : 𝐶𝐾 (𝐴, 𝐵) → 𝐶𝐾 (𝐵), 𝑋 ↦→ 𝑋𝐷−1 is an isomorphism of 𝐶𝐾 (𝐵)-
modules. Hence, the desired result follows from Proposition 9.2. �

The main algorithm of this section is as follows.
Algorithm 9.13. Let K be a number field with ring of integers O = O𝐾 , let 𝑛 ∈ Z>0 and let 𝐴, 𝐵 ∈
Mat𝑛 (O). The following steps solve IsSimilar for A and B, that is, they determine whether A and B are
similar over O, and if so, return an element 𝐶 ∈ GL𝑛 (O) such that 𝐵 = 𝐶𝐴𝐶−1.
(1) Check whether A and B are similar over K, and if so, compute 𝐷 ∈ GL𝑛 (𝐾) such that 𝐵 = 𝐷𝐴𝐷−1.

If not, then A and B are not similar over O.
(2) Compute 𝐶𝐾 (𝐵), J(𝐶𝐾 (𝐵)) and an explicit homomorphism of K-algebras

𝜌 : 𝐶𝐾 (𝐵) −→ 𝐶𝐾 (𝐵)/J(𝐶𝐾 (𝐵)) �−→
𝑡∏
𝑖=1

Mat𝑑𝑖 (𝐾𝑖),

where the 𝐾𝑖’s are (not necessarily distinct) finite field extensions of K.
(3) Check whether 𝜌(𝐶O (𝐴, 𝐵)𝐷−1) is a free 𝜌(𝐶O (𝐵))-lattice, and if so, compute a generator 𝐸 ∈

𝜌(𝐶O (𝐴, 𝐵)𝐷−1). If not, then A and B are not similar over O.
(4) Compute 𝐶 ′ ∈ 𝐶O (𝐴, 𝐵)𝐷−1 such that 𝜌(𝐶 ′) = 𝐸 .
(5) Check whether 𝐶 := 𝐶 ′𝐷 ∈ GL𝑛 (O). If so, then 𝐵 = 𝐶𝐴𝐶−1. If not, then A and B are not similar

over O.
Proof of correctness of Algorithm 9.13. If all steps succeed, then𝐶 ∈ 𝐶O (𝐴, 𝐵) ∩GL𝑛 (O) and it easily
follows that 𝐵 = 𝐶𝐴𝐶−1. It remains to show that if any of steps (1), (3) or (5) fail, then A and B are
not similar over O. If step (1) fails, then this is clear. If step (3) fails, then Theorem 3.4 (a) implies that
𝐶O (𝐴, 𝐵)𝐷−1 is not free over 𝐶O (𝐵), and the result follows from Proposition 9.12 (a). Finally, suppose
that step (5) fails, that is, 𝐶 ∉ GL𝑛 (O). If 𝐶 ′ is not a free generator of 𝐶O (𝐴, 𝐵)𝐷−1 over 𝐶O (𝐵), then
Theorem 3.4 (b) implies that 𝐶O (𝐴, 𝐵)𝐷−1 is not free over 𝐶O (𝐵), and again the result follows from
Proposition 9.12 (a). If 𝐶 ′ is a free generator of 𝐶O (𝐴, 𝐵)𝐷−1 over 𝐶O (𝐵), then the result follows from
Proposition 9.12 (b). �

The following result analyses the complexity of Algorithm 9.13, and further details on each step are
given in the proof.
Theorem 9.14. Let K be a number field with ring of integers O = O𝐾 , let 𝑛 ∈ Z>0 and let 𝐴, 𝐵 ∈
Mat𝑛 (O). Let 𝑓1, . . . , 𝑓𝑟 ∈ 𝐾 [𝑥] be the distinct monic irreducible factors of the characteristic polynomial
of B. For 𝑖 = 1, . . . , 𝑟 let 𝐾𝑖 = 𝐾 [𝑥]/( 𝑓𝑖). Let Λ be the image of 𝐶O (𝐵) under the projection 𝐶𝐾 (𝐵) →
𝐶𝐾 (𝐵)/J(𝐶𝐾 (𝐵)). Let M be any choice of maximal O-order in 𝐶𝐾 (𝐵)/J(𝐶𝐾 (𝐵)) containing Λ, and
let 𝔥 = [M : Λ]O be the module index of Λ in M. Then Algorithm 9.13 reduces the problem IsSimilar
for A and B in probabilistic polynomial time to
(a) Factor(Disc(Λ)), the factorisation of the discriminant of Λ,
(b) for each i with 1 ≤ 𝑖 ≤ 𝑟 , one instance of IsPrincipalO𝐾𝑖 ,
(c) for each i with 1 ≤ 𝑖 ≤ 𝑟 , UnitGroup(O𝐾𝑖 ),
(d) for each prime ideal divisor 𝔭 of 𝔥, the problem DLog for extensions of O/𝔭 and
(e) for each prime ideal divisor 𝔭 of 𝔥, the problem Primitive for extensions of O/𝔭.
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Note that M and 𝔥 are not part of the input and 𝔥 is only needed for the above complexity statement.
Moreover, 𝔥 does not depend on the choice of M.

Proof. In the following, the steps refer to those of Algorithm 9.13. Step (1) can be performed in polyno-
mial time by [CIK97, Theorem 2], and step (2) can be performed in polynomial time by Proposition 9.11.
Steps (4) and (5) are straightforward and can both be performed in polynomial time. Step (3) can be
performed using Algorithm 8.3, and so the desired result now follows from Theorem 8.4 after noting
that Wedderburn(𝐶𝐾 (𝐵)/J(𝐶𝐾 (𝐵))) was already performed in step (2). �

We also record the following two consequences of Remark 8.8.

Corollary 9.15. The problem IsSimilar reduces in probabilistic subexponential time to the problems
IsPrincipal and UnitGroup for rings of integers of number fields.

Corollary 9.16. There exists a polynomial quantum algorithm for solving IsSimilar.

9.5. Implementation of the algorithm

The algorithm for solving the principal ideal problem for orders in algebras satisfying hypothesis (H),
and its application to the similarity problem has been implemented using the computer algebra package
Hecke [FHHJ17] (also available in Oscar [OSC22]) and is included from version 0.13 onwards. The
implementation works for arbitrary pairs of matrices in Mat𝑛 (Z). We now give a brief comparison with
other algorithms and implementations, all of which are for pairs of matrices in Mat𝑛 (Z), subject to
certain further restrictions in cases (a)–(c). Recall that in Proposition 9.10 the restrictions in (b) and (c)
are rephrased in terms of the algebra 𝐶Q(𝐴).

(a) The algorithm of Opgenorth–Plesken–Schulz [OPS98] solves the similarity problem for pairs of
matrices of finite order.

(b) The algorithm of Husert [Hus17] solves the similarity problem for pairs of matrices, both of
which are either nilpotent or have squarefree minimal polynomial. However, the implementation is
restricted to nilpotent matrices and matrices with irreducible minimal polynomial.

(c) The algorithm of Marseglia [Mar20] solves the similarity problem for pairs of matrices with
squarefree characteristic polynomial (this condition implies that the minimal and characteristic
polynomials coincide).

(d) The algorithm of Eick–O’Brien and the second named author of the present article [EHO19] is based
on ideas of Grunewald [Gru80] and solves the similarity problem for arbitrary pairs of matrices.

All of the above algorithms (a)–(d) have been implemented in Magma [BCP97], but no formal
complexity analysis has been given for any of them. However, we can compare these with our algorithm
using timings and heuristic reasoning. All timings in the examples below were performed using a single
core of a 3.40 GHz Intel E5-2643 processor and under the assumption of GRH. Magma V2.23-3 was
used to run algorithms (a)–(d).

For random pairs of matrices of a given rational canonical form, our algorithm dramatically outper-
forms (a) and the algorithm for nilpotent matrices of (b). In the latter case this is not surprising since the
algorithm in question requires an exhaustive search among candidates within a large search space. In
the case of matrices with squarefree minimal polynomial, the bottleneck of algorithm (b) is a final enu-
meration over a set Λ/𝔣, which our algorithm avoids by means of the results of §6.6 (in particular, see
Proposition 6.11). In cases where the set Λ/𝔣 is large, our algorithm dramatically outperforms that of (b).

Example 9.17. Consider the two matrices

𝐴 =
��

0 1 0 0 0 0
−5336100 0 0 0 0 0

0 0 0 1 0 0
0 0 −5336100 0 0 0
0 0 0 0 0 1
0 0 0 0 −5336100 0

���, 𝐵 =
��

0 1 5 0 53361000 0
−5336100 0 40 −5 0 −53361000

0 0 −8 1 0 0
0 0 −5336164 8 0 0
0 0 0 0 0 1
0 0 0 0 −5336100 0

���,
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both with irreducible minimal polynomial 𝑓 = 𝑥2 + 5336100 and characteristic polynomial 𝑓 3. The
algorithm of (b) requires an enumeration over a set of size 2357947691 ≈ 109, thus rendering it
impractical for this example. However, the implementation of our algorithm requires 6 seconds to
recognise that A and B are similar over Z and to find a conjugating matrix. Note that𝐶Q (𝐴) � Mat3 (𝐾),
where 𝐾 = Q[𝑥]/(𝑥2 + 5336100).

Algorithm (c) is more restricted than (b) in that it requires the matrices in question to have squarefree
characteristic polynomial. However, in contrast to the squarefree minimal polynomial case of (b), it
avoids a final enumeration step, and thus it performs as well as our algorithm in this special case.

We have compared the implementation of our algorithm with that of algorithm (d) for a variety of
different examples and found that in all cases the former outperformed the latter, often dramatically.
However, we should mention that as a by-product, given a matrix 𝐴 ∈ Mat𝑛 (Z), algorithm (d) can be
used to determine generators of the arithmetic group 𝐶Z (𝐴)× = {𝑋 ∈ GL𝑛 (Z) | 𝑋𝐴 = 𝐴𝑋}. Various
examples in [EHO19] as well as the overall strategy of finding candidates in large search spaces suggest
that algorithm (d) has at least exponential complexity. We now review some of these examples from
[EHO19] and show how our algorithm fares in comparison.

Example 9.18 [EHO19, 6.3.2]. Consider the two matrices

𝐴 =

�����
−3 −1 3 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
−5 0 1 0 0 0 0 0 0
0 0 0 −3 −1 3 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 −5 0 1 0 0 0
0 0 0 0 0 0 −3 −1 3
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −5 0 1

������
, 𝐵 =

������
13 −15 16 24 −16 −7 −35 15 0
−3 44 −40 −71 62 28 157 −76 16
18 −15 −3 −7 −31 6 −226 129 −52
−69 72 −55 −78 86 18 355 −186 48
−75 98 −82 −124 117 35 406 −206 46
−45 19 −21 −22 10 1 49 −25 −3
24 −66 53 89 −89 −31 −289 147 −37
30 −78 61 102 −104 −35 −348 178 −45
24 11 −8 −23 26 14 58 −29 11

�������
,

both with irreducible minimal polynomial 𝑓 = 𝑥3 + 2𝑥2 + 13𝑥 − 1 and characteristic polynomial 𝑓 3. As
these are not equal, algorithm (c) cannot be applied in this situation. Moreover, algorithm (d) fails to run
in reasonable time because the search space is too large. However, the implementation of our algorithm
requires 10 seconds to recognise that A and B are similar over Z and to find a conjugating matrix. Note
that 𝐶Q(𝐴) � Mat3(𝐾), where 𝐾 = Q[𝑥]/( 𝑓 ).

Example 9.19 [EHO19, 6.3.3]. Consider the two matrices

𝐴 =
��

13 67 6 0 0 −1
0 1 3 0 0 0
0 0 1 0 0 0

−270 −1350 0 1 2 20
−135 −675 0 0 1 10
−27 −135 0 0 0 2

���, 𝐵 =
��

13 79 0 0 1 −76
0 1 0 0 0 3

−270 −1620 1 2 −20 1620
−135 −810 0 1 −10 810

27 162 0 0 2 −162
0 0 0 0 0 1

���,
both with minimal and characteristic polynomial equal to (𝑥−1)4 (𝑥2−15𝑥−1). As this is not squarefree,
algorithms (b) and (c) cannot be applied in this situation. Again, the search space for a certain subproblem
is too large, making the computation infeasible for algorithm (d). However, the implementation of our
algorithm finds a conjugating matrix in less than one second. Note that dimQ(𝐶Q(𝐴)) = 6 and

𝐶Q(𝐴)/J(𝐶Q (𝐴)) � Q × 𝐾,

where 𝐾 = Q[𝑥]/(𝑥2 − 15𝑥 − 1).

Example 9.20. Consider the two matrices

𝐴 =
��

1 −4 0 0 1 0
0 1 0 0 0 0
0 0 1 −3 −6 0
0 0 0 1 2 0
−4 16 −3 0 −5 −6
0 0 −37 0 −9 −55

���, 𝐵 =
��

−88 −4 0 −66 −51 32
−2683 225 326 −2670 1755 634
−2607 −666 −332 −525 −6747 2835

14 0 0 13 2 0
523 38 −3 330 440 −325
285 74 37 54 749 −314

���,
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both with minimal and characteristic polynomial (𝑥 − 1)2(𝑥4 + 58𝑥3 + 88𝑥2 + 176𝑥 + 1). As this is not
squarefree, algorithms (b) and (c) cannot be applied in this situation. Moreover, the implementation
of algorithm (d) requires approximately one hour to find a conjugating matrix. By contrast, the imple-
mentation of our algorithm finds such a matrix in less than one second. Note that dimQ(𝐶Q (𝐴)) = 6
and

𝐶Q(𝐴)/J(𝐶Q (𝐴)) � Q × 𝐾,

where 𝐾 = Q[𝑥]/(𝑥4 + 58𝑥3 + 88𝑥2 + 176𝑥 + 1).

10. Application: Galois module structure of rings of integers

An important motivation for Algorithm 8.3 and its predecessors is the investigation of the Galois
module structure of rings of integers. We only briefly recall the problem here and refer the reader to the
introduction of [HJ20] for a more detailed overview.

Let 𝐿/𝐾 be a finite Galois extension of number fields, and let 𝐺 = Gal(𝐿/𝐾). The classical normal
basis theorem says that 𝐿 � 𝐾 [𝐺] as 𝐾 [𝐺]-modules. A much more difficult problem is that of
determining whether the ring of integers O𝐿 is free over its so-called associated order A𝐿/𝐾 = {𝛼 ∈
𝐾 [𝐺] | 𝛼O𝐿 ⊆ O𝐿}. Note that if a prime 𝔭 of K is (at most) tamely ramified in 𝐿/𝐾 or is such that the
localised associated orderA𝐿/𝐾,𝔭 is maximal, then the localisationO𝐿,𝔭 is necessarily free over A𝐿/𝐾,𝔭.
In particular, O𝐿 is locally free over A𝐿/𝐾 if and only if O𝐿,𝔭 is free over A𝐿/𝐾,𝔭 for every prime 𝔭 of
K that is wildly ramified in 𝐿/𝐾 . In this situation, one can consider the class [O𝐿] in the locally free
class group Cl(A𝐿/𝐾 ). Moreover, if 𝐾 [𝐺] satisfies hypothesis (H), then every order in 𝐾 [𝐺] has the
so-called locally free cancellation property (this follows from Jacobinski’s cancellation theorem [CR87,
(51.24)]), and so O𝐿 is free over A𝐿/𝐾 if and only if it is locally free and the class [O𝐿] is the trivial
element of Cl(A𝐿/𝐾 ).

For an abstract finite group Γ, we say that 𝐿/𝐾 is a Γ-extension if it is a Galois extension such that
Gal(𝐿/𝐾) � Γ. Let Γ = 𝑆4 × 𝐶2, the direct product of the symmetric group on 4 letters and the cyclic
group of order 2. Since

Q[Γ] �
4∏
𝑖=1
Q ×

2∏
𝑗=1

Mat2(Q) ×
4∏
𝑘=1

Mat3(Q),

the algebra Q[Γ] satisfies hypothesis (H). Using the methods of [FHS19], we have constructed wildly
ramified Γ-extensions of Q of small discriminant. The wildly ramified Γ-extension of minimal discrim-
inant is 𝐿1 := 𝐾1(

√
92), where 𝐾1 is the 𝑆4-extension of Q defined by

𝑥24 + 2𝑥22 + 27𝑥20 + 112𝑥18 + 585𝑥16 + 338𝑥14 + 5767𝑥12

+ 4362𝑥10 + 1417𝑥8 − 76𝑥6 − 29𝑥4 − 6𝑥2 + 1 ∈ Q[𝑥] .

The field 𝐿1 has discriminant 284 ·2324 and is wildly ramified at 2. Moreover, the associated order A𝐿1/Q
has index 243 · 33 in a maximal order M satisfying A𝐿1/Q ⊆ M ⊆ Q[Gal(𝐿1/Q)] (note that this index
is independent of the choice of M). Using Algorithm 8.3 we have checked that O𝐿1 is free over A𝐿1/Q
and have also obtained an explicit generator (unfortunately, the coefficients are too large to reproduce
in print). The algorithms of [BB06, BW09] show that Cl(A𝐿1/Q) � 𝐶2. However, the algorithm of
[BW09] for solving the discrete logarithm problem in a locally free class group is restricted to the case
in which the order in question is a group ring or a maximal order, and so this approach does not allow
us to determine [O𝐿1 ] in Cl(A𝐿1/Q).

We have performed the same computation using Algorithm 8.3 described above for all wildly ramified
Γ-extensions 𝐿/Q with |Disc(𝐿) | ≤ 6048. For 686 out of these 2600 extensions, O𝐿 is locally free
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over A𝐿/Q, and in all of these cases, O𝐿 is in fact free over A𝐿/Q. It would be interesting to find a
proof of, or counterexample to, the assertion that the same phenomenon holds without the restriction on
|Disc(𝐿) |.

A. Weak approximation in probabilistic polynomial time

Let K be a number field with ring of integers O = O𝐾 . Let 𝔞 and 𝔟 be nonzero integral ideals of O.
A classical result (see [Coh00, Corollary 1.3.9]) asserts that there exists a deterministic algorithm for
computing 𝑥 ∈ 𝐾× such that 𝑥𝔞 is integral and coprime to 𝔟. If the factorisation of 𝔟, or equivalently,
of N(𝔟), is given, the algorithm runs in polynomial time. There also exists a probabilistic algorithm
[Coh00, Algorithm 1.3.14], which does not require the factorisation of 𝔟 or N(𝔟), but is not polynomial
time. The aim of this section is to combine the deterministic and probabilistic variants to obtain a
probabilistic polynomial-time algorithm. The approach is based on the following general form of the
constructive weak approximation theorem, which relies on ideas of [Bel04, Algorithm 6.15]. For a
nonzero prime ideal 𝔭 of O, let 𝑣𝔭 (−) denote the 𝔭-adic valuation.

Proposition A.1. There exists a probabilistic polynomial-time algorithm that given nonzero integral
ideals 𝔞 and 𝔟 of O returns an element 𝑥 ∈ 𝔞 with 𝑣𝔭 (𝑥) = 𝑣𝔭 (𝔞) for all prime ideals 𝔭 dividing 𝔟.

Proof. We adapt the proofs of [Bel04, Lemmas 6.14, 6.16], taking into account [Bel04, Remark 6.17
(2)]. For the rest of the proof, we fix a positive constant 0 < 𝐶 < 1. Let 𝑎 = min(𝔞 ∩ Z>0), let
𝑏 = min(𝔟 ∩Z>0) and let 𝑑 = [𝐾 : Q]. Note that if 𝑎 = 1 or 𝑏 = 1 or 𝑑 = 1, then we can just take 𝑥 = 𝑎.
Thus, we can and do assume that 𝑎, 𝑏, 𝑑 ≥ 2. We define 𝑦 ∈ R by the equality 𝐶𝑦 log(𝑦) = 𝑑 log(𝑏).
Then 𝑦 > 2 and we observe that y is polynomially bounded in terms of d and log(𝑏). Hence, we can
determine the set

𝑆 := {𝔭 ⊆ O prime such that 𝔭 ∩ Z = (𝑝) with a rational prime 𝑝 < 𝑦}

in polynomial time. We define ideals

𝔞0 =
∏
𝔭∈𝑆

𝔭𝑣𝔭 (𝔞) , 𝔟0 =
∏
𝔭∈𝑆

𝔭𝑣𝔭 (𝔟) .

Then 𝔞 = 𝔞0𝔞1 and 𝔟 = 𝔟0𝔟1 with integral ideals 𝔞1, 𝔟1 such that

𝔞0 + 𝔞1 = 𝔟0 + 𝔟1 = O,

which can be computed in polynomial time. We write 𝑏 = 𝑏0𝑏1 with

𝑏0 =
∏
𝑝<𝑦

𝑝𝑣𝑝 (𝑏) .

Since the factorisations of 𝔞0 and 𝔟0 are known, using the deterministic polynomial-time algorithm
[Coh00, Proposition 1.3.8] we can find 𝑥0 ∈ O with 𝑥0 ∈ 𝔞0 and 𝑣𝔭 (𝑥0) = 𝑣𝔭 (𝔞0) for all 𝔭 dividing 𝔟0.

We now show that we can find an element 𝑥1 ∈ 𝔞1 with 𝑣𝔭 (𝑥1) = 𝑣𝔭 (𝔞1) for all 𝔭 dividing 𝔟1 in
probabilistic polynomial time. For the rest of the proof, we will refer to such elements as good elements.
We will prove that a positive proportion (independent of 𝔞 and 𝔟) of elements of the finite abelian group
𝔞1/𝔞1𝔟1 are good. For a prime ideal 𝔭 dividing 𝔟1, let 𝐴𝔭 denote the set 𝔞1𝔭/𝔞1𝔟1. Then, for a set of
prime ideals T dividing 𝔟1, we have ���⋂

𝔭∈𝑇
𝐴𝔭

��� = N(𝔟1)/
∏
𝔭∈𝑇

N(𝔭).
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From the inclusion-exclusion principle it follows that

���⋃
𝔭 |𝔟1

𝐴𝔭

��� = N(𝔟1)
��1 −

∏
𝔭 |𝔟1

(
1 − 1

N(𝔭)

)���.
By definition, the lift of 𝑥 ∈ 𝔞1/𝔞1𝔟1 is good if and only if 𝑥 ∉

⋃
𝔭 |𝔟1 𝐴𝔭. Hence, the probability that (the

lift) of a random element of 𝔞1/𝔞1𝔟1 is good is∏
𝔭 |𝔟1

(
1 − 1

N(𝔭)

)
.

Now, set 𝐶1 := 𝑑 log(𝑏1)/(𝑦 log(𝑦)) ≤ 𝐶. Since there are at most 𝑑 log𝑦 (𝑏1) prime ideals 𝔭 dividing
𝔟1, each satisfying N(𝔭) ≥ 𝑦, we have∏

𝔭 |𝔟1 (1 − 1/N(𝔭)) ≥ (1 − 1/𝑦)𝑑 log𝑦 (𝑏1) ≥ exp(−1/𝑦 − 1/𝑦2)𝑑 log𝑦 (𝑏1) = exp(−𝐶1 − 𝐶1/𝑦)
≥ exp(−𝐶 (1 + 1/𝑦)) ≥ exp(−3𝐶/2).

Here the second inequality follows from 1 − 𝑥 ≥ exp(−𝑥 − 𝑥2) for 0 ≤ 𝑥 ≤ 1/2. Thus, we can find a
good element in probabilistic polynomial time.

Now, given 𝑥𝑖 ∈ 𝔞𝑖 with 𝑣𝔭 (𝑥𝑖) = 𝑣𝔭 (𝔞𝑖) for all primes 𝔭 dividing 𝔟𝑖 , we proceed as follows. For
𝑖 = 0, 1 let 𝔠𝑖 be the largest divisor of 𝔟𝑖 which is coprime to 𝔞. Note that each 𝔠𝑖 can be determined in
polynomial time by using only ideal sums and ideal division. Moreover, if 𝔭 is a prime ideal with 𝔭 | 𝔟𝑖
and 𝔭 � 𝔞, then 𝔭 | 𝔠𝑖 . Since 𝔞2

0𝔠0 + 𝔞2
1𝔠1 = O, we can determine elements 𝑒𝑖 ∈ 𝔞2

𝑖 𝔠𝑖 with 𝑒0 + 𝑒1 = 1 in
polynomial time. We now prove that the element

𝑥 := 𝑒0𝑥1 + 𝑒1𝑥0 ∈ 𝔞

satisfies 𝑣𝔭 (𝑥) = 𝑣𝔭 (𝔞) for all 𝔭 dividing 𝔟.
Case 1: 𝔭 � 𝔞. Assume that 𝔭 | 𝔟1. Then 𝔭 | 𝔠1 and hence 𝑒1 ∈ 𝔭, 𝑒0 ∉ 𝔭. Moreover,

𝑣𝔭 (𝑒0𝑥1) = 𝑣𝔭 (𝑒0) + 𝑣𝔭 (𝑥1) = 𝑣𝔭 (𝑒0) + 𝑣𝔭 (𝔞1) = 𝑣𝔭 (𝑒0) = 0,
𝑣𝔭 (𝑒1𝑥0) = 𝑣𝔭 (𝑒1) + 𝑣𝔭 (𝑥0) ≥ 𝑣𝔭 (𝑒1) > 0.

Hence, 𝑣𝔭 (𝑥) = min(𝑣𝔭 (𝑒0𝑥1), 𝑣𝔭 (𝑒1𝑥0)) = 0 = 𝑣𝔭 (𝔞). The subcase 𝔭 | 𝔟0 is similar.
Case 2: 𝔭 | 𝔞. Assume that 𝔭 | 𝔟1. Then 𝔭 ∉ 𝑆 and hence 𝔭 � 𝔞0. It follows that 𝔭 | 𝔞1, and hence

𝑒0 ∉ 𝔭, 𝑒1 ∈ 𝔭. Moreover,

𝑣𝔭 (𝑒0𝑥1) = 𝑣𝔭 (𝑒0) + 𝑣𝔭 (𝑥1) = 𝑣𝔭 (𝑒0) + 𝑣𝔭 (𝔞1) = 𝑣𝔭 (𝑒0) + 𝑣𝔭 (𝔞) = 𝑣𝔭 (𝔞),
𝑣𝔭 (𝑒1𝑥0) = 𝑣𝔭 (𝑒1) + 𝑣𝔭 (𝑥0) ≥ 𝑣𝔭 (𝑒1) ≥ 2𝑣𝔭 (𝔞1) > 𝑣𝔭 (𝔞1) = 𝑣𝔭 (𝔞).

Hence, 𝑣𝔭 (𝑥) = min(𝑣𝔭 (𝑒0𝑥1), 𝑣𝔭 (𝑒1𝑥0)) = 𝑣𝔭 (𝔞). The subcase 𝔭 | 𝔟0 is similar. �

Corollary A.2. There exists a probabilistic polynomial-time algorithm that given nonzero integral
ideals 𝔞 and 𝔟 of O returns an element 𝑥 ∈ 𝐾× such that 𝑥𝔞 is integral and coprime to 𝔟.

Proof. We need to find an element 𝑥 ∈ 𝔞−1 such that 𝑣𝔭 (𝑥) = 𝑣𝔭 (𝔞−1) for all prime ideals 𝔭 dividing
𝔟. Setting 𝑎 = min(𝔞 ∩ Z>0) to be the minimum of 𝔞, this is equivalent to 𝑣𝔭 (𝑎𝑥) = 𝑣𝔭 (𝑎𝔞−1) for all 𝔭
dividing 𝔟. As 𝑎𝔞−1 is integral, the result follows from Proposition A.1 applied to 𝑎𝔞−1 and 𝔟. �

Corollary A.3. There exists a probabilistic polynomial-time algorithm that, given a generating set of
an O-lattice 𝑀 ⊆ 𝐾𝑛 of rank n, determines a Steinitz form of M, that is, elements 𝑤1, . . . , 𝑤𝑛 ∈ 𝐾𝑛 and
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a fractional ideal 𝔞 of O such that

𝑀 = O𝑤1 ⊕ · · · ⊕ O𝑤𝑛−1 ⊕ 𝔞𝑤𝑛.

Proof. A pseudo-Hermite normal form can be determined in probabilistic polynomial time by [BFH17,
Theorem 34]. The reduction to the Steinitz form is described in [Coh00, Lemma 1.2.20] and requires the
computation of coprime representatives of ideal classes. Thus, the claim follows from Corollary A.2. �
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