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Abstract

Facial micro-expression (ME) recognition requires face movement interval as input, but com-

puter methods in spotting ME are still underperformed. This is due to lacking large-scale long

video dataset and ME generation methods are in their infancy. This thesis presents meth-

ods to address data deficiency issues and introduces a new method for spotting macro- and

micro-expressions simultaneously.

This thesis introduces SAMM Long Videos (SAMM-LV), which contains 147 annotated

long videos, and develops a baseline method to facilitate ME Grand Challenge 2020. Further,

a reference-guided style transfer of StarGANv2 is experimented on SAMM-LV to generate a

synthetic dataset, namely SAMM-SYNTH. The quality of SAMM-SYNTH is evaluated by using

facial action units detected by OpenFace. Quantitative measurement shows high correlations

on two Action Units (AU12 and AU6) of the original and synthetic data.

In facial expression spotting, a two-stream 3D-Convolutional Neural Network with tem-

poral oriented frame skips that can spot micro- and macro-expression simultaneously is pro-

posed. This method achieves state-of-the-art performance in SAMM-LV and is competitive in

CAS(ME)2, it was used as the baseline result of ME Grand Challenge 2021. The F1-score

improves to 0.1036 when trained with composite data consisting of SAMM-LV and SAMM-

SYNTH. On the unseen ME Grand Challenge 2022 evaluation dataset, it achieves F1-score of

0.1531.

Finally, a new sequence generation method to explore the capability of deep learning network

is proposed. It generates spontaneous facial expressions by using only two input sequences

without any labels. SSIM and NIQE were used for image quality analysis and the generated

data achieved 0.87 and 23.14. By visualising the movements using optical flow value and absolute

i



frame differences, this method demonstrates its potential in generating subtle ME. For realism

evaluation, the generated videos were rated by using two facial expression recognition networks.
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Chapter 1

Introduction

1.1 Background

Facial expression is movements of one or more muscles of the face. It is a type of nonverbal

communication which may indicate the emotional state of a person. However, facial expression

is not a perfect representation of the emotional state of a person as humans can hide their

emotions by deliberately posing certain facial expressions (e.g. faking a smile). In this thesis,

regular facial expressions are called facial macro-expression (MaE); while there exist subtle

facial movements which may happen during emotion suppression which is called facial micro-

expression (ME). Our research focus is on facial micro-expression, a subtle facial movement that

is involuntary and occurs less than 0.5s [1]. These expressions occur less frequent compared to

MaE counterparts and happen more in stressful or high stake situations.

Facial analysis is a rapidly growing field, especially with the advent of deep learning which

accelerates this research area. These include face detection, face recognition, facial expression

recognition, age estimation and gaze estimation. It converts raw footage or image of facial

expressions into meaningful features or data. Subsequently, these data can be evaluated by

humans or machines to obtain a deeper understanding of the facial structure or movements

and enable a wide range of security applications (i.e. face unlock), psychological counselling,

interrogation and medical purposes. There exists software and tools [2]–[4] used in face-related

research that primarily tracks the face based on detected features (e.g. facial landmark and

facial action units). However, there is no existing software for ME spotting.

1



Chapter 1. Introduction

Deep learning is the state-of-the-art approach in various fields (i.e. computer vision and

natural language processing) including face-related research. Machine learning model performs

the best in ME recognition [5] uses a multi-stream neural network. This multi-stream neural

network takes in 3 different extracted features (3 optical flow based features) as input. It

demonstrated the use of 3 different extracted features increases the number of input features

which enables the network to capture more information. The main advantage of deep learning

model is the performance of the model improves as the number of data increases. By introducing

more data with higher diversity, the model is capable of generalising on unseen data better.

However, we identified the main limitations of this research which are the limited number of

available ME dataset and the imbalance of emotion classes of labelled data. In the current

stage of development, ME recognition and spotting research are only conducted in laboratory-

controlled environments online. There exist a dataset curated from spontaneous videos [6] of

high stake situations, but this dataset contains only 31 videos of 16 individual and is only used

as an evaluation tool rather than training. As a result, the real-world in-the-wild application of

this technology in the current stage is still infeasible due to the reason mentioned.

To make ME analysis into a real-life application, the analysis algorithm should be able

to differentiate and detect macro- and micro-expression simultaneously. There is documented

evidence that shows overlaps between facial macro- and micro-expressions [7] which strongly

highlights the importance of this ability in coping with real-world data. Prior to this thesis, as

far as we are aware, all algorithms do not have the ability to spot both simultaneously which

presents a research gap that we are interested in. The ability to spot both expressions at the

same time can provide a more accurate overview of the dynamic of the overlap of macro- and

micro-expression.

The goal of this thesis is to present our research attempt in addressing the data deficiency

problem and creating a fully automated machine learning approach that can perform macro-

and micro-expression spotting simultaneously. In order to achieve this goal, we curate a new

long video dataset and introduce a synthetic dataset (Chapter 4), propose a machine learning

approach that leverage the duration difference between macro- and micro-expressions (Chapter

5), design generative models that can potentially increase the number of available data pool

(Chapter 6) and two facial expression recognition networks to quantify the quality of the facial
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expressions generated in Chapter 6 (Chapter 7).

1.2 Motivation

Deep learning is the state-of-the-art in many research areas. This method requires a large-scale

and diverse data to achieve its full potential. Existing methods are not able to spot both macro-

and micro-expression simultaneously. In the current stage of micro-expression research, there is

a lack of dataset and many researchers are focused on ME recognition, which requires manual

human labelled short video clips as input. Additionally, there is no available method to spot

ME and MaE simultaneously. The motivation of this thesis are:

1. To improve deep learning based ME spotting by introducing more datasets with higher

variety to improve the generality of the model.

2. To enhance the ME spotting performance by introducing end-to-end like method that

can simultaneously spots both ME and MaE. This can eliminate the reliance on external

algorithms or models that contains certain biases.

3. To bridge the gaps in ME research towards automated ME and MaE spotting and serve

as baseline methods for international ME Challenges to facilitate future research.

1.3 Problem Statement

We identified a few key research gaps in ME research. First, the lack of long videos dataset.

Most of the existing datasets are short video clips and do not represent real-world scenario

as MEs are not common and can occur simultaneously alongside with MaE. Next, there is no

end-to-end approach and method that can spot ME and MaE simultaneously. Most methods

has one or more pre- and post-processing stages, which potentially introduce dependency and

error. These methods are not ideal in real-time setting. This thesis aims to bridge the gap

by researching into new end-to-end deep learning techniques with minimal reliant on external

procedures.
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Figure 1.1: An overview visualisation of the structure of this thesis. The first three chapters
includes the information about micro-expression research and the theories/techniques involved.
The subsequent four chapters are the contributions of this thesis. The final chapter concludes
this thesis with the summary and future work of this work.

1.4 Objectives

This project primarily aims to develop a spatial- and temporal-dimension based deep learning

algorithm for micro-expression (ME) spotting and generation method. The objectives are:

1. To identify research gap and determine research direction through literature review.

2. To address data deficiency by introducing a new ME long video dataset.

3. To investigate existing GAN models in ME generation and define evaluation method to

compare original data and generated data.

4. To propose a new ME spotting algorithm based on deep learning method and validate it

on ME long videos datasets.

5. To design a new generative model that can generate spontaneous ME to improve the

diversity of datasets in ME research.

1.5 Contributions

The main contribution of this thesis are:
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1. A new long videos dataset containing both facial micro- and macro-expression with the

highest face resolution. A benchmark result for ME and MaE spotting is introduced based

on Facial Action Unit (AU) obtained using a facial analysis toolkit, OpenFace.

2. An advanced image augmentation method using style transfer to create more data varia-

tion on current existing dataset.

3. A deep learning facial micro- and macro-expression spotting algorithm using the temporal

difference of facial micro- and macro-expression which spots both expressions simultane-

ously.

4. A spontaneous recursive generation model that is capable of generating a sequence of

spontaneous facial expressions. This model can be applied to generate spontaneous micro-

expressions.

1.6 Thesis Organisation

This thesis is organised by Chapter 2 as Literature Review, Chapter 3 as Theories and Tech-

niques, the main contributions are in Chapter 4 to 7 and everything is summarised in Chapter

8 as Conclusion.

Chapter 2 introduces the basic knowledge and literature review on annotation system, micro-

expression analysis methods and generative method centred on facial expression.

Chapter 3 is mainly about the technical details of steps, processes and methods that uses

throughout the research. This includes preprocessing methods, feature descriptors, machine

learning approaches and performance metrics.

Chapter 4 is attempts to increase the data pool of this research by creating more dataset.

The first attempt is curating a new long video dataset, SAMM Long Videos, that contains

both ME and MaE. Benchmark results for SAMM Long Videos is also introduced by taking

advantage of the automated facial action units detected by a facial analysis toolkit. The second

attempt is generating a synthetic dataset (SAMM-SYNTH) using reference-guided image syn-

thesis based on SAMM Long Videos dataset. Both quantitative and qualitative measurement

on the generated data was proposed.
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Chapter 5 is a ME and MaE spotting method that is capable of spotting both expression

simultaneously. This method leverage the duration difference between ME and MaE by using

a two stream convolutional neural network with different frame skips.

Chapter 6 is generative models that can generate new spontaneous data. By using generative

model, the number of data can be increased and the class imbalance in current dataset which is

a known issue can potentially be resolved. Our method is a recursive generation method that

is capable of generating spontaneous facial expression sequences without using any labels. This

method is also capable of generating micro-movements and has potential in generalised onto

other domain. An ambitious attempt at removing the constant reference frame is also discussed.

Chapter 7 contains facial expression recognition approaches that can be used as an evaluation

method for the generated facial expressions. We demonstrate two different approach (using

classification and regression) on this task and discussed the implications on facial expression

sequences.

Chapter 8 concludes this thesis with the summary of the thesis and potential future works.
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Literature Review

This section reviews background knowledge on emotions, facial expressions, facial expression

annotation, datasets, and micro-expression (ME) related works. The latter includes ME recog-

nition, ME and MaE spotting, and generative models.

ME recognition is the classification of MEs into one of the emotion classes based on facial

movements. There are evaluations which split emotions into negative, positive, and surprise,

which is also the benchmark for the 2nd Facial Micro-Expression Grand Challenge (MEGC)

[8]. However, common approaches use the instance where a facial expression peaks in intensity,

and the true expression is not known or labelled. As a result, ME spotting was introduced.

ME spotting is the detection of ME in a time series sequence and is proposed to be the first

step of a ME analysis pipeline, as it scans video sequences for ME presence before any further

analysis. This could potentially reduce the number of false positives, a known issue in this

research area. By locating MEs accurately in a sequence, further analysis errors, such as the

algorithm classifying a stationary face as a ME, can be eliminated.

There is a limited amount of data in ME research. Generative models can be an alterna-

tive in obtaining more data by generating synthetic data that are similar to real-world data.

This chapter also discusses facial expression generation and ME generation techniques that can

potentially be a solution to this problem.
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2.1 Emotions and Facial Expressions

Emotions are conscious, mental reactions towards a certain circumstance, thing or behaviour.

It is a very complex phenomenon across different fields such as neuroscience, psychology, and

social science. There exist several theories of emotion such as basic emotion theory [9], [10]

(emotions are divided into discrete categories), emotion as a body-brain combination [11], and

appraisal model [12], [13] (psychology state is based on human self-interpretation).

Facial expressions are one of the main visual cues of the human emotional state. They

are quick and efficient as they communicate socially relevant information via the face, which

is visible in most everyday scenarios. They are highly adaptive because they quickly mobilise

and coordinate resources needed to successfully deal with life tasks, which is an advantage for

survival.

2.1.1 Universal Emotions

Our research follows 7 universal basic emotions [14]: happy, sad, anger, disgust, fear, surprise,

and contempt. The seventh emotion, contempt, is the most recent addition and has contradict-

ing arguments against its existence [15]. The first person who proposed universal emotions is

Charles Darwin [16]. This theory states there are a certain set of facial expressions that are

universal across cultures, species, and are not learnt. Inspired by this, Tomkins [17] formulated

Affect Theory, which focused on the importance of the face in conceiving different emotions.

These theories influenced Ekman and Friesen [18] in their experiments in Papua New Guinea,

where they show flashcards (containing the facial behaviour of one of six emotions) to the locals

and record their responses. Although the local tribes had little to no contact with outsiders

(no knowledge of any Westernised culture), they were able to recognise facial expressions and

emotions proposed by Darwin and Tomkins. Ekman [19] later proposed there might be more

than six/seven emotions which are more complex. We focus on basic emotion theory rather

than this expansion.

The visualisation of posed expressions of the 7 basic emotions can be seen in Figure 2.1.
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Figure 2.1: Posed facial expression of 7 universal basic emotions. Where 1 = Anger, 2 = Disgust,
3 = Fear, 4 = Happiness, 5 = Sadness, 6 = Surprise, 7 = Contempt.

2.1.2 Facial Micro- and Macro-expression

Facial expressions are facial muscle movements that are often associated with certain emotions.

It is a type of non-verbal communication that usually conveys the emotional state of a person.

There also exists some outlier cases where expression change is due to damage to the nervous

system [20].

In micro-expression research, a clear distinction can be made between two types of facial

expressions: macro-expression (MaE) and micro-expression (ME). MaE, or a regular facial

expression, typically lasts between 0.5 to 4.0s [21]. It usually has high intensity movements of

the face, which can be detected easier. On the contrary, MEs are involuntary, low intensity

movements of facial muscles which occur in less than 0.5s [21]. They occur more frequently in

stressful and high stake situations [22], [23]. Due to their involuntary nature, analysing MEs

can reveal the emotional state of a person when they are attempting to conceal it [24].

However, MEs are more challenging to detect or classify, as these expressions are often

too short and subtle for human eyes to spot. In addition, humans have innate psychological

biases towards emotion [25], which is a disadvantage when it comes to expression classification.

Machines are not susceptible to the same psychological biases as a human. This can be a useful

trait for facial or ME expression analysis where the machine can provide an objective assessment
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when judging what facial expression is shown.

2.2 Facial Expression Annotation

Static image annotation and dynamic video annotation are fundamentally different in nature.

Although they both shared the same Facial Action Unit Coding System annotation (which will

be explained in the next subsection), video has an additional complexity of temporal information

to be taken into account. Static images are commonly annotated using the peak of a facial

expression. Video annotation includes different phases within a facial expression, consisting of

onset (where the facial expression starts), apex (where the facial expression has the highest

intensity), and offset (where facial expression ends).

2.2.1 Facial Action Coding System

The Facial Action Coding System (FACS) is one of the most established facial movement anal-

ysis for human coders to manually annotate facial movements based on the muscle movements

that are categorised into each facial action unit (AU). Each AU is either constriction or re-

laxation of one or more muscles. There are also action descriptors, which may involve several

muscle movements such as head movements (e.g. head turn right, head tilt left, etc.), eye move-

ments (e.g. eyes turn left, eyes up, etc.), visibility of facial features (e.g. eyes not visible, lower

face not visible, etc.), and gross behaviour (e.g. jaw movements, chewing, etc.). A few common

AUs used are shown in Table 2.1, key AUs are visualised in Figure 2.3, and the related muscles

are shown in Figure 2.4. For each basic emotion, the relevant AUs commonly associated are

shown in Table 2.2.

2.2.2 Video or Image Sequence Annotation

For facial expression sequence annotation, the AU and the duration of the expression are taken

into account. AU annotation includes the type and intensity of the AU involved similar to still

image annotation. The temporal dynamic of facial expressions follows a common activation

pattern described in Figure 2.2.

The Neutral phase is when there are no facial muscle movements, the Onset phase is when

facial expression starts (muscle contraction begins and intensity increases), the Apex is when
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Figure 2.2: Example of facial expression sequence annotation. The temporal dynamic of facial
expression is annotated with onset, apex and offset frames which represent the beginning, the
peak and the end of the facial expression. The AUs involved are 12, 17, and 25. The images
were taken from SAMM-LV dataset.

facial expression peaks (muscle contraction remains stable or plateaus and no longer increases),

and the Offset is when the facial expression ends (muscle relaxation). Generally, all AUs follow

this trend: facial expression onset from neutral phase, reaches a certain peak and offsets back

to the neutral phase. However, in some videos, the full expression sequence is not captured

(e.g. expression peaks at the beginning of the video, the expression offsets only halfway before

the end of the video, visual occlusions etc.). There are also expressions that do not follow this

pattern or overlap with other AUs.

2.3 Facial Micro-expression Datasets

In this section, datasets are categorised by short and long videos. Short video datasets contain

mostly frames associated with MEs only, whereas long video datasets contain both MEs and

MaEs. For ME spotting, detecting MEs on a short clip is much easier, but also unrealistic,

as MEs do not occur that frequently. Long videos make the task more challenging as there

are more non-ME movements and the spotting algorithm will need to try harder to find ME

instead of movements. For earlier ME research, there were only short video datasets, while long

video datasets were only produced in recent years. The main motivation for the creation of

ME datasets is mainly due to the lack of accessible and well-established datasets for both ME

recognition and spotting.

2.3.1 Short Videos Datasets

In early ME research, most datasets consisted of short video clips. The way that these datasets

were created ensures the algorithm captures the important details of the sequence (MEs), as

most clips start with an onset frame and end with an offset frame. These datasets are useful
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Table 2.1: Common Action Units (AUs) [26] used for facial expression analysis.

AU FACS name Muscular basis

1 Inner brow raiser frontalis (pars medialis)

2 Outer brow raiser frontalis (pars lateralis)

4 Brow lowerer depressor glabellae, depressor supercilii, corrugator supercilii

5 Upper lid raiser levator palpebrae superioris, superior tarsal muscle

6 Cheek raiser orbicularis oculi (pars orbitalis)

7 Lid tightener orbicularis oculi (pars palpebralis)

8 Lips toward each other orbicularis oris

9 Nose wrinkler levator labii superioris alaeque nasi

10 Upper lip raiser levator labii superioris, caput infraorbitalis

11 Nasolabial deepener zygomaticus minor

12 Lip corner puller zygomaticus major

13 Sharp lip puller levator anguli oris (also known as caninus)

14 Dimpler buccinator

15 Lip corner depressor depressor anguli oris (also known as triangularis)

16 Lower lip depressor depressor labii inferioris

17 Chin raiser mentalis

18 Lip pucker incisivii labii superioris and incisivii labii inferioris

19 Tongue show -

20 Lip stretcher risorius with platysma

21 Neck tightener platysma

22 Lip funneler orbicularis oris

23 Lip tightener orbicularis oris

24 Lip pressor orbicularis oris

25 Lips part depressor labii inferioris, or relaxation of mentalis or orbicularis oris

26 Jaw drop masseter; relaxed temporalis and internal pterygoid

27 Mouth stretch pterygoids, digastric

28 Lip suck orbicularis oris

Table 2.2: AUs commonly associated with each respective basic emotion. Note: ⋆ is not always
considered a basic emotion.

Emotion Action units

Happiness 6+12

Sadness 1+4+15

Surprise 1+2+5B+26

Fear 1+2+4+5+7+20+26

Anger 4+5+7+23

Disgust 9+15+17

Contempt⋆ R12A+R14A
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Figure 2.3: Key Action Units (AUs) visualised. This image was recreated from Li et al. [27].

for ME classification tasks.

Polikovsky: Polikovsky et al. [32] capture posed MEs using cameras with a resolution of

480×640 and a frame rate of 200 fps. 10 participants (5 Asian, 4 Caucasian, and 1 Indian)

were asked to perform 7 basic emotions (disgust, anger, fear, sadness, happiness, surprise, and

contempt) with low facial muscle intensity, and then revert to a neutral expression as soon as

possible. The limitations of this dataset are that it contains posed MEs rather than spontaneous,

which means it does not represent natural human behaviour. Next, the sample size is small and

the ages of participants are similar with little variation as they are all university students. This

dataset is not publicly available.

YorkDDT: YorkDDT [33] dataset consists of 20 videos, at 25 fps, and 320×240 resolution.

This dataset is a study of deception detection. Participants were divided into two groups: the

encoders and decoders. The encoders perform either truthful or deceptive actions and recorded

them on video, while the decoders were asked to judge or indicate the truthfulness of each

recording. The encoders consisted of 20 participants (8 males and 12 females). The decoders

consisted of 30 participants (11 males and 19 females). The encoders were told to truthfully or
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Figure 2.4: Facial muscles exposed on the left side of the face, neck, and head. This image was
adapted from Sobotta’s Atlas and Text-book of Human Anatomy [28].
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Figure 2.5: ME datasets. First row: SMIC [29], second row: CAS(ME)2 [30], and third row:
SAMM-LV [31].

deceptively describe two film clips that were either classed as emotional (i.e. surgical operations),

or non-emotional (i.e. Hawaiian beach scene). The limitations of this paper are the lack of visible

MEs in the dataset due to low frame rate and resolution. The authors suggest the encoders

might be affected by camera shyness, and the motivation of participants to generate high-stake

lies. It is a posed MEs dataset which makes it unnatural for analysis. This dataset is not

publicly available.

USF-HD: Shreve et al. [34] demonstrated the first method to spot both MaEs and MEs.

This dataset includes 56 videos containing 181 MaEs and 100 posed MEs with a frame rate of

29.7 fps and a resolution of 720×1280. The experiment procedure involved showing various MEs

to participants and telling them to replicate those expressions in any order. Only 4 emotion

classes were included in the dataset: anger, sad, smile, and surprise. The limitations are it is a

posed MEs dataset and the videos were not FACS coded.

SMIC: Spontaneous Micro-expression Corpus (SMIC) [29] dataset is a ME dataset captured

using different modalities. These include high-speed visual (SMIC-HS), normal-speed (SMIC-

VIS) visual, and near infrared (SMIC-NIR). The experiment was conducted in an indoor bunker
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illuminated with four lights in the upper corners of the room. Twenty participants took part

in this experiment, with a mean age of 26.7 years old (from 22 to 34 years) and are ethnically

diverse. Participants sat in front of a computer monitor and were asked to watch 16 movie

clips meant to induce strong emotions. For the recording process, the first ten participants

were recorded using a high-speed camera with a resolution of 640×480 and a frame rate of 100

fps. Participants were asked to conceal their true feelings while watching the video clips and

when they failed to do so, they would have to fill in a long questionnaire of more than 500

questions. The main limitation of SMIC is the assignment of each emotion into 3 relatively

broad categories (positive, negative, and surprise). This contrasts with the seven basic emotion

categories. The emotion inducing video clips varied in length from 9 seconds to 6 minutes, the

lighting used was normal indoor lighting, which was occasionally affected by light flickering.

There was also a gender imbalance in the participants, with 70 % being male.

CASME: Chinese Academy of Sciences Micro-Expressions (CASME) [35] contains 195 MEs

with a frame rate of 60 fps. There are 35 participants (13 females and 22 males), with a mean age

of 22.03 years with a standard deviation of 1.6. The samples were divided into two classes named

Class A and Class B. Class A samples were recorded at a frame rate of 60 fps and resolution of

1280×720 pixels. The participants were recorded in natural light. Class B samples were recorded

by a camera with a frame rate of 60 fps and resolution of 640×480 pixels. The participants

were recorded in a room illuminated by two LED lights. During data acquisition, participants

were expected to experience emotional high arousal and strong motivation to disguise their

true emotions. This was done by instructing the participants to watch videos that elicit either

highly positive or negative emotions while maintaining a neutral face at the same time. After

the experiment, the participants were also asked to watch their own facial movements in the

recordings and indicate whether they produced irrelevant facial movements which could be

excluded from the analysis. The limitations of this dataset are some MaEs that were similar

to MEs were included and assumed to be MEs in the dataset. The age of participants was in

the same age group with a mean age of 22 years old (standard deviation of 1.6 years), and all

participants also had the same ethnic background.

CASME II: Chinese Academy of Sciences Micro-Expressions II (CASME II) [36] contains

247 clips with a higher temporal resolution, and the size of the faces captured is larger than
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the previous datasets. The experiment involved 35 participants with a mean age of 22.03 years

(standard deviation of 1.6). 18 participants were asked to maintain a neutral facial expression

when watching high emotional valence video clips while 17 participants tried only to suppress

the facial movement when they realised there was a facial movement. This dataset was captured

by using a camera with a resolution of 640×480 pixels and a frame rate of 200 fps. In order to

prevent light flickering, four LED lamps were used under umbrella reflectors to provide steady

and high-intensity illumination throughout the data acquisition process. The limitations of this

dataset are similar to the previous dataset [35], whereby the age of the participants were in the

same age group of 22 years old and a standard deviation of 1.6 years and all of the participants

also have the same ethnic background.

SAMM: Spontaneous Actions and Micro-movements (SAMM) [37] dataset has the highest

resolution of all micro-expression datasets and the largest variation in participant ethnicity.

Participants consisted of 32 people, with a mean age of 33.24 years (standard deviation of 11.32;

aged between 19 and 57), from a wide range of ethnic backgrounds and an even gender split (16

male and 16 female). The dataset has a resolution of 2040×1088 and a frame rate of 200 fps.

The data acquisition protocol was personalised to each participant instead of using generalised

emotional inducement videos, as with previous datasets. The experiment was designed to

detect the basic 7 emotions: contempt, disgust, fear, anger, sadness, happiness, and surprise.

The participants were asked to suppress their emotions and keep a neutral face while watching

the emotional inducement videos. The dataset is limited in its ability to generalise to real-world

scenarios and the facial resolution captured is smaller relative to the overall image resolution.

MEVIEW: MEVIEW (Micro-Expression VIdEos in the Wild) [6] consists of videos from

poker games and TV interviews downloaded from the Internet. There are 31 videos with 16

individuals in the dataset, with an average video length of 3 seconds. Poker games are a high-

stress activity and players often need to hide their emotions, resulting in the potential for MEs.

FACS coding and the emotion types are annotated. The limitations are that apex frames are

not annotated and the sample size is small compared to other ME datasets.
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2.3.2 Long Video Datasets

Long video datasets are a more recent addition to micro-expression research and resemble data

closer to real-world situations. The motivation for creating these datasets is that MEs and MaEs

can occur independently while overlapping in real-world scenarios. These datasets are useful

for ME spotting tasks as it is more challenging. They contain more non-ME movements, which

makes it more difficult for a machine learning model to distinguish between ME and non-ME

movements.

CAS(ME)2: CAS(ME)2 [30] was the first publicly available dataset containing micro-

facial expressions in long videos primarily used for micro-expression spotting. There are 22

participants with a mean age of 22.59 years (standard deviation of 2.2 years), and nine emotional

videos are selected out of 20 videos as the emotion eliciting materials. Each emotion video is

assumed to predominantly elicit one type of emotion. During the elicitation process, participants

were seated in a room illuminated by two LED lights in front of a webcam (visible light camera)

with a resolution of 640×480 and a frame rate of 30 fps. Nine videos are presented in random

order and the participants were asked to maintain a neutral expression while watching them.

The limitations of this dataset included assigning into four broad categories (positive, negative,

surprise, and others) instead of the 7 basic emotions, with the ‘others’ class not being clearly

defined. Participants were recruited of similar ages and were captured with a low frame rate of

30 fps.

SAMM-LV: SAMM Long Videos [31] is a ME dataset that contains long videos primarily

made for ME spotting. The motivation for producing this dataset is the limited number of

available datasets for spontaneous ME and macro-expression recognition and spotting. It is an

extension of SAMM [37], with the data being captured during these experiments. The dataset

consists of 147 long videos with 343 macro-expressions and 159 MEs. It was captured at a

frame rate of 200 fps. Each video is FACS-coded with detailed AUs. The onset, apex and offset

frames for every expression are also annotated.

SMIC-E-Long: SMIC-E-Long [38] is an extension of the SMIC dataset by appending

neutral frames before and after the ME. In addition to the new dataset, a standardised ME

spotting evaluation method (a frame-based evaluation which takes into consideration of mean

deviation of the correct predictions) was proposed. The author claimed that most datasets
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append neutral frames before and after ME samples to produce longer videos. This dataset

was created by adding more than 2000 to 3000 frames (about 20 seconds) before and after ME

samples. This dataset also contains clips of regular facial expressions in some of the videos.

There are a total of 162 long videos with an average of 350000 frames. The videos, with a

resolution of 640×480, were captured using 16 different participants.

MMEW: Micro-and-macro Expression Warehouse (MMEW) [39] shared the same largest

facial resolution with SAMM till date according to the author. This dataset contains 900 MaE,

the largest in a ME-based dataset. Participants were asked to maintain a neutral expression

while watching emotional inducement videos similar to previous datasets.

2.3.3 Summary of ME Datasets

Table 2.3: Summary of ME datasets. Ethnic.= Ethnicities

Year Dataset Participants Resolution FPS Samples
Emotion
Classes

FACS
Coded

Ethnic.

2009
Polikovsky 11 640×480 200 13 7 Yes 3
YorkDDT 9 320×240 25 18 N/A No N/A

2011 USF-HD N/A 720×1280 29.7 100 4 No N/A

2013
CASME 35

640×480,
1280×720

60 195 7 Yes 1

SMIC 20 640×480 100 & 25 164 3 No 3
2014 CASME II 35 640×480 200 247 5 Yes 1
2016 SAMM 32 2040×1088 200 159 7 Yes 13
2017 MEVIEW 16 1280×720 25 40 7 Yes N/A

2018 CAS(ME)2 22 640×480 30
250 macro,
53 micro

4 No 1

2019
SAMM
Long Videos

30 2040×1088 200 147 N/A Yes 13

2021
SMIC-E-Long 16 640×480 100 167 3 No 3
MMEW 36 1920×1080 90 300 7 Yes 1

Emotions are complex phenomena experienced differently by each individual. Producing

emotional expressions, as in the non-spontaneous datasets, might not be viable as they are posed

and do not resemble true to life expressions. Spontaneous datasets are a better alternative as

the displayed emotions are as natural as possible in a lab-controlled environment. The current

dataset pool for ME research is relatively small, with the need for more data being a top priority.

Datasets produced must have high resolution, high frame rate, and be filmed within a consistent

environment and lighting. Participants of the data acquisition should be recruited from a large

demographic where possible to have a representative population. A better classification must

be determined in order to obtain a better overview of the purpose of eliciting emotions. Another

alternative to increase the samples within datasets is to use generative models to generate unique
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Figure 2.6: Face-related datasets. First row: FFHQ, second row: MMI (cropped to remove
excessive background), and third row: the MUG dataset. FFHQ consists of face images; MMI
and MUG are facial expression sequence datasets.

MEs.

2.4 Other Datasets

There are other face-related datasets used in this thesis. The visual examples is shown in Figure

2.6.

FFHQ: Flickr-Faces-HQ Dataset (FFHQ) [40] is a high quality human faces dataset. This

dataset contains 70,000 PNG images with a resolution of 1024×1024. The author claims the

dataset to have diverse ages, ethnicities, and image backgrounds. Facial accessories such as

eyeglasses, sunglasses, and hats are also present.

MUG: The Multimedia Understanding Group Facial Expression Database (MUG) [41] is a

facial expression sequence dataset split into 2 parts: posed expressions and spontaneous expres-
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sions. All image sequences are frontal face recordings. The first part contains 86 participants

performing the six basic expressions (anger, disgust, fear, happiness, sadness, and surprise).

Neutral face sequences of each subject were also captured. The second part contains the same

subjects recorded while watching emotion-eliciting videos. All the participants were Caucasian

and aged between 20 and 35 years. There were 35 females and 51 males. Each video has 50 to

160 image sequences. Fear was the most difficult expression to pose or induce and contained the

most errors. The frame rate of this dataset is 19 fps. The image resolution is 896×896 pixels.

The version used in our experiments consists of 52 subjects with annotations and is available

online.

MMI: Induced Disgust, Happiness and Surprise: an Addition to the MMI Facial Expression

Database (MMI) [42] is a facial expression dataset using audio-visual recording simulation. The

first set of data involves participants posing all 31 AUs and a number of Action Descriptors.

The participants are also asked to show the facial expression of two or three affective states (e.g.

sleepy, happy, bored). A 45-degree mirror was placed next to the participants to record the

side view of the participants. The second set consisted of posed displays of 6 basic emotions.

Participants with glasses are told to record once with and once without glasses. The main

purpose of this set is to record high-resolution facial expressions. The third set contains high-

quality still images. Similar to the first set, the participants were asked to display all AUs and

6 basic emotions.

2.5 ME Recognition

ME recognition involves the classification of ME videos into one of the emotion classes. The

common approach involves feature extraction followed by categorising them based on those

features. Commonly used features are 3D Histogram of Oriented Gradients (3DHOG), Local

Binary Pattern (LBP), and Optical Flow (OF).

2.5.1 Conventional Approaches

Conventional approaches are methods that use traditional handcrafted features and perform

manual classification based on these features.

3D Histogram of Oriented Gradients (3DHOG) [43] evaluates well-normalised local his-
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tograms of image gradient orientation in a dense grid. It is characterised by local object ap-

pearance and shape by the distribution of local intensity of gradients or edge directions. This

method divides the image window into small cells that accumulate a local 1-D histogram of gra-

dient directions or edge orientations. The combination of local histograms is then accumulated

over a larger spatial region (“blocks”) and the cells in the blocks are then normalised. This

feature is used in facial alignment and detection. There are several ME recognition methods

[32], [44], [45] that use this feature as input.

Early ME recognition methods use Local Binary Patterns (LBP) [46], [47]. LBP compares

the grey level value of the centre pixel with the neighbouring pixels. If the grey level of the

neighbouring pixel is higher than the centre pixel, it is assigned to 1, while it is assigned to

0 otherwise (further details in Section 3.3). The most common variant used is Local Binary

Pattern on Three Orthogonal Planes (LBP-TOP) [48] in many ME recognition methods [29],

[49]–[51]. This feature is an extension of LBP, where it takes in the local spatio-temporal

neighbourhoods across three planes: spatial (XY), horizontal spatio-temporal (XT), vertical

spatio-temporal (YT).

Optical flow (OF) [52], [53] is the pattern of apparent motion of image objects between

two consecutive frames (further details in Section 3.3). Optical flow is divided into two types:

sparse and dense optical flow. Sparse OF selects a set of pixels on sparse features (e.g. corners

or edges) to track its velocity vectors; dense OF compute the optical flow vector on a per-pixel

basis. There are some conventional ME recognition methods [51], [54]–[57] that use OF as input

feature. Histogram of Oriented Optical Flow (HOOF) and Main Directional Mean Optical-flow

(MDMO) are also used as input features [58]. This method uses Flownet 2.0 [59] for optical

flow extraction and computed using revised HOOF features. The features extracted are then

used for spotting MEs. However, only detection accuracy is reported.

Buhari et al. [60] show ME recognition can be conducted using combined features of the

landmark-based facial graph, euclidean distance, and gradient of the graph segments. This

method introduces an invisible emotion magnification using facial landmark points of the onset

and apex frames. The performance evaluation is conducted using the magnification technique

with landmark-based graph features. This method computes the landmarks of onset and apex

frames using Histogram of Oriented Gradients (HOG) features combined with a linear classifier.
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Emotion magnification is performed by calculating the geometrical distance between onset and

apex frame. A magnification factor is used to adjust the emotion magnification level to an

optimal level. The resultant magnified vector is the product between the magnification factor

and facial muscle direction. This method uses the graph extracted from the face (full-face or

FACS-based). It is also tested on the extracted Delaunay triangulation. The feature extraction-

based method adds computational complexity due to the pre-processing steps. The apex frame

of the face sequence was placed in the middle of the video. This method is a version of apex

recognition, which is a limitation as the peak of expression needs to be located manually.

Pre-processing steps are often used to enrich the input features. Temporal Interpolation

Model (TIM), used in pre-processing [61]–[63], is conducted to either increase or decrease the

number of frames to produce videos of a similar frame rate. Motion magnification using Eulerian

Video Magnification (EVM) [64] is used for directional amplification of movements by tuning the

temporal filter to the desired frequency band. Using Laplacian transformation, the frequency

domain of the ME sequences is obtained. Several methods [65]–[69] use EVM to amplify the

facial movement as pre-processing.

2.5.2 Hybrid Approaches

In the advent of deep learning, recent ME methods use neural networks for analysis. However,

most methods still use handcrafted features as input that is passed into artificial neural networks.

We define these methods as hybrid approaches. Most methods still use inputs consisting of

extracted features such as LBP, OF, and spatio-temporal features.

Methods that use LBP as input features are performed by fixed grid-based spatial division

and an ROI method [70] or a combination of both handcrafted (LBP-based) and deep (CNN)

features [71]. Both of these methods pass LBP-based spatio-temporal descriptors, LBP-TOP,

with a selection of certain regions/blocks through a CNN. The feature or block size is a hyper-

parameter that needs to be selected manually.

Most available methods use optical flow as input features. A few different types of OF

used are Dense OF (i.e. Horn-Schunk, Farneback), Sparse OF (i.e. Lucas-Kanade), and TV-L1

optical flow. The further details of these features can be found in Section 3.3. OF is often

fed into convolutional neural network with multiple streams (dual streams [72]–[75] and three
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streams [5], [63], [76]). The features used in each stream are usually OF (horizontal and vertical

optical flow field) and optical strain (which is the derivative of optical flow that can estimate the

intensity of facial deformation). There exist methods that pass OF into a recurrent network [67]

and a hybrid between recurrent convolutional network [69]. Apex frame recognition using OF

[66], [77], [78] shows great recognition accuracy, as the apex frame is the peak of the movement

and yields the most distinct differences while comparing with the whole sequence. Although it

shows higher accuracy, in real life, the apex frame is unknown and hence, limits this method to

controlled environments.

Belaiche et al. [79] show that a deeper network does not necessarily result in much improve-

ment in ME recognition. This method uses optical flow as input. This method mainly optimises

the depth of the network to maximise the efficiency of the model. It also investigates the most

suitable optical flow orientation and combinations. Authors report to have potential real-time

performance but did not take into account the processing costs of optical flow. Furthermore,

the accuracy reported is 0.6017, which is lower than most of the state-of-the-art models.

LEARNet [80] is designed to learn minute features of MEs using accretion layers. These

features are processed spatio-temporal information of video sequences into one frame instance.

These layers utilise hybrid responses generated by previous layers to enhance the learnability of

minute features and maintain the feature maps simultaneously. It uses a small filter size (1×1,

3×3, 5×5) and does not contain a max pooling layer, instead using a convolution layer with

a stride of 2 to downsample the feature maps. Dynamic imaging is used to combine spatial

and temporal features into a single image. The main consideration for this design is to enable

minute features to be detected more effectively.

2.5.3 Machine Learning Approaches

Machine learning approaches in this thesis are defined as artificial neural networks that input

an image or image sequence without any feature extraction. Often with image input additional,

pre-processing is needed, such as ROI extraction [81]–[83].

Most machine learning approaches use a CNN architecture with another auxiliary network.

Spatio-temporal based approaches [62], [81] often use CNNs alongside a recurrent neural network

(RNN), most commonly a long short-term memory (LSTM) network. Pure LSTM methods also
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exist [84]. The motivation of this network is to speed up computational efficiency and explore

the interpretability and potential of deep neural networks by using Sparse LSTM. The pre-

processing steps (facial area acquisition, data augmentation, grey-scaling, sequence length, and

image size normalisation) are used and the features of the sequences are passed through LSTM

units for classification.

Randomised frame selection as used by Xia et al. [68] while training can introduce more

variety of input jitters to the system. This method performs ROI selection using an Active Shape

Model (ASM) [85]. Eulerian Video Magnification [64] was used to enhance the subtle changes

of MEs based on the aligned facial regions. The randomised frame selection is performed by

randomly dropping frames based on a certain percentage. However, the main limitation is the

processed sequence is always within 30 frames, whereby resizing methods is used to pre-process

the input.

Transfer learning is also used by conducting training on a MaE dataset [62], [83], [86] before

validating on a ME dataset. Most of the methods are pretrained on MaE, only Peng et al.

[86] use pretrained weights on ImageNet before training them with the MaE dataset. However,

MaEs and MEs are distinctly different in intensity and movement. Although it shows some

improvement, it does not justify the viability of transferring movements learnt from MaE.

These methods still do not outperform the state-of-the-art that uses only ME as the training

set.

The CapsuleNet [87] architecture is also used in ME recognition (in apex frame recognition)

by Van et al. [88]. This method is rotationally invariant and addresses the limitation of CNNs

when handling inputs with different rotations. Van et al. use a CNN for feature extraction

before the primary capsule. Authors compare VGG11 and ResNet18 and found that ResNet18

performs better. This can be explained as VGG11 utilises max-pooling more frequently and

hence more spatial information of the features is lost, providing evidence to avoid max-pooling

when using CNNs for feature extraction with CapsuleNet.

2.6 ME and MaE Spotting

ME and MaE spotting are a more recent development and research task. The definition of

spotting is the detection of the presence of ME or MaE in a sequence with certain confidence
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(explained in Section 3.5.3). This task is proposed as the majority of ME recognition methods

preemptively select apex frames from the image sequence using the ground truth. Both ME

and MaE are used in this task as it closely resembles a real situation where they can occur

simultaneously.

2.6.1 Conventional Approaches

Similar to ME recognition, conventional approaches are trained and/or evaluated on short video

datasets. These approaches use traditional handcrafted features as input and perform manual

facial movement spotting.

The first available ME datasets all consist of short videos from SMIC [29], CASME [35],

CASME II [36], and SAMM [37]. Evaluating a few seconds of short ME clips will have a

higher detection rate, as each video contains at least one ME. It does not resemble a real-world

situation, where ME occurrence is rare and does not happen every few seconds.

The early works [44] of ME spotting are treated as classification tasks, where the frame

sequences are categorised as neutral (where facial expression is absent), onset (where facial

expression starts), apex (where facial expression has the highest intensity), or offset (where

facial expression ends). Moreover, apex frame spotting [54], [89]–[91] is often incorrectly defined

as ME and/or MaE spotting in the literature. Although apex frame spotting shows better

performance, this does not imply a better model. Apex spotting is a less challenging task as the

apex frame has the highest movement intensity within a facial expression sequence compared

to spotting ME and/or MaE, which is an interval-based task. Similar to ME recognition, the

input features used in spotting consisted of 3D-HOG [92], [93], LBP [54], [94], [95], and OF

[96], [97]. For more recent methods, long video datasets from CAS(ME)2 [30] and SAMM-LV

[31] are used. These provide a more realistic scenario, whereby ME occurs alongside MaE and

other facial movements.

2.6.2 Hybrid Approaches

Hybrid approaches are defined as artificial neural networks that use handcrafted features as

input. The extracted input features include LBP, OF, facial action units, and spatio-temporal

features. These methods are trained and/or evaluated on long video datasets containing both

26



Chapter 2. Literature Review

ME and MaE. These datasets resemble real-world situations, where MEs are scarce, can co-occur

and even overlap with MaEs.

LBP is used in apex spotting [98]. This method introduces Cubic-LBP to address the limi-

tation of LBP-TOP which uses only features on three planes. Cubic-LBP has 6 cube faces and

9 planes intersecting with the centre pixel. The differences between frames are then calculated

by using the sum of squared differences. This can further calculate the difference between two

histograms. Other than a conventional CNN, recurrent neural networks, especially LSTM, are

used in ME spotting. Tran et al. [99] use conventional features (LBP and HOG-based features)

and feed them into an LSTM network. However, this method is apex frame spotting, which

does not consider the evaluation as an interval-based task.

Optical flow remains the most used input feature for the spotting task. Zhang et al. [100]

extract features using ROI segmentation and then obtain the OF of each respective ROI. HOOF

is then calculated based on the OF detected. All the features detected are combined in a feature

matrix and used for ME/MaE spotting. Yu et al. [101] use OF as input features and perform

classification and regression simultaneously using a two-stream network. Verburg et al. [102]

implement HOOF as input features and use LSTM to learn temporal information. This method

uses post-processing, which suppresses the overlapping neighbours of a spotted interval. Sun

et al. [103] is a two-stream network that uses images and optical flow as input features. The

network architecture is a spatio-temporal cascaded network that consists of CNN and attention-

aware LSTM.

Absolute frame difference is also used as input feature. Borza et al. [104] use only two

absolute frame differences, but this method requires the face to remain static and the selection

of the frame is conducted using half the interval of the expression (which is not possible in real

life as we do not know exactly when the facial expression will end).

AUs extracted using OpenFace are used as input features [105]. The network architecture

is a CNN with different kernel sizes (SAMM-LV uses 5, 7, 9 while CAS(ME)2 uses 3, 4, 5).

It primarily extracts features in different time samples and emphasises both local and global

features by manipulating the dimension of the output space.
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2.6.3 Machine Learning Approaches

This section includes machine learning approaches that use artificial neural networks with images

or image sequences as input. No feature extraction is used for the input, making them unique

in the ME/MaE spotting task.

There are very few methods that directly use images [106] and ROIs of images [107] as

input. Pan et al. [107] pass the entire facial area and local ROI of each frame of the full

video into a two-stream CNN. Wang et al. [106] proposed a 2D-CNN for capturing spatial

information and another 1D-CNN for temporal information. This method uses one module to

extract spatio-temporal features using a CNN, followed by another regression module which

determines the temporal boundary by classifying whether the detection is a ME. While the

reduced dimensionality lowers model complexity, the model begins to overfit. Using a 1D-CNN,

the network potentially oversimplifies the input features, as there is less information to learn

when compared to a CNN of higher dimensions, which is prone to overfitting.

Chanti et al. [108] describe MEs as abnormal patterns, or ‘anomalies’, that diverged from

expected normal facial behaviour patterns. The method uses temporal multi-scaling by sliding a

20-time-step temporal window along the video sequence. The optimal length hyperparameter is

set through a process of fine-tuning. The spatio-temporal information is extracted and classified

using a Recurrent Convolutional Auto-encoder.

Most methods previously discussed start with pre-processing (face alignment, face crop,

ROI extraction, manual frame selection) and ends with post-processing (manual thresholding,

smoothing, signal merging), which increases the complexity of the model and real-time perfor-

mance. An end-to-end approach is not available in the current research state, often requiring

pre-processing [107] or fusion of features (i.e. spatial plus temporal features using a different

CNN [106]). Our approach [109] aims to achieve close to an end-to-end pipeline, and will be

further explained in Chapter 5.

2.7 Facial Expression Generation Models

Deep learning is a powerful, but data-hungry, machine learning technique. Hence, there is an

ever-increasing demand for data. ME datasets are relatively small in size compared to other
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mainstream datasets (e.g. facial expression datasets). An alternative that is often explored is

generative data using a deep learning based approach.

2.7.1 Macro-Expression Generation

There are a few ways to generate new facial expressions, including generating Facial Action

Units (AUs) or movements on a neutral face and facial motion transfer. GANimation [110]

takes advantage of AUs and proposed a generative model by linearly interpolating two facial

expressions. This method takes a static facial image and transfers the facial expression onto

it using AUs. The prerequisite is to obtain the AU annotation (e.g. using OpenFace [4]) and

train the network to associate each facial expression with its respective AU.

Liu et al. [111] generate facial expressions solely using autoencoders. However, the resulting

outputs are very low resolution (36×36 pixels) and require optical flow as an additional input

feature.

Fan et al. [112] use action control variables to manipulate facial expressions on an image

containing a face. It is often conducted using linear action variables. This method is not

realistic, in particular when the onset and offset of a facial expression are not linear.

There are attempts [113], [114] that control targeted face properties by changing the la-

tent representation. Controlling the latent representation can be useful in generating novel

images. These methods have the limitation of generating artifacts in between some intensity or

overlapping of latent variables.

ExprGAN [115] is a GAN that changes facial expression intensity continuously. This method

separates the identity and expression representation. It is a conditional GAN that uses an ex-

pression control module to map an expression code to describe the expression intensity. However,

this method only works on aligned and cropped faces.

AffineGAN [116] generates facial expressions by mapping a latent representation with the

facial expression intensity of a certain region. This method uses “inverse transformation” to

map an affine transformation to facial expression intensity from videos automatically without

any manual annotation. The generated results show a performance of more than 50% when

evaluating if Amazon Mechanical Turk (AMT) workers could be fooled. The limitation of this
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method, similar to other methods, is that it is generated on a per-image basis.

Siarohin et al. [117] show that video sequence generation can be done using a single image

using key points and local affine transformation. It is conducted through decoupling appearance

and motion information using self-supervised learning without any annotation or information

on the object to be animated. This method uses a source image and a series of driving video

frames as inputs. Authors use backward optical flow as the back-wrapping is differentiable

using bilinear sampling. Keypoints were also used to conduct local affine transformation, which

performs motion transfer as keypoint displacement.

Video generation GANs are also capable of generating facial expressions. Vondrick et al.

[118] use spatio-temporal convolution in both the generator and discriminator. However, this

method has an upper limit of approximately 1-second duration in the videos generated as its

generator is trained wholly with 32-frame videos.

Saito et al. [119] proposed an end-to-end model that uses a temporal generator and an

image generator. MoCoGAN [120] generates videos by mapping random vector sequences to

video frame sequences. It retains the image feature content while the motion part is treated as a

stochastic process. These methods are able to generate video sequences with facial expressions,

however, the generated images are low-resolution (e.g. 64×64). MEs are typically very subtle

motions, thus excessive down-sampling risks discarding the relevant features.

2.7.2 Micro-expressions Generation

ME-based data generation is still in its early stages. The first ME generation competition,

Micro-expression Grand Challenge 2021 (MEGC2021) [121], tasked participants to transfer the

motion of pre-existing ME clips onto another face. All participants of this challenge use pre-

existing and a pre-trained network as the backbone, such as first-order motion model based

[122], GANimation-based [123], and VGG19-based [124].

AU Intensity Controllable Generative Adversarial Network (AU-ICGAN) [125] is a ME-

related AU transfer. Similar to MEGC2021, this model uses both CASME II [36] and SAMM

[37] datasets as references, and source frames by transferring AUs of CASME II onto SAMM

participants and vice versa.
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Identity-aware and Capsule-Enhanced Generative Adversarial Network (ICE-GAN) [126] is

a standalone network without pre-trained weights that uses the CapsuleNet [87] architecture.

The CapsuleNet discriminator is selected, as it is sensitive to geometrical encodings of relative

position. None of the methods discussed in this subsection made the generated dataset publicly

available.

Due to the subtlety of MEs, we applied a style transfer method [127] on an existing

dataset, SAMM-LV, using the state-of-the-art generative adversarial network based style trans-

fer method, StarGANv2 [128]. The further details are discussed in Chapter 6.

2.8 Summary

Most of the current ME recognition or spotting methods rely on using extracted features as

input. The feature extraction process might discard important features that deep networks

can make use of. Secondly, there is a lack of datasets, especially realistic datasets (i.e. long

videos containing MEs). Most generation methods are on a per frame basis, and generation

of the subtlety of MEs is still unsolved. Lastly, there is a lack of end-to-end approaches that

can leverage deep learning to its full potential, where the majority of methods use conventional

features as input. Hence, the contributions of this thesis are centred around bridging the gaps

mentioned in this chapter, by proposing a new long videos dataset, an advanced augmentation

approach to create more data, an end-to-end approach in ME/MaE spotting, and a spontaneous

facial expression generation method.
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Chapter 3

Theories and Techniques

3.1 Introduction

This chapter aims to provide background theories and methods that are used for thesis con-

tributions. It contains preprocessing steps, feature descriptors used, machine learning-related

theories, machine learning methods and performance metrics to quantify the results.

In this research area, most of the existing approaches use preprocessing which functions to

remove excessive unrelated information. Some common procedures are facial landmark detec-

tion, facial alignment and facial action unit detection. OpenFace [3], [4], a facial behaviour

analysis toolkit, is the main facial preprocessing and analysis software used throughout this

thesis (further details in Section 3.2.3). The feature descriptors (e.g. optical flow) are simplified

features extracted from images used in this thesis are also described. Majority of our methods

in this thesis are based on machine learning especially convolutional neural network (CNN).

Other than CNN, this chapter also explores alternative machine learning approaches including

Restricted Boltzmann Machine, autoencoder and auto-regressor which are the backbone archi-

tecture of our sequence generation models. To quantify the performance of our methods, we

primarily use interval based F1-score for spotting approach and image quality analysis is used

for the generative models.
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3.2 Preprocessing

Preprocessing is generally the first step of the input pipeline for image related tasks. This process

selects wanted data by removing unwanted information. For face-related research, extracting

regions of interest (which is the face) from an image is a common preprocessing step.

3.2.1 Face Alignment

Face registration is the geometrical alignment of the face based on facial features. It involves

aligning two images together based on certain points of reference. The common method involves

applying affine transformations (e.g. translation, rotation, scaling etc.) by taking reference on

the stationary section of the face. A simple approach is to rotate 2D facial images using

the centroid between both eyes as the center of rotation. In our approaches, we utilise facial

alignment of OpenFace which is based on the detected facial landmark.

3.2.2 Facial Landmark Detection

Facial landmark detection is a process that determines the points on the face and tracks the

movement of these points. Active Shape Model (ASM) [85] is a popular method due to its speed

and robustness towards noise. It utilises a Point Distribution Model (PDM) [129] that rapidly

locates the geometry of a certain shape depending on the training set used (shown in Figure

3.1). For the model structure of a human face, commonly 68 landmark points are implemented.

Figure 3.1: Segmentation step of Active Shape Model visualised. ASM attempts to match the
mean shape model near the image object and the model parameters are modified to move the
shape model to the best position (crosses on the shape). This figure was adapted from Pilch et
al. [130].

OpenFace can either uses Constrained Local Model (CLM), Constrained Local Neural Field

(CLNF) [131] or Convolutional Experts Constrained Local Model (CE-CLM) [132] for facial
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landmarking. Constrained Local Model (CLM) [133] is a more recent approach, which trains a

patch around each feature and the patch is subsequently normalised. To apply this model on

faces, it functions by learning to match a template that is constrained by facial joint shape and

texture model built from labelled faces. CLNF is a probabilistic local landmark detector which

can map the non-linear and spatial relationship between input pixels and aligned landmark.

There are two spatial relationships captured: spatial similarity of nearby pixels and the entire

area of the landmark detectors. This method is able to capture the continuous complex non-

linear long and short-distance relationships between pixels. CE-CLM is an upgraded version of

CLM with a novel local detector. This local detector has the advantage of a neural network

and a mixture of experts. It has two main parts which are response map computation using

experts of network and shape parameter using a PDM. It has the ability to model very complex

individual landmark appearance that has different facial hair, illumination and expression. This

method shows the best facial landmark detected among the three landmark approaches used

by OpenFace.

A newer landmark approach is Style Aggregated Network for Facial Landmark Detection

[134] which takes two images as its input where one of them is the original image while the

other is a transformed image based on the original image. The transformed images are created

by using PhotoShop and together with the original image, they are used together to fine-tune

ResNet-152 which is the ImageNet pre-trained model. Next, by using k-means clustering, the

hidden styles of the images are ”determined”. After that, all the clustered data are used to train

the style transformation model via CycleGAN. Lastly, the facial landmark module is trained by

initialising the first four convolutional blocks using VGG-16 ImageNet pre-trained model and

the other layers are initialised using Gaussian distribution.

3.2.3 OpenFace

OpenFace [3], [4], [135] which is primarily used as a facial behaviour analysis toolkit. This toolkit

is capable of facial landmark detection, head pose estimation, facial action unit recognition and

eye-gaze estimation. For our research, we utilised it on face alignment and detection of AUs

only.

OpenFace 2.0 was used in our research. The main advantages compared to the previous
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version are it uses an improved facial landmark detection system, distribution of ready-to-use

trained models, increased real-time performance, cross-platform support and codes available in

multiple programming languages.

For the facial alignment function, it uses Convolutional Experts Constrained Local Model

(CE-CLM) [132] to detect and track facial landmarks. This model uses two models where it

conducts response computation using Convolution Experts Network (CEN) and update shape

parameter using Point Distribution Model (PDM). CE-CLM also adapt an 84-point landmark

detection by using a fully connected deep neural network to map the output of CE-CLM and a

second network to learn dataset-specific corrections for CE-CLM.

For facial expression recognition, the Facial Action Units (AUs) presence and intensity

were conducted by using appearance features (Histograms of Oriented Gradients) and geometry

features (shape parameters and landmark locations) [136]. The AUs able to be detected by

OpenFace are shown in Table 3.1.

Table 3.1: List of AUs that can be detected using OpenFace

AU Full name

AU1 Inner Brow Raiser

AU2 Outer Brow Raiser

AU4 Brow Lowerer

AU5 Upper Lid Raiser

AU6 Cheek Raiser

AU7 Lid Tightener

AU9 Nose Wrinkler

AU10 Upper Lip Raiser

AU12 Lip Corner Puller

AU14 Dimpler

AU15 Lip Corner Depressor

AU17 Chin Raiser

AU20 Lip Stretcher

AU23 Lip Tightener

AU25 Lips Part

AU26 Jaw Drop

AU28 Lip Suck

AU45 Blink

3.2.4 Local Contrast Normalisation

Local Contrast Normalisation (LCN) is used to normalise the contrast of an image by conducting

local and divisive normalisation [137]. It performs normalisation on local patches (per pixel
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basis).

LCN operates by firstly defining a local region and subtracting each pixel with its local

mean. Then, the variance of the region is calculated and if the variance is larger than 1, the

target pixel is divided by that value.

Gaussian filters are used in our LCN implementations. Gaussian convolutions are used to

obtain the local mean and variance. It is a low pass filter which reduces noises and also speeds

up the local normalisation process as it is a separable filter (where 2-dimensional data can be

calculated using 2 independent 1-dimensional functions).

The general equation of LCN is shown in equation 3.1. The results of LCN can be shown

in Figures 3.3 and 3.2. LCN has good performance in normalising local variation in brightness

and contrast [43] which makes it suited for correcting uneven illuminations or shading artifacts

[138] as shown in Figure 3.2. The lower image was purposely made to have higher contrast.

LCN is able to extract similar facial features as shown in both images on the right.

g(x, y) =
f(x, y)− µf (x, y)

σ2
f (x, y)

(3.1)

where f(x, y) is the input image, µf (x, y) is the local mean estimation, σ2
f (x, y) is the local

variance estimation and g(x, y) is the output image.

3.2.5 Temporal-based processing and Magnification Methods

Temporal Interpolation Method (TIM) [139] is used to address uneven time sequences. It is

commonly used to normalise video length by adding neutral frames between frames that contain

signals. For example, normalising downsampled ME video shown by Pfister et al. [140].

The video magnification method is used in magnifying the movement of faces. This method

generally involves amplifying movements by exaggerating subtle colour and motion changes

[64]. This primarily addresses the subtlety of ME, which is sometimes too faint to be registered

as a signal for the algorithm to detect. Meaningful information such as raising eyebrows and

lip tightening could be amplified making them more visible for the algorithm to identify. The

examples of methods used are Eulerian Video Magnification (EVM) [64], DVMAG [141], Phase-

based video magnification [142] and Riesz-based pyramids [143]. However, this method might
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Figure 3.2: LCN on images with different contrast. The images on the right are results of LCN.
The extracted features for both cases are visually similar.

also amplify movements that do not resemble any emotion, such as head movement and eye

blinks which become noise to the learning algorithm.

3.3 Features Descriptor

Feature descriptors are algorithms used to extract features from raw data (raw images in com-

puter vision). These features are relatively lower level than the raw images and processing

these features requires lesser computational cost. The features can be used as a unique iden-

tifier for a certain object or motion and used in different analyses to quantify or qualify the

model performance.

Local Binary Pattern (LBP) [46], [47] uses a window and compares central pixels with

neighbouring pixels. If the grey level of the neighbouring pixel is higher than the centre pixel, it is

assigned as 1 while it is assigned to 0 otherwise. There existed also advanced LBP-based features

such as volume local binary patterns (VLBP) and Local Binary Pattern on Three Orthogonal

Planes (LBP-TOP) [48]. VLBP is an extension of LBP using dynamic texture features as a
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Figure 3.3: Comparison between different features extracted and normalisation method using
the same input image. The first image is Local Binary Patterns (LBP), the second image is
Histogram of Oriented Gradients (HOG) and the third image is processed using Local Contrast
Normalisation (LCN). Our spotting method uses LCN to address the uneven brightness of the
image by normalising the local contrast values of the image.
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set of volumes of (X,Y,T) space where X and Y are spatial coordinates and T is the temporal

information. It is computationally simple and easy to interpret. However, the main issue with

VLBP is when the number of neighbouring points increases, the number of patterns of basic

VLBP will become very large which limits its applicability. LBP-TOP concatenated the local

spatio-temporal neighbourhoods across three planes: spatial (XY), horizontal spatio-temporal

(XT), vertical spatio-temporal (YT). The difference between VLBP and LBP-TOP is VLBP

uses three parallel planes which tends to make the feature vector too long while LBP-TOP

uses three orthogonal planes which makes the feature vector much shorter when the number of

neighbouring points increases. A visualisation of LBP can be seen in Figure 3.3.

Haar Features are digital image features which gets its name from Haar wavelet. Haar

wavelet is a discrete signal with a time function that occurs at a discrete time interval. It is a

sequence of square-shaped function. It is also used in the first real time face detector. These

features are shown in Figure 3.4.
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Figure 3.4: Haar Features are the simplest form of wavelet that consisted of a square-like
function. The first row consists of edge features, the second row is line features and the third
row is a four-rectangle feature.

Histogram of Oriented Gradients (HOG) [43] is primarily used in object detection.

The basic idea is to divide images into certain regions called cells and merge the histogram of

gradient directions calculated from these cells. The general steps involve computing gradients

(horizontal and vertical gradients), binning the orientation of the histogram gradient of each

cells, normalisation and calculate the HOG feature vector. The main advantage of this feature

is it is photometric and geometric transformation invariance. A visualisation of HOG can be

seen in Figure 3.3.

Optical Flow is the apparent motion of brightness patterns in the image [52]It is a popular

feature used in ME research. This feature visualises apparent velocities of movement using

brightness patterns in an image. It is divided into two main categories: dense optical flow and

sparse optical flow. Dense optical flow takes into account all points while sparse optical flow pro-
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cesses only a part of the image. Horn-Schunck [52] is one of the early versions of optical flow. It

is a dense optical flow method. It enforces global constraint of smoothness to address the aper-

ture problem. This is done by minimising the global energy function. Farneback optical flow

[144] uses polynomial expansion transform to estimate the quadratic polynomial of each se-

quence pair. It is a dense optical flow method. It uses an image pyramid where optical flow is

computed from the lowest to the highest resolution of the image. This pyramid structure can

track larger displacement. The advantage of this method is the computational cost is lower and

the algorithm runs faster. Lucas-Kanade [53] has a different take on optical flow. It divides

the image into smaller regions and computes a weighted least-square fit of the displacement

between two frames. This method has an assumption that local optical flow is constant. It is

a sparse optical flow method. There exists an enhanced version of this algorithm which uses

image pyramidal representation [145]. TV-L1 Optical Flow Estimation [146], [147] estimates

the plain intensity difference between pixels as an image similarity score. TV stands for total

variation and L1 is a robust L1 normalisation. This method is separated into two modules

where the first procedure performs calculations on the optical flow at a given scale numerically

while the second implements pyramidal structure and approximates the extracted features.

Histogram of Oriented Optical Flow (HOOF) is an algorithm which sorts the extracted

optical flows into bins and calculates the histogram distribution based on them. It addresses the

susceptibility of optical flow towards background noise and scale changes of movement directions

of the flow. The steps involved computing optical flow every frame, bin optical flow vectors into

orientation bins (pixel angle and magnitude) and making histogram distributions based on the

bins.

Facial Action Unit (AU) (further details in Section 2.2.1) is an organised annotation sys-

tem which primarily based on muscle movements of the face. AUs can also be used as features

and it is possible to be extracted automatically using computational approaches. OpenFace uses

both appearance (HOGs) and geometry features (facial landmark position and shape parame-

ters) to perform automatic real-time FACS detection [136]. Multi-View Dynamic Facial Action

Unit Detection [148] performs AU detection using the optical flow field of video of human head

to predict the viewpoint from which the video was taken. The main difference of this system

when compared to the mainstream approaches is it directly analyses the information on the
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whole human face by bypassing landmark localisation.

Robust Principal Component Analysis (RPCA) is a statistical approach that de-

composes the input data matrix into two parts: a low-rank subspace and an error term. In

ME research, according to the author [149], irrelevant information such as pose and subject

identity might overshadow important emotional information. The author uses the error term

for RPCA for ME recognition. The use of RPCA will remove the identity of the subject (the

RPCA low-rank subspace of the face) which is claimed to improve the detection accuracy.

3.4 Statistical and Machine Learning Method

Our methods in this thesis are based on machine learning and the basic idea originated from

statistical approaches. The basic building block of our methods are based on CNN, Restricted

Boltzmann Machine, autoencoder and auto-regressor.

3.4.1 Bayes’ Theorem

Bayes’ theorem is a method to calculate conditional probability based on previous events. It uses

prior knowledge to predict the current state. Bayes’ Theorem is the backbone for classification

models in machine learning such as the Naive Bayes and Bayes Optimal Classifier. The general

equation which describes Bayes’ Theorem is as below:

P (A|B) =
P (B|A)P (A)

P (B)
and P (B) ̸= 0 (3.2)

where A and B are events, P is the probability of certain events.

3.4.2 Markov Chain and Methods

Markov chain is a mathematical system that predicts the next state based only on the current

state. It is often called a “memoryless” stochastic process.

A transition matrix for Markov chain is a matrix containing information on the probability

of transitioning between states. As long as the sequence follows Markov property, the state of

regular Markov chain will eventually converge after multiple multiplications with the transition

matrix. A few examples of Markov-based models are Restricted Boltzmann Machine (RBM)
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[150], [151] and Deep Belief Network [152]. The successive state matrices of regular Markov

chains will always approach a stationary matrix. The general equation which describes Markov

property is as below:

M(xn+1|x1, x2, ..., xn) = M(xn+1|xn) (3.3)

where M is a function with Markov property, x is the input and n is the number of repetitions.

Markov chain Monte Carlo (MCMC) method is an algorithm that samples from a probability

distribution using Markov chain that has desired distribution as its equilibrium distribution.

This method is useful for the approximation of multi-dimensional integrals.

Markov-based and Bayesian model has very similar network representation. However, the

difference is Bayesian model is directed and non-cyclic while Markov-based model is undirected

and may be cyclic.

3.4.3 Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) [153] is a two-layer neural network which is capable of

learning the probability distributions of the inputs. This algorithm is trained using Contrastive

Divergence. Contrastive Divergence estimates the gradient of energy functions by using many

cycles of MCMC sampling which transform training data into a distribution. RBM has binary

hidden and visible layers. The training of RBM involves minimising an energy function. The

energy function involves the product of probability assigned to the training set as shown below:

E(v, h) = −
∑

i∈visible
aivi −

∑
j∈visible

bihi −
∑
i,j

vihjwij (3.4)

where vi, hj are boolean visible (subscript i) and hidden (subscript j) states; ai, bj are each

respective biases and wij are the weights between visible and hidden states.

The weights of RBM for reconstruction of MNIST digits is shown in Figure 3.5.

L1 and L2 regularisation are investigated. With L1 regularisation, the weights appear more

contrast while L2 regularisation makes the weights blur. This makes L1 regularisation more
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suitable for tasks with larger differences in texture whereas L2 regularisation does not work

well in samples containing outliers (due to the square difference that gives rise to larger errors).

This is better for model convergence in general as similar features are grouped and make the

learning more effective.

3.4.4 Moments

Moments of a function in mathematical definition describe the shape of the function. The

first and second moments represent the mean and variance of a function. This is an organised

notation to describe the detailed properties of a function. A prime example is Adam optimiser

(details in Section C.6) which uses the first and second moment of the derivative of the loss

function.

3.4.5 Autoencoder

Autoencoder is an unsupervised learning algorithm which learns efficient data encodings. The

architecture is consisted of at least one encoder (which downsamples the input) and one decoder

(which upsamples the latent representation). This network is trained by minimising the recon-

struction error using gradient descent over the parameters of the networks. It is primarily used

for dimension and complexity reduction. There are a few types of autoencoders such as sparse

autoencoder, denoising autoencoder, deep autoencoder, sequence-to-sequence encoder and vari-

ational autoencoder. Applications of autoencoder include data compression, data denoising,

anomaly detection, seq-to-seq prediction and image generation.

The majority of sequence generation using autoencoder is on tasks such as language pro-

cessing or trend lines. Images or video sequence generation using pure autoencoder [154] is not

common as generated images/videos are blurry due to information loss of the encoder down-

sampling.

Both RBM and autoencoder attempt to reconstruct the original input. The difference

is RBM has only two layers of network while autoencoder has at least 3 layers (one act as

bottleneck). RBM uses forward and backward passes on both visible and hidden layers while

autoencoder only uses forward pass.
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3.4.6 Variational Autoencoder

Variational Autoencoder (VAE) is an autoencoder commonly used for image generation. VAE

is trained via constrained optimisation where it tries to minimise the reconstruction loss (be-

tween encoded-decoded data and the input data) and the KL divergence (between the data

distribution and the model’s marginal distribution) simultaneously. The difference between

VAE compared to vanilla autoencoder is it samples around a mean latent representation within

a certain variance, instead of a single value encoding. This “probabilistic” sampling nature

(in contrast to “deterministic” sampling by regular autoencoder) of VAE enables randomised

generation of the output. This is done by sampling through a Gaussian distribution with a

mean within certain covariance.

The probabilistic sampling of VAE follows Equation 3.5 where z is the latent representation,

N is the Gaussian Distribution, µ is the mean and δ is the covariance.

z ∼ N(µx, δx) (3.5)

The weakness of this generative model is the output is blurry as VAE learns the data distribu-

tion explicitly by attempting to fit the latent representation extracted into a multi-dimensional

Gaussian distribution. The fitting of discrete latent representation on a continuous distribution

spreads the probability mass diffusely over the latent space [155] that contains information loss

which makes the output blurry. There are a few methods which attempt to address this issue

such as Vector Quantised-Variational Autoencoder (VQ-VAE) [156]. Traditional VAE learns

a continuous latent representation while VQ-VAE learns discrete latent representation. This

discrete latent representation is generated by defining a certain size and dimension of discrete

latent space. The nearest neighbour is calculated to determine whether the variable belongs

within the defined latent space. By learning a discrete version of latent representation, posterior

collapse (a condition in which the learned latent space becomes uninformative) which commonly

affects VAE can be avoided.
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(a) (b)

(c) (d)

Figure 3.5: The weights of RBM using different regularisation, where (a) RBM without any
regularisation, (b) RBM with L1 regularisation, (c) RBM with L2 regularisation, (d) RBM with
L1 and L2 regularisation.
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3.4.7 Autoregressive Model

Auto-regressor [157] is a model that regresses on previous values of the time series. It is a

time series algorithm that predicts the next time step based on information from previous time

steps. Autoencoder can be used to predict the next element in a sequence in a similar manner

by regressing on the previous latent representations. Generally, it can be thought of as the

chain rule factorisation in a Bayesian network as shown in Equation 3.6.

[H]p(x) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1) =
n∏

i=1

p(xi|X<i) (3.6)

where X<i = [x1, x2, . . . , xi−1] is random variable vectors with index less than i.

3.4.8 Convolutional Neural Network

Convolutional Neural Network (CNN) is commonly used in computer vision tasks. It is an

artificial neural network with many local neurons with shared weights. 3D-CNN is a CNN

with an extra depth dimension. The depth dimension allows more maneuverability of the

network. It can be used to encode information spatially or temporally (we use depth as temporal

information).

There are some unique network structures used in this thesis:

Depthwise Separable Convolution

Depthwise separable convolution inspired by MobileNet [158] has the ability to reduce com-

putational cost. This operation is divided into two steps: depthwise and pointwise convolution.

Depthwise convolution is a convolution that is applied on individual channels unlike the reg-

ular convolutional operation (which processes all channels at once). Pointwise convolution is

convolution that uses a 1 × 1 kernel with the third dimension of c (where c is the number of

channels) on the feature maps. The mechanism of depthwise separable convolution is shown in

Figure 3.6.
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Figure 3.6: Depthwise separable convolution which is consisted of depthwise convolution fol-
lowed by pointwise convolution. By conducting the channel-wise convolution separately, the
computational cost is reduced as the number of parameters in this convolution is fewer.

By using these operations, it reduces the total number of parameters needed which addresses

overfitting issues and it is also less computationally expensive. Standard convolutions have a

computational cost of DK ·DK ·M ·N ·DF ·DF . The equivalent depthwise separable convolutions

have a cost of DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF . By comparing both costs, we observe a

reduction in computational cost in using depthwise separable convolution as shown in Equation

3.7 with higher output channels and larger kernel size. (where M is the number of input channels,

N is the number of output channels, DK ·DK is the kernel size and DF ·DF is the feature map

size.)

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF
=

1

N
+

1

D2
K

(3.7)

Residual Dense Layer

Residual dense layer is a ResNet [159] inspired dense layer. It consists of two or more

dense layers that contain shortcut connections which perform identity mapping. This does not

increase the number of parameters or computational complexity. The concept of a residual

block is included Figure 3.7.
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Figure 3.7: Residual Block that enables features to either go through or bypass the weight layer.

3.4.9 End-to-end Methods

End-to-end learning in machine learning is defined by the model that learn all the steps between

the input and the output in a single pipeline. This type of model is more convenient compared to

component-based models as end-to-end models can work on new tasks by changing input data.

There are also fewer manual defined hyperparameters which makes the codebase to maintain

easier. It also removes the dependency on other methods or feature extractions which reduces

bias. A few approaches [160], [161] show action detection can be conducted in an end-to-end

manner.

3.4.10 Multiple stream convolutional network

A conventional convolutional network uses single input and produces a single output. Multiple

stream CNN (also known as multi-headed CNN) takes in two or more features. This CNN

extracts features through different CNN (either with shared weight or not), concatenates those

features at a certain part of the CNN and provides an output value. The simplified architecture

is shown in Figure 3.8. There are different types of multiple stream CNN, they can be categorised

into two major categories which are multi-stream CNN that uses different input features (such

as CNN that uses optical flow and optical gray) and multi-stream CNN that uses the same

input features (such as CNN that uses two images sampled from a different time sequence).

Multi-stream CNN with different input features: Two-stream convolutional neural

networks by passing spatial information into one stream of network and temporal information
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(i.e. optical flow) into another separate stream of network [162], [163] are shown to be useful in

action recognition tasks.

Multi-stream CNN with same input features: There are versions that uses the same

feature such as using images of different time frame for each stream (slowfast network [164]), a

hybrid of CNN+LSTM [165] and three stream variation also existed [166]. Inspired by action

recognition task, multiple stream approaches are popular in ME tasks (ME recognition, ME

and MaE spotting) shown in Chapter 2.

Figure 3.8: Simplified architecture of multi-stream CNN. This variation is the simplest version
which takes in the same input features in two separate streams of CNN.

3.4.11 Neural Style Transfer

Neural style transfer is a method that involves two images which take the extracted style from

an image and maps it to a source image using an artificial neural network. This method can

increase data variation. The origin of this method is based on Gatys et al. [167] using different

convolutional layers of a CNN. The generated images using this method do not look real; it looks

visually similar to abstract art. A combination between CNN and Markov random field by Li

et al. [168] is an improvement on Gatys et al. [167], as it is able to transfer style onto buildings

and cars realistically. Semantic style transfer [169] by obtaining a semantic map using a CNN is

another interesting method. For the face, non-matching facial features need to self-align using

customised semantic maps and the results are coarse compared to the real data. The example

of neural style transfer is shown in Figure 3.9.

Face-centred style transfer is demonstrated by Shih et al. [170]. This model uses multiple
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Figure 3.9: Neural style transfer. The resultant image has the structure of the content image
and the style of the reference images. Images and method were adapted from Coursera.

energy maps which transfer only the colour of the style while retaining most of the facial features,

which are well preserved. However, it is very sensitive to lighting, so if the source and reference

do not have the same lighting, the results will become unrealistic. The generated faces remain

visually recognisable from the original images despite the colour changes.

The current state-of-the-art human face style transfer is StarGAN. StarGAN [171] performs

image-to-image translation for multiple domains using a scalable model. This model demon-

strates its effectiveness in facial attribute transfer and facial expression synthesis. StarGANv2

[128] further enhances it by replacing domain labels with domain-specific style codes. Com-

pared to the previous version [171], it has additional structures: a mapping network and a style

encoder. The mapping network learns to transform random Gaussian noise into a style code,

while the encoder extracts a style code from the reference image. StarGANv2 modifies the style

of the source frame containing ME using a reference frame. This is performed by applying a

style reconstruction loss (shown in equation 3.8) onto the generator to utilise the style code

during the image generation process, referred to as reference-guided image synthesis.

Lsty = Ex,y,z[s− Ey(G(x, s))] (3.8)

where Lsty is the style reconstruction loss, E is the encoder, G is the generator, x is the original
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image, y is the domain, z is the latent code and s is the style code.

3.4.12 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [172] are deep learning based generative models. The

working principle of GANs is a zero-sum game by at least two neural networks (at least one

generator and one discriminator) where the generator generates new data while the discriminator

tries to classify real or fake samples. The generator tries to fool the discriminator while the

discriminator learns to classify real and fake samples from the output of the generator and real

samples. In an ideal scenario, the discriminator will have a classifying accuracy of 0.5. This

means that the discriminator is getting correct predictions at random and the generator has

succeeded in creating samples very similar to the real samples. This method works not only on

images but on texts, speech and even videos.

Pix2Pix [173] is a conditional GAN that performs image-to-image translation. This method

uses a generator which is an autoencoder with “U-Net” architecture and a discriminator (named

PatchGAN) that penalises at the scale of patches. The PatchGAN makes the representation

smaller and hence faster to run especially on larger images. Pix2pix is shown to work on a wide

variety of things depending on the task and data assigned.

CycleGAN [174] is also an image-to-image translation generative method. This method can

be thought of as an extended version of Pix2Pix that uses two generators and two discriminators

simultaneously. The main novelty of this GAN is it learns to generate an image from one domain

to another and back again to the original domain. This is performed using Cycle Consistency

Loss.

StyleGAN [40] is a type of GAN which is capable to select and scale a specific control of

the generation process. This is done by changes to the generator by including a novel mapping

network which maps the points in latent space to an intermediate latent space. The intermediate

latent space is then used to control the style of the generation.

CapsuleGAN [175] shows that CapsuleNet-based GAN exhibits better generative adversar-

ial metrics on MNIST dataset and a lower error rate on semi-supervised classification tasks on

both MNIST and CIFAR-10 datasets compared to the convolutional counterpart. The exper-

iment is evaluated by comparing images generated by CapsuleGAN and its CNN equivalent.
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Aesthetically, images generated by CapsuleGAN look cleaner and crisper. By using generative

adversarial metric (a comparison metric between GAN models by pitting each generator against

the opponent’s discriminator), CapsuleGAN outperforms convolutional GAN on MNIST dataset

while performing similarly on CIFAR-10. In semi-supervised classification by using Label Spread

algorithm [176], the error rate of CapsuleGAN is lower in both MNIST and CIFAR-10. This

method only implements CapsuleNet on the discriminator part of the GAN. However, the num-

ber of parameters of the CapsuleNet used is low which may indicate that CapsuleNet might not

be well suited as the discriminator or modifications are needed for it to fully utilise its potential.

Margin loss is used as it is the staple loss used in CapsuleNet.

Otberdout et al. [177] demonstrate a method that generates video clips of six basic facial

expressions using a neutral face. It involves a conditional version of manifold-valued Wasserstein

generative adversarial network (WGAN) that conducts motion generation on the hypersphere.

The architecture consists of two GANs. MotionGAN is used to synthesize facial expressions

from noises. The resulting motion encoded by the Square-Root Velocity Function is applied

to the neutral face landmark which generates landmark sequences. TextureGAN subsequently

transforms the landmark sequences to frame sequences with identity preserved. It is able to

change the intensity of facial expressions by using a factor, I.

EmotionGAN [178] use the inverse of the generator to establish the mapping between the

input and feature vector. The pre-trained generator can be used to synthesize a variety of

expression images, the expression synthesis process is controllable. Pre-trained ResNet is used

to extract features from an input image. These features are used to reconstruct face image using

a generator. The resolution of the generated image is high (1024×1024 pixels). Classification

accuracy across all emotion classes is 0.897. The author claimed a smooth generation of facial

expression images but only a single image was shown.

Ling et. al. [179] perform facial expression editing using U-Net-based architecture, using

relative AU to ensure expression is generated continuously. All generated facial expression inten-

sity and AU are controllable. Instead of passing the features directly using the skip connections

of U-Net, this method concatenates the relative AU extracted with the latent representation of

different spatial resolution using a separate module. The author describes this module combines

the features using a mechanism inspired by depth-wise convolution.
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Attention-based facial expression generation is also attempted. Wang et al. [180] use a

multi-level attention mechanism in the generation process, a employ self-attention layer to

the encoder for long-range dependency and use a discriminator feature-based loss function to

suppress artifacts. This method is able to produce facial expressions with different intensities

on the targeted AU. It is also capable of performing facial expression transfer.

Zhang et al. [181] use GAN inversion which involves inverting the source images to the

latent spaces of trained GAN. It conducts gradient-based optimisation using l2 loss and lpips

loss to obtain the latent vector of the source image. Attentive Expression Embedding (AEE)

module to embed vectors into different facial regions. This module controls the weight of vectors

by disentangle AU vectors using an attention matrix. With AEE, the network is able to edit

expression in a larger magnitude.

3.5 Performance Metric

Training the model is only the first step. We need to know the quality of the model to fur-

ther finetuning, troubleshooting and comparing with other methods. Performance metrics are

quantitative measures to evaluate the model. It gives us information on how well the model

performs. The notations used in this section are true positive (TP), false positive (FP), false

negative (FN) and true negative (TN).

3.5.1 Confusion Matrix

A confusion matrix is a useful tool for describing the performance of a classification model. It

is a visualisation of the classification performance by tabulating them into TP, FP, FN and

TN. The simplest form is binary classification visualised using a two-by-two matrix. The true

predictions lie on the main diagonal of the matrix.

3.5.2 Accuracy, Precision, Recall and F1-score

Accuracy is defined as the number of accurate predictions over the total number of predictions.

Precision is defined as the number of TP divided by the sum of the number TP and FP. It is

the ratio of the number of correct positive predictions to the number of total predicted positives.

Recall, also known as sensitivity or true positive rate, is defined as the number of TP divided by
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the sum of the number TP and FN. It is the ratio of the number of correct positive predictions

to the number of total positive examples. F1-score is the harmonic mean of both precision and

recall. All these performance metrics are shown in Equations 3.9, 3.10, 3.11 and 3.12.

Accuracy =
TP + TN

TP + FP + TN + FN
(3.9)

Precision =
TP

TP + FP
(3.10)

Recall =
TP

TP + FN
(3.11)

F1-score =
2TP

2TP + FP + FN
=

2 · Precision ·Recall

Precision+Recall
(3.12)

3.5.3 Interval Based Spotting Metric

ME spotting are done on either a frame-by-frame or interval basis. Currently, the widely

accepted criteria is by looking at the overlap between the signal interval and ground truth using

Intersect over Union (IoU), defined as equation 3.13. This method is first introduced in Micro-

expression Grand Challenge (MEGC) 2019 [8]. It is used in MEGC2020 [182], MEGC2021 [121]

and MEGC2022 as the standardised criteria for ME spotting.

Predicted ∩GT

Predicted ∪GT
≥ k (3.13)

where k is the minimum overlapping to be classified as true positive, GT represents the

ground truth expression interval (onset-offset), and Predicted represents the detected expression

interval.

3.5.4 ROC Analysis

The Receiver Operating Characteristic (ROC) curve shows the trade-off between true positive

rate and false positive rate. It is useful in skewed class distribution and unequal classification
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error evaluation. For simplicity, classification problems with only two classes will have four

possible outcomes which are TP, FP, FN and TN. This can be conveniently represented in a

two-by-two confusion matrix. The true positive rate is calculated by the number of positives

correctly classified samples divided by the total positives. The false positive rate is calculated

by the number of negative incorrectly classified samples divided by the total negatives. Ideally,

a point nearer to the top-left corner of the ROC curve (TP rate higher, FP rate lower) is better

as the prediction of the model predicted higher TP and lower FP simultaneously. For the case

of points that have the same distance to the top-left corner, the points that are closer to the

left side are more ”conservative” than points closer to the right side as it only makes positive

classification only with strong evidence with fewer false positives. The diagonal line of y=x

represents the performance of a random classifier. If the classifier appears in the lower right

(below the diagonal line), it performs worse than random guessing and vice versa. The area

under ROC curve (AUC) is used as a method to compare the performance of ROC. It reduces

ROC performance into a single scalar value which represents the expected performance. The

higher the AUC, the greater the average performance. An example of ROC curve is shown in

Figure 3.10.

ROC curves are insensitive to changes in class distribution. This is especially useful in

realistic situations. Conventionally, we think large class skews are rare and unrealistic; in

the real world, class skew is very common. Class skew with a magnitude up to 100 happens

frequently.
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Figure 3.10: ROC curve example. The dotted line represents the performance of a random
classifier. This roc curve is above this line which indicates this method performs better than
random guessing. This figure also appears in Chapter 5.

3.5.5 Correlation Analysis

Correlation analyses are quantifiable methods that describe the relationship between two or

more variables. In this thesis, we quantify the motion transferred onto a new stylised face using

these metrics

Pearson’s Correlation Coefficient shows the linear relationship between two sets of data.

The range of this correlation coefficient is between -1 to +1. The formula of this correlation

involves dividing the covariance by the product of standard deviation as shown in Equation

3.14.

r =
Σ(xi − x̂)(yi − ŷ)√
Σ(xi − x̂)2Σ(yi − ŷ)2

(3.14)

where r is the correlation coefficient, xi is the value of the x-variable, x̂ is the mean of the

x-variable, yi is the value of the y-variable, x̂ is the mean of the y-variable

Spearman’s Correlation Coefficient [183] measures the monotonicity of two ranked

variables. The variables in a monotonic relationship move in the same relative direction, but
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not necessarily at a constant rate. While the variables in a linear relationship move in the

same direction at a constant rate. Similar to Pearson’s correlation, the range of this correlation

coefficient is between -1 to +1 too. The formula of this correlation coefficient is shown in

Equation 3.15.

r = 1− 6Σd2i
n((n)2 − 1)

(3.15)

where r is the correlation coefficient, di is the difference between the two ranks of each

observation, and n is the number of observations.

Due to the non-additive nature of correlation coefficients, we cannot compute the mean of the

correlation coefficients by averaging them. To obtain the mean, each correlation coefficient must

be transformed using Fisher’s z-transformation [184] before averaging. The z-transformation is

conducted using Equation 3.16.

z =
1

2
ln(

1 + r

1− r
) = tanh−1(r) (3.16)

where z is Fisher’s Z-score and r is the correlation coefficient.

3.5.6 Signal Processing

Signal processing is a method that removes unwanted noise from the raw output. This reduces

the effect of unrelated information (noise) in influencing the predicted outcomes.

Savitzky-Golay filter operates by using a local least-squares polynomial approximation for

signal smoothing. It involves sampling a fitted polynomial (which is identical to a fixed linear

combination of the local set of input) [185]. This is conducted using a window that shifts by

one step within the signal after each calculation. The scanning window has a size of 2m + 1

(where m is any positive integer). The condition of this filter is where the polynomial of degree,

n is less than 2m+ 1 [186].

Power Spectral Density (PSD) function is the Fourier Transform of the auto-correlation

function of a signal. It shows the strength of energy as a function of frequency [187]. Generally,

it shows which frequencies variations are strong and at frequencies variations are weak. It is
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useful in determining the cutoff frequency of a low pass filter by plotting the strength of each

signal in terms of frequency and removing those that have frequencies higher than the signal.

Butterworth filter [188] can be used as a low pass filter. A low pass filter allows signals

with a frequency lower than the cutoff frequency to pass through while attenuating signals with

frequencies higher than the cutoff. An example of low pass filter is shown in Figure 3.11. The

gain of the Butterworth filter is simplified in Equation 3.17, where G(ω) is the gain, ω is the

angular frequency and n is the order of the Butterworth filter. The order of filter changes

the behaviour of the transition band as shown in Figure 3.12. It can be tuned for cutting off

signals using a sharper cutoff with the expense of greater gain changes over frequency within

the transition band. The main advantage of this filter is it has a flat magnitude filter whereby

signals with frequencies lower than the cutoff frequency do not undergo attenuation.

G(ω) =
1

1 +
√
ω2n

(3.17)

Figure 3.11: Example of Low Pass Filter Frequency Response. Signals with frequency within
the passband will remain unchanged while signals with frequency within the passband will be
completely blocked. Transition band as the name implied is the transition between passband

and stopband.
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Figure 3.12: Frequency Response of Butterworth Filter with Different Order. Signals with a
frequency higher than ωcutoff are attenuated. The transition band shown is dependent on the

order of the filter.

3.5.7 Gradient-weighted Class Activation Mapping

Gradient-weighted Class Activation Mapping (Grad-CAM) is a tool to analyse deep learning

models. It visualises activation of CNN using the class discriminative localisation technique

[189]. By using the gradient information flowing into the last convolutional layer, the importance

of each neuron could be identified. It sets the gradient to “1” for targeted classes and “0” for

the other classes.

The implementation of Grad-CAM is modified from Class Activation Mapping (CAM) [190].

CAM predicts the results of global average pooling,
∑
x,y

fk(x, y), performed on the activation

units, fk(x, y) where k is the number of activation units of the last convolutional layer. The

class score calculated by CAM is shown in Equation 3.18.

Sc =
∑
k

wc
k

∑
x,y

fk(x, y) =
∑
x,y

∑
k

wc
kfk(x, y) (3.18)

where wc
k is the class feature weight and fk(x, y) is the activation unit

Grad-CAM uses a global-averaged-pooled gradient to obtain neuron importance weight αc
k

as class feature weight. This made Grad-CAM a more generalised version of CAM. The results

of the generalisation enable complex cascade convolutional layers to be expressed in a visual

map.
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3.5.8 Image Quality Analysis

Image quality analysis is a measurement of the perception quality of an image. It can be used

as a performance metric to determine the realism of the generated images by comparing the

similarity with the original images. This analysis is used in our generative methods (in Chapter

6).

Inception Score uses Inception v3 model [191] trained on ImageNet to obtain a conditional

probability of each image. This is done by computing the KL-divergence of the conditional and

marginal probability distributions of the generated images. This metric measures the similarity

of images. For GAN evaluation, this metric fundamentally disagrees with the subjective evalu-

ation of human observers. The weakness of this method is it requires the compared images to

be square and have a dimension of approximately 300×300 pixels. The accuracy of this metric

is dependent on the trained model and distribution of the training images.

Frechet Inception Distance (FID) is a measurement of feature vector distance between

real and generated images. It is often considered as a better version of Inception Score. Similar

to Inception Score, FID score also uses Inception v3 model, the difference is it calculates the

Frechet distance between real and generated images as multivariate Gaussian, instead of only

based on the generated images as in IS. The lower the FID the better the image quality.

Peak signal-to-noise ratio (PSNR) is the ratio of the maximum possible power of a signal

to the power of corrupting noise that affects the quality of the signal. This metric is commonly

represented logarithmic-ally in decibel. It is calculated using the equation below:

PSNR = 10 · log10(
MAX2

MSE
) (3.19)

where MAX is the maximum possible pixel value and MSE is the mean square error of the

difference between the original and generated images.

Structural Similarity Index (SSIM) [192] is a measure of the similarity between two

images. This metric is a perception-based model which compares three key features (luminance,

contrast and structure) between two images. This metric is computed using a local square

window that processes the image pixel-by-pixel across the whole image. It is a full reference

metric. It has a range between 0 to 1.
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The operation of SSIM is described in Equations 3.20.

Luminance (of vector x ):

µx =
1

N

N∑
i=1

xi

Contrast (of vector x ):

σx =

(
1

N − 1

N∑
i=1

(xi − µx)
2

) 1
2

Structure (of vector x ):

s(x) =
x− µx

σx

Luminance comparison:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

Contrast comparison:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

Structure comparison:

c(x, y) =
σxy + C3

σxσy + C3

SSIM index:

SSIM(x, y) =[l(x, y)]α · [c(x, y)]β · [s(x, y)]γ

(3.20)
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where µ is the luminance, σ is the standard deviation of the estimated signal contrast, and

C is a constant to ensure stability. There are parameters (α, β, γ) that adjust the relative im-

portance of the three features (luminance, contrast, and structure respectively) with conditions

that α > 0, β > 0 and γ > 0.

Natural Image Quality Evaluator (NIQE) [193] applies 36 identical natural scene statis-

tic (NSS) features from P × P size patches by fitting them with the MVG model. The pro-

cessed patches are then compared with the natural multivariate Gaussian (MVG) model. The

“natural” in this section means models or images trained/taken from nature (e.g. trees, wild

animals). A lower score indicates a better perceptual quality of an image. Natural scene

statistic (NSS) features are low-order statistics of natural images. NIQE only uses the NSS

features of natural images. Multivariate Gaussian (MVG) Model are computed from nat-

ural image patches fitted using an MVG density. This model uses standard maximum likelihood

estimation to calculate the mean and covariance matrix of the model. This model was trained

using copyright-free Flickr data and Berkeley image segmentation database.

The quality of the processed image is calculated as the distance between the quality-aware

NSS feature model and the MVG using the following equation:

D(ν1, ν2,Σ1,Σ2) =

√
(ν1 − ν2)T (

Σ1 +Σ2

2
)−1(ν1 − ν2) (3.21)

where ν1, ν2 and Σ1,Σ2 are the mean vectors and covariance matrices of the natural MVG

model and the processed images.

3.6 Summary

This chapter gives an in-depth review of the theories and techniques used in the following

chapters. Chapter 4 consists of long video datasets that contains MEs and MaEs. Evaluation

methods of the datasets are discussed. Chapter 5 is a machine learning method that detects ME

and MaE using a novel framework that leverages the difference between these expressions. This

method acts as the baseline for MEGC2021 and MEGC2022. Chapter 6 involves generative

models. The first method is an advanced image augmentation using neural style transfer on

an existing dataset (SAMM-LV). The second method is a facial expression sequence generation
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that is capable of generating spontaneous facial expressions without external guidance using two

input sequences. Chapter 7 is an evaluation method on the generated sequences. It describes

facial expression recognition methods using two objective tasks.
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New Long Video Datasets

4.1 Introduction

In Section 2.3, we discuss that ME dataset in the early stages are consisted of short clips

containing posed expression. This does not represents the real life as ME is rare and happens

more frequent in high stakes situations. The contribution of this chapter is to create more data

that resembles real situation. A new dataset is curated based on the raw footage of SAMM [37],

which contains both ME and MaE in long videos format. This dataset is named SAMM Long

Videos (SAMM-LV).

Prior to this dataset, there is only one publicly available ME long video dataset, CAS(ME)2.

As deep learning requires a lot of sample to train, more useful, diverse data must be used for ME

spotting system to work. Additional data is needed so that the trained algorithm can generalise

better with new unseen data.

We further our effort in increasing the number of data by performing neural style transfer

on SAMM-LV. The original identity of the participants was blended with the image style of the

reference image. This increases the reproducibility of the facial movement of the source data

by changing the identity while preserving the identity of the participants. Using this approach,

a new synthetic dataset was produced, named SAMM-SYNTH.

There is an increasing need for long video dataset in ME research, where ME is a rare facial

movement. It can co-occurs and even overlaps with MaE. Spotting task performed on a short
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Figure 4.1: Visualisation of detection window on video with different length. The ground truth
and detection window remain the same for both chart. For short video, the window of detection
window has a higher chance to spot ME while for long video, the chance reduced significantly.
Longer video increases the difficulty of spotting task. ME and MaE can also overlap which
makes the task more realistic and challenging.

clip that contains ME is easier and unrealistic as has a higher chance of detection. With a longer

video, the task becomes more challenging as there are more neutral frames which reduces the

chance of detection. This is demonstrated in Figure 4.1.

4.2 SAMM Long Videos

To facilitate Facial Micro-expression Grand Challenge 2020 (MEGC2020) [182] in the ME and

MaE recognition and spotting task, SAMM-LV is introduced. This dataset consists of 147 long

videos with 343 macro-expressions and 159 MEs. It was captured in a frame rate of 200 fps.

Each video is FACS-coded with detailed AUs. The onset, apex and offset frames for every

expressions are also annotated. Two examples of facial expressions is shown in Figure 4.2. The

top row illustrates a micro-expression of brief AU12 with low intensity and the bottom row

shows a macro-expression of AU12 with high intensity.

The main advantages of this dataset are it is the highest resolution, highest frame rate and

most ethnically diverse (participants with 13 different ethnicities) ME dataset till date. The

high frame rate ensures that information on the expression was preserved while the diversity of

the dataset improves generalisation of the algorithm.

4.2.1 Dataset Analysis

OpenFace [4] is used to analyse and provide a baseline result for this dataset. It is a software

for facial analysis and was used mainly for face alignment and detection of AUs. Further details
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Figure 4.2: Two examples of facial expressions from SAMM Long Videos dataset: (Top) Micro-
expression; and (Bottom) Macro-expression. Both expressions with AU12. On apex frame
(middle), the macro-expression shows higher intensity and visibility when compared to the
micro-expression.

of this toolkit can be found in Section 3.2.3. In this analysis, OpenFace was used to map the

face texture by scaling and in-plane rotation. The output image has a dimension of 112× 112

pixel with interpupilary distance of 45 pixels. The illustration of the original SAMM image, the

facial landmarks and the aligned face image is shown in Figure 4.4. Other than face alignment,

OpenFace has the ability to detect the presence and intensity of AUs. The presence of AU is

encoded 0 as absent and 1 as present while the intensity of AU is represented on a 5-point scale.

AU presence and AU intensity are treated as two different task. The former is a classification

task trained using Support Vector Machines, the latter is a regression task trained using Support

Vector Regression. We take advantage of these functions and provide a quantitative evaluation

for our dataset.

Detection of facial movements was done by first combining the intensity of all the detected

AUs and normalised it to a scale of 1. Next, Savitzky-Golay filter [186] is implemented for

noise reduction. The onset and offset frame of the smoothed signal are obtained using a custom

algorithm modified from [194]. It uses Daubechies wavelet [195] with scaling function of 2 and

level 3 signal decomposition for signal smoothing. The onset and offset frames detected are

compared with the ground truth. The algorithm also defines peak as a point that is higher

than the 7 points that come immediately before and after it. Furthermore, a threshold of

75th percentile was used to filter out low local peaks. For this dataset, since the frame rate

is 200 fps, a threshold of 100 frames (0.5 s) was selected to classify the spotted intervals into
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Figure 4.3: Two AUs on long video clips, the blue line is AU4, and the orange line is AU7.
There are one micro-expression and two macro-expressions found on this video clip.

Figure 4.4: An illustration of preprocessing steps using OpenFace: (Left) Original SAMM image;
(Middle) Facial Landmark Detection; and (Right) Cropped face as region of interest (ROI).
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Figure 4.5: Plot of Subject 018 6 for the normalised sum of AU intensity (blue line) and the
filtered signal (red line) with peaks annotated. A threshold value of 75th percentile of normalised
AU intensity was used to filter out the peaks originated from noise.

macro-expressions (>0.5 s) or micro-expressions (≤0.5 s). The normalised sum of AU intensiy

is illustrated in Figure 4.5. The overlapping of the prediction and ground truth is checked by

the Equation 3.13 (a criteria for spotting challenge in [196]).

Move-to-neutral Ratio

There is a distinct difference between long video datasets which is the movements in each

long video varies. To quantify these difference, a new metric named move-to-neutral ratio is

introduced. As each subject of the dataset used has different numbers of frames with movement

(ME or MaE) and duration of recorded videos, the proportion of movements to video duration

of each subject is different. This can result in easier predictions on some subjects as they have

more movements and vice versa. The move-to-neutral ratio of each subject is shown in Figure

4.6. The average move-to-neutral ratio for both datasets are approximately 0.40 (SAMM-LV)

and 0.05 (CAS(ME)2), which shows that both are imbalanced as most of the videos consist of

neutral frames. However, this metric is solely based on the movements labelled in the ground

truth, which consists of MaE and ME. Other movements such as head movements might not be

included.

CAS(ME)2 has an average move-to-neutral ratio about 10 times smaller than SAMM-LV.
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This indicates that CAS(ME)2 contains about 10 times more neutral frames compared to

SAMM-LV making it a harder dataset to spot ME or MaE.

4.2.2 Benchmark Results

We report the results for both AU presence analysis and facial movement spotting.

For AU presence analysis, the Accuracy is shown in Table 4.1. To compare the per-

formance of OpenFace on micro- and macro-movements detection, we analyse the micro-only

videos and macro-only videos. The comparison between the performance metric of videos

containing only macro- or micro-expression is shown in Table 4.2. All videos used in this com-

parison contains either with macro- or micro-expressions which gives a fairer evaluation in the

detection accuracy of these two classes. There are 18 micro-only and 68 macro-only videos in

this dataset. As we observe, micro-expression detection has a lower performance compared to

macro-expression detection. The AU recognition algorithms (AU presence and AU intensity)

of OpenFace are trained using facial expression datasets (DISFA [197], SEMAINE [198] and

BP4D [199]) which makes OpenFace performs better in macro-expression compared to micro-

expression. We did a separate studies by selecting macro-only and micro-only videos. OpenFace

shows a significant performance drop in micro-only videos with Accuracy of 0.2903 in contrast

to 0.4502 in macro-only videos.

For facial movements spotting, our results is compared with the baseline of MEGC2020

challenge are shown in Table 4.3. The overall results outperformed the baseline result in all

three performance metrics of Precision, Recall, and F1−Score. This shows that our approach

of summation of total AU intensity can be provide an estimation in spotting ME and MaE of

the face.

In both results, macro-expression spotting yields the highest F1-score. This confirms that

macro-expression spotting is easier compared to micro-expression spotting. It can also be ex-

plained as macro-expression has longer interval (> 0.5s) and hence easier to be spotted by the

spotting algorithm. Moreover, OpenFace was trained on facial expressions datasets, which have

no labelled micro-expressions in the training set, which explain the low F1-score in spotting

micro-expressions.
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Figure 4.6: Move-to-Neutral Ratio for each subject of SAMM-LV and CAS(ME)2. It shows
that every subject has different relative number of movement (ME or MaE) to neutral frames.
From the average move-to-neutral ratio, SAMM-LV is higher compared to CAS(ME)2. *x-axis
labels are the subject indices of the datasets.
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Table 4.1: Accuracy of AU presence analysis in long videos using OpenFace

Micro Macro Combined

Matched AU 80 245 278

Ground Truth 172 501 590

Accuracy 0.4651 0.4890 0.4712

Table 4.2: Comparison between AU presence analysis of videos containing only micro- or macro-
expression

Micro only videos Macro only videos

Matched AU 9 104

Ground Truth 31 231

Accuracy 0.2903 0.4502

4.3 SAMM-SYNTH

Long video datasets of facial macro- and micro-expressions remains in strong demand with the

current dominance of data-hungry deep learning methods. To date of this publication, there

are only two related datasets with ME and MaE, which are SAMM Long Videos (SAMM-LV)

[31] and CAS(ME)2 [30]. Hence, there is a high motivation to obtain more data. The number

of samples of MEs are also not sufficient enough for generation process. Moreover, there is

a lack of performance metrics to quantify the generated data. A new approach of generating

synthetic long videos with MEs using style transfer is introduced and assessment methods (both

quantitative and qualitative) to measure the quality of the generated data. Generating new data

using style transfer can be consider as an advanced image augmentation which modifies the

appearance of the subjects without changing the facial movements. To achieve this, the state-

of-the-art generative adversarial network style transfer method – StarGANv2 is used. Using

StarGANv2 pre-trained on the CelebA dataset, the style of a reference image from SAMM long

videos (a facial micro- and macro-expression long video dataset) was transferred onto a source

Table 4.3: Results of macro- and micro-spotting in SAMM Long Videos compared to the baseline
of MEGC2020.

Our Results Baseline of MEGC2020[200]

Expression macro-expression micro-expression overall macro-expression micro-expression overall

Total number 343 159 502 343 159 502

TP 172 6 178 22 29 51

FP 328 71 399 334 1407 1741

FN 171 153 324 321 130 451

Precision 0.3440 0.0779 0.3085 0.0618 0.0202 0.0285

Recall 0.5015 0.0377 0.3546 0.0641 0.1824 0.1016

F1-score 0.4081 0.0508 0.3299 0.0629 0.0364 0.0445
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image of the FFHQ dataset to generate a synthetic dataset (SAMM-SYNTH).

This approach preserves facial motion and changes the identity of the participant to produce

new data. It is fully automated and able to generate unlimited amount of data without any

supervision. This method also has an added benefit of reusing the ground truth labels without

the need of additional FACS coding.

4.3.1 Method

We take advantage of the ability of StarGANv2 [128] to extract style from one image and

transfer onto a target image. The ME and MaE movements remains the same while the identity

of the original image was changed. This is an advanced image augmentation approach, which

essentially creates unique face features while preserving facial movements. The overall pipeline

of our method (including analysis) is shown in Figure 4.7.

Figure 4.7: Overall pipeline of our method with analysis. StarGANv2 is used to modify the
“style” of participant from SAMM-LV dataset [31]. The synthetic image exhibit the style
extracted from the reference image (from FFHQ dataset [40]) while maintaining the facial
features of the source image. Facial Action Units (AUs) of the synthetic image is measured
using OpenFace [4]. The AUs and optical flow of the synthetic image are compared with the
original source image.

Datasets

Facial micro- and macro-expressions dataset, SAMM-LV (details in Section 2.3), is used as

source frames, which is the target for style transfer. The generative algorithm (StarGANv2)

uses CelebA dataset [201] as the training set. CelebA is a face-based dataset which contains

ten thousand unique identities, where each of them has twenty images. The reference frames

(containing 14 female and 14 male adults) are selected from FFHQ dataset [40], another face-
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based dataset, so that more variety of generated faces can be produced. This can also prevent

StarGANv2 from using its training set for style transfer and demonstrate the robustness of style

transfer of the model.

Network Architecture

StarGAN [171] is able to perform image-to-image translation for multiple domains using

a scalable model. This model demonstrates its effectiveness on facial attribute transfer and

facial expression synthesis. StarGANv2 [128] further enhances it by replacing domain labels

with domain-specific style codes. Compared to the previous version [171], it has additional

structures: a mapping network and a style encoder. The mapping network learns to transform

random Gaussian noise into a style code, while the encoder extracts a style code from the

reference image. StarGANv2 modifies the style of the source frame containing ME using a

reference frame. This is performed by applying a style reconstruction loss (shown in equation

3.8) onto the generator to utilise the style code during the image generation process, referred

to as reference-guided image synthesis.

In our experiment, we use StarGANv2 pre-trained on the CelebA dataset [201] for reference-

guided image synthesis.

4.3.2 Results and Discussion

We generated a synthetic dataset, named SAMM-SYNTH, using reference-guided image syn-

thesis of StarGANv2 on SAMM-LV dataset. To evaluate the quality of the generated dataset,

first we perform quantitative analysis using facial action units (AUs) detected by OpenFace.

We conduct a correlation analysis on the AUs in SAMM-LV and SAMM-SYNTH. To compare

the visual appearances, we perform qualitative analysis that involves the use of optical flow.

The results of StarGANv2 reference-guided image synthesis can be seen in Figure 4.8. We

observed that the facial attribute follows the source image (taken from SAMM-LV) while the

style follows the reference image (taken from FFHQ dataset). We conducted style transfer on

each participant of SAMM-LV. As a result, SAMM-SYNTH consists of 147 long videos with 15

female and 15 male participants. We generated most synthetic data by following their original

identified gender (other than 1 female participant, due to excessive artifacts). We also found that

inter-gender style transfer is possible. An interesting observation is that we found StarGANv2
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tends to generalise female participants to have long hair. This may be caused by the training

set (CelebA) which consisted of mostly female participants with long hair.

Figure 4.8: Style transfer using StarGANv2, also known as reference-guided image synthesis.
The result exhibits facial features of the source image (taken from SAMM-LV dataset [31]),
while taking the style extracted from the reference image (taken from FFHQ dataset [40]).
StarGANv2 is capable of transferring style for both gender realistically. Inter-gender style
transfer is also possible as shown in the bottom row.

Action Unit Analysis using OpenFace

OpenFace 2.0 [4] is a facial analysis toolkit that is capable of performing facial landmark

detection, head pose estimation, facial AU recognition and eye-gaze estimation. OpenFace uses

Convolutional Experts Constrained Local Model (CE-CLM) [132] for facial landmark track-

ing and detection. CE-CLM uses a deep convolutional neural network for the 84-point facial

landmark detection. Based on the facial landmarks, the AU intensity of both the original and

synthetic data are measured.

Two selected AU intensities measured by OpenFace for both original and synthetic videos
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are shown in Figure 4.9. They were smoothed using Savitzky-Golay filter [186]. The rise and

falls of the AU intensity indicates movement on each particular AU. We observed that the AU12

movement is better replicated compared to AU4. Another reason may be resorted because AU12

(lip corner puller) has a bigger movement range when compared to AU4 (brow lowerer).

We analyse the similarities of facial movements between SAMM-LV (original) and SAMM-

SYNTH (transferred) using Pearson’s and Spearman’s correlation [183]. To analyse the quality

of AU transferred, each AU intensity (original and synthetic data) measured detected by Open-

Face are transformed into Z-score using Fisher’s Z-transformation [184] as in Equation (3.16).

The average values of Z-score are calculated and converted to correlation coefficients (Pear-

son’s and Spearman’s coefficients). The reason for using Z-score when calculating the average

is that correlation coefficients are non-additive. Hence, a sample-size weighing (e.g. Fisher’s

Z-transformation) must be applied before averaging.

We tabulate the results sorted by AU and by participant in Tables 4.4 and 4.5, respectively.

Table 4.4 compares the Pearson’s correlation coefficients sorted by AU, we observed that AU45,

AU12 and AU6 are better replicated as they show higher Pearson’s correlation coefficients of

0.92, 0.74 and 0.72, respectively. Based on OpenFace benchmark, when compared to the ground

truth labelling, OpenFace performs better in AU4, AU12 and AU25 with a Pearson’s coefficient

of 0.70, 0.85 and 0.85 respectively, on a facial expression dataset (DISFA dataset [197]). By

comparing Pearson’s coefficients of our experiment and OpenFace benchmark, we have a high

confidence that AU12 is the best transferred AU. This is proved whereby OpenFace has high

accuracy and our experiment shows high correlation in AU12.

In Table 4.5, we observed that the overall mean Pearson’s correlation is higher than Spear-

man’s correlation. This implies that our data is more linear than monotonically correlated, as

Pearson’s correlation measures the linearity of the data correlations while Spearman’s measures

the monotony of the data correlations. Figure 4.10 further confirms our claim as the Spearman’s

distribution is skewed right, indicated a lower boundary in the coefficients.

We identified participants with glasses (participant 010, 020, 021, 032 and 037) and did a

separate comparison by removing them from the whole dataset. In Figure 4.11, we can see

that most of the Pearson’s coefficient improves for the upper face AUs. The only AUs that

do not improve are AU6 and AU7. These two AUs can affect the eye corners and muscles
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Figure 4.9: Illustration of AU intensities measured by OpenFace for selected videos of 007 6
and 030 5 of SAMM-LV and SAMM-SYNTH. AU12 is amplified, while AU4 is softened in the
synthetic data. According to OpenFace’s documentation, AU intensity has a range of 0 (not
present) to 5 (maximum intensity). However, the AU intensity is standardised based on the
initial frame. The changes in AU intensities indicate movements of that AU which is what we
are interested in.
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Table 4.4: Analysis of Action Units (AUs) detected by OpenFace on original SAMM-LV partic-
ipants and SAMM-SYNTH synthetic videos. The bolded values are the top-3 highest Pearson’s
correlation coefficients. Pearson’s correlation coefficients show strong positive correlation for
AU6, AU12, and AU45, which are well preserved compared to the other AUs. “Benchmark”
indicates the Pearson’s coefficients of OpenFace detection versus ground truth labelling on
DISFA dataset [197], which reported that OpenFace has better performance on AU4, AU12,
and AU25 detection.

Action Unit SAMM-LV vs SAMM-SYNTH Benchmark

AU1 0.40 0.64

AU2 0.26 0.50

AU4 0.25 0.70

AU5 0.27 0.67

AU6 0.72 0.59

AU7 0.33 -

AU9 0.38 0.54

AU10 0.28 -

AU12 0.74 0.85

AU14 0.42 -

AU15 0.26 0.39

AU17 0.15 0.49

AU20 0.28 0.22

AU23 0.40 -

AU25 0.26 0.85

AU26 0.20 0.67

AU45 0.92 -

around the eye socket. The outer frame of the glasses might exaggerate the movement in the

generation process resulting in higher correlation. This presents a challenge for style transfer

on participants with glasses.

Optical Flow Analysis

We use optical flow to visualise the facial movements and their intensities in both original

and synthetic data. Farneback optical flow [144] is used to calculate the frame differences

between the onset and apex frame of ME related movements as shown in Figure 4.12. In image

sequences of facial expression, the onset frame is the frame where the expression starts and

apex frame is where the expression is at the highest intensity. For the optical flow method, we

assume that all participants were captured under uniform lighting at all times. The direction
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Table 4.5: Analysis of the quality for each participant of SAMM-LV versus SAMM-SYNTH.
Both Pearson’s and Spearman’s correlation are compared. The degree of freedom, df , for the
correlation coefficients is 14.

Subject
Pearson Spearman

r p-value r p-value

006 0.58 0.006 0.44 0.016

007 0.38 0.023 0.32 0.040

008 0.33 0.018 0.11 0.038

009 0.22 0.039 0.13 0.057

010 0.38 0.045 0.27 0.026

011 0.57 0.013 0.44 0.016

012 0.59 0.021 0.38 0.005

013 0.25 0.028 0.17 0.050

014 0.49 0.009 0.32 0.016

015 0.60 0.007 0.41 0.034

016 0.19 0.040 0.14 0.061

017 0.13 0.041 0.13 0.039

018 0.51 0.023 0.40 0.008

019 0.40 0.022 0.25 0.034

020 0.61 0.032 0.47 0.015

021 0.20 0.035 0.15 0.039

022 0.41 0.016 0.28 0.021

023 0.44 0.005 0.37 0.044

024 0.04 0.026 0.05 0.048

025 0.51 0.037 0.39 0.022

026 0.55 0.027 0.27 0.025

028 0.56 0.021 0.27 0.022

030 0.27 0.056 0.14 0.030

031 0.16 0.068 0.17 0.080

032 0.22 0.051 0.15 0.076

033 0.51 0.029 0.35 0.038

034 0.36 0.052 0.21 0.068

035 0.33 0.038 0.25 0.021

036 0.39 0.012 0.31 0.028

037 0.19 0.041 0.16 0.071

Mean 0.39 0.029 0.27 0.036

Std. Dev. 0.19 0.016 0.12 0.020
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Figure 4.10: Histogram of correlation coefficients on all participants of SAMM-LV and SAMM-
SYNTH. Both histograms use 6 bins. We observed that Spearman’s coefficients are more
right-skewed relative to Pearson’s coefficient. This implies that our results are more linear than
monotonic correlated.

Figure 4.11: Comparison of Pearson’s correlation of upper face AUs between all participants
and those without glasses. By excluding participants with glasses, most of the upper face AUs
improved.
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and intensity of the movement is determined by the hue and brightness of the HSV colour

model. For comparison, the original images were scaled down to 256×256 pixels to match the

synthetic images. In AU12 movement, we observed that the right lip corner movements in both

original and synthetic pairs are well replicated (bright spot on the optical flow images). In

AU4 movement, the eye brow movements are less distinct, while the eye movements are better

replicated. In both optical flow of synthetic data, we noticed that additional frame differences

are observed around the jaw region, although it is not visible to the human eye, it was captured

in the optical flow analysis.

4.3.3 Advantages

The main advantage of our approach is that the generated faces have a new style. This allows a

neural network to be trained or validated on unseen data, which can potentially result in better

model generalisation. It has an added benefit of protecting the identity of the original participant

while generating new data. GAN generated methods [110], [120] require substantial labelled

data. For our case, due to the limited MEs and MaEs long video datasets, generation could be a

challenging task. Style transfer resolves this issue as it primarily transfers the facial movements

without the need of training new model or data annotation. Moreover, style transfer is a simple

and convenient method of data augmentation. By altering the reference frame alone, we are

able to create new faces with ME or MaE included in the synthetic video. We can also generate

cross-ethnic faces (as participant 030 in Figure 4.12) to increase the diversity of ME dataset,

which primarily consists of participants from one particular country and ethnic background

[202]. It is known that demographic imbalance of the training dataset will cause external biases

on the trained models [203]–[205] that results in inaccurate and erroneous predictions. With

the ability to generate wide range of participants with different demographics, this can alleviate

the issue. Potentially, this will help to improve the generalisation of the deep learning models.

It is also relatively low in computational cost. By training StarGANv2 once, we are able to

generate an unlimited amount of style transfer data with very little computational cost.

4.3.4 Limitations and Challenges

We conduct extensive tests on our synthetic data by changing the reference images for each

participant of SAMM-LV. We found that the background of the reference image is one of the
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Figure 4.12: Optical flow comparison of onset and apex frames between original and synthetic
MEs. Each respective AUs are shown in the red bounding boxes.(Top) For movement 007 6 5,
AU12 is involved. (Bottom) For movement 030 5 1, AU4 and slight eye movement are involved.
The hue represents direction, while the brightness represents intensity of the movements. Note:
Original images were scaled to 256×256 pixels for fairer evaluation.
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source of artifacts. Non-uniform background creates patches of artifacts which are not realistic.

Hence, all the reference images are selected with a uniform background. However, there are still

blob-like artifacts in some cases (source might originate from the generator that learnt unnatural

distributions that can fool the discriminator). Next, source images with facial accessories (e.g.

glasses) create unrealistic images. StarGAN treats glasses as a facial feature and attempts

to blend it onto the face. Not only are the images are not suitable for real life applications,

our separate analysis, which only includes participants without glasses (in Figure 4.11), shows

improvement in the similarity of AUs transferred. This shows that the facial movement of

participants with glasses are not well transferred. Facial accessories come in various sizes and

shapes, which is challenging to transfer. They are also not well-represented in StarGAN’s

training set. The artifacts mentioned are shown in Figure 4.13. There are 5 participants with

glasses and 1 participant with one video with glasses. Out of 147 videos, 25 videos contains

artifacts caused by transferring facial movements on participants that wore glasses. A potential

solution is to retrain the model on a new training dataset with facial accessories or inpaint the

glasses before the style transfer process.

Figure 4.13: Artifacts present in synthetic images. (Top) Background artifacts of blob-like
structure. (Bottom) Participants with glasses are not realistically generated.

We noticed that when eye blinks occur in the source images, the hair structure of the

synthetic images was slightly altered. This might be caused by the pre-trained weights. The

majority of the face images in CelebA are faces with open eyes, hence, it is reasonable to

assume that when a participant blinks, the model wasn’t able to preserve the face structure
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well, especially the hair. Selected examples with this issue are shown in Figure 4.14.

All the AUs of original and synthetic data are positively correlated. However, different AUs

have different range and sensitivity, which may explain the low correlation coefficients in some

AUs. The source images from SAMM-LV do not have a balanced distribution across all AUs,

which may result in an uneven comparison that skew the results towards AUs that are more

common.

Figure 4.14: Eye blinks can cause changes in other facial regions. (Top) Mild case which
results in small changes of hair and ears in the synthetic images. (Bottom) Extreme case on
participant with glasses which results in huge changes.
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4.3.5 Conclusions

We showed that style transfer on a pre-existing long video dataset (SAMM-LV) can be used as

a method of generating a new synthetic dataset – SAMM-SYNTH. We found that AU6, AU12,

and AU45 are AUs that transferred well in the SAMM-SYNTH using Pearson’s correlation.

We performed facial motion transfer analysis using optical flow to visualise the movements on

both the original and synthetic data. Like in other GAN-based approaches, we observed the

synthetic data were affected by visual artifacts.

With additional data, the ME spotting algorithm shows improvement. The advanced image

augmentation using neural style transfer which acts as an advanced image augmentation that

increases the variety of input data. However, there is a trade-off between ME and MaE spotting

performance.

Future work includes addressing the style transfer issues related to eye blinks, eye glasses,

and the visual artifacts. We will expand the training dataset of the style transfer model to

include other face datasets and design a new method. To evaluate the effectiveness of synthetic

data as a data augmentation technique in this domain, we will add SAMM-SYNTH to the

current training pool and conduct ME related experiments to investigate the use of SAMM-

SYNTH in ME recognition, and spotting ME and MaE in long videos.

4.4 Summary

SAMM-LV [31] is a long video dataset containing both facial micro- and macro-expressions. We

evaluated the performance of OpenFace facial behaviour tools in AUs detection. As OpenFace

was trained on macro-expression, for AU presence analysis and spotting (combined of both

ME and MaE), it achieved a reasonable results with Accuracy of 0.4712 and F1 − Score of

0.3299 respectively. The performance dropped in micro-only videos with Accuracy of 0.2903 in

contrast to 0.4502 in macro-only videos which further supports our hypothesis. For spotting,

our overall results outperformed the baseline result of MEGC2020 in all three performance

metrics of Precision, Recall, and F1− Score. This evaluation method shows that AU can be

used as a rough estimation for the movement related to ME and MaE.

SAMM-LV is a significant addition towards pre-existing ME long video dataset. As of the
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time of the release of this dataset, there was only one dataset (CAS(ME)2). This increases the

dataset pool by a significant amount. With this new dataset, it can increase the generalisation

of machine learning model and makes the model more robust to other samples. This dataset

has been used in Micro-expression Grand Challenges (2020 - 2022) in ME and MaE spotting

task, where the baseline methods are described in the next chapter.

We also proposed a new take on generating ME and MaE data by performing style transfer on

existing dataset. It is an advanced image augmentation that theoretically can generate infinite

amount of data by only changing the reference image. We perform quantitative measurement

using correlation analysis using the AUs detected by OpenFace for both original and synthetic

data. Optical flow is also implemented for qualitative measurement.
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3D-CNN for ME and MaE Spotting

using Temporal Oriented Reference

Frame

5.1 Introduction

Facial expression is the primary form of visual information on human emotion. It can predict

a person’s current state of emotion. This chapter discusses two types of facial expression, i.e.,

macro-expression (MaE) and micro-expression (ME), which are based on the duration of these

expression lasts. MaE (also known as regular facial expression) lasts from 0.5 to 4.0s [21] and

it normally has higher intensity; ME occurs in less than 0.5s and more likely to have lower

intensity. ME occurs more frequently in high-stake and stressful circumstances [22], [23]. As

it is an involuntary reaction, the actual emotional state of a person can be studied through

analysing MEs.

For ME spotting, due to limited dataset availability, early works are based on datasets

consisting of short clips containing categorised ME (i.e., SAMM [37], SMIC [29], and CASME II

[36]). Spotting with clips containing ME will result in high detection rate regardless. Hence, the

recently created long video datasets that contains both ME and MaE, i.e., SAMM Long Videos

(SAMM-LV) [31] and CAS(ME)2 [30], were introduced to better represent spontaneous emotion

for ME and MaE spotting. They also resemble real-world scenario where ME is infrequent and
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may co-occurs and overlaps with MaE. This section focuses on automated spotting of MaE and

ME on SAMM-LV and CAS(ME)2.

From literature review, we found most approaches are hybrid approaches, which are artificial

neural network uses handcrafted features (i.e. LBP, optical flow) as input. LBP is computed

by comparing the grey level value of the centre pixel with the neighbouring pixels. If the

grey level of the neighbouring pixel is higher than the centre pixel, it is assigned to 1, and

set to 0 otherwise (further details in Section 3.3). Some examples of method that uses LBP

as input features uses fixed grid based spatial division and ROI method [70] and merges both

handcrafted (LBP based) and deep (CNN) features [71]. Optical flow computes the differences

of two image frames every time when it is applied within a video sequence. There are a number

of optical flow based methods [100], [102], [103], [200] that detect temporal correlation of video

sequences. Some approaches [102], [108] also uses recurrent neural network (i.e. LSTM) to

analyse temporal information. Both LSTM and optical flow are computationally expensive. In

addition, optical flow has weaknesses such as drifting over frames [206] and is very susceptible

to illumination changes [207]. We also noticed that previous attempts lack duration centred

analysis. We take advantage of the major difference between ME and MaE (they occur for

different duration, where ME occurs less than 0.5 s while MaE occurs in 0.5 s or longer) and

propose a two-stream network with a different frame skip based on the duration differences for

ME and MaE spotting.

This chapter proposes a 3D-CNN that detects movements in video sequences using a frame-

by-frame approach on long video ME dataset. Prior to this contribution, a simplified task which

involves movement spotting was attempted. This main method that is capable of spotting both

ME and MaE simultaneously is a benchmark of SAMM-LV dataset and baseline method for

Micro-Expression Grand Challenge (MEGC) in 2021 [121] and 2022. Local Contrast Normali-

sation (LCN) is used to normalise the contrast value of the input image which results in drastic

improvements in the model performance. The model performance is compared with the sub-

missions of MEGC2020 [182].

5.2 Main contributions

The main contributions of this chapter are:
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• Our approach is the first end-to-end deep learning ME and MaE spotting method trained

from scratch using long video datasets (at the time of developing our method).

• Our method uses a two-stream network with temporal oriented reference frame. The

reference frames are two frame pairs corresponding to the duration difference of ME and

MaE. The two-stream network also possesses shared weights to mitigate overfitting.

• The network architecture consists of only 3 convolutional layers with the capability of

detecting co-occurrence of ME and MaE using a multi-label system. This method has

potential to be used on lightweight devices (e.g., smartphones) in real-time.

• We implement LCN that drastically improves the overall network performance across a

range of configurations and parameters. We also show that LCN is essential in our network.

Our 3-layer network with LCN outperforms deeper network (i.e., 20-layer network).

5.3 Facial Movement Spotting

Before conducting the full experiment, to ensure the network is capable of detecting movements,

a prototype model on facial movement spotting was created. The aim of this prototype network

that is to investigate whether this network architecture can spot facial movements. This provides

an easier alternative as a baseline to troubleshoot the model more efficiently. This model

also trains faster that significantly reduces the training time which speeds up the optimisation

process. The network architecture is identical to the full version with then only difference is

the final classification is movement or no movement. This version is only trained and validated

on SAMM-LV dataset.

Figure 5.1: Simplified Network Architecture for Spotting Facial Movements

The training is identical to the main experiment. The input of the network is consisted

of 4 images with dimension of 112×112. Leave-one-subject-out (LOSO) cross-validation and

regularisation of the network are also used which will be discussed in the main experiment in
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Section 5.4.4.

Weighted loss function is used to address class imbalance of the dataset where majority of

the training sets are labelled neutral. This loss function is shown in Equation 5.1.

Loss = −
C′=1∑
i=1

W · ti · log(si) + (1−W )(1− ti) · log(1− si) (5.1)

where ti is the ground truth label, si is the prediction, C ′ is the number of class (set to 1 as

we have only one class) and W is the weighing factor (set to 0.75).

The initial stage of our project, we took 3 subjects out of the training set and use it for

validation. All the subjects was classified into 3 categories of low, average and high facial

movement split according to the interquartile range of the frame labels. This cross-validation

technique was made as it can be trained and shows the performance of the network relatively

quickly. This is extremely useful for testing out different network architectures.

Through the initial investigation using this network, we find out the approximate hyperpa-

rameters and network architecture that leads to model convergence. Based on the approximated

parameters and network, we proceed the full experiment using LOSO cross-validation.

5.3.1 Results and Discussion

This method is evaluated using two assessment: frame-by-frame and interval based. The raw

output is frame-by-frame. Facial expression occurs within certain duration, hence, an interval

based evaluation is introduced as a more suitable alternative (which is also the official evaluation

metric for MEGC).

Frame-by-frame Evaluation

The results for frame-by-frame evaluation are shown in Figure 5.1. It shows that LCN

plays an important role in our network whereby all metrics (loss, F1-score and AUC) are better

compared to the counterpart without LCN. A deeper network also have better performance.

Deeper network architectures will be studied in the future to determine the optimal network

depth.
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Figure 5.2: ROC curve of one selected fold.

Figure 5.3: Overall ROC curve. LCN is shows results with significant better results. Without
LCN, the model has performance similar to random guesses.

Intersection of Union (IoU) Evaluation

The initial finding shows that LCN and additional depth improves model performance.
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Table 5.1: Frame-by-frame Evaluation for Facial Movement Spotting

Network and Parameter Loss Precision Recall F1-score AUC

3D-CNN (w/o LCN) 0.3877 (±0.1498) 0.2361 (±0.1342) 0.4830(±0.1292) 0.3012 (±0.1176) 0.5046

3D-CNN (w/o LCN) + depth 0.3774 (±0.2076) 0.2724(±0.1776) 0.5103 (±0.1155) 0.3360 (±0.1569) 0.4987

3D-CNN (with LCN) 0.2518 (±0.0796) 0.3409 (±0.1871) 0.6008 (±0.1240) 0.4160 (±0.1684) 0.7048

3D-CNN (with LCN) + depth 0.2367 (±0.0561) 0.3599 (±0.1885) 0.6283 (±0.1041) 0.4387 (±0.1638) 0.7196

Table 5.2: Comparison using interval based IoU Methods

Network and Parameter Precision Recall F1-score

Pan et al. [107] 0.0681 0.1010 0.0813

3D-CNN (w/o LCN) 0.0712 0.0681 0.0659

3D-CNN (w/o LCN) + depth 0.0477 0.0528 0.0491

3D-CNN (with LCN) 0.1309 0.1783 0.1464

3D-CNN (with LCN) + depth 0.1489 0.2044 0.1660

The initial network depth is 6 layers and additional depth increase the number of layers to 9

layers. Using LCN improves the performance significantly. However, the effect of network depth

remains inconclusive, which will be explored in Section 5.4.5.

Although frame-by-frame evaluation shows better performance, facial expression is a dy-

namic movement of face that consists of a sequence of action. Hence, static frame evaluation

has its limitation as it cannot captures the temporal changes of the expression. A more realistic

assessment is interval based evaluation which is based on the overlapping between the ground

truth interval and the predicted interval. These overlapping of these two intervals are compared

using intersection of union. This provides a more accurate overview on the performance of the

model.

5.4 Facial ME and MaE Spotting

Our goal is to detect ME and MaE within long video sequences. By using the duration difference

of ME and MaE, we propose a two-stream 3D-Convolutional Neural Network (3D-CNN) with

temporal oriented frame skips. We define the two “streams” as ME and MaE pathways, as

illustrated in Fig. 5.6. They are structurally identical networks with shared weights, but differ

in frame skips. We use 3 convolutional layers and pool all the spatial dimensions before the dense

layers using global average pooling. This design constrains the network to focus on regional

features, rather than global facial features. Next, we further implement the brightness and/or
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contrast normalisation of input images which improves model performance. This is important

for generalisation and real world applications, as there is likely more variation in skin tone and

brightness between different individuals, and lighting conditions. Therefore, we apply LCN to

all images before presented to our network.

5.4.1 Preprocessing

Facial Alignment OpenFace 2.0 [4] is used for facial alignment. It is a general-purpose toolbox

for facial analysis. Further details of this toolkit can be found in Section 3.2.3. In our experi-

ment, image resolution is 112×112 pixels, which is the default output resolution of OpenFace.

Local Contrast Normalisation (LCN) LCN [137] was inspired by computational neuro-

science models that mimic human visual perception [208] by mainly enhancing low contrast

regions of images. LCN normalises the contrast of an image by conducting local subtractive

and divisive normalisations [137]. It performs normalisation on local patches (per pixel basis)

by comparing a central pixel value with its neighbours. The unique feature of LCN is its divisive

normalisation, which consists of the maximum of local variance or the mean of global variance.

If an area of image has very low variance (approximately 0), dividing with a small value will

form a bright spot. Dividing using the mean of global variance mitigates this issue. The main

advantage of this method is robustness towards the change in brightness or contrast (shown in

Figure 5.4). The facial features are well preserved despite the random changes in brightness

and contrast. This can be a solution to address the weakness of overused conventional optical

flow method of dealing with uneven lighting. In our implementation, Gaussian convolutions

are used to obtain the local mean and standard deviation. Gaussian convolution acts as a low

pass filter which reduces noise. It also speeds up the local normalisation process as it is a

separable filter (where 2-dimensional data can be calculated using 2 independent 1-dimensional

functions). Further details can be found in Section 3.2.4.

The general equation of LCN can be described as

g(x, y) =
f(x, y)− µf (x, y)

σ2
f (x, y)

(5.2)

where f(x, y) is the input image, µf (x, y) is the local mean estimation, σ2
f (x, y) is the local
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Figure 5.4: Preprocessing: (Top) Face alignment and data augmentation (randomised brightness
and contrast change) on a subject of SAMM-LV; and (Bottom) Image normalised using LCN.
Despite the brightness and contrast differences, the facial features remain well-preserved.

variance estimation and g(x, y) is the output image.

5.4.2 Temporal Information encoded on Depth Dimension of 3D-CNN

There are multiple ways to encode temporal information such as using temporal based features

(i.e. optical flow) and recurrent networks (i.e. LSTM). For this method, the depth dimension

of 3D-CNN is used to capture the temporal information of the video. By using the depth

dimension as time, a two-stream network is produced by avoiding convolution across the depth

of the network after the first layer. The two stream network is done by striding across the

depth dimension in the first convolution. This provides the differences between two frames

(either long frame skip or short frame skip respectively). Each stream was then convolved

independent to each other and concatenate in the end of the network. For training, a randomised

frame skip (within the range of the facial expression) was used which increase the network

generalisation towards ME/MaE of different duration. For testing, the temporal information

encoded is through strides following k-th frame [94] (further details in Section 5.4.3).
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Figure 5.5: Initial stage of 3D-CNN, where x is the filter size. This is the 1st layer of 3D-CNN.
The temporal information is encoded in the depth dimension. The 4 images on the left are
input frames. The first two frames (in blue) have shorter frame skip while the latter two have
longer frame skip. The numbers represents the indices of the input frames.

5.4.3 Network Architecture

We propose a two-stream network using a 3D-CNN (network architecture shown in Figure 5.6).

Our network takes advantage of the duration differences of ME and MaE and encouraging one

network to be more sensitive to ME and the other to MaE. This is made possible by using a

different number of skipped frames in each respective stream (using the maximum duration of

a ME, 0.5s, as the threshold for the duration difference). Our network consists of depthwise

separable convolutions, which has about 10% less parameters compared to regular convolution

counterpart.

Input Layer The input of this network consists of 4 images. The frame pair in the first stream

has a shorter frame skip compared to the latter pair. The frame skips are determined based on

the k-th frame. The k-th frame, described by Moilanen et al. [94], is the average mid-point of

odd-numbered facial expression interval of the whole dataset. These pairs are then fed into two

separate but identical neural networks with shared weights.

Weighted loss function To the best of our knowledge, we are the first in ME spotting to

weight imbalanced datasets using a loss function. The datasets used in our experiment are

imbalanced, and there are more neutral frames relative to frames containing ME or MaE. We

also weighted the loss based on ME and MaE, as ME occurs less than MaE. The loss can be
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Figure 5.6: Network architecture of our two-stream 3D-CNN. It is lightweight as it has only 3
layers. Temporal oriented frame skip based on the duration differences of ME and MaE (where
∆tME < ∆tMaE). Each convolutional block consists of depthwise separable convolution, batch
normalisation and dropout. The residual dense layer possesses the skip connections that shares
weights. Two dense nodes were used at the end to resemble the presence of ME and MaE.

described as

Loss = −
C′∑
i=1

Mi · [W · ti · log(si)− (1− ti) · log(1− si)] (5.3)

where ti is ground truth labels, si are the predictions, C ′ is the number of expression types

(C ′ = 2 in our case, for ME and MaE), W is the weighting factor that functions to penalise

more when the network predicts ME/MaE wrongly as neutral and Mi is the weighting factor

for expression (ME or MaE).

We only apply weighted loss function when training SAMM-LV as we found out model

trained with SAMM-LV improves with weighted loss function. The effects in CAS(ME)2 is

negligible. We used C ′ = 2, M0 = 0.9 (for ME), M1 = 0.1 (for MaE). Coefficient W used is

3. All the weighting factors are used to address the dataset imbalance. W is used to address

different number of ground truth labels of ME/MaE and neutral; M0 and M1 is used to address

the imbalanced labels of ME and MaE. The model performance of different weighting factors is

shown in Table 5.10.

Depthwise Separable Convolution We use depthwise separable convolution of MobileNet

[158] that reduces total trainable parameters with minimal performance impact. It consists of

depthwise and pointwise convolution. Depthwise convolution is convolution applied on individ-

ual channels instead of all channel at once (as in regular convolutional). Pointwise convolution

is convolution that uses a 1 × 1 kernel with a third dimension of d (where d is the number of

channels) on the feature maps.
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Table 5.3: Duration analysis of SAMM-LV and CAS(ME)2.

Dataset SAMM-LV CAS(ME)2

Type of Expression ME MaE ME MaE

Minimum (s) 0.15 0.51 0.27 0.10

Mean (s) 0.37 2.17 0.42 1.25

Maximum (s) 0.51 25.88 0.53 3.90

GAP and Residual Dense Layer A global average pooling (GAP) layer is used to flatten the

convolution output and enforce modelling of localised facial movements. It is followed by the

final hidden layer consisting of a residual dense layer. This layer consists of two fully connected

layers with skip connections inspired by ResNet [159].

Output Layer The output layer consists of two dense nodes representing the presence of ME

and MaE. A sigmoid activation function is used as the output, and is in the range between 0

and 1.

5.4.4 Experiment

Our experiment involves an end-to-end 3D-convolutional network using leave-one-subject-out

(LOSO) cross-validation. This cross-validation is the standard cross-validation method used

in multiple MEGCs [8], [121], [182]. k-fold cross-validation (e.g. 5-fold or 10-fold) was not

used in ME research as the available dataset is relatively small. This section provides dataset

information and training details of our experiment.

Datasets

The datasets used are SAMM Long Videos (SAMM-LV) [31] with 147 long videos containing

343 MaEs and 159 MEs; and CAS(ME)2 [30] with 87 long videos containing 300 MaEs and 57

MEs. The duration analysis of MEs and MaEs in the long videos are shown in Table 5.3. It is

noted that the ME duration of SAMM-LV is shorter than CAS(ME)2, but the MaE duration

is longer. The original ground truth of these datasets consist of onset, apex, and offset frame

labels of each facial expression. We label the ground truth of movement from the onset frame

to the offset frame, inclusively. Our ground truth consists of two labels of binaries where “0”

represents absence while “1” represents presence of ME or/and MaE.
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Training

Randomised frame skips are used in training and validation. This creates a more realistic

scenario as the duration of each facial expression is unknown in real life. It can also act as a

regularisation process by adding variations and perturbations to the input. For model testing,

we used a frame skip based on the k-th frame of ME and MaE of each respective dataset shown

in Table 5.5. The visual differences of frames calculated using this interval (frames skipped) is

larger, making the facial movements more distinct for the algorithm to spot.

Regularisation Random augmentations (i.e., contrast, gamma intensity, gamma gain and

rotation) on the input images are performed as shown in Table 5.4. A 50% probability of

horizontal flip is also included. Other regularisation include adding dropout layers and random

frame skips during training and validation. These augmentations create input images with

slight variations. This improves the classification performance and generalisation of the model

by forcing the model to learn the differences between each frames instead of between each sets

of frames.

Table 5.4: Input Image Data Augmentation

Augmentation Min Value Max Value

Contrast 0.5 1.5

Gamma 0.5 1.5

Rotation -10.0◦ 10.0◦

Training Configuration As shown in Table 5.5, the results are evaluated using leave-one-

subject-out (LOSO) cross-validation. For full training process, we modify our LOSO to leave

two subject out instead of one subject. Our algorithm takes two subjects (named Subject

A and Subject B) out as validation and test sets while the remaining subjects are used as

training set. Each training loop is initiated by taking Subject A and B out of the total dataset.

Next, train on the remaining subjects and evaluate using Subject A. Save the best model with

the tracked metric and if the metric does not improved for 5 consecutive epochs (track using

variable “patience”), end the training process and test the saved model using Subject B. In our

experiment, the tracked metric is the validation loss of each epoch. This process is also repeated

in the same time using Subject B as validation set and Subject A as test set. The pseudo-code

for LOSO used in our experiment is shown in Algorithm 1.
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The main advantage of this method is the required training time is cut by half by leaving

out two subject (instead of one). In our experiment, SAMM-LV has 30 subjects, it requires 15

sets of training instead of 30 sets and CAS(ME)2 has 22 subjects, it requires 11 sets if training

instead of 22 sets.

Algorithm 1: LOSO cross-validation

Determine the number of subjects;

Determine num folds by dividing no. of subject with 2 (round up to the nearest integer);

for 1 : num folds do

Hold two subjects: named them as Subject A and Subject B;

Use the rest of the subjects as training set;

while While patience < 5 do

Train model;

Validate using Subject A and Subject B;

if val loss < lowest loss then

patience = 0;

else

patience = patience + 1;

end

end

Load best model validated by Subject A and test using Subject B;

Load best model validated by Subject B and test using Subject A;

Record all the performance metrics and compare with ground truth;

end

The distribution of training, validation and test set for each respective folds of LOSO are

shown in Figure 5.7. This shows that each fold contains different amount of training and

validation/test set. This implies that the video length of each subject is not the same. This is

due to SAMM-LV dataset is consisted of videos of spontaneous reaction of the participants.

Early stopping is used during training, ending when the loss does not improve for 5 consec-

utive epochs.
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Table 5.5: Training configuration. Stream 1 is designed to be more sensitive to ME, while
Stream 2 is more sensitive to MaE by using different range of frame skips based on the duration
differences of ME and MaE. The k-th frame is the average mid-point of facial expression interval.
Note: ⋆ used in training and validation, † used in testing

Dataset SAMM-LV CAS(ME)2

Batch Size 16

Learning Rate 0.007 0.005

Random frame skip⋆ (Stream 1 & 2) 25∼75 & 200∼400 3∼9 & 16∼50

k-th frame skip† (Stream 1 & 2) 37 & 217 6 & 19

Manual frame skip† (Stream 1 & 2) 30 & 310 10 & 33

Figure 5.7: LOSO Subject Distribution of SAMM-LV and CAS(ME)2. It shows that each fold
contains different amount of training and validation/test set.
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Table 5.6: Results (Raw Output) of macro- and micro-expression spotting of our method

MaE ME

F1-score AUC F1-score AUC

SAMM-LV 0.3872 0.6780 0.0720 0.5687

CAS(ME)2 0.1369 0.6925 0.0174 0.5762

5.4.5 Results

Our network predicts the presence of facial expression on a per frame basis. F1-score and

area under the curve (AUC) of receiver operating characteristic (ROC) of our raw output are

reported in Table 5.6. One selected fold for ROC curve is shown in Figure 5.8. We compare each

frame using normalised results filtered using a threshold based on the ROC curve. From the

F1-scores, our model performs better on SAMM-LV. However, CAS(ME)2 performs better for

the AUC. Across both dataset, the F1-score and AUC of the ROC curve of MaE is higher than

ME which indicates our network is better in distinguishing MaE from neutral frames than ME

counterpart. This is within expectation as MaE often has higher intensity and longer duration

which makes MaE easier to spot.

We apply the Intersection over Union (IoU) method used in Micro-Expression Grand Chal-

lenge (MEGC) 2020 [182], [200] to compare with other methods. The interval is then evaluated

using the following IoU method

Predicted ∩GT

Predicted ∪GT
≥ J (5.4)

where J is the minimum overlapping to be classified as true positive, GT represents the ground

truth expression interval (onset-offset), Predicted represents the detected expression interval.

In our experiment, J is set to 0.5.

As other methods use different post-processing steps, we decided to use two different eval-

uation methods. The first method is our Automated IoU Method and the second method is

Multi-Scale Filter used by Zhang et al. [100].

Automated IoU Method

We convert our results into intervals using automated thresholding based on ROC evaluation.

First, the test results are normalised and smoothed using a Butterworth filter [188], which is a
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Figure 5.8: ROC curve of one selected fold for ME and MaE spotting.
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Figure 5.9: Real long video testing data of a subject smoothed using Butterworth filter with
ground truth comparison

low-pass filter that cuts off high frequency noises while retaining low frequency signals, results

shown in Fig. 5.9. The main advantage of this filter is it has a flat magnitude filter whereby

signals with frequency below cut-off frequency do not undergo attenuation. Next, the onset

and offset of both ground truth and the predictions are obtained. Finally, the overlapping was

analysed using the IoU method (where TP must fulfill the criteria in Equation 3.13).

Our results show better spotting performance in SAMM-LV compared to CAS(ME)2. One

possibility is SAMM-LV has higher frame rate (200 fps) and the randomised frame skipping used

in our training pipeline has more variety of input data to be learnt compared to CAS(ME)2 (30

fps). Hence, our model is able to learn data with more variation in SAMM-LV and show better

performance. ME which occur in less than 0.5s, has a small window of detection. A lower ME

detection rate in CAS(ME)2 might also be a consequence of the lower frame rate.

Comparison with the state of the art

Zhang et al. [100] and He et al. [200] are conventional approaches. These methods use

post-processing steps to enhance ME spotting rate. Hence, it is not a fair comparison with
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Table 5.7: F1-score of ME and MaE spotting using our Automated IoU Method, where Ours*
represents our proposed method with k-th frame skip and Ours** represents our proposed
method with manual frame skip. Manual frame skip is performed by first taking k-th frame as
a reference, proceeded by increasing or decreasing the frame skips until the results improve.

Method
SAMM-LV CAS(ME)2

MaE ME Overall MaE ME Overall

Pan [107] - - 0.0813 - - 0.0595

Ours* 0.1504 0.0421 0.1017 0.0704 0.0075 0.0509

Ours** 0.1543 0.0442 0.1050 0.0874 0.0075 0.0630

our method. Instead, we use Zhang et al.’s post-processing steps (also named Multi-Scale

Filter [100]) and the results are shown in Table 5.8. This method uses Savitzky-Golay filter

for noise removal and signal merging as described in Zhang et al.’s paper. We obtained a

notable improvement in ME and MaE spotting, particularly in CAS(ME)2. By implementing

these post-processing steps, our method outperforms in SAMM-LV and CAS(ME)2 in MaE

spotting and overall performance. Although we obtained better results using this evaluation,

we noticed that this method requires selection of hyperparameters (e.g., window size and order

of Savitzky-Golay filter, the upper limit of interval distance to merge etc).

For the purpose of comparison with benchmark algorithms, we implemented this method.

However, we will not recommend these post-processing steps as each hyperparameter can be

customised to improve the results, which might result in overfitting. As stated in Zhang et al.’s

paper: “the results are terrible” before the post-processing steps. In contrast, our proposed

method is already competitive before these post-processing steps, as shown in Table 5.7. Overall,

our method performed the best on SAMM-LV without post-processing steps, with an F1-score

of 0.105. With post-processing steps, our method achieved the best F1-Score of 0.1675 on

CAS(ME)2. It is noted that our method achieved the best result in MaE spotting on both

datasets.

Visualisation using Grad-CAM

We visualise the activation of our network using Gradient-weighted Class Activation Map-

ping (Grad-CAM) [189]. This provides interpretable visualisation on the face region that the

network is focusing on when spotting ME/MaE. We select the deepest interpretable layer, which

is the last dense layer, and visualise its activation on SAMM-LV participants.
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Table 5.8: F1-score of ME and MaE spotting using Multi-Scale Filter (manual post-processing
steps used by Zhang et al. [100]), where Ours* represents our proposed method with k-th frame
skip and Ours** represents our proposed method with manual frame skip. This post-processing
steps involves signal smoothing using Savitzky-Golay filter and signal merging when intervals
are close to each other.

Method
SAMM-LV CAS(ME)2

MaE ME Overall MaE ME Overall

He [200] 0.0629 0.0364 0.0445 0.1196 0.0082 0.0376

Zhang [100] 0.0725 0.1331 0.0999 0.2131 0.0547 0.1403

Ours* 0.1569 0.0512 0.1083 0.1880 0.0583 0.1449

Ours** 0.1595 0.0466 0.1084 0.2145 0.0714 0.1675

In Figure 5.10, we observe that the heatmaps closely resemble the Facial Action Units (AUs)

of facial expression. The reliable AUs of happiness are associated with AU6 (Cheek Raiser) and

AU12 (Lip Corner Puller). Figure 5.10 (a) illustrates the heatmap of happiness, where it shows

high activation around eye corner (AU6) and the mouth region is directed to the upper part

of the face (AU12). On the other hand, the reliable AUs of sadness are AU4 (Brow Lowerer)

and AU15 (Lip Corner Depressor). In Figure 5.10 (b), the heatmap shows activation on both

the brows and the eyes region that indicates AU4, and the mouth region forms a huge inverted

curve extending until the bottom of the face which resembles AU15.

Ablation Studies

Table 5.9 shows the ablation studies conducted using our Automated IoU Method. With

manual frame skip, our proposed method achieves the best result. Our proposed approach (with

k-th frame skip) is not far behind, which shows that it is a viable method. We conduct our

experiment without LCN using architecture with different depth, i.e., 3, 6, 10 and 20 layers.

Even with a deeper network, without LCN, it performs worse than our proposed model, which

indicates that LCN is a crucial component of our approach. We also replace the GAP layer

with Global Max Pooling. Although both average and max pooling, average pooling identifies

all discriminative regions more completely [190]. As ME is a subtle facial movement, detailed

oriented average pooling is more suitable. This is further concluded in the performance of

Global Max Pooling compared with our proposed network that uses GAP. Our proposed model

performs worse without batch normalisation. We showed that each component of our network

are essential and has a positive contribution to the overall performance.
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Figure 5.10: Grad-CAM visualisation on SAMM-LV participants. In (a), AU6 (Cheek Raiser)
and AU12 (Lip Corner Puller) is detected; In (b), AU4 (Brow Lowerer) and AU15 (Lip Corner
Depressor) is detected. AU12 and AU15 are distinctly distinguished: in (a), the mouth region
heatmap is directed towards the upper part of the face; in (b), the heatmap at the mouth region
forms a huge inverted curve extending towards the bottom of the face.

We conducted ablation studies on the weighted loss function (as described in Section 5.4.3).

The weighted loss function is used to address the training dataset imbalance. The results are

shown in Table 5.10. We only apply weighted loss in the model trained on SAMM-LV as it

shows no significant improvement in the model trained on CAS(ME)2. We weight ME more

with respect to MaE by setting MME to 0.9 and MMaE to 0.1; and W is used to impose a

harsher penalty when the network predicts ME/MaE as neutral wrongly. We can see that

without weighted loss, the network performs worse. We also demonstrate fine-tuning of W and

the setting of W as 3 achieves the best performance.

5.4.6 Discussion

Model comparisonOur model is the state-of-the-art in SAMM-LV and competitive in CAS(ME)2.

Conventionally, optical flow methods have good performance but require extensive preprocess-

ing and post-processing steps, which are computationally expensive. He et al. [200] and Zhang

et al. [100] use image segmentation or ROI selection, followed by optical flow extraction and

spatio-temporal fusion of each ROI. On the contrary, our method is an end-to-end solution with

3 layers of CNN.
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Table 5.9: Ablation studies on our Automated IoU Method: F1-scores reported. Manual frame
skip fine-tuning can produce slightly better results. With LCN removed, our network perfor-
mance dropped. Even with a deeper network (i.e., 20 convolution layers), it still under performs
when compared to our proposed 3-layers deep network. The model performance dropped with-
out batch normalisation and when GAP is replaced with Global Max Pooling.

SAMM-LV CAS(ME)2

MaE ME Overall MaE ME Overall

Without LCN

- 3 Conv Layers 0.0297 0.0066 0.0198 0.0000 0.0000 0.0000

- 6 Conv Layers 0.1079 0.0275 0.0750 0.0041 0.0000 0.0030

- 10 Conv Layers 0.0825 0.0500 0.0518 0.0098 0.0000 0.0073

- 20 Conv Layers 0.0943 0.0160 0.0646 0.0000 0.0000 0.0000

Replace GAP with GlobalMaxPool 0.1311 0.0149 0.0795 0.0173 0.0098 0.0153

Without BatchNorm 0.1456 0.0252 0.0934 0.0510 0.0059 0.0359

Proposed 0.1504 0.0421 0.1017 0.0704 0.0075 0.0509

Manual Frame Skip 0.1543 0.0442 0.1050 0.0874 0.0075 0.0630

Table 5.10: Ablation studies on different weighting coefficients trained on SAMM-LV. For
SAMM-LV, weighted loss function improves the detection rate. We did not report on CAS(ME)2

dataset as we found that the weighted loss function has minimal effect on model performance.

W MME MMaE MaE ME Overall

Proposed 3 0.9 0.1 0.1504 0.0421 0.1017

W/o Weighted Loss 1 1.0 1.0 0.1480 0.0238 0.0910

W/o Weighted M 3 1.0 1.0 0.1404 0.0099 0.0594

W/o Weighted W 1 0.9 0.1 0.1413 0.0268 0.0900

Vary coefficient W 6 0.9 0.1 0.1443 0.0213 0.0888

Vary coefficient W 10 0.9 0.1 0.1302 0.0240 0.0825

Vary coefficient W 0.5 0.9 0.1 0.1339 0.0262 0.0696
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Zhang et al. [100] is the only method that did poorly in spotting MaE compared to other

categories in SAMM-LV. Commonly, MaE (regular facial expressions) is easier to detect when

compared to ME. As SAMM-LV is a dataset with high frame-rate of 200 fps, Zhang et al.’s

optical flow on consecutive frames approach is unable to capture the long range dependency of

MaE, which explains their relative poor results on MaE of SAMM-LV. Zhang et al. [100] is

also the only method that shows better performance in CAS(ME)2 than SAMM-LV. This may

imply that Zhang et al. is heavily biased towards CAS(ME)2. Another possible reason is the

post-processing method may be more suitable in CAS(ME)2. Our method using Zhang et al.’s

post-processing has also shown notable improvement in CAS(ME)2. The merging process in

Zhang et al’s post-processing is questionable and can be a potential source of overfitting. For

example, 3 false positives can be merged into 1 true positive, which greatly improves the results

(as shown in [100]). Moreover, this method cannot improve with additional data, whereas ours

is expected to improve [209]. We provide an important contribution, justifying collection of

further data.

To date, Pan et al. [107] is the only deep learning approach for spotting MaE and ME in

long videos, evaluated using IoU method of MEGC2020 [182]. Comparing with this method, our

model with manual frame skipping has better performance in both datasets. We also produce

a complete report on all three spotting categories. Our method is able to spot ME, MaE and

co-occurrence of both types of facial expression, which are the features absent in [107].

k-th frame skip We investigate the effectiveness of k-th frame used by manually vary

the frame skips. By varying the frame skips by taking k-th frame as initial reference, the

results show only slight improvement. This indicates that k-th frame method remains a good

measurement for frame skip.

Automated vs manual method Both our Automated IoU Method (automated method)

and Multi-Scale Filter (manual method) show similar performance on model trained on SAMM-

LV. This shows that our Automated IoU evaluation works well on SAMM-LV with only a min-

imal performance increment via manual method. However, it is not the case for model trained

on CAS(ME)2. The disparity of the performance on CAS(ME)2 in both methods might be

a result of different noise removal method used (Butterworth filter and Savitzky-Golay filter).

The automated Butterworth filter is not adaptive enough in handling different noises, whereas
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using Savitzky-Golay, we can decide a suitable window size and order of filter for each respec-

tive noise. Despite higher performance detected in Savitzky-Golay, in real-world applications,

automation is preferred as it is not realistic to fine-tune hyperparameters when we make predic-

tion. With further refinement, our proposed Automated IoU Method has potential for real-world

applications.

5.5 Trained composite data using SAMM-LV and SAMM-SYNTH

Table 5.11: F1-score of ME and MaE spotting using our Automated IoU Method with k-th
frame skip. All results are based on LOSO cross-validation.

Method
Results

MaE ME Overall

Pan [107] - - 0.0813

Ours (results from Chapter 5) 0.1504 0.0421 0.1017

Train with SAMM-LV & SAMM-SYNTH, evaluate with SAMM-LV 0.1373 0.0513 0.1036

Train with SAMM-LV & SAMM-SYNTH, evaluate with SAMM-SYNTH 0.1465 0.0221 0.0955

To evaluate the effect of addition of generated data in the training set, we re-train our model

using composite dataset consisted of SAMM-LV and SAMM-SYNTH. The synthetic data acts

as an advanced image augmentation which doubles the data pool. The results show that with

additional data, ME spotting performance improved. There is quantitative evidence [210] that

training artificial neural network with more data will improve the performance of model. With

more diverse data, the model is presented with more feature to learn and this can improve the

model performance on unseen data.

Additional data theoretically increases input variety of the model. For our case, it improves

ME and overall spotting performance but shows a drop in MaE spotting performance. A

possible reason for the drop in MaE spotting performance is the generation artifacts. As the

frame skip of the MaE stream is larger, the frame difference when artifacts formed is more

distinct compare to lower frame skip (of the stream that uses k-th frame of ME). The results of

evaluation with SAMM-SYNTH shows a drop in performance across both ME and MaE. Style

transfer is a type of image augmentation and evaluating on augmented data that contains some

innate randomness lowers the evaluation results.
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5.6 Baseline Result for MEGC2022

In MEGC2022, the evaluation method is the same with previous MEGC which is interval

based using IoU overlapping (further details in Section 3.5.3). The main difference between

this challenge compared to previous challenges is the evaluation is standardise by using Grand

Challenge website (url: https://grand-challenge.org) which makes the evaluation fairer to

all participants.

The test set is consisted of SAMM Challenge Dataset and CAS(ME)3 [211] evaluated sepa-

rately. SAMM Challenge (200 fps) is consisted of 5 videos chosen from unused video of SAMM

dataset. 5 videos of CAS(ME)3 (30 fps) are selected for the challenge. Although CAS(ME)3

is dataset that has an additional depth information, only the frontal view was used in this

challenge. All videos are consisted of front-facing spontaneous reaction of participants viewing

emotion eliciting videos. Similar to the other pre-existing dataset, the ground truth are AUs

labelled by human coders.

For evaluation on SAMM Challenge, we train our network using SAMM-LV; for CAS(ME)3,

the network was trained on CAS(ME)2. We achieved an overall F1-score of 0.1351, with 0.1176

and 0.1739 on SAMM Challenge Dataset and CAS(ME)3, respectively. It is noted that on

unseen dataset, our method performed better in detecting ME of CAS(ME)3. Table 5.12 shows

the baseline result to facilitate MEGC2022 Spotting Task.

Table 5.12: F1-score of ME and MaE spotting on unseen test set of MEGC2022 that uses
SAMM Challenge and CAS(ME)3

Method
SAMM Challenge CAS(ME)3

Overall
MaE ME Overall MaE ME Overall

Ours 0.1739 0.0714 0.1176 0.1622 0.2222 0.1739 0.1351

5.7 Summary

We presented a temporal oriented two-stream 3D-CNN model that shows promising results

in ME and MaE spotting in long video sequences. Our method took advantage of the du-

ration difference of ME and MaE by making a two-stream network that is sensitive to each

expression type. Despite only having 3 convolutional layers, our model showed state-of-the-art

performance in SAMM-LV and remained competitive in CAS(ME)2. LCN has proven to have
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significant improvement in our model and the ability to address uneven illumination, which is

a major weakness of optical flow. LCN is also crucial for model performance in both movement

spotting and ME/MaE spotting. We demonstrated our 3-layer network with LCN outperforms

deep network with 20 convolutional layers. Further improvements include embedding facial

landmark detection into the algorithm and simplifying the spotting algorithm to allocate more

computational resources for real-time ME analysis. By adding data generated from Section 4.3

to the training set, the ME spotting performance shows improvement. We also attempted a

fully end-to-end pipeline on composite dataset for our current architecture. However, it failed

to detect ME and with low MaE detection rate which is discussed in the Appendix B.

111



Chapter 6

Generative Methods

6.1 Introduction

Generative models (e.g. GAN [172] and VAE [212]) in general generate synthetic data using

input sampled from a random distribution. With a randomised input, theoretically these models

are able to generate an infinite amount of new data with minimal supervision which makes them

a powerful tool for data creation.

Due to the subtlety and rarity of the occurrence of ME, realistic ME generation remains

unsolved. ME generation is still in an early stage at the time of writing. In current research

stage, majority of the approaches either transfer movements onto the another face or uses guided

variables to manually alter facial movements using existing models [110], [117] as an alternative

of generating more data. Xie et al. [125] is the only novel ME generation method based on

facial AU transfer between existing datasets (CASME II [36] and SAMM [37]).

The main goal of this chapter is to address data deficiency in current research field. To

achieve this aim, we applied computational solutions to generate more spontaneous data based

on existing data. Our solution is a recursive MaE sequence generation model that uses two

frames for initialisation. We also show that the MaE generation model can be applied in ME

generation task by selecting the training dataset sampled around the apex frame.
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6.2 Facial Expression Generation using only Latent Represen-

tation

Video sequence generation and anticipation is one of the crucial components for estimating

likelihood of future events. Potential applications include self-driving cars [213], [214], human

fall prediction and data augmentation for sequence-based datasets. Although the models are

made available to the public and could be utilised by the public, the networks are usually huge

and requires powerful and the state-of-the-art like GPU machine or supercomputers to run

them.

In facial expressions generation, most of the existing works focuses on single image generation

[181], [215], [216]. Inspired by Pumarola et al. [110], researchers begun to generate facial

expression sequences by using a linear variable to control a certain part of the face [112], [115].

However, as proven by our empirical experiments, facial expression movements are non-linear,

where using a linear variable could not produce realistic expressions. Using a linear variable is

an over-simplification on how facial movement works in real life. Linearity does not account for

realism of the generated facial expression.

We propose a neural network-based method which uses Gaussian noise to model spontaneity

in the generation process, removing the need for manual control of conditional generation vari-

ables. This model takes two sequential images as input, with additive noise, and produces the

next image in the sequence. The output then replaces one of the input images (t-1), and this is

done recursively to generate a full sequence with spontaneous expressions. The training process

is not supervised by any facial feature extraction. Despite the lack of external input guidance,

we show that realistic facial expression sequences can be generated end-to-end without facial

alignment or facial landmarks detection. The model is trained using a non-guided approach

without the use of labels. This way of training mitigates AU labelling errors that is dependent

on other methods. Bypassing the need for ground truth labels can prevent the network from

registering errors of other models.

When we train our network with single expressions, our model is capable of generating

unique facial expression sequences. When our proposed network is trained with mixed facial

expressions, our model is able to generate fully spontaneous expression sequences. We compared
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our method to current leading generation methods on a variety of publicly available datasets.

Initial qualitative results show our method produces visually more realistic expressions and

facial action unit (AU) trajectories. Initial quantitative results using image quality metrics

(SSIM and NIQE) show the quality of our generated images is higher.

6.2.1 Naive Model

To investigate the ability to generate image sequences via recursive generation, a simplified

network is built as the backbone architecture. This simplified network is trained using MNIST

dataset which consisted of simple features. This model generates the next digit sequence (loop

sequence of 0 to 9) based on the current observation without any recurrent mechanism. For

this naive approach, the next digit sequence is generated using only single latent representation.

The network architecture is shown in Figure 6.1. The recursive generation method (Figure 6.3)

enables our model to capture temporal information by imposing a reconstruction loss (mean

squared error) onto the next generated frame. 3 frames (2 initial frames and 1 targeted frame)

is used for training. The shape of each digit is distinct and hence a simple 3 frames training is

sufficient.

The possible reasons that one latent representation is sufficient for the model to generalise

are:

1. MNIST digits consist of simple features which have low complexity which can be easily

encoded and decoded.

2. MNIST digits are distinctly different from each other which lowers the difficulty for the

model to pick up the key latent features of each digit.

This model only works on dataset with simple features. The generated images are slightly

blurry which is a common limitation of autoencoder-based network as there is information loss

during the downsampling of the encoder. It provides a backbone architecture for more complex

data like facial expression sequences in the following section.
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Figure 6.1: Naive approach for MNIST sequence generation. Uses one encoder to extract latent
representations of frame 1 and frame 2; one decoder to generate the next frame based on the
latent representations. The entire sequence is generated recursively based on the previously
generated frames.
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6.2.2 Main Method

There are abundance of huge models that use extensive computing power for video based gen-

eration [217], [218]. These models are impractical and impossible to be implemented by regular

users due to the computing costs.

Our model is a sequential based autoencoder, which leverage the latent representation ex-

tracted by the encoder to generate subsequent image sequence. Our method was inspired by

Taylor et al. [219] which is a conditional Restricted Boltzmann Machine where the generation

of the next sequence is done by an undirected model with binary latent variables connected to

visible variables.

The network architecture is shown in Figure 6.2. We obtain the latent representations for

every downsampling convolution layers (encoder layers) and fed them into the upsampling layers

(decoder layers), inspired by U-Net [220]. Typically, autoencoder based generation produces

blurry images. To overcome this issue, we extract each levels of latent representation as the

encoder down-samples the images. These latent representations are then fed to the decoder,

which results in detailed images generation. The latent representations contain high and low

level information can help in generating images with higher complexity. We found that this

step is required in facial expression generation as it is a high complexity task.

Temporal information is captured using our recursive way of training network where the

output frame was fed into our network (as the next “Input 2”) for the subsequent generation.

By comparing more than one frame, the model is able to figure out the temporal correlation

between the sequence by looking a few steps further into the future.

The loss function used in this model are as follows:

P1 = D(E(Fc), E(F1 +N1), E(F2 +N2))

P2 = D(E(Fc), E(F2 +N2), E(P1 +N1))

Pn>2 = D(E(Fc), E(Pn−2 +Nn−2), E(Pn−1 +Nn−1))

loss =
1

n

i=n∑
i=1

(Pi − Fi+2)
2
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Figure 6.2: Our network architecture that takes three input frames (Fc, Ft−1, Ft) and predicts
the next frame using auto-regression. Auto-regression of this model is performed by training
our network recursively (refer to Figure 6.3). The top part is the encoder while the bottom part
is the decoder. The latent representation, L , extracted by each downsampling are fed into the
decoder layers. Gaussian noise is used in the shallow layers.

where F is frame originated from dataset, N is random Gaussian noise, P is generated frame,

n is the number of subsequent frame used (for training only, our experiment uses n=3), i is

the recursive loop number. During training, we initialise using F1, and F2, sampled from any

part of the video (with at least 3 subsequent frames) for training. Fc is a constant neutral face

that remains the same throughout the generation process. The generated frame then replaces

current frame and current frame becomes previous frame as shown in Figure 6.3. Gaussian noise

added in each loop primarily increases the variability of the generated frame. Each generation

loop is a Markov chain. Even though the recursive loop do not contain any memory, Markov

property enables model convergence for sequential generation. Equation below shows that

the convergence of sequence is possible with sufficient repetition. Each recursive generation

is a Markov chain. With the addition of noise, the model is still able to converge as Markov

property converges the generation to a certain value.

M(xn+1|x1, x2, ..., xn) = M(xn+1|xn) (6.1)

where M is a function with Markov property, x is the input and n is the number of repetition.
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Assuming x is probability of data point, θ is model parameter and f is a certain function.

The probability of X is defined as p(x, θ) as below:

p(x, θ) =
1

Z(θ)
f(x, θ) (6.2)

The partition function of f(x, θ), Z is defined as:

Z(θ) =

∫
f(x, θ)dx (6.3)

The model parameters can be learned by minimising the negative log-likelihood of proba-

bility, p(x, θ). This negative log-likelihood is also known as the energy function, E(x, θ).

E(x, θ) = −log (
1

Z(θ)
f(x, θ)) = log Z(θ)− 1

K

K∑
i=1

log f(xi, θ) (6.4)

The derivative of contrastive divergence [151] (adapted from Woodford [221]) contains only

the information of current and one of any previous state. In our implementation, we use one

previous step. This is the main advantage of this method whereby energy function of the

sequence can be minimised using only current and one previous state.

∂E(x, θ)

∂θ
= ⟨∂log(f(x, θ))

∂θ
⟩x0 − ⟨∂log(f(x, θ))

∂θ
⟩x1 (6.5)

Hence, by calculating the derivative of contrastive divergence, the model parameters can be

learn as in the following equation where t is the time step.

θt+1 = θt + η(⟨∂log(f(x, θ))
∂θ

⟩x0 − ⟨∂log(f(x, θ))
∂θ

⟩x1) (6.6)

where η is the learning rate. The model parameter can be found using only one step previous

and current step of observation until the derivative of contrastive divergence is converged (equal

to zero). Theoretically, the model will converge after n cycles without the need of any previous

memory or recurrent mechanism. We incorporated Gaussian noise on the weights of the shallow

layers of our model. The addition of noise addresses overfitting and adds variability to our output
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data.

Figure 6.3: Recursive generation loop. This loop feeds the output as input for the next iteration.
This arrangement allows the generation of the next sequence by replacing the output frame as
current frame and current frame as previous frame in the next iteration.

Datasets

We use MUG dataset [41] as our training set. The image sequences in this dataset are

consisted of front facing faces. There are six basic expressions (anger, disgust, fear, happiness,

sadness and surprise). Neutral face sequences of each subjects were also captured. The frame

rate of this dataset is 19 fps. The image resolution is 896×896 pixels. For model training and

evaluation, we only uses the six basic expression.

We conduct facial expression generation experiments on MMI [42] and FFHQ [40] datasets.

MMI dataset consists of posed facial expression sequences. FFHQ is static face images. We use

FFHQ to test our model’s ability in generating expression from static images.

Evaluation Metrics

We evaluate the results of the generated facial expressions sequences on realism analysis by

using AU comparison and image quality assessment metrics.

AU comparison involves comparison between the AU extracted by OpenFace for real and

generated sequences. Facial action unit (AU) [26] is an organised system to describe human facial

movements. We compare normalised AU intensity of actual and generated facial expression

across a certain time period to check the realism of generated expression.
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Figure 6.4: Single expression sequence generation frame-by-frame across 6 emotion classes
(anger, disgust, fear, happiness, sadness, surprise). Our network is able to generate targeted
emotion class based on the training data. The identity of the subject remained the same
throughout the generation iterations. Note: First and second images are the input frames from
MUG dataset, all the subsequent frames are generated.

Image quality assessment is performed and compared across all generation methods. Image

quality assessment are used to determine whether the quality of the images is similar between

two images. SSIM for full reference-based analysis and NIQE for no-reference based analysis are

used. Full reference analysis provides a full pixel-by-pixel or region-by-region comparison of the

similarity of two images; while no-reference analysis assess the image quality as a whole without

the need of reference image. This gives a better overview of the quality of the generation which

contains both reference and no-reference analysis.

For machine learning based method, no-reference image quality assessment is more suitable

as this metric can distinguish distorted images from pristine images [222]. No-reference as-

sessment is also not bound by pixel- or region-based differences. Ideally, the generated images

should be realistic and novel, no-reference assessment measure the natural scene statistics (NSS)

of natural images and compare with the generated image without the use of fixed localised ref-

erence. It is assumed that NSS of natural images has statistical regularity and comparing the

NSS between images can measure the realism of images.
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6.2.3 Experiments and Results

Training The network architecture is shown in Figure 6.2. We use 5 consecutive frames (2

initial frames for initialisation and 3 subsequent frames to capture spatiotemporal information).

One constant neutral frame is fed to the network in every iteration for identity preservation.

Mean square error (MSE) is also computed for each subsequent frame and generated frame.

Training using 3 subsequent frames is essential as the network compares the generated data in

3 consecutive sequences which captures the temporal information.

All our network are trained without any labels. Instead, we feed in single category of facial

expression (for Single Expression Sequence Generation) and all six basic expression classes (for

Spontaneous Multi-Expression Sequence Generation).

Computational Cost

Our model is trained on NVIDIA RTX 3090. The training time for single expression is about

2 days. For mixed expression, it takes around 5 days. The size of this model is less than 100 MB

(encoder is approximately 10 MB while decoder is around 80MB). The computational cost of

the model is calculated using floating point operations (FLOPs). Our model has a complexity

of 18.01 GFLOPs. Our model complexity are close to image based model which sits between

Inceptionv3 [191] (11 GFLOPs) and ResNet [159] (21 GFLOPs). As a comparison, a video

based model, Vision Video Transformer (ViViT) [223], has a complexity of over 4000 GFLOPs.

Results

Single Expression Sequence Generation Our model is able to generate realistic sequence

(as shown in Figure 6.4) from a static frame and complete the expression sequence that involves

onset, apex and offset phases (as shown in Figure 6.5). The identity of the participant is

preserved throughout the generation. Our model is also able to generate across dataset with

faces of different gender and ethnicity as shown in Figure 6.6. Each generated sequence are

temporally correlated and when the expression reaches its apex, it is able to return back to the

offset phase (neutral).

Spontaneous Multi-Expression Sequence Generation This network is trained with all six

basic expression classes. In Figure 6.7, our model is able to generate multiple emotion classes

of facial expression with two initial frames (“Fear” class). This shows the ability of our model
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Figure 6.5: Single expression sequence generation of different emotional phase (onset, apex,
offset) across 6 emotion classes (anger, disgust, fear happiness, sadness, surprise). Our method
is capable of completing the entire sequence of facial expressions. Note: First image (onset
frame) is the input frames from MUG dataset.
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Figure 6.6: Comparison of single expression generation across datasets. Our method is able
to generate facial expression across datasets (MUG, MMI and FFHQ dataset) with subjects of
different gender and ethnicities. Due to FFHQ is an image dataset, all input frames are from a
single neutral face. This demonstrates the ability of our model in generating facial expression
sequences on unseen neutral faces.

to generate realistic sequence across different expression. This demonstrates that our network

understanding on the realism of facial expression based on the training data.

Comparison with Other Methods

AU ComparisonWe compare the AU extracted by OpenFace for real and generated sequences.

In Figure 6.8, the results show our method resembles real facial expression when compared to

GANimation. The AU extracted to train this method is based on OpenFace. However, facial

Figure 6.7: Spontaneous multi-expression sequence generation. Initialised using only 2 frames
(fear expression). This version is trained using all six expressions. The generated sequences
consisted of fear, followed by slight mouth movement (left side) and a broad grin.
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expression is often non-linear. Hence, it lacks spontaneity, which is a common issue in guided

facial expression generation. Our approach bypasses the need of labels and the use of linear

variable. The results are more realistic as the network learns directly from the raw data and

potential biases from another model (for AU extraction) can be avoided.

Figure 6.8: AUs comparison of real and generated sequences measured using OpenFace. Our
method closely resembles AU of real facial expression with non-linear onsets and offsets. How-
ever, GANimation, a linear interpolation based facial expression generation method, shows
constant AU intensity increment or decrement. GANimation generates expression on a per
image basis and is fully guided by intensity input which differs from real sequence as shown.
Note: AU6 and AU12 are from “Happiness” while AU9 and AU10 are from “Disgust”.

Image Quality Assessment The results are shown in Figure 6.9. Our method outperforms all

other facial expression generation methods in Natural Image Quality Evaluator (NIQE) while

exhibit similar performance in Structural-similarity index (SSIM) with GANimation. These

image quality are performed over full video sequences. For reference-based assessment (i.e.

SSIM), our model and GANimation has similar average performance. For no-reference based

assessment (i.e. NIQE), our model performs the best. This shows the sequences generated by

our model has the highest image quality which is spontaneous and novel to the input frame (as

this metric is not based on reference position).
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Figure 6.9: Image Quality Assessment using MUG, FFHQ andMMI as input. (Top) Comparison
of SSIM, the higher the better. Our model has similar average performance across 3 datasets
with GANimation. (Bottom) Comparison of NIQE, the lower the better. Our model has the
best average performance across 3 datasets.
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Comparison of Six Basic Emotion We compare the appearance of the apex of the facial

expression with ExprGAN and GANimation. Both of these method requires facial alignment

and face crop that may remove certain facial part (especially the chin). They also uses linear

variable to augment the facial expression intensity. Although ExprGAN claims their model is

able to preserve the identity of the input face, but based on the model uploaded by the author,

the results is contradictory. Whilst GANimation is able to preserve the identify, it generates

“Surprise” as “Anger”. We show that we are able to generate facial expressions without the

need of facial alignment or face crop. Our generated results are also novel as our approach

allows the network to decide the facial expression that represent each emotion which is a stark

contrast to the common approach that tune a linear variable to generate facial movements.

Figure 6.10: Comparison of single facial expression generation on MUG dataset. Six basic
emotion are tested. ExprGAN completely changes the identity of the participants. Note that
GANimation failed to generate “Surprise” class. ExprGAN and GANimation require facial
alignment and uses a linear variable to tune the facial expression intensity. Our method is able
to generate realistic expression based on each emotion class without any labels or guidance.

6.2.4 Ablation Studies

Removing the constant frame The effect of generation without using a constant frame can

be seen in Figure 6.11. The identity of the face changes slightly. The facial expression quality

also reduces drastically as the generation goes on. This shows the constant frame is essential

for retaining the complex facial features.

Changing input order We investigate the effect of input frames sequence by swapping the

order of frame 1 and frame 2. From Figure 6.12, we observe that the output results are not the
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same. Hence, we conclude that input sequence in our model matters. Our model has no issue

with completing and regenerating more facial expression sequence in both cases.

Figure 6.11: Ablation study: remove constant neutral frame. By removing the constant frame,
the face identity changes and image become unrecognisable in latter stages of generation.

Figure 6.12: Ablation study: Changing input order. The effect of input order compared by
swapping input 1 and input 2. The input order of the model matters as the generations are
different.

6.2.5 Conclusion

We presented a novel latent representation method for facial expression sequences (of different

emotion class) generation. Our proposed method is better than the existing methods as it is

end-to-end, i.e., eliminate the need of pre-processing stage. Once the model is trained, it does

not rely on labels or guidance from other facial sequences during generation. Our model is able

to generate and complete the entire sequence of facial expression with only two input frames

and a neutral frame. We demonstrated that it works even if we use a single neutral frame as

the inputs. We also proved our generated sequence resembles the real facial expression using

AUs comparison. Our model works with multiple faces across different gender and ethnicity.

Our model is also computationally inexpensive when compared to video-based approach.

6.3 ME Generation

In this section, we discussed our spontaneous ME generation process using the same network

architecture in Section 6.2. Instead of using MaE with distinct differences between each frame,

we attempted to generate ME with very subtle frame differences. We tried two different training

procedures in organising the input training set.
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In the first attempt, we generate ME by applying the same architecture trained on long

video datasets containing ME (SAMM-LV and CAS(ME)2). We did not perform any input data

selection and trained our network by looping through all the available video sequences. Based

on the move-to-neutral ratio in Section 4.2.1 of the analysis of these datasets, the majority of

the video sequences consist of neutral frames that contain no meaningful facial movements. As

most of the training sets are static frames, this network (trained with self-supervised learning)

tends to generate static frames as a result.

In the second attempt, we train our network by selecting training data from a short video

ME dataset, CASME II. This is done by sampling the training data around the apex frame.

This ensures that the sequences around the apex frame which contain most of the information

of ME are included in every training step. This sampling is done by selecting between -5 to

+5 frames around the apex frame and followed with choosing the training frame sequence with

±8 frames around the selected frame to form a set of 5 image sequences. The position of the

selected frame (sampled around the apex frame) and the other randomly selected frames are

fully random. The selection range of the input frames is chosen arbitrarily. The main idea is

to select training frames around the apex frames that carries the most information on the ME

related movements. The selection process is visualised in Figure 6.13. This ensures the model

is trained with the whole sequence of the expression which in theory will enable the network to

generate the entire sequence.

6.3.1 Results and Discussion

The results are shown in Figure 6.14. The model is able to produce spontaneous ME sequences

without any labels. The subtleness of generated ME is compared with generated MaE (from

“Surprise” facial expression from Figure 6.4) in Figures 6.15 and 6.16. The onset and apex

frame of each facial expression respectively are computed for both analyses. The optical flow

value is obtained by taking the third channel of the HSV colour map of the optical flow. Optical

flow value describes the magnitude of the optical flow and in our application, it indicates the

intensity of the facial movement. Absolute frame difference is the absolute value of pixel-by-

pixel subtraction between two images. This analysis shows the difference between two images

on a per-pixel basis. Standardisation and smoothing were used in our attempt to provide a more

explainable visualisation of the output of this process. The standardisation involves subtracting
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Figure 6.13: Frame selection around the apex frame for the training set for ME generation.
Step 1: selects a random frame with a range of ± 5 frames around the apex frame (in red).
Step 2: selects 5 random frames within the range of ± 8 frames around the selected frame (must
include the selected frames). Step 3: 5 frame sequences with randomised frame skip are fed
into the network. This training set selection method ensures every part of ME sequences is fed
to the network.

the mean and dividing by the standard deviation of the pixel intensity over the entire image.

Comparing the optical flow value and absolute frame difference of both expressions, it demon-

strates the subtleness of generated ME with respect to generated MaE. The absolute frame

differences can only be general guidance, as the output in the generative model might not be

identical due to the spontaneity of the model. The majority part of the absolute difference

especially the background is black in colour which indicates there are no differences between

frames and hence no movements. The subtleness of the generated ME is challenging to be

detected even by experienced FACS coders.

We also provide a few other examples of ME generated on different parts of the face in Figure

6.17. This shows our model is capable of generating different ME sequences. Each movement is

distinct from one another too. We demonstrated the facial movements using optical flow as the

movements are visually similar to one another due to the subtleness of movement generated.

The hotspots near the edge of the upper part of the image are due to the headphones worn by

the participants of CASME II.

Besides performing ME generation on CASME II dataset, we attempted on another im-

age dataset. A few static faces from AffectNet dataset also show great results over different

movements being generated which were shown in Figure 6.18. Optical flow and absolute frame
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Figure 6.14: Spontaneous generation of ME generation train and validated on CASME II
dataset. The onset, apex and offset frames containing ME are selected. Optical flow value
computed between the frame sequence shows subtle movements in the form of a heat map high-
lighting the right eye of the subject.

Figure 6.15: Optical Flow Value comparison between ME and MaE generated. Generated MaE
is from “Surprise” facial expression from Figure 6.4. The onset and apex frame of each respective
expression is used to compute the optical flow. The “Value” is the magnitude of the optical
flow vector which describes the intensity of the movement. These images are normalised using
min-max scaling of both optical flow values. Both selected facial expressions involve movements
around the right eye.
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Figure 6.16: Standardised Absolute Frame difference comparison between onset and apex frame
for both ME and MaE generated. Generated MaE is from “Surprise” facial expression from
Figure 6.4. The onset and apex frame of each respective expression is used to compute the frame
difference. These images are standardised (subtract mean and divide by standard deviation)
and smoothed using Gaussian blur with a kernel size of 5. Both selected facial expressions
involve movements around the right eye.

Figure 6.17: Optical Flow Value of ME generated. (Leftmost image) is the original input image.
(2nd image) involves movement of the right dimpler. (3rd image) involves movement on the right
cheek. (Rightmost image) involves right brow movements and left dimpler. Note: The hotspots
on both sides of the top of the image are caused by the uneven brightness of the headphone
worn by participants of CASME II dataset.
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difference are visualised. Our approach also shows great generalisation across input faces of

individuals of diverse ethnicity and gender. These motion analyses demonstrate that our model

is capable of generating different MEs with very subtle intensity similar to the evaluation of

CASME II subject. The hotspots in the optical flow value analysis is fewer compared to CASME

II as the selected individual of AffectNet is not wearing any facial accessories (i.e. headphone).

This method is able to generate ME with subtle intensity. There is still room for im-

provement in the realism of this approach. The lack of datasets that contain ME is the main

bottleneck for this approach. The subtleness of ME also poses a great challenge for determining

the realism of the ME generated. There is still a lack of performance metrics to quantify the

realism of ME other than manual human annotation or perception.

There are a few issues that we found in our method. First, our model will generate static

frames (still images) without any motion. Next, some generated movements repeated in certain

intervals forming a loop of movements as shown in Figure 6.19. The whole generation sequence

remained static other than the facial movement that repeats indefinitely. The reason for this is

still unclear.

6.3.2 Conclusion

We show that our sequence generation model can be adapted to generate ME by selecting the

input frame sequence that contains MEs. As the majority of the frame sequences in ME long

video dataset are neutral frames that carry no information on the targeted expression, ME

short video dataset is used alongside input frame selection that centred around the apex frame.

This selection process reduces the tendency for the network to generate image sequences that

contains only static images.

6.4 Generalisation on Other Domains

The main limitation of our generative model is it is very dependent on the constant reference

image. The effect of the absence of the constant reference frame can be seen in Figure 6.11.

First, we investigate the generalisation of this model toward other sequential-based datasets.

This furthers our understanding toward the mechanism of this model. Next, we attempt to

remove the use of the constant input frame by introducing a new network architecture. This
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Figure 6.18: ME generation using AffectNet dataset. The Optical Flow Value and Absolute
Frame Difference show different ME being generated with very subtle intensities.
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Figure 6.19: Examples of ME generation that generates repeated movements for the entire
video.

network is consisted of a repeated network structure of the previous method by taking inputs

of a certain sequence of images (instead of 2 used by the last approach).

The motivation behind this study is if the generative model can work on sequences without

the need for a constant reference frame, it can potentially be applied in the prediction of real-

world scenarios where there is no constant reference frame to be referred to.

Dataset

We use Moving GIFs and Moving MNIST to investigate our method further. The dataset

information is stated below.

Moving GIFs (MGif) [224] dataset consisted of 1000 videos (in gif format) containing

movements of different cartoon animals. This dataset is diverse in motion and visual appearance

of the moving characters. Majority of the character movements are walking animations.

Moving MNIST (V-MNIST) [225] contains 10,000 video sequences. Each video has

resolution of 64×64 with a length of 20 frames. Two digits move independently around the

frame with no collision and they overlap when in contact with each other.

Generation using only Latent Representation

This model used has a similar structure to Figure 6.2. However, the model was downscaled

to using only 3 latent representations and the image input dimension is 64×64.
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This model can generate the next frame and complete a movement sequence using MGif

dataset as shown in Figure 6.20. MGif dataset is very challenging as this dataset consists of

characters with vastly different visual representations and movements. The visual quality of

recursive generation is lower compared to faces as a result of the diversity of appearance and

movements of this dataset. We found that the generated motion is more realistic if the limbs

of the characters are distinctly visible to each other. The majority of the movements in this

dataset are near the limb regions. Our model recognises limbs easier when they are distinct from

each other and performs movement on each limb which makes the movement more realistic. For

characters with limbs that are indistinguishable from each other, the motion generated as less

realistic (as shown in Figure 6.21). One of the possible reasons is the original walking animation

of these characters is very different from other characters of the training set. Hence, the model

did not predict the next motion of the generation accurately.

Upon further inspection, we found that our model is performing pixel-based augmentation.

When the limbs are visible, this model has learnt to change the limbs to simulate movements.

However, due to the constant reference frame, the generated movements are localised to a certain

region of the image. These localisation of movements generated is the nature of this dataset

where the character is situated in the middle while performing movement animation.

Figure 6.20: Successful attempt of sequence generation using mgif dataset.

We perform ablation studies by augmenting the input data using horizontal and vertical

flips. The results are shown in Figure 6.22. Upon flipping the input images horizontally (left

and right), the generated images remained realistic. The generation remains realistic despite
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Figure 6.21: Unsuccessful attempt of sequence generation using mgif dataset.

the change in direction (left or right) of the character. However, flipping the input images

vertically (upside down) makes the quality of the generated sequence becomes worse. The

trained network identifies the localised top and bottom structure of the character. Hence, the

generated sequence appears worse as it attempts to generate moving limbs at the bottom of the

image (the top position of the character).

Cascaded Auto-Regressor without Constant Input

The previous generative model is positional sensitive, for example, if the face or characters

are not placed in a similar position or slightly out of position as the training set, the generation

will not be realistic. We also experimented without using a constant reference frame to address

generation across different positions. This version of the network takes in multiple inputs

from the image sequences using multiple structures inspired by our previous method in Figure

6.2. The generation is visualised as in Figure 6.23. V-MNIST dataset was used as the first

attempt to generate sequence without non-localised reference. This dataset was chosen as it

contains objects that consisted of simple features (moving digits). V-MNIST works on non-

overlapping individual digits. Due to the “memoryless” nature of Markov chain, without any

external reference, the network is unable to maintain or remember the structure of digits after

overlapping. Instead, the identity of the digits will either change or break down completely.
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Figure 6.22: Sequence generation using mgif dataset with horizontal and vertical flip augmen-
tation. The generation remains realistic with horizontal flips while vertical flips degrade the
quality of image generated significantly.

The examples of the generation are shown in Figure 6.24.

With the success of V-MNIST generation, we attempted a more complex version of this

identical network with a higher number of filters on MUG dataset. Nevertheless, the algorithm

will attempt to generate a face from the training set and performs sequence generation based

on the face as shown in Figure 6.25.

The generation shows that the model turns the input images into an existing face from the

dataset and performs facial expression generation on the face. This sequence generation model

uses MSE as loss function. MSE compares on a per-pixel basis which will try to match the

next frame based on the previous observation. Our model generates the next sequence based

on spatiotemporal information (spatial and temporal information) on current observation.

In our sequence generation task, the ideal scenario is the model converge and generate the

next sequence using temporal information (the next facial expression motion sequence) while

retaining spatial information (identity of the subject). Without any labels or supervision of

the spatial or temporal information, the network learns these information via self-supervised

learning. These information embedded in the latent vector is indistinguishable to the model.

Telling our model to separate spatial and temporal information in the latent vectors (which is a

mix of spatiotemporal information) is essentially an inverse problem (this problem is visualised
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Figure 6.23: Cascaded Auto-Regressor without constant input. This network does not rely on
any reference frame and generates recursively based on only current observations. This figure
represents one generation loop. Note: F is the original frame, P is the generated frame, N is
the number of frame sequences to generate per loop.

Figure 6.24: V-MNIST generation without any constant input. The sequence generation main-
tains the structure of digits when the digits do not overlap. The identity of the digits remains
stable until overlapping happens. When overlapping occurs, the digits will either become un-
recognisable (as in 1st and 2nd row) or turns into another digit (as in 3rd and 4th row).
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in Figure 6.26). Our model was also not supervised explicitly to retain spatial information

(identity of the subject). Hence, the Markov property of the sequence generation loop converges

in either spatial, temporal or spatiotemporal dimension and does not retain spatial information

which was intended but not explicitly instructed.

One other possible reason is the number of training subjects is only 51 (plus 1 participant

as test set) which is relatively small. The model has a limited amount of facial expressions of

different distinct individuals to learn from. This model might be overtrained on the identity of

the subjects from the dataset and when it is evaluated on unseen data, the model will converge

spatially to one of the training sets and perform facial expression generation.

Figure 6.25: MUG generation without any fixed input. The identity of the subject changes and
facial expression is generated on the face with the identity changed.

Figure 6.26: The forward and inverse problem in dealing with spatiotemporal information.
Given a set value of spatial and temporal vectors, we can find the spatiotemporal vector ef-
fortlessly. However, if given a spatiotemporal vector and asked to separate it into the original
spatial and temporal vector, the solution is not that simple. Our model was given spatiotempo-
ral information (2 image sequences) and without any supervision was told to retain the subject
identity (keeping spatial information about constant) while changing the subject movement
(performing facial expression movement). This is essentially a complex inverse problem.

6.5 Summary

We introduced a facial expression sequence generation method capable of generating without

using any labels. Before performing the full facial expression generation task, a simple naive

approach is attempted to explore the recursive generation ability of the model. This naive
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model then becomes the backbone architecture for the recursive generation loop. Based on the

latent representation extracted, our model is capable of completing a facial expression sequence

using only three input frames (two image sequences and one fixed image). Our model is able to

generate unique facial expression sequences when trained with single expressions. Our model

can generate fully spontaneous expression sequences when trained with mixed facial expressions.

We attempted to generate ME using the same architecture by changing the training set to

ME dataset. The training set (5 frame sequences) is randomly sampled around the apex frame

in the same order. This ensures the network is always trained with ME sequences and the

random selection ensures the entire ME sequence was covered. We show that our model can

generate subtle ME. The generated MEs are visualised using optical flow values and absolute

frame differences.

We further investigate our model by applying it to other sequence-based datasets. We

also attempted to remove the constant reference frame of our model by taking in a larger

sequence using the repeated structure of the original approach. The results show constant

reference frame is essential in the current stage of our research. Our model convergence is based

on the spatiotemporal information observed. Without the constant reference frame (constant

spatial information), the sequence generation will take on spatial, temporal or spatiotemporal

convergence for each iteration. Without any constant information, the identity of the subject

changes as the model does not distinguish spatial or temporal information and hence, converged

spatially.

140



Chapter 7

Facial Expression Recognition

To provide qualitative and quantitative evaluations on the quality of facial expressions generated

by the generative model in Chapter 6, we use human assessment and computational methods.

The ground truth of the generated videos is rated by a FACS coder. Two deep learning methods

are used to predict the generated videos into positive and negative classes.

Facial expression recognition (FER) is a task to classify the facial expression into one of the

emotion classes (such as happiness, sadness, surprise etc). This is important as it identifies and

estimates the emotional state of a person using non-intrusive visual information. Commonly,

it is treated as a classification task for machine learning based approach. In this chapter, we

explored facial expression recognition as two different problems: classification and regression.

The classification task will attempt to predict discrete labels while the regression task outputs

continuous labels.

We evaluate both approaches on facial expression sequences with changing facial expression

intensity. We propose these FER models to be potential methods as a preliminary analysis for

fully automated facial expression sequence analysis system. This method will be a part of our

pipeline towards a fully autonomous facial analysis toolkit.

7.1 Training Dataset

The training dataset used in this section consists of images labelled with facial expressions.

FER2013 (Facial Expression Recognition 2013 Dataset) which consisted of 28,709 training
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and 3,589 test examples of 48×48 pixels grayscale images is used for prototyping. There are

7 emotion categories (Angry, Disgust, Fear, Happy, Sad, Surprise and Neutral) used in this

dataset.

Extended Cohn-Kanade (CK+) dataset [226] consists of 593 sequences from 123 participants.

The video sequences are recorded at 30 fps with a resolution of either 640×490 or 640×480 pixels.

Only 327 videos are labelled with one of the seven emotion classes: happy, sad, anger, disgust,

fear, surprise and contempt. This video sequence starts with the onset frame and ends with the

apex frame where the intensity of expression is at its peak. In this experiment, we only take

the apex frame of the dataset and used this dataset as static images.

The Karolinska Directed Emotional Faces (KDEF) [227] is a facial expression image dataset.

This dataset contains 490 images with a resolution of 562×762 of 70 individuals (35 females and

35 males). It is annotated on seven emotion classes: happy, sad, anger, disgust, fear, surprise

and neutral. The videos are captured at 5 different angles, only frontal view was used for our

experiment.

AffectNet [228] is a large-scale facial expression dataset that consisted of more than 1 million

collected by searching 1250 emotion-related keywords in six different languages. About 0.4

million images are manually annotated for eight emotion classes: happy, sad, anger, disgust,

fear, surprise, contempt and neutral. The average image resolution is 425×425 pixels.

The training dataset is a composite dataset consisting of FER, CK+, KDEF, FFHQ and

AffectNet. FER, CK+ and KDEF consist of grayscaled facial expression images. FFHQ

and AffectNet are consist of facial images with colour, however, the emotion class label on

FFHQ was annotated using a facial expression recognition algorithm as the original dataset

was not annotated with emotion with respect to each image (Source: https://github.com/

DCGM/ffhq-features-dataset). For FER, CK+ and KDEF, the image resolution of these

datasets are standardised at 224×224 pixels before resizing.

Modified Dataset Labels

As all datasets are labelled with different classes, we modified and standardised all the

training labels to three simple emotion classes (negative, neutral and positive). “Negative”

class consists of anger, disgust, fear, sadness and contempt; “Neutral” class consists of neutral
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and surprise; while “Positive” class consists of only happiness. The motivation for making this

classification is to quantify the emotion class of the expression sequence generated.

The visual representation of the dataset of each class distribution is shown in Figure 7.1.

We collect as many annotated facial expression image data for this task. As AffectNet is the

largest available facial expression dataset, this dataset becomes majority of our training data

especially in “Negative” class where the other dataset has negligible amount of samples.

Figure 7.1: Facial expression recognition training set which is a composite dataset consisting
of FER, CK+, KDEF, FFHQ and AffectNet. AffectNet has the highest amount of dataset
count followed by FFHQ. FFHQ is annotated using a facial expression recognition algorithm.
The emotion classes are: “Negative” class (Neg) consists of anger, disgust, fear, sadness and
contempt; “Neutral” class (Neu) is consisted of neutral and surprise; while “Positive” class
(Pos) is consisted of only happiness.

7.2 Methods

Inspired by the facial expression analysis by OpenFace (where OpenFace analyses AU presence

as a classification task and AU intensity as a regression task), we attempted two approaches

on the facial expression recognition task whereby we treat this task as either a classification

or regression task. The reason of attempting both approach is to investigate which method

performs better and more suitable in recognising facial expression sequences. This is done by

evaluating on original MUG dataset and the generated sequence generated by our spontaneous

generation method from Section 6.2.
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For both attempts, the input and hidden layers are kept constant. For classification, the

final activation of the output layer is softmax and the loss function is categorical cross-entropy.

The labels used are “2” for “Positive”, “1” for “Neutral” and “0” for “Negative”. For regression,

the final activation function is linear and the loss function is mean squared error. The labels

used are 0.0 for “Negative”, 0.5 for “Neutral” and 1.0 for “Positive”.

The model used in these attempts is a standard convolutional neural network downsampled

using convolutional layers with a stride of 2. The difference between these two networks is the

output layer. The overall network architecture is visualised in Figure 7.2.

Figure 7.2: The network architecture is a vanilla CNN with downsampling using strided con-
volutional layers. The differences between classification and regression tasks are the final dense
layers where classification has a filter number of 3 for each class while regression has a filter
number of 1 which has a range of approximately between 0 to 1.

Regularisation techniques are used in this attempt. Random data augmentation that ran-

domly modifies the brightness (with a maximum range of 0.1), contrast (with lower bound 0.2

and upper bound 0.4) and horizontal flip (with 50 % probability) are used. Weighted loss func-

tion was used to address the class imbalance of the training set. In classification task, minority

classes (“Neutral” and “Negative” classes based on Figure 7.1) are weighted with a factor of 2

and 3 with respect to the majority class (“Positive”).

This evaluation identifies facial expressions and attempts to sort them into three classes

using either discrete classes (classification) or continuous classes (regression). We trained on
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static facial expression images and investigate the implication on recognising facial expression

sequence.

7.3 Results and Discussions

Both FER classification and regression models are evaluated on the real facial expression

sequences and generated image sequences. The comparison between both tasks is done by taking

the raw output of the model without any post-processing.

Evaluation using Real Facial Expression Sequences

We evaluated the facial expression recognition algorithm on original facial expression se-

quences from MUG dataset that were used in Chapter 6. Please note that the length of video

sequences are not identical. The output of the model is shown in Figure 7.3.

Quantitative Measurement

We evaluate both FER methods on 20 video sequences (10 from MUG dataset and 10 from

MMI dataset). Our FER algorithms classify the videos into three classes and compare the

prediction with the original ground truth. The accuracy of the FER methods is tabulated

in Table 7.1. Both our models identify “Positive” class perfectly. The overall accuracy is 0.80

which shows our models are capable of identifying different classes of facial expression sequences

despite training on facial expression images.

Table 7.1: Accuracy of FER Classification and Regression MUG and MMI video sequences.
The performance is evaluated compared to the given ground truth. Both methods performs
perfectly in identifying “Positive” emotion class.

Negative Positive Overall

FER Classification 0.70 1.00 0.85

FER Regression 0.60 1.00 0.80

Qualitative Measurement

We further evaluate every emotion class and attempt to classify them into three simple

emotion classes. The temporal dynamic (onset and offset) is investigated as we are interested

in knowing how well the algorithm deals with changing facial expression intensity.

For FER classification task, there are no onset and offset of the facial movements as it

is a classification with no intermediate values between each classes. Each classes are mutually
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exclusive to each other. All classes other than “disgust” were classified correctly. This shows that

classification of three simplified emotion classes is less challenging compared to the regression

task (which will be discussed in the next paragraph). However, this approach has the drawback

of ignoring the intermediate transitions of facial movements of different emotions. The temporal

dynamic is non-existent.

For FER regression task, the interval where “happiness” occurred was predicted accu-

rately as “positive”. “Surprise” is predicted as “neutral”, “anger” and “disgust” is predicted

as “negative” which matches the intended outcome. Both approaches show disagreement on

“sadness” class where the regression task treats this expression as “neutral”. This model allows

continuous transition between emotions which shows a more realistic facial expression analysis

where it shows onset and offset of the facial expression.

Evaluation using Generated Facial Expression Sequences

We evaluated both FER algorithms on the image sequence generated using the “Facial

Expression Generation using only Latent Representation” method in Section 6.2. This can

potentially be a realism evaluation metric on our generated data from our method of previous

chapter.

Quantitative Measurement

Similar to the evaluation on real facial expression sequences, we evaluate both FER methods

on 20 generated video sequences. Although we generate both expressions equally (10 using the

network with “Positive” weight and 10 with “Negative” weight), some of the generated videos

appear visually appear similar to “Negative” class. The ground truth of the 20 generated

videos was coded by a FACS coder. The human coder was told to classify each video into either

“Positive” or “Negative”. As a result, 7 videos are “Positive” class and 13 videos are “Negative”

class. Our FER algorithms are tested on these 20 generated videos. As the generated model

is targeted in generating “Positive” and “Negative” classes, this study does not have “Neutral”

as the ground truth in the test set. The accuracy of the FER methods are shown in Table 7.2.

The results show that both methods perform well in detecting “Positive” class.

Qualitative Measurement

We further evaluate every emotion class and attempt to classify them into three simple
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Figure 7.3: FER on both classification and regression tasks evaluated on subject 084 of MUG
dataset. For classification task, “Negative” class is denoted as “0”, “Neutral” class is denoted
as “1” and “Positive” class is denoted as “2”. For regression task, “Negative” class is denoted as
“0”, “Neutral” class is denoted as “0.5” and “Positive” class is denoted as “1.0”. This task has
continuous output values with intermediate values between each class. Both models show high
agreement on “Happiness” where the “Positive” class are activated. Note: In classification, the
coloured area under the curve is for visualisation only.
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Table 7.2: Accuracy of FER Classification and Regression on generated data. The performance
is evaluated compared to the emotion class annotated by human FACS coder. Both methods
have identical performance and show better performance in “Positive” emotion class.

Negative Positive Overall

FER Classification 0.46 0.57 0.50

FER Regression 0.46 0.71 0.55

emotion classes. The temporal dynamic (onset and offset) is investigated as we are interested

in knowing how well the algorithm deals with changing facial expression intensity.

For FER classification task, “happiness” and “anger” are identified. Other emotions are

detected as “Neutral”. As we can see, FER classification doesn’t work well with sequences with

temporal information. Our facial expression generation is fully trained using temporal infor-

mation based on the current and one previous step, which may suggest both the classification

model and sequence generation model uses different information for prediction and generation.

For FER regression task, “happiness” shows strong activation with clear onset and offset.

“Anger” also shows partial agreement with FER classification. FER regression is capable of

describing the temporal changes in facial expression more realistically as it has a continuous

output. The recursive generation method requires temporal information in each step of the

generation which works better when analysing with FER regression.

The recursive generation loop of our generation model exhibits Markov property which

converges based on current and one previous step. For this to occur, the model must learn

the temporal correlation between the frame sequences using the spatiotemporal information

of the two frame pairs at each step of the recursive loop. Hence, temporal information is an

important feature in this generation. FER classification has no intermediate values between

each class. As the recursive generation progresses, temporal information is not involved in

determining the activation of FER classification. This lack of temporal information makes the

FER classification perform worse in evaluating our generated data. FER regression has higher

accuracy and shows the onset and offset of facial expressions with fluctuations between the

confidence of each expression. This is a more suitable method for facial expression sequence

recognition as there are transitions between facial expressions.

Evaluation using Spontaneous Generated Facial Expression Sequences
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Figure 7.4: FER on both classification and regression tasks evaluated on generated subjects.
The recursive generation loop converges using Markov property. The temporal information is
not captured by the classification model. While the regression model captured some of the
transitions between the expression. Note: In classification, the coloured area under the curve is
for visualisation only.
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We also compare both FER tasks on expression sequence generated using Spontaneous

Multi-Expression Sequence Generation of Figure 6.7. This video contains multiple changes in

facial expressions. Similar to the previous evaluation, FER classification task does not capture

the temporal information well while FER regression task captures some temporal transition be-

tween facial expressions. Nevertheless, both models also show high agreement on the “Positive”

class generated at the end of the video.

Figure 7.5: FER on both classification and regression tasks evaluated on spontaneous generated
subjects (from Figure 6.7). Classification task does not take into account temporal information
while regression does. Both models agree on the “Positive” class generated at the end of the
video. Note: The y-axis on the left is for FER classification. The y-axis on the left is for FER
regression.

Comparison of facial expression of different emotion classes cross-checked with

FACS coder

As the onset and offset of MUG dataset was were annotated, human annotation (by a

certified FACS coder) was used. The comparison are shown in Figure 7.6. We observed that both

methods show agreement on “happiness” class. For “anger” class, FER regression outperforms

FER classification where it shows higher agreement with human annotation in predicting the

onset and offset of the expression.

Discussion

In both tasks, both models show high agreement on “happiness” where the “Positive” class

are activated for every image sequence. A reason might be that about half of the training set

is consisted of “happiness” images. “Happiness” involves large and distinct movements on AU6
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Figure 7.6: FER comparison between both methods and human annotation. “Positive” class is
represented by “happiness” while “Negative” class is represented by “anger”. FER regression
shows a more realistic transition of expression (where even human annotation is incapable of).
FER regression shows higher agreement with human annotation relative to FER classification.
Note: The y-axis on the left is for FACS Coder and FER classification. The y-axis on the left
is for FER regression.
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(cheek raiser) and AU12 (lip corner puller) that makes each phase (onset, apex, and offset) of

the expression easily recognisable compared to other expressions.

Our model shows FER classification and regression accuracy of 0.85 and 0.80 when predicting

real videos; 0.5 and 0.55 when predicting generated videos respectively. This shows a difference

in the quality of our generated facial expression sequence compared to the real facial expression

sequence. The higher accuracy in identifying “Positive” class may indicate that our generative

model is better at generating facial expression sequences with “Positive” class.

Both FER regression and classification perform similarly in predicting “Negative” class; FER

regression shows better performance in predicting “Positive” class. FER regression captures

the temporal information of the change in facial expression which may be the reason for higher

performance compared to FER classification.

In reality, facial expression is a sequence of facial movements. These sequence-based facial

movements are known as dynamic expressions. Dynamic expressions contain temporal informa-

tion of facial expressions which can improve the recognition performance of the model. With

temporal information, it is also possible to anticipate facial expressions by looking into the first

few sequences. We trained our model using static images of facial expressions and our regres-

sion approach shows our model has the ability to predict dynamic expressions with intermediate

transitions between facial movements.

7.4 Conclusion

We demonstrate both classification and regression approaches on facial expression recognition by

evaluating it on our facial expression sequence of real and generated data. FER classification

and regression evaluated on real facial expression sequences show an accuracy of 0.80 which

shows that our approach can be used in identifying facial expression sequences. However, when

evaluated on generated facial expression sequences, the accuracy dropped to around 0.50. This

is an indication that our generated sequence still has a quality difference compared to real

facial expression. The “Positive” class predicted by FER regression in the generated data

is 0.71 which shows that the generated “Positive” facial expression is more similar to a real

facial expression compared to the “Negative” counterpart. Classification approach produces a

discrete output and it is more suitable for application that requires exact or precise recognition
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of emotion. Regression approach creates a continuous output which can potentially be applied

in classifying dynamic facial expression image sequences that changes over time. The onset,

apex and offset phase of facial expression sequences can be predicted as it allows intermediate

expression intensity between each prediction class. The transition between facial expression of

spontaneous facial expression sequence can also be estimated. We evaluated both FER method

on our original and generated data. We found that FER regression is more useful in analysing

sequence data as the continuous output models the transitions between facial expressions better.
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Conclusion

8.1 Introduction

Facial expression can provide us with a glimpse into human emotion. Computer vision with

deep learning approaches, such as convolutional neural networks, can potentially discover the

patterns of facial expressions (both ME and MaE) by using a large number of input data. This

can further analyse human emotions beyond conventional approaches.

For ME and MaE spotting, this thesis proposed a temporal oriented method that leverage the

difference of duration ME and MaE by applying different frame skip based on each expression.

Our method can spot ME and MaE simultaneously using end-to-end like deep learning. This

model has state-of-the-art performance compared to the best candidate of MEGC2020.

For our generative method, we showed that style transfer can be used as an advanced image

augmentation to generate more data. Next, more facial expression data can be produced by

using latent representation as a computational efficient generation approach.

8.2 Research Findings

A summary of research objectives and each respective outcome is shown in Table 8.1.

The first objective is to identify research gap and determine research direction through

literature review. We successfully identified a few key research gaps in this research which are

a lack of dataset and method that can process ME and MaE simultaneously. These findings
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provide a general direction for the whole research project which is based on these two gaps.

The second objective is to address data deficiency by introducing a new ME long video

dataset. We curated a new long video dataset, SAMM Long Videos, that contains ME and

MaE. A baseline for the dataset on ME and MaE spotting was created using AU analysis of

OpenFace.

The third objective is to implement an existing GAN model to generate new data and

measure the quality of the generated data. This is done by performing reference-guided image

synthesis by conducting style transfer on a pre-existing dataset, SAMM-LV. This method can

be considered as an advanced image augmentation that changes the style of the subject without

changing the facial movements. The facial movements transferred are compared with the original

movements using correlation analysis on AUs and optical flow analysis.

The fourth objective is to propose a new ME detection algorithm based on deep learning

method and validate it on ME long videos datasets. We noticed the main differences between

ME and MaE and chose the duration difference of the expressions as our research interest.

Based on the duration difference, we designed a two-stream convolutional neural network which

is capable of spotting both expressions simultaneously.

The fifth objective is to design a new generative model that can generate spontaneous ME

to overcome data deficiency and improve the diversity of datasets in ME research. A recursive

generation model based on Restricted Boltzmann Machine was proposed and spontaneous gener-

ation of facial expressions can be conducted using this method. This method is a self-supervised

method without any labels and is able to generate the entire facial expression sequence with

only two input sequences (plus one constant input frame). This model can also be applied on

ME generation.

Even though the majority of the objectives are met, there is still a lack of a fully end-to-end

approach that can leverage deep learning to its full capability. The ME generation only involves

small facial movements while not taking into account the full spontaneity of human movements

(blinking or speaking).
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Table 8.1: Objective and Outcome

No. Objective Outcome

1 To identify research gap and determine re-
search direction through literature review.

Literature review on ME spotting and
recognition especially on the state-of-the-
art methods was thoroughly conducted.

2 To address data deficiency by introducing
a new ME long video dataset.

SAMM Long Video dataset was curated
based on the raw footage of SAMM. A
baseline method using AU analysis of
OpenFace was created.

3 To implement existing GAN models to gen-
erate new data and measure the quality of
the generated data.

By using StarGANv2, we implement
reference-guided image synthesis by con-
ducting style transfer on a pre-existing
dataset, SAMM-LV, as an advanced image
augmentation to generate new data.

4 To propose a new ME detection algorithm
based on deep learning method and vali-
date it on ME long videos datasets.

A multi-stream network using 3D-CNN
was trained and evaluated on our new ME
dataset for ME and MaE spotting. This
method can spots both expression simulta-
neously by leveraging the duration differ-
ence between both expression.

5 To design new generative model that can
generate spontaneous ME to overcome data
deficiency and improve the diversity of
datasets in ME research.

We successfully generate spontaneous MaE
using a sequence generation model. ME
generation is also shown to be possible.

8.3 Future Works

The overall aim of this project is to improve the accuracy and generality of ME recognition and

spotting in different experimental conditions. The training data will be further augmented so

it represents real-world scenarios. The trained models need to be trained on a more diverse yet

accurate dataset to further improve the results.

8.3.1 Fully end-to-end pipeline

To leverage the advantage of deep learning, fully end-to-end facial micro-expression should be

considered as a foundation for this research. Currently, there is still a lack of dataset and

end-to-end deep learning with a limited data pool has similar or slightly worse performance

compared to methods that use traditional features as input.
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8.3.2 Dataset number increment

The approaches in our thesis are only capable of generating realistic facial expressions in a fixed

environment. The subtlety of ME generation is similar to real ME, however, other spontaneous

facial movements are not generated (e.g. eye movements, blinks, mouth movements). To

generate realistic long videos containing ME and MaE (similar to SAMM-LV), a combined

pipeline for generating MaE and ME should be investigated.

8.3.3 Combination of all methods into one pipeline

Each separate part of this thesis can be a part of the full pipeline for micro-expression analysis. A

possible full pipeline consisted of facial detection, ME spotting and proceed with ME recognition

For application in the real world, the whole pipeline can function and complement each other

to provide a better decision on the ME generated.

8.4 Concluding Remarks

This thesis presented a new approach to spotting ME and MaE simultaneously using the

duration difference between these expressions. With the ability to spot both expressions si-

multaneously and show the state-of-the-art performance compared with the best candidate of

MEGC2020, the contribution shows promising results and potential to be applied in real life.

The facial expression sequence generation can be applied in ME generation which lays a foun-

dation for future data generation methods.

157



References

[1] P. Ekman, Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage.

Norton, 2001.

[2] M. Inc. “Face++ research toolkit.” (2013), [Online]. Available: http://www.faceplusplus.

com (visited on 09/01/2021).
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Glossary

Micro-expression (ME)

Micro-expression are defined as involuntary, low intensity movements of facial muscles which

occur in less than 0.5s.

Macro-expression (MaE)

Macro-expressions are defined as high intensity movements of facial muscles which usually

lasts between 0.5 to 4s. It is also known as regular facial expressions.

Onset/Apex/Offset Frames

These frames are referred to the image sequence where facial expression (either ME or MaE)

starts (onset), peaks in intensity (apex) and stops (offset).

Facial Expression Interval

This is defined as the total duration of facial expression (measured in seconds or millisec-

onds). It is the temporal difference of the onset and offset of the expression.

Micro-Expression Grand Challenge (MEGC)

This is the largest annual ME challenge for participants to compete and create the best

model for ME related research (such as ME recognition or spotting). The criterion to measure

the performance of the model are precision, recall and f1-score based on IoU method.
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Intersect of Union (IoU) Method

A common criteria used in ME spotting that calculates the overlapping between the ground

truth and prediction interval.

Facial Action Unit (AU)

Facial action units are individual facial movements based on Facial Action Coding System

(FACS), a system that describes visible facial movements.
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Fully End-to-End Approach on

Composite Dataset

Our original ME and MaE spotting method is relies on OpenFace to perform face crop on

the input image sequences. This approach takes this further by attempting to remove any

dependence on external pre-processing and create an end-to-end deep learning pipeline for ME

and MaE spotting. This pipeline lays a foundation for future spotting methods.

The main highlights are :

• Our approach is an end-to-end deep learning ME and MaE spotting method trained from

scratch using long video datasets without relying on any other methods/software.

• Our approach shows MaE detection across two dataset with different frame rate and

settings trained using a composite dataset.

• We found that the use of small amount of filter which focuses on extracting simple features

is suitable and sufficient for spotting ME and MaE.

• Larger kernel size in earlier layers has a larger field of view which helps in capturing

difference between frames.

Pipeline Comparison to Original Method

The frame input pipeline is identical to our original ME and MaE spotting approach which
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Figure B.1: The network is similar with previous method. The temporal oriented frame skip is
identical. The main difference is each convolutional block consisted of 2 × (regular convolution,
batch normalisation and dropout) and downsample using maxpooling. The input images have
higher resolution of 160 × 160 pixels and face crop was not applied. The number of filter used
in each convolution is lower (2, 2, 4, 4, 8, 8 for each conv layer in sequence). The kernel size
for each convolution is different (11, 9, 7, 5, 3, 3 for each conv layer in sequence). The residual
dense layer possesses the skip connections that shares weights. Two dense nodes were used at
the end to resemble the presence of ME and MaE.

encodes temporal information using depth dimension of 3D-CNN. The network architecture is

also a two-stream CNN with shared weights.

There are a few key differences in this pipelines. The input image sequences have a higher

resolution of 160×160 pixels. There are more convolutional layers in this network (increased to

6). The number of filters used in each layers are lower. The kernel size for shallow layers are

larger and become smaller as network depth. Regular 3D convolution is used and maxpooling

is used for downsampling. The pipeline and detailed information are described in Figure B.1.

The training set for this experiment is consisted of a composite dataset which is combination

of SAMM-LV and CAS(ME)2. One of the subject from each dataset is used as evaluation set.

Similar with previous method, randomised frame skip is used during training while k-frame skip

is used in the test set (same as in Table 5.5).

Results and Discussion

The evaluation on one participant from SAMM-LV and CAS(ME)2 are conducted. The

raw output and ground truth comparison are shown in Figure B.2. It is noted that this is a

raw output without any post-processing that shows our network has certain confidence on the

intervals detected. However, a more suitable evaluation or post-processing might be needed as

there are a lots of fluctuations especially near the onset and offset of the ground truth.
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Figure B.2: ME and MaE spotting pipeline in fully end-to-end manner. These are the raw
output of the model compared with unseen data from two different dataset. This model is
trained using combined of two dataset of different frame rate (SAMM-LV and CAS(ME)2).
This model is able to capture MaE but is not sensitive to ME.

Using the post-processing of previous method, the model trained on composite dataset

is evaluated with unseen dataset. The evaluation results using IoU on unseen dataset in

MEGC2022 which uses both SAMM Challenge and CAS(ME)3 only has detection on MaE.

For SAMM Challenge, the F1-score is 0.0952; for CAS(ME)3, the F1-score is 0.0816. The post-

processing step of previous method might not be suitable or compatible with this method which

might explained the drop in performance. However, visually the raw output shows promising

results of spotting MaE.

Optical flow which measures the apparent motion of object functions similarly to the low

number of filters used in this method. Facial movements can be thought of as difference between

frames. Motion capture algorithm tracks the difference between frames. Using larger kernel size,

change of pixels is easier to be captured. Low number of filters for each convolutional layers are

sufficient as movements can be thought of as frame differences and simple features is suitable

to detect them.

In this method, major facial features are detected which is beneficial in movement detection.

However, detailed features is ignored most of the time which can be a reason on why no ME
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is detected using this pipeline. The guided backpropagation of each convolutional layers are

visualised and confirmed the claim in which the major facial features are used in the decision

making of the network as shown in Figure B.3.

Figure B.3: Guided backpropagation on one subject from SAMM-LV dataset. The network
detects and spots movement based on major facial features.
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Additional Literature Review

C.1 Face Detection and Facial Landmark Detection

Viola-Jones algorithm [229] is used in the first real time face detector using Haar features (in

Section 3.3). The method performs fast computation using intermediate representation using

summed area table called “integral images” across all selected Haar features.

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (C.1)

where ii(x, y) is the integral image and i(x, y) is the original image. Calculated using the

following equation:

s(x, y) = s(x, y − 1) + i(x, y) (C.2)

ii(x, y) = ii(x− 1, y) + s(x, y) (C.3)

where s(x, y) is the sum of cumulative row, s(x,-1) = 0, and ii (-1, y) = 0.

Deng et al. [230] conduct facial landmark localisation by using a deep convolutional neural

network. The author replaced the max pooling by depth-wise convolution in the CNN for better

localisation performance. A response map for each facial points was defined as probability of

presence likelihood and the model was trained using KL divergence loss. This algorithm takes

the response maps of enhanced CNN and applies auto-encoder model to the global shape vector.

The experiment was trained on the 300-W dataset [231].
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Figure C.1: Main procedures of Ma’s score, a no-reference metric. Image originated by Ma et
al. [97]

Bian et al. [232] shows a facial landmark detection method which involves self-adaptation

model which processed to locate the eyes and mouth where the initialisation model will adapt

to the real location. For further improvement, a multi-task feature learning was used which

improve the generalisation performance.

C.2 Image Quality Analysis

Ma’s score [97] introduces a no-reference metric learned from visual perceptual scores. This

metric contains 3 types of low-level spatial and frequency domain based statistical features. It

is used mainly to quantify artifacts produced in super-resolution tasks. The overall process is

shown in Figure C.1. Local frequency features are transformed discrete cosine transform (DCT)

to quantify high-frequency artifacts. This functions to obtain the DCT coefficient to fit the

generalised Gaussian distribution. Global frequency features are extracted using Gaussian scale

mixture (GSM) model that describe the marginal and joint statistics of natural images using a

set of neigbouring wavelet bands. For spatial features, this method uses principal component

analysis (PCA) to describe spatial discontinuity. A two-stage regression model is used to model

local frequency, global frequency and spatial discontinuity with three independent regression

forests.

Fowlkes-Mallows Index [233] (also known as G-measure) is the geometric mean of the

precision and recall. This index has a value range of between 0 and 1. A high value implies a

good similarity between two clusters. The mathematical equation for this index is as below:
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F -M =
√
precision · recall = TP√

(TP + FP )(TP + FN)
(C.4)

C.3 Classifiers in Supervised Learning

Machine learning especially in supervised learning uses classifiers to assign a class label to data

input. There are several classifier of supervised learning which are decision tree, perceptron,

naive Bayes, k-nearest neighbour, support machine vector and artificial neural network.

Decision Tree is a flow diagram of all possible outcomes for certain choices. Each node in

a decision tree represents a feature in an instance to be classified, and each branch represents

a value that the node can assume [234]. A decision tree normally starts with one node that

branches out into possible outcomes. Each of those outcomes can further branch out into other

possibilities. The common variations are the classification tree that is used in categorisation

tasks and the regression tree that predicts continuous values.

Perceptron is inspired and modelled after the biological neuron. It is a binary classifier

which decides whether an input represented by a vector of numbers, belongs to a certain class.

The perceptron algorithm (a group of single-layer perceptrons) is used to learn from a batch of

training samples by running the algorithm repeatedly until it finds a prediction vector which is

correct on the training set. This vector is then applied for predicting the labels on the test set

[235]. This algorithm is one of the earlier versions of the artificial neural network.

Naive Bayes Networks are very simple Bayesian networks which are composed of directed

graphs with only one parent (representing the unobserved node) and several children (corre-

sponding to observed nodes) with a strong assumption of independence among child nodes in

the context of their parent [236]. Due to its simplicity, it requires fewer data to obtain good

results in most cases.

K-Nearest Neighbour (KNN) is an instance-based learning. Instance-based learning

algorithms compare new problem instances with only instances seen in training by delaying the

generalization process until classification is performed. KNN assumes instances with similar

properties within a dataset will generally exist in close proximity to each other [237]. KNN

calculates the distance between test data and all the training points to predict the correct class
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of the test data. It selects the K number of points closest to the test data. A major weakness

of KNN is the basic ”majority voting” classification that occurs in datasets with skewed class

distribution. The more frequent class will often dominate the predictions due to their larger

number.

Support Vector Machine is a supervised learning model primarily for classification and

regression. The simplest form of this model creates a hyperplane that separates two data

classes. It maximises the margin by creating the largest possible distance between the separating

hyperplane [234].

Artificial Neural Networks is not technically an algorithm, it is a collection of algorithms

working together. It is designed to mimic the problem-solving process of a human brain. A few

examples are convolutional neural network (CNN), long short-term memory (LSTM) network

and transformer (attention-based model).

For this thesis, artificial neural networks are used primarily because it has the potential

to improve with more data, has the ability to execute feature engineering on their own and

can perform complex tasks that linear program cannot. In the real world, problems are often

complex and challenging. Artificial neural networks offer a solution to address these questions.

C.4 Activation Function

The activation function in artificial neural networks decides whether each neuron is active.

Non-linear activation is commonly used as it produces a complex mapping between the network

input and output by introducing a non-linearity relationship between each network layer. For

machine learning, commonly differentiable activation is used as its gradient can be calculated

which allows backpropagation. The notation used in this section are x represents input features,

f represents activation function and N represents the number of input. The visualisations of

the activation functions are shown in Figure C.2.
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Figure C.2: Activation functions visualised where x is the input, f(x) is the output of the
activation function.

Linear activation is a simple linear function which has output identical to the input. This

function can be used during the reshaping of hidden layers. However, it is not useful to create

non-linearity in an artificial neural network.

Sigmoid activation is a non-linear function that normalises input to between 0 and 1. This

function attempts to address exploding gradient problem by converting input of large intensity

to a range of 0 and 1. It is originally used in an early artificial neural network as it mimics the

activation of biological neurons. A common issue with this activation is the output saturates
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when there is a large positive or negative number causing the gradient to become almost zero.

f(x) =
1

1 + e−x
(C.5)

Hyperbolic Tangent (Tanh) is similar to sigmoid activation with the difference being

this activation normalises input to between -1 and 1. The main advantage is that the gradient

obtained is four times greater than the sigmoid counterpart. The disadvantages are similar to

the sigmoid function where the activation saturates on large numbers.

f(x) = tanh(x) =
2

1 + e−2x
− 1 (C.6)

Normalised exponential function (softmax) activation normalises the output of each

class between 0 and 1 and performs division based on their sum. It is a smooth approximation

to the arguments of the maxima (argmax) in which some function values are maximised. This

activation is commonly used in the output layer of a neural network in multiclass classification.

f(x) =
exi∑N
i=1 e

xi
(C.7)

Rectified Linear Unit (ReLU) has a linear activation for the positive input while re-

maining zero when input is zero or negative. This activation is identical to a half-wave rectifier.

It is the most widely used activation as it is computationally efficient and has better gradient

propagation. This makes the network converges quicker. However, this activation suffers from

the “Dying ReLU problem” that occurs when inputs approach zero or negative. This causes

the gradient to become zero and the weights to stop updating.

f(x) = max(0, x) (C.8)

Leaky ReLU is based on ReLU with small negative values when the input is negative.

This activation primarily addresses the “Dying ReLU problem”. By updating a small negative

gradient in the negative region, the weights will still update which theoretically prevents the

activation from producing the same output.
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f(x) =


x if x > 0

0.01x otherwise

(C.9)

Parametric ReLU is also based on ReLU with negative values scaled using leaking coef-

ficient, “a” when the input is negative. The “a” parameter is learnt by the network on its own

using gradient descent. This activation also addresses the “Dying ReLU problem” by including

a negative gradient.

f(x) =


x if x > 0

ax otherwise

(C.10)

Exponential Linear Unit (ELU) [238] has identical output as ReLU when the input is

positive. For negative input, the mean of activation is pushed closer to zero. Pushing the mean

activation to zero enables faster learning as the gradient is said to be similar to the natural

gradient. According to the author, ELU has a saturation in the negative region which makes

the activation more stable and robust in learning representation.

f(x) =


x if x > 0

α · (ex − 1) otherwise

(C.11)

C.5 Loss Function

A loss function is defined as the function that describes the distance between the estimated and

true values of a problem (commonly classification or regression problem). The larger the loss,

the further the distance between the estimated and true values. Machine learning algorithms

attempt to minimise this function to optimise its performance. The notations used in this

section are x is the ground truth, y is the predictions, n is the total number of predictions made

and L is the loss.

Mean Absolute Error (MAE) takes the average of absolute differences between the

ground truths and predictions. This loss measures the magnitude of errors without the direc-

tions. All the errors are on the same linear scale. It is also known as L1 loss which represents
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Least Absolute Deviations. The range is from zero to infinity.

L(y) =
1

n

n∑
i=1

|yi − xi| (C.12)

Mean Squared Error (MSE) takes the average of the square differences between the

ground truths and predictions. This loss is sensitive to outliers and will perform worse in

datasets with outliers. It is also known as L2 loss which represents Least Square Errors. Similar

to MAE, the range is from zero to infinity.

L(y) =
1

n

n∑
i=1

(yi − xi)
2 (C.13)

Cross-entropy loss (log loss) measures the classification model with output between 0

and 1. The main advantage of this function is the learning rate is fast when the difference is

large and it slows down when the difference is small as it uses negative logarithmic difference.

The loss increases exponentially when prediction probability is low and decreases to near zero

for correct predictions.

L(y) = −
n∑

i=1

xi · log(yi) (C.14)

Binary cross-entropy loss is a combination of Sigmoid activation (explained in Section

C.4) followed by cross-entropy loss. It is commonly used in boolean classification tasks with

two classes that are “0” and “1”.

L(y) = −(xlog(y) + (1− x)log(1− y)) (C.15)

Hinge loss is a loss function which maximises margin objective. This loss increases linearly

during misclassification and also penalises correct classification within a certain margin (when

|y| < 1). By penalising weakly correct classifications, the class difference is made more distinct

in which a higher activation is needed for the prediction to be correctly classified. This creates

increases the margin or boundary between different classes. The output range is between -1 to

1 and the “tanh” activation is commonly used.
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L(y) = max(0, 1− x · y) (C.16)

C.6 Optimiser

An optimiser in machine learning is an algorithm that maps the input to the output. This in-

volves changing the attributes of the neural network during training such as weights, momentum

and learning rate. This optimisation makes the network better in reducing loss and improving

model performance.

Gradient Descent is a first-order optimization algorithm. It uses the first-order deriva-

tive of a loss function. It calculates the direction where the weights should be changed for the

function to reach a minimum. This is done using backpropagation. This function is computa-

tionally inexpensive and extremely simple to be implemented. However, this algorithm is very

susceptible to being trapped in local minima and requires large memory for gradient calculation

across the whole dataset.

Stochastic Gradient Descent (SGD) is based on gradient descent with more frequent

gradient updates. It selects batches of data randomly (stochastic means random) and computes

gradient descent. It optimises the objective function iteratively using suitable smoothness prop-

erties. The frequent updates will result in faster model convergence. It also has less memory

requirement compared to gradient descent.

AdaGrad is an optimiser which fine-tunes the learning rates at each time step. The learning

rate depends on parameter differences. It is a type second-order optimisation algorithm. It uses

the second-order derivative of the loss function. AdaGrad considers all previous gradients. The

drawback of this optimiser is it may decrease the learning rate too aggressively which interrupt

the learning process completely.

AdaDelta is an extension of AdaGrad with a decaying learning rate removed and instead

limits the previously accumulated gradients within certain windows. It uses an exponential

moving average instead of the sum of all gradients. This reduces the tendency of aggressive

learning rate decrement by AdaGrad.

Root Mean Squared Propagation (RMSProp) is a combination of gradient descent
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and AdaGrad that utilises decaying average partial gradients in the adaptation. This algorithm

takes into account recent gradients more than previous gradients. The algorithm accelerates

the optimisation process by reducing the number of evaluation functions used.

Adaptive Moment Estimation (Adam) works by adaptive optimisation of both the first

and second order of momentum. It is a stochastic gradient descent method. It calculates the

exponential moving average of gradient (first moment) and square gradient (second moment)

of the loss function. Parameters β1 and β2 control the decay rate of the moving averages.

The first and second moments of the loss function are calculated. This optimiser is one of the

state-of-the-art commonly used in machine learning.
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