
 
 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a 

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of 

Edinburgh. Please note the following terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, 

which are retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or 

study, without prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without 

first obtaining permission in writing from the author. 

• The content must not be changed in any way or sold commercially in 

any format or medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the 

author, title, awarding institution and date of the thesis must be given.



Monitoring the spread of antibiotic 
resistance in wastewater 

 
 

Hannah Catherine Lepper 
 

 

 
 

 
 
 

Thesis submitted for the degree of Doctor of Philosophy 
 

The University of Edinburgh 
July, 2022  



 ii 

Declaration 
 
I declare that this thesis and the analysis described in it are my own composition, 
except where explicitly stated. This work has not been submitted for any other degree 
or professional qualification. 

 
Hannah C Lepper 
 
July, 2022  



 iii 

Abstract 
 
Background: Antibiotic resistant bacterial infections are causing a growing amount of 
morbidity and mortality. Effective control and prevention relies on good data on the 
current burden of antibiotic resistance (ABR). Traditional ABR surveillance from 
phenotypic, passive, hospital-based testing may not adequately represent the 
resistome of the general population. Wastewater metagenomics has been proposed 
as a new type of surveillance to overcome this limitation. It generates rich, quantitative 
information on the bacterial species and resistance genes of a whole community. 
Large wastewater metagenomic datasets are now available to monitor and explore 
drivers of ABR in the community. However, questions remain about how to collect, 
analyse, and interpret these novel datasets. In this thesis, I aimed to 1) address key 
unknowns in wastewater data, including sources of resistance, environmental 
resistance dynamics, and what statistical models describe the distribution of the data 
well, and 2) investigate global and local patterns in wastewater resistance and identify 
potential community and hospital drivers. 
 
Methods: I used a systematic review to find evidence in the literature for dissemination 
of ABR from hospitals to wastewater. I next developed a compartmental transmission 
model to investigate environmental resistance dynamics and its impact on human ABR 
levels. I implemented a multi-response statistical model to correlate hospital-based 
surveillance (EARS-Net) data with resistance gene abundance in sewage samples 
from around the world analysed with metagenomics by the Global Sewage 
Surveillance Project. Finally, I used a paired sampling design and multiple statistical 
methods to compare the resistome of sewage from hospitals, communities, and 
wastewater treatment plants (WWTPS) in Scotland. I also investigated the links 
between ABR in humans and antibiotic consumption in the modelling and data 
analysis chapters. 
 
Results: I found increasing evidence in primary research that resistant bacteria and 
resistance genes can be disseminated from hospital patients to wastewater and into 
natural water sources. Modelling the dynamics of ABR in an environmental reservoir 
indicated that the environment can theoretically influence human ABR levels as much 
as or more than an animal reservoir, and mitigate intervention impacts. Combining 
EARS-Net and sewage metagenomic data indicated that some types of ABR are 
positively correlated in sewage and hospitals (such as aminoglycosides), but many 
are not (such as vancomycin and aminopenicillins). The paired sampling study 
demonstrated that hospital and community sewage resistomes are distinct, and 
WWTPs mostly reflect community sewage resistomes. I found mixed evidence for an 
impact of antimicrobial consumption on human ABR levels. Overall, the impact of 
antibiotic consumption at the population level appears to be small in these datasets. 
 
Conclusions: Wastewater metagenomics is a valuable way of monitoring ABR in the 
community. It can indicate the composition of the reservoir of ABR in the general 
population and what drives it. However, hospital rather than mixed municipal effluent 
may need to be collected to monitor clinical resistance patterns. To make the most of 
this new source of data more flexible modelling frameworks that account for 
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wastewater metagenomics specific factors such as high dimensionality and 
overdispersion. Comparing resistance patterns in hospitals to community sewage 
implied that patients and/or the hospital environment may present unique and strong 
selection pressures for resistance. Finally, we also show that differential antibiotic 
consumption alone cannot explain the observed patterns in resistance abundance on 
the national or international level. 
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Lay summary 
 
Antibiotic resistance is the ability of bacteria to escape the effects of antibiotics, making 
infections harder or impossible to treat. To prevent illness and death from resistant 
infections, we need to stop the bacteria from spreading and treat infections with the 
right kind of antibiotics. My thesis is about how we can use data from sewage samples 
to understand why resistant bacteria spread and what kinds of resistance are most 
common. 
 
Many healthy people in the community carry resistant bacteria in their gut without 
knowing, but these bacteria could cause serious infections later or spread to other 
people. We can use samples of sewage to learn more about resistance in the 
community. Sewage samples are easy to collect, but contain bacteria from the faeces, 
urine and skin of thousands of people. The profile of all the different kinds of bacteria 
and resistance genes in a sample can be identified by looking at the DNA in a sewage 
sample. Analysing all the DNA of a sample in this way is known as metagenomics. By 
combining sewage and metagenomics, we have a very rich source of information on 
the resistance profile (or resistome) of the community. 
 
In this thesis I asked: what is in the community resistome, and how and why does the 
community resistome differ between countries? Secondly, what sampling and data 
analysis methods should be used to make the most of sewage metagenomics?  
 
I reviewed existing studies of resistant bacteria and resistance genes from hospitals 
in wastewater. These studies showed that resistant bacteria can be carried from 
hospital patients and environments to wastewater.  
 
I next studied sharing of resistant bacteria between humans, animals, and the 
environment with a computational model. The results showed that the environment 
should be considered as an additional source of resistance for humans, and it can 
make preventive measures like reducing antibiotic usage in animals less effective. 
I also compared the resistance levels of patients in hospitals with community sewage 
in countries across Europe. Other studies have also made this comparison, but here I 
used a statistical model that made use of more information about both datasets. 
Hospital and sewage resistance patterns reflected each other in some types of 
resistance but not in other types.  
 
I went on to explore more about how the resistance profile of hospital and community 
sewage might be different by collecting sewage samples from hospitals, groups of 
households, and from the whole community (including hospitals). For the statistical 
analysis I used three different methods to make our results more robust. Groups of 
households and the whole-community sewage had similar resistomes, and the 
hospital sewage resistome had more types of resistance genes. 
 
I have shown in this thesis that sewage metagenomics is a valuable way of monitoring 
resistance in the community. Wastewater can also be used to look at hospital 
resistance, especially in samples of sewage from directly outside hospitals. However, 
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we also demonstrate that the resistome of patients may be quite different to the 
resistome of healthy community members. Finally, we have shown that using flexible 
data analysis methods that reflect the structure of sewage metagenomics better is 
important to make the most of wastewater metagenomics. 
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1.1 What is antibiotic resistance? 
 
Antibiotic resistance (ABR) is the ability of bacteria to tolerate or prevent the effects of 
the group of compounds used to treat bacterial infections known as antibiotics. 
Antibiotics are a staple of modern medicine, reducing mortality from infectious 
diseases throughout the 20th century (Cohen, 2000), as well as making a range of life-
saving surgeries and immune-compromising chemotherapies possible (Smith & 
Coast, 2013). However, since the discovery of penicillin in 1928, bacterial resistance 
has repeatedly emerged soon after the introduction of nearly every new antibiotic (J. 
Davies & Davies, 2010; Ventola, 2015). Bacteria themselves produce antibiotics and 
other small molecules to compete with their bacterial neighbours, destroying others 
nearby or inhibiting their growth (Granato et al., 2019). This means that bacteria have 
already been in an arms race with each other to develop new antibiotics and gain 
resistance for millennia (D’costa et al., 2011). Although there is much research into 
new antibiotics, there is a declining discovery rate (Hutchings et al., 2019), and doubt 
that current resistance can be reversed (Andersson & Hughes, 2010): resistance may 
be a permanent feature of infection medicine.  
 
Antibiotic resistance is also a serious threat to global public health. Recent estimates 
suggest that  0.911 – 1.71 million deaths attributable to resistant infections occurred 
in 2019 (Murray et al., 2022). Forecasting estimates of the future burden of ABR are 
highly uncertain due to a lack of reliable data, particularly in Lower and Middle Income 
Countries (LMICs) (de Kraker et al., 2016), but one estimate suggested there could be 
10 million deaths as a result of resistant infections in 2050 (O’Neill, 2014). Untreatable 
infections will also have a knock-on effect on the economy and the standard of living. 
The World Bank estimates that without a reduction in the current burden of antibiotic 
resistance, a 1.1 – 3.8% fall in GDP is likely by 2050, as well as losses in livestock 
production, increases in health care costs, and increases in poverty (World Bank, 
2017). In LMICs, the number of people falling into extreme poverty could increase by 
6.3 – 26.2 million people by 2050 (World Bank, 2017). A hindrance to combatting ABR 
is a lack of good quality, non-resource-intensive, heterogeneous, information-rich 
surveillance data on resistance levels in the general population – metagenomic 
analysis of wastewater has been proposed as a means to fill in these gaps (Aarestrup 
& Woolhouse, 2020; Pruden et al, 2021). 
 
In this thesis, I investigate the use of wastewater metagenomics for surveillance of 
antibiotic resistance. The general introduction will describe how and why bacteria gain 
resistance and spread, the epidemiology of ABR in humans, animals, and the 
environment, and the use of surveillance, particularly wastewater metagenomics, for 
understanding and monitoring resistance. I will then summarise my aims, objectives, 
and methodology. 
 
1.2 Mechanisms, emergence, and spread of resistance in bacteria 
 
Several routes to antibiotic tolerance or resistance are found in bacteria. Firstly, 
bacteria can break down or modify the antibiotic molecule so it is no longer effective 
(Blair et al., 2015). For example, enzymes such as carbapenemase hydrolyse β-
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lactam antibiotics before peptidoglycan synthesis (the antibiotic target) is disrupted 
(Llarrull et al., 2010). Secondly, bacteria can reduce the intracellular concentration of 
an antibiotic (Blair et al., 2015). Reducing cell wall permeability can decrease uptake 
of an antibiotic, or increasing expression of efflux pumps can remove antibiotics in the 
cell (Blair et al., 2015). Overexpression of efflux pumps that target antibiotics such as 
tetracycline are particularly common in Gram-negative bacteria (X. Z. Li et al., 2015). 
Thirdly, the target of an antibiotic can be altered (Blair et al., 2015). For example, 
fluoroquinolone destroys cells by binding to topoisomerases and preventing their 
action to unwind supercoiled DNA (Aldred et al., 2014). Resistance to fluoroquinolones 
is often caused by mutations to the topoisomerases which mean that the antibiotic can 
no longer bind (Aldred et al., 2014).  
 
Resistance can be gained or intrinsic. Intrinsic resistance is a particular problem in 
Gram-negative bacteria, which have lower cell wall permeability than Gram-positive 
bacteria, and a greater number of efflux pumps (Cox & Wright, 2013). Gained antibiotic 
resistance comes in two types: mutations and acquired genes (J. Davies & Davies, 
2010; Munita & Arias, 2016). Mutation can alter the structure of an antibiotic target, 
and can also adapt existing genes to generate new resistance determinants (J. Davies 
& Davies, 2010). Transmission of gene mutations is vertical, i.e. these resistance 
genes are spread through bacterial replication. Gene acquisition, on the other hand, 
occurs when a bacteria takes in DNA from another organism through horizontal gene 
transmission (Munita & Arias, 2016; Peterson & Kaur, 2018). A gene can be introduced 
into a new bacterial cell by conjugation, when plasmids are transferred between 
bacteria on specialised pili; through transduction, when genes are incorporated into 
the genome of a bacteriophage and transmitted to another cell; or through 
transformation, when bacteria take up free DNA from the substrate around them 
(Peterson & Kaur, 2018). Conjugation is thought to be the most common form of 
horizontal gene transfer of resistance genes (von Wintersdorff et al., 2016), although 
transduction and transformation also appear to be frequent, especially in the 
environment (Calero-Cáceres et al., 2019; Peterson & Kaur, 2018). Horizontal gene 
transfer is an ancient microbial process, allowing many bacteria to gain access to a 
diverse repertoire of genes (the pangenome) which can provide adaptive benefits to 
the local environment (Brockhurst et al., 2019).  
 
Acquired and intrinsic antibiotic resistance mechanisms can give bacterial lineages a 
selective advantage in the presence of antibiotics. With increasing use of antibiotics in 
medical and veterinary practice over the last 100 years, selection pressure for 
antibiotic resistance has also increased (J. Davies & Davies, 2010). For example, 
antibiotic consumption in humans is thought to have increased by 65% between 2000 
and 2015 alone – this increase is mostly driven by usage trends in LMICs, but HICs 
are still the majority consumers of antibiotics (Klein et al., 2018). In addition, antibiotics 
are increasing in concentration in the environment, potentially creating more selection 
pressure (Polianciuc et al., 2020). Rapid selection of resistance in response to 
exposure to antibiotics has been documented extensively with in vitro and in vivo 
experiments (Palmer & Kishony, 2013), and studies have also found that antibiotic 
exposure is a risk factor for resistant infections and in humans (Chatterjee et al., 2018). 
It is therefore crucial that antibiotics are not overused, in order to reduce unnecessary 
increases in selection pressures. In addition to problems of overuse, suboptimal usage 
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of antibiotics, such not treating early or failure to finish a treatment course, has been 
observed to select for resistance (Pradipta et al., 2018). In addition, use of antibiotics 
may lead to ‘bystander selection’, or selection pressure for resistance in bacteria that 
are not the therapeutic target, such as commensal or potentially pathogenic gut 
bacteria (Morley et al., 2019). Co-selection may also occur, where direct selection for 
a gene conferring resistance to an antibiotic or metal that is at locally elevated 
concentrations can also select for other antibiotic or metal resistance genes. This can 
be through linkage, when the genes are nearby on the chromosome, on the same 
mobile genetic element, or part of the same operon (Baker-Austin et al., 2006). In 
addition this can occur when a single resistance gene provides multiple resistance or 
cross resistance, such as the DsbA–DsbB system, with increases efflux of several 
metals and antibiotics (Baker-Austin et al., 2006). Co-selection and bystander 
selection are particular concerns for microbial communities exposed to multiple 
anthropogenic pollutants, such as fresh water microbiomes (Imran et al., 2019). To 
reduce selection pressure from overuse and suboptimal use of antibiotics, policies to 
guide antibiotic prescribing in humans and livestock have been introduced (Charani et 
al., 2021; Majumder et al., 2020). Testing the effectiveness of these interventions at 
population-level is challenging, but some studies have shown that improved antibiotic 
prescribing has been followed by a population level decrease in resistance prevalence, 
e.g. (Aliabadi et al., 2021).   
 
The spread of antibiotic resistance also involves on transmission of the resistant 
bacteria between hosts. The mode of transmission of resistant bacteria depends on 
the bacterial and host species. As a wide variety of bacterial species carry resistance, 
there is also a variety of transmission modes: contact, such as faecal-oral transmission 
of E. coli or sexual transmission of gonorrhoea; airborne, such as tuberculosis; droplet, 
such as meningococcus; vector borne, such as Lyme disease; and vehicular, such as 
via food or environmental fomites (Doron & Gorbach, 2008). Once an invading 
resistant bacterial colony has been transferred to a new host, it must be able to 
establish a population for transmission to be complete. The complex microbial ecology 
in the host microbiome can affect establishment (Kim et al., 2017). For example, the 
mammalian gut is a dense microbial community, with competition for space and 
nutrients (Kim et al., 2017). Resistance genes may confer a cost on their host, such 
as reducing the speed of replication for bacteria carrying large plasmids (Andersson 
et al., 2007). If the newly introduced resistant bacteria are not competitive, a colony 
may not be established. Exposing the host to antibiotics could make establishment of 
new resistant infections more likely by selecting for resistance, and compensating for 
the cost of resistance (N. G. Davies et al., 2019). At the same time, the mechanism of 
antibiotic resistance can influence the fitness of resistant bacteria in a microbial 
community; for example, those that increase intercellular concentrations of antibiotics 
such as efflux pumps may lead to depletion of nearby competing cells that are 
sensitive (Bottery et al., 2016). Establishment of infection is also affected by host 
immunity (Wheatley et al., 2021). The interplay of transmission modes, microbial 
ecology, and host immunology result in complex dynamics with multiple theoretical 
outcomes. 
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1.3 Occurrence of antibiotic resistance in humans, animals, and the 
environment  

 
The number of resistant infections and the rates of resistance (measured as proportion 
of bacterial isolates that are resistant) is increasing. Estimates of the current burden 
of resistance in humans include: 33,110 deaths attributable to resistant bacterial 
infections in Europe in 2015 (Cassini et al., 2019); 35,900 deaths attributable to 
infections from resistant bacteria and Candida in 2019 in the US (CDC, 2019); and 
1.27 million deaths attributable to resistant bacterial infections worldwide in 2019 
(Murray et al., 2022). The estimated proportion of bacterial isolates that are resistant 
depends on the bacterial species, type of resistance phenotype (e.g. tetracycline vs 
ampicillin resistance), site of infection (e.g. blood-stream or urinary tract infection), 
origin of infection (hospital- or community-acquired), country of study, and the 
methodology used to generate the estimate. For example, methicillin-resistant 
Staphylococcus aureus (MRSA), estimated to have caused 150,000 resistant 
infections in Europe in 2015 (Cassini et al., 2019), has an overall prevalence of less 
than 5% in Europe but may be as common as 80% in countries in Africa and the Middle 
East, according to the Global Burden of Disease study (Murray et al., 2022). The WHO 
Global Antimicrobial resistance and use Surveillance System (GLASS) report, on the 
other hand, reports that the proportion of patients with a blood-stream infection caused 
by MRSA was 33% in LMICs compared to 15% in High Income Countries (HICs) 
(WHO, 2021a). Similarly, fluoroquinolone-resistant E. coli was found in <30% of 
isolates in Europe and North America, but up to 80% in southern Asia (Murray et al., 
2022). Globally, the proportion of patients with community-acquired ciprofloxacin-
resistant E. coli is around 30%, rising to around 45% in patients with hospital-acquired 
infections (CDC, 2019). 
 
Current estimates of the spread of resistance focus on invasive infections. However, 
commensal and asymptomatically carried bacteria in healthy human gut microbiome 
also contain resistance genes (Lamberte & van Schaik, 2022). Theoretically, these 
bacteria could contribute to transmission of resistance to pathogenic bacteria and 
cause infections in the host, but little is known about the actual health risk attributable 
to a resistance gene in a healthy gut microbiome (A Zhang et al., 2021). Estimates of 
the prevalence of resistance in healthy gut communities is rare, but include a few 
studies of resistance in commensal E. coli isolates from community members: 72% of 
isolates resistant to ampicillin in LMICs between 1989 and 2020 (Nji et al., 2021); 44% 
of isolates resistant to ampicillin in China in 2009 (B. Li et al., 2014); and 45% of 
isolates resistant in the Paris area in 2010 (Massot et al., 2016). Collections of 
metagenomic data from faecal microbiomes from healthy individuals are also 
illuminating; for example, demonstrating that tetracycline resistance genes are the 
most common kind of antibiotic resistance gene (ARG) in healthy human guts, and 
that gut metagenomes from China had the highest resistance gene abundances (Feng 
et al., 2018). 
 
Resistant bacteria are found in humans, animals, and the environment. Many bacterial 
species, such as E. coli, can be exposed to antibiotics and gain resistance in more 
than one of these groups, and can be transmitted between groups (McEwen & 
Collignon, 2018; Robinson et al., 2016). Accordingly, humans, animals, and the 
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environment have shared microbiomes and resistomes, and an increase in one group 
may lead to increases in resistance in the other groups (McEwen & Collignon, 2018; 
Pehrsson et al., 2016). Therefore, the concept of One-Health is crucial in ABR 
research. The One-Health framework is based on the recognition that human health 
is connected to environmental and animal health, and approaches that work in multiple 
sectors are needed (Robinson et al., 2016). In the case of ABR, it suggests that the 
occurrence and drivers of resistance must be captured in all three compartments to 
understand patterns in resistance prevalence, and to inform interventions (WHO, 
2021b).  
 
Antibiotic resistance is also a health issue in wild and domestic animals. Although it 
has been estimated that 73% of antibiotics are used in food animals, there are few 
datasets available to estimate occurrence of resistance in livestock (Van Boeckel et 
al., 2017). Monitoring data from the European Centre of Disease Control (ECDC) 
suggests that some resistance rates to some, though not all, antibiotics in livestock 
are increasing (Food & Authority, 2022). The level of resistance also varies by the 
livestock species studied. Sampling commensal E. coli from healthy animal faeces, 
pan-susceptibility was more common in isolates from pigs and cows than from broilers 
and turkey (Food & Authority, 2022). In LMICs, antibiotic resistance in livestock is also 
increasing, and resistance levels are also higher in chickens than in pigs and cattle 
(Van Boeckel et al., 2019). However, there are fewer national surveillance 
programmes for livestock in LMICs than HICs despite a greater livestock population in 
these areas, making these estimates uncertain (Van Boeckel et al., 2019). Antibiotic 
resistance has also been observed in wild animals (Allen et al., 2010). Wild animals 
such as migratory wild birds, may contribute to the spread of antibiotic resistance 
caused by anthropogenic pollution, but the impact of resistance in wild animals on 
human health is poorly understood (Allen et al., 2010; Dolejska & Literak, 2019).  
 
The final One-Health component is antibiotic resistance in the environment. Antibiotics 
and resistant bacteria from human and animals are disseminated to the environment, 
most notably through wastewater and animal manure (Larsson & Flach, 2022; 
Polianciuc et al., 2020; Woolhouse & Ward, 2013). Antibiotic resistance genes have 
even been found in air, water, and soils close to regions of human activity as well as 
pristine environments (Van Goethem et al., 2018). Some cases of environment to 
human or animal transmission have been observed (Leonard et al., 2015). The 
environment may present a potent resistance selection opportunity for bacteria, as it 
contains a diverse community of bacteria and repertoire of resistance genes (Huijbers 
et al., 2019; Larsson & Flach, 2022). However, there is a limited understanding of the 
contribution of environmental resistance to human resistance (Bürgmann et al., 2018). 
If the environment can act as a reservoir of resistance, there could be dynamic 
consequences for human and animal epidemiology which need to be understood. 
 
1.4 Monitoring ABR: current approaches and limitations 
 
Surveillance is an essential component of controlling the spread of infectious diseases, 
including antibiotic resistance. According to the WHO, it is a cornerstone not only for 
understanding ABR burden but also for informing policies and prevention strategies 
(WHO, 2021a). Traditionally, government health departments have monitored 
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antibiotic resistance with surveillance programmes that are hospital-based, and collect 
reports of the phenotypic susceptibility testing of a set of drug-bug combinations from 
routine, case-based surveillance (i.e. passive data collection) (Ashley et al., 2018; 
Tacconelli et al., 2018). This type of surveillance is crucial for guiding prescribing 
practice, both at the time it is carried out for a specific patient, and when it is collated 
on the level of a specific hospital or region (Tacconelli et al., 2018). As well as national 
surveillance programmes, three international surveillance networks have been 
collating traditional surveillance data for over 20 years: the European Antimicrobial 
Resistance Surveillance Network (EARS-Net), the Central Asia and Eastern European 
Surveillance of Antimicrobial Resistance network (CAESAR), and the Latin American 
and Caribbean Network for Antimicrobial Resistance Surveillance (ReLAVRA) (WHO, 
2021a). In addition to these, over the last five years the WHO has set up a new global 
surveillance network, the Global Antimicrobial Resistance and Use Surveillance 
System (GLASS), which collects yearly data from hospitals and outpatient 
susceptibility testing for around 100 countries (WHO, 2021a). As this surveillance 
indicates numbers of serious infections, they are essential in current estimates of ABR 
burden, e.g. (Cassini et al., 2019; Murray et al., 2022; O’Neill, 2014). 
 
However, traditional surveillance approaches are also limited. Data from these 
surveillance systems may be unreliable. They are resource intensive, requiring 
medical microbiology laboratories and staff, which has led to patchy data in low-
resource, Low Income Countries (LIC) and Lower and Middle Income Countries 
(LMIC) settings (Ashley et al., 2018; Diallo et al., 2020; Iskandar et al., 2021). Although 
guidelines such as the European Committee on Antimicrobial Susceptibility Testing 
(EUCAST) and Clinical & Laboratory Standards Institute (CLSI) exist to standardise 
the microbiological testing, there is much heterogeneity in methodology between 
countries and even between laboratories within a country (Tacconelli et al., 2018). For 
example, EARS-Net only mandated that EUCAST guidelines be followed in 2019 – 
prior to this different countries may have used different guidelines (European Centre 
for Disease Prevention and Control, 2020). Heterogeneity in testing methods is even 
greater in LICs and LMICs (Iskandar et al., 2021). Therefore, there is a lack of 
comparability of the results between countries, years, and drug-bug combinations 
(Iskandar et al., 2021; Tacconelli et al., 2018).  
 
In addition to unreliability, there is also a question about how representative and 
informative these data are. Inpatient hospital samples may not be representative of 
resistance rates in the community. This is especially the case in invasive blood-stream 
infection monitoring, where for a patient to be sampled and tested, they must be 
seriously ill (Tacconelli et al., 2018). Moreover, the resistance patterns in samples of 
invasive isolates may not be representative of the resistance among all bacteria 
carried by a patient – i.e., these datasets do not help relate infection to carriage (Diallo 
et al., 2020). The use of susceptibility testing of isolates means that the genetic basis 
for resistance is not recorded, resulting in a loss of information about the mechanisms 
and relatedness of resistance in different samples (Diallo et al., 2020; McArthur & 
Tsang, 2017). By focusing on a set of the most currently clinically relevant drug-bug 
combinations, traditional surveillance systems may also fail to capture the whole 
landscape of emerging resistance (Diallo et al., 2020; McArthur & Tsang, 2017). Clinic- 
and hospital-based surveillance systems are also not compliant with the One-Health 
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framework, as they do not integrate monitoring across human, animal, and 
environment sectors (Hu et al., 2018).  
 
Some surveillance programmes have taken steps to address some of these 
limitations, for example WHO GLASS, which collects data from multiple sample types, 
including blood-stream, genital and urinary tract (WHO, 2021a). WHO GLASS also 
asks for the origin of infection to be collected (hospital, community, or unknown), and 
for information to be given on testing standards and external quality assessments used 
(WHO, 2021a). In addition, a new surveillance scheme is currently being set up as 
part of the GLASS technical module on One-Health to fill gaps in data on resistance 
in animals, the environment, and asymptomatic community carriers (WHO, 2021b).  
The extended-spectrum beta-lactamase E. coli Tricycle Project will collect samples 
from hospitalised patients, healthy community members, food animals, municipal, 
slaughterhouse, and wet market sewage samples, and natural water samples (WHO, 
2021b). 
 
1.5 Monitoring ABR: Wastewater surveillance and metagenomics 
 
Researchers and policy makers have suggested that wastewater samples may be an 
attractive new source of population-level surveillance for ABR. Wastewater 
surveillance has been used for decades to monitor the spread of infectious diseases 
with high numbers of unreported cases in the community, including enteroviruses such 
as polio (Asghar et al., 2014), Salmonella typhi (Diemert & Yan, 2019), and more 
recently for SARS-CoV2 (Fernandez-cassi et al., 2021). For antimicrobial resistance 
surveillance, sewage sampling could address several of the limitations of traditional 
surveillance: it is unbiased, representing all people in a municipal area whether they 
are healthy or not; it can represent the whole human faecal microbiome, including 
pathogenic and commensal bacteria that may be carrying resistance; it is easy and 
cheap to collect in all countries; it is not individual-level, so there are fewer data 
sensitivity issues; and it is more One-Health compatible by integrating the environment 
(Aarestrup & Woolhouse, 2020; Hendriksen et al., 2019; Pruden et al., 2021). In 
addition, sewage sampling for surveillance can have multiple uses, including 
monitoring risks of antibiotic resistance in the environment on human health, and the 
impacts of anthropogenic pollution on environmental health (Huijbers et al., 2019).   
 
Metagenomics has also been proposed as a tool for wastewater surveillance of 
antibiotic resistance (Aarestrup & Woolhouse, 2020; Hendriksen et al., 2019). In the 
metagenomic approach, all DNA in a sample is extracted and sequenced without 
culturing, after which the collection of sequenced read fragments can be compared to 
reference databases of bacterial, archaeal, and eukaryotic genomes (Wooley et al., 
2010). The read collection can also be searched for hits to resistance genes to capture 
a quantitative profile of resistance gene abundance in a sample (Bengtsson-Palme et 
al., 2017; de Abreu et al., 2021; Rooney et al., 2021). Metagenomics was developed 
as a way to assess the whole microbial community in a sample, particularly an 
environmental one, in which the majority of bacterial species are not culturable so are 
not suited to whole genome sequencing (Bengtsson-Palme et al., 2017; Wooley et al., 
2010).  It can provide rich information on the taxonomies and resistance genes of 
species in samples which represent whole microbial communities, which is particularly 
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useful for exploratory analyses and characterising intra-species interactions 
(Bengtsson-Palme et al., 2017; Wooley et al., 2010). In addition, metagenomic data 
can be used for investigating whole community dynamics, which is particularly 
important for understanding the microbial ecology of the environmental resistance (de 
Abreu et al., 2021; Wooley et al., 2010). 
 
There are now an increasing number of wastewater surveillance datasets, including 
several metagenomics ones. The largest is the Global Sewage Surveillance Project, 
which has applied metagenomic analysis to samples from over 100 countries between 
2016 and 2018 (Global Sewage Surveillance Project, 2020; Hendriksen et al., 2019). 
A key finding of this study was that the global sewage resistome forms two clusters: 
one with developed countries, including Europe, North America, and Australasia, and 
another other with developing countries in South America, Africa, and Asia 
(Hendriksen et al., 2019). Other international datasets of wastewater surveillance 
include (Pärnänen et al., 2019) and (Huijbers et al., 2020), who applied large panels 
of qPCR wastewater across Europe. These studies found that there was 
correspondence between the abundance of resistance genes in sewage and the level 
of resistance in clinical surveillance data (Huijbers et al., 2020; Pärnänen et al., 2019). 
Other research groups have sampled widely across single countries, including China 
(Su et al., 2017), Germany (Alexander et al., 2020), and the UK (Ludden et al., 2017), 
or within a single city, including Copenhagen in Denmark (Brinch et al., 2020), 
Stockholm (Kwak et al., 2015) and Gothenburg (Hutinel et al., 2019) in Sweden, New 
Delhi in India (Lamba et al., 2018), and more. In addition, studies are now sampling 
from individual effluent points, particularly hospitals (Korzeniewska et al., 2013; Perry 
et al., 2021). 
 
Wastewater surveillance with metagenomics is a new technology and comes with 
unknowns. An important question is how well the human faecal microbiome is 
represented in wastewater systems. Other non-human sources such as 
pharmaceutical effluent may also contribute resistant material (Guardabassi et al., 
1998), and microbiological processes within wastewater may alter the resistome 
(McLellan & Roguet, 2019; Vandewalle et al., 2012). How much of an effect these 
have on the composition of sewage is not well understood. Some studies have shown 
that sewage resistomes mostly represent the human microbiome (Newton et al., 
2015), whereas others have highlighted that environmental bacteria as well as faecal 
bacteria dominate the sewage microbial composition (Vandewalle et al., 2012). 
Another unknown is which human microbiomes are represented in the sewage. Many 
wastewater treatment plants (WWTPs) capture hospital effluent as well as domestic 
effluent, but the size of the contribution of hospitals to the WWTP resistome is still 
being investigated (Buelow et al., 2018). Moreover, although wastewater can be found 
all over the world, wastewater systems in LMICs and HICs may vary greatly, with 
poorer wastewater infrastructure and fewer people connected to the main sewers in 
LMICs (Nadimpalli et al., 2020), introducing a risk of additional non-human 
contamination and that the whole community may not be represented in sewage 
samples in these countries. Epidemiological data such as antibiotic consumption could 
therefore have different relationships with resistomes in community members, 
patients, and mixed municipal sewage. 
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Metagenomic analysis leads to a trade-off between quantification of a wide breadth of 
resistance genes and loss of information on the bacterial host a resistance gene has 
come from, and detection of some kinds of resistance gene (Bengtsson-Palme et al., 
2017). A lack of connection between the resistance gene and its bacterial host results 
in some loss of information in comparison to culture-based whole genome sequencing 
methods (Aarestrup & Woolhouse, 2020). In addition, it means that we cannot tell 
whether there are multiple copies of a resistance gene in a sample because there are 
several resistant bacteria, or because there are several copies within a few bacteria. 
Bacterial resistance that arises from up-regulation of efflux, or changes to the 
sequence of a chromosomal gene such as gyrA that prevent antibiotic binding, are not 
always included in reference databases, particularly ResFinder, which focuses on 
acquired resistance genes (Bengtsson-Palme et al., 2017). In addition, point mutations 
to chromosomal genes giving resistance will only be detected if a read overlaps with 
this region, making detection of these genes particularly low sensitivity (Bengtsson-
Palme et al., 2017; Rooney et al., 2021). These factors must be taken into account 
when analysing and interpreting wastewater data. 
 
Wastewater metagenomics is also a noisy source of data. There are many 
opportunities for randomness to influence the resulting resistance gene read hit 
counts. Rare bacteria and resistance genes might not be captured in a single sample 
of wastewater (Bengtsson-Palme et al., 2017; de Abreu et al., 2021). Wastewater 
sampling can capture different numbers of people by chance, and estimating the true 
number of people captured for normalisation is challenging (Isaksson et al., 2022). 
The process of sample storage, DNA extraction and amplification introduces further 
opportunities for some fragments of bacterial genomes to be over- or 
underrepresented in comparison to the sample’s composition (Bengtsson-Palme et 
al., 2017; de Abreu et al., 2021; Ko et al., 2022). Finally, the position of a read within 
a gene sequence can influence the accuracy of read calling – a read from a non-
variable region of two very similar genes could be assigned to either, depending on 
the mapping algorithm (Bengtsson-Palme et al., 2017; de Abreu et al., 2021). The 
impact of these sources of noise are overdispersion and zero-inflation in read hit 
counts (Bengtsson-Palme et al., 2017). Protocols for wastewater metagenomics, from 
sampling to read calling, can be established to minimise and standardise this noise 
between datasets, and these pipelines are increasingly frequently used (de Abreu et 
al., 2021).  
 
Appropriate analysis methods are needed to take advantage of sewage metagenomic 
data by dealing with high dimensionality, noise, and overdispersion in metagenomic 
data. However, many studies of wastewater currently use simple analysis such as 
bivariate correlation, descriptive cluster methods, and linear regression on 
transformed read counts. These techniques risk loss of information by not considering 
the whole resistance profile, loss of power by not accounting for explainable variance, 
and are too non-specific to represent mechanistic theories about human and sewage 
resistance patterns. Some examples of other types of analysis of metagenomic data 
exist (Duarte et al., 2021; Hendriksen et al., 2019; Peng et al., 2016), but further 
innovation is needed in this area. 
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1.6 Aims and objectives 
 
Overall aim of thesis: Understanding the spatial and temporal factors that affect the 
global spread of ARGs in humans and the urban wastewater environment. 
 
Thesis objectives: 
 

1) To investigate the role that the environment might play in the spread and 
emergence of ABR; 

2) To identify epidemiological datasets that best represent the occurrence of 
ARGs in sewage; 

3) To perform analysis of the spatial and temporal distributions of ARGs in 
sewage to inform the design of surveillance systems; 

4) Using wastewater metagenomic data, develop predictive models of the 
distribution of resistance genes in space and time. 

 
 
1.7 Thesis outline 
 
In this thesis, I investigated the sources and spread of resistance in wastewater, and 
the uses of wastewater metagenomics for surveillance of resistance. 
 
In Chapter 2, I used a systematic scoping review to investigate dissemination of 
resistance from hospitals to wastewater, and evaluate the quality of evidence and 
knowledge gaps in this area. 
 
In Chapter 3, I used a mathematical model to investigate the transmission of 
resistance between humans, animals, and the environment, and comment on the 
consequences of an environmental reservoir of resistance for human resistance 
epidemiology and prevention strategies. 
 
In Chapter 4, I used a statistical multi-response linear model to estimate the 
correlations between sewage and clinical resistance levels using data from EARS-Net, 
Global Sewage Surveillance Project, and comment on the relationship between 
antibiotic consumption and resistance abundance. 
 
In Chapter 5, I used a paired sampling design and metagenomic analysis wastewater 
in Scotland and multiple statistical methods to investigate the relationship between 
hospital and community wastewater resistomes. 
 
In Chapter 6, I will discuss the findings of Chapters 2 – 5 and make concluding 
remarks. 
 



2 Dissemination of hospital-associated antibiotic 
resistance to wastewater: a systematic scoping 
review 
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2.1 Abstract 
 
Background: Hospital wastewater is a potential reservoir of clinical antibiotic 
resistance (ABR). This reservoir presents a challenge to using wastewater for 
surveillance of resistance in the community. However, it is not yet known how well 
hospital wastewater represents the patient resistome, or how much downstream 
municipal effluent represents the hospital effluent resistome. In this chapter I aimed to 
describe the evidence for dissemination of hospital-associated ABR to hospital and 
municipal wastewater.   
 
Methods: I used a systematic scoping review. I downloaded articles about resistant 
bacteria or resistance genes and hospital and municipal wastewater from PubMed, 
Scopus, and Web of Science. Data extraction was conducted on articles that claimed 
they had demonstrated evidence in favour of or against dissemination of ABR from a 
hospital source into hospital or municipal wastewater. Data extracted included the 
route of dissemination, study conclusion, statistical and laboratory methods, and types 
of resistant bacteria studied.  
 
Results: A total of 1454 unique studies were downloaded from databases, of which 
201 studies were included in any data extraction. A number of studies claimed to find 
evidence of dissemination of resistance from hospital effluent to municipal wastewater 
(40 studies) and a few for hospital patients to hospital wastewater (9). Among 61 
studies with conclusive findings, most used medium resolution typing methods: gene 
presence (e.g. PCR) for resistance typing (26) and fingerprint (e.g. PFGE) or 
phenotypic methods for bacterial species typing (17 studies each). 128 used some 
kind of statistical method, but conclusive studies were more likely than inconclusive to 
have used statistics (73.4% vs. 59.3%). Few conclusive studies used control samples 
from the community (8 effluent and 2 healthy human samples). 
 
Conclusions: There is evidence from the literature that resistant bacteria can 
disseminate from hospital patients to hospital and municipal wastewater. However, 
there are many medium or low evidence quality studies, as well as conflicting results, 
which hinder interpretation. To fully disentangle the community resistome from the 
hospital resistome in municipal wastewater, we need more high evidence quality 
studies that use high resolution typing, statistical methods, and targeted sampling 
designs including controls. 
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2.2 Introduction 
 
Antibiotic resistance in wastewater is a growing area of research. As a reservoir of the 
human resistome (Hendriksen et al., 2019; Newton et al., 2015), it has been proposed 
as a medium for monitoring resistance in the human population (Aarestrup & 
Woolhouse, 2020; Hendriksen et al., 2019; Pärnänen et al., 2019; Pruden et al., 2021). 
However, wastewater systems collect effluents from multiple sources as well as the 
community, including hospitals and industrial premises (Pruden et al., 2013), abattoirs 
(Nguyen et al., 2021) and other large buildings like offices and schools. Wastewater 
samples therefore represent multiple resistome signatures. For sewage surveillance 
to be an effective method for monitoring resistance in the community or in hospitals, 
the contribution of each of these sources to resistance in a mixed effluent sample must 
be understood. 
 
The contribution of hospitals is a particular concern, because hospitals are a focal 
point for bacterial infections and antibiotic usage. Resistant bacteria therefore can 
emerge in hospitals that are not common in the community. There is concern that 
municipal wastewater downstream from hospitals could have elevated resistance 
levels, or an altered resistance profile, which reflects the hospital rather than the 
community (Hassoun-Kheir et al., 2020; Hocquet et al., 2016). This has implications 
for both surveillance and the risks to human and environment health of wastewater: 
clinical effluent resistomes may alter sewage surveillance findings and may contain 
resistant bacteria that are of public health concern. Therefore, there has been interest 
in comparing hospital, municipal, and community effluents (Gao et al., 2022; Hassoun-
Kheir et al., 2020; S. Zhang et al., 2020).  
 
Figure 2.1: Potential routes of dissemination of hospital-associated resistant 
bacteria to municipal sewage  

Routes that I aimed to study in this review highlighted in black, other related routes 
in grey. 
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Within hospitals, resistant bacteria can be found in patients, staff, and the 
environment, and transmission between these sources has also been observed or 
suspected (Constantinides et al., 2020; Tacconelli & Cataldo, 2008). This suggests 
there are potentially multiple sources of resistance in the hospital effluent (Fig. 2.1). It 
also seems possible that patient and hospital environment resistomes could be 
characterised by different resistant bacteria, for example more environmental bacteria 
thriving in the hospital environment (Hassoun-Kheir et al., 2020). To understand how 
hospital or municipal wastewater can be used for surveillance of patients or community 
members, the contribution of these different sources to hospital effluent also needs to 
be investigated. 
 
A growing number of studies have compared resistance in hospital patients, 
environments, and effluents, and there is a need to synthesise the results of these 
studies. Evidence from a research field can be collated and synthesised in systematic 
reviews. Previous systematic reviews have investigated resistant bacteria in WWTPs 
(Pazda et al., 2019), and community compared to hospital effluents (Hassoun-Kheir 
et al., 2020; S. Zhang et al., 2020). However, there is lack of reviews considering 
different hospital to wastewater transmission routes, and of broad scope reviews that 
consider multiple resistant bacteria, bacterial genes, and study designs. 
 
In this chapter, I conducted a systematic scoping review of the literature on the 
dissemination of hospital-associated ABR in wastewater. Using broad search terms 
and screening criteria, I identified studies that sampled wastewater and hospital 
resistance sources, and made one or more conclusions about dissemination of 
resistant bacteria. I aimed to describe the evidence for dissemination of ABR from 
hospital sources to hospital or municipal wastewater. My objectives were to: 1) 
systematically review the literature to identify studies of the dissemination of hospital-
associated ABR to wastewater; 2) summarise the evidence for different hospital-based 
sources of resistance wastewater; and 3) appraise the characteristics and quality of 
the methodologies of these studies.  
 
2.3 Methods 
 
2.3.1 Eligibility criteria 
 
I adapted the PECO (Population, Exposure, Comparison, Outcome) framework for 
environmental health evidence reviews (Collaboration for Environmental Evidence, 
2013) to define the following criteria for assessing the relevance of a study to the 
research questions, described in Table 2.1.  
 
I did not make a comparison group necessary so that the research question and 
eligibility criteria were applicable to a range of study designs, i.e. both direct and 
indirect studies of the exposure. Municipal wastewater is defined as wastewater 
containing all domestic effluent or a mixture of domestic and other effluent types, 
treated or untreated. Clinical wastewater includes effluent from hospitals, treated or 
untreated. I also included static sewage such as latrines and septic tanks.  
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Based on this framework and the objectives of the study, I selected the following 
criteria for a study to be ineligible in the evidence synthesis:  1) not available in English; 
2) not about antibiotic resistance in bacteria; 3) not primary data analysis published in 
a peer-reviewed journal (i.e., excluded reviews and conference abstracts); 4) 
observational study design (i.e. no experimental studies such as those that use an 
experimental wastewater system); 5) no human wastewater of any kind sampled 
directly or indirectly; 6) only samples from one wastewater source type with no 
comparison or exposure group studied (i.e. hospital or municipal wastewater samples 
only). The aim of these criteria was to select studies that have appropriate sampling 
to study any of the routes of dissemination of ABR from clinical sources into 
wastewater shown in Fig. 1. For example, studies that measured resistance in hospital 
patients or environment and hospital wastewater, or studies that measured resistance 
in municipal wastewaters up- and downstream of a hospital, would be included. 
 
Table 2.1 PECO-style framework for each research question 

PECO question element Description 

Population ABR genes or bacteria in hospital or municipal 
wastewater 

Exposure ABR genes or bacteria in hospital sources 
(wastewater, patients, environment) 

Comparison 
ABR genes or bacteria in municipal wastewater 
without hospital impact, or none (population and 
exposure samples only) 

Outcome 
A claim that the study results provide evidence in 
support of or against directional transfer of ABR 
genes or bacteria from the exposure source to one 
of the populations of interest. 

 
The eligibility of studies according to criteria 1 – 6 was initially assessed in a title and 
abstract screen. If an abstract was not available, the full text was used. 
 
2.3.2 Sources of information and search strategy 
 
I searched the following electronic databases: PubMed, Scopus, and Web of Science. 
The search terms used for each database can be found in Table 2.2. Search terms 
were identified through studying search terms of other similar systematic reviews 
(Chatterjee et al., 2018; Greig et al., 2015) and tested using PubMed. I aimed to 
retrieve articles that were about both ABR in bacteria and wastewater. I used a date 
restriction between 1900 and the 21st July, 2021.  
 
2.3.3 Data extraction 
 
Included studies were split into two categories for data extraction. I conducted a full 
data extraction from studies with an evidence statement in support of dissemination of 
ABR from clinical environments to wastewater. An example of an evidence statement  
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might be “Our results suggest that resistant bacteria in hospital effluents are carried 
into municipal wastewater” or “Our results show that resistance in WWTP influent is  

Table 2.2: Database search terms 

Database Search terms 

PubMed (sewage OR sewer OR sludge OR slurry OR "waste water" OR effluent)  
 
AND (antimicrobial drug resistance[MeSH Terms] OR antimicrobial drug 
resistances[MeSH Terms] OR antibiotic resistance, bacterial[MeSH Terms] 
OR antibiotic resistance, microbial[MeSH Terms] OR drug resistance, 
microbial[MeSH Terms] OR antimicrobial drug resistance[MeSH Terms] OR 
antimicrobial drug resistances[MeSH Terms] OR resistome) AND (hospi* 
OR patient* OR clinic*)  
 
AND ("1900"[Date - Publication] : "2021/07/21"[Date - Publication])  

Scopus TITLE-ABS-KEY ( "antimicrobial resistan*"  OR  "antibiotic resistan*"  OR  
"drug resistan*"  OR  "multidrug resistan*"  OR  resistome )   
 
AND  TITLE-ABS-KEY ( sewage  OR  sewer  OR  sludge  OR  slurry  OR  
"waste water"  OR  effluent )  AND  TITLE-ABS-KEY ( hospi*  OR  clinic*  
OR  patient* )   
 
AND  LOAD-DATE  <  20210722  

Web of 
Science 

(TS = ( "antimicrobial resistan*"  OR  "antibiotic resistan*"  OR  "drug 
resistan*"  OR  "multidrug resistan*" )  OR TI = ( "antimicrobial resistan*"  
OR  "antibiotic resistan*"  OR  "drug resistan*"  OR  "multidrug resistan*" )  
OR FT = ( "antimicrobial resistan*"  OR  "antibiotic resistan*"  OR  "drug 
resistan*"  OR  "multidrug resistan*" )  OR SU = ( "antimicrobial resistan*"  
OR  "antibiotic resistan*"  OR  "drug resistan*"  OR  "multidrug resistan*" )  
OR WC = ( "antimicrobial resistan*"  OR  "antibiotic resistan*"  OR  "drug 
resistan*"  OR  "multidrug resistan*" )  ) 
 
AND  (TS = ( sewage  OR sewer OR sludge  OR  slurry  OR  "waste water"  
OR effluent)  OR TI = ( sewage  OR sewer OR  sludge  OR  slurry  OR  
"waste water" OR effluent) OR FT = ( sewage  OR sewer OR  sludge  OR  
slurry  OR  "waste water" OR effluent) OR SU = ( sewage  OR sewer OR  
sludge  OR  slurry  OR  "waste water" OR effluent) OR WC = ( sewage  OR 
sewer OR  sludge  OR  slurry  OR  "waste water" OR effluent)  )  
 
AND (TS = (hospi* OR clinic* OR patient*)  OR TI = ( hospi* OR clinic* OR 
patient*) OR FT = ( hospi* OR clinic* OR patient*) OR SU = ( hospi* OR 
clinic* OR patient*) OR WC = (hospi* OR clinic* OR patient*)  ) 
 
Date range selected: 01/01/1900 – 21/07/2021 
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impacted by hospital effluents.” For studies that did not make this claim of this kind, I 
used partial data extraction. The data that was extracted in these two groups is 
presented in Table 2.3.  
 
For studies with an evidence statement, I recorded the finding (positive or negative) 
and the route of ABR dissemination studied. For example, I would record that the 
evidence claim stated that the authors believed positive evidence was found for 
dissemination of ABR from hospital wastewater to municipal wastewater. Recording 
the evidence claim and direction of transfer follows the methods of Muloi et al, 2018, 
and allowed the study of the full range of different routes identified, making it suitable 
for a scoping review. Secondly, by recording some data from conclusive and 
inconclusive studies, I could identify which methods generated conclusive results, 
therefore what study designs are needed in future.  

 
For all included studies, I extracted information on the types of antibiotic resistance 
phenotypes measured in a study. I extracted this data for all included studies because 
I hypothesised that the antibiotic phenotype measured may influence the study results 
and evidence statement. For example, some phenotypes such as carbapenem 
resistance could be being more likely to be detected in hospitals than in community 
settings. For a resistance to a particular antibiotic to be considered to have been 
measured, the study needed to either use phenotypic testing of isolates, or detect the 
presence of a resistance gene that conferred resistance to that antibiotic. When 
possible, I grouped antibiotics studied into the WHO Anatomical Therapeutic Chemical 
Classification (ATC) Level 5 groups for comparability between studies and to reduce 

 

Table 2.3: Data extraction for each of the evidence groups 

Data extraction 

Evidence group 
Full data extraction (studies 
with an evidence claim) 

Partial data extraction 
(studies without an evidence 
claim)  

Year of publication Yes Yes 
Countries sampled 
(sewage samples 
only) 

Yes Yes 

Route of ABR 
transfer studied 

Yes NA 

Study finding Yes NA 
Antibiotic resistance 
phenotype 

Yes Yes 

Laboratory typing 
methods 

Yes No 

Statistical analysis 
methods 

Yes Yes 

Hospital sample 
types 

Yes Yes 

Other sample types Yes  No 
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the number of antibiotic groupings. Studied that used shotgun metagenomics, whole 
genome sequencing, or a large PCR panel of resistance genes were recorded as 
measuring all antibiotic resistance phenotypes. 
 
For studies with an evidence statement, I extracted information on the bacterial group 
that was measured. I considered a bacterial group to be measured if its presence in a 
sample was detected by culture, PCR, or metagenomics. Studies that used shotgun 
or taxonomic metagenomics were recorded as measuring all bacterial groups. 
 
Statistical methods were recorded as any kind of frequentist statistical test (such as 
regression, t-test, Pearson’s correlation, with a p-value reported), Bayesian analysis 
(such as regression with a Bayesian fitting method), cluster analysis (including 
clustering on the basis of abundance similarity and sequence similarity, such as 
principal components analysis or hierarchical clustering of gene sequences), 
phylogenetics (including maximum likelihood, parsimony, and Bayesian methods), 
permutations (such as Redundancy Analysis with Monte Carlo permutations), network 
analysis (such as minimum spanning trees), and machine learning (such as random 
forest analysis). Both cluster analysis based on genetic sequence similarity and 
phylogenetics aim to demonstrate the relatedness of strains, but I distinguish between 
them to capture the use of a model in the latter analysis method. When the type of 
analysis used was unclear, or the statistical model was described but the fitting method 
was not, the type of statistics was classed as ‘unclear’. 
 
Information on the laboratory methods used for establishing resistance types and 
bacterial types were collected from conclusive studies. Laboratory methods for 
resistance typing were broadly classified as phenotypic (disk diffusion, incubation with 
antibiotic in broth or agar, or incubation with non-antibiotic reagents such as clavulanic 
acid in the E test), gene presence (PCR, qPCR, or metagenomics without sequence 
analysis), or gene sequence (whole genome and resistance gene sequencing). Based 
on Muloi et al, 2018, I describe phenotype testing as low resolution, gene presence 
testing as medium resolution, and gene sequencing as high resolution, with respect to 
determining the relationship between resistant bacteria in different samples (Muloi et 
al., 2018).  
 
Similarly, laboratory methods were classified (in order of resolution) as phenotypic 
(selective media culture, colony morphological characteristics), bacterial fingerprinting 
such as PFGE, DGGE and MALDI-TOF, partial sequencing such as MLST, 16/18s, 
and shotgun metagenomics, and whole genome sequencing. 
 
2.3.4 Evidence quality assessment 
 
I assessed the quality of the evidence collected by recording data on a) 
appropriateness of laboratory methods for studying transmission, such as the use of 
high-resolution tools like whole genome sequencing, and b) use of statistics, such as 
t-tests, regression, cluster analysis, or phylogenetics.  
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2.4 Results  
 
2.4.1 Duplicates and title and abstract screening 
 
In total, 2083 studies were identified in public databases, which after de-duplication 
resulted in 1454 unique studies. Fig. 2.2 presents the numbers of studies that were 
found in each database, and numbers of studies excluded in each step in the eligibility 
screening. A total of 201 studies were included in the data extraction phase, of which 
61 made an evidence claim and had full data extraction, and 140 did not and had 
partial data extraction.  
 
2.4.2 Study characteristics 
 
Full study characteristics for the 61 full data extraction studies is in Appendix A Table 
1. 
 
2.4.2.1 Year and country of studies 
The earliest publication year in all included studies was 1973, and half of all studies 
were published in or after 2017. Fig. 2.3 shows the distribution of source of resistance 
studies by year.  
 
Fig. 2.4 shows the number of studies found with samples from each country. A total of 
70 countries were sampled in studies included in this chapter. The country with 
samples analysed in the most studies the United Kingdom (19 studies), followed by 
Germany (15), Spain (15), Portugal (13), and Sweden (12). Although all continents are 
represented, there is a concentration of studies in Europe. 
 
2.4.2.2 Antibiotic resistance phenotype studied 
I extracted the antibiotic resistance phenotypes that were measured in all 201 included 
studies. The antibiotic phenotypes most frequently studied were penicillins with 
extended spectrum such as ampicillin and amoxicillin (101 studies), fluoroquinolones 
such as ciprofloxacin (99), aminoglycosides such as gentamicin (97), tetracyclines 
(95), and third generation cephalosporins (85). I classified 23 studies as measuring all 
antibiotic resistance phenotypes. One study did not report the antibiotic resistance 
phenotypes studied. In addition, six studies reported resistance to antibiotics that could 
not be assigned to a class that is represented in the WHO ATC index (oleomycin, 
avilamycin, sulfazoritrim, and monensin). These antibiotics are included in the 
category “No ATC group found”. Excluding studies that looked at all resistance 
phenotypes, studies measured 5.9 different ATC Level 5 antibiotic phenotypes on 
average (range 1 – 21, standard deviation 4.7). The proportion of studies different 
dissemination routes for each resistance phenotypes is presented in Fig. 2.5. The 
types of antibiotic resistance phenotype studied were similar in each dissemination 
route and in inconclusive compared to conclusive studies. 
 
2.4.2.3 Bacteria studied 
I extracted data on the bacterial groups measured in studies that made an evidence 
statement. The most frequently studied types of bacteria were E. coli (15 studies), 
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Enterococcus spp. (13), Enterobacteriaceae (7), Klebsiella pneumoniae (6), and 
Pseudomonas aeruginosa (6). Three studies did not measure the presence or 
abundance of any type of bacteria, all of which were qPCR studies. One study 
investigated all bacteria using shotgun metagenomics. The proportion of studies 
studying different dissemination routes for each bacterial group measured is presented 
in Fig. 2.6. 
 
2.4.2.4 Hospital sample types 
Among all included studies, 103 collected samples from hospital effluents, 55 collected 
samples from hospital patients, eight collected samples from the hospital environment, 
and one collected samples from health care workers.  
 
2.4.2.5 Other sample types 
Studies with conclusive findings about dissemination from hospitals to wastewater also 
often collected samples from other sources. These included natural waters, such as 
rivers and lakes to which wastewater is discharged; soils where wastewater is used 
for irrigation; healthy human samples and samples from outpatients; and other 
effluents that are potentially sources of resistance in municipal wastewater, including 
community sources, industrial effluents, and slaughterhouses. In total, eight 
conclusive studies collected community effluents and two collected community clinical 
samples. 
 
2.4.2.6 Usage of statistics 
Of all 201 included studies, 73 did not use any statistics (36.3%). The most frequently 
used statistical method was frequentist analysis (83 studies). Next were cluster 
analysis (44 studies), phylogenetics (12), permutation analysis (5), Bayesian analysis 
(2), machine learning (2), and network analysis (2). The statistical methods used were 
unclear in two studies.  
 
Among positive evidence claims identified, 40 were in studies with any kind of 
statistical analysis, whereas 16 were not. Negative evidence claims were only found 
in five studies, all of which used statistics. 73.4% of studies that made conclusive 
evidence claims used statistics was (45/61), compared to 59.3% of studies with 
inconclusive findings (83/140), potentially indicating that use of statistics is important 
in giving study authors conclusive findings. The proportion of studies with each 
statistical method or with none by conclusion types is plotted in Fig. 2.7. The use of 
statistics appears to generate more conclusive results, especially negative ones. 
 
2.4.2.7 Usage of typing methods 
Among studies that made an evidence statement about a source of resistance in 
wastewater, most used gene presence as the highest resolution resistance typing 
method (26 studies), followed by phenotypic testing (25) and resistance gene 
sequencing (10). For bacterial typing, an equal number of studies used phenotypic, or 
fingerprint methods (17 studies each), 16 used partial sequencing, and eight used 
whole genome sequencing. Three studies did not identify bacterial species. The 
different conclusions made by studies with each kind of resistance and bacterial typing 
is presented in Fig. 2.8. 
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2.4.3 Routes of dissemination of hospital-associated ABR to wastewater 
 
Table 2.4 presents the number of evidence claims in support of and against the 
different routes of dissemination, as well as the number of these studies with the 
highest evidence quality (defined as use of statistics plus the highest resolution 
resistance or bacterial group typing). The dissemination of ABR from hospital 
wastewater to municipal wastewater received the most attention, with 42 studies 
claiming evidence about this route. 
 
Table 2.4: Numbers of studies support or against dissemination of hospital-
associated ABR to wastewater 

All studies in category followed by number of highest evidence quality studies in 
brackets. HWW: hospital wastewater; MWW: municipal wastewater 
 
Route of dissemination Number of 

studies 
supporting 

Number of 
studies against 

Hospital patients to HWW 9 (2) 2 (1) 
Hospital patients to MWW 5 (0) 1 (0) 
HWW to MWW 40 (8) 2 (0) 
Hospital to MWW (via indirect sampling 
design) 

7 (0) 0 

 
 
2.4.3.1 Hospital patients to hospital wastewater 
Nine studies claimed to find evidence in support of dissemination of resistance from 
hospital patients to hospital wastewater, and two claimed to find evidence against it. 
In total, 35 studies collected samples from both hospital patients and hospital 
wastewater, i.e. 31% (11/35) of studies captured in this review with appropriate study 
design made an evidence claim about this direction of transfer. Studies investigating 
this route mostly studied bacteria that are human pathogens and frequently cause 
hospital-associated resistant infections, such as K. pneumoniae, K. oxytoca, and A. 
baumannii (Fig. 2.6). 
 
A close relationship between resistance in patients and hospital wastewater has been 
found in several studies across the European (Iversen et al., 2004; Jakobsen et al., 
2008; Ory et al., 2016; Popa et al., 2021; Röderová et al., 2016; Seruga Music et al., 
2017) and African (Atmani et al., 2015; King et al., 2020) continents. There is high 
quality evidence in favour of this route of dissemination. For example, Popa et al, 2021 
used whole genome sequencing of multi-drug resistant K. pneumoniae isolates from 
patients and effluents of an infectious disease hospital in Romania (Popa et al., 2021). 
Maximum likelihood phylogenetics indicated that clinical samples and hospital effluent 
belonged to the same clonal group. However, other high evidence quality studies have 
found evidence against this route of dissemination. One study used whole genome 
sequencing study of K. pneumoniae in patients in a haematology ward and wastewater 
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from a UK hospital did not find evidence that resistant bacteria from patients 
disseminated to hospital wastewater (Ludden et al., 2020). 
 
2.4.3.2 Hospital patients to municipal wastewater 
Six studies claimed to find evidence in support of or against dissemination of ABR 
from hospital patients to municipal wastewater. The study with the highest resolution 
typing in this group was Oracova et al, 2017, who showed some relatedness in MLSTs 
of vancomycin resistant Enterococcus spp. in hospital patients and municipal 
wastewater in the Czech Republic (Oravcova et al., 2017). A group of studies 
compared resistance in national hospital-based surveillance data to municipal 
wastewater (Karkman et al., 2020; Mbanga et al., 2021; Pärnänen et al., 2019), but 
none of these conclude that any correlations found are caused by dissemination of 
ABR from hospitals to wastewater. 
 
2.4.3.3 Hospital environment and health care workers to wastewater 
Eight studies were found that sampled both the hospital environment and wastewater, 
but none concluded that the hospital environment was a source of resistance in the 
wastewater. Ludden et al, 2020, sequenced K. pneumoniae from multiple hospital 
environments, including equipment and patient areas and found only 2% of these 
samples were colonised, although they do not comment on the possibility of 
dissemination of these bacteria to the hospital sewage (Ludden et al., 2020). One 
study took samples from hospital personnel and patients as well as municipal 
wastewater and found no resistance to vancomycin in enterococci in the hospital staff, 
without drawing a conclusion about whether this indicated the role of staff in the 
sewage resistome (Oravcova et al., 2017). 
 
2.4.3.4 Hospital wastewater to municipal wastewater 
The most frequently studied dissemination route studied was the link between hospital 
wastewater and municipal wastewater (40 out of 61 studies with a conclusions). A 
range of bacterial species were studied in this group, but the most frequently 
measured was E. coli (Paulshus et al., 2019; Verburg et al., 2019) and Enterococcus 
spp. (Lamba et al., 2018). Six studies used the highest resolution typing methods to 
investigate this (whole genome sequencing), all of which found positive evidence that 
resistant bacteria in hospital wastewater are disseminated to municipal wastewater 
(Cahill et al., 2019; Gouliouris et al., 2019; Ludden et al., 2020; Popa et al., 2021; Pot 
et al., 2021). Other compelling evidence for this route of dissemination came from 
studies with samples before and after the hospital wastewater entered the main 
wastewater stream. One such study in Ireland found similar sequence types were 
found in the hospital effluent and the municipal wastewater downstream of the hospital 
entrance point (Cahill et al., 2019). 
 
In contrast to the consistent evidence from studies with sequence comparison, studies 
that investigated the profile of bacterial species and resistance genes in sewage 
produced more mixed results. Ng et al, 2017 (Ng et al., 2017) and Kutilova et al, 2021 
(Kutilova et al., 2021) conducted metagenomics on the wastewater of urban hospitals 
and WWTPs in Singapore and the Czech Republic, respectively. Although both found 
some similarities in the resistome and microbiome of these samples, their conclusions 
do not agree. Ng et al found more similarity and tentatively suggest a patient-to-
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hospital wastewater-to-municipal wastewater route of dissemination as the 
explanation. Kutilova et al, on the other hand, suggest that patient-derived bacteria in 
the hospital wastewater do not contribute to the resistance in WWTP influent, likely 
due to dilution of hospital wastewater, although they do not rule out dissemination. 
Similarly, two studies in France making use of a large qPCR panel found that the 
hospital wastewater does not contribute to overall antibiotic resistance abundance in 
WWTP influent although again they do not rule out hospital dissemination (Buelow et 
al., 2018, 2020). In general, studies comparing the abundance of resistance genes or 
resistant bacteria have highlighted that dilution of the hospital signature reduces the 
overall contribution of hospitals to resistance patterns in municipal wastewater 
(Buelow et al., 2018, 2020; Kutilova et al., 2021; Paulshus et al., 2019). 
 
2.4.3.5 Indirect studies of hospital impact on wastewater 
Finally, studies have looked for an impact of hospitals on municipal wastewater 
through indirect sampling, i.e. by sampling WWTPs that are and are not impacted by 
hospital effluents. Many studies that have used this study design have claimed to find 
evidence in support of a contribution, mostly in Europe (Alexander et al., 2020; 
Guardabassi et al., 1998; Harris et al., 2014; Linton et al., 1974; Ludden et al., 2017; 
Novo & Manaia, 2010), and one study in India (Akiba et al., 2015). However, other 
studies with this design have not found evidence for an overall effect (Buelow et al., 
2018, 2020). Alexander et al, 2020 and Ludden et al, 2017 both provide good evidence 
for an effect by sampling from multiple WWTPs. Alexander et al found an increased 
abundance of antibiotic resistance genes in hospital-influenced WWTPs, and Ludden 
et al only found carbapenemase producing Enterobacteriaceae in hospital-influenced 
WWTPs. 
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Figure 2.2: Flow diagram of screening process 

Numbers of studies included and excluded at each stage of the screening process 
(importing from database; de-duplication; title and abstract screening; full text 
screening), plus numbers of studies in each included category. 
 

 
  

Title and abstract screening
Total excluded: 1092
1) Abstract not available: 10
2) Not about an ABR gene or organism: 184
3) Not primary data analysis: 252
4) Experimental studies: 149
5) No human sewage of any kind sampled: 256
6) No comparison or exposure group studied: 241

Full text screening
Total excluded: 161
1) No full text found: 11
2) No access to full text: 13
3) Full text not available in English: 6
4) Not about an ABR gene or organism: 7
5) Not primary data analysis: 2
6) Experimental studies: 5
7) No human sewage of any kind sampled: 21
8) No comparison or exposure group sampled: 96

Included studies categorized by 
screening for conclusive statement: 201

Conclusive statement, full 
data extraction: 61

Duplicates removed: 629 

Database screening
Total studies imported: 2083
PubMed: 585; Scopus: 439; Web of 
Science: 1059

Screened for eligibility: 1454

Screened for eligibility criteria, presence 
of relevant conclusion, and direction of 
AMR transfer in the conclusion: 362

No conclusive statement, 
partial data extraction: 140
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Figure 2.3: Year of included study publication 

Year of publication of included studies, coloured by whether they contained an 
evidence statement about dissemination of ABR from clinical sources to 
wastewater. 
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Figure 2.4: Global distribution of included studies 

A) Numbers of included studies using a sample from a country. B) The proportion of 
studies with a positive finding in each country. In both plots, no background colour 
indicates no relevant studies were found to sample in this region. 
 
A) 

 
B) 
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Figure 2.5: Antibiotic resistance phenotypes studied 

Proportions of studies with different conclusion types for each antibiotic resistance phenotype studied. Phenotypes occurring in 
fewer than 5 studies excluded.  The number of studies in each category is printed below each bar. HWW: Hospital wastewater; 
MWW: Municipal wastewater. 
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Figure 2.6: Bacterial groups studied 

Proportion of studies with different conclusion types for each bacterial groups studied. The numbers of studies in each group are 
plotted below each bar. HWW: Hospital wastewater; MWW: Municipal wastewater. 
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Figure 2.7: Type of statistics used  

Proportion of studies with different conclusions for each kind of statistics, or no 
statistics. The number of studies in each category is printed beneath each bar. 
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Figure 2.8: Typing methods used 

Proportion of studies with different conclusions for each kind of typing. The number 
of studies in each category is printed beneath each bar. 
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2.5 Discussion 
 
In this chapter, I used a systematic scoping review to investigate the dissemination of 
resistance from clinical sources to wastewater. Of 2083 screened studies, data was 
extracted from 201. There is increasing evidence that ABR in clinical sources, such as 
hospital patients and effluent, can be a source of resistance in municipal wastewater. 
However, conflicting results remain, and the contribution of ABR to the overall 
resistance profile in sewage may be low. There is a need for more high evidence 
quality studies using high resolution typing, control samples, larger sample sizes (e.g. 
more than three sampling sites and more than one sample per site), and statistical 
methods, rather than those with only a descriptive analysis of the phenotypic results 
of isolates from one or two wastewater samples. 
 
There was some high quality evidence that ABR can disseminate from patient to 
hospital effluent from studies using partial or whole genome sequencing, multiple 
sampling, and statistical analysis (Ory et al., 2016; Popa et al., 2021). This is 
supportive of the use of hospital wastewater itself as a way of non-invasively 
monitoring the patient resistome. Patient to hospital effluent dissemination has 
implications for wastewater treatment and for wastewater surveillance. Firstly, it adds 
to the evidence that hospital wastewater presents a health risk. The prevalence of 
treatment of hospital wastewater varies around the world, but may particularly be a 
risk in LMICs where wastewater treatment can be less efficient (Nadimpalli et al., 
2020). Secondly, it raises the question of to what extent sewage samples taken 
downstream of hospitals reflect the hospital resistome instead of the community 
resistome. 
 
However, there were also some conflicting results on the relatedness of hospital 
patient and hospital effluent resistant bacteria. Two studies with similar methodologies, 
one in a Romania (Popa et al., 2021) and the other in the UK (Ludden et al., 2020), 
produced different results. This may simply show that although resistant bacteria in 
patients can be disseminated to hospital effluent, a resistant infection in a patient is 
not guaranteed to be represented in the sewage. To capture patient resistomes, it may 
be necessary to take multiple samples per hospital and use high sensitivity techniques 
such as qPCR. At the same time, it may be that this dissemination route could be more 
common under some conditions than others. For example, the Romanian study was 
conducted in an infectious disease hospital whereas the UK study was in a 
haematology ward of a general hospital. Possible differences between these hospital 
types could lead to the hospital effluent bearing more patient-derived resistant 
bacteria, such as prevalence of resistant colonisations and infections, site of resistant 
infections (e.g., blood infections less likely to be represented than gut and urinary tract 
infections), use of antibiotics, and patient age. Understanding the impact of hospital-
related factors on the dissemination of resistance from patients to sewage could inform 
on the risks of effluents from different hospitals, and the different impacts of these 
hospitals on downstream municipal sewage. However few if any studies have 
systematically compared the effluents of different hospitals, although one study of 
different hospital wards did find some variation (Perry et al., 2021). 
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Given the evidence for a patient-to-hospital wastewater dissemination route for 
resistant bacteria, it is interesting that few studies compared resistance in the hospital 
environment (such as sinks, toilets) and hospital wastewater. It has been shown that 
hospital wastewater can select for resistance (Hutinel et al., 2021; Kraupner et al., 
2021), that the hospital environment is rich in antibiotic residues (Voigt et al., 2019), 
and that environment to patient transmission of resistant bacteria can occur 
(Constantinides et al., 2020), suggesting the hospital environment may represent a 
reservoir and enricher of resistant bacteria. The selection of resistant bacteria within 
wastewater is an area of concern, as it may increase the amount of resistance in 
wastewater and therefore the load on WWTPs (Kraupner et al, 2021). There were 
even fewer studies that collected samples from health care workers as well as sewage. 
It seems possible that if patients can contribute to resistance in the hospital 
wastewater, staff could do so as well, although potentially different rates of 
colonisation and water use in staff may result in this dissemination route being less 
frequent. If there are resistant bacteria from the hospital staff and environment found 
in hospital effluents, accounting for this in the analysis of wastewater surveillance may 
improve patient-level predictions, so this is an important gap in the literature.  
 
The evidence around the dissemination of resistance from hospital effluent to 
municipal wastewater was mixed. Hospital effluent has been shown to be distinctive 
and to reflect the patient population (Hassoun-Kheir et al., 2020; Hocquet et al., 2016). 
The next question is then do these resistant bacteria reach municipal WWTPs, where 
surveillance samples are usually taken? Studies attempting to address this question 
have been numerous, as clinically-derived resistant bacteria making up a portion of 
WWTP influent is a public health concern (Manaia, 2014; Pruden et al., 2013), as well 
as calling into question the use of municipal wastewater for community resistance 
surveillance. Whole genome sequencing studies have found related strains in hospital 
and municipal wastewater (Cahill et al., 2019; Ekwanzala et al., 2019). On the other 
hand, studies that have used metagenomics (Kutilova et al., 2021; Ng et al., 2017) or 
large qPCR (Buelow et al., 2018, 2020) panels to characterise the resistome of 
wastewater suggest a low overall contribution of hospital wastewater to the municipal 
wastewater resistance signature. On top of this, studies have found some positive 
correlations between resistance levels in patients and resistance gene abundance in 
sewage (Karkman et al., 2020; Mbanga et al., 2021; Pärnänen et al., 2019).  
 
In all these studies, interpretation of the results is a challenge. Hospital effluent 
generally makes up a very small fraction of the volume of WWTP influent (Hocquet et 
al., 2016), in addition to travelling hundreds or thousands of metres to the nearest 
WWTP. These factors may be expected to lead to a smaller chance of capturing 
clinical bacteria in a given sample. Resistance levels in hospitals and hospital 
wastewater may also correlate with resistance levels in the community because some 
of these bacteria are circulating in the community. Relatedness found between clinical 
sources and municipal wastewater may reflect this rather than dissemination of 
resistance from hospitals to WWTPs. To resolve this, ‘control’ samples from 
community sites, healthy community members, and outpatients can be used. Some 
conclusive studies did collect these samples, but not many. In addition, control 
samples would be most useful when selected to be comparable to the main samples 
(e.g. regional matching between community and hospital effluent sampling).  
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The use of any kind of statistical analysis was more common in studies with conclusive 
results, suggesting that the use of statistics generates more conclusive findings. 
Sewage data is often noisy, complex, and high dimensional. Making sense of this type 
of data requires flexible statistical approaches (Bengtsson-Palme et al., 2017; Nguyen 
et al., 2021). For example, resistance gene counts are likely to be overdispersed, and 
there may be factors such as physicochemical characteristics that must be accounted 
for in the analysis. However, more powerful models such as regression, phylogenetics, 
and machine learning were rare. This was partly due to the low sample size in many 
studies. Disentangling the multiple sources of resistance in municipal wastewater will 
require more studies with a combination of greater sample size, control samples, and 
more powerful statistical techniques.  
 
Few studies had negative findings. This could indicate consensus in the literature that 
hospital ABR can disseminate to municipal wastewater. However, many other factors 
could reduce the number of negative findings. There could be a reporting and 
publication bias against evidence that suggests this dissemination does not happen. 
Bias against negative or ‘null’ results is well documented in clinical and social studies, 
and are thought to also be an issue for the environmental sciences (Bilotta et al., 
2014). Authors may also be more cautious to conclude against this route of 
dissemination if it is considered plausible, especially if the evidence provided by their 
study is not of high quality. Only studies with statistical analysis had a negative 
conclusion, which may point to a lack of negative conclusions due to low evidence 
quality in this field. 
 
The choice to select studies for inclusion based on an evidence statement introduces 
limitations. Not having many restrictions on study design allowed a broad scope in 
types of evidence and transmission routes identified. However, I may have excluded 
studies with relevant data or results if the authors did not discuss them. An evidence 
claim is also potentially subjective, and some studies that intended to claim evidence 
may have been missed. In addition to limitations caused by this criterion, I could not 
quantitatively compare the results of the selected studies because of the heterogeneity 
of types of data and results included, which is a limitation of having a broad scope. A 
review focussed on one of the identified ABR transmission routes (such as patients to 
hospital effluent) could select studies on a sampling design basis, and their 
quantitative results could then be analysed. Narrow focus systematic reviews of this 
kind are better suited to a) confidently identify all relevant datasets, and b) thoroughly 
assess the evidence for such a transmission route.  
 
In conclusion, I found that there is increasing evidence to show that hospital-
associated bacteria can disseminate to hospital effluent, and possibly to WWTP 
influent. Knowledge gaps remain around the overall contribution of hospital effluent to 
resistomes in municipal wastewater, and how this could vary for different types of 
hospitals and in different countries. Studies with control samples in the community, 
robust sampling design, statistics, and high-resolution typing methods are needed to 
quantify hospital-to-WWTP influent ABR dissemination more precisely. This is 
particularly important for informing translating the findings of wastewater surveillance 
to community burdens of resistance. 



 

 

3 The role of the environment in transmission of 
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3.1 Abstract 
 
Antibiotic resistance can be transmitted between animals and humans directly or 
indirectly, through transmission via the environment. However, little is known about 
the contribution of the environment to resistance epidemiology. Here, I use a 
mathematical model to study the effect of the environment on human resistance levels 
and impact of interventions to reduce antibiotic consumption in animals. I developed 
a model of resistance transmission with human, animal, and environmental 
compartments. I compared the model outcomes under different transmission 
scenarios, conducted a sensitivity analysis, and investigated the impacts of curtailing 
antibiotic usage in animals. Human resistance levels were most sensitive to 
parameters associated with the human compartment (rate of loss of resistance from 
humans) and with the environmental compartment (rate of loss of environmental 
resistance and rate of environment to human transmission). Higher environmental 
transmission also reduced the impact of curtailing antibiotic consumption in animals 
on resistance in humans. I highlight that environment-human sharing of resistance can 
influence the epidemiology of resistant bacterial infections in humans and reduce the 
impact of interventions that curtail antibiotic consumption in animals. More data on 
resistance in the environment and frequency of human-environment transmission is 
crucial to understanding the population dynamics of antibiotic resistance. 
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3.2 Introduction  
 
Antibiotic resistance (ABR) is a One-Health issue, present in a variety of commensal 
and pathogenic bacteria found in humans, animals and the environment (Robinson et 
al., 2016; Woolhouse et al., 2015). The potential of the environment for dissemination 
of ABR has been increasingly recognised, with particular focus on the volume of 
resistance bacteria in human and agricultural wastewater effluent being discharged 
into natural waters and soils (Bürgmann et al., 2018; Larsson et al., 2018; Manaia, 
2014). 
 
There are many potential routes for resistant bacteria into the environment. Several 
studies have demonstrated is it likely that resistant bacteria in humans can be 
transferred to the environment, including rivers (Amos et al., 2015), coastal waters 
(Leonard et al., 2015), and soils (Palacios et al., 2017). In addition, studied have linked 
resistant bacteria in animals and their respective environments, such as between wild 
animals and human-impacted environments (Araujo et al., 2014; Swift et al., 2019), 
and between livestock and their environment, especially in aquaculture (Cabello et al., 
2013; Call et al., 2013). However, the risk that the resistance in the environment poses 
to humans and animals remains poorly understood (Raven et al., 2019).  
  
Mathematical models are an important tool to study complex dynamics inherent in the 
emergence and spread of resistance (Knight et al., 2019) and can therefore be used 
to improve our understanding and combat the spread of ABR in humans, animals and 
the environment. However, a lack of data and understanding about the burden, 
selection and transmission of resistant bacteria, especially in animals and the 
environment, presents a challenge to parameterising models of ABR from a One-
Health perspective. Consequently there are few models of resistant bacteria that 
connect humans, animals and the environment (Niewiadomska et al., 2019).  
 
Some existing studies incorporate an environmental component into transmission 
models of resistant bacteria in hospitals or farms. Two compartmental models found 
that reducing or eradicating resistance in a hospital setting was harder to achieve 
when the environment was explicitly modelled (Kouyos et al., 2011; McBryde & 
McElwain, 2006). Studies taking the environment into account when modelling the 
spread of resistance in farms have found environmental parameters were key in 
dynamics of resistance in the farm (Call et al., 2013; Græsbøll et al., 2014). However, 
a recent modelling study found that interventions to reduce antibiotic consumption in 
animals would still be effective when the influence of resistance in animals and the 
environment is considered (Booton et al., 2021). These findings indicate the need for 
further exploration of the role of the environment with fully dynamic transmission 
models. 
 
In this study, I aimed to investigate the importance of the environment in the long term 
dynamics of resistant bacterial infections in humans, including how it might affect the 
impact of interventions to reduce resistance in humans. A compartmental of resistance 
transmission within and between humans, animals and the environment was 
developed. I use a dynamic environmental compartment, improving on existing models 
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by allowing us to assess the importance of within-environment processes.  My 
objectives were: 1) to investigate how adding an environmental compartment affects 
the long-term dynamics of resistance in humans, and the sensitivity of the model to its 
parameters; and 2) to investigate the impact of interventions to curtail antibiotic usage 
in animals or environment to human transmission on the prevalence of resistance in 
humans in this model. 
 

3.3 Methods 
 
3.3.1 Model description 
 
I extended the original model presented in (van Bunnik & Woolhouse, 2017), to include 
an environmental compartment. Humans and animals gain resistant infection by 
exposure to antibiotics, or exposure to other humans, animals or environments 
carrying resistant bacteria. Resistance in the environmental compartment is increased 
by contact with humans or animals who carry resistant bacteria, or via exposure to 
antibiotics that have been excreted by humans or animals. The environment is not 
considered to be any one type of environment, such as water or soil, but rather a 
summation of these types. 
I define the model using a system of coupled ordinary differential equations:  
 !"!

!# 	= 	 (1 − "!) ⋅ (Λ! +	-!! ⋅ "! 	+ 	-"! ⋅ "" 	+ 	-#! ⋅ "# 	) −	.! ⋅ "! 	 (1) 

 !""
!# 	= 	 (1 − "") ⋅ (Λ" +	-"" ⋅ "" 	+ 	-!" ⋅ "! +	-#" ⋅ "#) −	." ⋅ "" (2) 

 !"#
!# = 	γ$Λ! + γ%Λ" 	+ 	-!# ⋅ "! 	+ 		-"# ⋅ "" 	− 	.# ⋅ "#  (3) 

"! and "" are the fractions of the human and animal population that are infected with 
resistant bacteria, respectively, and "# is a measure of the amount of resistant 
infectious bacteria in the environment. 0! is the constant rate at which resistance is 
gained from exposure to antibiotics in humans, and Λ" is the equivalent in animals. 
These are composite variables, taking into account both the amount of antibiotics 
consumed and the rate at which selection causes resistance in bacteria to arise. .! is 
the reversion rate of humans infected with resistant bacteria to having only sensitive 
bacteria, and ." is the equivalent in animals. This includes the rate of clearance of 
resistant infection and the rate of death in a fixed-size population. The parameters 1! 
and 1" are scaling parameters determining how much of the antibiotic exposure in 
humans (0!) and animals (0") will result in excreted antibiotics selecting for an 
increase in resistant bacteria in the environment. .# is the rate of loss of resistant 
infectious bacteria from the environment. Transmission within and between the 
compartments is controlled by the - transmission coefficients, with the subscripts 
indicating the direction of transmission of each coefficient. For example, -!! is the 
transmission coefficient between humans, and -#! is the transmission from the 
environment to humans. 
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Further details about parameter definitions, units and values ranges can be found in 
the Appendix B Table 1. Fig. 3.1.A shows a flow diagram representing the movement 
of infectious resistant material between and within the different compartments. All 
rates are per capita with respect to the human and animal populations, and per 
environmental unit with respect to the environment (see next section). I used the 
steady state solutions of this model, obtained numerically, as I were interested in long-
term prevalence. The timestep of the model represents one month. Determination of 
the time step is discussed in Appendix B (Additional Methods Information). 
 
3.3.2 Capacity for resistance in the environment 
 
Equation (3) represents the environment as an unbounded compartment, in which the 
amount of resistant infectious material in the environment is in the range 0 - ∞. I 
consider one “unit” of the environment to be the human infectious potential equivalent. 
This means that for a value of "# = 1, if the transmission coefficients -#! and -!! 
were the same, each unit of the environment would transfer resistant material to 
humans at the same rate that an infected human would to another human. Although 
theoretically the environment may have some maximum capacity for resistant material, 
I do not have a way to determine this capacity, so I modelled the environment as an 
unbounded compartment. For comparison, I also explored a version of the model in 
which resistance levels in the environment cannot exceed 1. In this model the 
environmental compartment is specified: 
 

!"#
!# = (1 − "#) ⋅ (γ$Λ! + γ%Λ" 	+ 	-!# ⋅ "! 	+ 		-"# ⋅ "") 	−	.# ⋅ "# 	  (4) 

 
This model assumes that there is no growth or dissemination of resistant organisms 
within the environment. I also assume that the environment is only exposed to 
antibiotics that are excreted by humans or animals. The environment may be exposed 
to antibiotics directly through, for example, the effluent of pharmaceutical industries, 
but I do not consider this specific case here. 
 
3.3.3 Impact of interventions on resistance in humans 
 
I investigated the impact of two types of interventions on the levels of resistance in the 
human compartment. Firstly, I looked at interventions to remove antibiotic usage in 
livestock (reducing Λ" to 0), and how changes to environmental parameters affect the 
effectiveness of this intervention. Secondly, I looked at interventions that would reduce 
the transmission of resistant bacteria from the environment to humans (reducing -#! 
to 0).  
 
I measured the impact of interventions as the percentage decrease in resistance levels 
in humans, following (van Bunnik and Woolhouse, 2017). I compare equilibrium values 
of "! before ("!∗ ) and after the intervention ("2!∗ ), to obtain the impact, or percentage 
decrease in human resistance levels:  

3 = 1 − "2!
∗

"!∗
(5) 
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I investigate the impact of reducing -#! and of curtailing antibiotic usage in animals 
(Λ").  
 
3.3.4 Sensitivity analysis 
 
I use the extended version of the Fourier Amplitude Sensitivity Test (FAST) (Saltelli et 
al., 1999) to analyse the relative influence of each parameter on the value of "!, the 
outcome measure of interest. A total sensitivity index for each parameter is calculated 
based on the variance of "! over variation in all parameters. The R package fast was 
used for this analysis (Reusser, 2015). 
 
3.3.5 Parameterisation 
 
Due to a paucity of data about many of the parameters in the model, I aimed to explore 
a wide range of parameter scenarios in this model. I chose the following transmission 
scenarios: 1) a baseline, with transmission parameter values similar to those of the 
original (van Bunnik & Woolhouse, 2017); 2) a balanced transmission scenario, with 
all transmission coefficients equal; 3) human-driven transmission (i.e., if the subscript 
H denotes the humans and 5 denotes any other compartment -!' > -''); 4) animal-
driven (-"' > -''); and finally 5) environment-driven (-#' > -'').  
 
I also averaged the results across parameter sets generated randomly using sampling 
distributions for the three parameters "! that was most sensitive to (viz. .!, .#, and 
Λ!), to avoid over-reliance on model dynamics that are unusual to a particular 
combination of parameters rather than generally true of the system. All parameter 
values and sampling distributions can be found in Appendix B Tables 2 and 3, as well 
as the methods for obtaining transmission scenario parameters.  
 
3.3.6 Software 
 
Analyses were carried out using Wolfram Mathematica version 11.3 (Wolfram 
Research Inc., 2018), R 4.1 (R Core Team, 2022), and Julia 1.7 (Bezanson et al., 
2017). The code for the model, parameter set generation, and visualisations is 
available at https://github.com/hannahlepper/animal-human-env-model.  
 

3.4 Results 
 
All analyses were conducted in both bounded and unbounded environmental capacity 
versions of the model.  
 
3.4.1 Long term dynamics of resistance in humans 
 
3.4.1.1 Prevalence of resistance in humans 
For all transmission scenarios, parameter sets were identified that corresponded to 
the intended target equilibrium human resistance prevalence of 71% in both the 
bounded and unbounded versions of the model (Appendix B Fig. 1) (target prevalence 
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used in original study from van Bunnik and Woolhouse, 2017). Fig. 3.1.B shows that 
the amount of resistance in the environment was influenced by the model structure 
and the transmission scenario. The highest level of resistance in the environment was 
in the environment-driven, unbounded version of the model, indicating that an 
implausibly high level of environmental contamination is not needed for observed 
human resistance levels. 
 
3.4.1.2 Sensitivity analysis 
Model sensitivity results are presented in Fig. 3.1.C. In both bounded and unbounded 
models, human resistance prevalence was most sensitive to .!, the rate of loss of 
resistance from humans, but relatively insensitive to 0", the antibiotic consumption in 
animals. The rate of transmission from the environment to humans, -#!, was at least 
as important as -!! and -"!, rates of transmission to humans from other humans and 
from animals. Moreover, -#! is more influential than any other transmission parameter 
in the unbounded model. The rate of loss of resistance from the environment, .#, was 
more important for human resistance levels in the unbounded than the bounded 
model. 
 
3.4.2 Impact of interventions to reduce resistance in humans 
 
3.4.2.1 Impact of curtailing antibiotic usage in animals 
Curtailing antibiotic usage in animals had a small impact on human resistance levels, 
and the impact was lower when the environment was explicitly modelled or when 
animals contributed less to resistance transmission (Fig 2). The percentage decrease 
in human resistance levels achieved without an environmental compartment and using 
the parameters of the original model (the ‘baseline transmission scenario) was 3.2%. 
Simply adding an environmental compartment and keeping other parameters reduced 
the percentage decrease to 2.8% in the unbounded and 2.9% in the bounded model. 
The animal-driven transmission scenario had the highest impacts (5.8% decrease in 
human prevalence), and the human-driven scenario had the lowest (0.064%). In the 
environment-driven transmission scenario, the environmental capacity was influential: 
when bounded, the impact was low (0.94%), and increased when unbound (3.2%). 
Both the environmental structure and the transmission parameters affected the impact 
of antibiotic usage reduction in animals. 
 
3.4.2.2 Reducing 0" vs. reducing -#!  
I compared the impact (3) of reducing either Λ" (the antibiotic consumption in animals) 
or -#! (the transmission of resistant material from the environment to humans) (Fig. 
3.3). I considered pre-intervention values of 0.1 for each parameter, as well as the 
impacts in different transmission scenarios. This value was chosen so that the size of 
the intervention was consistent between transmission scenarios in this model and with 
the previous model (van Bunnik and Woolhouse, 2017). Interventions to reduce -#! 
had a greater impact than interventions to curtail Λ% when transmission was human- 
or environment-driven, or when transmission was balanced. When livestock 
dominated transmission or for the baseline parameter set, the impacts of interventions 
to reduce -#! or Λ% were similar. 
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3.4.2.3 Effect of -#! on impact of interventions to reduce antibiotic consumption in 
animals 

I next identified the impact of reducing Λ" across a range of values for -#! (Fig. 3.4). 
Increasing -#! decreased the size of the impact of curtailing antibiotic usage in 
animals in all transmission scenarios (Fig 3.4.A). The peaked shape of the impact size 
in the environmental transmission scenario is caused by the increase in -#! allowing 
increasing indirect transmission in animals and humans. This effect is only observed 
when there is little non-environmental transmission. Fig. 3.4.B shows that the 
decrease in intervention impact was also observed across the range of pre-
intervention values for Λ". These results indicate that increasing environmental 
transmission can reduce the impact of curtailing antibiotic usage in animals. 
 
Figure 3.1: Model structure, environmental resistance levels, and sensitivity 
analysis 

A: flow diagram indicating the model structure. B: "# values in all transmission 
scenarios and both model structures. C: Fourier Amplitude Sensitivity Tests (FAST), 
indicating how much variation in "! was explained by each model parameter. On 
the left, FAST for the version of the model in which "# is bounded to 1. On the right, 
FAST for the version of the model in which "# was unbounded. 
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Figure 3.2: Mean impact of reducing antibiotic consumption in animals on 
human resistance levels across transmission scenarios 

Λ" was reduced from 0.1 to 0 in all scenarios. The green point in the baseline 
transmission scenario group is the mean impact for the original (van Bunnik and 
Woolhouse, 2017) model, with no environmental compartment included. Results 
were averaged for parameter sets with .!, .#, and Λ! varied, with error bars 
indicating standard deviation in results. 
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Figure 3.3: Impact of reducing environmental transmission or animal 
antibiotic consumption on human resistance levels 

Violin plots of the impact (proportion decrease in "! after the intervention) of 
reducing either -#! or Λ" in all transmission scenarios and for both model structures. 
The intervention target was reduced from 0.1 to 0 in each case for consistency. 
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Figure 3.4: Effect of environmental transmission on the impact of decreasing 
antibiotic consumption in animals on human resistance levels 

A: Mean impact of antibiotic decrease in animals on human resistance levels 
(proportion decrease in human resistance levels) for each transmission scenario 
with increasing rate of environment to human transmission (-#!). Ribbons indicate 
25% and 75% impact quantiles. B: Heatmap of the impact of different pre-
intervention values of Λ" (y axis) against different levels of environment to human 
transmission, -#! (x axis), for the animal transmission scenario in the unbounded 
model. The colour of the tiles indicates the average value of the impact of the 
intervention from 17,000 parameter sets where .!, .#, and Λ! were varied. 
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3.5 Discussion 
 
3.5.1 Key findings 
 
In this Chapter I modelled the transmission of resistant bacteria between humans, 
livestock animals and the environment, and assessed the impact of interventions that 
reduce antibiotic consumption in animals or decrease the transmission of resistant 
bacteria from the environment to humans. I found that human resistance prevalence 
is sensitive to transmission between humans and the environment. Including an 
environmental compartment in the model decreased the impact of curtailing antibiotic 
resistance, and a more transmissible environmental reservoir of resistant bacteria 
further mitigated the impact of this intervention. Reducing the transmission of resistant 
bacteria from the environment to humans was found to be a more effective intervention 
than reducing antibiotic consumption in animals. Overall, these results indicate that 
resistant bacteria in the environment can influence the prevalence of resistance in 
humans. The size of environmental influence will depend on the amount and dynamics 
of resistant bacteria in the environment. Assessing the likelihood of observing these 
theoretical results in the real world is hindered by a lack of quantified, generalisable 
data on the types, amount, and degradation of resistance in the environment, and the 
transmission of resistance between humans, livestock and the environment. 
 
3.5.2 Is curtailing antibiotic usage in animals an effective intervention to reduce 

human resistance levels? 
 
The greatest observed impact of curtailing antibiotics in animals was a modest 10% 
decrease in human resistance level in a balanced transmission scenario, and the 
smallest impact was a <1% in the human-driven transmission scenario. This result 
provides little theoretical support that curtailment of antibiotics would appreciably 
decrease resistance in humans in many settings. In contrast, there is some empirical 
evidence that curtailing antibiotics in livestock could reduce human resistance levels, 
although from a small set of observational studies (Scott et al., 2018). A study of use 
of third-generation cephalosporin ceftiofur in broiler rearing in Canada found that 
resistance in Salmonella and E. coli was decreased in clinical isolates by 20% and 
40%, respectively, after ceftiofur use decreased (Dutil et al., 2010). This real-world 
population-level effect is greater than these results would predict, and may indicate 
they are an underestimate, especially with respect to the degree of sharing of 
resistance between humans and animals. More data-based parameterisation will be 
crucial to improve the accuracy of One-Health resistance transmission models.  
 
The size of the effect of intervening to reduce antibiotic consumption in livestock varied 
by transmission scenario (balanced transmission, or transmission driven by either 
humans, livestock or the environment). Therefore, a key question for assessing the 
accuracy and relevance of the resulting intervention effect sizes is how realistic are 
the transmission scenarios? Although transmission of resistance between humans 
and animals is of great concern, evidence that conclusively demonstrates a case of 
direct transmission is rare (Muloi et al., 2018; Wee et al., 2020). Accurately 
parameterising the relationship between resistance in humans and livestock is an 
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ongoing area of research (Thorpe et al., 2021) which will be crucial for One-Health 
modelling of resistance. It seems likely that on average across a large human 
population, human-human transmission is far more common than animal-human 
transmission and I suggest human-driven scenario to be most relevant for resistance 
dynamics in the human population.  
 
As the transmission rate from the environment to humans increased, the effectiveness 
of antibiotic curtailment was decreased. This suggests that the environment can 
provide a ‘back door’ transmission route from animals to humans that can reduce the 
effectiveness of antibiotic curtailment by adding to overall animal-human transmission 
rates. Using a two-pronged approach by intervening to reduce environmental 
transmission at the same time could therefore improve the impact of antibiotic usage 
curtailment. However, the effect of environmental transmission on antibiotic 
curtailment effectiveness was negligible in the human-dominated transmission 
scenario (Appendix B Fig. 2), again indicating the importance of transmission setting 
for this result. It remains unclear if non-human dominated transmission scenarios are 
realistic, and therefore what the real-world size of this back-door effect might be. There 
is some evidence that microbiomes in humans, animals and the environment become 
more shared as interactions become more frequent (Pehrsson et al., 2016), 
suggesting that transmission scenarios in which humans do not dominate transmission 
(such as the balances and baseline scenarios) are possible. Further work to quantify 
environmental resistance concentrations and transmission could improve accuracy of 
outcome predictions of antibiotic usage interventions. As reducing antibiotic usage in 
livestock animals is a costly intervention, it is important to ensure optimal 
implementation.  
 
3.5.3 Could the environment be an effective alternative intervention target? 
 
The rate of transfer of resistant bacteria from environment to humans (-#!) is also a 
potentially effective intervention target. Human resistance prevalence levels were 
sensitive to -#! and .#, the rate of loss of resistant bacteria from the environment 
(sensitivity analysis, Fig. 3.1.C), which suggests that interventions to reduce how much 
resistance humans gain from the environment would be effective. Indeed, the impact 
of reducing -#! was more effective than antibiotic usage curtailment interventions, 
although the difference was small in the animal-dominated scenario (Fig. 3.2.A). 
Interventions that improve sanitation have been proposed to reduce occurrences of 
transmission of resistance between humans and the environment in informal urban 
communities in LMICs where there is frequent exposure to resistance bacteria in the 
environment (Collignon et al., 2018; Nadimpalli et al., 2020). Nadimpalli et al (2020) 
focus particularly on the potential benefits of improved water and wastewater 
infrastructure for controlling and preventing ABR transmission, but note that few 
studies have investigated the impacts of sanitation interventions on ABR.  
 
3.5.4 Should the environment be included in ABR models? 
 
In this model, the environment played an important role in the long-term dynamics of 
antibiotic resistance levels in humans. Mechanistically, the environment acts as a 
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reservoir for antibiotic resistance from humans and animals in this model structure. 
Therefore, parameters that provide more opportunity for transmission to humans were 
influential in human resistance levels, especially the rate of loss or level of persistence 
of resistant bacteria in the environment (.#). Environmental parameters were also 
influential in the size of impact of interventions, and these results show that it may be 
an effective intervention target itself. Existing models that incorporate an 
environmental component have also highlighted the potentially strong role the 
environment could play in increasing resistance levels in humans and undermining 
interventions (Booton et al., 2021; Græsbøll et al., 2014; Kouyos et al., 2011; McBryde 
& McElwain, 2006). Most models include environment as a constant rather than a 
dynamic compartment, with the exception of Booton et al, 2021. As I find comparable 
results to models with constant compartments, this may indicate that models 
incorporating the environment simply may be enough to account for this additional 
source of resistant bacteria. On the other hand, the model in Booton et al, 2021, 
assumes that transmission of resistance (including from the environment) is 
dependent on exposure to antibiotics and accordingly finds that human antibiotic 
usage is the most influential parameter for human resistance, downplaying the role of 
the environment. This contrasting result points to a need for further models that 
compare the contribution of the environment under different model structures and 
assumptions. Incorporating the environment into models of ABR spread may be 
important in understanding ABR prevalence and for evaluating intervention success. 
 
3.5.5 Modelling the environment highlights data needs 
 
The results highlight some key data needs for understanding the importance of ABR 
in the environment for humans. There are two influential parameters in the model 
which are difficult to parameterise from existing data: the rate of transfer of ABR from 
the environment to humans, and the rate of loss of resistance in the human population.  
 
How frequently humans gain resistant bacteria after exposure to an environmental 
source is unknown. There is evidence that humans can be exposed to resistant 
bacteria in the environment. For example, one study estimated that the amount of 
third-generation cephalosporin resistant E. coli that humans would ingest during 
recreational water use in coastal regions in England and Wales poses a risk of 
infection (Leonard et al., 2015). However it is not clear how often these exposures lead 
to infection or colonisation (Berendonk et al., 2015). More research that demonstrates 
a close relationship and epidemiological link between resistant bacteria colonising the 
environment and humans is needed to understand the frequency of environment-
human transmission events. Use of high resolution typing such as whole genome 
sequencing of, for example, isolates from hospital patients and the hospital 
environment in longitudinal studies would be ideal for this research. 
 
Studies have provided data on the rate of clearance of resistant infections in humans. 
A systematic review on methicillin-resistant S. aureus (MRSA) and vancomycin-
resistant Enterococcus (VRE) colonisation found that it takes a period of 88 and 26 
weeks on average to clear MRSA and VRE infections, respectively(Shenoy et al., 
2014). However, they note that there is considerable methodological heterogeneity in 
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studies of MRSA and VRE, including varying definitions of clearance, and length of 
follow-up (Shenoy et al., 2014). The studies also focussed primarily on hospital-
associated resistance. Data on resistant bacteria colonisation prevalence and 
clearance in the community, where the role of exposure to animals and the 
environment may play a greater role, appear to be rare. Parameterising generalisable 
One-Health models will therefore be benefitted by more research into resistance in the 
community.  
 
3.5.6 Limitations 
 
There are some important limitations to this study that should be noted. Firstly, I make 
simplifying assumptions in the structure and parameterisation of the model. These are 
suitable to the questions posed in this study, but there are still many complexities in 
the spread and emergence of ABR in humans, animals and the environment to be 
explored. Further models should explore the importance of potential complexities, 
such as heterogeneity of transmission events, separate humans-specific and animal-
specific environmental reservoirs, variation in the capacity for resistance in the 
environment, or the fitness costs to bacteria of carrying resistance in the three 
populations.  
 
I do not model the dynamics of transmission of resistant bacteria and resistance genes 
separately, but assume that transmission parameters combine the transmission of 
both. This is in-keeping with the assumptions of the original model (van Bunnik & 
Woolhouse, 2017). Resistance genes can be transferred between bacteria via plasmid 
transfer or bacteriophages, and can also be lost from bacterial lineages. The 
transmission rates of resistance genes in human population may therefore differ from 
resistant bacteria, and it is a limitation that I do not capture this in the model. ABR 
epidemiology and surveillance is usually measured in resistant bacteria so there is 
little data on the prevalence and transmission rates of specific resistance genes.  
 
Two further important assumptions about resistance in the environment are that I 
assume that there is no growth of resistant material within the environment, and that 
all antibiotics secreted into the environment are from human and livestock usage. The 
dynamics of resistance genes and bacteria in the environment is a complex topic, and 
although there are potentially environments in which resistance may spread 
(especially in sewage) much more empirical and modelling research is needed 
(Bengtsson-Palme et al., 2018; Berendonk et al., 2015). A recent review found that 
the sources of antibiotics in ground water include excretion from humans and animals 
(via sewage and manure) but also landfill, aquaculture and industrial sites (Zainab et 
al., 2020), so not including these sources may limit the accuracy of the results of this 
model. However the relative contribution of each sources is not well known and may 
vary from one country to another (Zainab et al., 2020). 
 
3.5.7 Conclusions 
 
This study illustrates the potentially important role of the environment in the 
epidemiology of resistant bacterial infections in humans. I highlight the need to 
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consider the role of the environment in the design of ABR control strategies, as it can 
be influential in human prevalence of resistance, reduce the effectiveness of 
interventions that curtail antibiotic consumption in animals, and may be an effective 
intervention target itself via improved sanitation infrastructure. Incorporating the 
environment into a One-Health model of antibiotic resistance as a dynamic 
compartment was useful for considering the role of the environment. However, 
assessing the uncertainty of model predictions is hindered by a lack of data on the 
types and frequency of resistance in the environment, and the frequency of 
environment-human transmission events.  
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4.1 Abstract 
 
Background 
Quantifying antibiotic resistance gene (ARG) abundance in municipal sewage is an 
emerging approach to ABR surveillance with the potential to inform our knowledge of 
resistance in the community. To improve our understanding of drivers of resistance in 
the community, and the relationship between resistance in hospitals and the 
community, here we combine hospital and sewage resistance data in a multi-response 
model. We investigate associations with hospital and community antibiotic usage, and 
country-level correlations between resistance in hospitals and the community for a 
range of drug-bug combinations. 
 
Methods 
Data sources were European Antimicrobial Resistance Surveillance Network (EARS-
Net) for clinical data, the Global Sewage Surveillance Project for metagenomic 
analysis of wastewater, and the European Surveillance of Antimicrobial Consumption 
Network (ESAC-Net) for consumption data. We use a series of multi-response models, 
one for each antibiotic group of clinical interest (aminoglycosides, aminopenicillins, 
carbapenems, fluoroquinolones, macrolides, third generation cephalosporins, and 
vancomycin). A multi-response model was used to simultaneously model clinical 
susceptibility testing results as binomial and resistance gene abundance in sewage as 
Poisson. We estimated the country-level correlation between clinical and sewage 
resistance levels using the multi-response model and with Spearman’s Rank as a 
comparison. We also estimated the association between community antibiotic 
consumption and resistance gene abundance in wastewater. 
 
Results 
We found evidence for a positive correlation between clinical and sewage 
aminoglycoside resistant levels, and no evidence for a correlation in vancomycin 
resistance. Evidence was mixed for other types of resistance, with correlation 
estimates sensitive to estimation method and model structure. Likelihood ratio tests 
and leave-one-out validation indicated that combining sewage and clinical surveillance 
data with a multi-response model improved model performance for some resistance 
types (aminoglycosides, aminopenicillins), but was not beneficial for others 
(macrolides, third generation cephalosporins). There was a positive effect of 
community antibiotic usage and resistance gene abundance for fluoroquinolone and 
third generation cephalosporin resistance. 
 
Conclusions 
This chapter shows that sewage surveillance data can be useful for supporting clinical 
predictions for some but not all drug-bug combinations. Sewage surveillance can also 
shed light on the community drivers of resistance, indicating that primary-case 
antibiotic usage may lead to increased resistance. Multi-level, multi-response models 
have advantages over uni-response or univariable methods for combining sewage and 
clinical data, as they allow inclusion of additional essential covariates and data 
hierarchies, which could lead to over- and underestimates of correlations if excluded. 
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4.2 Introduction 
 
Antibiotic resistance (ABR) is a serious and growing threat to global public health 
(Cassini et al., 2019; Murray et al., 2022; O’Neill, 2014). This threat is compounded by 
a lack of ABR surveillance, leading to gaps in our knowledge of the distribution and 
causal factors of ABR, which will be crucial in optimising interventions to prevent and 
manage resistance infections (Knight et al., 2018a; Tacconelli et al., 2018; WHO, 
2019). Currently, the main source of ABR surveillance is from routine data collection 
of antimicrobial susceptibility testing (AST) of isolates from invasive bloodstream 
infection samples from hospital medical microbiology laboratories, such as European 
Antimicrobial Resistance Surveillance Network (EARS-Net, European Centre for 
Disease prevention and Control (ECDC)). However, this data source narrowly focuses 
on only a few drug-bug combinations in patients with suspected bacterial infections in 
highly developed settings (Aarestrup & Woolhouse, 2020; Knight et al., 2018a; 
Tacconelli et al., 2018). Municipal sewage samples have been posed as an attractive 
alternative pathway for surveillance of ABR, offering a way of sampling the general 
population’s microbiology easily, inexpensively, and without ethical barriers (Aarestrup 
& Woolhouse, 2020; Bürgmann et al., 2018; Pruden et al., 2021). Especially when 
paired with metagenomics, sewage surveillance provides rich and flexible data, as it 
does not focus on any specific human subpopulation, infection or resistance type 
(Aarestrup & Woolhouse, 2020; Pruden et al., 2021).  
 
The potential of sewage samples and resistance gene quantification for surveillance 
of ABR has been demonstrated on a range of scales. Smaller scale studies have 
focussed on specific cities, (e.g. Copenhagen, Denmark: (Brinch et al., 2020)), or 
within single hospitals (Perry et al., 2021). Larger scale studies include studies of 
whole countries, (e.g. China: (Su et al., 2017)), Europe (Huijbers et al., 2020; 
Pärnänen et al., 2019), and the Global Sewage Surveillance Project (GSP) 
(Hendriksen et al., 2019), which applied metagenomics to samples from over 100 
different countries across the globe. These studies have shown that this method can 
be used to investigate spatial and temporal variation and identify drivers of resistance. 
 
Combining sewage resistance data with clinical resistance data can provide more 
information than looking at each independently (Flach et al., 2021; Hutinel et al., 2019; 
Karkman et al., 2020; Kwak et al., 2015; Pärnänen et al., 2019; Raven et al., 2019). 
For example, sewage surveillance could be used to complement clinical surveillance, 
for example through making clinical predictions in countries for which there is no 
clinical surveillance (Hutinel et al., 2019; Karkman et al., 2020; Kwak et al., 2015). If 
hospital effluent contributes to the resistome of WWTP influent, sewage may also 
provide more information about the resistome of hospital patients (Huijbers et al., 
2020; Pärnänen et al., 2019; Raven et al., 2019). Municipal sewage can also be used 
to gain information on the prevalence of resistance in the general population or 
community, and how it differs from those in hospitals.  
 
The strength of the link between resistance in clinical settings and WWTP influent 
needs to be established to determine if and how sewage surveillance can be used to 
monitor hospital and community resistance. Studies addressing this link through 
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correlating sewage and clinical resistance levels have generally found positive 
correlations (Huijbers et al., 2020; Hutinel et al., 2019; Karkman et al., 2020; Pärnänen 
et al., 2019) and, a meta-analysis of studies comparing clinical and sewage resistance 
levels did find a positive correlation overall (Chau et al., 2022).  
 
However, further research is needed to understand the implications of positive 
correlations. They could indicate that the resistome of hospital patients are well 
represented in hospital effluent, or that hospital and community resistomes correlate, 
or could be due to correlated hospital and community antibiotic usage. The two data 
sources are also sensitive to different sets of population coverage, sampling and 
typing methods, and chance, leading to noisy data with many sources of uncertainty. 
The statistical methods used by existing studies to correlate clinical and sewage data 
do not take the complex nature of both data sources into account, creating a risk of 
over- or under-estimating correlation. Methods used include bivariate correlation tests 
(Chau et al., 2022; Pärnänen et al., 2019), which cannot include other covariates or 
give more weight observations based on a greater number of samples. Linear 
regression models that have one dataset as a covariate of the other have also been 
used (Huijbers et al., 2020; Hutinel et al., 2019; Karkman et al., 2020). These model 
structures only model the generating process, grouping levels, and explanatory factors 
of one dataset at a time.  
 
In this chapter, we aimed to investigate community-hospital correlations and drivers of 
sewage resistance levels using a multi-response linear model. The objectives were a) 
to build a multi-response model that appropriately models the sampling distribution of 
both datasets; b) apply this model to assess the correlation between clinical and 
sewage resistance levels; and c) apply this model to assess the contribution of 
antibiotic usage to antibiotic resistance levels in the data. We developed a mixed effect 
generalised linear model with a Poisson and binomial component, and applied it to 
data from the Global Sewage Surveillance Project, EARS-Net, and the European 
Surveillance of Antimicrobial Consumption Network (ESAC-Net, ECDC). 
 

4.3 Methods 
 
4.3.1 Datasets 
 
4.3.1.1 Global Sewage Surveillance Data 
The collection and metagenomic analysis of the Global Sewage Surveillance Project 
(GSP) has been described in detail elsewhere (Hendriksen et al., 2019). In brief, 24 
hour 1 litre composite samples were taken from wastewater prior to entry to 
wastewater treatment plants (influent) from urban regions across the world. Samples 
were frozen to -80oC and transported to the Danish Technical University (DTU), where 
DNA was extracted using the QIAamp Fast DNA Stool Mini Kit. Pilot sewage samples 
collected in 2016 were sequenced using Illumina HiSeq4000, and 2017 – 2018 
samples were sequenced with NovaSeq6000. To maintain consistency between pilot 
and main study samples, fragment size, read length, and sequencing depth targets 
were the same, and the PCR-free Kapa Hyper library prep was used for both sets of 
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samples. Reads were quality- and adapter-trimmed using BBduk2 (Bushnell, 2014). 
Hits to genes in the resulting dataset of reads were mapped using KMA (k-mer 
alignment) version 1.2.12 (Clausen et al, 2018) to a collection of gene databases, 
including ResFinder (Zankari et al., 2012) and Silva (v138) 16/18S (Quast et al., 2013).  
 
Sample collectors also completed a metadata survey form, including information on 
the location, type and temperature of the wastewater. They used discrete categories 
to rate the flow, viscosity, and colour of the wastewater, and the socioeconomic status 
of the population captured in the sample. They also provided information on the 
transport time, transport temperature, freeze temperature, and pH of the samples. 
 
Resistance gene phenotypes were obtained from the ResFinder database (Zankari et 
al, 2012). For this analysis, only genes conferring resistance to one of the antibiotics 
used in ECDC ASTs were considered (see Appendix C Table 1 for a list of the bacterial 
pathogens and antibiotics tested). 
 
4.3.1.2 ECDC data sources 
For clinical resistance data, we used the European Antimicrobial Resistance 
Surveillance Network (EARS-Net) (ECDC), which reports yearly AST results from 30 
European countries in 26 antibiotic group-bacterial species (drug-bug) combinations 
(Appendix C Table 1). National infectious disease observatories passively collect 
results of ASTs on isolates from blood or cerebrospinal fluid samples of hospitalised 
patients with invasive infections (European Centre for Disease Prevention and Control, 
2020). AST results are shared with EARS-Net and made publicly available after 
aggregation to country and antibiotic group level. Laboratory methods and clinical 
breakpoints vary between medical microbiology labs, but a majority follow European 
Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines, and since 
2019 it is a requirement for EUCAST to be followed for data to be accepted (European 
Centre for Disease Prevention and Control, 2020). Therefore, a combination of disk-
diffusion, broth microdilution, and MIC tests are used, depending on the drug-bug 
combination (European Centre for Disease Prevention and Control, 2020). 
 
For antibiotic consumption data, we used the European Surveillance of Antimicrobial 
Consumption Network (ESAC-Net) (ECDC). This database provides yearly reports of 
the total daily defined doses (DDD) per 1000 inhabitants per day, per reporting country 
in the EEA/EU, using the Anatomical Therapeutic Chemical (ATC) classification 
system (WHO Collaborating Centre for Drug Statistics Methodology, 2022). Antibiotics 
available on national registers as annual numbers of packages consumed are used to 
calculate DDDs (European Centre for Disease Prevention and Control, 2020). Only 
antibacterials for systemic use are included in this dataset (ATC group J01). 
Consumption data is reported for primary and secondary care use separately. 
 
The EARS-Net and ESAC-Net data are described in detail elsewhere (e.g. McDonell 
et al, 2017). To briefly describe EARS-Net data, for countries included in this analysis 
in 2019, the most common drug-bug combination was ampicillin resistant 
Enterococcus faecium (88.5% resistant), and the rarest was carbapenem resistant E. 
coli (0.21% resistant). Time trends vary considerably, but in most cases the proportion 
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of isolates resistant has increased over time. Briefly describing ESAC-Net data, in 
hospital in 2019 third generation cephalosporins were used in the greatest quantities, 
and vancomycin the least (0.17 and 0.043 DDDs per 1000 inhabitants per day on 
average, respectively). In the community aminopenicillins were used in greatest 
quantities and carbapenems the least (2.92 and 0.0024 DDDs on average, 
respectively). Figures showing time trends in EARS-Net and ESAC-Net can be found 
in Appendix C Fig. 2. 
 
4.3.2 Statistical methods 
 
Two methods were used for correlating the sewage and clinical resistance data: 
Spearman’s Rank, and a multi-response hierarchical linear regression model. 
 
4.3.2.1 Read abundance normalisation  
Where resistance gene count data is normalised, the fragments per kilobase per 
million (FPKM) calculation was used. This measure normalises fragment counts (!") 
of each gene in a homology group for a) the average length of the homology group in 
base pairs (#), and b) the total number of bacterial reads in the sample ($), and applies 
a scaling factor to facilitate analysis. The formula is: 
 

!%&' = !" ⋅
1

0.001 ⋅ #
⋅
1
$
⋅ 10! 

  
This normalisation has been used in analyses of the Global Sewage Project dataset 
(Hendriksen et al., 2019). It allows comparison of fragment counts from genes of 
different lengths and between samples of different concentrations of bacterial cells.  
 
4.3.2.2 Read homology reduction 
Resistance genes in the ResFinder_20190905 database were clustered to 90% 
sequence identity groups using Usearch (v11.0.7) (Edgar, 2010). Read counts were 
summed read counts within these cluster groups prior to analysis to account for a) 
variable read assignment due to low read abundances and the Conclave winner-takes-
all strategy used by KMA, and b) to reduce the number of very low or 0 read counts. 
The resistance phenotype of the group was assumed to be the union of the resistance 
phenotypes of each group member, i.e., if any gene within the group was recorded as 
conferring resistance to amoxicillin, the whole group was assumed to have this 
phenotype. An issue with this strategy may be that if only one gene within a group 
confers resistance to an antibiotic, we may overestimate the abundance of resistance 
to that antibiotic. 
 
4.3.2.3 Spearman’s Rank Correlations 
We used Spearman’s Rank to investigate the correlations between sewage and 
hospital data of the same year and country as a simple test of correlation that does 
not assume normally distributed variables. This test allows comparison with the more 
complex multi-response model within this study, to aid in assessing its benefits and 
disadvantages. A separate correlation coefficient was obtained for each drug-bug 
combination in the ECDC data, selecting sewage abundance data for only those genes 
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conferring resistance to the same antibiotics as used in ASTs. The unit of observation 
for the Spearman’s Rank tests were resistance levels in each country and year. 
Resistance levels in the clinical data was proportion of isolates resistant, and FPKM 
of resistance genes in the sewage data. 
 
In order to have sewage surveillance observations on the same level as the ECDC 
surveillance observations for calculating the correlation coefficient, we aggregated 
across gene groups, multiple sampling sites in a single country, and across multiple 
batches per year. For each year and country, read counts for all phenotypically 
relevant genes groups, gene group lengths, and total bacterial read count were 
summed prior to FPKM calculation. This aggregation step results in loss of information 
and a reduction in the number of observations. In addition, the correlation test itself is 
limited as it can only look for correlation between two variables and offers no way to 
understand why they may correlate. To address these issues whilst still estimating a 
correlation, we next applied a multi-response (a.k.a. multivariate) generalised linear 
mixed effects model.  
 
4.3.2.4 Multi-response linear model 
 
We used the following conceptual model:  
 

 
 
Solid arrows indicate a hypothesised causal relationship, and dotted arrows indicate 
correlation. Therefore, the model structure assumes hospital and community antibiotic 
usage has a direct effect on the population in which is it used, and only indirect effects 
on the other population. It also assumed sewage resistance levels are directly 
impacted by community resistance, clinical resistance (through hospital wastewater 
effluent) and by characteristics of the wastewater site and the way the sample was 
handled. We do not make a causal hypothesis about the relationship between 
resistance in hospitals and the community, only hypothesise that there may be a 
correlation. A full directed acyclic graph representing the model structure can be found 
in Appendix C Fig. 1.  
 
To explain the model structure, we will first show how a multi-response linear model 
is specified. Multi-response models use a multi-response normal distribution on the 
residuals of each dataset, allowing estimation of a covariance matrix describing 
residual variance and between-dataset covariance. For example, for - ∈ (1, … , 2) 
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measurements of 4 ∈ (1, … , 5) observational units (e.g. sampling site) that are 
normally distributed, the linear model would be: 
 

6" = 7"8 + :" 
:" 	~	'=5>?@AB(0, Σ)	 

 
Where 6" is a vector of 2 measurements for observation 4, 7"8 is the linear predictor 
(predictor variables multiplied by the estimated model coefficients), :" is a vector of 
size 2 of the errors or residuals for observation 4, and Σ is the covariance matrix. 
 
Some features of our datasets cannot be addressed with this model structure: neither 
the EARS-Net data nor the sewage data are normally distributed; we do not have the 
same units of observation in each dataset; and we have different covariates and 
hierarchies that we want to apply to each dataset. Therefore, we made some 
adaptations to this model. 
 
We can use alternative sampling distributions and link functions to transform residuals 
to a normal distribution (a generalised linear model, or GLM). The ECDC data are AST 
results of with a binary outcome, so are binomial. As the sewage dataset of read 
abundance is count data, a Poisson or negative binomial distribution might be 
appropriate. Although combining different sampling distributions in one multi-response 
model is rare, one example includes a model combining binomial and Poisson species 
observation data in a spatially autoregressive multi-response species distribution 
model (Pacifici et al., 2017). For comparability, we therefore also chose to also use a 
Poisson distribution for this model with additional accounting for over-dispersion. 
Chapter 5 will investigate other distributions for read count data. The model can be 
written: 
 

D" = E" + F" 
G",$%&	~	%>4HIJ

'!,#$%K 
G",$()	~	$4LIB>M4N(D",$()), 5"K 

 
In this model, D" is the latent variable for each observation. E" is the linear predictor, 
and includes an offset term for the Poisson model to account for gene length:  
 

E" = 7*,+8, + O*,+P+ + ln(#") + ln($") 
 
Where 7*,+ is a vector of covariates for observation 4 and dataset -, 8$ is the vector of 
fixed effect coefficients for dataset -, O*,+ is a vector of membership status of 
observation 4, dataset -, to groups being modelled with random effects, and P+ is the 
vector of random effects for these groups. This notation is based on Hadfield, 2010. 
#" is the gene group length and $" is the bacterial read count of observation 4 (which 
are set to 1 if the observation is from the clinical dataset). 5" is the number of isolates 
tested for observation 4 of the clinical dataset (- ≥ 2).  
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The residual term (F") for this model is specified with two components representing the 
residual variance due to country and resistance measure (U), and the residual variance 
due to overdispersion (V"): 
 

F" = U-,. + V" 
 
The residual structure of the model is based on the model structure described in 
Hadfield, 2010. In addition to the variance expected due to the sampling distribution 
(e.g., in the Poisson model, the expected variance of the residuals would be J/!), we 
also estimate residual overdispersion (W$)). 

V"~5>?@ABI0, W$
)K 

 
The model structure has hierarchical residual errors (U-,.) for each country (X	 ∈
(1, … , ")) and each resistance measure (@	 ∈ (1,… ,')). These errors have the 
hyperprior: 
 

Y0~'=5>?@AB(0, Σ.) 
 
Here Y0 is a vector of size ' of the deviations of country X for each resistance measure 
@. Σ. is the covariance matrix of country-level deviations from the linear predictor 
(residuals) for each resistance measure. This hyperprior therefore allows group-
specific variance, or partitioned variance, and between-group correlation. We chose 
to specify variance not just for the two datasets (ECDC and sewage surveillance), but 
also across different bacterial species within the ECDC data, considering each as a 
separate resistance measure. For example, vancomycin resistance measures include 
probability of resistance in clinical isolates of E. faecium, probability of resistance in E. 
faecalis, and vancomycin resistance gene abundance in sewage samples (' = 3). 
We can therefore estimate country-level correlations in resistance rates between 
bacterial species, and correlations between bacterial resistance rates and sewage 
resistance gene abundance. 
 
The covariance matrix is the key element for addressing the aim of this chapter. It is 
composed of W.) , the between-country variance in measure @, and the between-
country covariances between the measures, e.g. W.%&,.%),. After converting this 
covariance into correlation, we compare it to the Spearman’s Rank correlation 
coefficient obtained previously. Both measure country-level correlations between 
resistance measures. Two important differences are a) the unit of observation is 
changed, and b) in the multi-response model, other sources of variance in the data 
are also accounted for. 
 
A separate model was fit for each antibiotic group, for a total of 7 models 
(aminoglycosides, aminopenicillins, carbapenems, fluoroquinolones, macrolides, third 
generation cephalosporins, and vancomycin). In each model, only susceptibility test 
results, genes conferring resistance to, and usage rates of the antibiotic group of 
interest were used. Table 4.1 summarises the numbers of observations and groups in 
each model.  
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Table 4.1: Numbers of groups and observations in each model 

Antibiotic group Number 
of gene 
groups 

Number of 
countries 
with both 
sewage and 
ECDC data 

Number 
of 
bacterial 
species 

Total 
number of 
clinical 
observations  

Total 
number of 
gene 
observations 

Aminoglycosides 71 26 6 1583 8236 
Aminopenicillins 48 26 3 969 5568 
Carbapenems 21 22 4 841 2121 
Fluoroquinolones 16 26 4 1013 1856 
Macrolides 43 25 1 259 4988 
Third generation 
cephalosporins 

30 26 3 857 3330 

Vancomycin 10 26 2 632 1110 
 
Uninformative priors were used throughout (Appendix C Table 3). The models were 
scripted using R v3.6 (R Core Team, 2022) and the MCMCglmm package (Hadfield, 
2010), with an adaptation to enable combining binomial and Poisson sampling 
distributions (courtesy of Jarrod Hadfield). Example code is provided in Appendix C. 
 
4.3.2.5 Other variables included in wastewater model 
Primary care antibiotic usage rate was included as a fixed effect. The 90% homology 
gene group was included as a random effect to capture between-gene group variation 
in abundance, and to deal with the varying number of observations per gene group. 
Sampling batch was included as a random effect as another potential source of 
variation. Whether or not a sample was frozen to -70oC (or lower) was included as a 
fixed effect, as this was stipulated in the GSP protocol, and because flash freezing is 
considered the gold standard for preserving microbiological samples (Song et al., 
2016).  
 
Other variables in the wastewater portion of the model were selected to take 
environmental factors into account. We included the flow rate category and the pH of 
the sample as factors in the model. The impact of environmental factors on sewage 
resistomes will be further explored in Chapter 5. Although flow rate was recorded as 
an ordered categorical variable, we included it with a single slope coefficient for model 
simplicity. 
 
4.3.2.6 Other variables included in clinical model 
Two fixed effects were included in the clinical portion of the model. Hospital antibiotic 
usage rate was included as an interaction effect, with a separate coefficient for each 
bacterial species. In each drug-bug combination, there was auto-correlation between 
time points, non-linear time trends, so we also included the resistance proportion in 
the previous year as a fixed interaction effect, with a separate coefficient for each 
bacterial species. 
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4.3.2.7 Comparison models 
Uni-response models were also constructed to indicate if there was any 
improvement to model fit by incorporating the correlation terms. For the sewage data 
model, this meant that there was no variance partitioning for between-country 
variance, only a random intercept effect for each country. In the model of the ECDC 
data, there was still variance partitioning in the between-country variance, but only 
for bacterial species. In addition, we included models without primary care antibiotic 
usage to investigate the impacts of this factor on resistance gene abundance and 
correlation estimates. 
 
4.3.2.8 Model likelihood comparison 
For model goodness-of-fit comparison, we used a likelihood ratio test. First we 
calculated the likelihood ratio, BB1 − BB&, where BB1 is the log-likelihood of the reduced 
model and BB& is the log-likelihood of the full model. We calculated the model log-
likelihood from the MCMC chain iteration with the lowest reported model deviance for 
multi-response and uni-response models. The sum of the log likelihood of both uni-
response models was used as BB1. The likelihood ratio test is then performed using the 
\)	distribution with the number of free parameters added as the degrees of freedom. 
For the model structure described here we used @, the number of bacterial species 
and therefore the number of correlation terms that were added. Therefore, we are 
testing whether adding correlation terms between the datasets improved the model 
likelihood. 
 
4.3.2.9 Model validation 
Model validation was performed to assess the ability of the model to predict clinical 
resistance levels to countries not included in the training dataset. For this, we fit the 
model on training sets of the data with each country excluded, and then predicted 
clinical results of the excluded country with the resulting fitted model. This leave-one-
out type of validation is used in assessing the predictive ability of a similar model in 
Karkman et al, 2020. We then compared the error on predictions for different 
countries, and the error for different drug-bug combinations for the multi-response 
model and the univariate clinical model. 
 
4.4 Results  
 
4.4.1 Data 
 
4.4.1.1 Metagenomic data 
A full description of the Global Sewage Surveillance Project data can be found 
elsewhere (Hendriksen et al., 2019). Briefly, for samples and genes included in this 
analysis, the average FPKM of genes conferring resistance to each antibiotic group 
was: macrolide resistance genes (RGs), 1177.1, standard deviation (SD) 4840.9; 
aminopenicillin RGs, 138.7, SD 857.9; fluoroquinolone RGs, 108.9, SD 476.9; 
carbapenem RGs, 58.2, SD 223.4; 3rd generation cephalosporin RGs, 51.1, SD 215.5; 
aminoglycosides RGs, 35.8, SD 176.5; and vancomycin RGs, 6.6, SD 53.9. The five 
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most abundant resistance genes were: erm(B), mph(E), mef(A), msr(D), and erm(F) 
(average FPKMs 17032.5, 15674.9, 5909.3, 5182.0, and 2689.3, respectively). 
 
4.4.1.2 Sample characteristics 
Of 126 wastewater samples included in the analysis, 106 (84.1%) were frozen to -
70oC or lower prior to shipping. Most samples were rated as having the highest flow 
rate category (76/126, 60.3%). The average pH of samples included in this analysis 
was 7.30 (standard deviation = 0.51). 
 
Table 4.2: Effect of primary care antibiotic usage on ARG abundance in 
sewage 

Rate ratio estimate is the posterior mode, and uncertainty intervals are highest 
posterior density intervals. 
Antibiotic group Rate ratio (95% uncertainty intervals) 
Aminoglycosides 1.04 (0.90 – 1.18) 
Aminopenicillins 1.19 (0.92 – 1.43) 
Carbapenems 1.11 (0.98 – 1.40) 
Fluoroquinolones 1.38 (1.05 – 1.94) 
Macrolides 1.16 (0.96 – 1.42) 
Third generation 
cephalosporins 

1.36 (1.06 – 1.76) 

Vancomycin 0.34 (0.07 – 1.62) 
 
4.4.2 Model results 
 
We judged the strength of evidence for an association in the results below on the 
basis of the uncertainty intervals of the rate ratio posterior; if 1 is not within the 95% 
uncertainty, we take this as evidence for an association. If 1 is within the range but 
close to the edge, we take this as borderline evidence. 
 
4.4.2.1 Effect of primary care antibiotic usage rates on ARG abundance on sewage 
There was evidence for a positive effect of 3rd generation cephalosporins and 
fluoroquinolone usage rates in the community on ARG abundance (Table 4.2). There 
was borderline evidence for positive effects of macrolide, carbapenem and 
aminopenicillin usage, and no evidence for an effect for aminoglycosides or 
vancomycin usage. 
 
4.4.2.2 Effect of hospital antibiotic usage on resistance prevalence in clinical isolates 
Positive associations between hospital antibiotic usage rates and clinical resistance 
levels were observed for the following drug-bug combinations: aminoglycosides and 
K. pneumoniae; aminopenicillins and E. faecalis; 3rd generation cephalosporins and 
Pseudomonas aeruginosa; fluoroquinolones and Pseudomonas aeruginosa; and 
carbapenems and Acinetobacter spp., E. coli, and K. pneumoniae (Appendix C Table 
3).  
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4.4.2.3 Effects of sample characteristics on ARGs 
The flow category assigned to the stream of wastewater on collection generally did not 
correlate with ARGs, except for a negative association with carbapenem resistance 
genes (Table 4.3). The sample being frozen to -70oC or lower had no effect on the 
abundance of ARGs. The pH of the wastewater sample had a borderline positive 
association with resistance genes for aminopenicillin, carbapenems, and third 
generation cephalosporins. 
 
Table 4.3: Effect of environmental factors on resistance gene abundance in 
sewage 

Rate ratio estimate is the posterior mode, and uncertainty intervals are highest 
posterior density intervals. 
Resistance group Sample flow rate 

category 
Sample flash 
frozen 

Sample pH 

Aminoglycosides 0.97 (0.90 – 1.05) 1.06 (0.80 – 1.36) 0.98 (0.88 – 1.11) 
Aminopenicillins 1.02 (0.94 - 1.09) 1.08 (0.86 - 1.36) 1.09 (0.97 - 1.19) 
Carbapenems 0.88 (0.78 - 0.99) 1.06 (0.68 - 1.63) 1.14 (0.97 - 1.36) 
Fluoroquinolones 1.09 (0.98 - 1.18) 1.05 (0.81 - 1.46) 1.00 (0.88 - 1.15) 
Macrolides 1.00 (0.94 - 1.05) 1.02 (0.89 - 1.25) 1.01 (0.93 - 1.08) 
Third generation 
cephalosporins 

1.01 (0.90 - 1.12) 1.08 (0.71 - 1.41) 1.14 (0.97 - 1.32) 

Vancomycin 0.85 (0.49 - 1.54) 0.92 (0.28 - 4.35) 0.69 (0.26 - 1.37) 
 
 
4.4.2.4 Effect of previous time point on clinical isolate resistance levels 
There was a positive association between resistance prevalence in clinical isolates of 
a bacterial species at consecutive time points for all drug-bug combinations except for 
carbapenem resistance in E. coli and vancomycin resistance in Enterococcus faecalis 
(Appendix 2.2). 
 
4.4.2.5 Correlations between resistance measures.  
The relationship between sewage and clinical resistance measures, and between 
bacterial species resistance measures, varied by antibiotic group, bacterial species, 
correlation method and model structure (Fig. 4.1, Appendix C Fig. 3). Summaries of 
the posteriors for all resistance measure covariance matrices can be found in 
Appendix C Fig. 3. 
 
Aminoglycoside resistance in hospitals and sewage appeared to positively correlate 
on the country-level (Fig. 4.1, Fig. 4.2, Appendix C Fig. 3.1). Correlation was 
particularly strong for Acinetobacter spp., K. pneumoniae and P. aeruginosa. The 
correlation estimates were unaffected by removing primary care antibiotic usage and 
were higher using the multi-response model method compared to the Spearman’s 
Rank correlation (Appendix C Fig. 3.1.B). 
 
Aminopenicillin resistance measures did not appear to have strong positive 
correlations (Fig. 4.1, Appendix C Figure 3.2). Model results indicated that there was 
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no relationship for E. faecalis or E. coli, and potentially a negative one for E. faecium. 
This contrasts to the Spearman’s Rank results, which suggested slightly positive 
relationships for E. faecium and E. coli. Removing primary care antibiotic usage did 
not affect correlation estimates. 
 
Evidence for a positive corelation for carbapenem resistance was mixed (Fig 1, 
Appendix C 3.3). Model results indicated that there was no positive association for any 
species. Spearman’s Rank, however, suggested positive correlations for 
Acinetobacter spp. and P. aeruginosa. Removing primary care antibiotic usage made 
positive correlation in the multi-response model more likely (Appendix C Fig. 3.3.B). 
 
There was also mixed evidence for a positive correlation in Fluoroquinolone resistance 
(Fig. 4.1, Appendix C Fig. 3.4). Model results indicated no positive correlation even 
though Spearman’s Rank did (Fig. 4.1). Removing primary care antibiotic usage led 
to strong positive correlation values, indicating the potential importance of this variable 
for fluoroquinolone resistance (Appendix C Fig. 3.4.B). 
 
Macrolide resistance appeared positively correlated (Fig. 4.1, Appendix C Fig. 3.5). 
Multi-response models with and without primary care antibiotic usage, and the 
Spearman’s Rank, agreed on a positive correlation (Appendix C Fig. 3.5.B), although 
there was wide uncertainty in the multi-response estimates.  
 
There were wide uncertainty intervals for third generation cephalosporin resistance 
correlation estimates correlate (Fig. 4.1, Appendix C Fig. 3.6). Correlation estimates 
did not agree across model structures and Spearman’s Rank, although there was 
some evidence of positive correlation for E. coli (Fig. 4.1). 
 
Vancomycin resistance contrasts to other resistances types examined, appearing to 
have no correlation or even possibly negative correlation (Fig. 4.1). Results of multi-
response models and Spearman’s Rank suggested correlations below 0 but not 
significantly so (Appendix C Fig. 3.7.B). 
 
Comparing the correlation between bacterial species within the clinical data, it is 
notable fluoroquinolone resistance had positive covariance for all bacterial species 
combinations, but none were positive for aminopenicillins (Appendix C Fig. 2.3). 
Resistance in K. pneumoniae and P. aeruginosa were most often positively correlated 
with other bacterial species, each having a positive covariance in 8/13 between 
species comparisons. However, uncertainty intervals were wide for correlation 
estimates between bacterial species. 
 
4.4.2.6 Other sources of variance 
Further sources of variance are provided in Appendix C Table 4. 
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4.4.2.7 Model likelihood comparisons 
We compared the likelihood of models with and without a between-dataset correlation 
term (Table 4.4). All models except for macrolide and third generation cephalosporin 
resistance had improved likelihood after adding between-dataset correlation. 
 
Table 4.4: Likelihood ratio tests of multi-response compared to univariate 
models 

Log-likelihood obtained from the parameter set with the lowest deviance. P-value 
indicates result of a likelihood ratio test, probability of achieving the observed log-
likelihood ratio if the two models had the same log-likelihood. 
Antibiotic 
group 

No. variance 
parameters added 
(degrees of freedom) 

Log-likelihood 
ratio 

p-value 

Aminoglycosides 6  19.83 <0.01 
Aminopenicillins 3 2.09 <0.01 
Carbapenems 4 10.21 <0.01 
Fluoroquinolones 4 15.36 <0.01 
Macrolides 1 -14.16 0.99 
Third generation 
cephalosporins 

3 -6.19 0.99 

Vancomycin 2 6.23 0.00 
 
 
4.4.2.8 Model validation 
The greatest model error was for predicting carbapenem resistance in E. coli for 
countries excluded in the training set, for which the average error was 574 test results 
incorrectly predicted, making predictions 18 percentage points away from the 
observed prevalence of resistance in countries outside of the test dataset (Fig. 4.3). 
Generally, errors for the univariate model and the multi-response model were similar, 
although the multi-response model had modestly lower errors for aminopenicillins and 
vancomycin resistance in all species. There were also some increases in error in multi-
response models compared to univariate ones, particularly for carbapenem 
resistance. 
 
The greatest range of errors for each country (Appendix C Fig. 4) was for 
fluoroquinolone and third generation cephalosporins models, whereas errors were 
similar across the board for the vancomycin model. Generally Romania or Malta, for 
which there was the least data, were predicted worst. On average the worst predicted 
country across all test sets of data was Romania (13.6 percentage points away from 
true percent of isolates resistant), and the best predicted was the Republic of Ireland 
(6.5 percentage points away). 
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Figure 4.1: Comparison of sewage-clinical resistance correlation estimates 
for Spearman’s Rank and multi-response models 

For each drug-bug combination, the correlation estimate from a Spearman’s Rank 
test (left half of circle) and the correlation posterior mode from the multi-response 
model (right half of circle). The correlation value is printed as text, and the colour 
reflects the degree of correlation, with blue for negative correlation, white for no 
correlation, and red for positive correlation. The star indicates that the uncertainty 
intervals (95% confidence intervals for Spearman’s Rank and 95% highest 
posterior density for multi-response models) did not include 1, and therefore 
provide some evidence for an association. 
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Figure 4.2: Resistance to aminoglycosides in clinical and sewage data 

On the left, the average proportion of isolates resistant to aminoglycosides 
(gentamicin or tobramycin) in 2018 in European countries. On the right, the 
average FPKM of resistance genes conferring resistance to gentamicin or 
tobramycin in European countries in 2018. The colour of the country area indicates 
the resistance level, or grey indicates no data was collected in GSSP or EARS-
Net. 
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Figure 4.3: Predictive ability of the multi-response and univariate models to 
new countries 

Mean absolute error in the predicted proportion of isolate results for countries not 
included in test sets. Multi-response models including all the data and univariate 
models of only clinical data were run on test sets with each country excluded. 
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4.5 Discussion 
 
In this chapter, we applied a multi-response model to integrate clinical and sewage 
resistance surveillance data. There was evidence for positive correlations between 
clinical and sewage resistance levels for aminoglycoside resistant bacteria, but no 
strong evidence for correlations for other antibiotic groups. However, correlation 
estimates were uncertain and sensitive to model structure and correlation estimation 
method. The relationship between community antibiotic usage and sewage resistance 
level varied by antibiotic, with strongest evidence for a positive effect for 
fluoroquinolones and third generation cephalosporins. We suggest that these results 
demonstrate that sewage surveillance can be used for exploring drivers of resistance 
in the community as well as in clinical settings, but that some drug-bug combinations 
(especially aminoglycoside resistance) may be better suited to sewage surveillance 
than others (macrolide or vancomycin resistance). More research that disentangles 
hospital and community contributions to WWTP influent is needed interpretation of 
sewage surveillance data. 
 
The most robust evidence for a positive correlation between clinical and sewage 
surveillance data was for resistance to aminoglycosides, which was consistently found 
across model structures. A country-level positive correlation between EARS-Net data 
and resistance gene abundance in sewage was also found in the two other studies, 
further suggesting this finding is robust (Karkman et al., 2020; Pärnänen et al., 2019) 
(see Table 4.5 for a comparison of the methods and results of these studies). This 
positive correlation could indicate that aminoglycoside resistance genes that are 
abundant in hospital patients and sewage are carried to the WWTPs, i.e. the 
correlation is due to the signature of the hospital sewage in the WWTPs. Current 
evidence suggests that the contribution of hospital effluent to the resistome of WWTPs 
is present but small (Buelow et al., 2018; Gundogdu et al., 2017; Hutinel et al., 2019; 
Kutilova et al., 2021; Paulshus et al., 2019; Verburg et al., 2019), although 
aminoglycoside resistance has not been studied separately from other resistance 
classes in studies comparing hospital and municipal wastewater. The proportion of 
municipal sewage that has come from hospital effluent by volume is small (estimated 
to be about 1% based on flow rates of hospital and total municipal effluent) so it is not 
surprising that the signal would be diluted (Buelow et al., 2018; Verburg et al., 2019). 
In addition, bacteria and resistance genes may degrade within the wastewater 
network, and in some European countries hospital wastewater is also treated prior to 
discharge into the main sewer line (Kumari et al., 2020). These features could further 
dilute and alter the composition of the hospital effluent-derived resistance genes in 
WWTPs but are not well understood.  
 
Positive correlations may alternatively indicate that there is sharing of aminoglycoside 
resistant bacteria between hospitals and the community. The sharing of resistance 
may be due to hospital-acquired infections spreading within the community, or 
community-acquired infections being detected in hospitals, or both. Whether hospitals 
or the communities are the main sources of resistant infection is an ongoing area of 
research, with a recent modelling paper suggesting that most infections are likely to 
come from the community (Knight et al, 2018b). In the case of aminoglycoside 
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resistance, there is evidence that it can be acquired in hospitals (El-Mahdy et al., 2018) 
and in the community (Roldan-Masedo et al., 2019), but data indicating the proportion 
of aminoglycoside resistant infections that are community or hospital acquired are 
lacking.  
 
Table 4.5: Comparison of other EARS-Net studies and results by antibiotic 
and bacterial species  

The data, methods, and whether evidence was claimed for a positive association. 
NT: not tested. 

Data and methods comparisons 
 Pärnänen et al., 2019 Karkman et al., 2020 

Clinical data 
source 

EARS-Net EARS-Net; Central Asian and 
Eastern European 
Surveillance of Antibiotic 
Resistance Annual Report, 
2018 (CAESAR) 

Sewage 
resistance gene 
data source 

qPCR of 10 European 
countries 

Global Sewage Surveillance 
Project (2016 data only) 

Correlation 
method 

Spearman’s Rank Generalised linear regression 
model (beta family) 

Evidence for positive associations 
Aminoglycosides Yes: E. coli; K. pneumoniae; 

P. aeruginosa 
No: Acinetobacter spp., E. 
faecium 

Yes: E. coli 

Aminopenicillins NT Yes: E. coli 
Carbapenems NT NT 
Fluoroquinolones Yes: E. coli, K. pneumoniae, 

P. aeruginosa 
No: Acinetobacter spp. 

Yes: E. coli 

Macrolides No: S. pneumoniae NT 
Third generation 
cephalosporins 

NT Yes: E. coli 

Vancomycin No: E. faecium NT 
Beta-lactams Yes: E. coli, K. pneumoniae, 

S. aureus 
No: Acinetobacter spp., P. 
aeruginosa, E. faecium 

NT 

 
Another explanation for positive correlations is that there are similar drivers of 
resistance in both hospital and community sewage. For example, community- and 
hospital-acquisition of aminoglycoside resistance could both be independently 
elevated due to, for example, correlated hospital and community antibiotic usage. To 
assess this we compared the correlation estimates of models with and without primary 
care antibiotic usage rates included, and compared the resulting correlation estimate 
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posterior, as the correlation might be expected to decrease if this was the case. 
Aminoglycoside correlation estimates appeared to be insensitive to primary care 
antibiotic usage, suggesting this explanation may not play a strong role in this finding. 
Of the explanations of positive correlations considered (hospital effluent signatures, 
hospital-community resistome sharing, or correlated antibiotic usage), it is not possible 
to quantify the contribution of each to the correlations estimates from the available 
data. Further research that samples from multiple hospital and community sites is 
needed to disentangle hospital and community signatures from municipal wastewater 
resistomes. 
 
For aminopenicillin, fluoroquinolone, and third generation cephalosporin resistance, 
Spearman’s Rank and previous studies (Huijbers et al., 2020; Karkman et al., 2020; 
Pärnänen et al., 2019) found positive correlations, whereas the full multi-response 
model did not. The simpler methods that only include one year of data or can match 
observations on year and country may be able to find higher correlation estimates, 
although resistance levels were relatively stable over the 2016 – 2018 period in both 
datasets (Appendix C Figure 3). More explanatory factors and hierarchies in the data 
were incorporated into the multi-response model, and these may have led to the 
between-dataset correlations explaining a smaller proportion of variance in either 
dataset. For example, including primary care antibiotic usage decreased the 
correlation value in the fluoroquinolone model. This factor was not included in previous 
studies. Overall, the differences in the correlation estimates point to the sensitivity of 
the results to the modelling framework. Comparison of the results of model structures 
(Spearman’s Rank, multi-response and uni-response, with and without antibiotic 
usage) provides more information on how best to combine these two datasets and 
adds robustness to the results. Studies which do not take this approach risk over- or 
underestimating correlation values.  
 
In macrolide and vancomycin resistance models, both this study and a previous study 
agree (Pärnänen et al., 2019) on there being no or a small degree of correlation. There 
was also no evidence from this study for a correlation in carbapenem resistance, but 
we do not find any studies estimating a country-level correlation of carbapenem 
resistance levels in clinical and sewage samples, although two studies on a single 
hospital level found some evidence of a positive association in hospital isolates and 
effluent (Flach et al., 2021; Perry et al., 2021). Arguably the strongest evidence for no 
association is for vancomycin resistance, as this result was most consistent between 
correlation methods. It is notable that hospital usage of vancomycin is increasing but 
community usage is rare (Appendix C Fig. 2), and it was a rare type of resistance in 
the sewage (average 6.6 FPKM) and in clinical data, although the proportion of E. 
faecium isolates that are resistant to vancomycin is increasing (Appendix C Fig. 2). 
Therefore, vancomycin resistance gene abundance may be particularly hard to detect 
in wastewater due to dilution. This dilution would lead to any clinical factors being hard 
to detect in sewage samples. Low-sensitivity methods like sewage metagenomics may 
not be suited to monitoring these types of resistance.  
 
There are several factors that may decrease the strength of the link between 
resistance clinical samples and municipal sewage. A key question to answer is how 
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closely related the microbiomes of blood and cerebrospinal fluid (represented in 
EARS-Net) to gut and urinary tract (represented in sewage surveillance) are. It has 
been observed that different sites in the human body have distinct microbiomes (Lloyd-
Price et al., 2017), and that the resistome of oral and stool samples differ (Carr et al., 
2020), but studies that compare the resistomes of blood to other different body sites 
are lacking. Differences in the resistome between these sites could lead to lower 
correlations between clinical and sewage surveillance. In other words, the clinical data 
source may explain the low correlation. A lack of correlation may also point to a lack 
of onward transmission of hospital-acquired resistant bacteria in the community. This 
finding would be of some clinical importance, indicating that antibiotic stewardship and 
infection prevention control measures would have greater knock-on positive effects for 
some resistant bacteria than others. On the other hand, it may indicate that the EARS-
Net data does not represent the community resistance levels well. Studies using 
EARS-Net data such as (Cassini et al., 2019) assume that their results can be 
generalised to the whole population, but few studies have compared community 
samples with EARS-Net data. In addition, the blood-gut and hospital-community 
relatedness in resistant bacteria differ between bacterial species. Sewage surveillance 
will be more effective for clinical predictions for those bacterial species that have 
higher relatedness to patient blood specimens. 
 
Positive correlations may be obscured in the dataset. Wastewater is a new source of 
surveillance, and the impact of non-human sources of resistance in the sewage and 
wastewater passage on the composition of the sewage resistomes should be 
considered. Wastewater influent at the water treatment plant is a mixture of 
wastewater from multiple sources, and there has been speculation that animal gut 
(Raven et al., 2019) and industrial effluents (Guardabassi et al., 1998) also contribute 
to the resistome. In addition, features within the sewer pipes of the wastewater network 
may affect the microbial composition. Some features may encourage the growth of 
some bacteria and the decomposition of others, including warm temperatures and 
nutrients, exposure to antibiotic residues, heavy metals and disinfectants, and 
fluctuating concentrations of oxygen (McLellan & Roguet, 2019). This will alter the 
composition of the microbiome and the resistome within the sewage compared to 
human microbiomes. Indeed, studies have found that the wastewater is dominated by 
resident bacteria such as Acinetobacter and Aeromonas (Guo et al., 2019; Vandewalle 
et al., 2012). There is also evidence that exposure to antibiotic residues in hospital 
wastewater could select for resistance in E. coli (Kraupner et al., 2021). Accordingly, 
it has been shown that the wastewater microbiome and resistome is related to, but 
distinct from, human samples (Newton et al., 2015; Pehrsson et al., 2016; Raven et 
al., 2019).  
 
Differences in the microbiology of different sites in the body and wastewater will reduce 
the similarity of the municipal sewage resistome to that of humans, and will add noise 
to the data. Analysis of sewage data may therefore be at risk of underestimating 
drivers of resistance, or overestimating the association with human risk factors that 
correlate with environmental variables, such as latitude and GDP. However, in this 
study few environmental factors were associated with resistance gene abundance, 
which could indicate a limited influence. Experimental research that investigates the 
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impacts of wastewater passage is crucial to confirm which environmental factors need 
to be considered. Multi-response models will be in important tool for building flexible 
model structures that estimate the impact of many sources of variance and the impacts 
of co-factors and environmental factors on sewage resistance. 
 
Primary-care antibiotic usage was positively associated with resistance gene 
abundance in fluoroquinolone and third generation cephalosporin models, suggesting 
the usage of these antibiotics in the community could drive selection for resistant 
infections. This result contrasts the previous analysis of the Global Sewage 
Surveillance Project, which found no association between resistance gene abundance 
and antibiotic usage on a global scale (Hendriksen et al., 2019). Positive associations 
between antibiotic consumption and EARS-Net data have been found in some 
(McDonnell et al., 2017) but not all (Collignon et al., 2018) studies. On a smaller scale, 
there is some evidence for community prescriptions influencing resistance selection 
from studies of non-hospital use of fluoroquinolones and co-amoxiclav and 
community-acquired UTIs (Kahlmeter et al., 2003; Vihta et al., 2018). In this analysis, 
we split models by antibiotic group, to allow for differences in the relationship between 
consumption and resistance. This may have improved our ability to detect positive 
effect estimates. Finding an association between sewage metagenomics and a 
community, population-level factor is promising for further research that looks for 
community drivers of resistance using wastewater surveillance.  
 
Some additional limitations of sewage metagenomics should be considered in 
interpretation of our results. Metagenomics has low sensitivity which may mask rare 
resistance genes, such as ones that are usually hospital-associated. Resistance gene 
data from metagenomics does not indicate the bacterial host of the resistance gene, 
which limits comparison to culture-based clinical surveillance data, although research 
is ongoing to infer the host which can mitigate this limitation of metagenomics in future 
studies (e.g. Munk-Welford et al, in prep.). Sampling was focussed on large cities 
which may not represent the rest of the country well, and there were more sampling 
sites and time points for some countries than others. EARS-Net also doesn’t have full 
population coverage, with contributing countries reported an average of 67.8% 
population coverage, and 70% of countries reported high degree of geographical 
representativeness in 2019 (European Centre for Disease Prevention and Control, 
2020). The degree of population overlap between these two datasets is unknown, but 
if overlap is low this could decrease correlation estimates. Finally, as both sewage 
surveillance and EARS-Net are population-level measures, this is an ecological study. 
Applying analysis of ecological data to draw conclusions on risk factors for individuals 
is often inappropriate (Grimes & Schulz, 2002).  
 
In conclusion, this study provides evidence for a link between aminoglycoside 
resistance in hospitals and communities. It also demonstrates that multi-response 
models are powerful and flexible tools for wastewater metagenomic analysis, allowing 
more efficient use of the data, and more investigation of influential factors, hierarchies, 
and sampling distributions in both datasets than uni-response methods. We show that 
sewage surveillance data will be useful for supporting clinical predictions for some 
drug-bug combinations (such as aminoglycoside and fluoroquinolone resistance), but 
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not all (such as macrolide and vancomycin resistance). Sewage surveillance can shed 
light on the community drivers of resistance, indicating that primary-case antibiotic 
usage may lead to increased resistance in the community. 
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5.1 Abstract 
 
Background: Metagenomic analysis of sewage generates rich information on the 
human resistome and microbiome, and wastewater surveillance programmes are 
becoming more widespread. However, sewage samples can combine effluents from 
many sources, including communities and hospitals. Little is known about the 
contribution of each source, limiting the interpretation of sewage metagenomics. Here, 
I aimed to assess the contribution of communities and hospitals to sewage samples, 
and whether resistomes in patients and community members differ. We applied 
metagenomics to sewage samples from eight wastewater networks in Scotland, 
including hospitals, communities, and their connected wastewater treatment plants 
(WWTPs). 
 
Methods: I selected four WWTPs with a district hospital in their catchment area and 
matched them to WWTPs without hospitals in their catchment area, taking population 
size, rural-urban composition, and geographical distance from each other into account. 
Sewage was sampled from all WWTPs, district hospitals, and community sites (in non-
hospital catchment areas). For each catchment I collected community and hospital 
antibiotic prescription data. Samples were sequenced using Illumina NovaSeq and 
reads were mapped using the ResFinder database. I used multi-level zero-inflated 
negative binomial regression models, cluster analysis, and source-attribution random 
forests to compare resistance in hospitals, communities, and WWTPs, and estimate 
resistance-prescription associations. 
 
Results: PCoA analysis showed two fully separate resistome groups, with hospital 
resistome in one and communities and WWTPs in the second. Hospitals had the 
greatest abundance (average fragments per kilobase million 1461.2, 122.4, and 141.1 
for hospitals, communities, and WWTPs, respectively) and richness (average 197.4, 
111.6, and 119.7 different genes, respectively) of resistance genes. Even so, the 
contribution of hospitals to WWTP resistomes was small: resistance gene abundance 
in WWTPs was not increased by a significant proportion by hospital presence (effect 
estimate: 0.84, 95% uncertainty intervals: -0.24 – 1.91), and random forest models 
predicted a low chance that the source of WWTP resistomes was a hospital (5.6% 
without and 13.9% with hospitals in their catchments). I found no evidence of an impact 
of prescriptions on sewage resistance abundance. 
 
Conclusion: This chapter suggests WWTP resistome represents effluents from 
communities more closely than hospitals. Furthermore, it suggests hospital and 
community/WWTP sewage resistomes are distinct, implying there are different drivers 
of selection or transmission of antibiotic resistance (ABR) in these groups. Sampling 
from hospitals effluent will be needed to determine the hospital resistome, as it is not 
captured in WWTP influent. 
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5.2 Introduction 
 
Antibiotic resistant infections are thought to be a leading cause of mortality globally 
(Murray et al., 2022), and are growing in number (Cassini et al., 2019). Although 
health-care associated resistant infections are the main cause of morbidity and 
mortality, colonisations of resistant bacteria in the general population are thought to 
be a major reservoir of invasive infections (Hendriksen et al., 2019). Quantifying 
hospital and community resistance patterns can inform when and where resistant 
infections are acquired, which is essential information in effective intervention design 
(Knight et al, 2018a). However, characterising community carriage is hindered by a 
lack of data.  
 
Wastewater surveillance and metagenomics has been proposed as a means of 
monitoring resistance patterns in the general population (Aarestrup & Woolhouse, 
2020; Hendriksen et al., 2019). Its advantages over traditional, clinical isolate 
surveillance methods include convenience of collection and greater representation of 
the healthy general community microbiomes (Aarestrup & Woolhouse, 2020; 
Miłobedzka et al., 2022). When paired with metagenomics, it further offers the benefit 
of being agnostic, providing information on a wide variety of resistance genes and 
bacterial species (Aarestrup & Woolhouse, 2020; Miłobedzka et al., 2022). 
 
However, wastewater is a composite sample source. It has usually been collected from 
raw influent to wastewater treatment plants (WWTPs) (Hendriksen et al., 2019; 
Huijbers et al., 2020; Hutinel et al., 2019; Kwak et al., 2015; Pärnänen et al., 2019; 
Raven et al., 2019; D. Zhang et al., 2021). In Scotland at least, WWTP influent 
represents household and office building sewage as well as effluents from schools, 
hospitals, laboratories, cleaning industries, and surface water (Scottish Water, n.d. a). 
Despite mixing these sources, WWTP influent has been shown to be a good 
representation of the human microbiome (Newton et al., 2015; Pehrsson et al., 2016), 
and resistance levels in WWTPs and clinical samples have been shown to positively 
correlate (Huijbers et al., 2020; Karkman et al., 2020; Pärnänen et al., 2019). However, 
effluents coming directly from hospitals have been shown to have greater resistance 
abundance and diversity than WWTP and community influents (Hassoun-Kheir et al., 
2020), and to reflect within-hospital clinical activity (Cai et al., 2022; Perry et al., 2021) 
and outbreaks (Flach et al., 2021). This raises a question: are resistance genes 
detected in WWTP influent likely to have come from a hospital rather than a community 
source? To interpret how wastewater represents resistance in the general population, 
the relative size of the contribution of hospital and community effluents to resistance 
in the composite wastewater needs to be quantified. To quantify the relative 
contributions of hospitals and communities, we need to know how different their 
resistance profiles are, and how similar WWTP resistance is to each source. 
 
To address this question, previous studies have compared the resistance profile of 
hospital effluent and WWTP influent (Paulshus et al., 2019; Verburg et al., 2019), or 
WWTPs with and without hospitals in their catchment area (Buelow et al., 2018). 
Generally, these studies have concluded that the hospitals have only a small or no 
contribution to downstream resistance (Buelow et al., 2018; Paulshus et al., 2019; 
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Verburg et al., 2019). However, there few studies capturing more than one wastewater 
network, or collecting a sample of community-only wastewater for comparison. Lack 
of sample size and a comparison group limits the power of their analysis and the 
generalisability of their conclusions. 
 
In this study, we collected wastewater samples from eight WWTPs, four hospitals, and 
four community sites in a paired sampling design. Our aim was to investigate how the 
resistomes of hospital and community sewage differ, and how this impacts WWTP 
resistomes. My objectives were to 1) compare the resistome and microbiome profiles 
of hospitals, communities, and WWTPs; 2) model the abundance of resistance genes 
in different site types and estimate the influence of antibiotic prescriptions and 
environmental factors; and 3) estimate the contribution of hospital effluent to the 
WWTP influent resistome. We applied metagenomics to each sample, obtaining a 
measure of the abundance of acquired resistance genes and bacterial species at each 
site. We also collected antibiotic prescription data for the hospitals and communities 
sampled. I used a combination of cluster, statistical, and source attribution methods to 
analyse the data. The combination of multiple study sites, community samples, 
metagenomics, paired sampling design, and robust analysis methods improve our 
power over previous studies to discern differences and drivers of the resistome in each 
sewage sample type.  
 
5.3 Materials and methods 
 
5.3.1 Sample site selection 
 
I selected eight WWTPs for sampling. I aimed to select four WWTPs with a district 
hospital in their catchments, and to pair them to four further WWTPs that did not have 
a district hospital in their catchment but served similar population sizes, locations, and 
urban level. Table 5.1 describes the sites and their locations. 
 
I also selected a sampling site from each of the four district hospitals in the catchment 
areas. There were several access points to the wastewater network in each hospital. 
In Border’s General and St John’s hospitals, there was an access point that 
represented the whole hospital so we sampled from this point. In Hairmyres and 
Victoria hospitals there was not one point for the whole hospital so I chose sites to a) 
sample the intensive care units, where many antibiotics are used, and b) sample a 
large a proportion of the hospital beds. 
 
Finally, we selected a sampling site within the community for each WWTP without a 
hospital in the catchment area. Using water network maps of the drainage area, I 
selected a small area where the access points represented a collection of houses in a 
residential area that was the same straight-line distance from the WWTP as the 
hospital was from the matched WWTP. Sample collectors (from Scottish Water) then 
chose an access point from the small area on the basis of safety and convenience. 
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5.3.2 Sample collection 
 
All samples were collected by Scottish Water. WWTP and hospital samples were 
taken using autosamplers, which continuously take small samples to make up two 1L 
total samples representing a 24-hour period. At community sites access points were 
smaller so the autosamplers could not be used. Instead, spot samples of 333ml were 
taken over 15 minutes (i.e., 3 samples at five-minute intervals) to make up two 1L 
samples. 
 
Samples were taken from all sites within a pair over the same 24-hour period, i.e., 
autosamplers set up on the same day at both WWTPs and the hospital, and the 
community spot sample and collection of autosamples took place the next day. 
Samples were collected from the Kirkcaldy and Stirling catchment areas in March, 
2020, and again in November, 2020. Galashiels, Hawick, East Calder, and Kinneil 
Kerse catchment areas were sampled in November, 2020. Philipshill and Allers 
catchments were sampled in December, 2020. 
 
Table 5.1: Selected WWTP names, locations, and area descriptions 

The population equivalent is an estimate of the population served, provided by 
Scottish Water. The distance between sites is measured as the straight-line distance 
between GPS co-ordinates. 
Pair WWTP 

name 
Population 
equivalent 

Distance 
between 
sites (m) 

Upstream site Area 
description 

1 Galashiels 28,983 3785 Borders 
General 
Hospital 

Town in rural 
area 

Hawick 17,642 3257 Hawick 
community 

Town in rural 
area 

2 Kirkcaldy 62,057 1376 Victoria 
Hospital 

Small city 

Stirling 70,481 1876 Stirling 
community 

Small city 

3 East 
Calder 

113,254 5021 St John’s 
Hospital 

Mix of town and 
industrial estate 

Kinneil 
Kerse 

45,019 4926 Grangemouth 
community 

Mix of town and 
industrial estate 

4 Philipshill 61,244 2036 University 
Hospital 
Hairmyres 

Large town 

Allers 61,024 2243 East Kilbride 
community 

Large town 

 
 
Metadata from the site was also recorded by sample collectors: the temperature and 
pH of the sample, the weather, time of sampling (spot sample) or sample collection 



Chapter 5: A cross-sectional metagenomics study of 8 wastewater networks in 
Scotland: hospital and community resistomes are distinct 

 

 80 

time (autosamplers), the colour of the water and the flow rate (in litres per second at 
WWTPs, and on a 1 – 5 scale at hospitals and community sites). 
 
All samples were transported to the University of Edinburgh and frozen to -70oC on 
the same day they were sampled. Frozen samples were packed in polystyrene and 
shipped to the National Food Institute, Danish Technical University (DTU) after at least 
48 hours at this temperature. Transport to DTU took 24 hours or less. 
 
5.3.3 DNA extraction and sequencing 
 
Samples were processed upon arrival at DTU, after thawing. The same procedure was 
used as for the Global Sewage Surveillance project (GSSP) (Hendriksen et al., 2019; 
Munk-Welford et al., 2022). Briefly, 250ml of sewage pellet was generated by 
centrifuging the samples. DNA was extracted from the samples using the QIamp Fast 
DNA Stool mini kit and an optimised protocol described in (Knudsen et al., 2016). DNA 
was then shipped on dry ice for sequencing. After shearing to 300bp target fragment 
size, PCR-free Kapa Hyper library preparation was used. Sequencing was done using 
Illumina NovaSeq and 150bp paired-end sequences.  
 
5.3.4 Read trimming and mapping 
 
Quality- and adapter-trimming followed the previously used protocol for the GSSP 
(Munk-Welford et al., 2022), using BBduk2 (Bushnell, 2014). Briefly, common adapters 
were removed and low-quality base pairs were trimmed from the 3’ end of the reads, 
using a Phred score of Q20, or a 1% error rate. For resistance genes, reads were then 
mapped to ResFinder (Zankari et al., 2012) using KMA with default alignment 
parameters (Clausen et al., 2018). For taxonomic calls, Kraken2 (v. 2.0.7-beta) (Wood 
& Salzberg, 2014) was used with default setting against a custom database of 
representative bacterial, viral, protozoan and human sequences using 
MGmapper_makedb.pl (Petersen et al., 2017). Using a representative database 
allows us to identify a clade for sequence fragments from genomes that do not have 
a high quality genome in the reference databases (NIH, 2019). This is particularly 
important for microbiomes from environmental samples, where many bacterial species 
may not be known (Bengtsson-Palme et al., 2017).  

 
5.3.5 Prescription data 
 
5.3.5.1 Community prescription data 
I obtained community prescription data in an information requestion from Public 
Health Scotland. Prescriptions of interest were those made by community sources 
(mainly general practices but also dentists and some other sources) to households 
with a post code sector within the catchment area of all WWTPs in the 6 months 
prior to sampling. I collected data on the monthly daily defined doses (DDDs) for 
every antibiotic under the Anatomical Therapeutic Chemical Classification (ATC) 
code J01. Non-zero values of less than five were categorised as 0 – 5 DDDs by NHS 
Lothian for data privacy. I estimated the population size of the catchment area by 
finding the Data Zones (defined by the Scottish Government) that overlapped with 
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the catchment and taking the sum of the 2019 population estimates for these Zones, 
which are based on extrapolation from the 2011 Scottish census (Lowe, 2020). 
 
5.3.5.2 Hospital prescription data 
Hospital prescription data was obtained from the pharmacists at each hospital via the 
digital drug dispensing recording programme, known as JAC. For hospitals, I acquired 
the monthly net number of doses of antibiotics (ATC code J01) dispensed from the 
hospital pharmacy in the 6 months prior to sampling. I calculated the DDDs using the 
preparation strength, number of doses given, and mode of administration from the 
hospital data, and the dose factor provided by the WHO ATC index (WHO 
Collaborating Centre for Drug Statistics Methodology, 2021). I normalised the DDDs 
by the estimated monthly number of occupied bed days (OBDs) for each hospital, 
obtained from Public Health Scotland (WHO Collaborating Centre for Drug Statistics 
Methodology, 2021). This provides the quarterly OBDs, from which an average 
monthly OBD was estimated. 
 
5.3.6 Sequence data normalisation methods 
 
For resistance gene abundance, fragments per kilobase per million reads (FPKM) 
(Chapter 4, page 56) was used. This measure normalises the number of read hits to 
a reference gene by the number of base pairs in the gene and the total number of 
bacterial fragments in a sample, to allow meaningful comparison between different 
genes and samples. For bacterial species abundance, the relative abundance was 
used, which is the sum of read hits for genes in a specific bacterial species divided by 
the total number of bacterial species reads in the sample.  
 
5.3.7 Homology cluster grouping of resistance genes 
 
I use the same method as in Chapter 4 to group resistance genes in the ResFinder 
database with >90% sequence similarity into clusters, taking the sum of read hits to 
all genes in each cluster. Normalisation was then conducted on the summed counts. 
Also, in the same way as in Chapter 4, I assume that the resistance phenotype of a 
cluster is the combination of the resistance phenotypes of all resistance genes within 
the cluster. 
 
5.3.8 Resistome and microbiome cluster analysis 
 
I used principal coordinate analysis (PCoA) to assess the distance between the 
resistomes and microbiomes of each sample. The Bray-Curtis distance was calculated 
for all sample pair combinations, using the FPKM to measure the abundance of each 
resistance gene and the relative abundance for bacterial species. Relative abundance 
and centre-log ratio transformation (CLR) are recommended measures for normalising 
bacterial species read counts from microbiome data (Gloor et al., 2017). The variances 
of site type group on these coordinates were also estimated. The strength of the 
influence of each resistance gene and bacterial species along the axis explaining the 
most variation for distinguishing hospital and non-hospital samples was obtained by 
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correlating abundance with the axis. This and all following analysis was done using R 
(4.1) (R Core Team, 2022). 
 
5.3.9 Source attribution random forests 
 
I used a source-attribution random forests approach to investigate whether the 
WWTPs resemble hospitals or communities more closely, following the methods from 
a recent study of gut metagenomes in humans and livestock species (Duarte et al., 
2021). Random forests are a supervised classification ensemble algorithm, in which 
multiple decision trees are built using random subsets of the observations and the 
variables. For each encountered observation, each tree gets a weighted ‘vote’ for a 
classification, resulting in a probability for each possible classification. Random forests 
are thought to be a useful method for analysis of genomic datasets with a large number 
of genes and a small number of samples (Chen & Ishwaran, 2012), being less 
susceptible to over-fitting than, for example, logistic regression (Matsuki et al., 2016). 
I trained three flat random forests, using 1) the hospital and community resistome data 
only to predict WWTP resistome classification, 2) all data to predict 
hospital/community/WWTP, and 3) all data to predict hospital/not hospital 
classification. Due to low sample size, I did not subset data for training. I included the 
union of the 50 most abundant resistance genes in each site type, resulting in 80 genes 
in total. I used the same training parameters as (Duarte et al, 2021): a 10 x 10 cross 
validation grid for re-sampling, and the number of variables selected for each tree was 
the square root of the number of features. Model performance was assessed with 
accuracy and the Kappa measure. All were implemented using the packages caret 
(Kuhn, 2008) and randomForest (Liaw & Wiener, 2002).  
 
5.3.10 Linear mixed effects models structures 
 
As in Chapter 4, I used the gene length of the gene group and the total bacterial 
fragment count as offsets in models of the read hit counts to account for the count 
related properties of the data whilst also normalising. 
 
To select the linear model family, I compared the Widely Applicable Information 
Criterion (WAIC) and Expected Log Pointwise Predictive Density (ELPD) (Gelman et 
al., 2014) of Poisson and negative binomial models with and without zero-inflation. 
Zero-inflated models are mixture models which account for two different random 
processes simultaneously generating zeroes, leading to a greater number of zeroes 
than would be expected if only one process was acting. In this case, the two sources 
of zeroes are a) the chance that the gene is not present in the site, and b) the chance 
that the gene was present but undetected by the sampling and sequencing process. 
The model is parameterised with the zero-inflation parameter, !!, which is the binomial 
probability of ‘true’ zeroes. We were interested in Poisson or negative binomial 
distributions for the positive observations to take overdispersion in the count data into 
account. Both zero-inflation and overdispersion have been recognised as features of 
count data from microbial communities that can impact the power of the results if not 
taken into account, especially for metagenomic analysis (Jonsson et al., 2019; X. 
Zhang et al., 2017). 
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All models were implemented using brms (Bürkner, 2017) and flat, uninformative priors 
were used – the package default random effect parameters, and "#$%&'(0, 100) for 
fixed effects. 
 
5.3.10.1 Model structure 1: Impact of hospital presence on resistance gene 

abundance 
In this model I included only observations from WWTPs to ask if having a hospital in 
a catchment area increased the resistance gene abundance in WWTP influent. The 
observational unit was a read hit count for a resistance gene group in a sample. Two 
hierarchies are present in the data which may be a source of variation: the pairing, i.e. 
the group that a WWTP was matched to, and the catchment area of the WWTP. Which 
of these hierarchies would be more important was not known a priori. Therefore I 
compared the WAIC of two models with each hierarchy as a random intercept effect 
(and an extra model with neither) and used the structure with the best fit. A second 
random intercept effect used 70% sequence homology clusters to account for 
differences in the abundance of different gene groups. A 70% clustering was used 
because most groups had only one gene in them in the 90% clustered groups. 
Presence of a hospital in a WWTP’s catchment area was used as a binary fixed effect. 
 
5.3.10.2 Model structure 2: association between upstream and downstream 

resistance gene abundance 
I assessed the link between community and hospital sites and their downstream 
WWTPs by correlating the abundance of resistance genes at these sites with those at 
WWTPs. The random effect structure was the same as model 1. I also included a term 
for the FPKM of the resistance gene at the upstream site. I hypothesised that 
community sites would have more similar resistance gene abundance to WWTPs, and 
therefore have a higher association value. I tested for this by estimating separate fixed 
effects for the hospital/WWTP and community/WWTP associations. I also allowed for 
resistance abundance to be affected by the distance between the upstream site and 
the downstream WWTP, as longer distances may lead to greater degradation and 
dilution. To do this I used the straight-line distance in kilometres between each site as 
a fixed effect. 
 
5.3.10.3 Model structure 3: impact of prescription rates on resistance abundance 

in sewage 
I tested the association between prescription rates and resistance abundance using a 
third set of models. Separate models were used to look at hospital and community 
prescriptions for a) all antibiotic types, b) amoxicillin prescriptions and resistance 
genes, c) carbapenem prescriptions and resistance genes, and d) vancomycin 
prescriptions and resistance genes. For the carbapenem model I looked at hospital 
prescription only. The use of different antibiotic groupings followed methods in (Perry 
et al., 2021), to allow for the resistance-prescription relationship to vary depending on 
whether antibiotics are typically used in the community and the hospital (amoxicillin), 
or only in hospital settings (carbapenems and vancomycin). In all the hospital 
prescriptions models, only the hospitals and their four connected WWTPs were 
included.  
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I estimated the impact of direct selection by matching each resistance genes with the 
DDDs of the antibiotic to which it confers resistance. Resistance gene groups often 
confer resistance to multiple antibiotic groups. To address this, for each resistance 
gene I took the sum of the DDDs of all antibiotic groups (at ATC level 4) that the gene 
group confers resistance to before normalisation. For example, for a gene conferring 
resistance to sulfonamides and tetracyclines I would sum the DDDs of both antibiotic 
groups.  
 
The models included random intercept effects for the 70% gene clusters, a random 
intercept effect for the sample site to account for repeat measurements, and a fixed 
effect for the type of site (i.e., hospital, community, or WWTP). The impact of 
prescriptions was assessed through fixed effect terms for the antibiotic prescription 
rate matched to the resistance gene, and a second term for the total rate of prescription 
of any antibiotic in the area, log(x+1) transformed. In vancomycin and carbapenem 
models, prescription rate was scaled. Including the total rate of prescription allowed 
us to estimate the indirect selection effects of the total amount of prescriptions on 
selection for all resistance genes. I hypothesised that the type of site (WWTP, 
community or hospital) could affect the degree of association. For example, we might 
expect a closer association between hospital prescriptions and resistance levels in 
hospitals than WWTPs. This was accounted for by including an interaction term 
between matched antibiotic prescriptions and site type.  
 
5.3.10.4 Model structure 4: impact of environmental factors 
A fourth set of models were used to assess the impact of environmental factors on 
resistance gene abundance in sewage. The random effect structure included intercept 
effects for sample site and resistance gene cluster, and there was a fixed effect for 
site type. I then added either sample pH, sample temperature, weather category (sun, 
cloud, rain), flow rate (WWTP samples only), or sample collection time. A separate 
model for each environmental variable was used, similar to a univariate analysis. The 
association between each environmental variable was also estimated using 
Spearman’s Rank, rank-biserial correlation, Kruskal-Wallis, or Goodman-Kruskall-!. 
 
5.3.10.5 Model structure 5: impact of distance on net change 
A fifth mixed effects model structure was used to estimate the impact of distance 
between an upstream site and the downstream site on the net change in the FPKM of 
a resistance gene. Net change for each resistance gene in each WWTP catchment 
area was calculated as the downstream FPKM minus the upstream FPKM. Distance 
was measured as a straight line between the GPS co-ordinates of the upstream site 
and the WWTP, and included in the model as a fixed effect with an interaction for 
upstream site type (hospital or community). The random effects structure included 
intercepts for WWTP catchment area and gene cluster.  
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5.4 Results 
 
5.4.1 Metagenomic data 
 
The average number of reads mapped to reference databases was 46,635,892 
(standard deviation 16,549,909). The proportion of read counts mapped to human and 
bacterial genomes is reported in Appendix D Table 1.  
 
A total of 15,115 different bacterial species were detected in the samples. The most 
abundant bacteria by CLR were Flavobacterium sp. (3.8x10-15), Acinetobacter 
wuhouensis (3.3x10-15), Kinneretia asaccharophila (3.2x10-15), Acidovorax konjaci 
(3.2x10-15), and Pseudomonas sp. 31-12 (3.1x10-15).  
 
A total of 360 resistance gene groups were detected in the samples. There were 
20,890 read hits to resistance genes on average per sample (range 302 – 91,249). 
Resistance genes made up 0.043% of bacterial read counts on average (range 0.0016 
– 0.23). The most abundant resistance gene groups by FPKM were sul1 (67.91), 
blaOXA-233 (40.91), aph(6)-Id (15.44), msr(E)_1 (14.42), and ere(A)_5 (14.16).  
 

 
 
The relative proportion of the FPKM of resistance genes in each sampling site is 
plotted in Fig. 5.1. Here I compared the resistome of repeated samples from Victoria 
Hospital, Stirling community, Kirkcaldy WWTP, and Stirling WWTP. Generally, these 
were similar, apart from an increase in the proportion of the sample representing the 
tet(A) gene in Kirkcaldy WWTP, March 2022 sample. Many factors could explain this, 
such as sampling conditions, seasonal effects, and changes to population movements 
due to the COVID-19 prevention measures. However, with only two time points I was 
not able to investigate and account for drivers of this difference. Therefore, the March 
2022 Kirkcaldy WWTP sample was removed from statistical analysis. However, results 
were similar overall whether this sample was or was not included. 
 

Table 5.2: Comparison of total abundances and diversity indexes for 
resistance genes and bacterial species by site type 

Total abundance and Shannon index for resistance genes calculated using FPKM. 
Total abundance for bacterial species calculated using total bacterial read counts, 
and Shannon estimated using relative abundances of bacterial species. 
Site type 
(number of 
samples) 

Resistance genes  Bacterial species 
Total 
abundance  

Richness Shannon Total 
abundance 

Richness Shannon 

Hospitals (5) 1461.22 
(659.01) 

197.4 
(21.56) 

3.43 
(0.31) 

5169.19k 
(1603.05k) 

14842.80 
(70.77) 

5.79 
(0.82) 

WWTPs (9) 141.09 
(95.36) 

119.7 
(29.4) 

3.22 
(0.53) 

4068.90k 
(1151.81k) 

14842.22 
(84.90) 

5.60 
(1.31) 

Communities 
(5) 

122.42 
(97.01) 

111.6 
(31.71) 

3.46 
(0.21) 

4714.25k 
(2401.15k) 

14866.80 
(38.17) 

6.57 
(0.91) 
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The bacterial and resistance gene counts and diversity measures according to site 
type (hospitals, community, and WWTP) can be found in Table 5.2. Hospitals had a 
higher abundance of resistance genes and bacterial species than community or 
WWTP sites. Hospitals also had highest richness in resistance genes. Shannon 
diversity in resistance genes and bacterial species was similar across WWTPs, 
communities and hospitals. 
 
5.4.2 Site characteristics 
 
A full table of the site metadata is included in Appendix D Table 2. Sample conditions 
were broadly similar. The sample pH was 6.8 on average (standard deviation, SD: 
0.52). Sample temperature varied the most by site type. Hospitals had a higher 
temperature of 16.2oC (SD 2.1) compared to 10.2oC in community samples (SD 1.6) 
and 11.8oC in WWTPs (SD 1.2). 
 
5.4.3 Prescription data 
 
In the three months prior to sampling, the average of the total prescribed DDDs per 
capita from community healthcare providers post code sectors within the drainage 
areas sampled was 2.02 (SD 0.91). The Stirling drainage area had the highest per 
capita prescriptions (January – March, 2020, 3.52 DDDs per capita) and Kinneil Kerse 
had the lowest (September – November, 2020, 1.04 DDDs per capita). The antibiotics 
with the highest community DDD per capita in the three months before sampling were 
lymecycline (0.31, SD 0.16), doxycycline (0.29, SD 0.16), amoxicillin (0.24, SD 0.15), 
flucloxacillin (0.19, SD 0.01), and clarithromycin (0.16, SD 0.09).  
 
For hospitals, I calculated the DDDs of the net antibiotic doses dispensed from 
pharmacies to wards per occupied bed days (OBD) in the three months prior to 
sampling. In total, net 1.15 DDDs per OBD were issued to hospital wards (SD 0.39). 
Hairmyres Hospital had the highest net antibiotics issued per OBD (October – 
December, 2020, 1.77 DDDs per OBD), and Victoria Hospital had the lowest 
(September – November, 2020, 0.76 DDDs per OBD). The antibiotics with the highest 
net DDDs per OBD in the hospitals were amoxicillin (0.16, SD 0.12), flucloxacillin 
(0.14, SD 0.06), amoxicillin and beta lactamase inhibitor, such as co-amoxiclav (0.14, 
SD 0.07), clarithromycin (0.13, SD 0.12), and doxycycline (0.10, SD 0.04). 
 
5.4.4 Cluster analysis 
 
Fig. 5.2.A. shows the results of the PCoA of distances between the FPKM of resistance 
genes for each site, with the centroids and variance by PCoA axis for the different 
types of site displayed. Hospitals form a distinct cluster with non-overlapping variances 
with other groups, whereas the centroids and variances for the community and WWTP 
sites are similar. This indicates that the resistome of hospitals is distinguishable from 
community and WWTP sites, but WWTP and community sewage resistomes are not 
distinguishable from each other. There was no clustering by catchment area or pair 
group. I extracted the twenty resistance genes with the greatest correlations with 
PCoA axis 1, which discriminated between hospital-type and community-type 
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compositions (Appendix D Table 3). These results show that several carbapenemases 
are enriched in hospital sample sites. 
 
Fig. 5.2.B. shows the results of the PCoA of the distances between the relative 
abundance of bacterial species read counts, with centroids and variances by site type 
group. The hospital sites microbiomes had a distinct composition from WWTP site 
microbiomes, with community microbiome sharing some compositional features of 
each. I extracted the twenty bacterial species with the greatest correlations with PCoA 
axis 2, which discriminated most strongly between hospital and WWTP-type 
compositions (Appendix D Table 3). Some human-related bacterial genera such as 
Klebsiella and Bifidobacterium are enriched in hospital samples, whilst environment-
related bacteria such as Acidovorax are enriched in WWTP samples. 
 
Table 5.3: Model comparison using expected log pointwise predictive density 
and Widely Applicable Information Criterion 

Higher ELPD indicates a better fit, and lower WAIC indicates a better fit. ELPD: 
expected log pointwise predictive density; WAIC: Widely Applicable Information 
Criterion. 
Model ELPD WAIC 
Poisson -313714 729144 
Zero-inflated Poisson -279254 651291 
Negative binomial -14241 28357 
Zero-inflated negative binomial -14245 28358 

 
 
5.4.5 Random Forest 
 
I first trained a random forest model using only hospital and community site data to 
identify hospital vs. community sample site differences. The model accuracy was 
99.0% and the Kappa was 97.7%. Fig. 5.3.A shows the classification predictions of 
the model for WWTP site data. The proportion of trees that voted for ‘hospital’ 
classification of resistomes from WWTP sites when there was a hospital in the 
catchment area was 13.9% on average, with wide variation between sites (SD 7.3). 
WWTPs without hospitals had a lower average proportion of votes for “Hospital” 
classification (5.6%) and lower variation between sites (SD 1.5). This could indicate 
that the resistomes of WWTPs with hospitals in their catchment area were more similar 
to hospitals than those without, although the wide variance in classification votes for 
WWTPs with hospitals mean caution is needed in interpreting this result.  
 
In the second model, I trained a random forest model using all data (Fig. 5.3.B) to 
identify differences in all site type. The accuracy of this model was 71.2%, and the 
Kappa was 53.6%. The lower accuracy of this model may partially be due to the 
uneven number of samples from different site types (5 community, 5 hospital, and 9 
WWTP samples). The most voted for classification of each sample did correspond to 
the true sample type, with most uncertainty in distinguishing community resistomes 
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from WWTP resistomes: an average 18.4% (SD 7.9) of votes were given to WWTP 
classification when predicting a community sample. 
 

 
5.4.6 Linear mixed effects models 
 
5.4.6.1 Model family goodness of fit comparisons 
The fit of the data to Poisson, negative binomial, and zero-inflated distributions was 
compared. I used two goodness of fit measures to compare model performance: the 
ELPD, estimated using leave-one-out cross-validation; and the WAIC. The values of 
the measures for each model family are presented in Table 5.3. Assuming a difference 
of more than three between goodness of fit measurements indicates one fit was better 
than the other, negative binomial models were a better fit than Poisson, so I eliminated 
Poisson as a potentially model structure. Zero-inflation did not improve fit, but only 
slightly worsened fit according to ELPD and was indistinguishable from the fit of the 
model without zero-inflation according to WAIC. As there is a theoretical basis for zero-
inflation, I included zero-inflated negative binomial distribution was used in all following 
models.  
 
5.4.6.2 Impact of hospital effluent on resistome of wastewater treatment plants 
The impact of hospitals on WWTPs was looked at with two models. The first compared 
the abundance of resistance genes in WWTPs with and without a hospital in their 
catchment area (model structure 1). The second looked at the association between 

Table 5.4: Random intercept, shape, and zero-inflation parameter estimates 
for selected models 

Presents posterior means and 95% uncertainty intervals in brackets. SD: standard 
deviation; WWTP: wastewater treatment plant. 
Model SD cluster SD WWTP 

captured 
Shape Zero-

inflation 
Model structure 1 (impact 
of hospitals on resistance 
abundance) 

3.14 (2.81 – 
3.51) 

0.69 (0.36 – 
1.39) 

0.72 (0.67 
– 0.87) 

0.02 (0.00 
– 0.05) 

Model structure 2 
(association between 
resistance abundance at 
upstream sites and 
WWTPs) 

2.77 (2.47 – 
3.09) 

0.71 (0.37 – 
1.41) 

0.82 (0.73 
– 0.92) 

0.01 (0.00 
– 0.03) 

Model structure 3 
(association between 
community prescriptions 
and sewage resistance) 

2.80 (2.54 – 
3.11) 

- 0.28 (0.27 
– 0.30) 

0.01 (0.00 
– 0.03) 

Model structure 3 
(association between 
hospital prescriptions and 
sewage resistance) 

3.17 (2.84 – 
3.54) 

- 0.33 (0.29 
– 0.37) 

0.04 (0.00 
– 0.09) 
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resistance abundance in hospitals and WWTPs, and between community sites and 
WWTPs, to see which upstream-site type is more closely correlated with the mixed 
WWTP samples (model structure 2). 
 
In model 1, there was no significant of impact of a hospital in the catchment area of a 
WWTP on resistance gene abundance, with an effect size of 0.84 (posterior mean), -
0.24 – 1.91 (95% uncertainty intervals). Posterior means for random effects, shape 
parameter, and zero-inflation parameter for models 1 and 2 can be found in Table 5.4. 
The overall model fit for this and all following models was assessed with Bayes R2 
(Gelman et al, 2019), presented alongside MCMC diagnostics in the Appendix D Table 
4.  
 

 
In model structure 2, the association between community sewage and WWTP sewage 
was positive (0.76, 0.56 – 0.97). The association between hospital and WWTP sewage 
was also positive (0.49, 0.40 – 0.59). The interaction term estimating the difference 
between the community-WWTP and hospital-WWTP associations was negative (-
0.27, -0.48 – -0.07), indicating that the hospital-WWTP was lower than the community-
WWTP association. There was no evidence for an effect of distance between the 
sampling site and WWTP (-0.16, -0.58 – 0.30). The FPKM of resistance genes 
upstream vs. downstream sites is plotted in Fig. 5.4. 
 
5.4.6.3 Associations between antibiotic prescriptions and sewage resistance levels 
The association between prescriptions and resistance levels was assessed using 
model structure 3. Seven separate models were used to estimate the associations 
between community prescriptions and hospital prescriptions and sewage resistance 
for all antibiotic types, as well as amoxicillin, carbapenem, and vancomycin groups 

Table 5.5: Associations between prescriptions and resistance levels 

Presented as the posterior mean of the estimated association and the 95% 
uncertainty intervals. If an estimate was not estimated a dash (-) is used. 
Wastewater 
source 

Antibiotic group Prescription source 
Hospital Community 

WWTP All 0.24 (-1.86 - 2.35) 0.68 (-0.35 - 1.69) 
Amoxicillin 0.57 (-10.71 - 12.31) 0.48 (-4.32 - 5.33) 
Carbapenem 0.22 (-0.46 - 0.99) - 
Vancomycin -0.32 (-3.60 - 3.43) 0.55 (-1.08 - 2.63) 

Hospital All 1.33 (-0.90 - 3.56) -0.67 (-1.71 – 0.37) 
Amoxicillin -2.16 (-15.47 - 7.73) -4.33 (-11.16 - 2.49) 
Carbapenem 0.21 (-0.40 - 0.87) - 
Vancomycin 0.26 (-0.84 – 1.41) 0.19 (-1.96 - 2.32) 

Community All - 0.52 (-0.59 - 1.63) 
Amoxicillin - -4.44 (-4.32 - 5.33) 
Carbapenem - - 
Vancomycin - 1.16 (-1.08 - 2.63) 

All Total -0.76 (-2.29 – 0.56) 0.19 (-0.56 - 0.89) 
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individually. Prescription data FPKM of resistance genes are plotted in Fig. 5.5. All 
associations between resistance abundance and prescription rates can be found in 
Table 5.5. Random effects, shape and zero-inflation parameters for models with all 
prescription types included are reported in Table 5.4. The numbers of observations, 
sampling sites, and gene groups in each model is in Appendix D Table 5. 
 
There was no association between resistance abundance in wastewater samples and 
any prescription data (Table 5.5). These results do not provide strong evidence for 
direct or indirect selection from antibiotic consumption.  
 
In model structure 3, I also tested for the difference in the resistance abundance by 
site. Hospitals also had a higher resistance abundance than communities or WWTPs 
in both models. In the community prescription model, the hospital association estimate 
was 3.29 (3.02 – 3.56) and the WWTP association estimate was -1.32 (-3.41 – 0.71) 
with community as the reference category. In the hospital prescription model, hospital 
was the reference category and the WWTP association estimate was -0.27 (-0.52 - -
0.03).  
 
5.4.6.4 Associations between environmental variables and sewage resistance levels 
 
Separate model formulae with the same basic structure were used to test the impact 
of pH, sample collection time, sample temperature, and flow rate on the abundance of 
resistance genes in the sewage. The effect estimates of these models can be found 
in Table 5.6. There was a positive association between resistance abundance and 
sample pH and temperature. Samples collected earlier in the day were found (though 
with some uncertainty) to have higher resistance gene read counts. These results 
suggest that environmental factors could have an impact on resistance abundance. 
Correlations between environmental factors are recorded in Appendix D Table 6. 
Notably, stream temperature and sample time were negatively correlated. This may 
be due to hospital samples being warmer and collected earlier in the day. 
 

Table 5.6: Associations between environmental variables and sewage 
resistance levels 

Separate models used for each variable. The association estimate is the posterior 
mean and standard deviation of the association between the environmental variable 
and resistance gene abundance.  
Environmental variable Association estimate (95% 

uncertainty) 
pH 0.30 (0.07 – 0.54) 
Sample collection time  -0.30 (-0.63 - 0.03) 
Sample temperature 0.12 (0.03 – 0.22) 
Flow rate 0.00 (0.00 – 0.00) 
Weather: 
    Sunny 
    Cloud 
    Rain 

 
Reference category 
0.05 (-0.73 – 0.83) 
-0.49 (-0.78 – 0.19) 
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The association value for the flow rate was unexpectedly precise, so I checked the 
distribution of the two datasets (Appendix D Figure 1). I also tried a simple linear 
regression of the association between the FPKM and the flow rate, which returned the 
same association and confidence intervals (0.00, 0.00 – 0.00). The small number of 
flow rate observations may account for unusual confidence range. 
 
5.4.6.5  Impact of distance and site type on net change in resistance gene abundance 
The average net change in resistance gene FPKM between an upstream site and a 
WWTP was -1.80 (SD: 16.5). There was no association between the distance between 
an upstream and downstream site and the net change in resistance gene FPKM, 
whether the upstream site was a hospital (-0.39, -1.92 – 1.11) or a community site (-
0.06, -1.90 – 1.77). Upstream site type did not affect the net change (effect of upstream 
site being a hospital -2.89, -10.81 – 4.83). These results do not provide evidence that 
the size of a wastewater network influences net change in the concentration of 
resistance genes. Appendix D Figure 2 shows the net change in resistance genes, 
stratified by upstream site type. 
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Figure 5.1: Relative abundance of resistance gene groups in each sampling 
site  

Relative abundance was calculated based on FPKM. Sample names on the X axis 
were generated as location name, site type, month, and then year of sampling. The 
top 20 most abundance gene groups are plotted, all others are grouped into the 
‘Other’ category for visual clarity. 
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Figure 5.2: Principal Coordinates and Principal Components Analysis of the 
resistome and microbiome, grouped by site type  

The colour of the dots indicates the site type (hospital, community, or WWTP). Empty 
points indicate hospitals and WWTPs with hospitals, and filled points indicate 
community samples and WWTPs without hospitals. Dot shape indicates the pair 
grouping of the sample (e.g., all circular points are from the same pair). Ellipses width 
and height indicates the variance of PCoA1 and PCoA2, respectively, for each group, 
and the angle of the ellipse indicates the covariance between the two axes by group. 
A) the PCoA of the resistome (measured in FPKM), and B) of the microbiome 
(measured in relative abundance), using Bray-Curtis distances. 
 
A) B) 
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Figure 5.3: Classification predictions of samples resistomes from random 
forest models 

A) the proportion of trees voting for ‘hospital’ site type classification predictions of 
WWTP sample resistomes with and without a hospital in their catchment area from 
model 1 (trained using hospital and community samples only). B) the proportion of 
votes from trees for the site type classification of each sample from model two, which 
was trained using all data, grouped by the true source of the sample. 
 
A) B) 

  
  



Chapter 5: A cross-sectional metagenomics study of 8 wastewater networks in 
Scotland: hospital and community resistomes are distinct 

 

 95 

 
Figure 5.4: Resistance gene abundance in hospital and community samples 
vs. WWTP samples 

FPKM of each resistance gene in hospital (left) and community (right) samples 
against the FPKM in connected WWTP sites. One observation is excluded from 
the community sample panel to so that both plots could have the same y axis for 
comparison (values of the excluded point: FPKM in WWTP sample = 135.1, FPKM 
in upstream site = 6.6). A log scale is used on the y axis. 
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Figure 5.5: Antibiotic prescription rates and sewage resistance gene 
abundance 

Phenotypically-matched antibiotic prescription rates against the FPKM of 
resistance genes in WWTPs, for community (left) and hospital (right) prescriptions. 
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5.5 Discussion 
 
In this study we applied a paired study design and metagenomics to wastewater 
samples from hospitals, WWTPs, and communities in Scotland. The results show that 
hospitals had a distinctive resistome compared to WWTPs and communities, with a 
greater abundance and diversity of resistance genes. However, having a hospital in a 
catchment area did not increase the abundance of resistance in WWTP influent, and 
the WWTP resistome was unlikely to have the hospital as its primary source, 
suggesting the hospital effluent contribution to WWTP influent resistance is small. 
There was no evidence for an impact of prescription rates on resistance levels in this 
dataset, indicating that selection for resistance from antibiotic consumption was not 
detectable in the timeframe of this data.  
 
5.5.1 Community and hospital sewage resistomes differed 
 
The resistome of the hospital sewage was distinct from community sewage and 
WWTP influent. This distinction was due to greater abundances of the resistance 
genes and by a greater number of unique resistance genes. The greater number and 
diversity of resistance genes was not reflected by greater numbers or diversity of 
bacterial species in hospital wastewater, suggesting that more bacteria carried any 
and/or carried a greater number of resistance genes in hospital than community 
wastewater. Hospital wastewater from around the world has been found to have a 
greater abundance and diversity of resistance genes or resistant bacteria than 
municipal wastewater (Hassoun-Kheir et al., 2020; Hutinel et al., 2019; Korzeniewska 
et al., 2013; Kwak et al., 2015; Lamba et al., 2018; Paulshus et al., 2019; Verburg et 
al., 2019), although not in every case (Gundogdu et al., 2017; D. Zhang et al., 2021). 
However, few other studies have demonstrated that community effluent only and 
composite WWTP influent samples have similar resistome compositions. This result 
indicates that it is not just that hospital effluent and WWTP influent are distinct, but 
that effluents from community households and hospitals differ.  
 
Many factors that could affect resistance gene abundance differ between hospital and 
community sewage. Hospitals are a focal point of patients with bacterial infections, co-
morbidities, and recent exposure to antibiotics and other drugs, which may lead to 
higher rates and diversity of resistance in the patient microbiome. Hospital patients 
could be gaining resistant infections and colonisations during their stay in hospital, 
which are then carried through toilets, sinks and showers to the hospital wastewater.  
 
The hospital environment itself may further impact the human to environment 
composition of the sample and itself select for resistant bacteria. Environmental 
properties that may influence microbiological growth have been shown to differ 
between hospital and municipal effluents, such as higher levels of suspended solids, 
ammonia and nitrate, and a lower biodegradable fraction (Khan et al., 2021; Majumder 
et al., 2021), as well as warmer temperatures and stagnation (Kizny Gordon et al., 
2017). Indeed, I found that hospital wastewater was on average 6oC warmer than 
community and WWTP wastewater. Hospitals are large building, and it has also been 
shown that the water network within large buildings provide opportunities for biofilm 
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formation (Hocquet et al., 2016; Kizny Gordon et al., 2017). In support of this theory, I 
found hospital and WWTP microbiomes clustered separately in a PCoA (Fig. 5.1), and 
that the separation was driven by greater abundance of human gut bacteria in hospital 
and a greater abundance of environmental bacteria in WWTP samples. The hospital 
sewage microbiome was also found to cluster separately from community and WWTP 
samples in previous studies in two studies in The Netherlands (Buelow et al., 2018; 
Verburg et al., 2021), and to cluster separately from WWTP but with community 
effluent in a study in Spain (Quintela-Baluja et al., 2019). 
 
In addition to impacts on the microbial composition, the hospital environment may 
influence resistomes through exposure to higher concentrations of antibiotics, other 
drugs, and antiseptics that are excreted or disposed of into the wastewater system 
leading to selection for resistance (Khan et al., 2021; Majumder et al., 
2021),(Hassoun-Kheir et al., 2020; Hocquet et al., 2016). Studies have investigated 
colonisation of the hospital environment and patients and found cross-compartment 
clonal groups of resistant bacteria, indicating patient-environment transmission 
(Constantinides et al., 2020; Feng et al., 2020). Moreover, experimental evolution 
studies have found that exposing bacteria to hospital wastewater selects for resistance 
more strongly than WWTP wastewater (Hutinel et al., 2021; Kraupner et al., 2021). 
Resistant bacteria that are colonising any part of the wastewater system, from sink 
drains to pipe junctions within the building, may be represented in the resistome of the 
hospital effluent. Overall, these results are consistent with the hospital water 
environment acting as a reservoir and enricher for resistant bacteria.  
 
5.5.2 Hospital resistomes made a small contribution towards resistance in 

WWTP influent 
 
The results indicate that the contribution of hospital effluent is small, and the primary 
source of resistance genes in wastewater is likely to be the community. This result is 
consistent with previous research, which has found no increase in resistance gene 
abundance in WWTP influent when a hospital is present (Buelow et al., 2018), and 
WWTP influent resistance to be more similar to community than hospital effluent 
(Gundogdu et al., 2017; Kutilova et al., 2021; Paulshus et al., 2019; Quintela-Baluja et 
al., 2019; Verburg et al., 2019).  
 
I investigated hospital effluent contribution by estimating the gene-level association 
between resistance gene abundance in WWTPs and in hospitals or communities 
upstream, and using a source-attribution random forest model to estimate WWTP 
resistome source likelihood. Hospital resistance gene abundance was positively 
associated with resistance gene abundance in the downstream WWTP, suggesting 
that there is a link between hospitals and WWTPs. Bacterial isolates in WWTP influent 
have been found to be related to those of hospital isolates (Gouliouris et al., 2018), 
but a comparison of WWTP isolates to hospital and community isolates is lacking. 
Random forest models indicated that each site type (hospital, community, or WWTP) 
had a recognisable resistome, but that a signature of the hospital in the resistome of 
WWTP influent with a hospital in its catchment area was not detectable. If the hospital 
signature is not strongly detectable, the positive association between hospital and 
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WWTP resistance abundance may indicate that the hospital resistome is linked to the 
local community resistome, which is represented in the WWTP influent. In addition, it 
suggests that although hospital wastewater contains high levels of resistance, treating 
before discharge into the main sewage network may not appreciably decrease the 
load of resistant bacteria that need to be removed by the WWTP. However, a 
contribution of hospital effluent to resistance in WWTP influent cannot be completely 
ruled out.  
 
A small contribution of hospital effluent is not surprising when we consider the volume 
of wastewater from hospitals compared to all the other sources entering a WWTP. 
Resistance genes were more than 10 times more abundant in hospital water than 
community water, but after dilution this increase may be negligible. Previous studies 
have estimated hospital effluent to be about 1% of the total volume of wastewater 
processed by a WWTP each day (Buelow et al., 2018; Verburg et al., 2019) and 
suggested this as a key factor in the low impact of hospital wastewater on WWTP 
resistance. In addition, human bacteria and their genomes may be degraded within 
the wastewater network, potentially decreasing the number of resistant bacteria from 
hospital effluent in a WWTP influent sample (Pehrsson et al., 2016; Verburg et al., 
2019). Against this hypothesis, I found no relationship between the net change in 
resistance gene abundance between an upstream and downstream site and distance. 
In other countries, hospital effluent is treated prior to discharge into the main sewage 
network (Khan et al., 2021; Majumder et al., 2021), which would further decrease the 
hospital signature in WWTP influent. Further research is needed to quantify dilution 
and degradation of the hospital signal, including: deeply sequenced metagenomics of 
sewage to reduce noise (e.g., 100s of millions of reads per sample rather than 10s of 
millions), studies correlating the volume of hospital wastewater contributing to WWTP 
influent and resistance gene abundance, and studies along the length of a wastewater 
pipe to assess rates of degradation, possibly in experimental settings. On top of 
dilution and degradation, there may be other sources of resistance genes in WWTP 
influent than hospitals and communities. WWTP influent in Scotland includes 
wastewater from swimming pools, laboratories, and laundries, for example (Scottish 
Water, n.d. a), although most surface water is not mixed with domestic sewage until 
treatment (Scottish Water, n.d. b). Drinking water may also be a source of resistant 
bacteria that could be represented in WWTP influent, although the contribution is 
probably small (Piotrowska & Popowska, 2014). Additional sources of resistance 
genes may make the contribution of hospital effluent to WWTP resistance smaller and 
increase the uncertainty that a resistance gene in WWTP influent is from a hospital 
patient or community member. 
 
5.5.3 Communities have a local resistome 
 
Resistance gene abundance at an upstream site was positively associated with the 
abundance of the same gene at the WWTP influent. Finding that the resistance gene 
abundance in a community sample representing only a few household is predictive of 
abundance in the downstream WWTP, despite WWTPs receiving effluents from 
thousands of households and wastewater metagenomics having low sensitivity is 
interesting. It indicates that there could be a community-wide resistome in common 
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within a drainage area, i.e. that different community samples within a catchment area 
may also potentially correlate. Positive associations between hospital and WWTP 
wastewater has been found for bacterial species abundance (Buelow et al., 2018; 
Verburg et al., 2021) and resistance rates (Paulshus et al., 2019), but few if any studies 
have compared resistance gene abundance in these WWTPs and community sites. 
Studies of a whole WWTP drainage area, including different community sewage 
sampling sites and resistance hotspots like hospital effluent, could be used to 
investigate how resistance varies within a community. Despite finding a resistance 
gene level association between communities and their downstream WWTP, I did not 
find any distinct groupings by catchment area in the cluster analysis. This may be an 
indication that the overall profile and diversity is similar across the communities 
sampled. All of the communities included here are within relatively close geographic 
range, in the same country, and all in built up areas (although of different sized towns), 
which may lead to similar resistance gene profiles. 
 
5.5.4 No impact of antibiotic consumption on resistance abundance in 

detectable in sewage 
 
No relationships were found between prescription rates and resistance gene 
abundance in wastewater samples. Although antibiotic usage drives selection for 
resistant bacteria, there is mixed evidence for a positive association between 
resistance abundance in sewage and antibiotic consumption rates in the population. 
Previous studies (including Chapter 4 in this thesis) have found that associations with 
prescription data or with antibiotic residues and sewage resistance levels depend on 
the antibiotic studied and the modelling framework used, and that the effect is often 
small (Hendriksen et al., 2019; Perry et al., 2021). The dynamics of acquisition, 
colonisation, and transmission of resistant bacteria or resistance genes are complex. 
Aggregation, low sensitivity, and sampling error in wastewater metagenomics may 
make it difficult to detect small effect sizes and individual-level effects. These 
limitations of wastewater metagenomics have been considered previously considered 
(Aarestrup & Woolhouse, 2020; Miłobedzka et al., 2022). More sensitive resistance 
gene typing methods such as qPCR may be more powerful for discerning effects of 
antibiotic consumption. The prescription data used in this study is also aggregated at 
population level, potentially further masking any effects. Finally, this study is a 
snapshot of one time and over a relatively small geographic region, with similar 
prescription rates. Positive associations have been found in longitudinal datasets over 
a greater area (Hendriksen et al., 2019), possibly allowing investigation of this 
relationship over a greater range of prescription rates that has higher detectability. 
 
In addition to the possibility that low sensitivity and data aggregation prevented 
detection of a small association, other factors not accounted for in the model may have 
masked an association. It may be possible that an unaccounted demographic or 
health-care related factor that affects resistance gene abundance may decrease the 
association through confounding. An important factor that was not considered in this 
analysis was area deprivation. However, greater levels of local deprivation have been 
shown to lead to an increase in resistance rates in hospitals (Alividza et al., 2018), but 
also to be positively associated with prescription rates in the UK (Lambourg et al., 
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2022) and Scotland (Covvey et al., 2014), so would be more likely to lead to a higher 
rather than a lower association estimate in this data. An in-depth analysis of the 
prescriptions, demographics, and hospital resistance levels in this data will be needed 
to further address confounding. An alternative explanation is reverse causality if 
prescriptions were less frequently given due to higher resistance levels in an area, 
which could reduce the association estimate. Community and hospital prescribing 
guidelines in NHS boards in Scotland are updated every 6 months, taking into account 
recent resistance rates in clinical samples from hospitals and the community (Carol 
Philips, personal communication), so there is a potential route to reverse causality. 
However, the time lag on this process (i.e., time from use of an antibiotic driving a 
noticeable increase in resistance to a reduction in prescriptions) is unknown. Reverse 
causality has not to my knowledge been previously observed in sewage resistance 
data although it has been considered in cross-sectional population level resistance 
and prescription data (Jit et al., 2020). Longitudinal sampling designs with community 
demographic data can be used to detect confounding and reverse-causality. 
 
There was no impact of total antibiotic usage on resistance abundance, indicating that 
there was no evidence for indirect selection. Direct selection is when a resistance gene 
is selected for because it confers a growth advantage during exposure to an antibiotic. 
Resistance genes that are near the directly selected gene (for example in the same 
genome or plasmid) but confer resistance to a different antibiotic may be indirectly 
benefitted and increase in prevalence in the bacterial population. Previous studies 
have not found an association between total antibiotic resistance and resistance gene 
abundance in wastewater (Hendriksen et al., 2019; Perry et al., 2021), and together 
this may indicate that this effect may not be detectable at a population level. 
 
5.5.5 Environmental factors impact resistance gene abundance 
 
I found a positive effect of higher pH or sample temperature and early sample 
collection time, although flow rate and the weather had no impact. The wastewater 
microbiome and resistome are thought to be sensitive to environmental conditions that 
may influence the growth and degradation of bacteria (Guo et al., 2019; Pärnänen et 
al., 2019). Previous studies have found that physicochemical properties of wastewater, 
such as pH, ammonia concentration, and flow rate, may affect wastewater resistance 
gene abundance (Guo et al., 2019; Harnisz et al., 2020; Yang et al., 2019). In this 
study there may not have been enough variation to detect an impact of flow rate. There 
was a negative association with the time that the autosampler was installed, 
suggesting that samples collected in morning had a greater resistance gene 
abundance. Diurnal patterns in resistance gene abundance have been found in 
wastewater, likely impacted by changes water usage throughout the day (Cai et al., 
2022; Guo et al., 2019). This finding may also point to a limitation of the autosamplers, 
as it suggests that the resistome signal is strongly influenced by what had most 
recently been added and there may therefore be degradation or other changes in 
composition in the sample during the 24 hour sampling period. Wastewater studies 
may benefit from collecting samples at the same time or taking separate samples 
through the day to take diurnal activity into account (Chau et al., 2022).  
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5.5.6 Conclusion 
 
In this study I demonstrate that hospital and community sewage resistomes differ, with 
enrichment of the abundance and diversity of resistance genes in hospitals. The 
influence of hospital-specific drivers of resistance, including patient-environment 
transmission and exposure to antibiotics, is potentially strong. However, I also find that 
the contribution of hospitals to resistance abundance in WWTP influence is small, 
likely due to the high level of dilution of hospital wastewater. I suggest that resistance 
genes in WWTP samples are therefore primarily from community sources, and WWTP 
influent is a good indicator of the community resistome. I find no evidence for an impact 
of prescription data on resistance gene abundance, suggesting this effect is small or 
non-existent. Wastewater studies would benefit from sampling sites within the 
wastewater network, including hospitals and communities, and taking longitudinal 
samples, to further investigate drivers of sewage resistance. 
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6.1 Summary of results and objectives 
 
Antibiotic resistance (ABR) is a serious threat to global public health. In addition to 
causing high morbidity and mortality, resistant bacteria can be asymptomatically 
carried by healthy humans. This silent carriage could contribute to resistance burden 
but is hard to monitor. Resistant bacteria can also be found in the environment – 
human- and livestock-derived bacteria in environments impacted by wastewater, 
agriculture, and landfill are particularly concerning. These sources of resistant bacteria 
pose a risk to human and environmental health, but also present an opportunity for 
surveillance of resistance in human populations. In this thesis, I investigated the 
potential links between the environment and humans and the dynamic consequences 
of this relationship. I also built statistical models of hospital and municipal wastewater 
metagenomes to estimate associations with clinical resistance surveillance and 
antibiotic prescription data, and to inform design of surveillance programmes. 
 
My first objective was to investigate the role that the environment might play in the 
spread and emergence of ABR. I addressed this objective in Chapter 3 by using a 
mathematical model to study transmission between humans, animals, and the 
environment. The results of this model suggested that the environment can 
theoretically play a role in human ABR epidemiology, and perhaps even a stronger 
one than animals. However, more data on resistance transmission and persistence, 
especially in the environment, are needed to contextualise these theoretical results. I 
also address this objective in Chapter 2, using a systematic scoping review to find 
evidence of dissemination of ABR from hospitals to municipal wastewater. This work 
indicated that hospital wastewater can contain resistant bacteria from patients, and 
untreated and treated municipal wastewater may do so as well. This suggests that 
wastewater, especially hospital wastewater, could play a role in dissemination of 
clinically relevant antibiotic resistance into the environment.  
 
My second objective was to identify epidemiological data sets that represent antibiotic 
resistance genes (ARGs) in sewage. I focused on two sources of data: hospital-based 
resistance surveillance and antibiotic consumption. In Chapter 4 I used a multi-
response model of European Antimicrobial Resistance Surveillance Network (EARS-
Net) and Global Sewage Surveillance data to estimate country-level correlations 
between sewage and hospital resistance levels for different drug-bug combinations. I 
found that a few, but not all, drug-bug combinations were correlated in hospitals and 
sewage. In the systematic review in Chapter 2, I also found some examples of positive 
correlations between hospital-based surveillance and resistance abundance in 
sewage. Overall, this indicates some support that hospital-based surveillance data can 
at least partially explain ARG abundance in sewage. Prescription rates from national 
surveillance data were positively associated with some resistance gene phenotypes, 
giving some support for this dataset representing ARGs in sewage.  
 
In Chapter 5, I used a paired study design to compare wastewater metagenomes from 
wastewater treatment plants (WWTPs) with and without hospitals, and hospital 
contributing to their influent, and community effluents, along with prescription data. 
Here, I found no associations between prescription data and resistance levels in either 
hospital effluent or community effluents. This seemingly contradictory finding may 
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imply that the scale on which sewage and prescription data are collected are important 
– an association may be found internationally where there is more variation in 
resistance levels and consumption patterns that are not detectable in relatively 
homogeneous national data. 
 
My third objective was to use spatial and temporal analysis of ARGs in sewage to 
inform the design of surveillance systems. This objective was addressed in Chapter 5. 
Here, differences in the resistome of hospital, community, and mixed municipal 
effluent highlight the need for single-source sampling to capture the full range of 
resistance patterns in a WWTP catchment area. The systematic review in Chapter 2 
also highlights that hospital effluent can represent the patient resistome, but not in all 
cases, and that community samples are rare in wastewater studies to date. Together, 
these findings suggest that hospital effluent sampling could be complimentary to 
WWTP influent sampling. Further sampling in the community would also be useful at 
this early stage of WWTP surveillance systems, as much is still unknown about how 
local differences in resistomes can combine in WWTP influent. In Chapters 4 and 5 I 
also investigated associations between ARGs and physicochemical properties of the 
sample, such as pH, sample temperature, and flow rate. I found some associations 
with pH and sample temperature. These associations could be due to the sewage 
environment generating opportunities for growth or destruction of bacteria (McLellan 
& Roguet, 2019), in which case collecting data on sample properties as metadata is 
key. 
 
The final objective was to develop predictive models of resistance gene abundance. 
In Chapter 4 I used the multi-response linear model to predict clinical resistance. The 
results showed that jointly modelling both datasets improved model likelihood but not 
accuracy of predictions of clinical resistance. Therefore, this model structure can 
explain existing data but is not yet an improvement for extrapolating to unseen data. 
In Chapter 5 I used a zero-inflated negative binomial linear model and a random forest 
analysis to model and predict ARG abundance and wastewater sample type. Model 
comparison indicated that zero-inflation and negative binomial structures accounted 
for data variation better than Poisson models, suggesting this is a more appropriate 
model structure. Also in Chapter 5, I demonstrated that random forest analysis can 
suit wastewater metagenomic data well, accurately predicting wastewater sample type 
from resistance gene abundance. In summary, in this thesis I have highlighted the 
need for other model structures than classical generalised linear models and bivariate 
correlations, and that comparing the results and performance of multiple model 
frameworks during analysis is needed. 
 
6.2 Implications of thesis 
 
Wastewater metagenomes must represent human resistomes for this surveillance 
technique to be useful. In this thesis, I show that the wastewater resistome does reflect 
the community and hospital resistomes, although not perfectly, supporting the use of 
metagenomics of wastewater for surveillance. Previous studies have compared 
hospital, community, and WWTP resistance data (Lamba et al., 2018; Paulshus et al., 
2019; Verburg et al., 2019), but few have done so on an international scale, or 
collected sewage samples from multiple hospital and community sites. Understanding 
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the relatedness of community and WWTP influent is important as it implies that dilution 
and wastewater microbiology do not influence or destroy the human resistome signal, 
lending support for the use of wastewater for surveillance. Despite speculation that the 
community can act as a reservoir for resistant bacteria, there are few surveillance 
datasets of resistance in the community, so WWTP influent sampling can fill this 
important gap. However, Chapters 2, 4, and 5 suggest that hospital effluent resistomes 
are quite different to WWTP influent. Therefore, wastewater surveillance from WWTPs 
may be more appropriate for monitoring community rather than hospital resistance. 
Surveillance of wastewater from hospitals could be valuable for detecting hospital-
based outbreaks early, and for identifying environmental reservoirs of resistance in the 
hospital. 
 
The environment is a mixing pot for resistance from different humans, animals, and 
resident environmental bacteria (Larsson & Flach, 2022). In this thesis, I show that an 
environmental reservoir can theoretically have a strong impact on human health 
(Chapter 3). Few empirical observations of human-environmental health links exist 
(Bürgmann et al., 2018), although other models of the environment have also 
highlighted its potential importance (Booton et al., 2021; Call et al., 2013; Græsbøll et 
al., 2014; McBryde & McElwain, 2006). There is increasing recognition that sanitation 
and lack of access to clean drinking water is a driver of antibiotic resistance, especially 
in Lower and Middle Income Countries (LMICs), implying that the environment does 
indeed represent an important source of resistance or play an important role in 
transmission of resistance (Bürgmann et al., 2018).  
 
The role of the environment can have implications for clinical settings as well. As is 
highlighted in Chapter 2, organisms from clinical environments can be found in hospital 
wastewater and, in Chapter 5, I also describe the distinctiveness of the hospital 
resistome and how this may reflect not only the patient but also the hospital 
environment resistome. An increasing number of studies have considered the 
transmission of resistance between patients and the environment in hospitals, e.g. 
(Constantinides et al., 2020; Feng et al., 2020). Together these findings highlight 
unknowns about the dynamics of resistance in the hospital environment: does 
increased persistence of resistant bacteria in the hospital environment increase 
incidence of resistant nosocomial infections? How much might the effectiveness of 
patient-focused interventions around antimicrobial stewardship and infection 
prevention in hospitals be mitigated by environment-patient resistance transmission? 
More modelling and empirical work is needed to study the role of the hospital 
environment. 
 
The results of this thesis have implications for our understanding of ABR in the 
community. Firstly, it provides some information to address the question: what is the 
relationship between resistance in hospitals and in the community? The results in this 
thesis could be explained by hospital resistomes being influenced by but still separate 
from local community. For example, in Chapter 5 I find that ARG abundance in both 
hospital and community effluents were positively associated with downstream ARG 
abundance but the association value was lower for hospital than community effluent. 
Two non-mutually exclusive mechanisms can explain either of these observations: 1) 
the hospital resistance profile is correlated with the community resistance profile, and 
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the community resistance profile is correlated with the WWTP influent; and 2) that the 
hospital resistome signature is still prevalent enough in the WWTP influent to generate 
this correlation (Fig. 6.1). Other studies that have found positive relationships between 
resistance in hospitals and in WWTP influent have variously made both of these 
interpretations, but few if any consider both at the same time (Buelow et al., 2020; 
Gouliouris et al., 2019; Pärnänen et al., 2019; Paulshus et al., 2019). If (1) is true, the 
implication is that hospital resistance patterns should be considered tied to the local 
community, both when predicting the resistance profile on admission and in 
interpreting hospital-based surveillance data. If (2) is true, the implication is that 
analysis of WWTP influent for surveillance must account for this contribution in order 
to be applicable to the community. In this thesis we can comment further by combining 
the results of Chapters 4 and 5. Hospital effluent had a distinctive signature but did not 
appear to leave a strong trace in WWTP influent in Chapter 5. In addition, the 
phenotype of resistance genes that were highlighted as hospital-type in Chapter 5 
(such as blaTEM and blaOXA) did not have a positive correlation with sewage ARG 
abundance in Chapter 4. These findings suggest that (1) is playing a greater role than 
(2), as they suggest the hospital signature degrades (due to dilution) before it reaches 
the WWTP influent. However, to fully resolve the contribution of (1) and (2) with 
wastewater sampling, studies that sample from multiple hospital and multiple 
community effluents within a WWTP catchment area are needed. 
 

 
Finally, this thesis has some implications for interventions to reduce antibiotic 
consumption to mitigate ABR in the community. Antibiotic stewardship is often 
suggested as a key route for reducing resistance (Aliabadi et al., 2021; Majumder et 

Figure 6.1: Relationships between resistance in hospitals, communities, and 
municipal effluent 

Waved line indicates correlation (without assumption about direction of impact) and 
arrows indicate direct impact. There is some evidence for hospital-community 
correlations and some evidence for a low impact of the hospital on the WWTP 
influent resistome, but more precise quantification is needed. 
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al., 2020). The results of this thesis do not provide strong evidence to support the 
effectiveness of reducing antibiotic consumption. In Chapter 2, the results suggest that 
curtailing antibiotic usage in animals may be less effective than sanitation-related 
factors that reduce environment-human transmission. In later chapters, I demonstrate 
some support for antibiotic consumption driving resistance at a population-level in the 
community after accounting for time trends and local resistance patterns, but the 
relationship could only be detected on an international level and not on a national level, 
suggesting the effect is small. Therefore, there is some empirical and theoretical 
evidence that the impact of consumption on community resistance may be small 
overall when compared to other factors, such as environmental transmission and local 
resistance levels. Most other studies looking at risk factors for resistance levels have 
focused on resistant infections in hospital settings, e.g. (Chatterjee et al., 2018). 
Comparing our findings to those of other studies trying to link silent community 
carriage of extended ß-lactam (ESBL) resistant Enterobacteriaceae with risk factors, 
travel is frequently identified, as well as antibiotic consumption and overcrowding 
(Karanika et al., 2016; Otter et al., 2019). Overall, the implication is that antibiotic 
consumption reduction may be effective in the community, but its effectiveness in 
comparison to other possible interventions, such as sanitation practices, is uncertain. 
Moreover, the most effective intervention may vary by country, depending on country-
level differences in community access to antibiotics and sanitation. Studies that 
examine the impact of multiple risk factors in the whole gut resistome are needed to 
give the full picture. Both sewage and individual gut metagenomes can be used in 
future studies assessing these impacts, identifying both population-level and 
individual-level effects.  
 
6.3 Future research directions 
 
In this thesis I present evidence that municipal wastewater is more representative of 
community than hospital effluents. Further studies are needed that compare 
wastewater and human metagenomes to explore similarities and differences between 
these two microbial communities. A few existing studies have done this to some extent 
such as (Pehrsson et al., 2016), but more in-depth analysis of healthy community 
resistomes in multiple countries will be useful for highlighting the ways to extract 
‘human’ type signatures from wastewater.  
 
I use a very simplified model to study human-animal-environment transmission. More 
studies are needed that consider the complex nature of human-environment 
interactions, including different environment types, and the importance of 
heterogeneous and stochastic transmission. In addition, there is still a lack of 
mathematical models of ARG abundance in sewage. Some studies have used some 
modelling approaches to look at decay of ARGs in sewage (Amos et al., 2015), but 
none have tried to link ARG abundance with human population-level epidemiology in 
the way that some models of SARS-CoV-2 in wastewater have (Fernandez-Cassi et 
al., 2021). Future research may try different possible model structures, especially 
around the sampling distribution to be used to get from a human resistance prevalence 
to the wastewater ARG abundance. Normalisation for population size will be a key 
challenge for this modelling. A key unknown for future models will be the distribution 
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function that links human resistance prevalence to ARG abundance in the sewage, 
and future modelling efforts should compare the results of different options. 
 
In Chapter 4 I used sewage and national surveillance data from Europe only. A clear 
next step for developing this work would be to use global sources of data, such as 
WHO Global Antimicrobial Resistance and Use Surveillance System (GLASS). This 
model may need to take into account differences in this relationship in Higher Income 
Countries (HICs) vs. LMICs. In addition, many demographic variables such as human 
development index (HDI) are collected on the country level and could be incorporated 
into this model. Previous work has found a link between ARG abundance in the 
sewage and HDI (Hendriksen et al., 2019), so this would be interesting to explore with 
this new model structure. 
 
Chapter 5 demonstrates that community wastewater samples can represent the 
community resistome of a group of households. However, few studies take multiple 
community samples. A next step could be to repeat the Chapter 5 study design with 
additional community samples, especially in catchment areas with hospitals, to give 
further clarity on differences between hospitals and communities, and to demonstrate 
if there are differences in the resistome within a catchment area.  
 
Finally, I highlight that the hospital effluent resistome is distinctive from the community 
resistome, and links have been found between patients and hospital effluent. However 
few if any studies have investigated the similarity of resistance in hospital effluent and 
the hospital environment. Hospital effluent could be a tool for non-invasively 
monitoring both the resistome of the patients and the environment, but studies that 
elucidate this additional link in the chain are needed to validate this. 
 
6.4 Concluding remarks 
 
In this thesis, I demonstrate the usefulness of wastewater metagenomics as a tool for 
monitoring resistance abundance in the community. Wastewater represents 
community resistomes more closely than hospital resistomes, but with some 
similarities to the hospital that still need to be resolved. The wider consequences of 
resistance in the environment may be strong but need to be studied more empirically. 
Further research into variation within wastewater catchment areas is required to map 
resistance in wastewater back to humans. 
 
 
 



Bibliography 
 

 110 

Bibliography 
  



Bibliography 
 

 111 

Untapped savings : water services in the NHS / Audit Commission for Local 
Authorities and the National Health Service in England and Wales. (1993). In 
Untapped savings : water services in the NHS. HMSO. 

Global Sewage Surveillance Project. (2020). https://www.compare-
europe.eu/Library/Global-Sewage-Surveillance-Project. Accessed: 07/07/2022. 

Aarestrup, F. M., & Woolhouse, M. E. J. J. (2020). Using sewage for surveillance of 
antimicrobial resistance. Science, 367(6478), 630–632. 
https://doi.org/10.1126/science.aba3432 

Adator, E. H., Narvaez-Bravo, C., Zaheer, R., Cook, S. R., Tymensen, L., Hannon, 
S. J., Booker, C. W., Church, D., Read, R. R., & McAllister, T. A. (2020). A one 
health comparative assessment of antimicrobial resistance in generic and 
extended-spectrum cephalosporin-resistant Escherichia coli from beef 
production, sewage and clinical settings. Microorganisms, 8(6), 1–22. 
https://doi.org/10.3390/microorganisms8060885 

Akiba, M., Senba, H., Otagiri, H., Prabhasankar, V. P., Taniyasu, S., Yamashita, N., 
Lee, K. ichi, Yamamoto, T., Tsutsui, T., Ian Joshua, D., Balakrishna, K., Bairy, I., 
Iwata, T., Kusumoto, M., Kannan, K., & Guruge, K. S. (2015). Impact of 
wastewater from different sources on the prevalence of antimicrobial-resistant 
Escherichia coli in sewage treatment plants in South India. Ecotoxicology and 
Environmental Safety, 115, 203–208. 
https://doi.org/10.1016/j.ecoenv.2015.02.018 

Al-Nassir, W. N., Sethi, A. K., Li, Y., Pultz, M. J., Riggs, M. M., & Donskey, C. J. 
(2008). Both oral metronidazole and oral vancomycin promote persistent 
overgrowth of vancomycin-resistant enterococci during treatment of Clostridium 
difficile-associated disease. Antimicrobial Agents and Chemotherapy, 52(7), 
2403–2406. https://doi.org/10.1128/AAC.00090-08 

Aldred, K. J., Kerns, R. J., & Osheroff, N. (2014). Mechanism of Quinolone Action 
and Resistance. Biochemistry, 53, 1565–1574. 

Alexander, J., Hembach, N., & Schwartz, T. (2020). Evaluation of antibiotic 
resistance dissemination by wastewater treatment plant effluents with different 
catchment areas in Germany. Scientific Reports, 10(1), 8952. 
https://doi.org/10.1038/s41598-020-65635-4 

Aliabadi, S., Anyanwu, P., Beech, E., Jauneikaite, E., Wilson, P., Hope, R., Majeed, 
A., Muller-Pebody, B., & Costelloe, C. (2021). Effect of antibiotic stewardship 
interventions in primary care on antimicrobial resistance of Escherichia coli 
bacteraemia in England (2013–18): a quasi-experimental, ecological, data 
linkage study. The Lancet Infectious Diseases, 21(12), 1689–1700. 
https://doi.org/10.1016/S1473-3099(21)00069-4 



Bibliography 
 

 112 

Alividza, V., Mariano, V., Ahmad, R., Charani, E., Rawson, T. M., Holmes, A. H., & 
Castro-Sánchez, E. (2018). Investigating the impact of poverty on colonization 
and infection with drug-resistant organisms in humans: A systematic review. 
Infectious Diseases of Poverty, 7(1), 1–11. https://doi.org/10.1186/s40249-018-
0459-7 

Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & 
Handelsman, J. (2010). Call of the wild: Antibiotic resistance genes in natural 
environments. Nature Reviews Microbiology, 8(4), 251–259. 
https://doi.org/10.1038/nrmicro2312 

Amos, G. C. A., Hawkey, P. M., Gaze, W. H., & Wellington, E. M. (2014). Waste 
water effluent contributes to the dissemination of CTX-M-15 in the natural 
environment. Journal of Antimicrobial Chemotherapy, 69(7), 1785–1791. 
https://doi.org/10.1093/jac/dku079 

Amos, G. C. A., Gozzard, E., Carter, C. E., Mead, A., Bowes, M. J., Hawkey, P. M., 
Zhang, L., Singer, A. C., Gaze, W. H., & Wellington, E. M. H. (2015). Validated 
predictive modelling of the environmental resistome. The ISME Journal, 9(6), 
1467–1476. https://doi.org/10.1038/ismej.2014.237 

Andersson, D. I., Patin, S. M., Nilsson, A. I., & Kugelberg, E. (2007). The Biological 
Cost of Antibiotic Resistance. In R. A. Bonomo & M. . Tolmasky (Eds.), Enzyme‐
Mediated Resistance to Antibiotics (pp. 339–348). John Wiley & Sons, Ltd. 
https://doi.org/https://doi.org/10.1128/9781555815615.ch21 

Andersson, D. I., & Hughes, D. (2010). Antibiotic resistance and its cost: Is it 
possible to reverse resistance? Nature Reviews Microbiology, 8(4), 260–271. 
https://doi.org/10.1038/nrmicro2319 

Araujo, S., Henriques, I. S., Leandro, S. M., Alves, A., Pereira, A., & Correia, A. 
(2014). Gulls identified as major source of fecal pollution in coastal waters: A 
microbial source tracking study. Science of the Total Environment, 470, 84–91. 
https://doi.org/10.1016/j.scitotenv.2013.09.075 

Asghar, H., Diop, O. M., Weldegebriel, G., Malik, F., Shetty, S., Bassioni, L. El, 
Akande, A. O., Maamoun, E. Al, Zaidi, S., Adeniji, A. J., Burns, C. C., 
Deshpande, J., Oberste, M. S., & Lowther, S. A. (2014). Environmental 
surveillance for polioviruses in the global polio eradication initiative. Journal of 
Infectious Diseases, 210(Suppl 1), S294–S303. 
https://doi.org/10.1093/infdis/jiu384 

Ashley, E. A., Recht, J., Chua, A., Dance, D., Dhorda, M., Thomas, N. V., 
Ranganathan, N., Turner, P., Guerin, P. J., White, N. J., & Day, N. P. (2018). An 
inventory of supranational antimicrobial resistance surveillance networks 
involving low- and middle-income countries since 2000. Journal of Antimicrobial 
Chemotherapy, 73(7), 1737–1749. https://doi.org/10.1093/jac/dky026 



Bibliography 
 

 113 

Atmani, S. M., Messai, Y., Alouache, S., Fernández, R., Estepa, V., Torres, C., 
Bakour, R., Fernandez, R., Estepa, V., Torres, C., Bakour, R., Fernández, R., 
Estepa, V., Torres, C., & Bakour, R. (2015). Virulence characteristics and 
genetic background of ESBL-producing Klebsiella pneumoniae isolates from 
wastewater. Fresenius Environmental Bulletin, 24(1), 103–112. 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84928164434&partnerID=40&md5=0c6110406a66097031c7a14f018e02ae 

Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-
selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176–
182. https://doi.org/10.1016/j.tim.2006.02.006 

Bäumlisberger, M., Youssar, L., Schilhabel, M. B., & Jonas, D. (2015). Influence of a 
non-hospital medical care facility on antimicrobial resistance in wastewater. 
PLoS ONE, 10(3), e0122635. https://doi.org/10.1371/journal.pone.0122635 

Beattie, R. E., Skwor, T., & Hristova, K. R. (2020). Survivor microbial populations in 
post-chlorinated wastewater are strongly associated with untreated hospital 
sewage and include ceftazidime and meropenem resistant populations. Science 
of the Total Environment, 740. https://doi.org/10.1016/j.scitotenv.2020.140186 

Bedenić, B., Siroglavić, M., Slade, M., Šijak, D., Dekić, S., Musić, M. Š., Godan-
Hauptman, A., & Hrenović, J. (2020). Comparison of clinical and sewage 
isolates of Acinetobacter baumannii from two long-term care facilities in Zagreb; 
mechanisms and routes of spread. Archives of Microbiology, 202(2), 361–368. 
https://doi.org/10.1007/s00203-019-01750-9 

Bengtsson-Palme, J., Hammarén, R., Pal, C., Östman, M., Björlenius, B., Flach, C. 
F., Fick, J., Kristiansson, E., Tysklind, M., & Larsson, D. G. J. (2016). 
Elucidating selection processes for antibiotic resistance in sewage treatment 
plants using metagenomics. Science of the Total Environment, 572, 697–712. 
https://doi.org/10.1016/j.scitotenv.2016.06.228 

Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2018). Environmental 
factors influencing the development and spread of antibiotic resistance. In 
FEMS Microbiology Reviews (Vol. 42, Issue 1, pp. 68–80). 
https://doi.org/10.1093/femsre/fux053 

Bengtsson-Palme, J., Larsson, D. G. J., & Kristiansson, E. (2017). Using 
metagenomics to investigate human and environmental resistomes. Journal of 
Antimicrobial Chemotherapy, 72(10), 2690–2703. 
https://doi.org/10.1093/jac/dkx199 

Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, 
F., Buergmann, H., Sorum, H., Norstrom, M., Pons, M.-N., Kreuzinger, N., 
Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Luis 
Martinez, J. (2015). Tackling antibiotic resistance: the environmental framework. 



Bibliography 
 

 114 

Nature Reviews Microbiology, 13(5), 310–317. 
https://doi.org/10.1038/nrmicro3439 

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A Fresh 
Approach to Numerical Computing. ArXiv, 59(1), 65–98. 
https://doi.org/10.1137/141000671 

Bilotta, G. S., Milner, A. M., & Boyd, I. L. (2014). Quality assessment tools for 
evidence from environmental science. Environmental Evidence, 3(1), 1–14. 
https://doi.org/10.1186/2047-2382-3-14 

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. 
(2015). Molecular mechanisms of antibiotic resistance. Nature Reviews 
Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380 

Booton, R. D., Meeyai, A., Alhusein, N., Buller, H., Feil, E., Lambert, H., Mongkolsuk, 
S., Pitchforth, E., Reyher, K. K., Sakcamduang, W., Satayavivad, J., Singer, A. 
C., Sringernyuang, L., Thamlikitkul, V., Vass, L., OH-DART Study Group, 
Avison, M. B., & Turner, K. M. E. (2021). One Health drivers of antibacterial 
resistance: Quantifying the relative impacts of human, animal and environmental 
use and transmission. One Health, 12(January), 100220. 
https://doi.org/10.1016/j.onehlt.2021.100220 

Bottery, M. J., Wood, A. J., & Brockhurst, M. A. (2016). Selective conditions for a 
multidrug resistance plasmid depend on the sociality of antibiotic resistance. 
Antimicrobial Agents and Chemotherapy, 60(4), 2524–2527. 
https://doi.org/10.1128/AAC.02441-15 

Brinch, C., Leekitcharoenphon, P., Duarte, A. S. R., Svendsen, C. A., Jensen, J. D., 
& Aarestrup, F. M. (2020). Long-Term Temporal Stability of the Resistome in 
Sewage from Copenhagen. MSystems, 5(5), 1–10. 
https://doi.org/10.1128/msystems.00841-20 

Brockhurst, M. A., Harrison, E., Hall, J. P. J., Richards, T., McNally, A., & MacLean, 
C. (2019). The Ecology and Evolution of Pangenomes. Current Biology, 29(20), 
R1094–R1103. https://doi.org/10.1016/j.cub.2019.08.012 

Buelow, E., Rico, A., Gaschet, M., Lourenco, J., Kennedy, S. P., Wiest, L., Ploy, M. 
C., & Dagot, C. (2020). Hospital discharges in urban sanitation systems: Long-
term monitoring of wastewater resistome and microbiota in relationship to their 
eco-exposome. Water Research X, 7. 
https://doi.org/10.1016/j.wroa.2020.100045 

Buelow, E., Bayjanov, J. R., Majoor, E., Willems, R. J. L. L., Bonten, M. J. M. M., 
Schmitt, H., & van Schaik, W. (2018). Limited influence of hospital wastewater 
on the microbiome and resistome of wastewater in a community sewerage 
system. FEMS Microbiology Ecology, 94(7), fiy087. 
https://doi.org/10.1093/femsec/fiy087 



Bibliography 
 

 115 

Bürgmann, H., Frigon, D., Gaze, W. H., Manaia, C. M., Pruden, A., Singer, A. C., 
Smets, B. F., & Zhang, T. (2018). Water and sanitation: An essential battlefront 
in the war on antimicrobial resistance. FEMS Microbiology Ecology, 94(9), fiy-
101. https://doi.org/10.1093/femsec/fiy101 

Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using 
Stan. Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01 

Bushnell, B. (2014). BBMap: A Fast, Accurate, Splice-Aware Aligner. 
https://www.osti.gov/biblio/1241166 

Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & 
Buschmann, A. H. (2013). Antimicrobial use in aquaculture re-examined: Its 
relevance to antimicrobial resistance and to animal and human health. 
Environmental Microbiology, 15(7), 1917–1942. https://doi.org/10.1111/1462-
2920.12134 

Cahill, N., O’Connor, L., Mahon, B., Varley, Á., McGrath, E., Ryan, P., Cormican, M., 
Brehony, C., Jolley, K. A., Maiden, M. C., Brisse, S., & Morris, D. (2019). 
Hospital effluent: A reservoir for carbapenemase-producing Enterobacterales? 
Science of the Total Environment, 672, 618–624. 
https://doi.org/10.1016/j.scitotenv.2019.03.428 

Cai, L., Sun, J., Yao, F., Yuan, Y., Zeng, M., Zhang, Q., Xie, Q., Wang, S., Wang, Z., 
& Jiao, X. (2021). Antimicrobial resistance bacteria and genes detected in 
hospital sewage provide valuable information in predicting clinical antimicrobial 
resistance. Science of the Total Environment, 795, 148815. 
https://doi.org/10.1016/j.scitotenv.2021.148815 

Cai, M., Wang, Z., Gu, H., Dong, H., Zhang, X., Cui, N., Zhou, L., Chen, G., & Zou, 
G. (2022). Occurrence and temporal variation of antibiotics and antibiotic 
resistance genes in hospital inpatient department wastewater: Impacts of daily 
schedule of inpatients and wastewater treatment process. Chemosphere, 
292(October 2021), 133405. 
https://doi.org/10.1016/j.chemosphere.2021.133405 

Calero-Cáceres, W., Ye, M., & Balcázar, J. L. (2019). Bacteriophages as 
Environmental Reservoirs of Antibiotic Resistance. Trends in Microbiology, 
27(7), 570–577. https://doi.org/10.1016/j.tim.2019.02.008 

Call, D. R., Matthews, L., Subbiah, M., & Liu, J. (2013). Do antibiotic residues in soils 
play a role in amplification and transmission of antibiotic resistant bacteria in 
cattle populations? Frontiers in Microbiology, 4(JUL), 1–8. 
https://doi.org/10.3389/fmicb.2013.00193 

Carr, V. R., Witherden, E. A., Lee, S., Shoaie, S., Mullany, P., Proctor, G. B., 
Gomez-Cabrero, D., & Moyes, D. L. (2020). Abundance and diversity of 



Bibliography 
 

 116 

resistomes differ between healthy human oral cavities and gut. Nature 
Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-14422-w 

Cassini, A., Högberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, 
G. S., Colomb-Cotinat, M., Kretzschmar, M. E., Devleesschauwer, B., Cecchini, 
M., Ouakrim, D. A., Oliveira, T. C., Struelens, M. J., Suetens, C., Monnet, D. L., 
the Burden of AMR Collaborative Study Group. (2019). Attributable deaths and 
disability-adjusted life-years caused by infections with antibiotic-resistant 
bacteria in the EU and the European Economic Area in 2015: a population-level 
modelling analysis. The Lancet Infectious Diseases, 19(1), 56–66. 
https://doi.org/10.1016/S1473-3099(18)30605-4 

CDC. (2019). Antibiotic resistance threats in the United States, 2019. 
https://doi.org/10.15620/cdc:82532 

Charani, E., McKee, M., Ahmad, R., Balasegaram, M., Bonaconsa, C., Merrett, G. 
B., Busse, R., Carter, V., Castro-Sanchez, E., Franklin, B. D., Georgiou, P., Hill-
Cawthorne, K., Hope, W., Imanaka, Y., Kambugu, A., Leather, A. J., Mbamalu, 
O., McLeod, M., Mendelson, M., Mpundu, M., Rawmson, T. M., Ricciardi, W., 
Rodriguez-Manzano, J., Singh, S., Tsioutis, C., Uchea, C., Zhu, N., Holmes, A. 
H. (2021). Optimising antimicrobial use in humans – review of current evidence 
and an interdisciplinary consensus on key priorities for research. The Lancet 
Regional Health - Europe, 7. https://doi.org/10.1016/j.lanepe.2021.100161 

Chatterjee, A., Modarai, M., Naylor, N. R., Boyd, S. E., Atun, R., Barlow, J., Holmes, 
A. H., Johnson, A., & Robotham, J. V. (2018). Quantifying drivers of antibiotic 
resistance in humans: a systematic review. The Lancet Infectious Diseases, 
18(12), E368–E378. https://doi.org/10.1016/S1473-3099(18)30296-2 

Chau, K. K., Barker, L., Budgell, E. P., Vihta, K. D., Sims, N., Kasprzyk-Hordern, B., 
Harriss, E., Crook, D. W., Read, D. S., Walker, A. S., & Stoesser, N. (2022). 
Systematic review of wastewater surveillance of antimicrobial resistance in 
human populations. Environment International, 162(March), 107171. 
https://doi.org/10.1016/j.envint.2022.107171 

Chen, X., & Ishwaran, H. (2012). Random forests for genomic data analysis. 
Genomics, 99(6), 323–329. https://doi.org/10.1016/j.ygeno.2012.04.003 

Clausen, P. T. L. C., Aarestrup, F. M., & Lund, O. (2018). Rapid and precise 
alignment of raw reads against redundant databases with KMA. BMC 
Bioinformatics, 19(1), 1–8. https://doi.org/10.1186/s12859-018-2336-6 

Cohen, M. L. (2000). Changing patterns of infectious disease. Nature, 406(August), 
726–767. 

Collaboration for Environmental Evidence. (2013). Guidelines for Systematic 
Reviews in Environmental Management. Version 4.2. 



Bibliography 
 

 117 

http://www.environmentalevidence.org/wp-content/uploads/2014/06/Review-
guidelines-version-4.2-final.pdf 

Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S., & Laxminarayan, R. (2018). 
Anthropological and socioeconomic factors contributing to global antimicrobial 
resistance: a univariate and multivariable analysis. The Lancet Planetary Health, 
2(9), e398–e405. https://doi.org/10.1016/S2542-5196(18)30186-4 

Constantinides, B., Chau, K. K., Quan, T. P., Rodger, G., Andersson, M. I., Jeffery, 
K., Lipworth, S., Gweon, H. S., Peniket, A., Pike, G., Millo, J., Byukusenge, M., 
Holdaway, M., Gibbons, C., Mathers, A. J., Crook, D. W., Peto, T. E. A., Walker, 
A. S., & Stoesser, N. (2020). Genomic surveillance of Escherichia coli and 
Klebsiella spp. in hospital sink drains  and patients. Microbial Genomics, 6(7). 
https://doi.org/10.1099/mgen.0.000391 

Covvey, J. R., Johnson, B. F., Elliott, V., Malcolm, W., & Mullen, A. B. (2014). An 
association between socioeconomic deprivation and primary care antibiotic 
prescribing in Scotland. Journal of Antimicrobial Chemotherapy, 69(3), 835–841. 
https://doi.org/10.1093/jac/dkt439 

Cox, G., & Wright, G. D. (2013). Intrinsic antibiotic resistance: Mechanisms, origins, 
challenges and solutions. International Journal of Medical Microbiology, 303(6–
7), 287–292. https://doi.org/10.1016/j.ijmm.2013.02.009 

D’costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., 
Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., 
& Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477(7365), 457–
461. https://doi.org/10.1038/nature10388 

Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. 
Microbiology and Molecular Biology Reviews, 74(3), 417–433. 
https://doi.org/10.1128/mmbr.00016-10 

Davies, N. G., Flasche, S., Jit, M., & Atkins, K. E. (2019). Within-host dynamics 
shape antibiotic resistance in commensal bacteria. Nature Ecology and 
Evolution, 3(3), 440–449. https://doi.org/10.1038/s41559-018-0786-x 

de Abreu, V. A. C., Perdigão, J., & Almeida, S. (2021). Metagenomic Approaches to 
Analyze Antimicrobial Resistance: An Overview. Frontiers in Genetics, 
11(January), 1–9. https://doi.org/10.3389/fgene.2020.575592 

de Kraker, M. E. A., Stewardson, A. J., & Harbarth, S. (2016). Will 10 Million People 
Die a Year due to Antimicrobial Resistance by 2050? PLoS Medicine, 13(11), 1–
6. https://doi.org/10.1371/journal.pmed.1002184 

Diallo, O. O., Baron, S. A., Abat, C., Colson, P., Chaudet, H., & Rolain, J. M. (2020). 
Antibiotic resistance surveillance systems: A review. Journal of Global 



Bibliography 
 

 118 

Antimicrobial Resistance, 23, 430–438. 
https://doi.org/10.1016/j.jgar.2020.10.009 

Diemert, S., & Yan, T. (2019). Clinically unreported salmonellosis outbreak detected 
via comparative genomic analysis of municipal wastewater Salmonella isolates. 
Applied and Environmental Microbiology, 85(10), 1–11. 
https://doi.org/10.1128/AEM.00139-19 

Dolejska, M., & Literak, I. (2019). Wildlife is overlooked in the epidemiology of 
medically important antibiotic-resistant bacteria. Antimicrobial Agents and 
Chemotherapy, 63(8), 1–5. https://doi.org/10.1128/AAC.01167-19 

Doron, S., & Gorbach, S. (2008). Bacterial Infections: Overview. International 
Encyclopedia of Public Health, January, 273–282. 

Doud, C. W., Scott, H. M., & Zurek, L. (2014). Role of house flies in the ecology of 
Enterococcus faecalis from wastewater treatment facilities. Microbial Ecology, 
67(2), 380–391. https://doi.org/10.1007/s00248-013-0337-6 

Duarte, A. S. R., Röder, T., Van Gompel, L., Petersen, T. N., Hansen, R. B., Hansen, 
I. M., Bossers, A., Aarestrup, F. M., Wagenaar, J. A., & Hald, T. (2021). 
Metagenomics-Based Approach to Source-Attribution of Antimicrobial 
Resistance Determinants – Identification of Reservoir Resistome Signatures. 
Frontiers in Microbiology, 11(January), 1–17. 
https://doi.org/10.3389/fmicb.2020.601407 

Dupouy, V., Doublet, B., Arpaillange, N., Praud, K., Bibbal, D., Brugère, H., Oswald, 
E., Cloeckaert, A., Toutain, P. L. P.-L., & Bousquet-Mélou, A. (2016). Dominant 
plasmids carrying extended-spectrum β-lactamases blaCTX-M genes in 
genetically diverse Escherichia coli from slaughterhouse and urban 
wastewaters. Environmental Microbiology Reports, 8(5), 789–797. 
https://doi.org/10.1111/1758-2229.12440 

Dutil, L., Irwin, R., Finley, R., Ng, L. K., Avery, B., Boerlin, P., Bourgault, A. M., Cole, 
L., Daignault, D., Desruisseau, A., Demczuk, W., Hoang, L., Horsman, G. B., 
Ismail, J., Jamieson, F., Maki, A., Pacagnella, A., & Pillai, D. R. (2010). Ceftiofur 
resistance in Salmonella enterica serovar Heidelberg from chicken meat and 
humans, Canada. Emerging Infectious Diseases, 16(1), 48–54. 
https://doi.org/10.3201/eid1601.090729 

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. 
Bioinformatics, 26(19), 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 

Ekwanzala, M. D., Lehutso, R. F., Kasonga, T. K., Dewar, J. B., & Momba, M. N. B. 
(2020). Environmental dissemination of selected antibiotics from hospital 
wastewater to the aquatic environment. Antibiotics, 9(7), 1–16. 
https://doi.org/10.3390/antibiotics9070431 



Bibliography 
 

 119 

Ekwanzala, M. D., Dewar, J. B., Kamika, I., & Momba, M. N. B. (2019). Tracking the 
environmental dissemination of carbapenem-resistant Klebsiella pneumoniae 
using whole genome sequencing. Science of the Total Environment, 691, 80–
92. https://doi.org/10.1016/j.scitotenv.2019.06.533 

El-Mahdy, R., Mostafa, A., & El-Kannishy, G. (2018). High level aminoglycoside 
resistant enterococci in hospital-acquired urinary tract infections in Mansoura, 
Egypt. Germs, 8(4), 186–190. https://doi.org/10.18683/germs.2018.1145 

European Centre for Disease Prevention and Control. (2020). Antimicrobial 
resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report for 2019. 
ECDC. https://doi.org/10.1136/vr.g2500 

Feng, J., Li, B., Jiang, X., Yang, Y., Wells, G. F., Zhang, T., & Li, X. (2018). Antibiotic 
resistome in a large-scale healthy human gut microbiota deciphered by 
metagenomic and network analyses. Environmental Microbiology, 20(1), 355–
368. https://doi.org/10.1111/1462-2920.14009 

Feng, Y., Wei, L., Zhu, S., Qiao, F., Zhang, X., Kang, Y., Cai, L., Kang, M., McNally, 
A., & Zong, Z. (2020). Handwashing sinks as the source of transmission of ST16 
carbapenem-resistant Klebsiella pneumoniae, an international high-risk clone, in 
an intensive care unit. Journal of Hospital Infection, 104(4), 492–496. 
https://doi.org/10.1016/j.jhin.2019.10.006 

Fernandez-Cassi, X., Scheidegger, A., Bänziger, C., Cariti, F., Tuñas, A., 
Ganesanandamoorthy, P., Lemaitre, J. C., Ort, C., Julian, T. R., & Kohn, T. 
(2021). Wastewater monitoring outperforms case numbers as a tool to track 
COVID-19 incidence dynamics when test positivity rates are high. Water 
Research, 200, 117252. https://doi.org/10.1016/j.watres.2021.117252 

Flach, C.-F., Hutinel, M., Razavi, M., Åhrén, C., & Larsson, D. G. J. (2021). 
Monitoring of hospital sewage shows both promise and limitations as an early-
warning system for carbapenemase-producing Enterobacterales in a low-
prevalence setting. Water Research, 200. 
https://doi.org/10.1016/j.watres.2021.117261 

Food, E., & Authority, S. (2022). The European Union Summary Report on 
Antimicrobial Resistance in zoonotic and indicator bacteria from humans, 
animals and food in 2019–2020. EFSA Journal, 20(3). 
https://doi.org/10.2903/j.efsa.2022.7209 

Gao, Y. X., Li, X., Fan, X. Y., Zhao, J. R., & Zhang, Z. X. (2022). Wastewater 
treatment plants as reservoirs and sources for antibiotic resistance genes: A 
review on occurrence, transmission and removal. Journal of Water Process 
Engineering, 46(100), 102539. https://doi.org/10.1016/j.jwpe.2021.102539 

Gardner, M., Jones, V., Comber, S., Scrimshaw, M. D., Coello-Garcia, T., Cartmell, 
E., Lester, J., & Ellor, B. (2013). Performance of UK wastewater treatment works 



Bibliography 
 

 120 

with respect to trace contaminants. Science of the Total Environment, 456–457, 
359–369. https://doi.org/10.1016/j.scitotenv.2013.03.088 

Gatica, J., Jurkevitch, E., & Cytryn, E. (2019). Comparative Metagenomics and 
Network Analyses Provide Novel Insights Into the Scope and Distribution of 
beta-Lactamase Homologs in the Environment. Frontiers in Microbiology, 10. 
https://doi.org/10.3389/fmicb.2019.00146 

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information 
criteria for Bayesian models. Statistics and Computing, 24(6), 997–1016. 
https://doi.org/10.1007/s11222-013-9416-2 

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). 
Microbiome datasets are compositional: And this is not optional. Frontiers in 
Microbiology, 8(NOV), 1–6. https://doi.org/10.3389/fmicb.2017.02224 

Goldstein, R. E. R., Micallef, S. A., Gibbs, S. G., He, X., George, A., Sapkota, A. A. 
R., Joseph, S. W., Sapkota, A. A. R., Rosenberg Goldstein, R. E., Micallef, S. 
A., Gibbs, S. G., He, X., George, A., Sapkota, A. A. R., Joseph, S. W., & 
Sapkota, A. A. R. (2014). Occupational exposure to Staphylococcus aureus and 
Enterococcus spp. among spray irrigation workers using reclaimed water. 
International Journal of Environmental Research and Public Health, 11(4), 
4340–4355. https://doi.org/10.3390/ijerph110404340 

Gouliouris, T., Coll, F., Ludden, C., Blane, B., Raven, K. E., Naydenova, P., Crawley, 
C., Török, M. E., Enoch, D. A., Brown, N. M., Harrison, E. M., Parkhill, J., & 
Peacock, S. J. (2021). Quantifying acquisition and transmission of Enterococcus 
faecium using genomic surveillance. Nature Microbiology, 6(1), 103–111. 
https://doi.org/10.1038/s41564-020-00806-7 

Gouliouris, T., Raven, K. E., Ludden, C., Blane, B., Corander, J., Horner, C. S., 
Hernandez-Garcia, J., Wood, P., Hadjirin, N. F., Radakovic, M., Holmes, M. A., 
de Goffau, M., Brown, N. M., Parkhill, J., & Peacock, S. J. (2018). Genomic 
Surveillance of Enterococcus faecium Reveals Limited Sharing of Strains 
and  Resistance Genes between Livestock and Humans in the United Kingdom. 
MBio, 9(6), e01780-18. https://doi.org/10.1128/mBio.01780-18 

Gouliouris, T., Raven, K. E., Moradigaravand, D., Ludden, C., Coll, F., Blane, B., 
Naydenova, P., Horner, C., Brown, N. M., Corander, J., Limmathurotsakul, D., 
Parkhill, J., & Peacock, S. J. (2019). Detection of vancomycin-resistant 
Enterococcus faecium hospital-adapted lineages in  municipal wastewater 
treatment plants indicates widespread distribution and release into the 
environment. Genome Research, 29(4), 626–634. 
https://doi.org/10.1101/gr.232629.117 

Græsbøll, K., Nielsen, S. S., Toft, N., & Christiansen, L. E. (2014). How fitness 
reduced, antimicrobial resistant bacteria survive and spread: A multiple pig - 



Bibliography 
 

 121 

multiple bacterial strain model. PLoS ONE, 9(7). 
https://doi.org/10.1371/journal.pone.0100458 

Granato, E. T., Meiller-Legrand, T. A., & Foster, K. R. (2019). The Evolution and 
Ecology of Bacterial Warfare. Current Biology, 29(11), R521–R537. 
https://doi.org/10.1016/j.cub.2019.04.024 

Grassotti, T. T., Zvoboda, D. de A., Xavier Costa, L. da F., de Araujo, A. J., Pereira, 
R. I., Soares, R. O., Carniel Wagner, P. G., Frazzon, J., & Guedes Frazzon, A. 
P. (2018). Antimicrobial Resistance Profiles in Enterococcus spp. Isolates From 
Fecal Samples of Wild and Captive Black Capuchin Monkeys (Sapajus nigritus) 
in South Brazil. Frontiers in Microbiology, 9. 
https://doi.org/10.3389/fmicb.2018.02366 

Greig, J., Rajić, A., Young, I., Mascarenhas, M., Waddell, L., & LeJeune, J. (2015). A 
scoping review of the role of wildlife in the transmission of bacterial pathogens 
and antimicrobial resistance to the food chain. Zoonoses and Public Health, 
62(4), 269–284. 

Grimes, D. A., & Schulz, K. F. (2002). Descriptive studies: what they can and cannot 
do. The Lancet, 359(9301), 145–149.  

Guardabassi, L., & Dalsgaard, A. (2004). Occurrence, structure, and mobility of 
Tn1546-like elements in environmental isolates of vancomycin-resistant 
enterococci. Applied and Environmental Microbiology, 70(2), 984–990. 
https://doi.org/10.1128/AEM.70.2.984-990.2004 

Guardabassi, L., Petersen, A., Olsen, J. E., & Dalsgaard, A. (1998). Antibiotic 
resistance in Acinetobacter spp. isolated from sewers receiving waste effluent 
from a hospital and a pharmaceutical plant. Applied and Environmental 
Microbiology, 64(9), 3499–3502. https://doi.org/10.1128/aem.64.9.3499-
3502.1998 

Gundogdu, A., Kilic, H., Kurekci, C., & Alp, E. (2017). Insufficient decontamination in 
Sewage treatment plants induce the risk of artificial selection of extended-
spectrum beta-lactamase producing Escherichia coli. Cellular and Molecular 
Biology, 63(9), 80–86. https://doi.org/10.14715/cmb/2017.63.9.15 

Guo, B., Liu, C., Gibson, C., & Frigon, D. (2019). Wastewater microbial community 
structure and functional traits change over short timescales. Science of the Total 
Environment, 662, 779–785. https://doi.org/10.1016/j.scitotenv.2019.01.207 

Hadfield, J. D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed 
Models: The MCMCglmm R Package. Journal of Statistical Software, 33(2), 1–
22. http://www.jstatsoft.org/v33/i02/ 

Harnisz, M., Kiedrzyńska, E., Kiedrzyński, M., Korzeniewska, E., Czatzkowska, M., 
Koniuszewska, I., Jóźwik, A., Szklarek, S., Niestępski, S., & Zalewski, M. 



Bibliography 
 

 122 

(2020). The impact of WWTP size and sampling season on the prevalence of 
antibiotic resistance genes in wastewater and the river system. Science of the 
Total Environment, 741. https://doi.org/10.1016/j.scitotenv.2020.140466 

Harris, S., Morris, C., Morris, D., Cormican, M., & Cummins, E. (2014). Antimicrobial 
resistant Escherichia coli in the municipal wastewater system: effect of hospital 
effluent and environmental fate. Science of the Total Environment, 468–469, 
1078–1085. https://doi.org/10.1016/j.scitotenv.2013.09.017 

Hassoun-Kheir, N., Stabholz, Y., Kreft, J.-U. U., de la Cruz, R., Romalde, J. L., 
Nesme, J., Sørensen, S. J., Smets, B. F., Graham, D., & Paul, M. (2020). 
Comparison of antibiotic-resistant bacteria and antibiotic resistance genes 
abundance in hospital and community wastewater: A systematic review. 
Science of the Total Environment, 743, 140804. 
https://doi.org/10.1016/j.scitotenv.2020.140804 

Hendriksen, R. S., Munk, P., Njage, P., van Bunnik, B., McNally, L., Lukjancenko, O., 
Röder, T., Nieuwenhuijse, D., Pedersen, S. K., Kjeldgaard, J., Kaas, R. S., 
Clausen, P. T. L. C., Vogt, J. K., Leekitcharoenphon, P., van de Schans, M. G. 
M. M., Zuidema, T., de Roda Husman, A. M., Rasmussen, S., Petersen, B., The 
Global Sewage Surveillance project consortium, Amid, C., Cochrane, G., 
Sicheritz-Ponten, T., Schmitt, H., Alvarez, J. R. M., Aidara-Kane, A., Pamp, S. 
J., Lund, O., Hald, T., Woolhouse, M., Koopmans, M. P., Vigre, H., Petersen, T. 
N., & Aarestrup, F. M. (2019). Global monitoring of antimicrobial resistance 
based on metagenomics analyses of urban sewage. Nature Communications, 
10(1), 1124. https://doi.org/10.1038/s41467-019-08853-3 

Higgins, J. P. T., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., Oxman, A. D., 
Savović, J., Schulz, K. F., Weeks, L., & Sterne, J. A. C. (2011). The Cochrane 
Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Online), 
343(7829), 1–9. https://doi.org/10.1136/bmj.d5928 

Hocquet, D., Muller, A., & Bertrand, X. (2016). What happens in hospitals does not 
stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. 
Journal of Hospital Infection, 93(4), 395–402. 
https://doi.org/10.1016/j.jhin.2016.01.010 

Hu, Y. J., Cowling, B. J., & Fukuda, K. (2018). What is missing in surveillance for 
control of antimicrobial resistance? The Lancet Infectious Diseases, 18(6), 597–
598. https://doi.org/10.1016/S1473-3099(18)30294-9 

Huijbers, P., Flach, C. F., & Larsson, D. G. J. (2019). A conceptual framework for the 
environmental surveillance of antibiotics and antibiotic resistance. Environment 
International, 130. https://doi.org/10.1016/j.envint.2019.05.074 

Huijbers, P. M. C. C., Larsson, D. G. J. J., & Flach, C.-F. F. (2020). Surveillance of 
antibiotic resistant Escherichia coli in human populations through  urban 



Bibliography 
 

 123 

wastewater in ten European countries. Environmental Pollution, 261, 114200. 
https://doi.org/10.1016/j.envpol.2020.114200 

Hutchings, M., Truman, A., & Wilkinson, B. (2019). Antibiotics: past, present and 
future. Current Opinion in Microbiology, 51(Figure 1), 72–80. 
https://doi.org/10.1016/j.mib.2019.10.008 

Hutinel, M., Fick, J., Larsson, D. G. J., & Flach, C.-F. (2021). Investigating the effects 
of municipal and hospital wastewaters on horizontal gene transfer. 
Environmental Pollution, 276. https://doi.org/10.1016/j.envpol.2021.116733 

Hutinel, M., Huijbers, P. M. C., Fick, J., Åhrén, C., Larsson, D. G. J., & Flach, C. F. 
(2019). Population-level surveillance of antibiotic resistance in Escherichia coli 
through sewage analysis. Eurosurveillance, 24(37), 1–11. 
https://doi.org/10.2807/1560-7917.ES.2019.24.37.1800497 

Imran, M., Das, K. R., & Naik, M. M. (2019). Co-selection of multi-antibiotic 
resistance in bacterial pathogens in metal and microplastic contaminated 
environments: An emerging health threat. Chemosphere, 215, 846–857. 
https://doi.org/10.1016/j.chemosphere.2018.10.114 

Isaksson, F., Lundy, L., Hedström, A., Székely, A. J., & Mohamed, N. (2022). 
Evaluating the Use of Alternative Normalization Approaches on SARS-CoV-2 
Concentrations in Wastewater: Experiences from Two Catchments in Northern 
Sweden. Environments - MDPI, 9(3). 
https://doi.org/10.3390/environments9030039 

Iskandar, K., Molinier, L., Hallit, S., Sartelli, M., Hardcastle, T. C., Haque, M., 
Lugova, H., Dhingra, S., Sharma, P., Islam, S., Mohammed, I., Naina Mohamed, 
I., Hanna, P. A., Hajj, S. El, Jamaluddin, N. A. H., Salameh, P., & Roques, C. 
(2021). Surveillance of antimicrobial resistance in low- and middle-income 
countries: a scattered picture. Antimicrobial Resistance and Infection Control, 
10(1), 1–19. https://doi.org/10.1186/s13756-021-00931-w 

Iversen, A., Kühn, I., Rahman, M., Franklin, A., Burman, L. G., Olsson-Liljequist, B., 
Torell, E., & Möllby, R. (2004). Evidence for transmission between humans and 
the environment of a nosocomial strain of Enterococcus faecium. Environmental 
Microbiology, 6(1), 55–59. https://doi.org/10.1046/j.1462-2920.2003.00534.x 

Jaimee, G., & Halami, P. M. (2016). High level aminoglycoside resistance in 
Enterococcus, Pediococcus and Lactobacillus species from farm animals and 
commercial meat products. Annals of Microbiology, 66(1), 101–110. 
https://doi.org/10.1007/s13213-015-1086-1 

Jakobsen, L., Sandvang, D., Hansen, L. H., Bagger-Skjøt, L., Westh, H., Jørgensen, 
C., Hansen, D. S., Pedersen, B. M., Monnet, D. L., Frimodt-Møller, N., 
Sørensen, S. J., & Hammerum, A. M. (2008). Characterisation, dissemination 
and persistence of gentamicin resistant Escherichia coli from a Danish university 



Bibliography 
 

 124 

hospital to the waste water environment. Environment International, 34(1), 108–
115. https://doi.org/10.1016/j.envint.2007.07.011 

Jensen, H. S., Sekar, R., Shepherd, W. J., Osborn, A. M., Tait, S., & Biggs, C. A. 
(2016). Spatial and temporal variability of bacterial communities within a 
combined sewer system. MicrobiologyOpen, 5(4), 616–625. 
https://doi.org/10.1002/mbo3.356 

Jit, M., Ng, D. H. L., Luangasanatip, N., Sandmann, F., Atkins, K. E., Robotham, J. 
V., & Pouwels, K. B. (2020). Quantifying the economic cost of antibiotic 
resistance and the impact of related interventions: Rapid methodological review, 
conceptual framework and recommendations for future studies. BMC Medicine, 
18(1), 1–14. https://doi.org/10.1186/s12916-020-1507-2 

Jonsson, V., Österlund, T., Nerman, O., & Kristiansson, E. (2019). Modelling of zero-
inflation improves inference of metagenomic gene count data. Statistical 
Methods in Medical Research, 28(12), 3712–3728. 
https://doi.org/10.1177/0962280218811354 

Kahlmeter, G., Menday, P., & Cars, O. (2003). Non-hospital antimicrobial usage and 
resistance in community-acquired Escherichia coli urinary tract infection. Journal 
of Antimicrobial Chemotherapy, 52(6), 1005–1010. 
https://doi.org/10.1093/jac/dkg488 

Karanika, S., Karantanos, T., Arvanitis, M., Grigoras, C., & Mylonakis, E. (2016). 
Fecal Colonization with Extended-spectrum Beta-lactamase-Producing 
Enterobacteriaceae and Risk Factors among Healthy Individuals: A Systematic 
Review and Metaanalysis. Clinical Infectious Diseases, 63(3), 310–318. 
https://doi.org/10.1093/cid/ciw283 

Karkman, A., Berglund, F., Flach, C.-F. F., Kristiansson, E., & Larsson, D. G. J. J. 
(2020). Predicting clinical resistance prevalence using sewage metagenomic 
data. Communications Biology, 3(1), 711. https://doi.org/10.1038/s42003-020-
01439-6 

Khan, F. A., Hellmark, B., Ehricht, R., Söderquist, B., & Jass, J. (2018). Related 
carbapenemase-producing Klebsiella isolates detected in both a hospital and 
associated aquatic environment in Sweden. European Journal of Clinical 
Microbiology and Infectious Diseases, 37(12), 2241–2251. 
https://doi.org/10.1007/s10096-018-3365-9 

Khan, M. T., Shah, I. A., Ihsanullah, I., Naushad, M., Ali, S., Shah, S. H. A., & 
Mohammad, A. W. (2021). Hospital wastewater as a source of environmental 
contamination: An overview of management practices, environmental risks, and 
treatment processes. Journal of Water Process Engineering, 41. 
https://doi.org/10.1016/j.jwpe.2021.101990 



Bibliography 
 

 125 

Kim, S., Covington, A., & Pamer, E. G. (2017). The intestinal microbiota: Antibiotics, 
colonization resistance, and enteric pathogens. Immunological Reviews, 279(1), 
90–105. https://doi.org/10.1111/imr.12563 

King, T. L. B., Schmidt, S., & Essack, S. Y. (2020). Antibiotic resistant Kiebsiella spp. 
from a hospital, hospital effluents and wastewater treatment plants in the 
uMgungundlovu District, KwaZulu-Natal, South Africa. Science of the Total 
Environment, 712, 135550. https://doi.org/10.1016/j.scitotenv.2019.135550 

Kizny Gordon, A. E., Mathers, A. J., Cheong, E. Y. L., Gottlieb, T., Kotay, S., Walker, 
A. S., Peto, T. E. A., Crook, D. W., & Stoesser, N. (2017). The Hospital Water 
Environment as a Reservoir for Carbapenem-Resistant Organisms Causing 
Hospital-Acquired Infections - A Systematic Review of the Literature. In Clinical 
Infectious Diseases (Vol. 64, Issue 10, pp. 1436–1444). Oxford University 
Press. https://doi.org/10.1093/cid/cix132 

Klein, E. Y., Van Boeckel, T. P., Martinez, E. M., Pant, S., Gandra, S., Levin, S. A., 
Goossens, H., & Laxminarayan, R. (2018). Global increase and geographic 
convergence in antibiotic consumption between 2000 and 2015. Proceedings of 
the National Academy of Sciences of the United States of America, 115(15), 
E3463–E3470. https://doi.org/10.1073/pnas.1717295115 

Knight, G. M., Costelloe, C., Deeny, S. R., Moore, L. S. P., Hopkins, S., Johnson, A. 
P., Robotham, J. V., & Holmes, A. H. (2018). Quantifying where human 
acquisition of antibiotic resistance occurs: A mathematical modelling study. BMC 
Medicine, 16(1), 1–11. https://doi.org/10.1186/s12916-018-1121-8 

Knight, G. M., Costelloe, C., Murray, K. A., Robotham, J. V., Atun, R., & Holmes, A. 
H. (2018). Addressing the Unknowns of Antimicrobial Resistance: Quantifying 
and Mapping the Drivers of Burden. Clinical Infectious Diseases, 66(4), 612–
616. https://doi.org/10.1093/cid/cix765 

Knight, G. M., Davies, N. G., Colijn, C., Coll, F., Donker, T., Gifford, D. R., Glover, R. 
E., Jit, M., Klemm, E., Lehtinen, S., Lindsay, J. A., Lipsitch, M., Llewelyn, M. J., 
Mateus, A. L. P., Robotham, J. V., Sharland, M., Stekel, D., Yakob, L., & Atkins, 
K. E. (2019). Mathematical modelling for antibiotic resistance control policy: do 
we know enough? BMC Infectious Diseases, 19(1), 1011. 
https://doi.org/10.1186/s12879-019-4630-y 

Knudsen, B. E., Bergmark, L., Munk, P., Lukjancenko, O., Priemé, A., Aarestrup, F. 
M., & Pamp, S. J. (2016). Impact of sample type and DNA isolation procedure 
on genomic inference of microbiome composition. mSystems, 1(5). 
https://doi.org/10.1128/mSystems.00095-16 

Ko, K. K. K., Chng, K. R., & Nagarajan, N. (2022). Metagenomics-enabled microbial 
surveillance. Nature Microbiology, 7(4), 486–496. 
https://doi.org/10.1038/s41564-022-01089-w 



Bibliography 
 

 126 

Koenraad, P. M. F. J., Jacobs-Reitsma, W. F., Van Der Laan, T., Beumer, R. R., & 
Rombouts, F. M. (1995). Antibiotic susceptibility of campylobacter isolates from 
sewage and poultry abattoir drain water. Epidemiology and Infection, 115(3), 
475–483. https://doi.org/10.1017/S0950268800058635 

Korzeniewska, E., Korzeniewska, A., & Harnisz, M. (2013). Antibiotic resistant 
Escherichia coli in hospital and municipal sewage and their  emission to the 
environment. Ecotoxicology and Environmental Safety, 91, 96–102. 
https://doi.org/10.1016/j.ecoenv.2013.01.014 

Kouyos, R. D., zur Wiesch, P. A., & Bonhoeffer, S. (2011). On being the right size: 
The impact of population size and stochastic effects on the evolution of drug 
resistance in hospitals and the community. PLoS Pathogens, 7(4). 
https://doi.org/10.1371/journal.ppat.1001334 

Kraupner, N., Hutinel, M., Schumacher, K., Gray, D. A., Genheden, M., Fick, J., 
Flach, C. F., & Larsson, D. G. J. (2021). Evidence for selection of multi-resistant 
E. coli by hospital effluent. Environment International, 150. 
https://doi.org/10.1016/j.envint.2021.106436 

Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of 
Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05 

Kumari, A., Maurya, N. S., & Tiwari, B. (2020). Hospital wastewater treatment 
scenario around the globe. In Current Developments in Biotechnology and 
Bioengineering (Issue January). 

Kutilova, I., Medvecky, M., Leekitcharoenphon, P., Munk, P., Masarikova, M., 
Davidova-Gerzova, L., Jamborova, I., Bortolaia, V., Pamp, S. J., & Dolejska, M. 
(2021). Extended-spectrum beta-lactamase-producing Escherichia coli and 
antimicrobial resistance in municipal and hospital wastewaters in Czech 
Republic: Culture-based and metagenomic approaches. Environmental 
Research, 193(October 2020), 110487. 
https://doi.org/10.1016/j.envres.2020.110487 

Kwak, Y. K., Colque, P., Byfors, S., Giske, C. G., Möllby, R., Kühn, I., Mllby, R., & 
Khn, I. (2015). Surveillance of antimicrobial resistance among Escherichia coli in 
wastewater in Stockholm during 1 year: Does it reflect the resistance trends in 
the society? International Journal of Antimicrobial Agents, 45(1), 25–32. 
https://doi.org/10.1016/j.ijantimicag.2014.09.016 

Lamba, M., Gupta, S., Shukla, R., Graham, D. W., Sreekrishnan, T. R., & Ahammad, 
S. Z. (2018). Carbapenem resistance exposures via wastewaters across New 
Delhi. Environment International, 119, 302–308. 
https://doi.org/10.1016/j.envint.2018.07.004 



Bibliography 
 

 127 

Lamberte, L. E., & van Schaik, W. (2022). Antibiotic resistance in the commensal 
human gut microbiota. Current Opinion in Microbiology, 68, 102150. 
https://doi.org/10.1016/j.mib.2022.102150 

Lambourg, E., Siani, C., & de Preux, L. (2022). Use of a high-volume prescription 
database to explore health inequalities in England: assessing impacts of social 
deprivation and temperature on the prescription volume of medicines. Journal of 
Public Health (Germany). https://doi.org/10.1007/s10389-021-01691-y 

Larsson, D. G. J. J., Andremont, A., Bengtsson-Palme, J., Brandt, K. K., Husman, A. 
M. de R., Fagerstedt, P., Fick, J., Flach, C.-F. F., Gaze, W. H., Kuroda, M., 
Kvint, K., Laxminarayan, R., Manaia, C. M., Nielsen, K. M., Plant, L., Ploy, M.-C. 
C., Segovia, C., Simonet, P., Smalla, K., Snape, J., Topp, E., van Hengel, A. J., 
Verner-Jeffreys, D. W., Virta, M. P. J., Wellington, E. M., & Wernersson, A.-S. S. 
(2018). Critical knowledge gaps and research needs related to the 
environmental dimensions of antibiotic resistance. Environment International, 
117(May), 132–138. https://doi.org/10.1016/j.envint.2018.04.041 

Larsson, D. G. J., & Flach, C. F. (2022). Antibiotic resistance in the environment. 
Nature Reviews Microbiology, 20(5), 257–269. https://doi.org/10.1038/s41579-
021-00649-x 

Lekunberri, I., Balcazar, J. L., & Borrego, C. M. (2018). Metagenomic exploration 
reveals a marked change in the river resistome and mobilome after treated 
wastewater discharges. Environmental Pollution, 234, 538–542. 
https://doi.org/10.1016/j.envpol.2017.12.001 

Leonard, A. F. C., Zhang, L., Balfour, A. J., Garside, R., & Gaze, W. H. (2015). 
Human recreational exposure to antibiotic resistant bacteria in coastal bathing 
waters. Environment International, 82, 92–100. 
https://doi.org/10.1016/j.envint.2015.02.013 

Li, B., Zhao, Z. C., Wang, M. H., Huang, X. H., Pan, Y. H., & Cao, Y. P. (2014). 
Antimicrobial resistance and integrons of commensal Escherichia coli strains 
from healthy humans in China. Journal of Chemotherapy, 26(3), 190–192. 
https://doi.org/10.1179/1973947813Y.0000000113 

Li, X. Z., Plésiat, P., & Nikaido, H. (2015). The challenge of efflux-mediated antibiotic 
resistance in Gram-negative bacteria. Clinical Microbiology Reviews, 28(2), 
337–418. https://doi.org/10.1128/CMR.00117-14 

Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R 
News, 2(3), 18–22. 

Linton, K. B., Richmond, M. H., Bevan, R., & Gillespie, W. A. (1974). Antibiotic 
resistance and R factors in coliform bacilli isolated from hospital and domestic 
sewage. Journal of Medical Microbiology, 7(1), 91–103. 
https://doi.org/10.1099/00222615-7-1-91 



Bibliography 
 

 128 

Llarrull, L. I., Testero, S. A., Fisher, J. F., & Mobashery, S. (2010). The future of the 
β-lactams. Current Opinion in Microbiology, 13(5), 551–557. 
https://doi.org/10.1016/j.mib.2010.09.008 

Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A. B., 
Brady, A., Creasy, H. H., McCracken, C., Giglio, M. G., McDonald, D., Franzosa, 
E. A., Knight, R., White, O., & Huttenhower, C. (2017). Strains, functions and 
dynamics in the expanded Human Microbiome Project. Nature, 550(7674), 61–
66. https://doi.org/10.1038/nature23889 

Lowe, P. (2020). Annual Report of the Registrar General of Births, Deaths and 
Marriages for Scotland 2019 165th Edition. 

Ludden, C., Moradigaravand, D., Jamrozy, D., Gouliouris, T., Blane, B., Naydenova, 
P., Hernandez-Garcia, J., Wood, P., Hadjirin, N., Radakovic, M., Crawley, C., 
Brown, N. M., Holmes, M., Parkhill, J., & Peacock, S. J. (2020). A one health 
study of the genetic relatedness of Klebsiella pneumoniae and their mobile 
elements in the east of England. Clinical Infectious Diseases, 70(2), 219–226. 
https://doi.org/10.1093/cid/ciz174 

Ludden, C., Reuter, S., Judge, K., Gouliouris, T., Blane, B., Coll, F., Naydenova, P., 
Hunt, M., Tracey, A., Hopkins, K. L., Brown, N. M., Woodford, N., Parkhill, J., & 
Peacock, S. J. (2017). Sharing of carbapenemase-encoding plasmids between 
Enterobacteriaceae in UK sewage uncovered by MinION sequencing. Microbial 
Genomics, 3(7). https://doi.org/10.1099/mgen.0.000114 

Majeed, H. J., Riquelme, M. V., Davis, B. C., Gupta, S., Angeles, L., Aga, D. S., 
Garner, E., Pruden, A., & Vikesland, P. J. (2021). Evaluation of Metagenomic-
Enabled Antibiotic Resistance Surveillance at a Conventional Wastewater 
Treatment Plant. Frontiers in Microbiology, 12(May), 657954. 
https://doi.org/10.3389/fmicb.2021.657954 

Majumder, A., Gupta, A. K., Ghosal, P. S., & Varma, M. (2021). A review on hospital 
wastewater treatment: A special emphasis on occurrence and removal of 
pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-
2. Journal of Environmental Chemical Engineering, 9(2). 
https://doi.org/10.1016/j.jece.2020.104812 

Majumder, M. A. A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M., & 
Gittens-St Hilaire, M. (2020). Antimicrobial stewardship: Fighting antimicrobial 
resistance and protecting global public health. Infection and Drug Resistance, 
13, 4713–4738. https://doi.org/10.2147/IDR.S290835 

Malcolm, W., Seaton, R. A., Haddock, G., Baxter, L., Thirlwell, S., Russell, P., 
Cooper, L., Thomson, A., & Sneddon, J. (2020). Impact of the COVID-19 
pandemic on community antibiotic prescribing in Scotland. JAC-Antimicrobial 
Resistance, 2(4), 1–4. https://doi.org/10.1093/jacamr/dlaa105 



Bibliography 
 

 129 

Manaia, C. M. (2014). Antibiotic resistance in wastewater: origins, fate, and risks. 
Prävention Und Gesundheitsförderung, 9(3), 180–184. 
https://doi.org/10.1007/s11553-014-0452-3 

Masarikova, M., Manga, I., Cizek, A., Dolejska, M., Oravcova, V., Myskova, P., 
Karpiskova, R., & Literak, I. (2016). Salmonella enterica resistant to 
antimicrobials in wastewater effluents and black-headed gulls in the Czech 
Republic, 2012. Science of the Total Environment, 542(Pt A), 102–107. 
https://doi.org/10.1016/j.scitotenv.2015.10.069 

Massot, M., Daubié, A.-S., Clermont, O., Jauréguy, F., Couffignal, C., Dahbi, G., 
Mora, A., Blanco, J., Branger, C., Mentré, F., Eddi, A., Picard, B., Denamur, E., 
& Group, T. C. (2016). Phylogenetic, virulence and antibiotic resistance 
characteristics of commensal  strain populations of Escherichia coli from 
community subjects in the Paris area in 2010 and evolution over 30 years. 
Microbiology (Reading, England), 162(4), 642–650. 
https://doi.org/10.1099/mic.0.000242 

Matsuki, K., Kuperman, V., & Van Dyke, J. A. (2016). The Random Forests statistical 
technique: An examination of its value for the study of reading. Scientific Studies 
of Reading, 20(1), 20–33. https://doi.org/10.1080/10888438.2015.1107073 

Mbanga, J., Amoako, D. G., Abia, A. L. K., Allam, M., Ismail, A., & Essack, S. Y. 
(2021). Genomic Insights of Multidrug-Resistant Escherichia coli From 
Wastewater Sources and Their Association With Clinical Pathogens in South 
Africa. Frontiers in Veterinary Science, 8(February), 636715. 
https://doi.org/10.3389/fvets.2021.636715 

McArthur, A. G., & Tsang, K. K. (2017). Antimicrobial resistance surveillance in the 
genomic age. Annals of the New York Academy of Sciences, 1388(1), 78–91. 
https://doi.org/10.1111/nyas.13289 

McBryde, E. S., & McElwain, D. L. S. (2006). A Mathematical Model Investigating the 
Impact of an Environmental Reservoir on the Prevalence and Control of 
Vancomycin- Resistant Enterococci. The Journal of Infectious Diseases, 193, 
1473–1474. 

McDonnell, L., Armstrong, D., Ashworth, M., Dregan, A., Malik, U., & White, P. 
(2017). National disparities in the relationship between antimicrobial resistance 
and antimicrobial consumption in Europe: An observational study in 29 
Countries. Journal of Antimicrobial Chemotherapy, 72(11), 292–300. 
https://doi.org/10.1093/jac/dkx248 

McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial Resistance: a One Health 
Perspective. Microbiology Spectrum, 6(2), 255–260. 
https://doi.org/10.1128/microbiolspec.ARBA-0009-2017 



Bibliography 
 

 130 

McLellan, S. L., & Roguet, A. (2019). The unexpected habitat in sewer pipes for the 
propagation of microbial communities and their imprint on urban waters. Current 
Opinion in Biotechnology, 57, 34–41. 
https://doi.org/10.1016/j.copbio.2018.12.010 

Messai, Y., Atmani, S. M., Alouache, S., Fernández, R., Estepa, V., Torres, C., & 
Bakour, R. (2015). Virulence characteristics and genetic background of ESBL-
producing Klebsiella pneumoniae isolates from wastewater. Fresenius 
Environmental Bulletin, 24(1), 103–112. 
https://www.researchgate.net/publication/281893715 

Mhongole, O. J., Mdegela, R. H., Kusiluka, L. J. M., Forslund, A., & Dalsgaard, A. 
(2017). Characterization of Salmonella spp. from wastewater used for food 
production in Morogoro, Tanzania. World Journal of Microbiology & 
Biotechnology, 33(3), 42. https://doi.org/10.1007/s11274-017-2209-6 

Miłobedzka, A., Ferreira, C., Vaz-Moreira, I., Calderón-Franco, D., Gorecki, A., 
Purkrtova, S., Jan Bartacek, Dziewit, L., Singleton, C. M., Nielsen, P. H., 
Weissbrodt, D. G., & Manaia, C. M. (2022). Monitoring antibiotic resistance 
genes in wastewater environments: The challenges of filling a gap in the One-
Health cycle. Journal of Hazardous Materials, 424. 
https://doi.org/10.1016/j.jhazmat.2021.127407 

Morales Medina, W. R., Eramo, A., Tu, M., & Fahrenfeld, N. L. (2020). Sewer biofilm 
microbiome and antibiotic resistance genes as function of pipe material, source 
of microbes, and disinfection: Field and laboratory studies. Environmental 
Science: Water Research and Technology, 6(8), 2122–2137. 
https://doi.org/10.1039/d0ew00265h 

Moriarty, E., Nourozi, F., Robson, B., Wood, D., & Gilpin, B. (2008). Evidence for 
growth of enterococci in municipal oxidation ponds, obtained using antibiotic 
resistance analysis. Applied and Environmental Microbiology, 74(23), 7204–
7210. https://doi.org/10.1128/AEM.00341-08 

Morley, V. J., Woods, R. J., & Read, A. F. (2019). Bystander Selection for 
Antimicrobial Resistance: Implications for Patient Health. Trends in 
Microbiology, 27(10), 864–877. https://doi.org/10.1016/j.tim.2019.06.004 

Muloi, D., Ward, M. J., Pedersen, A. B., Fèvre, E. M., Woolhouse, M. E. J., & van 
Bunnik, B. A. D. (2018). Are Food Animals Responsible for Transfer of 
Antimicrobial-Resistant Escherichia coli or Their Resistance Determinants to 
Human Populations? A Systematic Review. Foodborne Pathogens and Disease, 
15(8), 467–474. https://doi.org/10.1089/fpd.2017.2411 

Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. 
Microbiology Spectrum, 4(2), 119–127. 
https://doi.org/https://doi.org/10.1128/microbiolspec.VMBF-0016-2015 



Bibliography 
 

 131 

Munk-Welford, P., Brinch, C., Møller, F. D., Petersen, T. N., Hendriksen, R. S., 
Seyfarth, A. M., Kjeldgaard, J. S., Bunnik, B. van, Consortium, G. S., Larsson, 
D. G. J., Koopmans, M., Woolhouse, M., & Aarestrup, F. M. (2022). Global 
sewage metagenomics provides unparalleled insight into spatial, taxonomic, and 
temporal components of antimicrobial resistance. In Prep. 

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, 
A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., 
Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, 
B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden 
of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 
399(10325), 629–655. https://doi.org/10.1016/s0140-6736(21)02724-0 

Nadimpalli, M. L., Marks, S. J., Montealegre, M. C., Gilman, R. H., Pajuelo, M. J., 
Saito, M., Tsukayama, P., Njenga, S. M., Kiiru, J., Swarthout, J., Islam, M. A., 
Julian, T. R., & Pickering, A. J. (2020). Urban informal settlements as hotspots 
of antimicrobial resistance and the need to curb environmental transmission. 
Nature Microbiology, 5(6), 787–795. https://doi.org/10.1038/s41564-020-0722-0 

Nadimpalli, M., Delarocque-Astagneau, E., Love, D. C., Price, L. B., Huynh, B. T., 
Collard, J. M., Lay, K. S., Borand, L., Ndir, A., Walsh, T. R., & Guillemot, D. 
(2018). Combating Global Antibiotic Resistance: Emerging One Health 
Concerns in Lower-and Middle-Income Countries. Clinical Infectious Diseases, 
66(6), 963–969. https://doi.org/10.1093/cid/cix879 

Newton, R. J., McLellan, S. L., Dila, D. K., Vineis, J. H., Morrison, H. G., Murat Eren, 
A., & Sogin, M. L. (2015). Sewage reflects the microbiomes of human 
populations. MBio, 6(2). https://doi.org/10.1128/mBio.02574-14 

Ng, C., Tay, M., Tan, B., Le, T. H., Haller, L., Chen, H., Koh, T. H., Barkham, T. M. 
S., & Gin, K. Y. H. (2017). Characterization of metagenomes in urban aquatic 
compartments reveals high prevalence of clinically relevant antibiotic resistance 
genes in wastewaters. Frontiers in Microbiology, 8(NOV), 2200. 
https://doi.org/10.3389/fmicb.2017.02200 

Nguyen, A. Q., Vu, H. P., Nguyen, L. N., Wang, Q., Djordjevic, S. P., Donner, E., Yin, 
H., & Nghiem, L. D. (2021). Monitoring antibiotic resistance genes in wastewater 
treatment: Current strategies and future challenges. Science of the Total 
Environment, 783, 146964. https://doi.org/10.1016/j.scitotenv.2021.146964 

Niewiadomska, A. M., Jayabalasingham, B., Seidman, J. C., Willem, L., Grenfell, B., 
Spiro, D., & Viboud, C. (2019). Population-level mathematical modeling of 
antimicrobial resistance: A systematic review. BMC Medicine, 17(1), 1–20. 
https://doi.org/10.1186/s12916-019-1314-9 

NIH. (2019). Prokaryotic RefSeq Genomes Frequently Asked Questions (FAQ). 

 



Bibliography 
 

 132 

Nji, E., Kazibwe, J., Hambridge, T., Joko, C. A., Larbi, A. A., Damptey, L. A. O., 
Nkansa-Gyamfi, N. A., Stålsby Lundborg, C., & Lien, L. T. Q. (2021). High 
prevalence of antibiotic resistance in commensal Escherichia coli from healthy 
human sources in community settings. Scientific Reports, 11(1), 1–11. 
https://doi.org/10.1038/s41598-021-82693-4 

Novo, A., & Manaia, C. M. C. M. (2010). Factors influencing antibiotic resistance 
burden in municipal wastewater treatment plants. Applied Microbiology and 
Biotechnology, 87(3), 1157–1166. https://doi.org/10.1007/s00253-010-2583-6 

O’Neill, J. (2014). Antimicrobial Resistance: Tackling a Crisis for the Health and 
Wealth of Nations, 2014. https://doi.org/10.1038/510015a 

Oravcova, V., Mihalcin, M., Zakova, J., Pospisilova, L., Masarikova, M., & Literak, I. 
(2017). Vancomycin-resistant enterococci with vanA gene in treated municipal 
wastewater and their association with human hospital strains. Science of the 
Total Environment, 609, 633–643. 
https://doi.org/10.1016/j.scitotenv.2017.07.121 

Ory, J. J., Bricheux, G. G., Togola, A., Bonnet, J. L., Donnadieu-Bernard, F., Nakusi, 
L., Forestier, C., & Traore, O. (2016). Ciprofloxacin residue and antibiotic-
resistant biofilm bacteria in hospital effluent. Environmental Pollution, 214, 635–
645. https://doi.org/10.1016/j.envpol.2016.04.033 

Otter, J. A., Natale, A., Batra, R., Tosas Auguet, O., Dyakova, E., Goldenberg, S. D., 
& Edgeworth, J. D. (2019). Individual- and community-level risk factors for ESBL 
Enterobacteriaceae colonization identified by universal admission screening in 
London. Clinical Microbiology and Infection, 25(10), 1259–1265. 
https://doi.org/10.1016/j.cmi.2019.02.026 

Pacifici, K., Reich, B. J., Miller, D. A. W., Gardner, B., Stauffer, G., Singh, S., 
McKerrow, A., & Collazo, J. A. (2017). Integrating multiple data sources in 
species distribution modeling: A framework for data fusion. Ecology, 98(3), 840–
850. https://doi.org/10.1002/ecy.1710 

Palacios, O. A., Contreras, C. A., Munoz-Castellanos, L. N., Gonzalez-Rangel, M. 
O., Rubio-Arias, H., Palacios-Espinosa, A., & Nevarez-Moorillon, G. V. (2017). 
Monitoring of indicator and multidrug resistant bacteria in agricultural soils under 
different irrigation patterns. Agricultural Water Management, 184, 19–27. 
https://doi.org/10.1016/j.agwat.2017.01.001 

Palacios, O. A., Contreras, C. A., Muñoz-Castellanos, L. N., González-Rangel, M. 
O., Rubio-Arias, H., Palacios-Espinosa, A., & Nevárez-Moorillón, G. V. (2017). 
Monitoring of indicator and multidrug resistant bacteria in agricultural soils under 
different irrigation patterns. Agricultural Water Management, 184, 19–27. 
https://doi.org/10.1016/j.agwat.2017.01.001 



Bibliography 
 

 133 

Palmer, A. C., & Kishony, R. (2013). Understanding, predicting and manipulating the 
genotypic evolution of antibiotic resistance. Nature Reviews Genetics, 14(4), 
243–248. https://doi.org/10.1038/nrg3351 

Pärnänen, K. M. M., Narciso-Da-Rocha, C., Kneis, D., Berendonk, T. U., Cacace, D., 
Do, T. T., Elpers, C., Fatta-Kassinos, D., Henriques, I., Jaeger, T., Karkman, A., 
Martinez, J. L., Michael, S. G., Michael-Kordatou, I., O’Sullivan, K., Rodriguez-
Mozaz, S., Schwartz, T., Sheng, H., Sørum, H., Stedtfeld, S. R., Tiedje, J. M., 
Giustina, S. V. D., Walsh, F., Vaz-Moreira, I., Virta, M., & Manaia, C. M. (2019). 
Antibiotic resistance in European wastewater treatment plants mirrors the 
pattern of clinical antibiotic resistance prevalence. Science Advances, 5(3), 
eaau9124. https://doi.org/10.1126/sciadv.aau9124 

Paulshus, E., Kühn, I., Möllby, R., Colque, P., O’Sullivan, K., Midtvedt, T., Lingaas, 
E., Holmstad, R., & Sørum, H. (2019). Diversity and antibiotic resistance among 
Escherichia coli populations in hospital and community wastewater compared to 
wastewater at the receiving urban treatment plant. Water Research, 161, 232–
241. https://doi.org/10.1016/j.watres.2019.05.102 

Pazda, M., Kumirska, J., Stepnowski, P., & Mulkiewicz, E. (2019). Antibiotic 
resistance genes identified in wastewater treatment plant systems - A review. 
Science of the Total Environment, 697, 134023. 
https://doi.org/10.1016/j.scitotenv.2019.134023 

Pehrsson, E. C., Tsukayama, P., Patel, S., Mejia-Bautista, M., Sosa-Soto, G., 
Navarrete, K. M., Calderon, M., Cabrera, L., Hoyos-Arango, W., Bertoli, M. T., 
Berg, D. E., Gilman, R. H., & Dantas, G. (2016). Interconnected microbiomes 
and resistomes in low-income human habitats. Nature, 533(7602), 212–216. 
https://doi.org/10.1038/nature17672 

Peng, X., Li, G., & Liu, Z. (2016). Zero-Inflated Beta Regression for Differential 
Abundance Analysis with Metagenomics Data. Journal of Computational 
Biology, 23(2), 102–110. https://doi.org/10.1089/cmb.2015.0157 

Perry, M. R., Lepper, H. C., McNally, L., Wee, B. A., Munk, P., Warr, A., Moore, B., 
Kalima, P., Philip, C., de Roda Husman, A. M., Aarestrup, F. M., Woolhouse, M. 
E. J., & van Bunnik, B. A. D. (2021). Secrets of the Hospital Underbelly: Patterns 
of Abundance of Antimicrobial Resistance Genes in Hospital Wastewater Vary 
by Specific Antimicrobial and Bacterial Family. Frontiers in Microbiology, 
12(September). https://doi.org/10.3389/fmicb.2021.703560 

Petersen, T. N., Lukjancenko, O., Thomsen, M. C. F., Sperotto, M. M., Lund, O., 
Aarestrup, F. M., & Sicheritz-Ponten, T. (2017). MGmapper: Reference based 
mapping and taxonomy annotation of metagenomics sequence reads. PLoS 
ONE, 12(5), 1–13. https://doi.org/10.1371/journal.pone.0176469 

Peterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: 
Relationships between resistance determinants of antibiotic producers, 



Bibliography 
 

 134 

environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 
9(NOV), 1–21. https://doi.org/10.3389/fmicb.2018.02928 

Piotrowska, M., & Popowska, M. (2014). The prevalence of antibiotic resistance 
genes among Aeromonas species in aquatic environments. Annals of 
Microbiology, 64(3), 921–934. https://doi.org/10.1007/s13213-014-0911-2 

Polianciuc, S. I., Gurzău, A. E., Kiss, B., Georgia Ștefan, M., & Loghin, F. (2020). 
Antibiotics in the environment: causes and consequences. Medicine and 
Pharmacy Reports, 93(3), 231–240. https://doi.org/10.15386/mpr-1742 

Popa, L. I., Gheorghe, I., Barbu, I. C., Surleac, M., Paraschiv, S., Măruţescu, L., 
Popa, M., Pîrcălăbioru, G. G., Talapan, D., Niţă, M., Streinu-Cercel, A., Streinu-
Cercel, A., Oţelea, D., & Chifiriuc, M. C. (2021). Multidrug Resistant Klebsiella 
pneumoniae ST101 Clone Survival Chain From Inpatients to Hospital Effluent 
After Chlorine Treatment. Frontiers in Microbiology, 11(January). 
https://doi.org/10.3389/fmicb.2020.610296 

Pot, M., Guyomard-Rabenirina, S., Couvin, D., Ducat, C., Enouf, V., Ferdinand, S., 
Gruel, G., Malpote, E., Talarmin, A., Breurec, S., & Reynaud, Y. (2021). 
Dissemination of Extended-Spectrum-beta-Lactamase-Producing Enterobacter 
cloacae Complex from a Hospital to the Nearby Environment in Guadeloupe 
(French West Indies): ST114 Lineage Coding for a Successful IncHI2/ST1 
Plasmid. Antimicrobial Agents and Chemotherapy, 65(3). 
https://doi.org/10.1128/AAC.02146-20 

Pradipta, I. S., Forsman, L. D., Bruchfeld, J., Hak, E., & Alffenaar, J. W. (2018). Risk 
factors of multidrug-resistant tuberculosis: A global systematic review and meta-
analysis. Journal of Infection, 77(6), 469–478. 
https://doi.org/10.1016/j.jinf.2018.10.004 

Pruden, A., Arabi, M., & Storteboom, H. N. (2012). Correlation between upstream 
human activities and riverine antibiotic resistance genes. Environmental Science 
and Technology, 46(21), 11541–11549. https://doi.org/10.1021/es302657r 

Pruden, A., Joakim Larsson, D. G., Amézquita, A., Collignon, P., Brandt, K. K., 
Graham, D. W., Lazorchak, J. M., Suzuki, S., Silley, P., Snape, J. R., Topp, E., 
Zhang, T., & Zhu, Y. G. (2013). Management options for reducing the release of 
antibiotics and antibiotic resistance genes to the environment. Environmental 
Health Perspectives, 121(8), 878–885. https://doi.org/10.1289/ehp.1206446 

Pruden, A., Vikesland, P. J., Davis, B. C., & de Roda Husman, A. M. (2021). Seizing 
the moment: now is the time for integrated global surveillance of antimicrobial 
resistance in wastewater environments. In Current Opinion in Microbiology (Vol. 
64, pp. 91–99). Elsevier Ltd. https://doi.org/10.1016/j.mib.2021.09.013 

Public Health Scotland (2020). Acute hospital activity and NHS beds information 
(quarterly). https://publichealthscotland.scot/publications/acute-hospital-activity-



Bibliography 
 

 135 

and-nhs-beds-information-quarterly/acute-hospital-activity-and-nhs-beds-
information-quarterly-quarter-ending-31-december-2019/data-files/. Accessed: 
12/08/2021 

Puchter, L., Chaberny, I. F., Schwab, F., Vonberg, R. P., Bange, F. C., & Ebadi, E. 
(2018). Economic burden of nosocomial infections caused by vancomycin-
resistant enterococci. Antimicrobial Resistance and Infection Control, 7(1), 1–7. 
https://doi.org/10.1186/s13756-017-0291-z 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & 
Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: 
Improved data processing and web-based tools. Nucleic Acids Research, 
41(D1), 590–596. https://doi.org/10.1093/nar/gks1219 

Quintela-Baluja, M., Abouelnaga, M., Romalde, J., Su, J. Q., Yu, Y., Gomez-Lopez, 
M., Smets, B., Zhu, Y. G., & Graham, D. W. (2019). Spatial ecology of a 
wastewater network defines the antibiotic resistance genes in downstream 
receiving waters. Water Research, 162, 347–357. 
https://doi.org/10.1016/j.watres.2019.06.075 

R Core Team. (2022). R: A Language and Environment for Statistical Computing 
(3.6.3). R Foundation for Statistical Computing. https://www.r-project.org/ 

Raven, K. E., Ludden, C., Gouliouris, T., Blane, B., Naydenova, P., Brown, N. M., 
Parkhill, J., & Peacock, S. J. (2019). Genomic surveillance of Escherichia coli in 
municipal wastewater treatment plants as an indicator of clinically relevant 
pathogens and their resistance genes. Microbial Genomics, 5(5), 1–9. 
https://doi.org/10.1099/mgen.0.000267 

Reinthaler, F. F., Galler, H., Feierl, G., Haas, D., Leitner, E., Mascher, F., Melkes, A., 
Posch, J., Pertschy, B., Winter, I., Himmel, W., Marth, E., & Zarfel, G. (2013). 
Resistance patterns of Escherichia coli isolated from sewage sludge in 
comparison with those isolated from human patients in 2000 and 2009. Journal 
of Water and Health, 11(1), 13–20. https://doi.org/10.2166/wh.2012.207 

Remschmidt, C., Behnke, M., Kola, A., Peña Diaz, L. A., Rohde, A. M., Gastmeier, 
P., & Schwab, F. (2017). The effect of antibiotic use on prevalence of 
nosocomial vancomycin-resistant enterococci- an ecologic study. Antimicrobial 
Resistance and Infection Control, 6(1), 1–8. https://doi.org/10.1186/s13756-017-
0253-5 

Reusser, D. (2015). fast: Implementation of the Fourier Amplitude Sensitivity Test 
(FAST). https://cran.r-project.org/package=fast 

Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I., & 
Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for 
antibiotic resistant bacteria and genes spread into the environment: a review. 



Bibliography 
 

 136 

Science of the Total Environment, 447, 345–360. 
https://doi.org/10.1016/j.scitotenv.2013.01.032 

Robinson, T. P., Bu, D. P., Carrique-Mas, J., Fèvre, E. M., Gilbert, M., Grace, D., 
Hay, S. I., Jiwakanon, J., Kakkar, M., Kariuki, S., Laxminarayan, R., Lubroth, J., 
Magnusson, U., Ngoc, P. T., van Boeckel, T. P., & Woolhouse, M. E. J. (2016). 
Antibiotic resistance is the quintessential One Health issue. Transactions of the 
Royal Society of Tropical Medicine and Hygiene, 110(7), 377–380. 

Röderová, M., Sedláková, M. H., Pudová, V., Hricová, K., Silová, R., Imwensi, P. E. 
O., Bardoň, J., & Kolář, M. (2016). Occurrence of bacteria producing broad-
spectrum beta-lactamases and qnr genes in hospital and urban wastewater 
samples. New Microbiologica, 39(2), 124–133. 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84971474293&partnerID=40&md5=fd06e2df1c3be4c75773601ccb0b802c 

Röderová, M., Sedláková, M. H., Pudová, V., Hricová, K., Silová, R., Imwensi, P. E. 
O., Bardoň, J., & Kolář, M. (2016). Occurrence of bacteria producing broad-
spectrum beta-lactamases and qnr genes in hospital and urban wastewater 
samples. New Microbiologica, 39(2), 124–133. 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84971474293&partnerID=40&md5=fd06e2df1c3be4c75773601ccb0b802c 

Roldan-Masedo, E., Sainz, T., Gutierrez-Arroyo, A., Gomez-Gil, R. M., Ballesteros, 
E., Escosa, L., Baquero-Artigao, F., & Méndez-Echevarría, A. (2019). Risk 
factors for gentamicin-resistant E. coli in children with community-acquired 
urinary tract infection. European Journal of Clinical Microbiology and Infectious 
Diseases, 38(11), 2097–2102. https://doi.org/10.1007/s10096-019-03643-7 

Rooney, A. M., Raphenya, A. R., Melano, R. G., Seah, C., Yee, N. R., MacFadden, 
D. R., McArthur, A. G., Schneeberger, P. H. H., & Coburn, B. (2021). 
Performance characteristics of next-generation sequencing for antimicrobial 
resistance gene detection in genomes and metagenomes. BioRxiv, 
2021.06.25.449921. 
https://www.biorxiv.org/content/10.1101/2021.06.25.449921v1%0Ahttps://www.b
iorxiv.org/content/10.1101/2021.06.25.449921v1.abstract 

Rosenburg Goldstein, R., Kleinfelter, L., He, X., Micallef, S. A., George, A., Gibbs, S. 
G., & Sapkota, A. R. (2017). Higher prevalence of coagulase-negative 
staphylococci carriage among reclaimed water spray irrigators. Science of the 
Total Environment, 595, 35–40. https://doi.org/10.1016/j.scitotenv.2017.03.174 

Saltelli, A., Tarantola, S., & Chan, K. P.-S. (1999). A Quantitative Model-Independent 
Method for Global Sensitivity Analysis of Model Output. Technometrics, 41(1), 
39–56. https://doi.org/10.1080/00401706.1999.10485594 



Bibliography 
 

 137 

Sargeant, J. M., & O’Connor, A. M. (2014). Introduction to Systematic Reviews in 
Animal Agriculture and Veterinary Medicine. Zoonoses and Public Health, 
61(SUPPL1), 3–9. https://doi.org/10.1111/zph.12128 

Scott, A. M., Beller, E., Glasziou, P., Clark, J., Ranakusuma, R. W., Byambasuren, 
O., Bakhit, M., Page, S. W., Trott, D., & Mar, C. Del. (2018). Is antimicrobial 
administration to food animals a direct threat to human health? A rapid 
systematic review. International Journal of Antimicrobial Agents, 52(3), 316–
323. https://doi.org/10.1016/j.ijantimicag.2018.04.005 

Scottish Water. (n.d.). Trade Effluent : Guide to Services. 
https://www.scottishwater.co.uk/-/media/ScottishWater/Document-
Hub/Business-and-Developers/Byelaws-and-Trade-
Effluent/280521TradeEffluentGuidetoServices.pdf 

Scottish Water. (n.d). Surface Water Policy. http://www.scottishwater.co.uk/-
/media/business/files/connections-documents/developer-
services/surfacewaterguidancedoc8ppa4pageshires.pdf?la=en 

Seruga Music, M., Hrenovic, J., Goic-Barisic, I., Hunjak, B., Skoric, D., & Ivankovic, 
T. (2017). Emission of extensively-drug-resistant Acinetobacter baumannii from 
hospital settings to the natural environment. The Journal of Hospital Infection, 
96(4), 323–327. https://doi.org/10.1016/j.jhin.2017.04.005 

Shenoy, E. S., Paras, M. L., Noubary, F., Walensky, R. P., & Hooper, D. C. (2014). 
Natural history of colonization with methicillin-resistant Staphylococcus aureus 
(MRSA) and vancomycin-resistant Enterococcus (VRE): A systematic review. 
BMC Infectious Diseases, 14(1). https://doi.org/10.1186/1471-2334-14-177 

Sims, N., Avery, L., & Kasprzyk-Hordern, B. (2021). Review of wastewater 
monitoring applications for public health and novel aspects of environmental 
quality. Scotland’s Centre for Expertise for Waters (CREW). 

Smith, R., & Coast, J. (2013). The true cost of antimicrobial resistance. BMJ 
(Online), 346(7899), 1–5. https://doi.org/10.1136/bmj.f1493 

Song, S. J., Amir, A., Metcalf, J. L., & Amato, K. R. (2016). Preservation methods 
differ in fecal microbiome stability, affecting suitability for field studies. 
mSystems, 1(3), 1–12. https://doi.org/10.1128/mSystems.00021-16.Editor 

Stark, J. S., Corbett, P. A., Dunshea, G., Johnstone, G., King, C., Mondon, J. A., 
Power, M. L., Samuel, A., Snape, I., & Riddle, M. (2016). The environmental 
impact of sewage and wastewater outfalls in Antarctica: An example from Davis 
station, East Antarctica. Water Research, 105, 602–614. 
https://doi.org/10.1016/j.watres.2016.09.026 

Su, J.-Q., An, X.-L., Li, B., Chen, Q.-L., Gillings, M. R., Chen, H., Zhang, T., & Zhu, 
Y.-G. (2017). Metagenomics of urban sewage identifies an extensively shared 



Bibliography 
 

 138 

antibiotic resistome in China. Microbiome, 5(1), 127. 
https://doi.org/10.1186/s40168-017-0298-y 

Swift, B. M. C. C., Bennett, M., Waller, K., Dodd, C., Murray, A., Gomes, R. L., 
Humphreys, B., Hobman, J. L., Jones, M. A., Whitlock, S. E., Mitchell, L. J., 
Lennon, R. J., & Arnold, K. E. (2019). Anthropogenic environmental drivers of 
antimicrobial resistance in wildlife. Science of the Total Environment, 649, 12–
20. https://doi.org/10.1016/j.scitotenv.2018.08.180 

Tacconelli, E., & Cataldo, M. A. (2008). Vancomycin-resistant enterococci (VRE): 
transmission and control. International Journal of Antimicrobial Agents, 31(2), 
99–106. https://doi.org/10.1016/j.ijantimicag.2007.08.026 

Tacconelli, E., Sifakis, F., Harbarth, S., Schrijver, R., van Mourik, M., Voss, A., 
Sharland, M., Rajendran, N. B., & Rodríguez-Baño, J. (2018). Surveillance for 
control of antimicrobial resistance. The Lancet Infectious Diseases, 18(3), e99–
e106. https://doi.org/10.1016/S1473-3099(17)30485-1 

Taucer-Kapteijn, M., Hoogenboezem, W., Heiliegers, L., de Bolster, D., & Medema, 
G. (2016). Screening municipal wastewater effluent and surface water used for 
drinking water production for the presence of ampicillin and vancomycin 
resistant enterococci. International Journal of Hygiene and Environmental 
Health, 219(4–5), 437–442. https://doi.org/10.1016/j.ijheh.2016.04.007 

Thorpe, H., Booton, R., Kallonen, T., Gibbon, M. J., Couto, N., Passet, V., Sebastian 
Lopez Fernandez, J., Rodrigues, C., Matthews, L., Mitchell, S., Reeve, R., 
David, S., Merla, C., Corbella, M., Ferrari, C., Comandatore, F., Marone, P., 
Brisse, S., Sassera, D., Corander, J., & Feil, E. J. (2021). One Health or Three? 
Transmission modelling of Klebsiella isolates reveals ecological barriers to 
transmission between humans, animals and the environment. BioRxiv. 
https://doi.org/10.1101/2021.08.05.455249 

Valentin, A. S., Santos, S. Dos, Goube, F., Gimenes, R., Decalonne, M., Mereghetti, 
L., Daniau, C., van der Mee-Marquet, N., Abdoush, H., Alfandari, S., Allaire, A., 
Aloe, L., Andreo, A., Antoine, E., Aurel, C., Azaouzi, A., Barry-Perdereau, V., 
Berrouane, Y., Blaise, S., … Vanson, M. L. (2021). A prospective multicentre 
surveillance study to investigate the risk associated with contaminated sinks in 
the intensive care unit. Clinical Microbiology and Infection, 27(9), 1347.e9-
1347.e14. https://doi.org/10.1016/j.cmi.2021.02.018 

Van Boeckel, T. P., Glennon, E. E., Chen, D., Gilbert, M., Robinson, T. P., Grenfell, 
B. T., Levin, S. A., Bonhoeffer, S., & Laxminarayan, R. (2017). Reducing 
antimicrobial use in food animals. Science, 357(6358), 1350–1352. 
https://doi.org/10.1126/science.aao1495 

Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., 
Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in 



Bibliography 
 

 139 

antimicrobial resistance in animals in low- And middle-income countries. 
Science, 365(6459). https://doi.org/10.1126/science.aaw1944 

van Bunnik, B. A. D., & Woolhouse, M. E. J. (2017). Modelling the impact of 
curtailing antibiotic usage in food animals on antibiotic resistance in humans. 
Royal Society Open Science, 4(4). https://doi.org/10.1098/rsos.161067 

Van Goethem, M. W., Pierneef, R., Bezuidt, O. K. I., Van De Peer, Y., Cowan, D. A., 
& Makhalanyane, T. P. (2018). A reservoir of “historical” antibiotic resistance 
genes in remote pristine Antarctic soils. Microbiome, 6(1), 1–12. 
https://doi.org/10.1186/s40168-018-0424-5 

Vandewalle, J. L., Goetz, G. W., Huse, S. M., Morrison, H. G., Sogin, M. L., 
Hoffmann, R. G., Yan, K., & Mclellan, S. L. (2012). Acinetobacter, Aeromonas 
and Trichococcus populations dominate the microbial community within urban 
sewer infrastructure. Environmental Microbiology, 14(9), 2538–2552. 
https://doi.org/10.1111/j.1462-2920.2012.02757.x 

Varela, A. R., Macedo, G. N., Nunes, O. C., & Manaia, C. M.(2015). Genetic 
characterization of fluoroquinolone resistant Escherichia coli from urban streams 
and municipal and hospital effluents. FEMS Microbiology Ecology, 91(5). 
https://doi.org/10.1093/femsec/fiv015 

Verburg, I., García-Cobos, S., Leal, L. H., Waar, K., Friedrich, A. W., & Schmitt, H. 
(2019). Abundance and antimicrobial resistance of three bacterial species along 
a complete wastewater pathway. Microorganisms, 7(9). 
https://doi.org/10.3390/microorganisms7090312 

Verburg, I., van Veelen, H. P. J., Waar, K., Rossen, J. W. A. A., Friedrich, A. W., 
Leal, L. H., García-Cobos, S., & Schmitt, H. (2021). Effects of clinical 
wastewater on the bacterial community structure from sewage to the 
environment. Microorganisms, 9(4). 
https://doi.org/10.3390/microorganisms9040718 

Vihta, K. D., Stoesser, N., Llewelyn, M. J., Quan, T. P., Davies, T., Fawcett, N. J., 
Dunn, L., Jeffery, K., Butler, C. C., Hayward, G., Andersson, M., Morgan, M., 
Oakley, S., Mason, A., Hopkins, S., Wyllie, D. H., Crook, D. W., Wilcox, M. H., 
Johnson, A. P., Peto, T. E. A., & Walker, A. S. (2018). Trends over time in 
Escherichia coli bloodstream infections, urinary tract infections, and antibiotic 
susceptibilities in Oxfordshire, UK, 1998–2016: a study of electronic health 
records. The Lancet Infectious Diseases, 18(10), 1138–1149. 
https://doi.org/10.1016/S1473-3099(18)30353-0 

Voigt, A. M., Faerber, H. A., Wilbring, G., Skutlarek, D., Felder, C., Mahn, R., Wolf, 
D., Brossart, P., Hornung, T., Engelhart, S., Exner, M., & Schmithausen, R. M. 
(2019). The occurrence of antimicrobial substances in toilet, sink and shower 
drainpipes of clinical units: A neglected source of antibiotic residues. 



Bibliography 
 

 140 

International Journal of Hygiene and Environmental Health, 222(3), 455–467. 
https://doi.org/10.1016/j.ijheh.2018.12.013 

Von Wintersdorff, C. J. H. H., Penders, J., Van Niekerk, J. M., Mills, N. D., 
Majumder, S., Van Alphen, L. B., Savelkoul, P. H. M. M., & Wolffs, P. F. G. G. 
(2016). Dissemination of Antimicrobial Resistance in Microbial Ecosystems 
through Horizontal Gene Transfer. Frontiers in Microbiology, 7(FEB), 1–10. 
https://doi.org/10.3389/fmicb.2016.00173 

Wee, B. A., Muloi, D. M., & van Bunnik, B. A. D. (2020). Quantifying the transmission 
of antimicrobial resistance at the human and livestock interface with genomics. 
Clinical Microbiology and Infection, 26(12), 1612–1616. 
https://doi.org/10.1016/j.cmi.2020.09.019 

Wheatley, R., Diaz Caballero, J., Kapel, N., de Winter, F. H. R., Jangir, P., Quinn, A., 
del Barrio-Tofiño, E., López-Causapé, C., Hedge, J., Torrens, G., Van der 
Schalk, T., Xavier, B. B., Fernández-Cuenca, F., Arenzana, A., Recanatini, C., 
Timbermont, L., Sifakis, F., Ruzin, A., Ali, O., Lammens C., Goossens, H., 
Kluytmans, J., Kumar-Singh, S., Oliver, A., Malhotra-Kumar, S., & MacLean, C. 
(2021). Rapid evolution and host immunity drive the rise and fall of carbapenem 
resistance during an acute Pseudomonas aeruginosa infection. Nature 
Communications, 12(1), 1–12. https://doi.org/10.1038/s41467-021-22814-9 

WHO. (2021). WHO integrated global surveillance on ESBL-producing E. coli using a 
“One Health” approach: implementation and opportunities. World Health 
Organization. https://www.who.int/publications/i/item/who-integrated-global-
surveillance-on-esbl-producing-e.-coli-using-a-one-health-approach 

WHO. (2021). Global antimicrobial resistance and use surveillance system (GLASS) 
report 2021. World Health Organisation. 
http://www.who.int/glass/resources/publications/early-implementation-report-
2020/en/ 

WHO. (2019). Global Antimicrobial Resistance Surveillance System (GLASS) Report 
Early implementation 2017 - 2018. World Health Organization. 
https://www.who.int/publications/i/item/9789241515061 

WHO Collaborating Centre for Drug Statistics Methodology. (2021). ATC/DDD Index 
2022. https://www.whocc.no/atc_ddd_index/. Accessed: 16/12/2021 

Williams-Nguyen, J., Bueno, I., Sargeant, J. M., Nault, A. J., & Singer, R. S. (2016). 
What is the evidence that point sources of anthropogenic effluent increase 
antibiotic resistance in the environment? Protocol for a systematic review. 
Animal Health Research Reviews, 17(1), 9–15. 

Wolfram Research Inc. (2018). Mathematica, Version 11.3. 
https://www.wolfram.com/mathematica 



Bibliography 
 

 141 

Wood, D. E., & Salzberg, S. L. (2014). Kraken: Ultrafast metagenomic sequence 
classification using exact alignments. Genome Biology, 15(3). 
https://doi.org/10.1186/gb-2014-15-3-r46 

Wooley, J. C., Godzik, A., & Friedberg, I. (2010). A primer on metagenomics. PLoS 
Computational Biology, 6(2). https://doi.org/10.1371/journal.pcbi.1000667 

Woolhouse, M. E. J., & Ward, M. J. (2013). Sources of antimicrobial resistance. 
Science, 341(6153), 1460–1461. https://doi.org/10.1126/science.1243444 

Woolhouse, M., Ward, M., Van Bunnik, B., & Farrar, J. (2015). Antimicrobial 
resistance in humans, livestock and the wider environment. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 370(1670). 
https://doi.org/10.1098/rstb.2014.0083 

World Bank. (2017). Drug-Resistant Infections: A Threat to Our Economic Future 
(Issue March). World Bank Group.  

WWT. (2019). PR19 Challenge Report #5: Water Consumption. 
https://waterwise.org.uk/wp-content/uploads/2019/10/WWT-Report-.pdf 

Yang, Y., Liu, Z., Xing, S., & Liao, X. (2019). The correlation between antibiotic 
resistance gene abundance and microbial community resistance in pig farm 
wastewater and surrounding rivers. Ecotoxicology and Environmental Safety, 
182(June), 109452. https://doi.org/10.1016/j.ecoenv.2019.109452 

Zainab, S. M., Junaid, M., Xu, N., & Malik, R. N. (2020). Antibiotics and antibiotic 
resistant genes (ARGs) in groundwater: A global review on dissemination, 
sources, interactions, environmental and human health risks. In Water Research 
(Vol. 187). Elsevier Ltd. https://doi.org/10.1016/j.watres.2020.116455 

Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., 
Aarestrup, F. M., & Larsen, M. V. (2012). Identification of acquired antimicrobial 
resistance genes. Journal of Antimicrobial Chemotherapy, 67(11), 2640–2644. 
https://doi.org/10.1093/jac/dks261 

Zarfel, G., Galler, H., Feierl, G., Haas, D., Kittinger, C., Leitner, E., Grisold, A. J., 
Mascher, F., Posch, J., Pertschy, B., Marth, E., & Reinthaler, F. F. (2013). 
Comparison of extended-spectrum-beta-lactamase (ESBL) carrying Escherichia 
coli from sewage sludge and human urinary tract infection. Environmental 
Pollution, 173, 192–199. https://doi.org/10.1016/j.envpol.2012.09.019 

Zhang, A. N., Gaston, J. M., Dai, C. L., Zhao, S., Poyet, M., Groussin, M., Yin, X., Li, 
L. G., van Loosdrecht, M. C. M., Topp, E., Gillings, M. R., Hanage, W. P., 
Tiedje, J. M., Moniz, K., Alm, E. J., & Zhang, T. (2021). An omics-based 
framework for assessing the health risk of antimicrobial resistance genes. 
Nature Communications, 12(1), 1–11. https://doi.org/10.1038/s41467-021-
25096-3 



Bibliography 
 

 142 

Zhang, D., Peng, Y., Chan, C. L., On, H., Wai, H. K. F., Shekhawat, S. S., Gupta, A. 
B., Varshney, A. K., Chuanchuen, R., Zhou, X., Xia, Y., Liang, S., Fukuda, K., 
Medicherla, K. M., & Tun, H. M. (2021). Metagenomic Survey Reveals More 
Diverse and Abundant Antibiotic Resistance Genes in Municipal Wastewater 
Than Hospital Wastewater. Frontiers in Microbiology, 12. 
https://doi.org/10.3389/fmicb.2021.712843 

Zhang, S., Huang, J., Zhao, Z., Cao, Y., & Li, B. (2020). Hospital Wastewater as a 
Reservoir for Antibiotic Resistance Genes: A Meta-Analysis. In Frontiers in 
Public Health (Vol. 8, p. 574968). https://doi.org/10.3389/fpubh.2020.574968 

Zhang, X., Mallick, H., Tang, Z., Zhang, L., Cui, X., Benson, A. K., & Yi, N. (2017). 
Negative binomial mixed models for analyzing microbiome count data. BMC 
Bioinformatics, 18(1), 1–10. https://doi.org/10.1186/s12859-016-1441-7 

 



Appendix A. Dissemination of hospital-associated antibiotic 
resistance to wastewater: a systematic scoping review 
 



Appendix 
 

 144 

Appendix A Table 1 Summary of included studies 

Author and year of 
publication 

Countries 
sampled 

Dissemination 
route 

Evidence 
in favour 
or 
against? 

Bacterial group 
studied 

Resistance 
typing 
methods 

Bacterial 
typing 
methods 

Statistical 
methods 

Wastewater 
sample types 

Non-
wastewater 
sample 
types 

Ahmad et al, 2014 Pakistan HWW to MWW In favour Salmonella typhi Phenotypic Phenotypic None 
Untreated hospital 
and municipal River 

Akiba, et al, 2015 India 

Hospital to 
MWW 
(indirect) In favour E. coli Phenotypic Fingerprint 

Frequentist; 
Cluster Treated municipal - 

Alexander et al, 
2015 Germany HWW to MWW In favour 

Enterococcus spp; 
Staphylococcus 
spp; 
Enterobacteriaceae; 
P. aeruginosa 

Gene 
presence Fingerprint None 

Untreated hospital 
and municipal, 
treated municipal 

River, 
groundwater 

Alexander et al, 
2020 Germany 

Hospital to 
MWW 
(indirect) In favour 

E. coli, P. 
aeruginosa, K. 
pneumoniae, A. 
baumannii, and 
Enterococcus spp 

Gene 
presence Fingerprint Frequentist 

Untreated 
municipal - 

Atmani et al, 2015 Algeria 

Patients to 
HWW; HWW 
to MWW In favour K. pneumoniae 

Phenotypic; 
gene 
presence 

Partial 
sequence Frequentist 

Untreated hospital 
and municipal Patients 

Azuma et al, 2019 Japan HWW to MWW In favour E. coli Phenotypic Phenotypic None 

Untreated hospital 
and municipal, 
treated municipal River 

Beattie et al, 2020 

United 
States of 
America HWW to MWW In favour All Phenotypic 

Partial 
sequence Permutation 

Untreated hospital 
and municipal, 
treated municipal - 

Buelow et al, 2018 Netherlands HWW to MWW Against None 
Gene 
presence Fingerprint Cluster 

Untreated hospital 
and municipal - 
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Butiuc-Keul et al, 
2021 Romania HWW to MWW In favour Pseudomonas spp 

Phenotypic; 
gene 
presence; 
gene 
sequence 

Partial 
sequence Frequentist 

Untreated hospital 
and municipal River, lake 

Cahill et al, 2019 Ireland HWW to MWW In favour Enterobacterales 

Phenotypic; 
gene 
presence 

Whole 
genome 
sequence None 

Untreated hospital 
and municipal - 

Chávez et al, 2020 Colombia 
Patients to 
MWW In favour P. aeruginosa 

Phenotypic; 
gene 
presence Phenotypic Frequentist 

Untreated 
municipal 

River, 
patients 

Ekwanzala et al, 
2019 South Africa HWW to MWW In favour K. pneumoniae Phenotypic Fingerprint Frequentist 

Untreated hospital 
and municipal, 
treated hospital 
and municipal River 

Eshrati et al, 2020 
Iran (Islamic 
Republic of) HWW to MWW In favour E. coli Phenotypic Phenotypic Unclear 

Untreated 
municipal 

Patients, 
livestock 

Gibbon et al, 2021 
United 
Kingdom HWW to MWW In favour Klebsiella spp 

Gene 
sequence 

Whole 
genome 
sequence 

Phylogenetics; 
frequentist 

Untreated hospital 
and municipal River 

Gómez et al, 2010 Spain HWW to MWW In favour 
Enterobacteriaceae; 
Enterococcus spp Phenotypic Phenotypic None 

Untreated hospital 
and municipal River 

Goulouris et al, 
2019 

United 
Kingdom HWW to MWW In favour E. faecium 

Gene 
sequencing 

Whole 
genome 
sequence Cluster 

Untreated hospital 
and municipal, 
treated municipal Patients 

Guardabassi et al, 
1998 Denmark 

Hospital to 
MWW 
(indirect) In favour Acinetobacter spp Phenotypic Fingerprint Frequentist 

Untreated 
municipal - 

Gundogdu et al, 
2017 Turkey HWW to MWW In favour E. coli 

Gene 
sequence Fingerprint Frequentist 

Untreated hospital, 
treated and 
untreated 
municipal - 
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Harris et al, 2014 Ireland 

Hospital to 
MWW 
(indirect) In favour E. coli Phenotypic - Bayesian 

Untreated hospital 
and municipal, 
treated municipal - 

Iversen et al, 2002 Sweden HWW to MWW In favour Enterococcus spp 

Phenotypic; 
gene 
presence Fingerprint Cluster 

Untreated hospital 
and municipal, 
treated municipal 

Surface 
water 

Iverson et al, 2004 Sweden 

Patients to 
HWW; HWW 
to MWW In favour E. faecium Phenotypic Phenotypic None 

Untreated 
municipal 

Community, 
surface 
water, 
livestock, 
patients 

Iweriebor et al, 
2015 South Africa HWW to MWW In favour Enterococcus spp 

Phenotypic; 
gene 
presence Fingerprint None 

Untreated hospital, 
treated municipal - 

Jakobsen et al, 
2008 Denmark 

Patients to 
HWW; HWW 
to MWW In favour E. coli; Coliforms 

Phenotypic; 
gene 
presence 

Partial 
sequence 

Frequentist; 
Cluster 

Untreated hospital 
and municipal Patients 

King et al, 2020 South Africa 
Patients to 
HWW In favour 

K. pneumoniae and 
K. oxytoca Phenotypic Phenotypic None 

Untreated hospital 
and muncipal, 
treated municipal 

Patients, 
river 

Korzeniewska et al, 
2013 Poland HWW to MWW In favour E. coli 

Phenotypic; 
gene 
presence Phenotypic Frequentist 

Untreated hospital 
and municipal, 
treated municipal River, air 

Kovacic et al, 2017 Croatia 
Patients to 
HWW In favour A. baumannii 

Gene 
sequence Fingerprint Cluster Untreated hospital Patients 

Kuhn et al, 2005 

Sweden; 
Denmark; 
Spain; 
United 
Kingdom of 
Great 
Britain and HWW to MWW In favour Enterococcus spp Phenotypic Phenotypic None 

Untreated hospital 
and municipal 

Community, 
patients, 
surface 
water, 
livestock, 
farm 
environment, 
crops 
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Northern 
Ireland 

Lamba et al, 2018 India HWW to MWW In favour Enterococcus spp 

Phenotypic; 
gene 
presence 

Partial 
sequence Frequentist 

Untreated hospital 
and municipal River 

Leclercq et al, 2013 France HWW to MWW In favour Enterococcus spp 

Phenotypic; 
gene 
presence 

Partial 
sequence Frequentist 

Untreated hospital 
and municipal, 
treated municipal River 

Linton et al, 1974 

United 
Kingdom of 
Great 
Britain and 
Northern 
Ireland 

Hospital to 
MWW 
(indirect) In favour Coliforms Phenotypic Phenotypic None 

Untreated 
municipal - 

Ludden et al, 2017 

United 
Kingdom of 
Great 
Britain and 
Northern 
Ireland 

Hospital to 
MWW 
(indirect) In favour Enterobacteriaceae Phenotypic 

Whole 
genome 
sequence None 

Untreated hospital 
and municipal, 
treated municipal - 

Ludden et al, 2019 

United 
Kingdom of 
Great 
Britain and 
Northern 
Ireland 

Patients to 
HWW Against K. pneumoniae 

Gene 
sequencing 

Whole 
genome 
sequence Phylogenetics 

Untreated hospital 
and municipal 

Livestock, 
patients, 
hospital 
environment 

Müller et al, 2018 Germany HWW to MWW In favour Gram negative 

Phenotypic; 
gene 
presence 

Partial 
sequence None 

Untreated hospital 
and municipal, 
treated municipal River 

Narciso-Da-Rocha 
et al, 2014 Portugal HWW to MWW In favour 

Heterotrophs; 
Coliforms; 
Enterobacteriaceae; 
Aeromonas spp; 
Pseudomonas spp 

Phenotypic; 
gene 
presence 

Partial 
sequence 

Frequentist; 
Permutation 

Untreated hospital 
and municipal, 
treated municipal - 
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Ng et al, 2017 Singapore HWW to MWW In favour All 
Gene 
sequence 

Partial 
sequence Cluster 

Untreated hospital 
and municipal, 
treated municipal 

Suface 
water 

Novo and Manaia, 
2010 Portugal 

Hospital to 
MWW 
(indirect) In favour 

Heterotrophs; 
Enterobacteriaceae; 
Enterococcus spp Phenotypic Phenotypic Frequentist 

Treated and 
untreated 
municipal - 

Nunez et al, 2016 Argentina HWW to MWW In favour Enterococcus spp Phenotypic Phenotypic Frequentist 
Untreated hospital 
and municipal - 

Oberle et al, 2012 France HWW to MWW In favour E. coli 

Phenotypic; 
gene 
presence Phenotypic Frequentist 

Untreated hospital 
and municipal, 
treated municipal River 

Oravcova et al, 
2017 Czechia 

Patients to 
MWW In favour Enterococcus spp 

Phenotypic; 
gene 
presence 

Partial 
sequence None 

Untreated 
municipal 

Wildlife, 
patients, 
hospital staff, 
hospital 
environment 

Ory et al, 2016 France 
Patients to 
HWW In favour 

All cultivable 
bacteria 

Phenotypic; 
gene 
presence 

Partial 
sequence Cluster Untreated hospital Patients 

Paulshus et al, 
2019 Norway HWW to MWW In favour E. coli Phenotypic Phenotypic Cluster 

Untreated hospital 
and municipal - 

Paulus et al, 2019 Netherlands HWW to MWW In favour None 
Gene 
presence - Frequentist 

Untreated hospital 
and municipal, 
treated hospital 
and municipal - 

Popa et al, 2021 Romania 

Patients to 
HWW; HWW 
to MWW In favour K. pneumoniae 

Phenotypic; 
gene 
presence; 
gene 
sequence 

Whole 
genome 
sequence Phylogenetics 

Untreated hospital 
and muncipal, 
treated hospital 
and municipal Patients 

Pot et al, 2021 Guadeloupe HWW to MWW In favour 
Enterobacter 
cloacae 

Phenotypic; 
gene 
sequence 

Whole 
genome 
sequence 

Phylogenetics; 
Bayesian 

Untreated hospital 
and municipal, 
treated municipal 

Wildlife 
samples 
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Praveenkumarreddy 
et al, 2020 India HWW to MWW In favour E. coli Phenotypic Phenotypic Frequentist 

Untreated hospital 
and municipal, 
treated hospital 
and municipal - 

Proia et al, 2018 Belgium HWW to MWW In favour None 
Gene 
presence - Frequentist 

Untreated hospital 
and municipal River 

Rahimi and Bouzari, 
2015 

Iran (Islamic 
Republic of) 

Patients to 
MWW In favour S. aureus 

Phenotypic; 
gene 
presence Phenotypic None Untreated hospital Patients 

Roederova et al, 
2016 Czechia 

Patients to 
HWW In favour Enterobacteriaceae 

Phenotypic; 
gene 
presence Fingerprint Cluster 

Untreated hospital 
and municipal, 
treated municipal Patients 

Schwartz et al, 
2006 Germany HWW to MWW In favour P. aeruginosa Phenotypic 

Partial 
sequence None 

Untreated hospital 
and municipal River 

Seruga Music et al, 
2017 Croatia 

Patients to 
HWW; HWW 
to MWW In favour A. baumannii Phenotypic 

Partial 
sequence None 

Untreated hospital 
and municipal 

Patients, 
river 

Talebi et al, 2008 
Iran (Islamic 
Republic of) 

Patients to 
MWW In favour Enterococcus spp 

Phenotypic; 
gene 
presence Fingerprint Cluster 

Untreated 
municipal Patients 

Thompson et al, 
2013 Australia HWW to MWW In favour S. aureus 

Phenotypic; 
gene 
presence Fingerprint Frequentist 

Untreated hospital 
and municipal, 
treated municipal - 

Tumeo et al, 2008 France HWW to MWW Against P. aeruginosa Phenotypic Fingerprint Frequentist 
Untreated hospital 
and municipal 

Community 
building 
effluent 

Varela et al, 2013 Portugal HWW to MWW In favour Enterococcus spp 

Phenotypic; 
gene 
presence 

Partial 
sequence 

Frequentist; 
Cluster 

Untreated hospital 
and municipal, 
treated municipal - 

Varela et al, 2014 Portugal HWW to MWW Against 

Heterotrophs; 
Coliforms; 
Enterobacteriaceae; Phenotypic Fingerprint 

Frequentist; 
Permutation 

Untreated hospital 
and municipal, 
treated municipal - 
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Aeromonas spp; 
Pseudomonas spp 

Varela et al, 2015 Portugal HWW to MWW In favour E. coli 

Phenotypic; 
gene 
presence 

Partial 
sequence Permutation 

Untreated hospital 
and municipal, 
treated municipal 

Streams, 
ponds 

Varela et al, 2016 Portugal HWW to MWW In favour Aeromonas spp Phenotypic 
Partial 
sequence 

Frequentist; 
Cluster 

Untreated hospital 
and municipal, 
treated municipal - 

Verburg et al, 2019 Netherlands HWW to MWW In favour 

E. coli; Klebsiella 
spp; Aeromonas 
spp Phenotypic Fingerprint Frequentist 

Untreated hospital, 
nursing home, and 
municipal, treated 
municipal - 

Voigt et al, 2020 Germany HWW to MWW In favour 

Klebsiella spp, 
Enterobacter spp, 
Citrobacter spp, E. 
coli, Proteus 
mirabilis, P. 
aeruginosa; A. 
calcoaceticus-
baumannii complex; 
S. aureus, E. 
faecium, E. faecalis 

Phenotypic; 
gene 
presence Fingerprint 

Frequentist; 
Cluster 

Untreated hospital 
and municipal, 
treated municipal - 

Yang et al, 2009 Taiwan 
Patients to 
MWW Against Coliforms Phenotypic Phenotypic Frequentist 

Treated and 
untreated 
municipal Patients 

Zarfel et al, 2013 Austria 
Patients to 
MWW In favour E. coli 

Phenotypic; 
gene 
presence Phenotypic Frequentist Treated municipal Patients 
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Appendix B: The role of the environment in transmission of 
antibiotic resistance between humans and animals: a 
modelling study 
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Appendix B Table 1: Parameter definitions 

 
  

Parameter Definition and units 
!!! Per capita rate at which humans acquire antibiotic resistant bacteria as 

a result of exposure to other humans harbouring resistant bacteria per 
time step 

!"" Per capita rate at which animals acquire antibiotic resistant bacteria as 
a result of exposure to other animals harbouring resistant bacteria per 
time step 

!"! Per capita rate at which humans acquire antibiotic resistant bacteria as 
a result of exposure to animals harbouring resistant bacteria per time 
step 

!!" Per capita rate at which animals acquire antibiotic resistant bacteria as 
a result of exposure to humans harbouring resistant bacteria per time 
step 

!!# Per environmental unit rate* at which the environment acquires 
resistant bacteria as a result of exposure to humans harbouring 
resistant bacteria per time step 

!#! Per capita rate at which humans acquire antibiotic resistant bacteria as 
a result of exposure to environmental units harbouring resistant 
bacteria per time step 

!"# Per environmental unit rate* at which the environment acquires 
resistant bacteria as a result of exposure to animals harbouring 
resistant bacteria per time step 

!#" Per capita rate at which animals acquire antibiotic resistant bacteria as 
a result of exposure to environmental units harbouring resistant 
bacteria per time step 

Λ$ Per capita rate at which humans acquire antibiotic resistant bacteria as 
a result of direct exposure to antibiotics per time step 

Λ% Per capita rate at which animals acquire antibiotic resistant bacteria as 
a result of direct exposure to antibiotics per time step 

#! Proportion of Λ$ that reaches the environment as antibiotics (a scalar 
parameter) 

#" Proportion of Λ% that reaches the environment as antibiotics (a scalar 
parameter) 

#!Λ! Per environmental unit rate* at which the environment acquires 
resistant bacteria as a result of exposure to a proportion of antibiotics 
given to humans per time step 

$! Per capita rate at which humans with resistant bacteria revert to have 
only sensitive bacteria per time step 

$" Per capita rate at which animals with resistant bacteria revert to have 
only sensitive bacteria per time step 

$# Per environmental unit rate* at which environmental units harbouring 
resistant bacteria revert to having only sensitive bacteria per time step 
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Appendix B Table 2: Transmission coefficients 

Unbounded model 
Parameter Value 

Baseline Balanced Balanced  
(low !!") 

Environment-
driven   

Animal-
driven 

Human-
driven 

!!! 0.1 0.07432092 0.07432092 0.001 0.001 0.2019663 
!"" 0.1 0.07432092 0.07432092 0.001 0.2019663 0.001 
!!" 0.1 0.07432092 0.00074321 0.001 0.001 0.2019663 
!"! 0.1 0.07432092 0.07432092 0.001 0.2019663 0.001 
!#! 0.01 0.07432092 0.07432092 0.1420501 0.001 0.001 
!#" 0.01 0.07432092 0.07432092 0.1420501 0.001 0.001 
!!# 0.1 0.07432092 0.07432092 0.1420501 0.001 0.2019663 
!"# 0.1 0.07432092 0.07432092 0.1420501 0.2019663 0.001 

 
Bounded model 
Parameter Value 

Baseline Balanced Balanced  
(low !!") 

Environment-
driven   

Animal-
driven 

Human-
driven 

!!! 0.1 0.08109928 0.08109928 0.001 0.001 0.20239149 
!"" 0.1 0.08109928 0.08109928 0.001 0.20239149 0.001 
!!" 0.001 0.08109928 0.00081099 0.001 0.001 0.20239149 
!"! 0.1 0.08109928 0.08109928 0.001 0.20239149 0.001 
!#! 0.01 0.08109928 0.08109928 0.23084954 0.001 0.001 
!#" 0.01 0.08109928 0.08109928 0.23084954 0.001 0.001 
!!# 0.1 0.08109928 0.08109928 0.23084954 0.001 0.20239149 
!"# 0.1 0.08109928 0.08109928 0.23084954 0.20239149 0.001 

 
Appendix B Table 3: Other parameters 

Parameter Value 

Fig 1. B Fig 2. And 3. 

Λ! 0.1 Beta(1.7, 15.3) (mean 0.1) 

Λ" 0.1 No intervention: 0.1 or U(0.000001,1.);  
intervention: 0.0. 

#! 0.001 0.001 

#" 0.001 0.001 

$! 0.1 Beta(1.7, 15.3) (mean 0.1) 

$" 0.1 0.1 

$# 0.2 Beta(3, 12) (mean 0.2) 

 
  



Appendix 
 

 154 

 
Additional methods information 
 
Methods for finding transmission parameter coefficients 
 
Transmission parameters were chosen by the following method: some parameters were fixed (%&) 

whilst the transmission parameters of interest varied (%') to reach a human resistance level of 71% 

(target prevalence in original study, van Bunnik and Woolhouse, 2017): 
min

$!∈(',))
(0.71 − ./0+ , 0,2( 

For example, for the human-driven transmission scenario, rates of transfer of resistance from 

humans to any other population were varied (!!! = !!" = !!#), and all other transmission 

parameter values were fixed at a low value, 0.001.  

 
Model timesteps 
 
We selected a value of 0.2 for µ( in the baseline set of parameters. Zhang et al, 2017 estimated for 

the rate of loss of various resistance genes from a compost microcosm experiment was 0.0077 per 

day. We can therefore estimate that the units of our select value is per ~26 days (0.2/0.0077). We 

intend this model to be used for looking at long term prevalence of resistance in humans, so this 

estimate of time step is reasonable as it allows us to look over the timescale of years.  

To ensure equilibrium values were obtained for all experiments, we initially numerically solved the 

model to 500 timesteps, and if there was a difference of more than 0.0000001 between the (! 

values for the final two timesteps, we solved to 10,000 timesteps. 
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Appendix B Figure 1 

Trajectory plot of the fraction of human and animal populations carrying resistant bacteria ((!, (#), 
and the amount of resistant material in the environment ((#). For bounded environment model (left) 
and unbounded (right). 

 
  



Appendix 
 

 156 

 
Appendix B Figure 2 

Heatmaps of the impact of reducing Λ", for different pre-intervention levels of Λ" (Y axis) and !#! 

(X axis), in all transmission scenarios. 
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Appendix C: A multi-response model to combine sewage 
and hospital antibiotic resistance surveillance data 
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Appendix C Table 1: EARs-Net drug-bug combinations 

Antimicrobial group Organism Specific antimicrobials 

Fluoroquinolones 

E. coli Ciprofloxacin, ofloxacin, levofloxacin 
K. pneumoniae Ciprofloxacin, ofloxacin, levofloxacin 
P. aeruginosa Ciprofloxacin, levofloxacin 
Acinetobacter spp. Ciprofloxacin, ofloxacin, levofloxacin 

Aminopenicillins 
E. coli Amoxicillin, ampicillin 
E. faecalis Amoxicillin, ampicillin 
E. faecium Amoxicillin, ampicillin 

Third generation 
cephalosporins 

E. coli Cefotaxime, ceftriaxone, ceftazidime 
K. pneumoniae Cefotaxime, ceftriaxone, ceftazidime 
P. aeruginosa Ceftazidime 

Carbapenems 

E. coli Imipenem, meropenem 
K. pneumoniae Imipenem, meropenem 
P. aeruginosa Imipenem, meropenem 
Acinetobacter spp. Imipenem, meropenem 

Aminoglycosides 

E. coli Gentamicin, tobramycin, netilmicin 
K. pneumoniae Gentamicin, tobramycin, netilmicin 
P. aeruginosa Gentamicin, tobramycin, netilmicin 
Acinetobacter spp. Gentamicin, tobramycin, netilmicin 
E. faecalis High-level gentamicin 
E. faecium High-level gentamicin 

Vancomycin E. faecalis Vancomycin 
E. faecium Vancomycin 

Macrolides S. pneumoniae Erythromycin, clarithromycin, azithromycin 
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Appendix C Figure 1: Example directed acyclic graph of vancomycin resistance model 
structure 

Showing variables in circles and constants in squares. Filled circles indicate estimated parameters 
(yellow for hyperpriors, green for random effects, blue for fixed effects). Arrows indicate 
dependency. Rounded ‘plates’ used to indicate aggregation levels in the data. HAMU: hospital 
antimicrobial usage. PCAMU: primary care antimicrobial usage. AR1: autoregression 1 (clinical 
resistance level in the previous year). 

 
 
 
 
 
 
Appendix C Table 2: Priors used in specifying all models  

I stands for the identity matrix and is of size %	*	% where % is the number of parameters being 
estimated. 
 
Parameter(s) Prior 
All fixed effects Normal(0, 1) 
Residual variance Inverse-Wishart(I, 1) 
Non-partitioned group variance Inverse-Wishart(I, 1) 
Partitioned group variance Inverse-Wishart(I, p-1) 
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Example model code for vancomycin resistance model, including priors 
Written using R and the MCMCglmm package. Note that an adaptation to the MCMCglmm package 
(implemented by J. Hadfield) was required and family argument specification would not work for this 
data in the usual MCMCglmm package.  
 
mvmod <- MCMCglmm2(cbind(n_success, n_fail) ~ ds-1 +  
                          at.level(ds, 'gene'):PCAMUs + 
                          at.level(ds, 'gene'):flow_cat + 
                          at.level(ds, 'gene'):pH + 
                          at.level(ds, 'gene'):storage_temp_cat + 
                          at.level(ds, 'gene'):sum_lgl_ltb + 
                          at.level(ds, 'isolate'):HAMUs + 
                          at.level(ds, 'isolate'):AR1, 
                  random = ~idh(at.level(ds, 'gene')):id +  
                                idh(at.level(ds, 'gene')):batch + 
                                us(ds):cca2,   
                  rcov=~idh(ds):units,  
                  data = fitting_dat, prior = prior,  
                  family = "multinomial2", nitt = 100000,  
                  burnin = 3000, verbose = FALSE, thin = 10) 
 
  



Appendix 
 

 162 

Appendix C Figure 2: EARS-Net and ESAC-Net time trends 

Plots on left, the mean (points) and variance (lines) of usage rates of aminoglycosides in defined 
daily doses per 1000 people per day, in hospitals (HAMU) and primary care (PCAMU), for each year 
in the dataset. Plots on right, the mean (points) and variance (lines) of the proportion of isolates 
resistant to aminoglycosides in each year of the dataset, for each organism. 

 
Aminoglycosides 

 
 
Aminopenicillins 
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Carbapenems 

 
 
Fluoroquinolones 

 
 
Macrolides 
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Third generation cephalosporins 

 
 
Vancomycin 
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Appendix C Table 3:  Odds ratios and uncertainty for the effect of hospital antimicrobial 
usage and resistance in the previous time point on clinical resistance  

Posterior mode and 95% highest posterior density intervals given. 
 
Aminoglycosides 

Organism 

Effect estimate (UI) 
Antimicrobial usage 
(hospital) 

AR1 

Acinetobacter spp. 0.98 (0.92 – 1.04) 48.38 (17.86 – 84.46) 
Enterococcus faecalis 1.03 (0.99 – 1.08) 29.17 (18.49 – 44.51) 
Enterococcus faecium 1.03 (0.97 – 1.08) 35.06 (20.10 – 51.49) 
Escherichia coli 0.98 (0.93 – 1.02) 501.70 (192.20 – 1278.31) 
Klebsiella pneumoniae 1.05 (1.00 – 1.09) 29.52 (17.40 – 44.87) 
Pseudomonas aeruginosa 1.04 (0.98 – 1.09) 14.14 (7.13 – 30.74) 

 
Aminopenicillins 

Organism 

Effect estimate (UI) 
Antimicrobial usage 
(hospital) 

AR1 

E. faecalis 1.33 (1.18 - 1.55)  40.71 (16.01 - 137.24)  
E. faecium 0.84 (0.73 - 0.96)  76.22 (49.67 - 110.69) 
E. coli 0.99 (0.95 - 1.03)  39.7 (25.55 - 53.20) 

 
Carbapenems 

Organism 

Effect estimate (UI) 
Antimicrobial usage 
(hospital) 

AR1 

Acinetobacter spp. 1.30 (1.00 - 1.70)  68.32 (15.76 - 131.36)  
E. coli 1.29 (1.02 - 1.58)  1.00 (0.15 - 7.35)  
K. pneumoniae 1.65 (1.28 - 2.07)  102.95 (25.85 - 292.31)  
P. aeruginosa 1.09 (0.96 - 1.26)  10.30 (3.24 - 29.61)  

 
 
Fluoroquinolones 

Organism 

Effect estimate (UI) 
Antimicrobial usage 
(hospital) 

AR1 

Acinetobacter spp. 1.00 (0.85 - 1.14)  14.25 (5.60 - 30.41)  
E. coli 1.00 (0.97 - 1.03)  160.15 (101.76 - 220.53)  
K. pneumoniae 0.98 (0.93 - 1.04)  28.54 (20.48 - 45.06)  
P. aeruginosa 1.07 (1.01 - 1.15)  8.14 (3.71 - 19.71)  

 
Macrolides 

Organism 

Effect estimate (UI) 
Antimicrobial usage 
(hospital) 

AR1 

S. pneumoniae 1.11 (0.98 - 1.27)  26.01 (11.71 - 52.98)  
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Third generation cephalosporins 

Organism 

Effect estimate (UI) 
Antimicrobial usage 
(hospital) 

AR1 

E. coli 1.05 (0.97 - 1.17)  7435.43 (3369.36 - 17794.40)  
K. pneumoniae 1.11 (0.99 - 1.27)  23.99 (10.97 - 43.71)  
P. aeruginosa 1.21 (1.08 - 1.37)  5.54 (2.06 - 15.43) 

 
Vancomycin 

Organism 

Effect estimate (UI) 
Antimicrobial usage 
(hospital) 

AR1 

E. faecalis 0.93 (0.71 - 1.19)  2.61 (0.44 - 18.58)  
E. faecium 1.11 (0.91 - 1.37)  359.30 (114.51 - 1190.02)  
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Appendix C Figure 3: Resistance measure country-level covariance  

A) Double boxplots of proportion of isolates resistant against FPKM of genes conferring resistance 
to aminoglycosides for each country in dataset (indicated by box colour). For each country, box 
height indicates the upper and lower 95% quantiles of proportion of isolates resistance. Box width 
indicates 1.96 standard deviations around the mean of FPKM. Vertical lines indicate the range of 
proportion of isolates that were resistant. Horizontal lines indicate range of FPKM values. Points are 
the median and mean of proportion of isolates resistant and the mean of FPKM, respectively. B) For 
each organism, violin plots represent the posterior distribution for the correlation estimates from 
models with and without primary care antimicrobial prescriptions taken into account. Point and error 
bars for regression models are the posterior mode and 95% HPDs, and for Spearman’s Rank are 
the estimate of correlation (rho), plus 95% confidence intervals. C) Posterior mode and 95% highest 
posterior density intervals in brackets for each element in the covariance matrix. 
 
Figures begin on next page. 
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1. Aminoglycosides 

A 

 
B 

 
C 

 Clinical data Sewage data 
Acinetobacter 
spp. 

E. faecalis E. faecium E. coli K. pneumoniae P. aeruginosa 

Acinetobacter 
spp. 

0.89  (0.44 – 
1.85) 

0.06 (-0.05 – 
0.23) 

0.02 (-0.18 - 
0.19)  

0.49 (-0.04 - 1.45)  0.59 (0.30 - 1.24)  0.80 (0.44 - 1.75)  0.32 (0.10 - 0.91)  

E. faecalis 0.02 (0.00. – 
0.09) 

0.01 (-0.02 - 
0.1) 

0.03 (-0.24 - 
0.26) 

0.05 (-0.02 - 0.18) 0.05 (-0.09 - 0.24) 0.03 (-0.04 - 0.19) 

E. faecium 0.01 (0.00 – 
0.26) 

0 (-0.47 - 0.17) 0.02 (-0.1 - 0.15)  0.01 (-0.24 - 
0.17) 

0.02 (-0.13 - 0.17) 

E. coli 1.06 (0.51 – 
2.34) 

0.44 (0.05 - 1.14) 0.7 (0.26 - 1.72) 0.3 (-0.24 - 1.04) 

K. pneumoniae 0.48 (0.28 – 1.02) 0.69 (0.35 - 1.37) 0.3 (0.11 - 0.72) 
P. aeruginosa 0.33 (0.06 - 1.03) 0.26 (0.1 - 0.75) 

Sewage data 1.04 (0.58 - 2.07)  
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2. Aminopenicillins 

A  

 
B 

 
 
C 
 Clinical data Sewage data 

E. faecalis E. faecium E. coli 
E. faecalis 8 (3.7 - 111.75)  -0.36 (-2.01 - 1.51)  0 (-0.16 - 0.33)  0.05 (-3.06 - 2.04)  

E. faecium 0.21 (0.09 - 0.61)  0 (-0.02 - 0.02)  -0.07 (-0.36 - 0.09)  
E. coli 0 (0 - 0.01) 0 (-0.02 - 0.02)  

Sewage data 0.26 (0.12 - 0.71)  
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3. Carbapenems 

A  

 
B  

 
C 

 Clinical data Sewage data 
Acinetobacter 
spp. 

E. coli K. pneumoniae P. aeruginosa 

Acinetobacter 
spp. 

1.67 (0.59 - 5.95)  5.21 (-2.71 - 
18.4)  

3.31 (-0.23 - 
11.38)  

0.86 (0.21 - 
3.76)  

0.12 (-1.45 - 2.81)  

E. coli 31.49 (13.52 - 
80.98)  

17.9 (6.93 - 
41.02)  

1.84 (-3.51 - 
12.47)  

1.25 (-7.78 - 12.08)  

K. pneumoniae 10.43 (4.11 - 
24.73)  

1.29 (-1.19 - 
7.54)  

0.77 (-4.09 - 6.79)  

P. aeruginosa 0.47 (0.13 - 
2.63)  

0.09 (-0.91 - 1.91)  

Sewage data 0.24 (0.05 - 2.7)  
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4. Fluoroquinolones 

A 

 
B 

 
 
C 

 Clinical data Sewage data 
Acinetobacter 
spp. 

E. coli K. pneumoniae P. aeruginosa 

Acinetobacter 
spp. 

2.6 (0.95 - 5.41)  0.15 (0.03 - 0.4)  0.88 (0.41 - 2.06)  0.83 (0.41 - 
2.14)  

0.1 (-0.74 - 0.92)  

E. coli 0.02 (0.01 - 0.06)  0.09 (0.02 - 0.2)  0.07 (0.02 - 0.2)  0.02 (-0.05 - 0.12) 

K. pneumoniae 0.43 (0.19 - 1.01)  0.42 (0.18 - 
0.97)  

0.08 (-0.28 - 0.52)  

P. aeruginosa 0.49 (0.21 - 
1.24)  

0.1 (-0.37 - 0.48)  

Sewage data 0.27 (0.12 - 0.75)  
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5. Macrolides 

A 

 
 
B 

 
 
C 
 Clinical data (S. 

pneumoniae) 
Sewage data 

Clinical data 0.24 (0.13 - 0.52)  0.09 (-0.07 - 0.25)  
Sewage data 0.24 (0.14 - 0.56)  
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6. Third generation cephalosporins 

A 

 
 
B 

 
 
C 
 Clinical data   Sewage data 

E. coli K. pneumoniae P. aeruginosa 
E. coli 0.11 (0.04 - 0.4)  -0.17 (-0.65 - 0.84)  -0.14 (-0.52 - 0.62)  0.08 (-0.16 - 0.58)  

K. pneumoniae 1.83 (0.53 - 4.58)  1.32 (0.31 - 3.38)  -0.23 (-1.58 - 1.22)  
P. aeruginosa 1.02 (0.28 - 2.8)  -0.25 (-1.34 - 0.85)  

Sewage data 0.45 (0.16 - 1.72) 
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7. Vancomycin 

A 

 
 
B 

 
 
C 
 Clinical data Sewage data 

E. faecalis E. faecium 
E. faecalis 12.2 (5.95 - 26.07)  3.15 (0.89 - 9.46)  -6.47 (-22.81 - 6.69)  

E. faecium 1.31 (0.51 - 3.9)  -0.74 (-7.04 - 2.51)  
Sewage data 10.08 (2.83 - 40.11)  
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Appendix C Table 4: Other sources of non-partitioned variance in the model  

Variance estimates from the multivariate model (posterior mode and 95% highest posterior density 
intervals). 
 
Antimicrobial 
group 

Residual 
variance 
(clinical data) 

Residual 
variance 
(sewage 
data) 

Resistance 
gene group 
variance 

Sampling 
batch 
variance 

Aminoglycosides 0.07 (0.07 – 
0.08) 

3.85 (3.46 – 
4.22) 

12.61 (8.72 – 
21.26)   

279.8 (83.72 – 
1739.70) 

Aminopenicillins 0.10 (0.08 - 
0.12) 

2.64 (2.42 - 
2.89) 

17.67 (11.07 - 
40.13) 

301.94 (84.66 
- 1728.96) 

Carbapenems 0.23 (0.20 - 
0.29) 

2.60 (2.18 - 
3.04) 

26.13 (11.77 - 
68.28) 

301.19 (93.73 
- 1869.52) 

Fluoroquinolones 0.04 (0.03 - 
0.05) 

2.07 (1.81 - 
2.38) 

26.13 (11.77 - 
68.28) 

213.31 (60.82 
- 1410.88) 

Macrolides 0.04 (0.03 - 
0.06) 

1.55 (1.45 - 
1.72) 

27.55 (14.95 - 
48.44) 

247 (65.05 - 
1380.17) 

Third generation 
cephalosporins 

0.11 (0.10 - 
0.13) 

3.6 (3.17 - 4.09) 11.67 (6.64 - 
24.26) 

339.47 (82.39 
- 1762.46) 

Vancomycin 0.38 (0.30 - 
0.51) 

15.66 (10.08 - 
24.08) 

38.81 (3.59 - 
1771.21) 

69.62 (0.00 - 
2733.24)  
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Appendix C Figure 4: Multivariate model prediction error for countries excluded from test set  

Average absolute error in the predicted proportion of resistant isolates to the observed proportion 
for each country, after it was excluded from a test set for model fitting. MAE: mean absolute error; 
amip: aminopenicillins; amig: aminoglycosides; 3gc: third generation cephalosporins; van: 
vancomycin; car: carbapenems; flu: fluoroquinolones; mac: macrolides. 
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Appendix D: A cross-sectional metagenomics study of 8 
wastewater networks in Scotland: hospital and community 
resistomes are distinct 

 
 



Appendix 
 

 178 

Appendix D Table 1: Metagenomic characteristics 

 
  

Site Total read count Human read count (%) Bacterial read count (%) 
Allers WWTP 40123778  0.83  96.86  
East Kilbride community 71946727  0.94  96.85  
Philipshill WWTP 55500121  0.87  96.89  
Hairmyres Hospital 66206428  1.17  95.79  
Hawick WWTP 40326498  0.36  98.83  
Hawick community 18493700  1.17  95.36  
Galashiels WWTP 40948895  0.40  97.88  
Borders General Hospital 37034692  1.71  95.84  
Stirling WWTP (March, 2021) 23399129  0.84  94.93  
Stirling community (March, 2021) 39279013  0.23  98.69  
Kirkcaldy WWTP (March, 2021) 43082063  0.28  98.66  
Victoria Hospital (November, 2021) 76077131  1.21  96.02  
Stirling WWTP (November, 2021) 32661326  0.92  96.43  
Stirling community (November, 2021) 76950608  1.10  96.22  
Kirkcaldy WWTP (November, 2021) 63501746  0.94  96.57  
Victoria Hospital (November, 2021) 42202210 1.17  93.41  
Kinneil Kerse WWTP 44129968  0.56  97.83  
Grangemouth community 36553051  0.43  97.35  
East Calder WWTP 36533779  1.03  96.95  
St John’s Hospital 47766981 0.51 98.55 
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Appendix D Table 2: Sample Characteristics 

Characteristics of the samples measured at the time of collection. *sample temperature could not be taken because autosampler was chilled. ** 
flow rate was not collected at the time, but estimated based on SW records later. 
 
Catchment 
area 

Sites Sample 
temperature 
(oC) 

Sample 
pH 

Sample flow Sample date and time Sample colour 

Galashiels WWTP 12.9 7 54 L/s 17/11/21 09.40 Brown/grey 
Borders General Hospital 19.0 6 Category: 3 17/11/21 09.15 Brown/grey 

Hawick WWTP 12.6 7 62.1 L/s 17/11/21 10.20 Brown/grey 
Hawick community 11.7 7 Category: 2 17/11/21 12.45 Transparent 

Kinneil 
Kerse 

WWTP -* 7 420 L/s 19/11/21 11.20 Grey 
Grangemouth community 11.5 7 Category: 2 19/11/21 11.55 Grey 

East Calder WWTP 12.6 7 652 L/s 19/11/21 10.12 Grey 
St John’s Hospital 14.8 8 Category: 3 19/11/21 09.25 Transparent 

Philipshill WWTP 10.3 7 426 L/s 08/12/21 10.00 Grey 
Hairmyres University Hospital 17.0 6 Category: 2 08/12/21 08.30 Grey 

Allers WWTP 10.1 7 334 L/s 08/12/21 10.50 Grey 
East Kilbride community 10 7 Category: 3 08/12/21 10.25 Brown 

Kirkcaldy 
(1st sample) 

WWTP -* 6 489.9 L/s ** 17/03/21 10.05 Brown 
Victoria Hospital 13.4 6 Category: 1 17/03/21 09.13 Brown 

Stirling (1st 
sample) 

WWTP -* 7 770 L/s ** 17/03/21 11.20 Transparent 
Stirling community 7.8 6 Category: 2 17/03/21 11.50 Transparent 

Kirkcaldy 
(2nd sample) 

WWTP -* 7 350 L/s 26/11/21 09.50 Grey 
Victoria Hospital 15.9 7 Category: 3 26/11/21 09.12 Brown 

Stirling (2nd 
sample) 

WWTP 12.1 7 368 L/s 26/11/21 12.00 Brown 
Stirling community 10.2 7 Category: 2 26/11/21 11.20 Transparent/grey 
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Appendix D Table 3: Resistance genes and bacterial species defining ‘hospital’ composition from PCoA analysis  

Resistance gene groups and bacterial species with the strongest correlations with PCoA axes that discriminated between hospital and other sample 
type compositions (axis 1 for resistance genes, and axis 2 for microbiomes). Printed in order with strongest correlation value first. 
 

Resistome PCoA  Microbiome PCoA 
Resistance gene Correlation with PCoA1  Bacterial species Correlation with PCoA2 
ere(A)_5  -0.90  Desulfovibrio desulfuricans -0.81 
dfrA1_5  -0.90  Roseburia inulinivorans -0.79 
sul2_12  -0.89  Phascolarctobacterium faecium -0.76 
sul1_38  -0.88  Simplicispira lacusdiani 0.76 
blaTEM-4_1 -0.86  Klebsiella pneumoniae -0.76 
erm(B)_9a -0.85  Klebsiella variicola -0.75 
adA8b_1f -0.84  Comamonas jiangduensis 0.74 
osA_6  -0.83  Acidovorax antarcticus 0.74 

mph(A)_1  
-0.82  Garciella butyrate-producing bacterium 

SS3/4  -0.73 
dfrA14_2  -0.82  Acidovorax sp. T1 0.73 
tet(S/M)_2 -0.81  Comamonas piscis 0.73 
blaVIM-42_1 -0.80  Acidovorax soli 0.73 
mph(A)_2  -0.79  Propionibacterium freudenreichii -0.73 
erm(G)_2  -0.77  Brevilactibacter flavus -0.73 
aac(3)-Iia_4 -0.77  Acidovorax carolinensis 0.72 
blaOXA-210_1 -0.77  Acidovorax valerianellae 0.72 
blaDHA-18_1 -0.76  Dorea formicigenerans -0.72 
fosA_2  -0.76  Bifidobacterium longum -0.72 
oqxA_1  -0.76  Comamonas composti 0.72 
erm(35)_1 -0.76  Simplicispira hankyongi 0.72 
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Appendix D Table 4: Model performance diagnostics  

Reporting the lowest chain convergence (!") for a parameter as a measure of MCMC performance and Bayes R2 (Gelman et al, 2019) as a measure 
of the proportion of the data variance explained by the model. 
 
Model group Model Lowest !" Bayes R2 
Model structure 1 Impact of hospital on WWTP resistance gene abundance 1.00 0.43 
Model structure 2 Association between upstream site and WWTP resistance gene abundance 1.00 0.52 
Model structure 3  Association between sewage resistance levels and: 

 All community prescriptions 
 Amoxicillin community prescriptions 
 Vancomycin community prescriptions 

 
1.00 
1.00 
1.00 

 
0.53 
0.50 
0.20 

Association between sewage resistance levels and: 
 All hospital prescriptions 
 Amoxicillin hospital prescriptions 
 Carbapenem hospital prescriptions 
 Vancomycin hospital prescriptions 

 
1.00 
1.00 
1.00 
1.00 

 
0.54 
0.45 
0.34 
0.29 

Model structure 4 Association between sewage resistance levels and: 
 pH 
 Sample temperature 
 Sample collection time 
 Weather 
 Flow rate 
 Wet/dry ground 

 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

 
0.52 
0.50 
0.52 
0.52 
0.30 
0.52 

Model structure 5 Association between net chance in sewage resistance levels and distance between sites 1.00 0.20 
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Appendix D Table 5: Number of observations and groups per model  

Gene clusters were at the 70% homology level. 
 
Model 
group 

Model Total observations Number of 
samples 

Number of resistance 
gene clusters  

Model 
structure 1 

Impact of hospital on WWTP resistance gene 
abundance 

3240 9 300 

Model 
structure 2 

Association between upstream site and WWTP 
resistance gene abundance 

3240 9 300 

Model 
structure 3  

Association between sewage resistance levels and: 
 All community prescriptions 
 Amoxicillin community prescriptions 
 Vancomycin community prescriptions 

 
4921 
760 
154 

 
19 
19 
14 

 
217 
34 
7 

Association between sewage resistance levels and: 
 All hospital prescriptions 
 Amoxicillin hospital prescriptions 
 Carbapenem hospital prescriptions 
 Vancomycin hospital prescriptions 

 
2331 
360 
150 
110 

 
9 
9 
9 
9 

 
217 
34 
14 
7 

Model 
structure 4 

Association between sewage resistance levels and: 
 pH 
 Sample temperature 
 Sample collection time 
 Weather 
 Flow rate 
 Wet/dry ground 

 
6840 
5760 
6840 
6840 
3240 
6840 

 
19 
16 
19 
19 
9 
19 

 
300 
300 
300 
300 
300 
300 

Model 
structure 4 

Association between net chance in sewage 
resistance levels and distance between sites 

3240 9 300 
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Appendix D Table 6: Correlations between environmental variables, using Spearman’s Rank 

Weather was coded as rainy = 1, cloudy = 2, and clear/sunny = 3. A * indicates the correlation was significant (p < 0.05) 
 Sample time Stream temperature pH Flow Rate 
Sample time - - - - 
Stream temperature -0.75 *  - - - 
pH 0.25  -0.17  - - 
Flow rate 0.29  -0.38  -0.29  - 
Weather -0.06  0.37  0.30 0.26 
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Appendix D Figure 1: FPKM of resistance genes against the flow rate of the WWTP influent 

 
 

 
 
Appendix D Figure 2: Net change in FPKM between upstream site and WWTP 
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Abstract 
Background:  
Antimicrobial resistance can be transmitted between animals and humans both directly or indirectly, 

through transmission via the environment (such as fomites or sewage). However, there is a lack of 

understanding of, and quantitative evidence about, the contribution of the environment to AMR 

epidemiology. In this study we incorporate the transmission of resistance via the environment into a 

mathematical model to study the potential importance of this form of transmission for human resistance 

levels and any effects of the impact of interventions to reduce antibiotic consumption in animals.  

Methods:  
We developed a compartmental model of human-animal AMR transmission with an additional 

environmental compartment. We compared the outcomes of this model under different human-animal-

environment transmission scenarios, conducted a sensitivity analysis, and investigated the impact of 

curtailing antibiotic usage in animals on resistance levels in humans. 

Results:  
Our findings suggest that human resistance levels are most sensitive to both parameters associated with 

the human compartment (rate of loss of resistance from humans) and parameters associated with the 

environmental compartment (rate of loss of resistance from the environment and the transmission rate 

from the environment to humans). The impact of curtailing antibiotic consumption in animals on long 

term prevalence of AMR in humans was weaker when environmental transmission was assumed to be 

high.  

Conclusions:  

This study highlights that environment-human sharing of resistance can influence the epidemiology of 

resistant bacterial infections in humans and reduce the impact of interventions that curtail antibiotic 

consumption in animals. More data on the types and dynamics of resistance in the environment and 

frequency of human-environment transmission is crucial to understanding the population dynamics of 

antibiotic resistance. 
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Introduction  
 

Antimicrobial resistance (AMR) is a one-health issue, present in a variety of commensal and pathogenic 

bacteria found in humans, animals and the environment [1],[2]. The potential of the environment for 

dissemination of AMR has been increasingly recognised, with particular focus on the volume of 

resistance bacteria in human and agricultural wastewater effluent being discharged into natural waters 

and soils [3]–[5]. 

 

There are many potential routes for resistant bacteria into the environment. Several studies have 

demonstrated is it likely that resistant bacteria in humans can be transferred to the environment, 

including rivers[6], coastal waters[7], and soils[8]. In addition, studied have linked resistant bacteria in 

animals and their respective environments, such as between wild animals and human-impacted 

environments[9],[10], and between livestock and their environment, especially in aquaculture[11],[12]. 

However, the risk that the resistance in the environment poses to humans and animals remains poorly 

understood[13].  

  

Mathematical models are an important tool to study complex dynamics inherent in the emergence and 

spread of resistance[14] and can therefore be used to improve our understanding and combat the spread 

of AMR in humans, animals and the environment. However, a lack of data and understanding about the 

burden, selection and transmission of resistant bacteria, especially in animals and the environment, 

presents a challenge to parameterising models of AMR from a one-health perspective. Consequently 

there are few models of resistant bacteria that connect humans, animals and the environment[15].  

 

Some existing studies incorporate an environmental component into transmission models of resistant 

bacteria in hospitals or farms. Two compartmental models found that reducing or eradicating resistance 

in a hospital setting was harder to achieve when the environment was explicitly modelled[16],[17]. 

Studies taking the environment into account when modelling the spread of resistance in farms have 

found environmental parameters were key in dynamics of resistance in the farm [11],[18]. However, a 

recent modelling study found that interventions to reduce antibiotic consumption in animals would still 

be effective when the influence of resistance in animals and the environment is considered[19]. These 

findings indicate the need for further exploration of the role of the environment with fully dynamic 

transmission models. 

 

In this study, we aimed to investigate the importance of the environment in the long term dynamics of 

resistant bacterial infections in humans, including how it might affect the impact of interventions to 

reduce resistance in humans. A compartmental of resistance transmission within and between humans, 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.19.492687doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492687
http://creativecommons.org/licenses/by-nc-nd/4.0/


The role of the environment in transmission of antimicrobial resistance between humans and 
animals: a modelling study 

 

Hannah Lepper, April 2022 3 

animals and the environment was developed. We use a dynamic environmental compartment, 

improving on existing models by allowing us to assess the importance of within-environment processes.  

Our objectives were: 1) to investigate how adding an environmental compartment affects the long-term 

dynamics of resistance in humans, and the sensitivity of the model to its parameters; and 2) to 

investigate the impact of interventions to curtail antimicrobial usage in animals or environment to 

human transmission on the prevalence of resistance in humans in this model. 

 

Methods 

Model description 
We extended the original model presented in van Bunnik and Woolhouse, 2017[20], to include an 

environmental compartment. Humans and animals gain resistant infection by exposure to antibiotics, 

or exposure to other humans, animals or environments carrying resistant bacteria. Resistance in the 

environmental compartment is increased by contact with humans or animals who carry resistant 

bacteria, or via exposure to antibiotics that have been excreted by humans or animals. The environment 

is not considered to be any one type of environment, such as water or soil, but rather a summation of 

these types. 

We define the model using a system of coupled ordinary differential equations:  

 !"!
!# 	= 	 (1 − "!) ⋅ (Λ! +	-!! ⋅ "! 	+ 	-"! ⋅ "" 	+ 	-#! ⋅ "# 	) −	.! ⋅ "! 	  (1) 

 !""
!# 	= 	 (1 − "") ⋅ (Λ" +	-"" ⋅ "" 	+ 	-!" ⋅ "" 	+ 	-#" ⋅ "#) −	." ⋅ "" (2) 

 !"#
!# = 	γ$Λ! + γ%Λ" 	+ 	-!# ⋅ "! 	+ 		-"# ⋅ "" 	− 	.# ⋅ "#  (3) 

"! and "" are the fractions of the human and animal population that are infected with resistant bacteria, 

respectively, and "# is a measure of the amount of resistant infectious bacteria in the environment. 0! 

is the constant rate at which resistance is gained from exposure to antibiotics in humans, and Λ" is the 

equivalent in animals. These are composite variables, taking into account both the amount of antibiotics 

consumed and the rate at which selection causes resistance in bacteria to arise. .! is the reversion rate 

of humans infected with resistant bacteria to having only sensitive bacteria, and ." is the equivalent in 

animals. This includes the rate of clearance of resistant infection and the rate of death in a fixed-size 

population. The parameters 1! and 1" are scaling parameters determining how much of the antibiotic 

exposure in humans (0!) and animals (0") will result in excreted antibiotics selecting for an increase 

in resistant bacteria in the environment. .# is the rate of loss of resistant infectious bacteria from the 

environment. Transmission within and between the compartments is controlled by the - transmission 

coefficients, with the subscripts indicating the direction of transmission of each coefficient. For 
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example, -!! is the transmission coefficient between humans, and -#! is the transmission from the 

environment to humans. 

Further details about parameter definitions, units and values ranges can be found in the Appendix Table 

1. Fig. 1A shows a flow diagram representing the movement of infectious resistant material between 

and within the different compartments. All rates are per capita with respect to the human and animal 

populations, and per environmental unit with respect to the environment (see next section). We used 

the steady state solutions of this model, obtained numerically, as we were interested in long-term 

prevalence. The timestep of the model represents one month. 

Capacity for resistance in the environment 

Equation (3) represents the environment as an unbounded compartment, in which the amount of 

resistant infectious material in the environment is in the range 0 - ∞. We consider one “unit” of the 

environment to be the human infectious potential equivalent. This means that for a value of "# = 1, if 

the transmission coefficients -#! and -!! were the same, each unit of the environment would transfer 

resistant material to humans at the same rate that an infected human would to another human. Although 

theoretically the environment may have some maximum capacity for resistant material, we do not have 

a way to determine this capacity, so we modelled the environment as an unbounded compartment. For 

comparison, we also explored a version of the model in which resistance levels in the environment 

cannot exceed 1. In this model the environmental compartment is specified: 

!"#
!# = (1 − "#) ⋅ (γ$Λ! + γ%Λ" 	+ 	-!# ⋅ "! 	+ 		-"# ⋅ "") 	−	.# ⋅ "# 	  (4) 

 

This model assumes that there is no growth or dissemination of resistant organisms within the 

environment. We also assume that the environment is only exposed to antibiotics that are excreted by 

humans or animals. The environment may be exposed to antibiotics directly through, for example, the 

effluent of pharmaceutical industries, but we do not consider this specific case here. 

Impact of interventions on resistance in humans 
We investigated the impact of two types of interventions on the levels of resistance in the human 

compartment. Firstly, we looked at interventions to remove antibiotic usage in livestock (reducing Λ" 

to 0), and how changes to environmental parameters affect the effectiveness of this intervention. 

Secondly, we looked at interventions that would reduce the transmission of resistant bacteria from the 

environment to humans (reducing -#! to 0).  
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We measured the impact of interventions as the percentage decrease in resistance levels in humans, 

following van Bunnik and Woolhouse (2017). We compare equilibrium values of "! before ("!∗ ) and 

after the intervention ("2!∗ ), to obtain the impact, or percentage decrease in human resistance levels:  

3 = 1 − "2!
∗

"!∗
(5) 

We investigate the impact of reducing -#! and of curtailing antibiotic usage in animals (Λ").  

Sensitivity analysis 
We use the extended version of the Fourier Amplitude Sensitivity Test (FAST)[21] to analyse the 

relative influence of each parameter on the value of "!, the outcome measure of interest. A total 

sensitivity index for each parameter is calculated based on the variance of "! over variation in all 

parameters. The R package fast was used for this analysis[22]. 

Parameterisation 
Due to a paucity of data about many of the parameters in the model, we aimed to explore a wide range 

of parameter scenarios in this model. We chose the following transmission scenarios: 1) a baseline, with 

transmission parameter values similar to those of the original[20]; 2) a balanced transmission scenario, 

with all transmission coefficients equal; 3) human-driven transmission (i.e., if the subscript H denotes 

the humans and 5 denotes any other compartment -!' > -''); 4) animal-driven (-"' > -''); and 

finally 5) environment-driven (-#' > -'').  

We also averaged our results across parameter sets generated randomly using sampling distributions for 

the three parameters "! that was most sensitive to (viz. .!, .#, and Λ!), to avoid over-reliance on 

model dynamics that are unusual to a particular combination of parameters rather than generally true of 

the system. All parameter values and sampling distributions can be found in the Appendix (Tables 2A 

and 2B),  as well as the methods for obtaining transmission scenario parameters.  

Software 
Analyses were carried out using Wolfram Mathematica version 11.3[23], R 4.1[24], and Julia 1.7[25]. 

The code for the model, parameter set generation, and visualisations is available at 

https://github.com/hannahlepper/animal-human-env-model.  

 

Results 
All analyses were conducted in both bounded and unbounded environmental capacity versions of the 

model.  
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Long term dynamics of resistance in humans 
Prevalence of resistance in humans 
For all transmission scenarios, parameter sets were identified that corresponded to the intended target 

equilibrium human resistance prevalence of 71% in both the bounded and unbounded versions of the 

model (Appendix Fig. 1). Fig. 1B shows that the amount of resistance in the environment was influenced 

by the model structure and the transmission scenario. The highest level of resistance in the environment 

was in the environment-driven, unbounded version of the model, indicating that an implausibly high 

level of environmental contamination is not needed for observed human resistance levels. 

Sensitivity analysis 
Model sensitivity results are presented in Fig. 1C. In both bounded and unbounded models, human 

resistance prevalence was most sensitive to !!, the rate of loss of resistance from humans, but relatively 

insensitive to "", the antibiotic consumption in animals. The rate of transmission from the environment 

to humans, -#!, was at least as important as -!! and -"!, rates of transmission to humans from other 

humans and from animals. Moreover, -#! is more influential than any other transmission parameter in 

the unbounded model. The rate of loss of resistance from the environment, .#, was more important for 

human resistance levels in the unbounded than the bounded model. 

 

Impact of interventions to reduce resistance in humans 
 

Impact of curtailing antibiotic usage in animals 
Curtailing antibiotic usage in animals had a small impact on human resistance levels, and the impact 

was lower when the environment was explicitly modelled or when animals contributed less to resistance 

transmission (Fig 2). The percentage decrease in human resistance levels achieved without an 

environmental compartment and using the parameters of the original model (the ‘baseline transmission 

scenario) was 3.2%. Simply adding an environmental compartment and keeping other parameters 

reduced the percentage decrease to 2.8% in the unbounded and 2.9% in the bounded model. The animal-

driven transmission scenario had the highest impacts (5.8% decrease in human prevalence), and the 

human-driven scenario had the lowest (0.064%). In the environment-driven transmission scenario, the 

environmental capacity was influential: when bounded, the impact was low (0.94%), and increased 

when unbound (3.2%). Both the environmental structure and the transmission parameters affected the 

impact of antibiotic usage reduction in animals. 

Reducing 0" vs. reducing -#!  
We compared the impact (3) of reducing either Λ" (the antibiotic consumption in animals) or -#! (the 

transmission of resistant material from the environment to humans) (Fig. 3). We considered pre-

intervention values of 0.1 for each parameter, as well as the impacts in different transmission scenarios. 

This value was chosen so that the size of the intervention was consistent between transmission scenarios 
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in this model and with the previous model (van Bunnik and Woolhouse, 2017). Interventions to reduce 

-#! had a greater impact than interventions to curtail Λ% when transmission was human- or 

environment-driven, or when transmission was balanced. When livestock dominated transmission or 

for the baseline parameter set, the impacts of interventions to reduce -#! or Λ% were similar. 

Effect of -#! on impact of interventions to reduce antibiotic consumption in animals 
We next identified the impact of reducing Λ" across a range of values for -#! (Fig. 4). Increasing -#! 

decreased the size of the impact of curtailing antibiotic usage in animals in all transmission scenarios 

(Fig 4A). The peaked shape of the impact size in the environmental transmission scenario is caused by 

the increase in -#! allowing increasing indirect transmission in animals and humans. This effect is only 

observed when there is little non-environmental transmission. Fig. 4B shows that the decrease in 

intervention impact was also observed across the range of pre-intervention values for Λ". These results 

indicate that increasing environmental transmission can reduce the impact of curtailing antibiotic usage 

in animals. 

Discussion 

Key findings 
In this study we modelled the transmission of resistant bacteria between humans, livestock animals and 

the environment, and assessed the impact of interventions that reduce antibiotic consumption in animals 

or decrease the transmission of resistant bacteria from the environment to humans. We found that human 

resistance prevalence is sensitive to transmission between humans and the environment. Including an 

environmental compartment in the model decreased the impact of curtailing antibiotic resistance, and a 

more transmissible environmental reservoir of resistant bacteria further mitigated the impact of this 

intervention. Reducing the transmission of resistant bacteria from the environment to humans was found 

to be a more effective intervention than reducing antibiotic consumption in animals. Overall, these 

results indicate that resistant bacteria in the environment can influence the prevalence of resistance in 

humans. The size of environmental influence will depend on the amount and dynamics of resistant 

bacteria in the environment. Assessing the likelihood of observing these theoretical results in the real 

world is hindered by a lack of quantified, generalisable data on the types, amount, and degradation of 

resistance in the environment, and the transmission of resistance between humans, livestock and the 

environment. 

Is curtailing antibiotic usage in animals an effective intervention to reduce human resistance 

levels? 
The greatest observed impact of curtailing antibiotics in animals was a modest 10% decrease in human 

resistance level in a balanced transmission scenario, and the smallest impact was a <1% in the human-

driven transmission scenario. This result provides little theoretical support that curtailment of antibiotics 

would appreciably decrease resistance in humans in many settings. In contrast, there is some empirical 
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evidence that curtailing antibiotics in livestock could reduce human resistance levels, although from a 

small set of observational studies[26]. A study of use of third-generation cephalosporin ceftiofur in 

broiler rearing in Canada found that resistance in Salmonella and E. coli was decreased in clinical 

isolates by 20% and 40%, respectively, after ceftiofur use decreased[27]. This real-world population-

level effect is greater than our results would predict, and may indicate they are an underestimate, 

especially with respect to the degree of sharing of resistance between humans and animals. More data-

based parameterisation will be crucial to improve the accuracy of one-health resistance transmission 

models.  

The size of the effect of intervening to reduce antibiotic consumption in livestock varied by transmission 

scenario (balanced transmission, or transmission driven by either humans, livestock or the 

environment). Therefore, a key question for assessing the accuracy and relevance of the resulting 

intervention effect sizes is how realistic are the transmission scenarios? Although transmission of 

resistance between humans and animals is of great concern, evidence that conclusively demonstrates a 

case of direct transmission is rare[28],[29]. Accurately parameterising the relationship between 

resistance in humans and livestock is an ongoing area of research[30] which will be crucial for one-

health modelling of resistance. It seems likely that on average across a large human population, human-

human transmission is far more common than animal-human transmission and we suggest human-

driven scenario to be most relevant for resistance dynamics in the human population.  

As we increased the transmission rate from the environment to humans, the effectiveness of antibiotic 

curtailment was decreased. This suggests that the environment can provide a ‘back door’ transmission 

route from animals to humans that can reduce the effectiveness of antibiotic curtailment by adding to 

overall animal-human transmission rates. Using a two-pronged approach by intervening to reduce 

environmental transmission at the same time could therefore improve the impact of antibiotic usage 

curtailment. However, the effect of environmental transmission on antibiotic curtailment effectiveness 

was negligible in the human-dominated transmission scenario (Appendix Fig. 2.), again indicating the 

importance of transmission setting for this result. It remains unclear if non-human dominated 

transmission scenarios are realistic, and therefore what the real-world size of this back-door effect might 

be. There is some evidence that microbiomes in humans, animals and the environment become more 

shared as interactions become more frequent[31], suggesting that transmission scenarios in which 

humans do not dominate transmission (such as the balances and baseline scenarios) are possible. Further 

work to quantify environmental resistance concentrations and transmission could improve accuracy of 

outcome predictions of antibiotic usage interventions. As reducing antibiotic usage in livestock animals 

is a costly intervention, it is important to ensure optimal implementation.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.19.492687doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492687
http://creativecommons.org/licenses/by-nc-nd/4.0/


The role of the environment in transmission of antimicrobial resistance between humans and 
animals: a modelling study 

 

Hannah Lepper, April 2022 9 

Could the environment be an effective alternative intervention target? 
The rate of transfer of resistant bacteria from environment to humans (-#!) is also a potentially effective 

intervention target. Human resistance prevalence levels were sensitive to -#! and .#, the rate of loss 

of resistant bacteria from the environment (sensitivity analysis, Fig. 1C), which suggests that 

interventions to reduce how much resistance humans gain from the environment would be effective. 

Indeed, the impact of reducing -#! was more effective than antibiotic usage curtailment interventions, 

although the difference was small in the animal-dominated scenario (Fig. 2A). Interventions that 

improve sanitation have been proposed to reduce occurrences of transmission of resistance between 

humans and the environment in informal urban communities in LMICs where there is frequent exposure 

to resistance bacteria in the environment[32],[33]. Nadimpalli et al (2020) focus particularly on the 

potential benefits of improved water and wastewater infrastructure for controlling and preventing AMR 

transmission, but note that few studies have investigated the impacts of sanitation interventions on 

AMR.  

Should the environment be included in AMR models? 
In this model, the environment played an important role in the long-term dynamics of antibiotic 

resistance levels in humans. Mechanistically, the environment acts as a reservoir for antibiotic 

resistance from humans and animals in this model structure. Therefore, parameters that provide more 

opportunity for transmission to humans were influential in human resistance levels, especially the rate 

of loss or level of persistence of resistant bacteria in the environment (.#). Environmental parameters 

were also influential in the size of impact of interventions, and we show that it may be an effective 

intervention target itself. Existing models that incorporate an environmental component have also 

highlighted the potentially strong role the environment could play in increasing resistance levels in 

humans and undermining interventions[16]–[19]. Most models include environment as a constant rather 

than a dynamic compartment, with the exception of Booton et al, 2021. As we find comparable results 

to models with constant compartments, this may indicate that models incorporating the environment 

simply may be enough to account for this additional source of resistant bacteria. On the other hand, the 

model in Booton et al, 2021, assumes that transmission of resistance (including from the environment) 

is dependent on exposure to antibiotics and accordingly finds that human antibiotic usage is the most 

influential parameter for human resistance, downplaying the role of the environment. This contrasting 

result points to a need for further models that compare the contribution of the environment under 

different model structures and assumptions. Incorporating the environment into models of AMR spread 

may be important in understanding AMR prevalence and for evaluating intervention success. 

Modelling the environment highlights data needs 
The results highlight some key data needs for understanding the importance of AMR in the environment 

for humans. There are two influential parameters in the model which are difficult to parameterise from 
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existing data: the rate of transfer of AMR from the environment to humans, and the rate of loss of 

resistance in the human population.  

How frequently humans gain resistant bacteria after exposure to an environmental source is unknown. 

There is evidence that humans can be exposed to resistant bacteria in the environment. For example, 

one study estimated that the amount of third-generation cephalosporin resistant E. coli that humans 

would ingest during recreational water use in coastal regions in England and Wales poses a risk of 

infection[7]. However it is not clear how often these exposures lead to infection or colonisation[34]. 

More research that demonstrates a close relationship and epidemiological link between resistant bacteria 

colonising the environment and humans is needed to understand the frequency of environment-human 

transmission events. Use of high resolution typing such as whole genome sequencing of, for example, 

isolates from hospital patients and the hospital environment in longitudinal studies would be ideal for 

this research. 

Studies have provided data on the rate of clearance of resistant infections in humans. A systematic 

review on methicillin-resistant S. aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) 

colonisation found that it takes a period of 88 and 26 weeks on average to clear MRSA and VRE 

infections, respectively[35]. However, they note that there is considerable methodological 

heterogeneity in studies of MRSA and VRE, including varying definitions of clearance, and length of 

follow-up[35]. The studies also focussed primarily on hospital-associated resistance. Data on resistant 

bacteria colonisation prevalence and clearance in the community, where the role of exposure to animals 

and the environment may play a greater role, appear to be rare. Parameterising generalisable one-health 

models will therefore be benefitted by more research into resistance in the community.  

Limitations 
There are some important limitations to this study that should be noted. Firstly, we make simplifying 

assumptions in the structure and parameterisation of the model. These are suitable to the questions 

posed in this study, but there are still many complexities in the spread and emergence of AMR in 

humans, animals and the environment to be explored. Further models should explore the importance of 

potential complexities, such as heterogeneity of transmission events, separate humans-specific and 

animal-specific environmental reservoirs, variation in the capacity for resistance in the environment, or 

the fitness costs to bacteria of carrying resistance in the three populations.  

We do not model the dynamics of transmission of resistant bacteria and resistance genes separately, but 

assume that transmission parameters combine the transmission of both. This is in-keeping with the 

assumptions of the original model [20]. Resistance genes can be transferred between bacteria via 

plasmid transfer or bacteriophages, and can also be lost from bacterial lineages. The transmission rates 

of resistance genes in human population may therefore differ from resistant bacteria, and it is a 
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limitation that we do not capture this in the model. AMR epidemiology and surveillance is usually 

measured in resistant bacteria so there is little data on the prevalence and transmission rates of specific 

resistance genes.  

Two further assumptions about resistance in the environment are that we assume that there is no growth 

of resistant material within the environment, and that all antibiotics secreted into the environment are 

from human and livestock usage. The dynamics of resistance genes and bacteria in the environment is 

a complex topic, and although there are potentially environments in which resistance may spread 

(especially in sewage) much more empirical and modelling research is needed[34],[36]. A recent review 

found that the sources of antibiotics in ground water include excretion from humans and animals (via 

sewage and manure) but also landfill, aquaculture and industrial sites[37], so not including these sources 

may limit the accuracy of the results of this model. However the relative contribution of each sources 

is not well known and may vary from one country to another[37]. 

Conclusions 
This study illustrates the potentially important role of the environment in the epidemiology of resistant 

bacterial infections in humans. We highlight the need to consider the role of the environment in the 

design of AMR control strategies, as it can be influential in human prevalence of resistance, reduce the 

effectiveness of interventions that curtail antibiotic consumption in animals, and may be an effective 

intervention target itself via improved sanitation infrastructure. Incorporating the environment into a 

one-health model of antibiotic resistance as a dynamic compartment was useful for considering the role 

of the environment. However, assessing the uncertainty of model predictions is hindered by a lack of 

data on the types and frequency of resistance in the environment, and the frequency of environment-

human transmission events.  

 

 

 

 

 

 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2022. ; https://doi.org/10.1101/2022.05.19.492687doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492687
http://creativecommons.org/licenses/by-nc-nd/4.0/


The role of the environment in transmission of antimicrobial resistance between humans and 
animals: a modelling study 

 

Hannah Lepper, April 2022 12 

Figures 
Figure 1. A: flow diagram indicating the model structure. B: "# values in all transmission scenarios and 

both model structures. C: Fourier Amplitude Sensitivity Tests (FAST), indicating how much variation 

in "! was explained by each model parameter. On the left, FAST for the version of the model in which 

"# is bounded to 1. On the right, FAST for the version of the model in which "# was unbounded. 
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Fig 2: Mean impact of reducing Λ" from 0.1 to 0 across transmission scenarios. The green point in the 

baseline transmission scenario group is the mean impact for the original van Bunnik and Woolhouse 

(2017) model, with no environmental compartment included. Results were averaged for parameter sets 

with .!, .#, and Λ! varied, with error bars indicating standard deviation in results. 
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Fig 3. Violin plots of the impact (proportion decrease in "! after the intervention) of reducing either 

-#! or Λ" in all transmission scenarios and for both model structures. The intervention target was 

reduced from 0.1 to 0 in each case for consistency.  
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Fig 4: A) Mean impact of antibiotic decrease in animals on human resistance levels (proportion decrease 

in human resistance levels) for each transmission scenario with increasing rate of environment to human 

transmission (-#!). Ribbons indicate 25% and 75% impact quantiles. B) Heatmap of the impact of 

different pre-intervention values of Λ" (y axis) against different levels of environment to human 

transmission, -#! (x axis), for the animal transmission scenario in the unbounded model. The colour of 

the tiles indicates the average value of the impact of the intervention from 17,000 parameter sets where 

.!, .#, and Λ! were varied.  
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