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The goal of this work is to generate large statistically representative data sets to train
machine learning models for disruption prediction provided by data from few existing
discharges. Such a comprehensive training database is important to achieve satisfying and
reliable prediction results in artificial neural network classifiers. Here, we aim for a robust
augmentation of the training database for multivariate time series data using Student t
process regression. We apply Student t process regression in a state space formulation via
Bayesian filtering to tackle challenges imposed by outliers and noise in the training data
set and to reduce the computational complexity. Thus, the method can also be used if the
time resolution is high. We use an uncorrelated model for each dimension and impose
correlations afterwards via colouring transformations. We demonstrate the efficacy of our
approach on plasma diagnostics data of three different disruption classes from the DIII-D
tokamak. To evaluate if the distribution of the generated data is similar to the training
data, we additionally perform statistical analyses using methods from time series analysis,
descriptive statistics and classic machine learning clustering algorithms.

Key words: fusion plasma, plasma instabilities

1. Introduction

Disruptions pose serious challenges to the operation and design of tokamaks. Due
to rapidly growing instabilities, thermal and magnetic energy is rapidly lost during a
disruption, the magnetic confinement of the plasma is destroyed and energy is deposited
into the confining vessel, potentially causing serious damages. Hence, to maintain a
reliable fusion operation, disruption mitigation mechanisms should be triggered with
sufficient warning time prior to the disruption. Recent advances on real-time disruption
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prediction have been made using machine learning (Berkery et al. 2017; Rea & Granetz
2018; Kates-Harbeck, Svyatkovskiy & Tang 2019; Pau et al. 2019; Rea et al. 2019, 2020;
Aymerich et al. 2022). Disruption prediction is a challenging task for various reasons.
One of them is the imbalanced data situation; for some disruption classes, only a few
measurements are available, making it difficult to obtain robust results. This is challenging,
especially when working with neural networks, as they require a large training data set in
order to give satisfying results and to avoid overfitting (see e.g. Aggarwal 2018). However,
generating such an amount of training data from additional discharges is expensive and
also potentially harmful for the reactor. Particularly with regard to future reactors such as
ITER or SPARC, a sufficient data set will not be available at the time these reactors start
operating.
Data augmentation is one possibility to balance the training data set by creating rare

disruption events and thereby improving the prediction performance of machine learning
models. The aim of data augmentation is to produce an arbitrarily large number of artificial
samples that have the same statistical properties as the original small data set. Especially
in the context of image classification, data augmentation is a widely used technique
to improve the prediction accuracy and avoid overfitting (Shorten & Khoshgoftaar
2019). Commonly used methods are random transformation-based approaches, such as
cropping or flipping. However, these methods are not expedient for the task at hand,
as time dependencies and the causal structure of physical signals are destroyed by such
transformations (Iwana & Uchida 2021; Wen et al. 2021). More elaborate methods for
multivariate time series generation using neural networks (Yoon, Jarrett & van der Schaar
2019) require substantially more samples per class than usually available for disruption
prediction. Other advanced data augmentation methods are based on decomposition into
trend, seasonal/periodic signal and noise (Cleveland et al. 1990;Wen et al. 2019) or involve
statistical modelling of the dynamics using, e.g. mixture autoregressive models (Kang,
Hyndman & Li 2020).
Here, we tackle the above-mentioned challenges by relying on a non-parametric

Bayesian approach to design the multivariate surrogate model based on Student t process
regression (Shah, Wilson & Ghahramani 2014; Roth et al. 2017) to generate additional
data. This model is closely related to the more commonly used Gaussian process
regression (Williams & Rasmussen 1996). One drawback of standard Gaussian processes
regression is the assumption of Gaussian noise, which is inaccurate due to outliers in
the present application case. This results in unreliable uncertainty estimates. There have
been attempts to make Gaussian process regression robust against outliers by using a
Student t distributed noise model and relying on approximate inference (Neal 1997;
Vanhatalo, Jylanki & Vehtari 2009). However, our approach rather builds on Student t
processes with an analytic inference scheme (Shah et al. 2014) that also allows a heavy
tailed noise distribution and gives robust results even for noisy data corrupted by outliers.
Another challenge imposed by high-resolution time series data is the computational

complexity of multivariate Gaussian or Student t process regression of O(N3), where
N = DT is the number of training data points given by the product of dimensions D and
time steps T of the multivariate time series. For typical values of N > 1000, traditional
regression requires too much computing time. We instead use the state space formulation
of a Student t process as a linear time invariant stochastic differential equation, which
can be solved using a corresponding filter and smoother (Solin & Särkkä 2015). In the
case of a Gaussian process, the analogous approach is the well-known Kalman filter and
Rauch–Tung–Striebel (RTS) smoother (Särkkä 2013; Särkkä & Solin 2019). This ansatz
reduces the computational complexity to O(N), making it also suitable for high-resolution
time series.
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Here, we are working with a multi-output state space model to generate multivariate
time series. We first assume that dimensions of the multivariate time series are not
correlated. This is done to avoid the requirement of optimizing all hyperparameters at
the same time, which is practically unfeasible due to the limited amount of available
data. To still account for signal interdependencies, we then induce correlations and
cross-correlations via colouring transformations in a post-processing step.
To balance the training data set, we use several local surrogate models to generate data

coming from different disruption classes. From a small set – usually less than 10 discharges
– of multivariate time series withDmeasurement signals coming from one disruption class
with similar operating conditions, we estimate the posterior distribution. We then sample
from the trained model in order to generate similar data that enlarge the training database.
To evaluate if the generated samples are from the same distribution as the training data,
we use several methods from time series analysis, descriptive statistics and clustering
algorithms to show that generated and training samples are almost indistinguishable.

2. Methods
2.1. Student t processes

Student t processes (TPs) are a generalization of the widely used Gaussian processes
(GPs) (Williams & Rasmussen 1996; Shah et al. 2014). TPs allow for a heavy tailed
noise distribution (estimated by an additional hyperparameter ν > 2) and therefore put
less weight on outliers compared with GPs (Shah et al. 2014; Roth et al. 2017). This is
illustrated in figure 1 for a test case of synthetic data corrupted by outliers. As in GP
regression, we consider a set of N training observationsD = {(ti, yi)}Ti=1 of scalar function
values yi = f (ti) plus measurement noise at training points ti with i = 0, 1, . . . ,T (in our
case, time). Wemodel these data points using a TP with zero mean and covariance function
k(t, t′),

f (t) ∼ T P(0, k(t, t′), ν). (2.1)

Similar to the GP, a kernel function k(t, t′) quantifies the covariance between values of f at
times (t, t′) and yields an N × N covariance matrix K with components K ij = k(ti, tj) for
the random vector of all observed yi. Kernel hyperparameters determine further details,
e.g. a length scale l quantifies how fast correlations vanish with increasing distance in t.
The additional hyperparameter ν > 2 corresponds to the degrees of freedom that specify
the noise distribution. The predicted distribution of a scalar output f (t∗) at test point t∗ is
given in closed form by

E[ f (t∗)] = k�
∗ K

−1
y y, (2.2)

V[ f (t∗)] = ν − 2 + y�K−1
y y

ν − 2 + N
(k∗∗ − k�

∗ K
−1
y k∗), (2.3)

where K y = K + σ 2
n I is the measurement noise parametrized by the noise variance σ 2

n .
Here, k∗ is an N-dimensional vector with the ith entry being k(t∗, ti); k∗∗ = k(t∗, t∗)
describes the covariance between training and test data and the variance at the test point
t∗. In contrast to GP regression, the posterior variance V[ f (t∗)] of the prediction explicitly
depends on training observations by taking data variability into account and results in
more reliable uncertainty estimates. An analogous expression to (2.3) is obtained for the
covariance matrix between predictions at multiple t∗ (Shah et al. 2014).
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(b)(a)

FIGURE 1. Predicted mean and 95% confidence band with (a) GP and (b) TP trained on
N = 100 training data points following f (t) = sin(2t) cos(0.4t) corrupted by Gaussian noise
0.1N (0, 1), with several outliers.

2.2. State space formulation
As in GP regression, the computational complexity increases with O(N3), as an inversion
of the covariance matrix via Cholesky factorization is necessary to train TPs (Williams &
Rasmussen 1996). This makes GP and also TP regression unfavourable for high-resolution
time series data. However, as shown by Solin & Särkkä (2015), the TP regression problem
can be reformulated as an mth-order linear time invariant stochastic differential equation
(SDE)

df̂ (t)
dt

= F f̂ (t) + Lw(t), (2.4)

f (ti) = H f̂ (ti), (2.5)

where f̂ (t) = ( f (t), df (t)/dt, . . . , dm−1f (t)/dtm−1)�, the feedback matrix F and noise
effect matrix L are derived from the underlying TP, H = (1, 0, . . . , 0) is the measurement
or observation matrix and w(t) is a vector of white noise processes with spectral density
γQ, where γ is a scaling factor (Solin & Särkkä 2015).
To solve this SDE for discrete points in time by estimating the posterior distribution

p(ŷ0:T |y1:T) of the latent state ŷ0:T given noisy observations y1:T , we use the corresponding
Student t filter and smoother as outlined in Solin & Särkkä (2015). Here, the posterior is
estimated by using marginal distributions: (i) filtering distribution p(ŷt|y1:t) given by the
update step in Algorithm 1, (ii) prediction distribution p(ŷt+k|y1:t) given by the prediction
step in Algorithm 1 for k steps after the current time step t and (iii) smoothing distributions
p(ŷt|y1:T) for t < T given by Algorithm 2 (Särkkä 2013). The initial distribution is
determined by the prior state mean given by the measurements at t = 0 and prior state
covariance P0 given by the stationary covariance (Solin & Särkkä 2015). The augmented
states df /dt that are not measured and noise are initialized with 0.
For example, the state space formulation of the Matérn 3/2 kernel is given by the

following expressions for feedback, noise effect matrix and spectral density (Särkkä &
Solin 2019):

F =
⎛
⎝ 0 1 0

−λ2 −2λ 0
0 0 −∞

⎞
⎠ , P0 =

⎛
⎝σ 2 0 0

0 σ 2λ2 0
0 0 σ 2

n

⎞
⎠ , H = (

1 0 0
)
, L =

⎛
⎝0
1
0

⎞
⎠ ,

(2.6a–d)
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where λ = √
3/l. Hyperparameters l, σ 2, σ 2

n and ν needed in the Student t filter algorithm
are estimated by minimizing the negative log likelihood (Solin & Särkkä 2015). The
log likelihood is sequentially calculated using the Student t filter (Algorithm 1). When
the hyperparameters are optimized, the predictive distribution is first calculated via
Algorithm 1 and then smoothed using Algorithm 2. In order to include the noise model
with σ 2

n corresponding to K y = K + σ 2
n I in traditional TP regression, the SDE is directly

augmented by the entangled noise model. As the model is not only augmented with the
noise model, but also with the first derivative of the target function we want to predict, we
can immediately infer df (t)/dt from the given observations y.
Here, the task at hand concerns multivariate time series Y with multiple measurements

n with D dimensions where the ith row is yi = f (ti) at every time step ti. To facilitate
the training of the model, we consider an uncorrelated model, such that the associated
random processes are not correlated. In traditional GP/TP regression, this corresponds to a
multi-output model with a block-diagonal covariance matrix. The multi-output state space
model to estimate p(Ŷ 0:T |Y 1:T) is built by stacking the univariate SDEmodels resulting in a
block-diagonal structure for feedback and covariance matrices. Then, the dynamics of yi is
independent. We sample uncorrelated multivariate time series from this model and apply
colouring transformations in a following post-processing step to account for correlations
(§ 2.4). Each dimension has its own set of hyperparameters in order to grasp the dynamics
that happen on different time scales. The measurement covariance matrix R (Algorithm 1)
is estimated using the covariance of n measurements for each dimension at every time
step.

2.3. Student t sampler
To sample from the estimated posterior distribution, we employ a Student t sampler, which
is a modified version of the sampling technique presented by Durbin & Koopman (2002).
First, we draw a t distributed random sequence X̂ 0:T = x̂i,0:T from the prior estimated
by the trained Student t model. These sequences are initialized by T (0,P0) and then
filtered using Algorithm 1 and smoothed via Algorithm 2, which yields E(X̂ 0:T |Y+

1:T)

where Y+
1:T = HX̂ 0:T , with the stacked measurement matrix H = (I, 0, 0) that extracts only

the first component of x̂t in every time step t. Here, Y+
1:T are data associated with the

filtered and smoothed sequence X̂ 0:T given by (A2). Finally, to obtain a random sequence
Ȳ 0:T = ȳi,0:T ∼ p(Ŷ 0:T |Y 1:T), we combine

Ȳ 1:T = H(E(Ŷ 0:T |Y 1:T) + X̂ 0:T − E(X̂ 0:T |Y+
1:T)), (2.7)

where H extracts the first component of ŷt in every time step t. This procedure gives a
D-dimensional multivariate time series for T time steps.

2.4. Post-processing
Given the trained model, we sample data Ȳ 1:T from the estimated posterior, where rows
are dimensions ȳi and columns are time steps; Ȳ 1:T can be split into a mean given by
the smoothing distribution and deviations due to the sampling. Correlations between
dimensions D of the generated data are not reproduced correctly with the uncorrelated
model. However, with three different post-processing methods of increasing complexity
compared in the results, we aim to handle correlations.
We thus want to inscribe the average covariance Σ over all samples empirically

observed in the training data Y 1:T into the generated data Ȳ 1:T . However, the covariance
matrix Σ̄ of Ȳ 1:T has small non-zero off-diagonal elements. Therefore, we first perform a
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Zero Components Analysis (ZCA) whitening (also known as Mahalanobis) transformation
(see e.g. Kessy, Lewin & Strimmer 2018):

Z = Σ̄
−1/2

Ȳ . (2.8)

The transformed data Z have a diagonal covariance matrix ΛZ, with unit variances on the
diagonal. We then colour the generated data via a colouring transformation (Kessy et al.
2018)

Ỹ = Σ1/2Z = Σ1/2Σ̄
−1/2

Ȳ , (2.9)

obtaining data Ỹ , which now have the same (temporally local) covariance as the training
data Y .
Another possibility is to directly take the distribution of the training data covariance

matrix Σ over samples into account by using samples from a corresponding multivariate
Gaussian distribution as data covariance matrices. This generates variation in the
covariance of the generated data, especially if there are local differences between the
samples. However, on average for a large enough sample size, we recover the training
data covariance matrix Σ .
To also take time-lagged correlations into account, we must adjust not only covariances

but also cross-covariances in our generated data. Therefore, we use the cross-covariance
matrix given by

Σ̄ c,rs(t1, t2) = E[(ȳr,t1 − μr,t1)(ȳs,t2 − μs,t2)], (2.10)

where the expected value E[·] is estimated by averaging over all combinations of lags
t1 − t2 in addition to the sample mean. Here,μi,t is the expected value of ȳi,t. To decorrelate
and colour the data in the way described above, we formally use a global covariance matrix
Σg of size DT × DT involving correlations both over time and across dimensions of the
multivariate time series. The global covariance matrix is a periodic block matrix given by

Σg,(t1D+r)(t2D+s) = Σ c,rs(t1, t2) (2.11)

for the cross-covariance Σ c with lag. The generated data is coloured using the global
covariance matrix:

Ỹ = Σ1/2
g Z = Σ1/2

g Σg
−1/2

Ȳ . (2.12)

This incorporates the empirical cross-covariance for all time lags and between all
dimensions D of the generated data.

3. Evaluation of generated data

As the generated data serve as augmented training data for later analyses, statistical
properties of the original training data should be reflected in the generated data. Therefore,
we perform statistical tests to check if training and generated share key statistical
properties.

3.1. Distribution and Wasserstein distance
To measure the distance between the distribution of the training and the generated data,
we use the Wasserstein-1 metric (Villani 2008)

W1(P,V) = inf
γ∈Γ (P,V)

∫
R×R

|x − y| dγ (x, y), (3.1)

where Γ (P,V) denotes the set of all probability distributions on R × R, with P,V being
its marginals. The minimizer γ of (3.1) denotes the optimal transport plan to transport
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P to V . We compare each signal separately and average the corresponding Wasserstein
distances. Although the problem concerns time series data, we discard all time information
and only consider the global distribution of the data due to the small amount of available
training data samples.

3.2. Maximum mean discrepancy two-sample test
In addition to the Wasserstein distance, we perform the kernel two-sample test (Gretton
et al. 2012) for each signal (again discarding time information). The null hypothesis we
want to test is that both n training data yi,1:T and m generated data samples ỹi,1:T follow the
same distribution P. We use the maximum mean discrepancy (MMD) test statistic via a
kernel g

MMD2 = 1
n(n − 1)

n∑
i,j=1

g(yi,1:T, yj,1:T) + 1
m(m − 1)

m∑
i,j=1

g(ỹi,1:T, ỹi,1:T)

− 2
nm

n∑
i=1

m∑
j=1

g(yi,1:T, ỹi,1:T), (3.2)

where g(x, y) = exp(−||x − y||2/(2σ 2)) with σ = Median(|Υi − Υj|)/2 and Υ is the
combined sample of yi,1:T and ỹi,1:T . To estimate a threshold for the acceptance of the null
hypothesis for a given confidence level, bootstrapping is performed via mixing samples
yi,1:T and ỹi,1:T , which generates a distribution with 10 000 samples that satisfies the
null hypothesis. Finally, we can estimate a p-value for the MMD of the generated data
distributions.

3.3. Auto- and cross-correlation
To evaluate if the generated data reflect the temporal dependencies of the training data, we
calculate auto- and cross-correlations ρrs for training and generated data by normalizing
the cross-covariance Σ c in (2.10) by 1/(σr,t1σs,t2). Here, σs,t is the standard deviation of
ỹs,t. If r = s, this diagnostic becomes the auto-correlation – see, e.g. Park (2017). For
t1 = t2, the local correlation matrix follows. We evaluate the mean squared error (MSE)
to the auto- and cross-correlation of the training data. Evidently, the global colouring
transformation (2.10) produces a perfect match in this diagnostic.

3.4. Power spectral density
All frequencies that are present in the training data set should also appear in the generated
data. This can be evaluated using the power spectral density (PSD), which provides an
estimate of power distribution across the frequency of a signal. We evaluate the mean
squared error between the PSD of the training data and generated data.

3.5. Embedding via kernel principal component analysis
We apply two-dimensional (2-D) kernel principal component analysis (PCA) on the
training data with flattened temporal dimension and project the generated data onto the first
two principal components of the training data to evaluate the embedding and visualize if
both training and generated data lie on the same submanifold (Schölkopf, Smola &Müller
1998). In all test cases, a polynomial kernel of degree 3 with optimized kernel coefficient
(minimization of the reconstruction error) is used.
The distance between the embedded distributions of training and generated data is

measured by using the slicedWasserstein distance that takes advantage of the very efficient
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calculation of 1-D Wasserstein distances (Bonneel et al. 2015; Flamary et al. 2021).
The multivariate distribution is sliced and randomly projected on a 1-D subspace, and
the corresponding 1-D Wasserstein distances are averaged to obtain an estimation for the
multivariate distribution. With an increasing number of projections, the sliced Wasserstein
distance converges. Here, we use 103 projections to estimate the distanceWemb between the
embedded distributions.

3.6. Multivariate functional PCA
For the evaluation of the correctly represented temporal evolution of the generated data, we
apply multivariate functional principal component analysis (mfPCA) on the training data
and project the generated data onto the eigenbasis of the training data (Happ & Greven
2018). Then, we reconstruct both training and generated data with the same eigenbasis and
evaluate the variance of the residuals.

3.7. Dynamic time warping
For time series comparison, dynamic time warping (DTW) is widely used to measure the
similarity between two temporal sequences yi,1:T and ỹj,1:T (Berndt & Clifford 1994). This
metric is formulated as an optimization problem

DTW(yi,1:T, ỹj,1:T) = min
γ

√ ∑
(i,j)∈γ

d(yi, ỹj)2, (3.3)

where γ is the alignment path such that the Euclidean distance between yi,1:T and ỹj,1:T is
minimal. Hence, DTW gives the distance between two time series with the best temporal
alignment. We compare each training data sample with each generated data sample and
use the mean to compare different post-processing methods.

3.8. Self-organizing maps on time series
Finally, we apply time series clustering based on DTW self-organizing maps (SOMs) on
both the training and generated data (Vettigli 2018). If the generated data are a potentially
useful extension of the training data, the clustering should show similar results. Therefore,
we compute a clustering model on the training data and use the trained model to predict
cluster labels of both the training and generated data. From the predicted labels, we
evaluate the F1 score (harmonic mean of precision and recall) (Murphy 2022) with the
ground truth.

4. Numerical experiments

We evaluate the performance of the proposed model using disruption data from
several discharges from the DIII-D tokamak taken from the 2016 experimental campaign.
These disruptions were already included in previously published papers on data-driven
applications in fusion (Montes et al. 2021).
We cluster the available data sets depending on the similarity of the conditions and on

the occurring instability. Here, we use the model to augment five signals of the training
data set (referred to as βn, the normalized β given by βn = βaBT/Ip, where β is the ratio of
plasma pressure to magnetic pressure, BT is the toroidal magnetic field, a the minor radius
and Ip the plasma current; normalized internal inductance li; plasma elongation κ; safety
factor q95; Greenwald fraction n/nG) for different disruptions: (i) disruptions due to locked
modes (LMs) in high β, low torque plasmas with n = 1 resonant magnetic perturbations
(RMPs) applied (shots 166463, 166464, 166465, 166466, 166468, 166469), (ii) disruptions
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FIGURE 2. Data processing flow.

due to LMs during an RMP edge localized mode (ELM) suppression experiment applied
to an ITER-like plasma shape (shots 166452, 166454, 166457, 166460) and (iii) density
accumulation events during detachment studies of helium plasmas (shots 166933, 166934,
166937).
For each disruption class, the model is trained on these few available training samples.

The choice of signals is influenced by the use case of augmenting the training database for
a neural network for disruption prediction, but in general, the method is extendable to any
number and any kind of signals.
Following the flow shown in figure 2, preprocessing is performed on the training data.

As we are primarily interested in the behaviour close to a disruption, we align the samples
according to their end time and only consider the stable flat-top phase. Additionally,
all data are rescaled via min–max scaling to a range of [−0.5, 0.5]. This stabilizes the
optimization of the hyperparameters in the Student t filter algorithm, as the input to
the optimizer is of order 1. Missing data points are interpolated linearly. All discharges
are sampled every 25 ms. Then, we set up the state space Student t surrogate model.
In all experiments, a Matérn 3/2 kernel as in (2.6a–d) is used. We train the surrogate
model by optimizing its hyperparameters by minimizing the negative log likelihood using
the Scipy implementation of L-BFGS-B (Virtanen et al. 2020), and resulting values for
all experiments can be found in Appendix B, table 4. Each signal has its own set of
hyperparameters in order to be able to handle the dynamics that happen on different time
scales. Subsequently, we apply the Student t filter and smoother (Algorithms 1 and 2)
with optimized hyperparameters to our data. From the estimated distribution, we draw
1000 samples from the posterior using the Student t sampler and perform the colouring
transformations in the post-processing. Finally, after rescaling the samples to the original
data range, we evaluate the generated data sets by using the defined metrics. In general,
the generation of the time series samples is of O(N), but some of the metrics used to
evaluate the generate data are not. Therefore, we limited the number of samples in the
given analysis to 1000.

5. Results and analysis

For each disruption class, we draw 1000 samples from the posterior estimated by the
trained model and compare four available post-processing methods: (I) uncorrelated model
(here, no post-processing is performed), (II) colouring transformation with the empirical
covariance matrix, (III) colouring transformation with the empirical cross-covariance
matrix to account for lagged correlations and (IV) colouring transformation with the
sampled covariance matrix. The results for test cases (i) and (ii) are presented in Appendix
in C.1 and C.2.
In figure 3, a visual comparison is given between training data and generated data for

the colouring transformation with empirical cross-covariance matrix, together with the
estimated mean and 95% confidence intervals for the disruption data from DIII-D for test
case (i). The model is able to capture the general trend given by the training data and can
also reproduce outliers. In general, the generated data fit the distribution of the training
data.
We continue with a thorough statistical analysis, which allows a ranking of the different

post-processing methods following the metrics outlined in § 3. The results are given in
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(b)(a)

FIGURE 3. (a) Training data and (b) 10 generated data sets from the state space Student t
surrogate model together with the estimated mean (black solid line) and 95% confidence (grey
shaded region) for test case (i). Different colours correspond to different shots of training data
and different samples of the generated data, respectively.

Metric Uncorrelated Emp. cov Emp. crosscov Sample cov

W1 0.035 ± 0.013 0.035 ± 0.011 0.038 ± 0.012 0.036± 0.01
MMD p-value 0.68 ± 0.35 0.82 ± 0.18 0.92± 0.06 0.85 ± 0.13
MSE ρrs 0.019 ± 0.009 0.018 ± 0.009 0.0011± 0.0004 0.017 ± 0.009
Wemb 0.0592± 0.0006 0.0682 ± 0.0006 0.0766 ± 0.0007 0.0682 ± 0.006
MSE PSD [10−6] 5 ± 4 4 ± 3 3± 3 4 ± 3
DTW 0.8 ± 0.5 0.8 ± 0.4 0.7± 0.3 0.85 ± 0.4
MSE mfPCA 0.137 0.015 0.011 0.022

TABLE 1. Post-processing method comparison for test case (i). Mean and standard deviation over
five dimensions and N = 1000 samples generated from the trained model for statistical metrics
described in § 3. Best values are highlighted in bold.

table 1 for test case (i). Other experiments give similar results, as indicated in Appendix
in C.1 (table 5), and C.2 (table 7) for test cases (ii) and (iii), respectively.
To put the calculated metrics into context, we identify nearby non-disruptive shots

coming from the same specific campaign with similar operating conditions for test
case (ii). Then, we evaluate the Wasserstein distance between nearby non-disruptive and
disruptive discharges to compare the obtained Wasserstein distances for the generated
data for this disruption class. For test case (ii), we identify five nearby non-disruptive
shots 166433, 166434, 166442, 166444, 166455 and found W1 = 0.31 ± 0.12 between
non-disruptive and disruptive discharges. Additionally, the 2-D kernel PCA embedding
of nearby non-disruptive and disruptive discharges evaluated by the estimation of the 2-D
sliced Wasserstein distance is estimated. We observeWemb = 0.74 ± 0.01 for test case (ii).
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Test case Uncorrelated Emp. cov Emp. crosscov Sample cov

(i) stable 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.03 ± 0.01
(i) unstable 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01
(ii) stable 0.02 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01
(ii) unstable 0.07 ± 0.02 0.07 ± 0.02 0.08 ± 0.02 0.08 ± 0.02
(iii) stable 0.08 ± 0.08 0.03 ± 0.02 0.02 ± 0.01 0.03 ± 0.02
(iii) unstable 0.07 ± 0.08 0.03 ± 0.03 0.02 ± 0.02 0.04 ± 0.03

TABLE 2. Post-processing method comparison for disruption data from DIII-D. Mean and
standard deviation of the Wasserstein metric between training and generated data for stable
and unstable phases of the disruptive discharges. The Wasserstein metric is averaged over five
dimensions and N = 1000 samples generated from the trained model.

The achieved Wasserstein distance between training and generated data for this disruption
class is significantly smaller in all post-processing methods, as given in table 5. The same
holds for the Wasserstein distance of the 2-D kernel PCA embedding. This is promising,
as it implies that the augmented data are much more similar to disruptive discharges
within their proper class than to non-disruptive discharges from the same campaign in
these measures.
For test cases (i) and (iii), non-disruptive discharges from those specific campaigns are

not available. Therefore, we investigate the distributions in stable and unstable phases
of the training and generated disruptive discharges in more detail. Using the average
time stamp of the manually labelled training data, this information about the stable
and unstable phase was propagated to label the generated data. Then we calculate the
Wasserstein distance averaged over all features between training and generated data for
both phases separately. The obtained results for all test cases are given in table 2. For
comparison, we also estimate the Wasserstein distances between stable and unstable
phases and found W1 = 0.36 ± 0.07 for test case (i), W1 = 0.37 ± 0.08 for test case (ii)
and W1 = 0.24 ± 0.1 for test case (iii). The obtained distances between training and
generated data within the different phases lie sufficiently below the distances between
stable and unstable parts of the discharges.
The superiority of the post-processing with the empirical cross-covariance is apparent

in figure 4, where the auto- (on the diagonal) and cross-covariance for all estimated signals
are shown. As we are inscribing the empirical cross-covariance into the uncorrelated
generated data from the model, the cross-covariance fits exactly, and the cross-covariances
lie on top of each other. When using either the empirical covariance or the sample
covariance, only the cross-covariance at lag 0 matches the cross-covariance of the training
data. Both post-processing methods give on average the same cross-covariance for 1000
generated samples. Additionally, the difference in covariance at lag 0 is shown in figure 5.
Figure 6 displays the kernel density of the 2-D kernel PCA embedding of the generated

data in the eigenspace of the training data. All four methods generate data that lie on the
same submanifold as the training data. However, when cross-covariances are included, the
shape of the training data is better reproduced. In test case (i) shown in figure 6, one of
the three extrema is not reproduced by the generated data. By evaluating the embedding
for different combinations of input signals, a likely explanation is that βn causes this
extremum. The reason why the generated data are not able to reproduce this extremum
in the eigenspace is due to the multi-modality of the distribution around the drop in βn
in the range 2.75–3.00 s. This is also one limitation of the presented model as it is not
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FIGURE 4. Comparison of the cross-covariance in the training and generated data with
cross-covariance (solid lines on top of each other, numerical error of order 10−16), covariance or
sampled covariance post-processing (dashed lines) and uncorrelated model (dotted line) for test
case (i).

(e)(b)(a) (c) (d )

FIGURE 5. Comparison of the covariance of training data (a) and the difference from the
generated data (b) with uncorrelated model, (c) empirical covariance, (d) cross-covariance and
(e) sampled covariance post-processing for test case (i). Note the different scaling in the colour
scale.

able to represent multi-modality of a cluster correctly. One possibility is to further refine
the considered clusters to augment the data base (in the extreme case, down to one single
discharge). In general, the number of available training data samples is very limited, as
we are working with manually labelled disruptive data from DIII-D. Therefore, the results
here only give an idea of whether the features apparent in the training data are also apparent
in the generated data.
Besides the Wasserstein distance, DTW is difficult to interpret without context. Again,

we calculate the metric between nearby non-disruptive and disruptive discharges for test
case (ii) and obtain DTW = 2.9 ± 1.6. The large error is due to averaging over all signals.
Overall, the distances between the generated and training data for this disruption class lie
below the distance between nearby non-disruptive and disruptive discharges for this test
case. In test cases (i) and (iii), where non-disruptive data from the same campaigns are not
available, DTW distances between generated and training data with included correlations
are of the same order as in test case (ii).
The training data were also reconstructed using the multivariate functional PCA with 5

components. We observe the following reconstruction mean squared errors for test case (i)
0.006, (ii) 0.003 and (iii) 0.008. We use the first five eigenfunctions of the training data
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(e)(b)(a) (c) (d )

FIGURE 6. Kernel density estimation of the 2-D kernel PCA embedding of the (a) training data
and generated data via (b) uncorrelated model, (c) empirical covariance, (d) cross-covariance
and (e) sampled covariance post-processing for test case (i). The embedded training data are
shown in grey in all plots. The colour scale representing the density is the same in all plots.

Train Test Training Uncorrelated Emp. cov Emp. crosscov Sample cov

original generated 0.75 0.74 0.75 0.74 0.78
generated original 0.88 0.86 0.90 0.90 0.89
mix mix 0.89 0.89 0.89 0.89 0.89

TABLE 3. The F1 score for DTW SOM clustering of different post-processing methods for test
case (i).

as a basis to project the generated data of each test case. The reconstruction error of the
generated data with included correlations in the post-processing is still of the same order.
Finally, we use SOMs for time series clustering to evaluate if the label prediction works

similarly well for the generated data. Here, we only use three classes, as the training data
look quite similar for different signals. The results for three different experiments are given
in table 3. Between the four post-processing methods, no significant difference is evident.
The clustering algorithm performs as well on all methods as on the original training data.

6. Conclusion and outlook

We applied Student t process regression in a state space formulation to introduce robust
data augmentation for multivariate time series. The state space formulation reduces the
computational complexity and is thus suitable for high-resolution time series. We used
the model to learn the distribution of time series coming from a given disruption class.
From the estimated posterior, time series were generated to augment the training database.
To evaluate if the original and generated data share key statistical properties, multiple
statistical analyses and classic machine learning clustering algorithms have been carried
out. We found that, within the scope of the used metrics, the generated time series
resemble the training data to a sufficient extent. An important limitation of the method
is multi-modality in the training data set which a Student t process cannot reproduce. In
this case, the training data sets can be further split.
When the method is applied to augment the training database for the neural network

disruption predictor, a thorough analysis of the existing (labelled) training database is
necessary to decide which disruption classes are not available in sufficient quantity. For
each of those classes, we will train the surrogate model and then be able to generate
data to balance the data set. Subsequently, the performance of the neural network trained
with the augmented training database will be evaluated. Due to the broad range of
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evaluation metrics, we are optimistic that the generated data will improve and robustify
the performance.
Another perspective regards disruption prediction of future devices, where little data

will be available to train machine learning-based approaches. In this case, the surrogate
model could be used and updated, as more data are being collected and can therefore
update machine learning-driven models.
To improve the proposed method, the integration of correlations and cross-correlations

on the level of a multivariate surrogate model instead of the colouring in post-processing
will be investigated in future work (Boyle & Frean 2004; Vandenberg-Rodes & Shahbaba
2015). Another possible extension of the current method could also take spatial
information of profiles into account (Wilkinson et al. 2020).
However, the approach developed here is sufficiently generic to be used for data

augmentation in a broad range of applications, e.g. time series in climate research.
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Appendix A. Algorithm

Algorithm 1Multivariate Student-t filter (Solin & Särkkä 2015)
Init:

ŷ0|0 = y0, P0|0 = P0, ν0 = ν, γ0 = ID (A 1)

for t = 1, 2, ...,T do
Filter prediction:

ŷt|t−1 = At−1ŷt−1 (A 2)

P t|t−1 = At−1P t−1A
�
t−1 + γt−1Qt−1, (A 3)

where At = exp(F
t) and Qt = P0 − AtP0A�
t .

Filter update (if measurement yt with mean ȳt is available):

vt = ȳt − H tŷt (A 4)

St = H tP t|t−1H
�
t + R (A 5)

γt = γt−1

νt − 2
(νt−1 − 2 + vtS

−1
t vt) (A 6)

K t = P t|t−1H
�
t S

−1
t (A 7)

ŷt|t = ŷt|t−1 + K tvt (A 8)

P t|t = γt

γt−1
(P t|t−1 − K tStK

�
t ) (A 9)

end for
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Algorithm 2Multivariate Student-t smoother (Solin & Särkkä 2015)
Init:

ŷT = ŷT|t, PT = PT|t (A 10)

for t = T − 1, T − 2, ..., 1 do
Smoother prediction:

ŷt+1|t = Atŷt|t (A 11)

P t+1|t = AtP t|tA�
t + γtQt (A 12)

Smoother update:

Gt = P t|tA�
t P

−1
t+1|t (A 13)

ŷt|T = ŷt|t + Gt(ŷt+1|T − ŷt+1|t) (A 14)

P t|T = γT

γt
(P t|t − GtP t+1|TG�

t ) + GtP t+1|TG�
t (A 15)

end for

Appendix B. Hyperparameters

For the different test cases, we used the hyperparameters given in table 4.

Test case hyp βn li κ q95 n/nG

(i) ν 2.19 2.58 2.15 2.21 2.1
σ 2
n 0.024 0.01 0.056 0.029 0.02

σ 2 1.74 1.76 1.96 1.60 1.60
l 19.6 28.3 20.3 20.1 15.7

(ii) ν 3.4 2.57 2.36 2.49 2.7
σ 2
n 0.023 0.032 0.036 0.033 0.022

σ 2 1.65 0.53 1.36 1.87 1.91
l 17.7 19.8 9.63 19.1 16.8

(iii) ν 2.14 2.12 2.01 2.71 2.55
σ 2
n 0.163 0.044 0.493 0.016 0.011

σ 2 0.62 1.73 1.24 1.21 0.58
l 17.6 11.5 4.5 12.8 10.0

TABLE 4. Optimized hyperparameters for the state space Student t surrogate model for all test
cases.
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(b)(a)

FIGURE 7. (a) Training data and (b) 10 generated data sets from the state space Student t
surrogate model together with the estimated mean (black solid line) and 95% confidence (grey
shaded region) for test case (ii). Different colours correspond to different shots of training data
and different samples of the generated data, respectively.

Metric Uncorrelated Emp. cov Emp. crosscov Sample cov

W1 0.027 ± 0.013 0.020 ± 0.006 0.022 ± 0.007 0.020± 0.006
MMD p-value 0.617 ± 0.335 0.869 ± 0.153 0.885± 0.107 0.876 ± 0.15
MSE ρrs 0.013 ± 0.017 0.013 ± 0.017 0.005± 0.005 0.014 ± 0.017
Wemb 0.0458 ± 0.0003 0.0496 ± 0.0004 0.0466± 0.0004 0.0539 ± 0.0004
MSE PSD [10−6] 7 ± 9 3 ± 4 1± 2 3 ± 4
DTW 0.86 ± 0.37 0.78 ± 0.32 0.65± 0.31 0.83 ± 0.39
MSE mfPCA 0.011 0.009 0.007 0.011

TABLE 5. Post-processing method comparison for test case (ii). Mean and standard deviation
over five dimensions and N = 1000 samples generated from the trained model for statistical
metrics described in § 3. Best values are highlighted in bold.

Appendix C. Results for other test cases

In the following sections, the results for test cases (ii) and (iii) are presented.

C.1. Test case (ii): disruption due to MHD instability during RMP ELM control
A visual comparison of the training and the generated data for test case (ii) is shown
in figure 7. Here, the disruption occurs due to magnetohydrodynamic (MHD) instability
induced by RMPs applied to control ELMs (shots 166452, 166454, 166457, 166460).
The results of the statistical analysis are given in table 5 and are of the same order as
for test case (i). Figures 8 and 9 show the cross-covariance and the covariance of the
training and generated data. Figure 10 displays the kernel density of 2-D PCA embedding
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FIGURE 8. Comparison of cross-covariance of training data and generated data with
cross-covariance (solid lines on top of each other, numerical error of order 10−16), covariance or
sampled covariance (dashed lines) post-processing and uncorrelated model (dotted line) for test
case (ii).

(e)(b)(a) (c) (d )

FIGURE 9. Comparison of covariance of training data (a) and difference of generated data
(b) with uncorrelated model, (c) empirical covariance, (d) cross-covariance and (e) sampled
covariance post-processing for test case (ii). Note the different scaling in the colour scale.

(e)(b)(a) (c) (d )

FIGURE 10. Kernel density estimation of the 2-D kernel PCA embedding of the (a) training data
and generated data via (b) uncorrelated model, (c) empirical covariance, (d) cross-covariance and
(e) sampled covariance post-processing for test case (ii). The embedded training data are shown
in grey in all plots. The colour scale representing the density is the same in all plots.

of the generated data. Again, the results show that the generated data lives on the same
submanifold for all four post-processing methods. In table 6, the F1 score for DTW SOM
clustering is given.

https://doi.org/10.1017/S0022377822000769 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000769


Data augmentation for disruption prediction 19

Train Test Training Uncorrelated Emp. cov Emp. crosscov Sample cov

original generated 1.0 1.0 1.0 0.94 1.0
generated original 1.0 0.91 1.0 1.0 1.0
mix mix 1.0 1.0 1.0 0.96 1.0

TABLE 6. The F1 score for DTW SOM clustering of different post-processing methods for test
case (ii).

(b)(a)

FIGURE 11. (a) Training data and (b) 10 generated data sets from the state space Student t
surrogate model together with the estimated mean (black solid line) and 95% confidence (grey
shaded region) for test case (iii). Different colours correspond to different shots of training data
and different samples of the generated data, respectively.

Metric Uncorrelated Emp. cov Emp. crosscov Sample cov

W1 0.071 ± 0.088 0.030 ± 0.026 0.025± 0.019 0.03 ± 0.028
MMD p-value 0.43 ± 0.32 0.86 ± 0.17 0.84 ± 0.09 0.87± 0.13
MSE ρrs 0.0083 ± 0.0075 0.0076 ± 0.007 0.0019± 0.0019 0.0070 ± 0.007
Wemb 0.1808 ± 0.0034 0.0621 ± 0.0011 0.0517± 0.0008 0.0656 ± 0.0012
MSE PSD [10−6] 240 ± 33 11 ± 19 0.8± 0.5 79 ± 13
DTW 1.7 ± 2.2 0.9 ± 0.6 0.8± 0.6 0.9 ± 0.6
MSE mfPCA 0.138 0.021 0.010 0.025

TABLE 7. Post-processing method comparison for test case (iii). Mean and standard deviation
over five dimensions and N = 1000 samples generated from the trained model for statistical
metrics described in § 3. Best values are highlighted in bold.
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FIGURE 12. Comparison of cross-covariance of training data and generated data with
cross-covariance (solid lines on top of each other, numerical error of order 10−16), covariance or
sampled covariance (dashed lines) post-processing and uncorrelated model (dotted line) for test
case (iii).

(e)(b)(a) (c) (d )

FIGURE 13. Comparison of covariance of training data (a) and difference of generated data
(b) with uncorrelated model, (c) empirical covariance, (d) cross-covariance and (e) sampled
covariance post-processing for test case (iii). Note the different scaling in the colour scale.

(e)(b)(a) (c) (d )

FIGURE 14. Kernel density estimation of the 2-D kernel PCA embedding of the (a) training data
and generated data via (b) uncorrelated model, (c) empirical covariance, (d) cross-covariance and
(e) sampled covariance post-processing for test case (iii). The embedded training data are shown
in grey in all plots. The colour scale representing the density is the same in all plots.

C.2. Test case (iii): density accumulation
For the third test case with a disruption occurring due to density accumulation (shots
166933, 166934, 166937), the visual comparison is given in figure 11 followed by the
results of the statistical analysis in table 7. The cross-covariance and covariance are
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Train Test Training Uncorrelated Emp. cov Emp. crosscov Sample cov

original generated 0.81 0.98 1.0 0.85 0.99
generated original 0.99 0.92 0.93 0.93 0.93
mix mix 0.96 0.96 0.96 0.94 0.97

TABLE 8. The F1 score for DTW SOM clustering of different post-processing methods for test
case (iii).

displayed in figures 12 and 13, respectively. The embedding is shown in figure 14. Here, the
skew of the embedding caused by the broad distribution of κ is not perfectly reproduced
by the generated data. However, the results should be regarded with caution as only 3
training data samples are available in this test case. This presents also a limit to this
metric. However, when looking at samples of the generated data shown in figure 11, this
broad range present in the training data is still well reproduced by the generated data. In
this test case, the uncorrelated model performs worst as correlations are not reproduced.
The results for generated data with included correlations are again of the same order of
magnitude as for test cases (i) and (ii). The results obtained for the F1 score for DTW
SOM clustering are given in table 8.
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