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A B S T R A C T

This paper presents a stable method for solving the kinematic boundary condition equation (KBC) in fully
nonlinear potential flow (FNPF) models. The method is motivated by a total variation diminishing (TVD)
approach, which makes it especially applicable to advection-dominated partial differential equations such as
the KBC. It is also simple, and can be easily implemented in existing finite volume-based FNPF models for wave
hydrodynamics. The method is systematically assessed through a series of test cases: the propagation of second
and fifth-order Stokes waves; focused wave propagation; and wave shoaling in both 2 and 3-D. It was found
that the method stabilised the computation in every instance: it successfully eliminated the sawtooth instability,
which commonly arises in FNPF models, without a reduction in computational efficiency. Consequently, we
avoided the use of undesirable stabilisation techniques that involve artificial dissipation such as low-order
smoothing. The method is also accurate: it produced satisfactory numerical solutions that agreed well with
experimental, analytical and other published numerical results. It was also found that the method is superior
than classical schemes in terms of energy conservation, applicability, and efficiency—all salient features that
are essential for large-scale and long-time simulations.

1. Introduction

For a number of decades now, a versatile numerical hydrodynamic
model – capable of accurately and efficiently simulating both wave–
wave and wave–structure interactions – has long been sought after
in environmental science and engineering. Traditionally, numerical
models for wave hydrodynamics have largely been based on potential
flow theory, with a lot of effort being devoted to the development of
fully nonlinear potential flow (FNPF) models in particular. These types
of models are advantageous in the fact that they are computationally
efficient; simultaneously, these models provide sufficiently accurate
solutions to a number of problems involving wave propagation and
wave–wave interaction, applicable in marine areas spanning deep to
shallow water. They can also be used for a number of wave–structure
interaction problems, but the inability of these models to take into
account viscosity, vorticity, and other important physical effects means
that in recent years Navier–Stokes (NS) equations based computational
fluid dynamics (CFD) models have gained popularity. However, these
types of models are usually computationally expensive, so currently
there is also a concerted effort to develop integrated (or hybrid) models
that aim to utilise the advantages of both FNPF and NS models through
some sort of coupling between each individual solver in a numerical
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wave tank (NWT). This type of advanced integrated model evidently
still needs a highly accurate and efficient FNPF solver as one of its
constituent parts. Hence, improving existing FNPF models – or even
developing new advanced FNPF models – which can then be used
as component and/or standalone solvers is still of interest and great
importance.

Customarily, FNPF models have been based predominately on the
boundary element method (BEM) (Kim et al., 1998; Grilli et al., 2001;
Dold, 1992), finite element method (FEM) (Wu and Eatock Taylor,
1994; Ma et al., 2001a; Ma and Yan, 2006), or finite difference method
(FDM) (Bihs et al., 2020; Li and Fleming, 1997; Engsig-Karup et al.,
2009). However, more recent contributions have also been made using
newer methods such as spectral (Ducrozet et al., 2016), spectral ele-
ment (SE) (Engsig-Karup et al., 2016), and spectral boundary integral
(SBI) (Fructus et al., 2005), as well as the finite volume method
(FVM) (Lin et al., 2021). A more extensive review of these methods
can be found in Lin et al. (2021). Naturally, each numerical method
has its own advantages and disadvantages, but one problem that com-
monly arises in FNPF models – and has been extensively reported
regardless of numerical method – is the so called ‘sawtooth instability’.
The consequence of this instability is that the free-surface boundary
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develops a sawtooth like wave profile after some time, particularly
when simulating steep waves. This instability was first observed by
Longuet-Higgins and Cokelet (1976) in their seminal work where they
also first outlined the mixed Eulerian–Lagrangian (MEL) approach—
an approach which most proceeding FNPF models adopted. The direct
source of this instability has not been definitively proven; few authors
in the literature attempt to verify the source and instead elect only to
mitigate the problem. However, Dias and Bridges (2006) suggested,
‘The presence of sawtooth instabilities can be expected in the theory
for nonlinear systems without dissipation, wherein energy flows from
low to high wavenumbers and accumulates at the highest wavenumber
associated with the discretisation’. This does not necessarily source the
instability, but does suggest that it may be inherent in FNPF models,
whilst also giving a basis from which mitigating measures can be
developed. Dold (1992) also split the occurring instability into three
types: weak, strong, and steep-wave. Through this he attempted to
investigate how each type materialises, leading to suggestions of how
each could be mitigated. Nevertheless, regardless of source, it is clear
that some sort of stabilisation technique has to be utilised to ensure
that any given model is free from the sawtooth instability.

By far the most popular technique in the literature for stabilising
FNPF models is to use some form of numerical damping, such as
smoothing. Indeed, as well as developing the MEL method, Longuet-
Higgins and Cokelet (1976) also outlined a 5-point smoothing formula
which has regularly been used by other authors such as Wu and
Eatock Taylor (1994) and Mehmood et al. (2016). A variety of other
damping techniques also exist, such as the fourth-order damping cor-
rection used by Lin et al. (2021) and the volume-conservative smoother
proposed by Ferrand and Harris (2021). In general, smoothing is usu-
ally carried out on the free-surface variables 𝜂 and 𝜙 – elevation and
velocity potential respectively – in order to act as a form of artificial
dissipation, just like the type described by Dias and Bridges (2006)
previous. However, these sorts of artificial techniques – particularly
the common lower order types mentioned – are not desirable because
they can potentially cause superfluous dissipation, resulting in overall
loss in energy in the system. This in turn can then make FNPF mod-
els inaccurate, particularly for large-scale and long-time simulations.
Moreover, these techniques can involve a number of parameters that
have to be tuned for any given application in order to achieve an
optimal balance between stability and accuracy, resulting in a very
sluggish and drawn-out process of trial and error if the values are not
known a priori. However, it should also be noted that higher-order
techniques formulated on large stencils, such as the original tenth-
order 13-point Savitzky–Golay (S–G) filter (Savitzky and Golay, 1964)
utilised by Engsig-Karup et al. (2009) and Hanssen et al. (2022), and
improved S–G filters developed by Shao et al. (2022), can stabilise
large-scale FNPF models with negligibly small energy loss for a number
of applications. This is also without explicitly requiring tuning of any
parameters like the lower-order filters.

Even though most FNPF models suffer from the sawtooth instability,
subsequently requiring some form of numerical damping, there are
examples of models that do not. For example, Grilli et al. (1989, 2001)
developed a 2-D and 3-D model, both of which did not report the
instability and hence required no smoothing or remeshing. The authors
attributed the high accuracy and stability of the models to a unique
high-order BEM method and a second-order Taylor series-based time-
stepping scheme, further details of which can be found in Grilli et al.
(2001). This Taylor series scheme was actually first utilised by Dold
and Peregrine (1986), a model also based on the BEM. Again, the
sawtooth instability did not appear, but only so long as a sufficiently
small time step was adopted, a point Dold expands on in Dold (1992).
However, in the latter article he also stated that for steep waves, the
instability always appears when the simulation is allowed to continue
over a sufficiently long period of time, and that smoothing is required
in this situation. This indicates that Grilli et al. may be correct in their
aspersion that it is a combination of factors that stabilised their models,

and that a high-order time-integration scheme in itself may not be
sufficient.

In addition to the BEM models by Grilli et al. (1989, 2001), there
are also examples of FEM models that do not suffer from the sawtooth
instability and hence require no smoothing or remeshing. Early FEM
models such as Wu and Eatock Taylor (1994) and Ma et al. (2001a,b)
did require smoothing and remeshing respectively, but Ma and Yan
later developed the quasi arbitrary Lagrangian–Eulerian finite element
method (QALE-FEM) (Ma and Yan, 2006; Yan and Ma, 2007; Ma and
Yan, 2009) which avoided the need for smoothing and remeshing. This
is likely due to their precisely controlled mesh movement and highly
accurate free-surface velocity calculation, aspects which some other
FNPF models may under perform in. The finite difference-based FNPF
model of Bihs et al. (2020) also avoided the explicit use of numerical
damping. This model applied a second-order central difference (CD)
scheme to discretise the 𝜎-transformed Laplace equation, and a fifth-
order weighted essentially non-oscillatory (WENO) scheme to discretise
the convection terms in the free-surface boundary condition equa-
tions. Mola et al. (2013) used the stream-wise upwind Petrov–Galerkin
scheme to remove the sawtooth instability. This was accomplished by
introducing weighted projections in the free-surface boundary condi-
tion equations. Furthermore, spectral methods based models in the
literature often attribute numerical instability to aliasing effects, hence
usually some sort of anti-aliasing technique is utilised in order to
mitigate these effects and any consequent numerical instability. For
example, Fructus et al. (2005) produced a 3-D SBI model that used an
anti-aliasing technique involving zeros-padding, meaning it therefore
required no smoothing or remeshing, and importantly showed no signs
of the sawtooth instability. However, there is an argument to suggest
that some anti-aliasing techniques, such as the spectral filtering used by
Engsig-Karup et al. (2016), are themselves a form of numerical damping
as dissipation is being artificially added to the model.

Lin et al. (2021) recently developed a finite volume–based FNPF
model within the framework of the open-source CFD software Open-
FOAM. A key advantage of this model is that it is capable of dealing
with complex geometries not aligned with mesh lines/surfaces. It also
allows for easier development of an integrated model through coupling
with already available finite volume-based multi-phase incompress-
ible and compressible Navier–Stokes solvers in the same framework.
The model itself was found to accurately simulate wave generation,
propagation, and interaction with structures. However, this model
also explicitly required artificial dissipation by way of a fourth-order
damping correction scheme—a lower order scheme. Given the reasons
discussed previous, this is not desirable, and it would be beneficial if
the model did not have to use it. Indeed, no test cases were done over
a large scale to examine if the model suffered from the sort of energy
loss that is known to occur when using this type of technique. For this
reason, there is a degree of uncertainty as to whether the model is
applicable to large-scale and long-time simulations.

Our aim is to develop a new method that can stabilise the compu-
tation of FNPF models without using any of the aforementioned un-
desirable techniques that involve artificial damping. The new method
should be physically sound, accurate, and robust for wave hydrody-
namics. At the same time, it should be simple and easy to implement,
economic for use, and incur no significant extra computational cost.
In the present work, we propose using a more natural and mathe-
matically sound numerical scheme to resolve the instability issue for
FNPF models—consequently avoiding the use of any technique that
involves significant artificial dissipation. To assess the effectiveness of
the proposed method, we implement it in the finite volume-based FNPF
model of Lin et al. (2021). The new model is systematically examined
through a series of test cases including the propagation, focusing, and
shoaling of nonlinear waves. In addition, comprehensive comparisons
are made to evaluate the performance of the new model in terms of
energy conservation.
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Fig. 1. Sketch of the three-dimensional numerical wave tank.

The remainder of this paper is laid out as followed. First, we give an
overview of the mathematical formulation and numerical implementa-
tion of the Lin et al. (2021) model. Next, we give our methodology:
reasons as to why the instability may be occurring and how to solve it,
as well as the new computational formulation arising from this. Then,
a number of test cases are presented, with numerical solutions from
the new model validated against existing numerical, experimental, and
analytical solutions. Lastly, we draw conclusions from our work and set
out plans for further work.

2. Mathematical formulation and numerical implementation

Under potential flow theory, we assume that the flow is incom-
pressible, inviscid, and irrotational. In the computational domain, a
Cartesian coordinate system is defined with the 𝑦-axis pointing verti-
cally upwards, and with the still free-surface water level defined as the
𝑥𝑧-plane—as shown in Fig. 1. Furthermore, the free-surface elevation
from the still water level is defined as the function 𝜂(𝑥, 𝑧, 𝑡) where 𝑡
is the time. The governing equation in the fluid domain is Laplace’s
equation

∇2𝜙 = 0, (1)

where 𝜙(𝑥, 𝑦, 𝑧, 𝑡) is the velocity potential. The nonlinear kinematic
and dynamic boundary conditions (KBC and DBC respectively) – both
satisfied at the free surface – are given as
𝜕𝜂
𝜕𝑡

=
𝜕𝜙
𝜕𝑦

−
𝜕𝜙
𝜕𝑥

𝜕𝜂
𝜕𝑥

−
𝜕𝜙
𝜕𝑧

𝜕𝜂
𝜕𝑧

at 𝑦 = 𝜂(𝑥, 𝑧, 𝑡), (2)

𝜕𝜙
𝜕𝑡

= −𝑔𝜂 − 1
2
∇𝜙 ⋅ ∇𝜙 at 𝑦 = 𝜂(𝑥, 𝑧, 𝑡), (3)

where 𝑔 is the gravitational acceleration.
As mentioned in the introduction, the majority of FNPF models

adopt the MEL approach first outlined by Longuet-Higgins and Cokelet
(1976). To understand why, consider the free-surface boundary condi-
tions (2)–(3) which are given in the Eulerian description. For the sim-
ulation of water-wave problems, they clearly need to be satisfied on a
moving boundary surface, in which case a Lagrangian description must
be used. Hence, in the MEL approach, the Laplace problem is solved in
the fluid domain from an Eulerian point of view, whilst the moving
free-surface boundary is updated from a Lagrangian point of view.

Thus, when a free-surface node is moving with velocity 𝐯, the free-
surface boundary conditions (2)–(3) can be modified by considering the
material derivative
𝛿()
𝛿𝑡

=
𝜕()
𝜕𝑡

+ 𝐯 ⋅ ∇().

In a full-Lagrangian approach, free-surface nodes move with the motion
of water particles, i.e., 𝐯 = ∇𝜙. However, this approach requires
the free-surface nodes to be rearranged at every time step to prevent
them from piling up. In contrast, in a semi-Lagrangian approach, free-
surface nodes move only with the vertical motion of water particles,
i.e., 𝐯 = (0, 𝛿𝜂𝛿𝑡 , 0). In this case, rearrangement of the free-surface nodes
is unnecessary, making the method much simpler. This semi-Lagrangian
approach is the one adopted by Lin et al. (2021) and in this work,
meaning that the free-surface boundary conditions can be rewritten as

𝛿𝜂
𝛿𝑡

=
𝜕𝜙
𝜕𝑦

−
𝜕𝜙
𝜕𝑥

𝜕𝜂
𝜕𝑥

−
𝜕𝜙
𝜕𝑧

𝜕𝜂
𝜕𝑧

at 𝑦 = 𝜂(𝑥, 𝑧, 𝑡), (4)

𝛿𝜙
𝛿𝑡

= −𝑔𝜂 − 1
2
∇𝜙 ⋅ ∇𝜙 +

𝛿𝜂
𝛿𝑡
𝜕𝜙
𝜕𝑦

at 𝑦 = 𝜂(𝑥, 𝑧, 𝑡). (5)

Lin et al. (2021) then use a different but equivalent form of the KBC,
presented in terms of the fluid particle velocity 𝐔𝜂 at the free surface
and the unit normal vector 𝐧 of the free surface, as shown by Mayer
et al. (1998). This leads to the KBC being rewritten as

𝛿𝜂
𝛿𝑡

=
𝐔𝜂 ⋅ 𝐧
𝑛𝑦

, (6)

where 𝑛𝑦 is the vertical component of 𝐧.
To complete the boundary value problem in the NWT, additional

conditions are required at the remaining boundaries. For problems
involving wave generation, a relaxation zone is placed near the inlet
boundary of the computational domain, as shown in Fig. 1. Conversely,
a damping zone is placed near the outlet boundary for wave absorption.
The mathematical details of each can be found in Lin et al. (2021) but
are omitted here. Moreover, the front, back, and bottom are treated as
fixed solid boundaries, meaning the impermeable boundary condition
is used at each
𝜕𝜙
𝜕𝐧

= 0. (7)

As mentioned in the introduction, the Lin et al. (2021) model
was developed within the framework of OpenFOAM which implements
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a cell-centred, co-located Finite Volume Method (FVM) on a three-
dimensional structured or unstructured polyhedral mesh. Full details
of the numerical implementation in OpenFOAM are found in Lin et al.
(2021), here we only highlight that the computational mesh is updated
at every time step to account for the motion of the free surface,
with the mesh moving only in the vertical 𝑦-direction according to
the semi-Lagrangian approach—as previously detailed. Furthermore, as
mentioned in the introduction, Lin et al. (2021) employ a fourth-order
damping correction scheme to ensure stability. For a quad cell of the
free surface mesh, two nodes on the opposite corner are not direct but
indirect donors to each other in the calculation of artificial dissipation.
Full details of this scheme can be found in Lin et al. (2021), but here
we note that the key parameters that control the amount of dissipation
are the ‘correction coefficient’ 𝛽𝐹𝑂𝐷𝐶 , shown in equation (16) of Lin
et al. (2021), and the damping frequency (in time steps). We refer to
these parameters throughout this paper.

3. Methodology

3.1. Hypothesis

As mentioned previously, the direct source of the sawtooth insta-
bility in FNPF models has never been definitively proven. However,
it is clear that there is an accumulation of numerical error in the
model; also, given that the free surface is where the sawtooth manifests,
it is reasonable to assume that this error arises when updating the
free-surface boundary conditions (Longuet-Higgins and Cokelet, 1976).
In addition, it is well known that the numerical solution procedure
for problems governed by Laplace’s equation with Dirichlet and/or
Neumann boundary conditions generally provides smooth results, but
in the case of FNPF models, the free-surface boundary conditions are
nonlinear and coupled, and this instead poses significant difficulties.
Given this, we hypothesise that the use of a numerical scheme which
does not properly take into account the physical characteristics of these
boundary condition equations – particularly the KBC equation – is a
major cause of error and instability.

To expand on this hypothesis, let us consider the characteristics of
the KBC (4). Clearly, this equation is very similar to the 2-D advection
equation but instead has a source term 𝐹 (𝑦) = 𝜕𝜙

𝜕𝑦 . Furthermore, given
that the free-surface equations are a coupled set of equations, the
evolution of the free-surface elevation 𝜂 over time is dependent on
the evolution of the velocity potential 𝜙. As a consequence, the KBC
is not hyperbolic like the advection equation, but is very similar so
can instead be considered as advection dominated. It is well known
that these sorts of equations are notoriously difficult to handle by
using classical numerical schemes; hence, we instead propose using a
different method to discretise the advection terms in the KBC in the Lin
et al. (2021) model.

In order to match the order of numerical solution accuracy of the
governing equation (1), the new method for the KBC equation should
be at least second order. The new method should also be physically
sound, accurate, and robust for wave hydrodynamics. At the same time,
it should not be over complicated, but simple and easy to implement,
and economic for use. Considering these requirements, we propose
a second-order scheme motivated by a total variation diminishing
(TVD) approach. TVD schemes are a class of high-resolution schemes
for hyperbolic partial differential equations that are known to produce
solutions free from spurious oscillations whilst remaining accurate
around shocks and discontinuities. In particular, they are proven to
produce oscillation-free solutions when used to discretise advection
terms in advection-dominated equations like the KBC. In view of this,
we will investigate whether such a method can effectively discretise the
advection terms in the KBC, and consequently successfully stabilise the
FNPF model.

A key advantage of TVD schemes is that they can also aptly handle
sharp gradients which is of particular importance when it comes to

modelling steep waves. In this situation, the proposed TVD method
is the perfect fix due to its monotonicity-preserving property. This is
whereby, in the face of a sharp gradient, the numerical solution remains
monotone before and after the advection terms are calculated, ensuring
that there are no new local extrema—which is exactly what occurs
in the formation of a sawtooth. The key to ensuring the scheme is
monotonicity preserving is the flux limiter which directly modifies the
advective fluxes in the scheme so that the total variation of the solution
does not increase in time. Furthermore, as already outlined, the TVD
method is robust and computationally efficient, as well as retaining
second-order solution accuracy. Finally, the TVD method is simple and
suited to a wide range of applications—no tuning of parameters is
required. This is in contrast to a number of FNPF models (such as Lin
et al. (2021)) in which the amount of artificial dissipation needs to be
tuned for different cases in order to ensure stability. Note that, to the
knowledge of the authors, such an attempt to implement such a method
in FNPF models has not been reported in the literature.

3.2. Computational formulation

Time integration in the Lin et al. (2021) model was carried out
using the first-order Euler scheme; we do the same in the present
work. Moreover, for simplicity, we only consider a two-dimensional
NWT in this formulation. However, the extension to three dimensions
is straightforward by following the same logic. The computational
mesh in OpenFOAM is three dimensional, but it can still be used
for two-dimensional models by using a single cell in the 𝑧-direction.
Clearly this works because the FVM is cell centred, so all information
is stored in the same two-dimensional 𝑥𝑦-plane. Furthermore, in this
work, we only consider a structured computational mesh due to the
fact we only use this FNPF model for wave propagation and wave–wave
interaction. Finally, as already mentioned, we construct the method for
the advection terms by closely following the TVD methodology.

We start by writing the KBC in 2-D form as
𝛿𝜂
𝛿𝑡

= 𝑣 − 𝑢
𝜕𝜂
𝜕𝑥
, where 𝑣 = 𝜕𝜙

𝜕𝑦
and 𝑢 = 𝜕𝜙

𝜕𝑥
. (8)

Now, let 𝑖 − 1
2 and 𝑖 + 1

2 denote the left and right edge respectively of
a computational free-surface mesh cell 𝑖. Then, using the Euler method
for time integration, the update for 𝜂 in cell 𝑖 can be written as

𝜂𝑛+1𝑖 = 𝜂𝑛𝑖 + 𝑣
𝑛
𝑖 𝛥𝑡 −

𝑢𝑛𝑖 𝛥𝑡
𝛥𝑥

(𝜂𝑛
𝑖+ 1

2
− 𝜂𝑛

𝑖− 1
2
). (9)

If 𝑢𝑖 ≥ 0, setting 𝜂𝑖+ 1
2

= 𝜂𝑖 and 𝜂𝑖− 1
2

= 𝜂𝑖−1 recovers the First Order
upwind (FOU) scheme—a first-order TVD scheme that is known to
be the most numerically stable but suffers severely from numerical
dissipation. For a second-order evaluation of 𝜂𝑖+ 1

2
and 𝜂𝑖− 1

2
, a correction

term needs to be added. This is where the idea of a flux limiter and the
TVD property comes in.

3.2.1. TVD property
To construct a TVD scheme for the advection terms, we first need

to define what actually makes a scheme TVD. Firstly, consider that an
explicit numerical scheme used to calculate some variable 𝑓 in cell 𝑥𝑖,
and at time 𝑡𝑛+1 generally has the form

𝑓 𝑛+1𝑖 = 𝐺(𝑓 )𝑛𝑖 = 𝐺(𝑓 𝑛𝑖−𝑝,… , 𝑓 𝑛𝑖 ,… , 𝑓 𝑛𝑖+𝑞), 𝑝 = 1, 2,… , 𝑞 = 1, 2,… , (10)

and is said to be monotone if and only if the function 𝐺 is an increasing
(or decreasing) function of all its arguments, i.e., G is monotonically
increasing if

∀ 𝑓𝑖, 𝑓𝑗 such that 𝑓𝑖 ≤ 𝑓𝑗 , we have 𝐺(𝑓𝑖) ≤ 𝐺(𝑓𝑗 ) (and vice versa).

(11)

The scheme is then also said to be monotonicity preserving if

𝑓 𝑛𝑖+1 ≥ 𝑓 𝑛𝑖 ∀𝑖 ⟹ 𝑓 𝑛+1𝑖+1 ≥ 𝑓 𝑛+1𝑖 ∀𝑖. (12)
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A monotonicity-preserving scheme creates no new undershoots or over-
shoots in the solution, meaning that it should be free of spurious
oscillations, and hence this is the type of scheme we want. To construct
this sort of scheme, we first define the total variation of a data set
{𝑓1, 𝑓2,… , 𝑓𝑛−1, 𝑓𝑛}, which is given as

𝑇𝑉 (𝑓 ) =
𝑛−1
∑

𝑖=1
∣ 𝑓𝑖+1 − 𝑓𝑖 ∣ . (13)

The scheme is then said to be total variation diminishing (TVD) if

𝑇𝑉 (𝑓 𝑛+1) ≤ 𝑇𝑉 (𝑓 𝑛), (14)

which will clearly be monotonicity preserving. Furthermore, it can
be shown that a monotone scheme is TVD, and hence monotonicity
preserving, so to construct a TVD scheme it is sufficient for the scheme
to be monotone. For more details, please refer to the work of Harten
(1983).

3.2.2. Flux limiter
Referring back to the update for 𝜂 (9), it is clear that the second-

order correction must ensure that the scheme for the advection terms
is monotone, and hence TVD. The way we do this is by using a flux
limiter. First we consider the generalised second-order upwind-biased
evaluation of 𝜂𝑖+ 1

2
when 𝑢𝑖 ≥ 0,

𝜂𝑖+ 1
2
= 𝜂𝑖 +

1
2
𝜓(𝑟𝑖+ 1

2
)(𝜂𝑖+1 − 𝜂𝑖). (15)

Here, 𝜓 is called the flux limiter function, dependent on 𝑟 which is the
ratio of upwind to downwind gradients of 𝜂 for cell 𝑖. For example,
given that 𝑢𝑖 ≥ 0 in (9) and (15), the ratio of upwind to downwind
gradients is

𝑟𝑖+ 1
2
=
𝜂𝑖 − 𝜂𝑖−1
𝜂𝑖+1 − 𝜂𝑖

. (16)

For the scheme to then be monotone and therefore TVD, as well
as second order, the flux limiter function 𝜓(𝑟) must satisfy certain
constraints derived by Sweby (1984) that are outlined in Appendix
but are omitted here.

For the choice of flux limiter in the present work, we choose the
Van Albada 2 limiter defined as

𝜓(𝑟) =

⎧

⎪

⎨

⎪

⎩

2𝑟
𝑟2+1

, 𝑟 > 0

0, 𝑟 ≤ 0.
(17)

Incidentally, this limiter is actually only first-order accurate for 𝑟 > 1.
However, it still successfully produced sufficiently accurate results in
the present work. In our future work, it would be interesting to assess
the performance of other available flux limiters, but in the present
work, the Van Albada 2 limiter can produce satisfactory solutions.

3.2.3. Final formulation
In addition to (15) and (16) at the right edge 𝑖+ 1

2 , at the left edge
𝑖 − 1

2 we have

𝜂𝑖− 1
2
= 𝜂𝑖−1 +

1
2
𝜓(𝑟𝑖− 1

2
)(𝜂𝑖 − 𝜂𝑖−1), (18)

where

𝑟𝑖− 1
2
=
𝜂𝑖−1 − 𝜂𝑖−2
𝜂𝑖 − 𝜂𝑖−1

. (19)

Finally, using (15), (16), (17), (18), and (19) in (9) gives the update
for 𝜂 in cell 𝑖 given that 𝑢𝑖 ≥ 0

𝜂𝑛+1𝑖 = 𝜂𝑛𝑖 + 𝑣
𝑛
𝑖 𝛥𝑡 −

𝑢𝑛𝑖 𝛥𝑡
𝛥𝑥

{

[𝜂𝑛𝑖 +
1
2
𝜓(𝑟𝑖+ 1

2
)(𝜂𝑛𝑖+1 − 𝜂

𝑛
𝑖 )]

− [𝜂𝑛𝑖−1 +
1
2
𝜓(𝑟𝑖− 1

2
)(𝜂𝑛𝑖 − 𝜂

𝑛
𝑖−1)]

}

, (20)

where 𝜓(𝑟𝑖+ 1
2
) and 𝜓(𝑟𝑖+ 1

2
) are calculated accordingly. Note that an

equivalent result can be derived in the same way for when 𝑢𝑖 < 0 but is
omitted here. Please also note that we refer to the new improved model
as the ‘stabilised model’ throughout.

4. Validation and discussion

To comprehensively validate the proposed method, we consider
three well-known test cases. The first test case is regular wave propaga-
tion in a three-dimensional numerical wave tank, split into two separate
cases in terms of the type of wave generated, with results compared to
analytical solutions and those of Lin et al. (2021). The second test case
is focused wave propagation in which we simulate irregular extreme
wave events. For this test case we follow and compare our results to
the numerical and practical experiments of Ning et al. (2009). For the
third test case we consider 2-D and 3-D wave shoaling to capture the
transformation of propagating waves due to variable bathymetry. In 2D,
we follow the experiments of Beji and Battjes (1993, 1994), whereas
in 3D we follow the experiments of Whalin (1971). Finally, we prove
the superiority of the stabilised model over the Lin et al. (2021) model
in terms of energy conservation. It should be noted that, for each case,
the first thing we establish is whether we have eliminated the sawtooth
instability without using numerical damping. Only then do we consider
the accuracy of our results. In addition, as already stated, numerical
damping is required for each validation test case when it comes to the
Lin et al. (2021) model, and hence any Lin et al. (2021) results used
for comparison in this section are when damping is being used—unless
of course stated otherwise.

During each simulation, the time step 𝛥𝑡 is automatically calculated
using an adaptive procedure based on the Courant–Friedrichs–Lewy
(CFL) condition (21), where 𝐶 is the Courant number, 𝛥𝑥 the local cell
width, and 𝐶max the maximum Courant number which is fixed at the
start of the simulation.

𝐶 = 𝑢𝛥𝑡
𝛥𝑥

≤ 𝐶max. (21)

For most cases in the present work, unless stated otherwise, a value of
𝐶max = 0.2 is used. This ensures that the time step is small enough for
a convergent and accurate solution.

4.1. Regular wave propagation

In this first validation test case, we simulate regular wave propaga-
tion in a 3-D NWT. As illustrated in Fig. 1, a relaxation and damping
zone are introduced into the tank in order to generate and absorb
progressive waves respectively. Two particular types of target wave –
second-order Stokes and fifth-order Stokes – are considered separately.

4.1.1. Second-order Stokes waves
The geometric setup here is the same as Lin et al. (2021) with the

NWT having length 12.6 metres (m) in the 𝑥-direction, width 1.0 m
in the 𝑧-direction, and depth 0.505 m in the 𝑦-direction. Second-order
Stokes waves are generated in the relaxation zone according to the
set of input wave parameters listed in Table 1. In addition, the relax-
ation and damping zones are both chosen to be one wavelength long
(3.164 m), with the tank in total being approximately four wavelengths
long.

In order to test performance, we first carry out a mesh-sensitivity
study. Four different mesh configurations are chosen and are each listed
in Table 2, with an example mesh shown in Fig. 2. We can also see
from this that the mesh is refined in the 𝑦-direction near the free
surface in order to increase resolution. It is done in a way such that
the cell at the top has vertical width 1/10 of the cell at the bottom. In
order to then actually measure free-surface elevation, wave gauges are
positioned at 𝑥 = 0.05 m (WG1) and 𝑥 = 6.3 m (WG2). Here, the results
recorded at WG2 are essentially a measure on the ability of the model
to reproduce the analytical second-order Stokes waves generated in the
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Fig. 2. Illustration of mesh configuration M3 for the second-order Stokes case.

Table 1
Wave parameters for second-order Stokes wave.

Wave Amplitude: 𝐴 (m) Height: 𝐻 (m) Period: 𝑇 (s) Wavelength: 𝜆 (m) Water depth: ℎ (m)

Stokes 2nd 0.06 0.12 1.63 3.164 0.505

Table 2
Mesh configurations for sensitivity study: second-order Stokes case.

Mesh Configuration 𝑥 × 𝑦 × 𝑧 Cells per wavelength Lin et al. (2021) crash time (s)

M1 60 × 10 × 10 15 11.15
M2 80 × 10 × 10 20 10.65
M3 100 × 10 × 10 25 9.75
M4 120 × 10 × 10 30 9.55

relaxation zone at WG1, and hence how we test performance. Finally,
the simulation time is 40 s.

Before we discuss the results from the stabilised model, we first want
to illustrate the problem of the sawtooth instability. To do this, we ran
a preliminary analysis under the same conditions outlined above using
the Lin et al. (2021) model—but with NO numerical damping applied.
What we found was that, for each mesh configuration, the simulation
crashes before the completion time, as listed in Table 2. Fig. 3 then
shows the free surface profile at the crash time for configuration M3.
The sawtooth-like free-surface profile can clearly be seen at the left
most peak and second to left most trough. This sort of sawtooth-like
wave profile actually becomes faintly visible almost immediately after
the simulation starts, but slowly becomes more defined as each wave
propagates down the tank.

Now, for the stabilised model, Fig. 5(a)–(c) show the time histories
of the free-surface elevation at WG2 for the different mesh configura-
tions listed in Table 2, plotted with the second-order Stokes solution
produced at WG1. Firstly, the key thing to note is that the simulation
is stable, does not crash, and the free surface does not develop a
sawtooth profile—all without using numerical damping or smoothing.
The solution is also clearly converging to the analytical, agreeing with
the recommendation made by Lin et al. (2021) that having more than
25 cells per wavelength is required to ensure a good level of stability
and accuracy in the NWT.

For this case, it also seems that a smaller value of 𝐶max is necessary
to produce convergent solutions. The results in Fig. 5(a)–(c) were actu-
ally produced using a value of 𝐶max = 0.01, a value that we determined
by investigating temporal convergence using mesh configuration M3.
Fig. 4(a)-(c) show the time histories of the free-surface elevation at

WG2 for different values of 𝐶max, plotted with the second-order Stokes
solution produced at WG1. What we find is that a value of at most 0.01
is required for sufficient accuracy. This is an anomaly in the present
work as all other test cases converged for the set value 𝐶max = 0.2 stated
previous. A potential reason for this is the simplicity of the case itself:
only a coarse mesh is required for convergence. The other cases in this
paper are much more complex and require finer mesh resolutions as a
result, meaning that 𝛥𝑥 in (21) is smaller and hence 𝐶max can be larger
(whilst also being mindful of 𝑢 also).

4.1.2. Fifth-order Stokes waves
We now generate fifth-order Stokes waves in the relaxation zone

rather than second-order Stokes waves; the input wave parameters are
listed in Table 3. The nonlinearity of these waves is stronger so we
should thoroughly test the performance capabilities of the stabilised
model, both with regards to stability and accuracy. Again the same
setup is used as Lin et al. (2021): the NWT has dimensions 100 m ×
0.7 m × 1.0 m in the 𝑥, 𝑦, and 𝑧 directions respectively. However, we
now choose a single mesh configuration of 1080 × 30 × 5, correspond-
ing to 50 cells per wavelength. Note this is clearly much higher than
the second-order Stokes case owing to the stronger nonlinearity of the
input waves. Again, the mesh is refined in the 𝑦-direction such that the
cell at the top has vertical width 1/10 of the cell at the bottom. Finally,
the simulation time is again 40 s.

Fig. 6 then shows the time histories of the free-surface elevation for
the stabilised model, Lin et al. (2021) model, and analytical fifth-order
Stokes solution at various gauges in the NWT. Again, the key thing to
note is that the simulation is stable with no sawtooth instability—all
without using numerical damping or smoothing. This provides clear
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Fig. 3. Snapshot of the free-surface at the crash time for configuration M3.

Fig. 4. Time histories of free-surface elevation at WG2 for different values of 𝐶max and analytical second-order Stokes solution: (a.) Whole simulation, (b.) 𝑡∕𝑇 ∈ [20, 22], (c.)
𝑡∕𝑇 × 𝜂∕𝐴 ∈ [20.8, 21.15] × [0.7, 1.2].

Table 3
Wave parameters for fifth-order Stokes wave.

Wave Amplitude: 𝐴 (m) Height: 𝐻 (m) Period: 𝑇 (s) Wavelength: 𝜆 (m) Water depth: ℎ (m)

Stokes 5th 0.125 0.25 2 4.62 0.7

evidence that the stabilised model has the capacity to remain stable
in the face on nonlinear waves. In addition, the solution is clearly
also very accurate, even for the wave gauge furthest down the tank.
A similar level of accuracy is also displayed when compared to the Lin
et al. (2021) model for which a value 𝛽𝐹𝑂𝐷𝐶 = 0.05 with a frequency
of 5 time steps is used to ensure stability.

4.2. Focused wave propagation

In addition to the propagation of regular waves, we can also con-
sider the propagation of irregular waves. Of particular importance to
wave–structure models is the existence of extreme waves. An irregular
sea state in any given region is random, consisting of many different
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Fig. 5. Time histories of free-surface elevation at WG2 for different mesh configurations and analytical second-order Stokes solution: (a) Whole simulation, (b) 𝑡∕𝑇 ∈ [20, 22], (c)
𝑡∕𝑇 × 𝜂∕𝐴 ∈ [20.8, 21.15] × [0.7, 1.2].

incident waves. The nonlinear interactions between these waves can
result in ones that are much larger than what would be expected: these
are called extreme waves. In order to replicate these extreme wave
events in a numerical wave tank, the most widely utilised method
is to use NewWave theory to generate focused waves. When using
NewWave theory, a group of localised regular waves are derived from a
measured or theoretical waves spectrum such as JONSWAP or Pierson–
Moskowitz. These individual wave components are then superposed so
that they constructively interfere to build up a larger irregular wave.
In addition, the phase of each wave component is adjusted so that they
each focus simultaneously at a specific time and location. The result is
a focused extreme wave representative of the underlying spectrum.

For this test case, we again use a relaxation zone for wave genera-
tion and a damping zone for absorption. As mentioned above, focused
wave generation is realised through the linear superposition of a finite
number of regular wave components. Hence, the first-order free-surface
wave elevation using 𝑁 components is defined as

𝜂(1) =
𝑁
∑

𝑖=1
𝐴𝑖cos𝜃𝑖, (22)

where 𝐴𝑖 is the amplitude of each component and 𝜃𝑖 is the phase of
each component. Moreover, the phase is defined as

𝜃𝑖 = 𝑘𝑖𝑥 − 𝜔𝑖𝑡 − 𝜖𝑖, (23)

where 𝑘𝑖 is the wavenumber, and 𝜔𝑖 the angular frequency, of each
component. As also previously mentioned, the phase of each component
is adjusted so that the waves focuses at a specific time and location. To
do this, 𝜖𝑖 in (23) is defined as

𝜖𝑖 = 𝑘𝑖𝑥0 − 𝜔𝑖𝑡0, (24)

where 𝑡0 is called the focus time and 𝑥0 is called the focus location.
Consequently, similarly to the free-surface elevation 𝜂(1), the first-order
velocity potential is defined as

𝜙(1) =
𝑁
∑

𝑖=1

𝑔𝐴𝑖
𝜔𝑖

cosh(𝑘𝑖[𝑦 + ℎ])
cosh(𝑘𝑖ℎ)

sin(𝑘𝑖(𝑥 − 𝑥0) − 𝜔𝑖(𝑡 − 𝑡0)). (25)

In addition, linear superposition also gives the amplitude 𝐴𝑖, for each
wave component 𝑖, as

𝐴𝑖 = 𝐴𝐼
𝑆𝑖(𝑓 )𝛥𝑓

∑𝑁
𝑖=1 𝑆𝑖(𝑓 )𝛥𝑓

, (26)

where 𝐴𝐼 is the input amplitude of the focused wave, 𝑆𝑖(𝑓 ) is the
spectral density, and 𝛥𝑓 is the increment frequency. In this paper, 𝑆𝑖(𝑓 )
refers to the JONSWAP spectrum:

𝑆𝑖(𝑓 ) =
5
16
𝐻2
𝑠 𝑓

4
𝑝 𝑓

−5
𝑖 exp

(

−5
4

(𝑓𝑝
𝑓𝑖

)4
)

𝛾
exp

(

−(𝑓𝑖−𝑓𝑝 )2

2𝜎2𝑓2𝑝

)

, (27)

where 𝐻𝑠 is the significant wave height, 𝛾 = 3.3 is the peak-
enhancement factor, 𝑓𝑝 is the peak spectral frequency, and 𝜎 is the
spectral width parameter defined as

𝜎 =

{

0.07 for 𝑓𝑖 ≤ 𝑓𝑝,
0.09 for 𝑓𝑖 > 𝑓𝑝.

(28)

We see from the spectrum (27) that, in order to generate each wave
component, we need to input 𝐻𝑠 (which is just 𝐴𝐼 ) and 𝑓𝑝, as well as
set a frequency bandwidth 𝑓 ∈ [𝑓min, 𝑓max]. In addition, given that we
then know the bandwidth [𝑓min, 𝑓max] and number of components 𝑁 ,
we can also calculate the frequency 𝛥𝑓 in (26).

In this paper, we also add the second-order free-surface elevation
and velocity potential so that

𝜂 = 𝜂(1) + 𝜂(2), (29)

𝜙 = 𝜙(1) + 𝜙(2). (30)

Details of the formulation for 𝜂(2) and 𝜙(2) can be found in papers by
Ning et al. (2008, 2009), but are omitted here.

For the test case itself, we follow the physical and numerical exper-
iments carried out by Ning et al. (2009). For the physical experiments,
a wave tank with dimensions 69.0 m × 0.5 m × 3.0 m was used. In
the experiments, four extreme wave cases – based on NewWave theory
– were investigated with different input amplitudes. In this paper, we
validate the stabilised model using cases 1 and 3 in particular; the
corresponding input wave characteristics are listed in Table 4. Note that
𝑇𝑝 and 𝜆𝑝 are the period and wavelength for the characteristic wave for
that particular group, which is taken as the wave corresponding to the
peak amplitude (for that group).

In the numerical experiments by Ning et al. (2009), the 3-D NWT
has dimensions 5𝜆𝑝 m × 0.5 m × 𝜆𝑝∕10 m. However, using a 3-D
tank seems unnecessary as there is no variation in the 𝑧–direction; in
addition, the width 𝜆𝑝 is very small. Consequently, in this paper, we
use a 2-D NWT with dimensions 5𝜆𝑝 m × 0.5 m to improve efficiency
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Fig. 6. Time histories of free-surface elevation for the stabilised model, Lin et al. (2021) model, and analytical fifth-order Stokes solution at various wave gauges in the NWT.
Please note that the upper limits of the time intervals in these panels are not the same.

Table 4
Input wave characteristics for cases NING1 and NING3.

Case Frequency band (Hz) Peak frequency: 𝑓𝑝 (Hz) Period: 𝑇𝑝 (s) Input amplitude: 𝐴𝐼 (m) Wavelength: 𝜆𝑝 (m)

NING1 𝑓 ∈ [0.6, 1.2] 0.83 1.2 0.0313 2
NING3 𝑓 ∈ [0.6, 1.4] 0.8 1.25 0.0875 2.18

with a negligible difference in results. Moreover, the relaxation and
damping layer are the same length as Ning et al. (2009), i.e., 𝜆𝑝 and 2𝜆𝑝
respectively. All these dimensions are more clearly listed for each case
in Table 5. The corresponding focus location and time are also given
by Ning et al. (2009) as 𝑥0 = 1.5𝜆𝑝 and 𝑡0 = 8𝑇𝑝 respectively. These are
more clearly listed for each case in Table 6. Finally, for case NING1
we use 31 wave components, whereas for case NING3 we use 41. The
difference is owed to the increased steepness and nonlinearity of the
focused wave in NING3.

To begin, we first undertook a mesh convergence study for case
NING1 to assess accuracy and to determine the best mesh configuration
for the steeper case NING3. Four different mesh configurations are

Table 5
Dimensions of NWT for cases NING1 and NING3.

Case NWT dimensions 𝑥 × 𝑦 (m) Relaxation zone Damping zone

NING1 10 × 0.5 [0, 2] [6, 10]
NING3 10.9 × 0.5 [0, 2.18] [6.54, 10.9]

chosen and are listed in Table 7. Again, the mesh is refined in the
𝑦-direction such that the cell at the top has vertical width 1/10 of
the cell at the bottom. Fig. 7 then shows the time histories of free-
surface elevation at the focus location 𝑥0, plotted with the experimental
solution from Ning et al. (2009). Again, the simulation is stable with
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Table 6
Input and real focusing properties for cases NING1 and NING3.

Case Input focus location: 𝑥0 (m) Input focus time: 𝑡0 (s) Actual focus location: 𝑥1 (m) Actual focus time: 𝑡1 (s)

NING1 3 9.6 3 9.6
NING3 3.27 10 3.575 10.16

Fig. 7. Time histories of free-surface elevation at the input focus location 𝑥0 for different mesh configurations and experimental solution from Ning et al. (2009).

Table 7
Mesh configurations for sensitivity study: case NING1.

Mesh Configuration (𝑥 × 𝑦) Cells per wavelength

N1 75 × 10 15
N2 100 × 10 20
N3 125 × 10 25
N4 150 × 10 30

no sawtooth instability. In terms of convergence, the solution is clearly
converging with there being minimal difference between the results for
configurations N1, N2, N3, and N4—all of which are very accurate.
Therefore, we choose the middle configuration N3 – corresponding to
25 cells per wavelength – for case NING3.

Moving on to NING3, we can see from Table 4 that the input
amplitude 𝐴𝐼 is almost three times larger than for case NING1. This
also means that the focused wave will be steeper and be more strongly
nonlinear. Consequently, we expect that the focusing time will be
delayed and the focusing location will be shifted downstream. The
is an effect reported not only by Ning et al. (2009), but also other
authors such as Westphalen et al. (2012), Bihs et al. (2017), and Wang
et al. (2019), with the cause in main being attributed to nonlinear
wave–wave interaction as the wave group evolves—something that
becomes more prominent with increased nonlinearity as we see with
case NING3. Given this, we need to find the true focus time 𝑡1 and
location 𝑥1. To do this we output the wave profile at close time intervals
around the input focus time 𝑡0 = 10, as done by Wang et al. (2019).
By doing this we can then find the wave profile with the largest peak
amplitude, its corresponding focusing location which will be 𝑥1, and
the corresponding time which will be 𝑡1. By this method, 𝑡1 is found
to be 10.16 s and 𝑥1 is found to be 3.575 m, both of which are also
listed in Table 6. Fig. 8(a) then shows the wave profiles for both 𝑡0
and 𝑡1 where we can see that the central crest at 𝑡1 is slightly higher
than at 𝑡0. Fig. 8(b) then also shows the time histories of free-surface
elevation at both 𝑥0 and 𝑥1 where we can clearly see the delay in
focal time due to increased nonlinearity. Finally, Fig. 8(c) compares

the time history of free-surface elevation at the real focal location 𝑥1
with the experimental results from Ning et al. (2009), from which we
can see a good agreement in results. Note that the delay in time and
shift downstream is slightly smaller than the other works cited. It is
reasonable to assume that this is due to the fact we use a relaxation
zone to generate the focused wave in this work whereas the others use
either a piston or paddle wavemaker.

What we can conclude then from this case is that the stabilised
model can accurately replicate extreme wave events in a NWT without
encountering the sawtooth instability. This is of particular importance
when assessing the survivability of offshore structures: any structure
must be able to survive the harshest conditions, no matter how rare
they may be. Hence, when it comes to designing integrated models, we
can be confident that this stabilised model can successfully act as the
FNPF part when is comes to replicating these events.

4.3. Wave shoaling

In this section, two more complex test cases are considered to
further validate the stabilised model—2-D and 3-D wave shoaling. Each
case will establish how accurately the model can capture the transfor-
mation of propagating waves that occurs due to variable bathymetry.
For the 2-D case, this is due to interaction with a submerged structure,
whereas for the 3-D case, this is due to changing bottom topography.

4.3.1. 2-D shoaling
Starting with 2-D shoaling, we follow the experiments described

by Beji and Battjes (1993, 1994) which investigated how interaction
with a submerged trapezoidal bar affected wave propagation. The NWT
in this case has dimensions 30 m × 0.4 m in the 𝑥 and 𝑦 directions
respectively, but also has the aforementioned trapezoidal bar at the
bottom boundary—as illustrated in Fig. 9. We use two sets of input
wave parameters, B1 and B2, both listed in Table 8. B1 corresponds to
the set used in Beji and Battjes (1994), whilst B2 corresponds to the
set used in Beji and Battjes (1993). Note that the input waves B2 are
approximately 4.6 times steeper than B1. Thus, the mesh configuration
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Fig. 8. (a.) Free-surface profile at input focus time 𝑡0 and real focus time 𝑡1. (b.) Time histories of free-surface elevation at input focus location 𝑥0 and real focus location 𝑥1. (c.)
Time histories of free-surface elevation at real focus location 𝑥1 and experimental solution from Ning et al. (2009).

Table 8
Wave parameters for 2-D and 3-D shoaling cases.

Case ID Amplitude: 𝐴 (m) Height: 𝐻 (m) Period: 𝑇 (s) Wavelength: 𝜆 (m) Water depth: ℎ (m) Steepness: 𝐻∕𝜆

B1 0.01 0.02 2.02 3.737 0.4 0.005352
B2 0.018 0.036 1 1.4637 0.4 0.02460
W1 0.0195 0.039 1 1.4957 0.4572 0.02607
W2 0.0075 0.015 2 3.9095 0.4572 0.003837
W3 0.0106 0.0212 2 3.9095 0.4572 0.005423

Table 9
Mesh configurations for 2-D and 3-D shoaling cases.

Mesh Configuration 𝑥 × 𝑦 × 𝑧

2D_M1 1500 × 20 × 1
2D_M2 3000 × 20 × 1
3D_M1 1750 × 30 × 50
3D_M2 1750 × 30 × 100

used for each is also different to account for the increased wave
steepness and to ensure there is sufficient mesh resolution. For B1
we use configuration 2D_M1 listed in Table 9, whereas for B2 we use
configuration 2D_M2. With both of these configurations, the mesh is not
uniform. Instead, it is refined in the 𝑥-direction to increase resolution
in the region 𝑥 ∈ [11, 21] where the wave shoaling phenomenon is
significant. Furthermore, the mesh is again refined in the 𝑦-direction
as was with the wave propagation test case. Note that in this case,
comparisons are made with the Lin et al. (2021) model for which a
value of 𝛽𝐹𝑂𝐷𝐶 = 0.2 with a frequency of 1 time step is used to ensure
stability.

Considering B1 first, Fig. 10 shows the time histories of the free-
surface elevation for the stabilised model, Lin et al. (2021) model,
and experimental solution of Beji and Battjes (1994) at various wave
gauges in the NWT. Again, we must emphasise that the key point to
acknowledge here is that no numerical damping is required to ensure
stability for this case. In terms of accuracy, we see from Fig. 10 that the
present results at WG1: 𝑥 = 2.0 m are practically identical to the exper-
imental solution and Lin et al. (2021) results, meaning that the target
waves are produced well in the relaxation zone. Then from WG2: 𝑥 =
12.5 m to WG8: 𝑥 = 21.0 m we clearly observe the expected increase
in amplitude and nonlinearity due to the presence of the submerged
bar, with good agreements shown between the stabilised model and
experimental solution. At WG’s 5-8, the present results actually seem
over predicted compared to the experimental data. However, this might
be reasonable given that the more accurate potential flow simulation
might over predict due to the absence of fluid viscosity.

Moving on to B2, Fig. 11 shows the analogous results but this time
plotted with the experimental solution of Beji and Battjes (1993). Once
again, the solution is stable and no numerical damping is required.
In terms of accuracy, the results at WG1: 𝑥 = 6.0 m – just before
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Fig. 9. Sketch of NWT for 2-D shoaling case (not to scale).

the submerged bar – agree well with the experimental solution and
are identical to the Lin et al. (2021) results. Then from WG2: 𝑥 =
12.0 m to WG4: 𝑥 = 14.0 m – where the shoaling effects predominately
occur – we clearly observe the expected increase in amplitude, with
good agreements with the experimental solution and Lin et al. (2021)
results. Lastly, at WG5: 𝑥 = 15.0 m and WG6: 𝑥 = 16.0 m, strong
nonlinear effects can be observed and slight discrepancies between the
stabilised model and experimental solution emerge. However, this is to
be expected due to the high nonlinearity.

What we can conclude then from this case is that the stabilised
model is able to accurately simulate the transformation of propagating
waves that occurs due to interaction with a submerged structure, as
well as capturing the ensuing highly nonlinear effects. Again, this is all
without using numerical damping and without the appearance of the
sawtooth instability.

4.3.2. 3-D shoaling
Now, for 3-D shoaling, we follow the experiments carried out by

Whalin (1971). In this test case, the bottom topography is changing
due to a submerged semi-circular slope. This will test the ability of
the stabilised model to capture 3-D nonlinear effects associated with
wave transformation rather than just 2D. The NWT in this test case has
dimensions 35 m × 6.096 m in the 𝑥 and 𝑧 directions, but as mentioned,
has varying water depth ℎ which can be defined as the function

ℎ(𝑥, 𝑧) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.4572, 0 ≤ 𝑥 ≤ 10.67 − 𝐺(𝑧),

0.4572 + 1
25
(10.67 − 𝐺(𝑧) − 𝑥), 10.67 − 𝐺(𝑧) < 𝑥 < 18.29 − 𝐺(𝑧),

0.1524, 18.29 − 𝐺(𝑧) ≤ 𝑥 ≤ 35.0,

(31)

where 𝐺(𝑧) =
√

𝑧(6.096 − 𝑧). The resulting semi-circular slope is illus-
trated visually in Fig. 12. For this case, three different sets of wave
parameters are used: W1, W2, and W3—all listed in Table 8. For W2
and W3, we use mesh configuration 3-D_M1 listed in Table 9, whereas
for W1 we use configuration 3-D_M2. This increased number of cells
for W1 is down to the increased steepness and nonlinearity: W1 is
approximately 6.8 times steeper than W2—the least steep. Again, as
was with the 2-D shoaling case, the mesh is refined in the 𝑥 and 𝑦
directions to increase resolution in the shoaling area and free surface
respectively.

The first thing to note from the results is that the simulation is stable
for each of W1, W2, and W3. Fig. 13(a)–(c) then show the first three
harmonic components – obtained by Fast Fourier Transform – along
the streamwise central line of the NWT for the stabilised model, Shao
and Faltinsen (2014), Engsig-Karup et al. (2009), and experimental
results of Whalin (1971). Overall, for all three inputs, we see good
agreements between the stabilised model results and those of the other
cited works, even for the steepest input W1 (Fig. 13(a)). In addition, for
W3, Fig. 14(a)–(d) show snapshots of the free surface at various times
during the simulation. What we see in Fig. 14(a) are the 2-D waves

generated in the relaxation zone propagating towards the semi-circular
slope. What we then see in Fig. 14(b)–(d) are the waves becoming
steeper and transforming due to the presence of the slope before being
damped out of the tank completely. What we can conclude then from
this case is that the stabilised model is able to accurately simulate
the transformation of propagating waves that occurs due to interaction
with changing bottom topography, as well as capturing the ensuing
three-dimensional nonlinear wave effects. Again, this is all without
using numerical damping and without the appearance of the sawtooth
instability.

4.4. Energy considerations

As mentioned in the introduction, the use of artificial dissipation by
way of a low-order numerical damping or smoothing scheme in FNPF
models is undesirable due to overall loss in energy in the NWT. This in
turn can then make the models inaccurate, particularly for large-scale
and long-time simulations. In addition, this technique usually involves
certain parameters that have to be tuned for any given application in
order to achieve an optimal balance between stability and accuracy,
leading to a very sluggish and drawn-out process if the values are not
known a priori. These clear disadvantages of artificial dissipation are
at the heart of why we chose to instead make use of a second-order
TVD method. Indeed, the stabilised model requires no tuning of any
parameters—every preceding validation test case was carried out using
the same coding configuration. This is in contrast to the Lin et al. (2021)
model for which carefully chosen values of the damping parameters
were required to ensure stability and good accuracy. If instead these
parameters were poorly chosen, the simulation would have either been
unstable, or there would have been excessive damping and overall
loss in energy. The stabilised model avoids the process of trial and
error in pursuing the optimal damping parameter, so in this sense, it
is reasonable to conclude that it is superior to the Lin et al. (2021)
model. Nevertheless, to validate this conclusion further, we consider
new examples in which we also prove the stabilised model is superior
to Lin et al. (2021) model in terms of energy conservation as well.

The most straightforward and heuristic way of verifying the loss in
energy due to artificial dissipation is to observe the growing reduction
in amplitude of progressive waves as they get further from the inlet.
In addition, we can also explicitly calculate the total energy 𝐸𝑇 in
the NWT over time and see how this corresponds with the prior
observations. To calculate 𝐸𝑇 , we first calculate the total kinetic and
potential energies in the NWT and take their sum, i.e.,

𝐸𝑇 = 𝐸𝑘 + 𝐸𝑝. (32)

Then, if 0 and 𝑋 denote the limits of the computational domain in the
𝑥-direction and 𝜌𝑤 is the density of water, 𝐸𝑘 and 𝐸𝑝 are given by

𝐸𝑘 =
1
2
𝜌𝑤 ∫

𝑋

0 ∫

𝜂

−ℎ
(∇𝜙 ⋅ ∇𝜙) 𝑑𝑦𝑑𝑥 and 𝐸𝑝 = 𝜌𝑤𝑔 ∫

𝑋

0 ∫

𝜂

−ℎ
𝑦 𝑑𝑦𝑑𝑥,

(33)



Applied Ocean Research 134 (2023) 103500

13

R. Rai et al.

Fig. 10. Time histories of free-surface elevation for the stabilised model, Lin et al. (2021) model, and experimental solution of Beji and Battjes (1994) at various wave gauges in
the NWT for input B1.

which in turn implies that

𝐸𝑇 = 1
2
𝜌𝑤 ∫

𝑋

0 ∫

𝜂

−ℎ
(∇𝜙 ⋅ ∇𝜙) 𝑑𝑦𝑑𝑥 + 1

2
𝜌𝑤𝑔 ∫

𝑋

0
(𝜂2 − ℎ2)𝑑𝑥. (34)

The potential energy below the initial free-surface position 𝑦 = 0, given
by − 1

2𝜌𝑤𝑔 ∫
𝑋
0 ℎ2 𝑑𝑥, is a constant that will be the same for each of the

two models, and hence is discarded from the calculation for 𝐸𝑇 as it
has no relation to the wave motion. The total wave energy 𝐸𝑇 then
becomes

𝐸𝑇 = 1
2
𝜌𝑤 ∫

𝑋

0

(

∫

𝜂

−ℎ
(∇𝜙 ⋅ ∇𝜙) 𝑑𝑦 + 𝑔𝜂2

)

𝑑𝑥. (35)

Given that OpenFOAM implements a cell-centred and co-located FVM,
calculating the total Energy is relatively straightforward, i.e.,

𝐸𝑇 = 1
2
𝜌𝑤

( 𝑁
∑

𝑛
(∇𝜙𝑛 ⋅ ∇𝜙𝑛) 𝐴𝑛 + 𝑔

𝐼
∑

𝑖
𝑦2𝑖 𝛥𝑥𝑖

)

, (36)

where 𝑁 is the total number of mesh cells, 𝐴𝑛 the vertical cross-
sectional area of cell 𝑛, 𝐼 the number of cells in the 𝑥-direction, 𝛥𝑥𝑖 the
𝑥-directional width of free-surface cell face 𝑖, and 𝑦𝑖 the 𝑦-coordinate
of face 𝑖.

Given that we want to consider a large-scale and long-time simula-
tion, we extend the fifth-order Stokes wave example in Section 4.1.2 so
that the NWT in this case is 100 wavelengths long with a final time of
450 s. We also change the example to 2D for computational ease. All
wave parameters are the same as in Section 4.1.2 (listed in Table 3)
meaning the NWT now has dimensions 462 m × 0.7 m. In addition, the
relaxation and damping zones are both 5 wavelengths long. The mesh
configuration is 5000 × 30 (50 cells per 𝜆). We use the same value of
the damping parameter 𝛽𝐹𝑂𝐷𝐶 = 0.05 with a frequency of every 5 time
steps which were found to be optimal for stability. Finally, we split the
total energy 𝐸𝑇 by considering two separate regions of the NWT: the
damping zone (𝐸𝐷) and the ‘middle portion’ (𝐸𝑀 ) which is the region
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Fig. 11. Time histories of free-surface elevation for the stabilised model, Lin et al. (2021) model, and experimental solution of Beji and Battjes (1993) at various wave gauges in
the NWT for input B2.

Fig. 12. Illustration of submerged semi-circular slope for 3-D shoaling case.

that does not include both the relaxation and damping zones (and is
hence 90 wavelengths long).

Fig. 15(a) then shows the time histories of free-surface elevation
for the stabilised model, Lin et al. (2021) model, and analytical fifth-
order Stokes solution at WG1 = 430 m. Note this wave gauge is near
the end of the NWT, just before the damping zone begins. We can

see from the results that the Lin et al. (2021) model experiences a
greater reduction in amplitude – and hence a greater loss in energy – of
propagating waves than the stabilised model. Although the stabilised
model also experiences a reduction in amplitude, the loss is smaller
than the Lin et al. (2021) model; hence, in this sense, the new model
outperforms the old one. The results when we explicitly calculate the
energy are also in agreement with this heuristic observation. Fig. 15(b)
shows the time histories of 𝐸𝐷 for the stabilised model and Lin et al.
(2021) model in the damping zone of the NWT. These results clearly
show that the amount of energy having to be transferred out of the
NWT in this zone is higher for the stabilised model than the Lin
et al. (2021) model, clearly indicating that the waves in the stabilised
model are propagating more energy at the point which they reach
the damping zone for all time—a result corroborated by the results in
Fig. 15(a). In addition, Fig. 15(c) shows analogous results for 𝐸𝑀 in
the middle portion of the NWT where waves are not being generated
or damped but only propagated. It clearly shows that the stabilised
model conserves more energy over time than the Lin et al. (2021)
model. According to Dong et al. (2020), the theoretical total wave
energy per unit horizontal area for this fifth-order Stokes wave in the
middle portion of the NWT can be found at about 𝐸 = 75.9 J∕m2.
The corresponding computed values are 65.4 J∕m2 and 60.9 J∕m2 for
the stabilised and old models, respectively. These energy calculations
clearly corroborate our prior heuristic observations and hence further
cement the superiority of the stabilised model over the Lin et al. (2021)
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Fig. 13. Harmonic components of numerical results from the stabilised model, Shao and Faltinsen (2014), Engsig-Karup et al. (2009), and experimental results of Whalin (1971)
at the streamwise central line of the NWT: (a.) input W1, (b.) input W2, (c.) input W3.

Fig. 14. Snapshots of the free surface for input W3 at times (a.) 11 s, (b.) 16 s, (c.) 21 s, and (d.) 31 s. (Not to scale—exaggerated 20 times in the 𝑦-direction).
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Fig. 15. (a.) Time histories of free-surface elevation for the stabilised model, Lin et al. (2021) model, and fifth-order Stokes solution at WG1 = 430 m. (b.) Time histories of total
energy 𝐸𝐷 in the damping zone of the NWT for the stabilised model and Lin et al. (2021) model. (c.) Time histories of total energy 𝐸𝑀 in the middle portion of the NWT for the
stabilised model and Lin et al. (2021) model.

model in terms of energy conservation and accuracy for large-scale and
long-time simulations.

5. Conclusion

In the present paper, we have endeavoured to stabilise the finite
volume model of Lin et al. (2021) without resorting to the different
types of filters that are often used in FNPF models. We did this by
first analysing the characteristics of the nonlinear boundary condition
equations. This showed that the KBC equation is advection dominated,
meaning that the advection terms in it need to be handled correctly. In
order to stabilise numerical simulations and avoid the use of undesir-
able techniques that involve artificial dissipation, we proposed a new
method to calculate the advection terms in the KBC equation; namely,
a second-order scheme motivated by a TVD approach.

It was found that this eliminated the instability in every instance for
which it occurred in the original Lin et al. (2021) model. Furthermore,
we demonstrated through a variety of validation test cases that the
stabilised model is accurate, with good agreements being shown with
existing numerical, experimental, and analytical results. This was par-
ticularly evident when evaluating the performance in terms of energy
conservation; indeed, we showed that the stabilised model is much
better suited to large-scale and long-time simulations than the Lin et al.
(2021) model—vindicating the desire to be free from using numerical
damping as a stabilisation technique. We also highlighted the simplicity
and ease as to which the TVD method could be implemented and used
in existing finite volume-based FNPF models. In addition, the speed and
efficiency of the stabilised model is on par with the Lin et al. (2021)
model.

It should be noted that, for time integration, we only used the first-
order Euler scheme as Lin et al. (2021) did. This was solely for the
purpose of fair comparison between the two models in terms of their
performance. Higher-order time integration schemes will be used in

future work. Finally, as mentioned in the introduction, our primary
aim is to use this new stabilised model as a constituent part for a new
robust and efficient integrated model. We plan to do this by coupling
it with the native two-phase Navier–Stokes solver readily available in
OpenFOAM, something for which this FNPF model has an advantage
given that it too has been developed in OpenFOAM and is finite volume
based. This new multi-scale integrated NWT will then be used to model
complex wave–structure interactions to high level of efficiency and
accuracy.
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Fig. 16. (a) TVD region for the flux limiter function 𝜓(𝑟), (b) First and second-order
regions, (c) Popular functions.

Table 10
Expressions for some popular flux limiter functions.

Limiter 𝜓(𝑟)

Van Leer 𝑟+ ∣ 𝑟 ∣
1+ ∣ 𝑟 ∣

Van Albada 1 𝑟2 + 𝑟
𝑟2 + 1

Van Albada 2 2𝑟
𝑟2 + 1

MinMod max[0, min(1, 𝑟)]
SuperBee max[0, min(1, 2𝑟), min(2, 𝑟)]
Sweby max[0, min(1, 𝛽𝑟), min(𝛽, 𝑟)]
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Appendix. Flux limiter

Constraints by Sweby (1984):

• If 0 < 𝑟 < 1, the upper limit is 𝜓(𝑟) = 2𝑟, so for TVD schemes
𝜓(𝑟) ≤ 2𝑟.

• If 𝑟 ≥ 1, the upper limit is 𝜓(𝑟) = 2, so for TVD schemes 𝜓(𝑟) ≤ 2.

These constraints result in the TVD region visualised in Fig. 16(a). From
this we can conclude that the key to ensuring that the numerical scheme
is TVD is to construct a flux limiter function 𝜓(𝑟) that remains in this
region for all 𝑟. Moreover, Sweby also deduced that the choice of 𝜓(𝑟)
dictates the order of the scheme. For a scheme to be second order, 𝜓(𝑟)
must satisfy further constraints:

• If 0 < 𝑟 < 1, the lower limit is 𝜓(𝑟) = 𝑟, the upper limit is 𝜓(𝑟) = 1,
so for TVD schemes 𝑟 < 𝜓(𝑟) < 1.

• If 𝑟 ≥ 1, the lower limit is 𝜓(𝑟) = 1, the upper limit is 𝜓(𝑟) = 𝑟, so
for TVD schemes 1 ≤ 𝜓(𝑟) ≤ 𝑟.

• 𝜓(𝑟) must pass through the point (1, 1) in the 𝑟 − 𝜓(𝑟) diagram.

These additional constraints result in a partition of the larger TVD re-
gion into separate second and first-order regions, as shown in
Fig. 16(b). Fig. 16(c) then shows some popular flux limiter functions
plotted on a 𝑟−𝜓(𝑟) diagram, with the corresponding expressions shown
in Table 10.
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