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Abstract

In this thesis, we develop a method to investigate the geometric quantisation of a hypertoric variety

from an equivariant viewpoint, in analogy with the equivariant Verlinde formula for Higgs bundles.

We do this by first using the residual circle action on a hypertoric variety to construct its symplectic

cut that results in a compact cut space, which is needed for the localisation formulae to be well-defined

and for the quantisation to be finite-dimensional. The hyperplane arrangement corresponding to the

hypertoric variety is also affected by the symplectic cut, and to describe its effect we introduce the

notion of a moment polyptych that is associated to the cut space. Also, we see that the prerequisite

isotropy data that is needed for the localisation formulae can be read off from the combinatorial

features of the moment polyptych. The equivariant Kawasaki-Riemann-Roch formula is then applied

to the pre-quantum line bundle over each cut space, producing a formula for the equivariant character

for the torus action on the quantisation of the cut space. Finally, using the quantisation of each cut

space, we derive a formula expressing the dimension of each circle weight subspace of the quantisation

of the hypertoric variety.
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Chapter 1

Introduction

1.1 The Lay Summary
Given a symplectic manifoldM , provided that it satisfies some constraints, can be associated with a

quantisation Q(M) whose elements are reminiscent of “wave functions”. Our work here involves

a special type of symplectic manifold called a “hypertoric manifold”M , and this work focusses on

studying its quantisation Q(M) and its properties. The space Q(M) will be infinite-dimensional

sinceM is non-compact which, in an informal way, means that it is indefinitely expansive as an object.

Instead of studyingQ(M) however, what we consider instead in this thesis will be subspaces ofQ(M)
that are actually finite-dimensional.

To do this, we can break up Q(M) into these finite-dimensional subspaces, called weight spaces,

by exploiting a symmetry inherent toM which, with regards to our own intents and purposes, are

much more tractable to study given that they are finite dimensional. To be precise, this symmetry

is that of a circleU1 acting onM , which rotates half of the coordinates used to define a point ofM .

Moreover, thisU1-symmetry lets us perform a procedure called “symplectic cutting”, which effectively

corresponds to trimming off most ofM but keeping just some finite part of it. How much we trim

off depends on a parameter δ ∈ R≥0, and the new space which we get from trimming down M is

what we call the “cut space”,M≤δ
.

A consequence of M≤δ
being compact is that the quantisation Q(M≤δ) associated to it is a

finite-dimensional vector space. Whilst we are interested in subspaces of Q(M), what we do is we

use Q(M≤δ) as an auxiliary, allowing us to calculate the dimension of the weight spaces of Q(M);

this is possible since the weight spaces of Q(M) and the cut spaces M≤δ
are defined via the same

U1-symmetry, and a connection between their corresponding quantisations can be shown. With this

in hand, then we can calculate the dimension of Q(M≤δ) via localisation formulae which cannot be

applied to Q(M) itself; this again is due to the non-compactness of theM .
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An interesting property about a hypertoric manifoldM is that we can associate to it an arrange-

ment of hyperplanes, A. There are correspondences between the combinatorics of the hyperplane

arrangement A and the geometry of the hypertoric manifoldM . We find that the cut spaceM≤δ
also

shares a combinatorial configuration that stems from A, that comes from truncating it. The result

is an arrangement of convex and bounded polytopes, separated by where a hyperplane of A used to

be; we call this arrangement a “moment polyptych”, since it depends on both the arrangement A
in addition to a consistent choice of sign attached to each hyperplane of A. We hope that there is a

combinatorial formula to be found, which expresses the dimension of each subspace of Q(M) in

terms of the data associated to the polyptych of M≤δ
, without the need to perform any analytical

computations. Such a correspondence exists already in the framework of toric varieties and convex

bounded polytopes; ifX is a toric variety then there exists a polytope that corresponds to it. It then

follows that the dimension of the quantisation Q(X) coincides with the number of integral lattice

points within its corresponding polytope.

1.2 The Story so far
The modern-day understanding of geometric quantisation was first developed by Kostant [Kos70]

and Souriau [Sou66] in the 1960s. Given a symplectic manifold (X,ω), it is a framework in which one

attempts to associate toX a Hilbert spaceQ(X), along with a correspondence between the real-valued

functions onX with quantum mechanical operators of Q(X). The existence of such a quantisation

Q(X) depends on two types of prerequisite data: the first is that of a Hermitian line bundle L ! X
with a Hermitian connection ∇ whose curvature coincides with the symplectic two-form ω onX as

R(L) = (
√
−1/2π)ω. Such a line bundle L is called a pre-quantum line bundle overX which exists

if, and only if, the class of ω is integral, i.e., that [ω] ∈ H2(X;Z). Furthermore, L is unique up to

gauge equivalence provided thatX is a simply-connected manifold.

The second datum is that of a choice of polarisation onX , which prescribes how the coordinates

of X should be effectively sorted into canonical position and momenta. The fact that a choice of

polarisation must be made means that there is no canonical way of geometrically quantising each

symplectic manifoldX via a pre-quantum line bundle L over it, and, in general, a different choice of

polarisation forX gives rise to distinct quantisations Q(X). A further condition on the quantisation

Q(X) is that, should a compact Lie groupG act onX in a Hamiltonian way, then this action should

carry over to Q(X) as a unitary representation ofG.

Fortunately, the quantisation procedure becomes much simpler when (X,ω, I) is additionally

Kähler with complex structure I , and whenL is furthermore a holomorphic pre-quantum line bundle

overX . When these conditions hold, a natural choice of polarisation onX is obtained by considering

the holomorphic sections ofL; such a choice of polarisation is called the complex, or Kähler, polarisation.

We may then take the quantisation ofX to be the C-vector space Q(X) = H0(X;L) of holomorphic
sections of the line bundle L overX .
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WhenX is a symplectic toric variety, that is to say when dimR X = 2n andX is equipped with

an effective Hamiltonian action of a torus T n
, along with a moment map µ : X ! (tn)∗, then a

classical result – usually attributed to Danilov [Dan78] – states that the dimension ofH0(X;L⊗k)
coincides with the number of integral lattice points inscribed within the moment polytope ∆ =
µ(X) of X . I.e., that dimC H

0(X;L⊗k) = # {k ·∆ ∩ (tnZ)
∗}. More generally, if (X,ω, I) is a

compact complex-analytic manifold and if L ! X is a holomorphic pre-quantum line bundle over it,

then the eponymously-named index theorem of Atiyah and Singer [AS63] can be used, and which

itself generalises the Hirzebruch-Riemann-Roch formula, [Hir66]. These theorems state that the

quantisation Q(X) is isomorphic to the index of the Spin-C Dirac operator /∂C onX :

Ind/∂C
(X;L) ∼= H0(X;L),

and that their dimensions can be expressed as an integral overX of two specific characteristic classes,

namely the Todd class Td(TX) of the tangent bundle TX , and the Chern character Ch(L) of L:

dimC Ind/∂C
(X;L) = dimC H

0(X;L) =
∫
X

Td(TX) ∧ Ch(L).

So far, we have only considered (X, I) to be at least a compact complex-analytic manifold which,

by a theorem of Serre and Cartan [CS53], guarantees that the sheaf cohomologyHq(X;F) is a finite-

dimensional C-vector space for any coherent analytic sheaf F overX , and where q ∈ Z≥0. If, instead,

X is non-compact, then the quantisation Q(X) ends up being infinite-dimensional and so, in this

case, a suitably adjusted question has to be asked instead if we are to work with something concrete.

Further complications arise whenX is no longer a smooth manifold. IfX is still “reasonably smooth”

however, in the sense that it has at worst orbifold singularities, then the Kawasaki-Riemann-Roch

theorem must be used in the place of the Hirzebruch-Riemann-Roch theorem, [Kaw79].

1.3 On this Research
This research presented in this thesis concerns itself with developing a suitable framework of quantising

hypertoric varies which are non-compact, and therefore the traditional geometric quantisation must

be adapted to take this into account. Hypertoric varieties can be thought of as the quaternionic

cousins to symplectic toric varieties. They were first introduced by Bielawski and Dancer in [BD00],

as the hyperkähler quotients of flat quaternionic vector spaces of an effective torus action, analogously

to Delzant’s construction of symplectic toric manifolds [Del88].

Just as the geometry of a symplectic toric variety is intimately related to the combinatorics of a

convex polytope, an interplay exists between the geometry of a hypertoric variety and the combinatorics

of a real hyperplane arrangement. In particular, the hyperplane arrangement involves the entirety of its

ambient space, reflecting the fact that a hypertoric variety is non-compact. So, if one wished to study

the quantisation Q(M) of a hypertoric varietyM , they would soon find that it is infinite dimensional.

This is not necessarily an issue per se, since infinite-dimensional quantum systems appear often in
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the mathematical physics literature. However, in the case of a hypertoric varietyM , we want to say

more about the quantisation. We should remark here that, to consider geometric quantisation in its

fullest of forms, one should further consider how to endow Q(M) with a Hilbert space structure.

This would involve the introduction of an inner-product on Q(M), say by the metaplectic correction.

We do not concern ourselves with this question, and instead just consider Q(M) as a C-vector space.

Unlike toric varieties, a hypertoric varietyM is endowed with a Hamiltonian action of the circle

U1, which acts on it by rotating its cotangent coordinates via scalar multiplication. This U1-action

has a moment map Φ : M ! R≥0, which is proper. Hence we are in the situation where we can

use Lerman’s symplectic cutting procedure to form the symplectic cut ofM , [Ler95]. This produces

a compact cut space M≤δ
ν = (M × C) �δ U1, for some value δ ∈ R≥0. Since M≤δ

ν is compact, the

conventional geometric quantisation procedures can now be applied to the cut spaceM≤δ
ν instead of

its hypertoric varietyMν .

Some comments are in order here: first, the cut space M≤δ
ν is no longer hyperkähler but just

Kähler, since theU1-action preserves only one of the three hyperkähler two-forms. Hence the complex

polarisation that we consider onM≤δ
ν is determined by the complex structure associated to the Kähler

two-form onMν that survives under theU1-action. The second comment is that theU1-action onMν

can be described combinatorially, by restricting our attention to specific half-dimensional subvarieties

of Mν that make up its so-called extended core E . The components EA of the extended core E are

indexed by finite subsetsA ⊆ {1, 2, . . .}, with the U1-action on each EA depending on the subsetA.

This is reflected in the cutting procedure and results in a “truncation” of the hyperplane arrangement

A. We coined the term moment polyptych to refer the resulting polytopal arrangement, that we denote

by∆≤δ
ν , emphasising its dependence on not justA itself but also on the poset of regionsP(A) ofA. The

partial order of P(A) is given by “how far away” each region is from a pre-determined distinguished

base region of A. In particular, for the same hyperplane arrangement, distinct base regions give rise to

non-isomorphic posets of regions and thus non-equivalent moment polyptychs.

Our approach to forming this cut space shares analogies with Hausel’s thesis [Hau98], in which he

uses the U1-action, or the “Hitchin action” after [Hit87], on the moduli spaces of Higgs bundles M
over a Riemann surface. The Hitchin action acts by rotating the Higgs field associated to a holomorphic

vector bundle, akin to how ourU1-action rotates the cotangent fibre coordinates over a point in the base

space and since both actions are Hamiltonian. Another way in which research on the moduli spaces

of Higgs bundles has inspired the work presented here, is by that of the equivariant Verlinde formula,

which was introduced by Pei, Gukov, and Andersen in [GP17; AGP16], and also by Halpern-Leistner

in [HL16]. Since the moduli spaces of Higgs bundles are non-compact, their idea to circumvent this

issue was to decompose the infinite-dimensional spaceH0(M;L⊗k) of holomorphic sections of a

pre-quantum line bundle L ! M over M into a Z-graded direct sum of finite-dimensional weight

subspacesH0(M;L⊗k)d, where d ∈ Z denotes the weight of Hitchin’sU1-action onH0(M;L⊗k).
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That is to say:

H0(M;L⊗k) ∼=
⊕
d≥0

H0(M;L⊗k)d.

On the other hand – and backtracking slightly – the non-equivariant Verlinde formula prescribes

a simple recipe to calculate the dimension of the vector spaceH0(X ;L⊗k) of holomorphic sections of

a pre-quantum line bundle L ! X over X , the moduli space of flatG-connections over a Riemann

surface. This is sometimes phrased in the physics literature as being the number of conformal blocks

in a two-dimensional conformal field theory on a Riemann surface, [Ver88]. When G = SU2,

it was shown: that X can quantised using a real polarisation by Weitsman, in [Wei92]; that the

quantisation dimension for a real polarisation agrees with that for a complex polarisation and hence

the Verlinde formula, in [JW92]; and that a lattice-point count exists for the Verlinde point by the

means of a moment polytope, in [JW94]. This thesis is motivated by the question on whether a similar

phenomenon exists between hypertoric varieties and the equivariant Verlinde formula. In Tables 1.1

and 1.2, further analogies between symplectic toric varieties and the moduli space of flat connections

are presented, as well as those between hypertoric varieties and the moduli spaces of Higgs bundles.

Symplectic Toric VarietyX Moduli Space of FlatG-Connections X
Symplectic quotient: Xν = CN �ν K Symplectic quotient: X = A �0 G

Compact Kähler Compact Kähler

dimC H
0(Xν ;L⊗k) = #(k · µ(X) ∩ Zn),

lattice points in moment polytope

dimC H
0(X ;L⊗k) = Verlinde formula at

level-k, [Ver88]

Table 1.1: Table detailing the non-equivariant analogies.

Hypertoric VarietyM Moduli Space ofG-Higgs Bundles M
Hyperkähler quotient: Hyperkähler quotient:

Mν = T ∗CN////(ν,0)K M = AH////(0,0)G
Non-compact hyperkähler Non-compact hyperkähler

Residual Hamiltonian U1-action with

proper moment map Φ :Mν ! R≥0

Hitchin’s Hamiltonian U1-action with

proper moment map Φ : M ! R
T ∗Xν ⊆Mν with ωR|Xν = ωXν and

Φ−1(0) = Xν

T ∗X ∼= M with ωJ1 |X = ωX and

Φ−1(0) = X
Cut space: M≤δ

ν = (Mν × C) �δ U1 Hausel’s compactification of M, [Hau98]

U1-weight space decomposition:

H0(Mν ;L) ∼= ⊕d≥0H
0(Mν ;Lν)d

U1-weight space decomposition:

H0(M;L) ∼= ⊕d≥0H
0(M;L)d

dimC H
0(Mν ;Lν)d = equation (7.15) from

Corollary 7.9

dimC H
0(M;L)d = equivariant Verlinde

formula of [GP17; AGP16; HL16]

Table 1.2: Table detailing the equivariant analogies.

ix



1.4 Thesis Outline
The outline of this thesis is as follows:

• In the first half of this thesis we focus mostly on introducing hypertoric varieties and their

symplectic cuts. We begin first of all with Chapter 1, in which we introduce the geometric

approach to defining hypertoric varieties, denoted throughout byMν as hyperkähler quotients

of the flatN -dimensional quaternionic vector space HN
by subtoriK of theN -dimensional real

torus TN
, where ν ∈ k∗ is an element in the dual space the Lie algebra k = Lie(K). We do this

by discussing hyperkähler manifolds in general in Section 1.1, before moving onto hyperkähler

quotients in Section 1.2, which is a fruitious source of “more-interesting” hyperkähler orbifolds

that are presented as quotients of HN
by a Lie group G. Of course, a family of these “more-

interesting” hyperkähler orbifolds include hypertoric varieties which are first defined in Section

1.3.

For the latter half of Chapter 1, we shift to the algebraic way of defining hypertoric varieties

which is via Geometric Invariant Theory (GIT), which we discuss generally in Section 1.4 at

first, before honing in to hypertoric varieties in Section 1.5. Each point of view provides its

own benefits when studying a hypertoric variety. On the one hand for example, the geometric

lens reveals the combinatorial links between hypertoric varieties and hyperplane arrangements,

whereas the GIT lens provides us with a firmer grasp over the space of global sections of some

line bundle Lν !Mν over the hypertoric varietyMν ;

• Next, in Chapter 2, we discuss how one can associate a hypertoric varietyMν with a hyperplane

arrangement A. The hyperkähler moment map µHK : Mν ! (tn)∗ ⊗R Im(H) can be split

into its real and complex components, as µHK = µR + iµC, where µR : Mν ! (tn)∗ is said

to be the real moment map and µC : Mν ! (tn)∗ ⊗R C the complex moment map. The

hyperplane arrangement A is then determined by the image of the hypertoric varietyMν under

the real moment map µR in (tn)∗), and this correspondence is studied in Section 2.1. One such

property, that we subsequently look into in Section 2.2, is that the regions of A are given by the

Kähler subvarieties ofMν under µR. We denote the union of these subvarieties by E and call it

the extended core, whereas we denote the union of the compact subvarieties by C, which we call

the core.

Then in Section 2.4, we introduce what are known as flats of the hyperplane arrangement,

which are expressed as non-empty intersections of a selection of hyperplanes. For each flat, we

then obtain a decomposition of the torus T n
into two components – one “tangential” to the

flat and the other one “normal” to it. The significance of this is made clear in Section 2.5, which

is novel, as each flat of A determines a hypertoric subvariety ofMν , whose torus is the one that

acts tangentially in the T n
-decomposition. Whilst the concept of a hypertoric subvariety may

appear to be a non sequitur at first, it becomes instrumental when proving the more complicated

propositions and theorems that appear later on, since then they can be reduced down to one-
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or two-dimensional problems via an inductive argument that are much easier to prove, for

example as in the proofs of Theorem 3.17, Lemma 6.1, Theorem 6.2, and Proposition 6.3.

• We begin Chapter 3 by recalling in general Lerman’s symplectic cut [Ler95] in Section 3.1, which

requires the Hamiltonian action of the circle U1, and for which we need to specify a value

δ ∈ R≥0 to cut at. For a hypertoric variety Mν , we introduce such a U1-action in Section

3.2 before then, in Section 3.3, investigating its combinatorially behaviour when restricted to

different extended core.

We now move onto work that is original in Section 3.4, when we form the symplectic cut of

Mν , referring aptly to it as being the cut spaceM≤δ
ν ofMν . By construction,M≤δ

ν is a compact

variety, and the torus T n
that acted originally onMν descends toM≤δ

ν , as does the real moment

map µR. Doing this, we see in Section 3.5 that we obtain a polytopal arrangement from the

image of the cut spaceM≤δ
ν under µR, that is essentially obtained by bounding the unbounded

regions of the hyperplane arrangement A, which we call the moment polyptych and denote it

by ∆≤δ
ν = µR(M

≤δ
ν ). The coinage of the term polyptych is to emphasise its dependence on the

way that the hyperplanes are cooriented. Finally, we wrap up the chapter by providing some

examples in Section 3.6, and establishing some properties possessed by the cut spaces in Section

3.7. In particular, we find that a generic choice of hypertoric variety will result in its cut space

being an orbifold;

• For the latter half of this thesis, we shift our attention onto the “quantisation” of hypertoric

varieties. Chapter 4 is a review chapter, and we start by first introducing the notion of a

holomorphic pre-quantum line bundle L ! M over a general Kähler manifold M , in ad-

dition to its Dolbeault cohomology groupH0(M ;L), in Section 4.1. We also introduce the

Dolbeault-Dirac operator /∂L whose index, in the case particular to us, coincides with the Dol-

beault cohomology group. In Section 4.2, we introduce a specific characteristic number called

the Riemann-Roch number χ(M ;L) that also equals dimC H
0(M ;L). The Riemann-Roch-

Hirzebruch theorem is also provided, which provides us with an equation to calculate χ(M ;L).

The Riemann-Roch-Hirzebruch theorem only applies to manifolds however, so, in Section 4.3,

the Kawasaki-Riemann-Roch theorem is also provided, which calculates χ(M ;L) even ifM is

an orbifold;

• Despite having now acquired a way of expressing the Riemann-Roch numberχ(M ;L), actually

evaluating it by using the Riemann-Roch-Hirzebruch theorem proves to be another matter.

Luckily, when the manifoldM is acted upon by a torus T such that its action has only a finite

number of fixed points that are isolated, then there is an easier way to obtain χ(M ;L). Such

methods are detailed in Chapter 5 which serves more as a review of equivariant cohomology

and localisation formulae. Indeed, Section 5.1 introduces equivariant cohomology groups from

the ground up in terms of the Borel construction, and then Section 5.2 introduces both the

Weil and Cartan models of equivariant cohomology. Elements of the Cartan model are called

equivariant differential forms, which we talk about in Section 5.3, and which possess the notions
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of closedness and exactness, leading us in Section 5.4 to discuss equivariant characteristic classes.

The chapter culminates with the Atiyah-Bott-Berline-Vergne localisation formula in Section

5.5, which is the key to transforming the integral overM from the Riemann-Roch-Hirzebruch

formula into a finite sum whose terms involve local isotropy data for the T -action onM . Of

course, this only holds whenM is only a manifold since the Hirzebruch-Riemann-Roch formula

is used. However, the localisation formula may also be applied to the Kawasaki-Riemann-Roch

formula to obtain an analogous expression in the case when M is an orbifold, which is the

content of Section 5.6;

• In order to apply the equivariant localisation formulae to our cut spacesM≤δ
ν , we must deter-

mine what the fixed points along with their isotropy data. This is the objective of Chapter 6,

and the content from here onwards contains completely new results unless cited. In Section

6.1, we determine that the fixed points are finite in number and that each is isolated, with some

being located in the interior ofM≤δ
ν , whereas the rest are located along its boundary, and are

produced when performing the symplectic cut. For each fixed point p, we then determine the

isotropy weights for the T n
-action on its tangent space TpM

≤δ
ν , and find that they coincide

with the edge vectors emanating out from the vertex v that p is mapped onto under µR, so that

v = µR(p). IfM≤δ
ν is an orbifold then each orbifold point possesses additional isotropy data,

which we deal with in Section 6.2;

• The main body of this thesis culminates in Chapter 7, where we derive an expression for the

dimension for the “equivariant quantisation” of a hypertoric variety Mν . That is to say, if

Lν !Mν denotes a holomorphic pre-quantum line bundle over the hypertoric varietyMν ,

then we determine an equation for dimC H
0(Mν ;Lν), where d ∈ Z≥0 is the weight of the

representation of U1 on the C-vector space,H0(Mν ;Lν).

To accomplish this, we first fix an integer d ∈ Z≥0, before then looking at how the pre-

quantum line bundle Lν ! Mν descends to the cut space M≤δ
ν as the pre-quantum line

bundle L≤d
ν !M≤d

ν in Section 7.1. Then, since we located the fixed points for the T n
-action

on M≤δ
ν , as well as their isotropy data, in Section 7.5 we obtain a formula for the dimension

dimC H
0(M≤d

ν ;L≤d
ν ) using the Atiyah-Bott-Berline-Vergne equivariant localisation formula

applied either to the Hirzebruch-Riemann-Roch theorem, if M≤d
ν is a manifold, or to the

Kawasaki-Riemann-Roch theorem if M≤d
ν is otherwise an orbifold. In either case, we need

to find a way to connect H0(Mν ;Lν)d with H0(M≤d
ν ;L≤d

ν ). This is the goal of Section 7.3

in which the algebraic cut is introduced – first mentioned by Edidin and William in [EG98] –

and is the algebraic analogue of the symplectic cut. Here, we introduce the algebraic cut for

semi-projective normal varieties is introduced, before using it to derive the formula:

dimC H
0(Mν ;Lν)d = dimC H

0(M≤d

ν ;L≤d

ν )− dimC H
0(M≤(d−1)

ν ;L≤(d−1)

ν ).

We then finish the chapter, and indeed the main body of this thesis, by seeing the formula in

action with some examples in Section 7.5.
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• Lastly, Appendix A contains some more general results pertaining to the theory of orbifolds,

which we quote at times throughout this thesis.
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Part I

Hypertoric Varieties, Cut Spaces, and
Moment Polyptchs

1



Chapter 1

Hypertoric Varieties

We begin by introducing the background theory and results on the hypertoric varieties of Bielawski

and Dancer [BD00], beginning first with the hyperkähler quotient.

1.1 Hyperkähler Manifolds
First defined by Calabi in 1979 [Cal79], a hyperkähler manifold is a Riemannian manifold (M, g) with

three complex structures, J1, J2, and J3, which satisfy the quaternionic identities and are compatible
with the Riemannian metric g on M . By compatibility with, g, we mean that there exist three

symplectic two-forms, ω1, ω2, and ω3, onM , that satisfy the identities:

ω1(v, w) = g(J1v, w), ω2(v, w) = g(J2v, w), ω3(v, w) = g(J3v, w).

This condition is equivalent to each symplectic two-form, ω1, ω2, and ω3, additionally being Kähler

for the complex structures, J1, J2, and J3, respectively.

If we fix one of the complex structures, J1 say, then we may define a complex-valued two-form

ωC := ω2+iω3 onM , which is holomorphic with respect to the complex structure J1. Hence, any hy-

perkähler manifold, (M,Ji, ωi), can be thought of as a holomorphic-symplectic manifold, (M,J1, ωC).

Example 1.1. A basic yet fundamental example of a hyperkähler manifold is that of the four-

dimensional flat quaternionic vector space, H ∼= R4
. Denoting the coordinates of H by

(x0, x1, x2, x3) ∈ R4
, its three Kähler two-forms, ω1, ω2, and ω3, can be written as:

ω1 = dx0 ∧ dx1 + dx2 ∧ dx3,
ω2 = dx0 ∧ dx2 + dx3 ∧ dx1,
ω3 = dx0 ∧ dx3 + dx1 ∧ dx2.

2



As mentioned previously, we may view H as a holomorphic-symplectic manifold by fixing the complex

structure J1 = i, and by setting z = x0 + ix1 andw = x2 + ix3. Then the holomorphic-symplectic

two-form ωC is:

ωC = ω2 + iω3 = (dx0 + idx1) ∧ (dx2 + idx3) = dz ∧ dw = −d(wdz) = dθ,

which one may identify with the Poincaré two-form on T ∗C, given by the exterior derivative of the

Liouville one-form θ = −wdz on T ∗C. Analogously, we introduce a “real” Kähler two-form onM
by just relabelling:

ωR := ω1 = dx0 ∧ dx1 + dx2 ∧ dx3
= (i/2) [(dx0 + idx1) ∧ (dx0 − idx1) + (dx2 + idx3) ∧ (dx2 − idx3)]

= (i/2) [dz ∧ dz + dw ∧ dw̄] .
(1.1)

The above example naturally generalises to the 4N -dimensional vector space HN
, and we will

make heavy use of the identification HN ∼= T ∗CN
throughout this thesis.

1.2 Hyperkähler Reduction
LetG be a compact Lie group with Lie algebra g, and let g∗ denote its dual Lie algebra. We say that an

action ofG on a hyperkähler manifoldM is hyperhamiltonian if it is independently Hamiltonian

for each Kähler two-form, ω1, ω2, and ω3, onM . Precisely, this means that for each Kähler two-form,

there exist three corresponding G-equivariant maps µ1, µ2, µ3 : M ! g∗ which, for any element

X ∈ g, satisfy:

⟨dµi, X⟩ = ıXωi,

whereX is the fundamental vector field onM associated to the elementX ∈ g. We may combine

these three moment maps into a single hyperkähler moment map, as:

ϕHK := ϕ1 ⊕ ϕ2 ⊕ ϕ3 :M ! g∗ ⊗ Im(H). (1.2)

Similarly to how we introduced the real and holomorphic-symplectic two-forms, ωR and ωC, we

may relabel the first moment map ϕ1 as a “real” moment map:

ϕR := ϕ1 :M ! g∗,

and additionally combine the latter two moment maps, ϕ2 and ϕ3, into a single complex-valued

moment map:

ϕC := ϕ2 ⊕ iϕ3 :M ! g∗ ⊗ C.
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Given a central element ν ∈ g∗⊗ Im(H) for the coadjoint action ofG on g∗, the level-setϕ−1
HK(ν)

is aG-invariant submanifold ofM . The hyperkähler quotient is then defined to be the quotient:

Mν =M////νG := ϕ−1
HK(ν)/G,

and which also has the structure of a hyperkähler manifold by the following theorem of Hitchin,

Karlhede, Lindström, and Rovček in [HKLR].

Theorem 1.2 ([HKLR]). LetM be a hyperkähler manifold equipped with a hyperhamiltonian action
of a Lie group G, with corresponding hyperkähler moment map ϕHK : M ! g∗ ⊗ Im(H). Suppose
that ν ∈ g∗ ⊗ Im(H) is a regular value for ϕHK and invariant under the coadjoint action ofG. Then,
ifG acts freely on ϕ−1

HK(ν), the hyperkähler quotientMν is a hyperkähler manifold. Moreover, ifG is
compact andM is complete, thenMν is a complete hyperkähler manifold.

As stated in Theorem 1.2, the hyperkähler quotientMν = T ∗CN////νG is a manifold, provided

that theG-action on the level-set ϕ−1
HK(ν) is free, which means that the stabiliser subgroup for every

point p ∈ ϕ−1
HK(ν) is trivial. More generally, the hyperkähler quotientMν is an orbifold if theG-action

on ϕ−1
HK(ν) is locally free, which means that the stabiliser subgroup for every point p ∈ ϕ−1

HK(ν) is at

worst finite.

Let us focus now on the case when G is a compact Lie group acting linearly on CN
, which is

Hamiltonian with corresponding moment map:

ϕ : CN ! g∗. (1.3)

This induces a linearG-action on the cotangent bundle T ∗CN
, and which we subsequently identify

as T ∗CN ∼= HN
. In doing so, T ∗CN

inherits the hyperkähler structure from HN
, where the real

Kähler two-form ωR ∈ Ω2(T ∗CN) and the holomorphic-symplectic two-form ωC ∈ ω2(T ∗CN)
were defined in Example 1.1. That is to say, ωR is given by the sum of the pull-backs of the standard

symplectic two-forms on CN
and on (CN)∗ respectively, whereas ωC is given by ωC = dθ, where

θ ∈ Ω1(T ∗CN) is the Liouville one-form on the complex cotangent bundle T ∗CN
.

As the G-action on T ∗CN
is H-linear, it is hyperhamiltonian with corresponding hyperkähler

moment map ϕHK = ϕR ⊕ ϕC : T ∗CN ! g∗ ⊗ Im(H), where the real and complex moment maps

are respectively:

ϕR(z, w) = ϕ(z)− ϕ(w), and ϕC(z, w)(X) = w(X),

where w ∈ T ∗
z CN

, X ∈ gC, and X ∈ TzCN
is the vector field induced by the Lie algebra element

X . If ν ∈ g∗ is a central regular value for the real moment map ϕR, and if (ν, 0) ∈ g∗ ⊗ Im(H) is a

central regular value for the hyperkähler moment map ϕHK then, following [HP04, §1], we call the

hyperkähler quotient M = T ∗CN////(ν,0)G the hyperkähler analogue for the Kähler quotient
X = CN//ν G.
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1.3 Hypertoric Varieties as Hyperkähler Quotients
Let us restrict our focus further to the case whenG is anN -dimensional compact connected abelian

Lie group, i.e., whenG = TN ∼= U(1)N is theN -dimensional real torus with Lie algebra tN . The

character lattice tNZ of tN is the kernel of the exponential map exp : tN ! TN
, so:

tNZ := ker
(
exp : tN ! TN

)
.

Denote the dual space to the Lie algebra tN by (tN)∗. Then by using a TN
-invariant bilinear form

⟨−, −⟩ on tN , we define the weight lattice (tNZ )∗ of (tN)∗ by

(tNZ )∗ :=
{
α ∈ (tN)∗

∣∣ ⟨α, X⟩ ∈ 2πZ for allX ∈ tNZ
}
.

By choosing a basis e1, . . . , eN for the character lattice (2πtZ)
N

, we may identify tNZ
∼= ZN

and

tN ∼= RN
. Finally, let ϵ1, . . . , ϵN be the basis for the weight lattice (tNZ )∗, dual to that of e1, . . . , eN .

TheN -dimensional real torus TN
acts linearly on theN -dimensional flat complex vector space

CN
, namely:

(t1, . . . , tN) · (z1, . . . , zN) = (t1z1, . . . , tNzN), (1.4)

and this action is Hamiltonian and its corresponding moment map is

ϕ̃ : CN ! (tN)∗, ϕ(z) =
N∑
i=1

|zi|2ϵi =
(
|z1|2, . . . , |zN |2

)
. (1.5)

We extend this action to an induced one T ∗CN
by:

(t1, . . . , tN) · (z1, . . . , zN , w1, . . . , wN) = (t1z1, . . . , tNzN , t
−1
1 w1, . . . , t

−1
N wN), (1.6)

which is hyperhamiltonian with corresponding hyperkähler moment map:

ϕ̃HK = ϕ̃R ⊕ ϕ̃C : T ∗CN ! (tN)∗ ⊗ Im(H), (1.7)

where ϕ̃R and ϕ̃C are the real and complex moment maps for ϕ̃HK, respectively. They can be written

explicitly as:

ϕ̃R(z, w) =
N∑
i=1

(|zi|2 − |wi|2)ϵi ∈ (tN)∗,

ϕ̃C(z, w) =
N∑
i=1

(ziwi)ϵi ∈ (tN)∗ ⊗ C.

(1.8)
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We define a subtorusK ⊂ TN
as follows: consider a collection ofN distinct non-zero integral

vectors {u1, . . . , uN} in tnZ, whose real span equals tn. Define the map:

π : tN ! tn, by π(ei) := ui.

Set k := ker π and let ı : k ↪! tN denote the inclusion. This yields the short exact sequence:

{0} k tN tn {0}.ı π
(1.9)

Then, on the one hand, by exponentiating (1.9) we obtain a short exact sequence of tori:

{1} K TN T n {1}.ı π
(1.10)

Whereas, on the other hand, we may dualise (1.9) to obtain a short exact sequence of dual spaces, along

with their respective lattices:

{0} k∗ (tN)∗ (tn)∗ {0}

{0} k∗Z (tNZ )∗ (tnZ)
∗ {0}.

ı∗ π∗

ı∗ π∗

(1.11)

Denote the dimension ofK by k = dimR K , and set:

αi = (a1i, . . . , aki) := ı∗(ϵi) ∈ k∗Z, for each i = 1, . . . , N.

Then, if we denote the image of (t1, . . . , tk) ∈ K under ı by:

ı(t1, . . . , tk) = (tα1 , . . . , tαN ) ∈ TN , where tαi := ta1i1 . . . takik ,

then the α1, . . . , αN ∈ k∗Z are the weights for theK-action on T ∗CN
. That is:

t · (z1, . . . , zN , w1, . . . , wN) = (tα1z1, . . . , t
αN zN , t

−α1w1, . . . , t
−αNwN). (1.12)

The weights α1, . . . , αN can be arranged into an (k ×N)-matrix

A :=
[
α1 · · · αN

]
=


a11 a12 · · · a1N

a21 a22
. . . a2N

...
. . .

. . .
...

ak1 · · · · · · akN

 : (tNZ )∗ ! k∗Z, (1.13)

which represents that linear map ı∗ relative to the ϵ1, . . . , ϵN basis of (t∗Z)
∗
. That is to say,A = [ı∗].
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The subtorus K acts on T ∗CN
via the inclusion homomorphism ı from K into TN

. As K
is a subtorus of TN

which itself acts on T ∗CN
in a hyperhamiltonian way, the action of K is also

hyperhamiltonian, whose corresponding hyperkähler moment map ϕHK is:

ϕHK := ϕR ⊕ ϕC := (ı∗ ◦ ϕ̃R)⊕ (ı∗C ◦ ϕ̃C) ! k∗ ⊗ Im(H).

In coordinates, ϕHK is given by the equations:

ϕR(z, w) =
(
ı∗ ◦ ϕ̃R

)
(z, w) =

1

2

N∑
i=1

(|zi|2 − |wi|2)αi ∈ k∗,

ϕC(z, w) =
(
ı∗C ◦ ϕ̃C

)
(z, w) =

N∑
i=1

(ziwi)αi ∈ k∗C.

(1.14)

The following proposition states the conditions for an element (ν, 0, 0) ∈ k∗ ⊗ Im(H) to be a

regular value for the hyperkähler moment map ϕHK, and is due to Konno [Kon00].

Proposition 1.3. Fix an element ν ∈ k∗. Then the following are equivalent:

(i) (ν, 0, 0) ∈ k∗ ⊗ Im(H) is a regular value for the hyperkähler moment map ϕHK;

(ii) for any J ⊂ { 1, . . . , N }, whose cardinality |J | is strictly less than dim k∗ = k, the element ν
is not contained in the subspace of k∗ spanned by {αj | j ∈ J}.

A combinatorial geometric interpretation of Proposition 1.3 for an element ν ∈ k∗ to be a regular

value of the real moment map ϕR, is that ν must not be contained in any proper subspace generated

by any combination of theK-weights αi, where i = 1, . . . , N .

With this established, we can define the main objects of interest, namely that of hypertoric varieties.
They were first introduced by Bielawski and Dancer in [BD00] who considered them from the

differential-geometric angle, whereas Hausel and Sturmfels in [HS02] considered them from the

algebro-geometric angle not too long afterwards.

Definition 1.4. LetK ⊴ TN
be the subtorus defined byK := ker π as in the short exact sequence

(1.10), and let (ν, 0, 0) ∈ k∗ ⊗ ϕHK be a regular value for the hyperkähler moment map ϕHK. A

hypertoric variety Mν is the hyperkähler quotient of the complex cotangent space T ∗CN
, with

respect to the action of the subtorusK ⊂ TN
at the regular value (ν, 0, 0) ∈ k∗ ⊗ Im(H), so:

Mν := T ∗CN////(ν,0)K := ϕ−1
HK(ν, 0)/K = (ϕ−1

R (ν) ∩ ϕ−1
C (0))/K. (1.15)

There is a residual quotient torus T n = TN/K , that acts on the hypertoric variety Mν in

a hyperhamiltonian way and induces the hyperkähler moment map µHK = µR ⊕ µC : Mν !
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(tn)∗ ⊗ Im(H). With respect to coordinates:

µR[z, w] =
1

2

N∑
i=1

(|zi|2 − |wi|2 − λi)ϵi ∈ (tn)∗ ∼= ker ı∗,

µC[z, w] =
N∑
i=1

(ziwi)ϵi ∈ (tnC)
∗ ∼= ker ı∗C.

(1.16)

Here, [z, w] ∈Mν denotes theK-equivalence class of the point (z, w) ∈ ϕ−1
HK(ν, 0).

1.4 Hypertoric Varieties as Algebro-Geometric Quotients
As mentioned in the paragraph before Definition 1.4, there is an alternative algebro-geometric way to

construct a hypertoric variety using theProj construction and Geometric Invariant Theory (GIT), and

was first considered in [HS02]. The differential- and algebro-geometric methods result in equivalent

hypertoric varieties due to the Kempf-Ness theorem, with the latter method being essential to us when

studying the equivariant quantisation of a hypertoric variety in Chapter 7. Several results in this

section come from [Har77, Chapter II], [Dol03], [MFK94], and [Muk03], which themselves provide

more wider-ranging discussions of the Proj construction and also GIT.

To start, suppose thatX is a complex normal quasi-projective variety, thatG is a linear algebraic

group that acting linearly overX , and let π : L ! X be a line bundle onX . Then, the process of

lifting theG-action onX up to one on L boils down to choosing a linearisation of theG-action on

X .

Definition 1.5. LetG be a linear algebraic group acting on an affine varietyX . A linearisation of

the action is a line bundle π : L ! X together with a choice ofG-action on L, such that:

(i) the bundle projection π : L ! X isG-equivariant;

(ii) for every g ∈ G and p ∈ X , the induced map between the fibres:

L|p ! L|g·p, l 7! g · l,

is linear, where l ∈ L|p is an element in the fibre over the point p ∈ X .

A linearisation of aG-action on a line bundle π : L ! X is equivalently called a G-equivariant
line bundle. It is common to refer to the lifting of theG-action onX to one onL implicitly, by simply

stating that the line bundle π : L ! X is a G-linearised line bundle, i.e., we do not distinguish

between a line bundle and its linearisation.

Example 1.6. Suppose thatX = SpecA is an affine variety for some integral C-algebraA, and that

π : L = X×C ! X is the trivial line bundle overX . IfG acts onX , then eachG-linearisation of L
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corresponds uniquely to a choice of character χ : G! C∗
, see [Dol03, Theorem 7.1 & Corollary 7.1].

This correspondence is given via:

G× (X × C) ! X × C, where (g, p, ξ) 7! (g · p, χ(g)ξ).

Example 1.7. Given a G-linearised line bundle L ! X , not necessarily trivial, and a character

χ : G ! C∗
, which does not necessarily define the G-action on L, then we can form a new G-

linearisation Lχ ! X by twisting L by the character χ, [B+́18, §1]. More explicitly, we set

Lχ := L⊗O(χ)
X , where O(χ)

X = X × C is the trivial bundle overX equipped with aG-linearisation

defined by the character χ, as in Example 1.6.

It turns out that, when a connected linear algebraic group G acts on a normal variety X over

a field F, with π : L ! X a line bundle over X , then some positive tensor power L⊗m
admits a

G-linearisation provided thatX is proper, as proven in [MFK94, Corollary 1.6].

Now we shall consider how a linearisation affects the sections of a linearised line bundle. Given

π : L ! X over X , we let H0(X;L) denote its space of global sections; if π : L ! X is

the projection, then sections are the maps σ : X ! L such that π ◦ σ = IdX . If furthermore

L ∼= X × C is trivial then, as a regular function s ∈ C[X] is simply a morphism s : X ! C, we may

identify the ring of global sectionsH0(X;L) onX with its ring of regular functions C[X]. Explicitly,

for a section σ there exists a unique regular function s such that:

σ(p) =
(
p, s(p)

)
∈ X × C = L, for any p ∈ X. (1.17)

When the line bundle L onX isG-linearised, then there is an additional induced action ofG on

H0(X;L), given by:

(g · σ)(p) := g ·
(
σ(g−1 · p)

)
, for any g ∈ G, and p ∈ X. (1.18)

Definition 1.8. We define the subspace H0(X;L)G of G-invariant sections, by:

H0(X;L)G :=
{
σ ∈ H0(X;L)

∣∣ g · σ = σ, for any g ∈ G
}
. (1.19)

Similarly, we define the subspace C[X]χ of semi-invariants of weight χ, by:

C[X]χ :=

{
s ∈ C[X]

∣∣∣∣ s(g · p) = χ(g)s(p),
for any g ∈ G, and p ∈ X

}
. (1.20)

When X is affine then, from Example 1.6, every line bundle π : L = X × C ! X over X is

trivial and their G-linearisations are defined by a character χ : G ! C∗
. In this case, we have the

following lemma from [CLS11a, Lemma 14.1.1].

9



Lemma 1.9. Let π : Lχ ! X be the G-linearised line bundle on X determined by the character
χ : G! C∗. Then:

(i) if σ is the global section of Lχ corresponding to s, then g · σ is the global section defined by:

(g · σ)(p) =
(
p, χ(g)s(g−1 · p)

)
, (1.21)

for any g ∈ G and p ∈ X ;

(ii) the space ofG-invariant global sections is isomorphic to the space of semi-invariants of weight χ:

H0(X;Lχ)
G ∼= C[X]χ. (1.22)

Proof. To prove (i), by (1.18), an element g ∈ G acts on a global section σ ∈ H0(X;Lχ) as:

(g · σ)(p) = g ·
(
σ(g−1 · p)

) (
from (1.18)

)
= g ·

(
g−1 · p, s(g−1 · p)

) (
as σ(p) = (p, s(p))

)
=
(
g · g−1 · p, g · s(g−1 · p)

)
=
(
p, g · s(g−1 · p)

)
.

We therefore see that:

p
(
p, g · s(g−1 · p)

)
p,σ π

i.e., that π ◦ (g · σ) = IdX . Thus g · σ is a global section for the line bundle π : Lχ ! X .

For (ii), recall that theG-action on Lχ is via the character, χ : G! C∗
. From part (i), for every

g ∈ G and p ∈ X :

(g · σ)(p) =
(
p, g · s(g−1 · p)

)
=
(
p, χ(g)s(g−1 · p)

)
. (1.23)

Hence, for any p ∈ X , we have that (g · σ)(p) = σ(p) if, and only if, χ(g)s(g−1 · p) = s(p)
from (1.23) if, and only if, s(g · p) = χ(g)s(p), which implies that s ∈ C[X]χ. Hence, the lemma

follows.

For eachm ≥ 0, define the C-algebra of

Rm := H0(X;L⊗m
χ )G ∼=

{
s ∈ C[X]

∣∣∣∣ s(g · p) = χ(g)ms(p),
for all g ∈ G, and p ∈ X

}
,

where the isomorphism comes from Lemma 1.9 (ii). Hence eachRm is the subring of semi-invariants

for the character χ⊗m
, and these subrings can be assembled together as the graded components of a

Z≥0-graded C-algebra that is defined by:

R :=
⊕
m≥0

H0(X;L⊗m
χ )G. (1.24)
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We callR in (1.24) the invariant subring.

When X is an affine variety and G is a reductive linear algebraic group that acts X , then the

invariant subring R is a finitely-generated C-algebra, due to the positive-affirmation of Hilbert’s

Fourteenth Problem [Hil02, Problem 14] when X is normal. The same holds for each Rm with

m ≥ 0, in addition to beingR0-algebras too.

Definition 1.10. LetX be an affine variety,G be a reductive linear algebraic group that acts onX ,

and Lχ ! X be aG-linearised line bundle onX defined by a character χ : G! C∗
. Then the GIT

quotientX�χG ofX byG is

X�χG := ProjRG = Proj

(⊕
m≥0

H0(X;L⊗m
χ )G

)
. (1.25)

Whilst easy to state, it is not quite so easy to see what the GIT quotient X�χG in Definition

1.10 represents geometrically. In order to do so, we introduce the following notion of stability for a

G-linearised line bundle.

Definition 1.11. Let π : Lχ ! X be a G-linearised line bundle over X , defined by a character

χ : G! C∗
, and let p ∈ X be a point. Then:

(i) p is said to be semi-stable with respect to Lχ if there exists anm ≥ 1, and aG-invariant section

s ∈ H0(X;L⊗m
χ )G, such that the semi-stable locus:

Xχ−ss := { x ∈ X | s(x) ̸= 0 }

is affine and contains p;

(ii) p is said to be stable with respect to Lχ if there exists a section s as in (i), and additionally the

stabiliser subgroup StabG(p) is finite and every orbit ofG inXχ−ss
is closed. The stable locus

is then defined to be:

Xχ−st :=
{
y ∈ Xχ−ss

∣∣ StabG(p) is finite, andG · y = G · y
}
;

(iii) p is said to be unstable with respect to Lχ, if it is not semi-stable. The unstable locus is defined

to be:

Xχ−us := X −Xχ−ss.

We may introduce an equivalence relation on the χ-semi-stable locusXχ−ss
by defining:

x ∼ y, for every x, y ∈ Xχ−ss ⇐⇒ G · x ∩G · y ∩Xχ−ss ̸= ∅. (1.26)

Then one of the fundamental results of geometric invariant theory is thatX//χG is a geometric

quotient ofXχ−ss
byG.
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Theorem 1.12. There exists a good categorical quotient:

ψ : Xχ−ss −! Xχ−ss/∼,

with ψ(x) = ψ(y) if, and only if, the closures of the orbitsG · x andG · y intersect inX . Furthermore:

(i) Xχ−ss/∼ is a quasi-projective variety;

(ii) there exists an open subsetU inXχ−ss/∼ such that ψ−1(U) = Xχ−st, and the restriction of ψ to
Xχ−st is a geometric quotient ofXχ−st byG;

(iii) there exists an ample line bundle F onXχ−ss/∼, such that ψ∗(F) ∼= L⊗m
χ when restricted to

Xχ−ss/∼, for somem ≥ 0;

(iv) we may identify the categorical quotient with the GIT quotient:

Xχ−ss�χG ∼= ProjRG ∼= Xχ−ss/∼ . (1.27)

For the proofs of (i), (ii), and (iii), one may consult [MFK94], [New78], or [Dol03], for example.

For a further details regarding the identification stated in (iv), see [Nak99] or [Pro05].

1.5 Hypertoric Varieties as GIT Quotients
If we apply the HomZ(−;C∗) functor to the short exact sequence of lattices in (1.11), then we obtain

the following short exact sequence of complex algebraic tori:

{1} KC TN
C T n

C {1}.ıC πC
(1.28)

In the same way as when we were dealing with real tori in Section 1.3, we let the complexified torus

TN
C act linearly on T ∗CN

, yielding the complex moment map:

ϕ̃C : T ∗CN ! (tNC )∗, ϕC(z, w) =
N∑
j=1

zjwjϵj.

Here, recall that ϵ1, . . . , ϵN is a basis for (tN)∗, dual to that of e1, . . . , eN for the Lie algebra tN . Given

an integral weight λ ∈ (tNZ )∗ of TN
C , we obtain a character χλ : TN

C ! C∗
via:

χλ : TN
C ! C∗, χλ(exp(X)) := eλ(X), for anyX ∈ tN .

Let OT ∗CN = T ∗CN ×C be the holomorphic trivial line bundle on the complex cotangent space

T ∗CN
. The integral weight λ ∈ (tNZ )∗ defines a character χλ : TN

C ! C∗
, and hence a lift of the

TN
C -action on T ∗CN

up to on OT ∗CN from Example 1.6, via:

t ·
(
(z, w), ξ

)
=
(
t · (z, w), t · ξ

)
=
(
(tz, t−1w), χλ(t)ξ

)
. (1.29)
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As ϕ−1
C (0) is a submanifold of T ∗CN

, we can restrict the trivial line bundle π : OT ∗CN ! T ∗CN

to obtain one on ϕ−1
C (0). If j : ϕ−1

C (0) ↪! T ∗CN
is the inclusion, then we get a holomorphic trivial

line bundle π : L ! ϕ−1
C (0) by:

Oϕ−1
C (0) := ϕ−1

C (0)× C ∼= j∗OT ∗CN ! ϕ−1
C (0).

Furthermore, sinceKC is a subtorus of TN
C and since TN

C acts linearly on T ∗CN
, we have an induced

action ofKC on ϕ−1
C (0). The following lemma describes the relationship between the weights of TN

C

with those of its subtorusKC.

Lemma 1.13. An element ν := ı∗(λ) ∈ k∗Z occurs as a weight of KC if, and only if, λ + µ ∈ (tNZ )∗

occurs as a weight of TN
C for some µ ∈ (tNZ )∗ ∩ ker ı∗.

Proof. Let us fix some notation: suppose a = eX ∈ KC for some X ∈ k. Denote their respective

images under ı and its derivative ı∗ by b := ı(a) ∈ TN
C and Y = ı∗(X) ∈ tN respectively, so that

b = eY . Then we have the diagram:

X Y = ı∗(X)

k tN

KC TN
C

a = eX b = eı∗(Y )=ı(eX)

ı∗

exp exp

ı

If λ+ µ ∈ (tNZ )∗, where µ ∈ (tNZ )∗ ∩ ker ı∗, occurs as a weight of TN
C , then:

χλ+µ(b) = χλ+µ(e
Y ) = e⟨λ+µ, Y ⟩ = e⟨λ+µ, ı∗(X)⟩

= e⟨ı
∗(λ+µ), X⟩ = e⟨ı

∗(λ), X⟩ = e⟨ν,X⟩ = χν(e
X)

= χν(a),

whence if λ+ µ ∈ (tNZ )∗ occurs as a weight of TN
C , then ν ∈ k∗Z occurs as a weight ofKC.

We see from Lemma 1.13 that there are infinitely many weights ν + λ ∈ (tNZ )∗ that get projected

onto the same weight ν ∈ k∗, provided that λ ∈ ker ı∗. In Section 2.1, we shall see that the weight

ν determines a hyperplane arrangement A in (tn)∗, and a choice of λ ∈ ker ı∗ corresponds to a

translation of A.

Definition 1.14. An integral weight ν ∈ k∗Z is called generic, if it is not contained in any proper

subspace generated by theKC-weights αi, where i = 1, . . . , N .
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Thus let us fix an integral weight ν ∈ k∗Z and denote its corresponding character by χν : KC !
C∗

. Consequently, we obtain aKC-linearised line bundle π : Lχν ! ϕ−1
C (0) obtained by twisting

the trivial line bundle π : L ! ϕ−1
C (0) over ϕ−1

C (0) by χν .

The next technical lemma characterises the stable and semi-stable loci in ϕ−1
C (0) with respect to

theKC-linearised line bundle, π : Lχν ! ϕ−1
C (0), and was proven by Konno in [Kon08, Lemma 3.4].

Lemma 1.15. Fix an integral weight ν ∈ k∗Z. Then:

(i) a point (z, w) ∈ ϕ−1
C (0) is χν -semi-stable if, and only if:

ν ∈
∑

{i | zi ̸=0}

(R≥0 · αi)−
∑

{i |wi ̸=0}

(R≥0 · αi) ; (1.30)

(ii) suppose that (z, w) ∈ ϕ−1
C (0)χν−ss. Then theKC-orbit through (z, w) is closed in ϕ−1

C (0)χν−ss

if, and only if:
ν ∈

∑
{i | zi ̸=0}

(R>0 · αi)−
∑

{i |wi ̸=0}

(R>0 · αi) . (1.31)

Finally, we can state the definition of a hypertoric variety when it is defined using GIT.

Definition 1.16. Suppose that the integral weight ν ∈ k∗Z is generic, and let:

Lν := ϕ−1
C (0)ν−ss ×KC Cχν !Mν

be theKC-linearised line bundle over ϕ−1
C (0). Then the (algebro-geometric) hypertoric variety

Mν is defined to be the projective quotient:

Mν = ϕ−1
C (0)ν−ss�χνKC

∼= Proj

(⊕
m≥0

H0(ϕ−1
C (0);L⊗m

χ )KC

)
.

The last part of this section is to show that both of the two quotient constructions presented

thus far, i.e., that of Definitions 1.4 and 1.16 for a hypertoric varietyMν , coincide. To do so, following

Konno [Kon08], let us first define a fibre-wise Hermitian metric on the holomorphic trivial line

bundle L ! ϕ−1
C (0) over the level-set ϕ−1

C (0), as:∥∥((z, w), ζ)∥∥ := |ζ|e−
1
2(∥z∥

2+∥w∥2). (1.32)

This metric induces the Chern connection∇ on the holomorphic trivial line bundleπ : L ! ϕ−1
C (0),

whose first Chern form is c1(∇) = ωR|ϕ−1
C (0, where ωR is the real Kähler two-form from Example 1.1.

The action of the subtorusKC on L preserves this holomorphic structure, as well as its Hermitian

metric (1.32) and hence its Chern connection, ∇.

14



The fundamental result that lets us identify the hypertoric varietyMν presented as a hyperkähler

quotient T ∗CN////(ν,0)K with that from the analogous GIT quotient ϕ−1
C (0)�χνKC is the following

fundamental result. Its proof requires that theKC-linearised line bundle to have a Hermitian structure

defined on it, hence our preamble above.

Theorem 1.17 (Kempf-Ness-King). Consider the restricted real moment map, ϕR : ϕ−1
C (0) ! k∗.

Then, the level-set ϕ−1
R (ν) ⊆ ϕ−1

C (0) meets each KC-orbit in precisely one K-orbit, and meets no
other KC-orbit. Furthermore, each KC-orbit is closed in ϕ−1

C (0)ν−ss. In particular, the natural map
ϕ−1

R (ν)/K = ϕ−1
HK(ν, 0)/K ! ϕ−1

C (0)ν−ss//χν
KC is a bijection.

The above theorem is actually a generalisation of the Kempf-Ness theorem by King [Kin94,

Theorem 6.1 & Corollary 6.2], since the original Kempf-Ness theorem [KN79] only considers the case

when ν = 0.

Corollary 1.18. The differential-geometric definition of a hypertoric variety in Definition 1.4, and the
algebro-geometric definition of a hypertoric variety in Definition 1.16, coincide.

To finish this section, suppose thatM is a normal quasi-projective variety that can be described

using the Proj construction in the form of M ∼= ProjR, where R ∼= ⊕j∈Z≥0
Rj is a C-algebra

that is finitely-generated as anR0-algebra byR1, and suppose that the canonical structure morphism

M ! M0
∼= SpecR0 is projective. In this case, then we say thatM is projective over the affine

varietyM0. Hypertoric varieties make up an example of a variety that is projective over an affine one,

as a hypertoric varietyMν is projective over its affinisation,M0.

To be more precise, if the structure morphism

πS :M = Proj
∞⊕

m=0

Rm −!M0 = SpecR0 (1.33)

is projective, then we have the following diagram:

Mν M0 × P(R∗
1)

M0 P(R∗
1)

πS

i

pr1 pr2
(1.34)

where i : Mν ↪! M0 × P(R∗
1) is a closed embedding, where pr1 : M0 × P(R∗

1) ! M0 and

pr2 :M0 ×P(R∗
1) ! P(R∗

1) are the projections fromM0 ×P(R∗
1) onto its respective first,M0, and

second, P(R∗
1), factors, and where the structure morphism πS :Mν !M0 factors as πS = pr1 ◦ i,

[Har77, Chapter II.5].

Since i in (1.34) is an immersion, the varietyM is isomorphic to a closed subscheme ofM0×P(R∗
1).

It follows then, that there exists an ample line bundle L !M overM which is said to be very ample
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relative to M0. It is obtained via Lν
∼= i∗O(1), where O(1) = pr∗2OP(R∗

1)
(1) is the pull-back

of the twisting sheaf O(1) on P(R∗
1), [Har77, Remark 5.16.1]. These properties are summarised in

the following definition, first applied in [HS02, §1] to toric varieties that are projective over their

affinisations, in addition to having at least one torus fixed point.

Definition 1.19. We say that a normal quasi-projective varietyM is semi-projective, if it is projective

over an affine variety M0. That is to say, that there exists a Z≥0-graded C-algebra R = ⊕j∈Z≥0
Rj ,

finitely-generated as anR0-algebra byR1, and such that the structure morphismπS :M ∼= ProjR !
M0 := SpecR0 is projective.

Examples of semi-projective varieties include hypertoric varieties [HS02] of course, but also

quiver varieties [Rei03]. The GIT quotient construction, and more generally this algebraic approach,

reveals several properties possessed by a hypertoric variety which were not immediately apparent

from the hyperkähler quotient construction. For example, the following lemma is proven in [BK12,

Lemmas 4.7 & 4.10] using the GIT method of constructing hypertoric varieties.

Lemma 1.20. The moment map ϕC : T ∗CN −! (tC)
∗ is flat and ϕ−1

C (0) is a reduced complete
intersection in T ∗CN . Furthermore, if ν ∈ k∗Z is generic, thenMν is arithmetically Cohen-Macaulay.
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Chapter 2

Hyperplane Arrangements and Hypertoric
Subvarieties

In [Del88], Delzant established a classification result which associates to each compact symplectic

toric manifold a corresponding smooth closed convex polytope that equals the image of the manifold

under the moment map. His result was further generalised by Lerman and Tolman in [LT97], who

extended it to compact symplectic toric orbifolds by relating them to simple closed convex polytopes.

In this chapter, we wish to investigate an analogous phenomenon, which relates a hypertoric variety

to a hyperplane arrangement. Geometric properties such as the smoothness of a hypertoric variety

is then represented in the combinatorics of a hyperplane arrangement, and vice versa. Hyperplane

arrangements will allow us to express the results regarding hypertoric varieties visually, and thus make

for instrumental tools when proving results that concern hypertoric varieties.

2.1 Hyperplane Arrangements
The data used to construct a hypertoric varietyMν can be compactly encoded within a hyperplane

arrangement in the dual space (tn)∗, where (tn)∗ is the Lie algebra of the residual torus T n
acting

on Mν . Consider an integral vector u ∈ tnZ, along with an element λ ∈ (tN)∗. From this data, a

hyperplaneH ⊂ (tn)∗ can be expressed as:

H = { x ∈ (tn)∗ | ⟨x, u⟩+ λH = 0 } . (2.1)

Thus, the integral vectoru corresponds to the normal vector ofH , whereasλH determines the position

ofH in the vector space (tn)∗. We say that a hyperplaneH is weighted if u is not a primitive vector in

tnZ, i.e., that for any other vector v ∈ tnZ such that u = kv for some k ∈ Z≥0, then we must necessarily

have that k = 1. We also say that the hyperplaneH is affine if it does not pass through the origin in

tn.

17



Going one step further, given a set {u1, . . . , uN} of vectors in tn, we say that an arrangement
of hyperplanes, or a hyperplane arrangement, is a set A := {H1, . . . , HN} of hyperplanes

H1, . . . , HN in (tn)∗, each being of the form (2.1). We say that a hyperplane arrangement A is simple
if, for every non-empty intersection of hyperplanes ∩k

j=1Hij ̸= ∅, the set of normal vectors {uij}kj=1

is linearly independent. Furthermore, we say that a hyperplane arrangement A is smooth, if each

set {uij}kj=1 as above additionally forms a Z-basis for tnZ. In the sequel, we shall assume that each

hyperplaneHi in a hyperplane arrangement A is distinct.

As remarked in the paragraph after Lemma 1.13, the element λ ∈ (tN)∗ is a lift of the element

ν ∈ k∗ along the projection ı∗, i.e., λ = λ+µ = ı∗ν for any µ ∈ ker ı∗. Hence, the map λ 7! λ+µ
corresponds to translating each hyperplane Hi in the hyperplane arrangement A by the vector µ,

provided that µ ∈ ker ı∗.

Each hyperplaneHi determines the two following half-spaces in (tn)∗:

H+
i = { x ∈ (tn)∗ | ⟨x, ui⟩+ λi ≥ 0 } , H−

i = { x ∈ (tn)∗ | ⟨x, ui⟩+ λi ≤ 0 } , (2.2)

so thatHi = H+
i ∩H−

i . An arrangement A divides (tn)∗ into a finite family of simple closed and

convex polyhedra, not necessarily bounded, which we call the regions of A. Each region of A can be

expressed as a finite intersection of the half-spaces:

∆A :=
(
∩i ̸∈AH

+
i

)
∩
(
∩i∈AH

−
i

)
, (2.3)

which we index by subsetsA ⊆ {1, . . . , N}. We denote by R(A) = {∆A | A ⊆ {1, . . . , N} } the

set of regions of an arrangement A, and say that ∆∅ is the base, or the distinguished, region of A.

Remark 2.1. The set of regions R(A) of A can be further equipped with a partial order ⪯, defined

by the relation:

∆A ⪯ ∆B, if and only if A ⊆ B.

This makes R(A) into a poset P(A) := (R(A),⪯), called the poset of regions of the arrangement

A, [Ede84]. Implicit in this construction is that P(A) depends on both the arrangement A and on

the choice of base region ∆∅, since the partial order records how many hyperplanes separate the region

∆A from ∆∅. Different choices of ∆∅ for the same arrangement A gives rise to non-isomorphic posets

P(A), since ∆∅ is the unique infimum or meet of the poset P(A). The choice of ∆∅ is equivalent

to a choice of coorientation for A.

2.2 The Core and Extended Core of a Hypertoric Variety
Following [HP04], we define the extended core E of Mν to be the zero level-set of the complex

moment map µC:

E := µ−1
C (0) = { [z, w] ∈Mν | ziwi = 0 for each i } , (2.4)
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which is a 2n-dimensional reducible subvariety ofMν . For each subsetA ⊆ {1, . . . , N}, the subvari-

ety:

EA = µ−1
R (∆A) ∩ E

is then an irreducible component of the extended core E , and one should observe that E = ∪AEA.

The following lemma expresses how the image µR(E) is partitioned by a hyperplane arrangement

into the regions ∆A, and was proven in [HP04, Lemma 3.1]:

Lemma 2.2. Consider a point [z, w] ∈ E ⊆ Mν . Then, ifwi = 0 then µR[z, w] ∈ H+
i , whereas if

zi = 0 then µR[z, w] ∈ H−
i . Then:

EA ∼= { [z, w] ∈Mν | wi = 0 if i ̸∈ A and zi = 0 if i ∈ A } .

For the set I = { A ⊆ {1, . . . , N} | ∆A is bounded }, we define the core ofMν to be:

C = ∪A∈IEA, (2.5)

and observe that C ⊂ E . We say that the core C is reducible if there exist at least two distinct and

proper components EA, EB ⊊ C, such that C = EA ∪ EB . Otherwise, we say that the core C is

irreducible. Each core component EA ⊆ C is a 2n-dimensional ωC-Lagrangian subvariety of Mν ,

and can be identified with the ωR-Kähler toric variety corresponding to the bounded polytope ∆A.

In particular, the variety M∅ corresponds to the Kähler quotient of the zero-section CN ⊂ T ∗CN
,

since thenXν :=M∅ = CN//νK with T ∗Xν ⊆Mν as an open subset [BD00].

Remark 2.3. As mentioned in Remark 2.1, different coorientations of A give rise to non-isomorphic

posets of regions P(A). Therefore if the core C ⊂Mν is reducible, a different coorientation of A will

result in a different base region∆∅ of the same arrangement. The Kähler toric varietyE∅ is independent

of the coorientation [HP04, Lemma 2.2], but the Kähler quotientXν = E∅ thatMν is the hyperkähler

analogue to, does depend on the coorientation of A. To emphasise this nuanced behaviour, in [Pro04;

HP04], Proudfoot and Harada refer to hypertoric varieties of this form as hyperkähler analogues of
a given presentation of the Kähler quotient, which reflects the dependency on the poset of regions

P(A).

2.3 Examples
Here, we introduce a few examples that we will develop upon further during the course of this thesis.

Example 2.4. Let u1 = ϵ1 and u2 = −ϵ1, so then K ∼= {(t, t) ∈ T 2 | t ∈ U1} ∼= U1. Choose

λ = (λ1, λ2) ∈ (t2)∗ with λ1 < λ2 and ı∗(λ) = λ1 + λ2 = ν, then the Kähler quotient is

Xν
∼= CP1

, and whose hyperkähler analogue isMν
∼= T ∗CP1

. The hyperplane arrangement A for

the hypertoric varietyMν = T ∗CP1
is displayed in Figure 2.1.
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∆1 ∆∅ ∆2

H1

0

H2

ν

u1 u2

Figure 2.1: Hyperplane arrangement whenMν = T ∗CP1
is the hyperkähler analogue toXν = CP1

.

Example 2.5 ([BD00]). Let u1 = ϵ1 and u2 = u3 = −ϵ1, so K ∼= {(t1t2, t1, t2) | (t1, t2) ∈ T 2}.

Choose λ = (0, λ2, λ3) ∈ (t3)∗, with 0 < λ2 < λ3. Then the Kähler quotient is the resolution

of the Kleinian singularity, Xν = C2/Z3
, and Mν is a hyperkähler analogue of it. Its hyperplane

arrangement A is displayed in Figure 2.2.

∆1 ∆∅ ∆2 ∆23

H1

0

H2

λ2

H3

λ3

u1 u2 u3

Figure 2.2: Hyperplane arrangement whenMν is the hyperkähler analogue of the Kleinian singularity

resolution,Xν = C2/Z3.

Example 2.6. Generalising Example 2.4 to the case whenN = n+ 1, we let ui = ei for 1 ≤ i ≤ n,

and un+1 = −e1 − . . .− en. ThenK ∼= { (t, t, . . . , t, t) ∈ T n+1 | t ∈ U1 } ∼= U1 is the diagonal

circle subgroup in TN
. Choose λ ∈ (tN)∗ \ {0} such that ı∗(λ) = ν for some regular value ν ∈ k∗.

Analogously to Example 2.4, the Kähler quotient is Xν
∼= CPn

and the hyperkähler quotient is

Mν
∼= T ∗CPn

. The hyperplane arrangement in the N = 3 case (i.e., when n = 2) is displayed in

Figure 2.3.

H1

H2

H3

∆∅

u1

u2

u3

Figure 2.3: Hyperplane arrangement whenMν = T ∗CP2
is the hyperkähler analogue toXν = CP2

.
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Example 2.7. Now letN = 4 andn = 2, and consider u1 = −u3 = e1, and u2 = −u4 = e2. Then

K ∼= { (t1, t2, t1, t2) | (t1, t2) ∈ T 2 } ∼= T 2
. Choose λ = (0, 0, λ3, λ4) ∈ (t4)∗ with 0 < λ3 and

0 < λ4, such that ı∗(λ) = ν ∈ k∗. Then the Kähler quotient isXν
∼= CP1×CP1

, and its hyperkähler

analogue is Mν
∼= T ∗(CP1 × C1). The hyperplane arrangement A for Mν = T ∗(CP1 × C1) is

presented in Figure 2.4.

H1

H2

H3

H4

∆∅u1

u2

u3

u4

Figure 2.4: Hyperplane arrangement whenMν = T ∗(CP1 × CP1) is the hyperkähler analogue to

Xν = CP1 × CP1
.

Example 2.8. WhenN = 4 andn = 2, setu1 = e1,u2 = e2,u3 = −e1−e2 andu4 = −u2 = −e2.

Chooseλ = (λ1, λ2, λ3, λ4) ∈ (t4)∗ withλ1 < λ3 andλ2 < λ4 < λ3, where ı∗(λ) = ν ∈ k∗. Then

K ∼= { (t1, t1t2, t1, t2) | (t1, t2) ∈ T 2 } ∼= T 2
. Then the Kähler quotient is the first Hirzebruch

surface Xν = H1, with Mν its hyperkähler analogue. The hyperplane arrangement is presented

in Figure 2.5a. However, if we now let invert the sign of the normal vector, u4 7! e2 = u2, but

keep everything else the same, then K ∼=
{
(t1, t1t2, t1, t

−1
2 )

∣∣ (t1, t2) ∈ T 2
} ∼= T 2

. Now the

Kähler quotient is the complex projective planeXν = CP2
, withMν its hyperkähler analogue whose

hyperplane arrangement is presented in Figure 2.5b.

H1

H2

H3

H4

∆4

∆∅
u4

(a) Arrangement when Xν
∼= H1.

H1

H2

H3

H4

∆∅

∆4

u4

(b) Arrangement when Xν
∼= CP1

.

Figure 2.5: Different coorientations for the same hyperplane arrangement give rise to distinct hyper-

kähler analogues.
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So, just by swappingu4 7! −u4, we have obtained two different hypertoric varieties from the same

arrangement A, albeit now with a different coorientation. Both are T 2
-equivariantly diffeomorphic

however, see [HP04, Lemma 2.2].

2.4 Flats of an Arrangement
In Chapter 6, we will encounter several issues for which a direct approach would be difficult and

tedious. In low dimensions however, the solutions to these problems appear suddenly to be obvious

and essentially look as if they are trivial. Therefore, if we were able to reduce a complicated high-

dimensional problem to a lower-dimensional one whose solution we can brute-force our way to, then

the high-dimensional case is also dealt with via an inductive argument. To convert these problems

from a high-dimensional setting to a low-dimensional one, we will devote the rest of this chapter to

introducing hypertoric subvarieties, in addition to studying their properties.

Thus, letA = {H1, . . . , HN} be a simple hyperplane arrangement in (tn)∗ whose corresponding

set of normal vectors is {u1, . . . , uN}, where uj ∈ tnZ for each j = 1, . . . , N .

Definition 2.9. Given a subset F ⊆ {1, . . . , N}, we say that the intersection HF = ∩i∈FHi of

hyperplanes, whose indices are the elements of F , is a flat of the hyperplane arrangement A, provided

thatHF is non-empty. For convenience, let us refer to the subset F ⊆ {1, . . . , N} as the subset of
the flatHF , or the flat subset.

Definition 2.10. Denote byL(A) the set of all flatsHF of A, along with (tn)∗ which we consider to

be the trivial flat. Equip L(A) with the partial order given by the reverse inclusion of subsets:

HF ≤ HG, for each HF , HG ∈ L(A) if, and only if, HG ⊆ HF . (2.6)

Then we say that L(A) is the intersection poset of the hyperplane arrangement A.

Given a flat HF ∈ L(A), we define the arrangement under (the flat) HF , the restricted
arrangement, or just the restriction, to be the hyperplane arrangement:

AF := {Hi ∩HF | i /∈ F } .

Intuitively, if A is a simple hyperplane arrangement, then the restricted arrangement AF
is made up

of the intersections of the |F c| = N − |F| hyperplanes whose indices do not belong to the flat subset

F with the flatHF itself.

For a flatHF ∈ L(A), let us define the following R-vector spaces:

⟨F⟩ :=
⊕
i∈F

Rui, and ⟨F⟩⊥ := tn/⟨F⟩, (2.7)
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which one can regard as being subspaces of tn. Then we define the rank and the corank of the flat

HF to be:

rkHF := |F| = dimR⟨F⟩, and crkHF := n− |F| = dimR⟨F⟩⊥,

respectively. That is to say, the dimension and the codimension of the subspace ⟨F⟩ from (2.7) in tn,

respectively.

Now let us define the lattice:

UF :=
⊕
i∈F

Zui ⊊ ⟨F⟩, (2.8)

which has rank rkUF = |F|. Then we see that UF is a sublattice of tnZ which is not necessarily

saturated. To UF we may associate another lattice:

VF := ⟨F⟩ ∩ tnZ, (2.9)

of ⟨F⟩ with rank rkVF = |F| as well.

The sublattice VF of tnZ is necessarily saturated by construction, and is a superlattice of UF . They

are distinct if UF is an unsaturated sublattice in tnZ, and their quotient is the finite abelian group:

ΓF := VF/UF , (2.10)

whose order is the index |ΓF | = [VF : UF ].

The quotients of ⟨F⟩ by the lattices, UF and VF , are the |F|-dimensional real tori:

T rkF
U := ⟨F⟩/UF , and T rkF

V := ⟨F⟩/VF , (2.11)

and, by using T rkF
V , we may also define the quotient (crkF)-dimensional real torus:

T crkF
V := T n/T rkF

V
∼=
(
tn/tnZ

)/(
⟨F⟩/VF

) ∼= ⟨F⟩⊥/V ⊥
F . (2.12)

Here, we have used subscripts to keep track of which lattice has been used to define each torus

respectively.

Proposition 2.11. Let A = {H1, . . . , HN} be a simple hyperplane arrangement in (tn)∗, and let
HF ∈ L(A) be a flat of A for a given subset F ⊆ {1, . . . , N}. Then:

T rkF
V

∼= T rkF
U /ΓF ,

and moreover there exists a non-canonical decomposition of the n-dimensional real torus T n:

T n ∼= T rkF
V × T crkF

V
∼=
(
T rkF
U /ΓF

)
× T crkF

V ,

where T crkF
V is defined in (2.12).
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Proof. Since VF is a saturated sublattice of tnZ, the quotient tnZ/VF is torsion-free. Hence there exists a

complementary sublattice V ⊥
F of VF in tnZ, and a non-canonical splitting [CLS11b, Exercise 1.3.5]:

tnZ
∼= VF ⊕ V ⊥

F . (2.13)

The inclusion UF ↪! VF induces the dualised short exact sequence:

{0} V ∗
F U∗

F Γ∗
F
∼= U∗

F/V
∗
F {0}.

Applying the contravariant and left-exact functor HomZ(−;U1) to this sequence, and by noting

thatU1 is a divisible group [CLS11a, Proposition 1.3.18], we obtain the following short exact sequence:

{0} HomZ(Γ
∗
F ;U1) HomZ(U

∗
F ;U1) HomZ(V

∗
F ;U1) {0},

{0} ΓF T rkF
U T rkF

V {0}.

∼ = ∼ = ∼ =

This implies that T rkF
V

∼= T rkF
U /ΓF . This result, along with the splitting (2.13), then provides the

desired splitting of tori:

T n ∼= (trkF/VF)⊕ (tcrkF/V ⊥
F ) ∼= T rk

V × T crkF
V

∼=
(
T rkF
U /ΓF

)
× T crkF

V (2.14)

for us.

2.5 Hypertoric Subvarieties
The aim of this section is to formalise the notion of a hypertoric subvariety, the reason for this being

that we will use hypertoric subvarieties in the proofs of Theorem 3.17, Lemma 6.1, Theorem 6.2, and

Proposition 6.3

Despite the term “hypertoric subvariety” having been used in the literature previously, see [GH08]

and [RSZV22], a formal definition has not yet been proposed – so let us start by doing so.

Definition 2.12. Let (M,ωM
i , T

m) and (N,ωN
i , T

n) be hypertoric varieties, where the tori Tm
and

T n
act onM andN in an effective and hyperhamiltonian fashion. Furthermore, suppose thatN is a

hyperkähler subvariety ofM . Then we say thatN is a hypertoric subvariety ofM if there exists a

T n
-equivariant embedding:

ι : N ↪!M, such that ι∗(ωM
i ) = ωN

i , for each i = 1, 2, 3.

The type of hypertoric subvariety that we shall be interested in are those which will correspond

to the flats of the hyperplane arrangement.
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So, let A = {H1, . . . , HN} be a simple hyperplane arrangement in (tn)∗, and letHF ∈ L(A)
be a flat of A for a given subset F1, . . . , N . Denote by CFc

the coordinate subspace of CN
supported

on the flat subset F , that is:

CFc

:=
{
z ∈ CN

∣∣
if i ∈ F , then zi = 0

}
,

and let T ∗CFc
be the cotangent space to CFc

which, as a subspace of T ∗CN
, can be expressed as:

T ∗CFc

:=
{
(z, w) ∈ T ∗CN

∣∣
if i ∈ F , then zi = wi = 0

}
.

Analogously, denote by tF and tF
c

the subspaces of tN that are supported on the flat subsets F and

F c
respectively. That is to say:

tF :=
{
x ∈ tN

∣∣
if i /∈ F , then xi = 0

}
;

tF
c

:=
{
x ∈ tN

∣∣
if i ∈ F , then xi = 0

}
.

(2.15)

Let us introduce the projection map:

p : tN ! tF
c

, p(ei) :=

{
ei, if i ∈ F c,

0, if i ∈ F ,
(2.16)

that projects from tN onto the subspace tF
c
. Furthermore, let us denote the image of the restriction

of p to k ⊊ tN by:

kF
c

:= p(k). (2.17)

As shown in [Kon00, Section 7], since π(ei) ̸= 0 for each i ∈ F , the restriction p|k : k ! kF
c

is an

isomorphism. We therefore obtain the following diagram:

{0} k tN tn {0},

{0} kF
c

tF
c

tcrkF {0}.

ı

p|k

∼

π

p p̄

ıFc πFc

(2.18)

We may then dualise the diagram (2.18) to obtain:

{0} k∗ (tN)∗ (tn)∗ {0},

{0} (kF
c
)∗ (tF

c
)∗ (tcrkF)∗ {0}.

ı∗ π∗

(p|k)∗∼

ı∗Fc

p∗

π∗
Fc

p∗ (2.19)
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Finally, using the coordinate subspaces introduced in (2.15), we obtain the following tori:

TF =
{
t ∈ TN

∣∣
if i /∈ F then ti = 1

}
,

TFc

=
{
t ∈ TN

∣∣
if i ∈ F then ti = 1

}
,

(2.20)

which are subtori ofTN
since coordinate-wise, we have thatTFc ∼= TN/TF

and thatTF ∼= TN/TFc
.

Their images in T n
under π are denoted respectively by T rkF

and T crkF
, with T crkF ∼= T n/T rkF

and similarly with T rkF ∼= T n/T crkF
.

Now, if we assume that the simple hyperplane arrangement A corresponds to a hypertoric variety

Mν , then the next theorem shows us that each flat HF ∈ L(A), with F ⊆ {1, . . . , N}, will

determine a respective hypertoric subvariety that we will denote by MF
ν . We also will see that the

hypertoric subvarietyMF is cut out from the hypertoric varietyMν , by the equation zi = wi = 0 for

which i ∈ F .

Theorem 2.13. LetMν be a 4n-dimensional hypertoric variety with the corresponding simple hyperplane
arrangement A in (tn)∗. LetHF ∈ L(A) be a flat of A for some flat subset F ⊆ {1, . . . , N}, and
let AF be its restricted arrangement in HF . Then there exists a unique element νF ∈ kF

c such that
ν = (p|k)∗(νF), for which the hypertoric varietyMF is a (rkF)-codimensional hypertoric subvariety of
Mν .

Proof. As k ∼= kF
c
, from the diagram in (2.19), there exists a unique νF ∈ (kF

c
)∗ such that ν =

(p|k)∗(νF). The torus TFc
acts on T ∗CFc

in a hyperhamiltonian way with hyperkähler moment map:

ϕFc

HK : T ∗CFc

−! (tF
c

)∗ ⊗ Im(H), (2.21)

and the subtorusKFc
acts on T ∗CFc

via the inclusion ıFc : KFc
↪! TFc

. ThisKFc
-action is also

hyperhamiltonian with hyperkähler moment map:

µFc

HK = (ı∗Fc ⊗ Id) ◦ ϕFc

HK : T ∗CFc

−! (kF
c

)∗ ⊗ Im(H). (2.22)

Now let:

ι : T ∗CFc

↪! T ∗CN , where ι : (zi, wi) 7!

{
(0, 0), if i ∈ F ,
(zi, wi), if i ∈ F c,

(2.23)
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define a closed embedding. Then the maps (2.21), (2.22), and (2.23) fit into the following diagram:

T ∗CFc
(tF

c
)∗ ⊗R Im(H) (kF

c
)∗ ⊗R Im(H),

T ∗CN (tN)∗ ⊗R Im(H) k∗ ⊗R Im(H).

ϕFc

HK

ι

µFc

HK

ı∗Fc⊗Id

p∗⊗Id (p|k)∗⊗Id

ϕHK

µHK

ı∗⊗Id

(2.24)

The isomorphism (p|k)∗ : (kF
c
)∗ ∼= k∗ allows us to identify the elements (p|k)∗(νF) = ν, and

implies that:

MF = (µF
HK)

−1(νF , 0)/K
Fc

=
(
µ−1
HK(ν, 0) ∩ T

∗CFc)
/K ⊂ µ−1

HK(ν, 0)/K =Mν . (2.25)

Hence from (2.25), we see thatMF can be seen as the subvariety of the hypertoric varietyMν , that

has been carved out by the closed subvarieties, {[z, w] ∈Mν(A) | if i ∈ F then zi = wi = 0}. We

also obtain an expression for MF as the hyperkähler quotient (MF , T
crkF , µF

HK), where T crkF ∼=
T n/T rkF

. HenceMF is itself hypertoric variety that is also a closed subvariety ofMν .

ForMF to satisfy Definition 2.12, it remains to show that there exists a T crkF
-equivariant em-

bedding ofMF intoMν . The closed embedding ι : T ∗CFc
↪! T ∗CN

from (2.23) is TN
-equivariant,

and hence the induced embedding ι : MF ↪! Mν is T n
-equivariant sinceK ⊆ TN

. From Propo-

sition 2.11, there exists a non-canonical splitting T n ∼= T rkF × T crkF
, and this implies that ι is

T crkF
-equivariant as T crkF

acts onMν via the inclusion T crkF ↪! T rkF × T crkF
.

Lastly, ι is a holomorphic-symplectic embedding since the Kähler two-forms, ωF
R and ωF

C , onMF
are just obtained by restricting those fromMν :

ι∗ωR = ωR

∣∣
MF

= ωF
R , and ι∗ωC = ωC

∣∣
MF

= ωF
C .

In summary, ι :MF ↪!Mν is the required closed T crkF
-equivariant embedding in Definition 2.12

forMF to be a hypertoric subvariety ofMν .

Constructions reminiscent to the statement in Theorem 2.13 have been made before, for example

in the proof of Theorem 6.7 in [BD00], in Claim 7.1 of [Kon00], and also in Proposition 2.1 of

[PW07]. Our contribution generalises them, in that we prove the hyperkähler subvariety, which itself

is a hypertoric variety, is then a hypertoric subvariety in the sense of our proposed Definition 2.12, by

using Proposition 2.11 to show that the inclusion is an equivariant embedding.
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Given a hypertoric varietyMν with a simple hyperplane arrangement A in (tn)∗, Theorem 2.13

tells us that each flatHF ∈ L(A) determines a hypertoric subvarietyMF ofMν . The image of µF
R

surjects onto the affine spaceHF = ∩i∈FHi, and the restricted hyperplane arrangement AF
inHF is

subsequently the hyperplane arrangement for the hypertoric varietyMF .

As it is a hypertoric variety in its own right,MF comes equipped with a hyperhamiltonian action

of T crkF
onMF , and therefore possesses a hyperkähler moment map:

µF
HK = µF

R ⊕ µF
C :MF −! (tcrkF)∗ ⊗ Im(H).

The real moment map component µF
R will therefore determine a hyperplane arrangement of its own

forMF , which we denote by:

AcrkF := { Fi | i ∈ F c } , (2.26)

with each hyperplane Fi lying in (tcrkF)∗, for each i ∈ F c
. Let us express each hyperplane of AcrkF

as:

Fi :=
{
x ∈ (tcrkF)∗

∣∣ 〈x, uFc

i

〉
+ λF

c

i = 0
}
, (2.27)

where λF
c ∈ (tF

c
)∗ satisfies p∗(λF

c
) = λ ∈ (tN)∗, and where uF

c

i := πFc(p(ei)) ∈ tcrkF .

The following proposition identifies the hyperplane arrangement AcrkF
in (tcrkF)∗ with the

restricted hyperplane arrangement AF
under the flatHF , and is similar to [Kon00, Claim 7.1].

Proposition 2.14. The restricted hyperplane arrangement AF = {Hi ∩HF | i /∈ F} inHF can be
identified with the arrangement AcrkF given by (2.26) in (tcrkF)∗, whose hyperplanes Fi are given by
(2.27), where λFc ∈ (tF

c
)∗ satisfies p∗(λFc

) = λ ∈ (tN)∗, and uFc

i := πFc(p(ei)) ∈ tcrkF .

Proof. First of all, note that

(tF)∗ ∼= (tn/tF
c

)∗ ∼= Anntn t
Fc

, and (tF
c

)∗ ∼= (tn/tF)∗ ∼= Ann(tn)∗ t
F . (2.28)

Fix a point y0 ∈ HF ⊆ (tn)∗. This implies that ⟨y0, ui⟩+ λi = 0 as y0 ∈ Hi. But then:

⟨y0, ui⟩+ λi =
〈
y0, π(ei)

〉
+ λi =

〈
π∗(y0) + λ, ei

〉
= 0, (2.29)

for each i ∈ F . Thus π∗(y0) + λ belongs to the annihilator of tF in (tn)∗, hence from (2.28) there

exists an element λF
c ∈ (tF

c
)∗ such that p∗(λF

c
) = π∗(y0) + λ.

Since:(
(p|k)∗ ◦ ı∗Fc

)
(λF

c

) = (ı∗ ◦ p∗)(λFc

)
(

as (p|k)∗ ◦ ı∗Fc = ı∗ ◦ p∗ from (2.19)

)
= ı∗

(
π∗(y0) + λ

)
= ı∗(λ)

(
as ı∗ ◦ π∗ = 0

)
= ν,
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it follows that ı∗Fc(λF
c
) = νF

c
because (p|k)∗ : (kF

c
)∗ ! k∗ is an isomorphism, and therefore

(p|k)∗(νF
c
) = ν.

Let us the following map:

ηy0 : (t
crkF)∗ ! (tn)∗, by ηy0(x) := p̄∗(x) + y0. (2.30)

Then, by recalling (2.16), (2.29), and that p∗(λF
c
) = π∗(y0) + λ, for a given x ∈ (tcrkF)∗, we have:

⟨ηy0(x), ui⟩+ λi =
〈
p̄∗(x) + y0, π∗(ei)

〉
+ λi

(
from (2.30)

)
=
〈(
π∗ ◦ p̄∗

)
(x) + π∗(y0) + λ, ei

〉
=
〈(
p∗ ◦ π∗

Fc

)
(x), ei

〉
+
〈
π∗(y0) + λ, ei

〉 (
from (2.19)

)
.

(2.31)

On the one hand, if i ∈ F , then ⟨π∗(y0) + λ, ei⟩ = 0 since y0 ∈ HF . So (2.31) becomes:〈(
p∗ ◦ π∗

Fc

)
(x) + π∗(y0) + λ, ei

〉
=
〈
x,
(
πFc ◦ p

)
(ei)
〉
= 0,

as p(ei) = 0 from (2.16). Whereas, on the other hand, p∗(λF
c
) = π∗(y0) + λ and therefore, when

i ∈ F c
, we have:〈(

p∗ ◦ π∗
Fc

)
(x) + π∗(y0) + λ, ei

〉
=
〈(
p∗ ◦ π∗

Fc

)
(x) + p∗(λF

c

), ei

〉
=
〈
π∗
Fc(x) + λF

c

, p(ei)
〉

=
〈
π∗
Fc(x) + λF

c

, ei

〉 (
as p(ei) = ei from (2.16)

)
= ⟨x, uFc

i ⟩+ λF
c

i .

Hence, for a given point y0 ∈ HF , (2.31) shows that the image of ηy0 in (tn)∗ isHF and, for each

hyperplane Fi ⊂ (tcrkF)∗ defined in (2.27), we get η(Fi) = Hi ∩HF for each i ∈ F c
.

Example 2.15. As an example, Figure 2.6 displays the hyperkähler analogue of the resolution of the

Kleinian singularity from Example 2.5, which we denote here byMF with F = {1}, as a hypertoric

subvariety of the hyperkähler analogue to the first Hirzebruch surface from Example 2.8, which we

denote here byMν .

If A is the hyperplane arrangement forMν , then the restricted hyperplane arrangement for the

hypertoric subvarietyMF is given by AF = { Fi = Hi ∩H1 | i = 2, 3, 4 }, where each Fi ∈ AF
is

a hyperplane in the flatHF = H1
∼= (t1)∗ of A, since crkF = n− rkF = 1.
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(tcrkF)∗

F3

F4

F2

HF = H1

H4

H2

H3

η

(tn)∗

Figure 2.6: Restricted hyperplane arrangement AF
for the hypertoric subvarietyMν from Example

and a subvarietyMF , where F = {1}.

Remark 2.16. We may further introduce the half-spaces

F+
i := {x ∈ (tcrkF)∗ | ⟨x, uFc

i ⟩+ λF
c

i ≥ 0},
F−
i := {x ∈ (tcrkF)∗ | ⟨x, uFc

i ⟩+ λF
c

i ≤ 0},
(2.32)

for each hyperplane Fi ∈ AcrkF
. Analogously to what was done in Proposition 2.14, one can show

that ηy0(∆AFc ) = ∆A ∩HF , where we have defined the subset:

AFc

:= { i ∈ A ∩ F c | ∆A ∩HF ̸= ∅ } ⊆ {1, . . . , N} ∩ F c.

This observation naturally leads the notion of a moment subpolyptych, which we define in Definition

3.15 and will use when proving Theorem 6.2 and Proposition 6.3.
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Chapter 3

The Symplectic Cut of a Hypertoric Variety

There exists a procedure called symplectic cutting which has the effect of slicing away part of a symplectic

manifold, provided that it is equipped with a suitable U1-action. Recall from the introduction of

Chapter 2 that there exists a correspondence between symplectic toric varieties and simple convex

polytopes. For these varieties, the symplectic cut can be arranged so that the corresponding polytope

(or polyhedron) gets truncated, by intersecting it with a half-space whose normal vector depends on

the U1-action, as is mentioned in [Ler95, Remark 1.5].

In this chapter, we wish to construct the symplectic cut of a hypertoric varietyMν in order to

obtain something compact. In Lemma 3.4, we show that the moment map ρ, corresponding to the

U1-action that is used to define the symplectic cut of Mν , is proper, provided that its hyperplane

arrangement A contains at least one bounded region. Therefore we end up taking the quotient of a

compact level-set ρ−1(δ), where δ ∈ R≥0, of ρ by the circleU1, resulting in a compact orbifold which

we call the cut space,M≤δ
ν , of the hypertoric varietyMν .

The residual torus T n
that acted on Mν descends to M≤δ

ν , as does its real moment map µR :
M≤δ

ν ! (tn)∗. The compactness of M≤δ
ν is reflected in the hyperplane arrangement A, in that it

becomes a truncated arrangement of sorts, which we call the moment polyptych ofM≤δ
ν , and is denoted

by ∆≤δ
ν . Each unbounded region of the original arrangement A is replaced by a bounded polytope

which, from either Delzant’s or Lerman and Tolman’s classification schema, shows thatM≤δ
ν is made

up from various toric Kähler subvarieties. We shall exploit the properties of the cut spacesM≤δ
ν and

their moment polyptychs ∆≤δ
ν in later chapters, and especially in Chapter 6 when we are able to

associate specific isotropy data to the vertices of ∆≤δ
ν .
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3.1 Symplectic Cutting
Symplectic cutting is a technique first introduced by Lerman in [Ler95], which lets one construct

new symplectic varieties from old ones, if they are equipped with a Hamiltonian U1-action. The

general procedure process is follows: letM be a symplectic orbifold with a Hamiltonian U1-action

and moment map Φ :M ! R. Consider the productM × C and let U1 act on it diagonally, so:

eiθ · (p, ξ) = (eiθ · p, eiθξ), for eiθ ∈ U1, and (p, ξ) ∈M × C. (3.1)

The diagonal U1-action in (3.1) is also Hamiltonian with moment map:

ρ :M × C ! R, where ρ(p, ξ) = Φ(p) + 1
2
|ξ|2.

Then the symplectic cut,M≤δ
, ofM at δ is defined to be the symplectic quotient ofM × C with

respect to the diagonal U1-action:

M≤δ := (M × C) �δ U1 = ρ−1(δ)/U1,

where δ ∈ R≥0 is a regular value of ρ.

The level-set:

ρ−1(δ) =
{
(p, ξ) ∈M × C

∣∣ Φ(p) + |ξ|2 = δ
}
⊂M × C (3.2)

fits into the following diagram:

ρ−1(δ)

M M≤δ = ρ−1(δ)/U1

pr1 q
(3.3)

where pr1 : ρ−1(δ) ! M is the projection pr1(p, ξ) = p onto the first factor. Its image in M is

im(pr1) = {p ∈ M |Φ(p) ≤ δ}. On the other hand, the map q : ρ−1(δ) ! M≤δ
is the quotient

map for the diagonal U1-action on ρ−1(δ).

The level-set ρ−1(δ) in (3.2) decomposes into the disjoint union:

ρ−1(δ) ∼= Σ1 ⊔ Σ2,

where:

Σ1 =
{
(p, ξ) ∈M × C

∣∣ Φ(p) + |ξ|2 = δ, ξ ̸= 0
}
,

Σ2 = { (p, 0) ∈M × C | Φ(p) = δ } .
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On the suborbifold Σ1, we have |ξ| > 0. It is possible therefore to find an element ξ ∈ C with

Re(ξ) > 0 and Im(ξ) = 0. This allows for a global section σ :M ! ρ−1(δ) of pr1 : ρ
−1(δ) !M

to be defined, by:

σ(p) = (p, ξ), where ξ =
√
δ − Φ(p).

Since any U1-orbit contains a unique (p, ξ) when Re(ξ) > 0 and Im(ξ) = 0, the section σ is a

U1-equivariant diffeomorphism and identifies σ : {p ∈ M | Φ(p) < δ} ∼
! Σ1/U1. On the other

hand, the quotient of its complement Σ2/U1 is just the symplectic quotient Φ−1(δ)/U1.

For the linear U1-action on C, the only critical value of its moment map ξ 7! |ξ|2 is zero. It

follows then that the diagonal action onM × C is locally free, except at the points which belong to

the fixed-point set,MU1 × {0}. Therefore, to avoid quotients whose singular nature is worse than

that of an orbifold, we will assume that δ ∈ R≥0 is always a regular value for the moment map ρ by

choosing δ to be large enough, as to avoid any critical points.

Example 3.1. Let U1 act on CN
in the standard linear way, and extend this action to the product

CN × C as:

τ ·
(
(z1, . . . , zN), ξ

)
=
(
(τz1, . . . , τzN), τξ

)
. (3.4)

The moment map ρ : CN × C ! R≥0 is ρ(z, ξ) = 1
2
∥z∥2 + 1

2
|ξ|2 and, for some δ ∈ R≥0, the

level-set ρ−1(δ) is the (2N + 1)-dimensional sphere:

ρ−1(k) =
{
(z, ξ) ∈ CN × C

∣∣ 1
2
∥z∥2 + 1

2
|ξ|2 = δ

} ∼= S2N+1.

Hence the symplectic cut (CN × C) �δ U1 of CN
with respect to the U1-action (3.4) is:

(CN × C) �δ U1
∼= S2N+1/U1

∼= CPN .

The next example comes from [GS89], whose work was a precursor to Lerman’s [Ler95].

Example 3.2. In Example 3.1, if we instead let U1 act on the product CN × C as:

τ ·
(
(z1, . . . , zN), ξ

)
=
(
(τz1, . . . , τzN), τ

−1ξ
)
, (3.5)

then, taking the symplectic cut, we obtain the blow-upM≥δ = Bl0 CN
of CN

at the origin, instead.

Indeed, the moment map ρ : CN × C ! R for the U1-action in (3.5) now becomes ρ(z, ξ) =
∥z∥2 − |ξ|2 and so, again for some δ > 0, the level-set ρ−1(δ) is the hypersurface:

ρ−1(δ) =
{
(z, ξ) ∈ CN × C

∣∣ |z1|2 + . . .+ |zN |2 = δ + |ξ|2
}
⊂ CN × C.

Let us set:

v = ξ, and ui = (δ + |v|2)−1/2zi, for each i = 1, . . . , N.
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Then, in terms of the (u, v)-coordinates, ρ−1(δ) ∼= S2N−1 × C, where:

S2N−1 ∼=
{
w ∈ CN

∣∣ |u1|2 + . . .+ |uN |2 = 1
}
⊂ C2N−1,

whilst v ∈ C is unconstrained. TheU1-action in these coordinates sends ui 7! τui, for i = 1, . . . , N ,

and v 7! τ−1v.

The symplectic cut M≥δ
(the ≥ δ superscript is intentional) obtained by taking the quotient

with respect to this U1-action isM≥δ = (CN × C) �δ U1. There exists an injection:

i : (CN × C) �δ U1 ↪−! CPN−1 × CN ,

[u1, . . . , uN , v] 7−!
(
[u1, . . . , uN ], (u1v, . . . , uNv)

)
,

whose image in CPN−1 × CN
identifies the symplectic cutM≥δ

with the blow-up:

Bl0 CN =
{ (

[U ], v
)
∈ CPN−1 × CN

∣∣ viUj = vjUi, for each i, j = 1, . . . , N
}
.

3.2 The Residual U1-Action on a Hypertoric Variety
In the Section 3.1 we saw that, to take a symplectic cut of a symplectic orbifold, it suffices for it to be

equipped with a HamiltonianU1-action. A suitableU1-action on a hypertoric variety has been studied

before in [HP04], which we recall here by first considering the complex cotangent space T ∗CN
. Then

there is a U1-action which “rotates” the cotangent fibre coordinates T ∗
z CN

over a point z ∈ CN
,

which is to say:

τ · (z, w) = (z, τw). (3.6)

This action is Hamiltonian with respect to the real Kähler two-form ωR on T ∗CN
, but it does not

preserve the holomorphic-symplectic two-form ωC however, since τ ∗ωC = τωC. With respect to ωR,

the moment map for this U1-action is:

Φ : T ∗CN ! R, Φ(z, w) = ∥w∥2, (3.7)

up to the addition of a constant. As this U1-action T ∗CN
commutes with the TN

-action, it descends

to a residual Hamiltonian U1-action on the hypertoric variety Mν , whose moment map we shall

continue to denote by Φ. It was proven in [HP04, Proposition 1.3] that if the original moment map

ϕ : CN ! k∗ for theK-action on ϕ−1
HK(ν, 0) is proper, then so is the moment map Φ :Mν ! R≥0

for the residual U1-action.

Since Φ−1(0) = Xν , properness of µ is therefore equivalent to the compactness of the Kähler

varietyXν , or equivalently to the boundedness of ∆∅. If we assume that the hyperplane arrangement

A = {H1, . . . , HN} for the hypertoric varietyMν is simple, then ∆∅ will always be bounded, since

any subcollection of n normal vectors from the u1, . . . , uN , will form an R-basis for tn. Hence there
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exists a vertex that is equal to the intersection of n hyperplanes from the arrangement A, which is

trivially bounded [BD00, §6].

It will be interesting to know what the fixed-point locus MU1
ν is for the residual U1-action.

Moreover, knowing this fixed-point data is important when we take the symplectic cut of Mν in

Section 3.4, as we will want to avoid cutting into it. As the complex moment map µC :Mν ! (tnC)
∗

is

U1-equivariant, and as U1 acts freely on (tnC)
∗ − {0}, as discussed in [Pro04, §3.2] the U1-fixed-point

locusMU1
ν will be contained within the extended core E ofMν , that isMU1

ν ⊆ µ−1
C (0) = E .

Hence, for us to study the fixed-point locusMU1
, it suffices to restrict our attention purely to

the extended core E ofMν . We shall revisit the question of what the fixed-point locus is in Section

3.3, once we have established a combinatorial description for the U1-action on each extended core

component, EA.

3.3 Combinatorics of the Residual U1-Action
As the Hamiltonian U1-action on T ∗CN

descends to a residual one on the hypertoric variety Mν ,

whose moment map Φ :Mν ! R≥0 is proper if, and only if, the core C ofMν is non-empty. This

residualU1-action does not act onMν as a circle subgroup of the torus T n
globally, but it does when

restricted to an extended core component E .

Given a subsetA ⊆ {1, . . . , N}, recall that the extended core component EA = µ−1
R (∆A) ∩ E

can be combinatorially expressed as:

EA = { [z, w] ∈Mν | wi = 0 if i ̸∈ A and zi = 0 if i ∈ A } .

Hence, for τ ∈ U1 and [z, w] ∈ EA, the circle U1 acts as:

τ · [z, w] = [z, τw] = [τ1z1, . . . , τNzN ; τ
−1
1 w1, . . . , τ

−1
N wN ], where τi =

{
τ−1, if i ∈ A,

1, if i ̸∈ A.

With this observation, we may express the restricted U1-action on the component EA as that

of a circle subgroup of TN
. To see this, we express this as the image of U1 under the inclusion

ȷA : U1 ↪! TN
, defined by:

ȷA(τ) := (τ1, . . . , τN), where τi =

{
τ−1, if i ∈ A,

1, if i ̸∈ A.
(3.8)

The composition of the inclusion ȷA with the projection π : TN ! T n
prescribes how the circle fits

inside of T n
, when its action is restricted to the subvariety EA. For conciseness, denote:

eA := −
∑
i∈A

ei ∈ tN , uA := −
∑
i∈A

ui ∈ tn, and λA :=
∑
i∈A

λi ∈ R. (3.9)
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On the Lie algebra level, the generator for the restrictedU1-action is just the image of 1 ∈ R under the

map

(π ◦ ȷA)∗ : R tN tn, 1 eA uA.
ȷA,∗ π

(3.10)

We shall call the vector uA = (π ◦ ȷA)∗(1) ∈ tn the restricted U1-action generator for the

component EA. Since π ◦ ȷA : U1 ↪! T n
is an inclusion and since T n

acts in a Hamiltonian way on

Mν , there is a moment map associated with the U1-action on EA obtained from the composition of

µR|EA : EA ! (tn)∗ with the projection (3.10):

ΦA := (π ◦ ȷA)∗ ◦ µR|EA : EA ! R,

ΦA[z, w] =
〈
µR[z, w], uA

〉
= 1

2

∑
i∈A

|wi|2 + λA.
(3.11)

3.4 The Cut Space of a Hypertoric Variety
Having described in Section 3.3 how the residual U1-action on a hypertoric variety Mν acts when

restricted an extended core component EA, we may now form the symplectic cut ofMν . As in Section

3.1, let U1 act diagonally on the productMν × C, as:

τ · ([z, w], ξ) =
(
[z, τw], τξ

)
, where τ ∈ U1,

(
[z, w], ξ

)
∈Mν × C. (3.12)

This action is Hamiltonian with moment map:

ρ :Mν × C ! R≥0, ρ
(
[z, w], ξ

)
= Φ[z, w] + |ξ|2 = ∥w∥2 + |ξ|2.

Given a regular value δ ∈ R≥0 of ρ, the circle U1 acts locally freely on the level-set:

ρ−1(δ) =
{ (

[z, w], ξ
)
∈Mν × C

∣∣ 1
2
∥w∥2 + 1

2
|ξ|2 = δ

}
.

Then, from Section 3.1, the symplectic cut ofMν is the symplectic quotient:

ρ−1(δ)/U1
∼=
{
[z, w] ∈Mν

∣∣ 1
2
∥w∥2 ≤ δ

}
∼=
{
[z, w] ∈Mν

∣∣ 1
2
∥w∥2 < δ

}
⊔
[{

[z, w] ∈Mν

∣∣ 1
2
∥w∥2 = δ

}/
U1

]
.

(3.13)

Definition 3.3. Given a hypertoric variety Mν and a regular value δ ≥ 0 for the moment map

ρ :Mν × C ! R≥0, we define the cut spaceM≤δ
ν ofMν to be the symplectic cut ofMν ,

M≤δ
ν := (Mν × C) �δ U1.

Our motivation for taking the symplectic cut of a hypertoric varietyMν is that the cut spaceM≤δ
ν

is compact. This follows from the following lemma, the proof of which is a minor adaptation from

that from [HP04, Proposition 1.3].
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Lemma 3.4. If the original moment map ϕ : Cn ! k∗ from (1.3) is proper, then so is the moment map
ρ :Mν × C ! R≥0.

Proof. Mutatus mutandi, by the same argument as in [HP04, Proposition 1.3], for someR ≥ 0, we

need to show that the set:

ρ−1[0, δ] =
{
(z, w, ξ)

∣∣ ϕR(z, w) = ν, ϕC(z, w) = 0, 1
2
∥w∥2 + 1

2
|ξ|2 ≤ R

}
/K

is compact. But this set is a closed subset of:

ϕ−1
({
ν + ϕ(w)

∣∣ 1
2
∥w∥2 ≤ R

})
×
{
(w, ξ)

∣∣ 1
2
∥w∥2 + 1

2
|ξ|2 ≤ R

}
⊂ T ∗CN × C,

which is compact since ϕ is proper, and therefore so is ρ.

Corollary 3.5. The cut spaceM≤δ
ν of a hypertoric varietyMν is compact.

Proof. Since ρ is proper, the level-set ρ−1(δ) ⊂Mν × C is compact. As the circleU1 is a compact Lie

group, the quotientM≤δ
ν = ρ−1(δ)/U1 is also compact.

The T n
- and U1-actions onMν commute and thus descend to the respective actions on the cut

space,M≤δ
ν , and we continue to denote their moment maps by µR :M≤δ

ν ! (tn)∗ and Φ :M≤δ
ν !

R≥0, respectively. As explained in Section 3.1, the cut spaceM≤δ
ν can be decomposed into the disjoint

union:

M≤δ

ν
∼= M<δ

ν ⊔ Zδ
ν , (3.14)

where we have defined the interior:

M<δ
ν :=

{
[z, w] ∈Mν

∣∣ 1
2
∥w∥2 < δ

}
, (3.15)

and the boundary:

Zδ
ν := Φ−1(δ)/U1, (3.16)

of the cut space M≤δ
ν . The interior M<δ

ν can be thought of as both a subvariety of the original

hypertoric varietyMν , or as a subvariety of the cut spaceM≤δ
ν .

As it stands so far, Definition 3.3 of the cut spaceM≤δ
ν refers to the globalU1-action onMν , but it is

more informative combinatorially to restrict the action to an extended core componentEA, whereA ⊆
{1, . . . , N}. This is because the U1-action can then be described combinatorially via the inclusion

3.8 introduced in Section 3.3, providing us with a more concrete grasp of the connection between

the geometry of the cut space M≤δ
ν and how the cutting procedure is reflected in the hyperplane

arrangement A
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Definition 3.6. LetMν be a hypertoric variety and letM≤δ
ν be its cut space for some δ ≥ 0. Given a

subsetA ⊆ {1, . . . , N}, we define the cut component E≤δ
A ofM≤δ

ν to be the subvariety:

E≤δ

A :=
[
EA ∩M<δ

ν

]
⊔
[
Φ−1

A (δ)/U1

]
⊊M≤δ

ν .

Equivalently, a cut component E≤δ
A can be thought of as the symplectic cut of the corresponding

extended core component, E≤δ
A

∼= (EA × C) �δ U1, and thus it can be identified with the disjoint

union, E≤δ
A

∼= E<δ
A ⊔ Zδ

A, where:

E<d
A

∼= EA ∩M<d
ν , and Zδ

A := Φ−1
A (δ)

/
U1 (3.17)

Analogously to the definitions of the cut space interior M<δ
ν (3.4) and the cut space boundary Zδ

ν

(3.16), we say that E<d
A and Zδ

A are the cut component interior and the cut component boundary
of E≤δ

A , respectively.

3.5 Moment Polyptychs
Recall, from the preamble to this chapter, that there is a correspondence between symplectic toric

varieties and moment polyhedra from the work of Delzant [Del88] in the case of manifolds, and of

Lerman and Tolman [LT97] in the case of orbifolds, and furthermore one between hypertoric varieties

and hyperplane arrangements from the work of Bielawski and Dancer [BD00]. In both cases, the

connection is formed via a moment map, which maps the geometric object onto the combinatorial

object. This section is dedicated towards studying the image of a cut spaceM≤δ
ν under the real moment

map µR, and seeing what combinatorial results arise from this.

In our situation, each cut component EA is a symplectic toric variety in its own right, since the

residual torus T n
acts in a Hamiltonian and effective way on EA, whose Kähler structure comes from

the real Kähler two-form ωR that descends fromMν . Our choice ofU1-action in (3.12) guarantees that

E≤δ
A will be compact, since the circle moment map Φ is proper. On the combinatorial side, symplectic

cutting has the effect of truncating the corresponding region ∆A to EA, by intersecting it with a

half-space whose normal vector is oriented inwards (i.e., directed towards ∆∅) by the U1-action, as

mentioned in [Ler95, Remark 1.5].

Proposition 3.7. The image µR(E≤δ
A ) of the cut component E≤δ

A in (tn)∗ coincides with the convex
polytope:

µR(E≤δ

A ) = ∆A ∩ { y ∈ (tn)∗ | ⟨y, uA⟩+ δ + λA ≥ 0 } .

Proof. Recall, from (3.9), that:

uA = −
∑
i∈A

ui, eA = −
∑
i∈A

ei, and λA =
∑
i∈A

λi.
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Given a point

(
[z, w], ξ

)
∈ ρ−1(δ) ∩ (EA × C), observe that:〈

µR[z, w], uA
〉
=
〈
µR[z, w], π∗(eA)

〉
=
〈
(π∗ ◦ µR) [z, w], eA

〉
=
〈
ϕR(z, w)− λ, eA

〉
=
〈
ϕR(z, w), eA

〉
− ⟨λ, eA⟩

= −

〈
N∑
i=1

(
|zi|2 − |wi|2

)
ϵi,
∑
i∈A

ei

〉
+

〈
λ,
∑
i∈A

ei

〉
= 1

2

∑
i∈A

|wi|2 + λA

≤ δ + λA,

where the inequality
1
2

∑
i∈A |wi|2 ≤ δ comes from the symplectic cut. Hence:

[z, w] ∈ E≤δ

A if, and only if

〈
µR[z, w], uA

〉
+ δ + λA ≥ 0.

Applying Proposition 3.7 to each cut component E≤δ
A essentially “truncates” the arrangement

A, by trimming down any region ∆A of A that is unbounded. As the half-spaces that appear in

Proposition 3.7 are defined using the restrictedU1-action generator uA, it is clear that the cut space

M≤δ
ν should depend on the coorientation of A. Let us now being to formalise this construction by

introducing some definitions.

Definition 3.8. LetM≤δ
ν be a cut space and µR :M≤δ

ν ! (tn)∗ its moment map for the T n
-action.

We define its moment polyptych, denoted by ∆≤δ
ν , to be the image of the cut spaceM≤δ

ν under µR:

∆≤δ

ν := µR(M
≤δ

ν ) ⊆ (tn)∗. (3.18)

Similarly, we define the polyptych boundary, denoted by Πδ
ν , to be the image of the cut space

boundary Zδ
ν under µR:

Πδ

ν := µR(Zδ
ν) ⊆ ∆≤δ

ν . (3.19)

Likewise, for each subsetA ⊆ {1, . . . , N}, we define the polyptych component, denoted by

∆≤δ
A , to be the image of the cut space component E≤δ

A under µR:

∆≤δ

A := µR(E≤δ

A ) = ∆A ∩ { x ∈ (tn)∗ | ⟨x, uA⟩+ λA + δ ≥ 0 } ⊆ ∆≤δ

ν , (3.20)

and also we define the polyptych boundary component, denoted by Πδ
A, to be:

Πδ

A := µR(Zδ
A) = Πδ

ν ∩∆≤δ

A = { x ∈ (tn)∗ | ⟨x, uA⟩+ λA + δ = 0 } ⊆ ∆≤δ

A .
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Having introduced these definitions, the value δ ∈ R≥0 will be a regular one for the moment

map ρ :Mν× ! R≥0, provided that the boundary Πδ
ν of the moment polyptych ∆≤δ

ν avoids passing

through any vertex of the hyperplane arrangement A.

The term “moment polyptych” was chosen to reflect the fact that the cut spaceM≤δ
ν , and hence

its moment polyptych ∆≤δ
ν in (tn)∗, both depend on the hyperplane arrangement A in addition to a

choice of distinguished base region, ∆∅. This is due to the fact that changing the coorientation of

just one hyperplane changes the residual U1-action generator uA on each cut component E≤δ
A . To

say this in a more succinct manner, the moment polyptych ∆≤δ
ν depends on both the hyperplane

arrangement and its poset of regions P(A), which is defined relative to a distinguished base region

∆∅ as was discussed at the end of Section 2.1.

3.6 Examples
Finally, let us present some examples.

Example 3.9. Let Mν = T ∗CP1
and Xν = CP1

be as in Example 2.4. For any δ ∈ R≥0, we form

the cut spaceM≤δ
ν = (T ∗CP)≤δ

. We see that ∆≤δ

∅
∼= ∆∅ since the core ofMν is irreducible, so that

C = XνCP1
. Its moment polyptych ∆≤δ

ν is presented in Figure 3.1.

0 λ2

Πδ
1

−δ

Πδ
2

ν + δ

u1 u2

∆≤δ
1 ∆≤δ

2
∆∅

Figure 3.1: Moment polyptych ∆≤δ
ν ofMν = T ∗CP1

.

Example 3.10. LetXν be the resolution of C2/Z3
andMν is hyperkähler analogue, as in Example 2.5.

Choose δ > λ3 to avoid cutting into the reducible core C, so that ∆≤δ

∅
∼= ∆∅ and ∆≤δ

2
∼= ∆2. Then

the moment polyptych ∆≤d
ν of the cut spaceM≤δ

ν is presented in Figure 3.2.

0 λ2 λ3

Πδ
1

−δ

Πδ
23

λ3 − λ2 + δ/2

u1 u23

∆≤δ
1

∆∅ ∆2 ∆≤δ
23

Figure 3.2: Moment polyptych ∆≤δ
ν of the cut space (T ∗Mν)

≤δ
in t∗ ∼= R, whereXν is the resolution

of C2/Z3
.
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Example 3.11. Let Mν = T ∗CP2
and Xν = CP2

be as in Example 2.6. For any δ ∈ R≥0, form

the cut spaceM≤δ
ν = (T ∗CP2)≤δ

. As C is irreducible again, we have C = Xν = CP2
. Its moment

polyptych ∆≤δ
ν is presented in Figure 3.3.

Πδ
1

Πδ
12

Πδ
2

Πδ
23

Πδ
3

Πδ
13

∆∅

∆
≤δ
1 ∆

≤δ
2

∆
≤δ
3

∆
≤δ
13

∆
≤δ
12

∆
≤δ
23

Figure 3.3: Moment polyptych ∆≤δ
ν of the cut spaceM≤δ

ν = (T ∗CP2)≤δ
.

Example 3.12. Now consider Mν = T ∗(CP1 × CP1) and Xν = CP1 × CP1
from Example 2.7.

Choose any value δ ∈ R≥0 to form the cut spaceM≤δ
ν , whose moment polyptych ∆≤δ

ν is presented in

Figure 3.4.

Πδ
12

Πδ
2

Πδ
23

Πδ
3

Πδ
34

Πδ
4

Πδ
14

Πδ
1 ∆∅∆≤δ

1

∆≤δ

2

∆≤δ

3

∆≤δ

4

∆
≤δ
12 ∆

≤δ
23

∆
≤δ
34∆

≤δ
14

Figure 3.4: Moment polyptych∆≤δ
ν in (t2)∗ ∼= R2

of the cut spaceM≤δ
ν whenMν

∼= T ∗(CP1×CP1).
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Example 3.13. Finally, consider the hyperkähler analogueMν to the first Hirzebruch surfaceXν = H1

from Example 2.8. Choose δ ∈ R≥0 large enough to avoid cutting into its core C, since C is reducible

now. In this case, the moment polyptych ∆≤δ
ν is presented in Figure 3.5a.

On the other hand, if we instead take Mν to be the hyperkähler analogue to Xν = CP2
, then

cutting at δ we get obtain the moment polyptych ∆≤δ
ν in Figure 3.5b. We see then, that different

hyperkähler analoguesMν give rise to different cut spacesM≤δ
ν and hence different moment polyptychs

∆≤δ
ν . In particular, just changing the coorientation of a hyperplane in the arrangementA can drastically

alter the cut spaceM≤δ
ν , since then the U1-action generators are all different.

(a) Polyptych ∆≤δ
ν when Xν

∼= H1. (b) Polyptych ∆≤δ
ν when Xν

∼= CP1
.

Figure 3.5: Moment polyptychs ∆≤δ
ν arising from two different coorientations for the arrangement A.

3.7 Properties of Cut Spaces
Let Mν be a hypertoric variety and A be its hyperplane arrangement in (tn)∗. In Section 2.5, we

proposed a definition for a hypertoric subvariety ofMν , and showed that each flatHF ∈ L(A) of the

arrangement corresponded to a hypertoric subvarietyMF in 2.13. In Proposition 2.14, we identified

the restricted arrangement AF
with its own corresponding hyperplane arrangement AcrkF

in the

affine spaceHF .

Let us continue in this manner by showing that, ifMF is a hypertoric subvariety ofMν , then its

cut space M≤δ
F is a closed Kähler subvariety of M≤δ

ν . Furthermore, we shall show that its moment

polyptych ∆≤δ
F in (tcrkF)∗ can be identified with its intersection ∆≤δ

ν ∩HF in (tn)∗.

Proposition 3.14. LetMν be a hypertoric variety and A be its simple hyperplane arrangement in (tn)∗.
LetMF be the hypertoric subvariety ofMν determined by the flatHF ∈ L(A) for a given flat subset
F ⊆ {1, . . . , N}, and let AF be its restricted arrangement in the affine spaceHF . Then, for a suitably
large δ ∈ R≥0, we have the following:
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(i) the cut spaceM≤δ
F is a closed Kähler subvariety ofM≤δ

ν ;

(ii) the moment polyptych∆≤δ
F ofM≤δ

F can be identified with the intersection∆≤δ
ν ∩HF of the moment

polyptych ∆≤δ
ν ofM≤δ

ν with the affine subspaceHF .

Proof. For (i), note that the embedding ι : T ∗CFc
↪! T ∗CN

defined in (2.23) is clearlyU1-equivariant.

Thus the induced hyperkähler embedding ι :MF ↪!Mν is additionally

(
T crkF × U1

)
-equivariant.

It is straightforward to see then, that:

M≤δ

F =M≤δ

ν ∩ {[z, w] ∈M≤δ

ν | if i ∈ F then zi = wi = 0}

is a Kähler subvariety ofM≤δ
ν , whose Kähler two-form is ωF

R = ωR|M≤δ
F

. It is closed sinceM≤δ
F is cut

out fromM≤δ
ν by the hypersurfaces {zi = 0} and {wi = 0} for each i ∈ F .

For (ii), introduce the half-spaces:

F+
i := {x ∈ (tcrkF)∗ | ⟨x, uFc

i ⟩+ λFc

i ≥ 0},
F−
i := {x ∈ (tcrkF)∗ | ⟨x, uFc

i ⟩+ λFc

i ≤ 0},

determined by the hyperplane arrangement AcrkF = {Fi | i ∈ F c} that was introduced in Proposi-

tion 2.14. For some y0 ∈ HF , recall from (2.30) the map ηy0 : (t
crkF)∗ ! (tn)∗, and also from (2.31)

that its image is im(ηy0) = HF .

If we define:

AFc
:= { i ∈ A ∩ F c | ∆A ∩HF ̸= ∅ } ⊆ {1, . . . , N} ∩ F c,

then the arrangement AcrkF
in (tcrkF)∗ correspondingMF is defined by the regions:

∆AFc :=
(
∩i/∈AFcF+

i

)
∩
(
∩i∈AFcF−

i

)
.

Furthermore, for any x ∈ ∆AFc and for each i ∈ F c
:〈

ηy0(x), ui
〉
+ λi =

〈
p̄∗(x) + y0, ui

〉
+ λi

=
〈
p̄∗(x) + y0, π∗(ei)

〉
+ λi

=
〈
(π∗ ◦ p̄∗)(x) + π∗(y0) + λ, ei

〉
+
〈
p∗(π∗

Fc(x) + λFc
), ei

〉
=

{〈
x, uFc

i

〉
+ λFc

i ≥ 0, if i /∈ A ∩ F c,〈
x, uFc

i

〉
+ λFc

i ≤ 0, if i ∈ A ∩ F c,

hence ηy0(∆AFc ) = ∆A ∩HF .
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Now suppose that x ∈ Πδ
AFc =

{
x ∈ (tcrkF)∗ |

〈
x, uFc

AFc

〉
+ δ + λFc

AFc = 0
}

. Then:〈
ηy0(x), uA

〉
=
〈
(π∗ ◦ p̄∗)(x) + π∗(y0), eA

〉
=
〈
(p∗ ◦ π∗

Fc)(x), eA
〉
+
〈
p∗(λF

c

)− λ, eA
〉

=
〈
x, uF

c

AFc

〉
+ λF

c

AFc − λA = −δ − λA,

that is to say: 〈
ηy0(x), uA

〉
+ δ + λA = 0, for all x ∈ Πδ

AFc .

Therefore: ηy0(Π
δ
AFc ) = Πδ

A, proving (ii).

In light of Proposition 3.14 and as briefly mentioned in Remark 2.16, we have the following

definition.

Definition 3.15. Let A be a hyperplane arrangement in (tn)∗ for a hypertoric varietyMν , letM≤δ
ν be

its cut space with moment polyptych ∆≤δ
ν in (tn)∗. Given a flatHF ∈ L(A) with F ⊆ {1, . . . , N},

we define a moment subpolyptych, denoted ∆≤δ

F , to be the intersection:

∆≤δ

F := ∆≤δ

ν ∩HF .

In calling Mν a hypertoric variety, we have been intentionally ambiguous to whether Mν is a

manifold or an orbifold. The reason for this is that the symplectic cutting operation is closed within

the category of symplectic toric orbifolds equipped with a Hamiltonian U1-action, but this is not the

case for manifolds when the circle only acts locally freely. When it comes to forming a cut spaceM≤δ
ν ,

the result of Theorem 3.17 is that, if the core C of the hypertoric varietyMν is reducible, then the cut

spaceM≤δ
ν is an orbifold even – when ifMν itself is smooth.

Given a point v ∈ ∆≤δ
ν of the moment polyptych ∆≤δ

ν , denote by Iv the flat subset:

Iv := { i | v ∈ Hi } ⊆ {1, . . . , N}. (3.21)

That is, Iv tracks the indices of which hyperplanes contain the point v, if any. We will assume that

each cut spaceM≤δ
ν is constructed by choosing a δ ≥ 0 large enough, so that no part of the core C

gets cut away, i.e., that Zδ
ν ∩ C = ∅.

Let us begin with the n = 1 case first, so that dimR Mν = 4.

Lemma 3.16. LetMν be a four-dimensional hypertoric manifold whose core C is reducible. Then, for a
sufficiently large value δ ∈ R≥0 such that Zδ

ν ∩ C = ∅, the cut spaceM≤δ
ν is an orbifold.

Proof. AsMν is four-dimensional, let us identify (t1)∗ ∼= R. Then its arrangement A lies in R, and A
must have at least three hyperplanes to guarantee the existence of at least two bounded regions, which
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will be the images of components of the core, C. Being in R, these regions will therefore just be closed

line intervals in R = µR(Mν), with each intersecting pair meeting a at a common vertex.

We shall write A = {H1, . . . , HN} whereN ≥ 3. Assume thatMν is the hyperkähler analogue

to the Kähler quotientXν = E∅. ThenXν ⊊ C since C is reducible, and its region ∆∅ = µR(Xν) is

a closed line interval in R, it defines the distinguished base region for the poset of regions P(A) of A.

There exist two proper chains within the poset P(A), each corresponding to the two endpoints

of ∆∅ in R. As ∆∅ ̸= C, there exists an adjacent core component Ej ⊊ C, where 1 ≤ j ≤ N , such

that Ej ∩Xν ̸= ∅ andMj ̸= Xν . Its corresponding region ∆j = µR(Ej) in R is another bounded

line interval intersecting∆∅ in the hyperplaneHj = ∆∅∩∆j (which is just a vertex in R). Considered

as a poset element, ∆j covers ∆∅ in P(A), see Figure 3.6 for the simplestN = 3 case.

Hj

∆∅ ∆j ∆A

uj

Figure 3.6: Example withN = 3. The distinguished region is ∆∅, the other bounded region is ∆j ,

and ∆A is their lowest upper bound in P(A).

By continuing along the chain in P(A) containing ∆j , one arrives at its lowest upper bound

∆A = ∆∅ ∨∆i, whereA ⊆ {1, . . . , N} is a subset with j ∈ A and |A| ≥ 2. As the real moment

map µR surjects onto R, we see that ∆A is an unbounded interval. Let EA denote the non-compact

Kähler subvariety corresponding to ∆A.

Since A lies within R, the normal vector to each hyperplaneHi must necessarily either ui = ±1.

Each of the two proper chains in P(A) consist solely of regions that are separated by hyperplanes

whose normal vectors have the same sign. Hence, as |A| ≥ 2, the restricted U1-action generator on

EA is either uA = ± rk∆A, where rk∆A = |A| ≥ 2. In particular, uA is not primitive relative to

the lattice t1Z
∼= Z, as in Figure 3.7.

Hj Πδ
A

∆∅

uA

∆A

uj

Figure 3.7: Example withN = 3. The U1-action generator uA is non-primitive, with |uA| ≥ 2.
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Hence, provided that δ ≥ 0 is sufficiently large, then the intersection of the extended core

component EA with level-set Φ−1(δ) is just a point, pA := Φ−1
A (δ), on which U1 acts locally freely.

Hence, after taking the symplectic cut to obtain the cut spaceM≤δ
ν , the point pA is an orbifold point

whose orbifold structure group ΓpA has ordermpA = |A| from A.5.

The generalisation of Lemma 3.16 to a higher-dimensional hypertoric variety is now quite straight-

forward. Indeed, if a 4n-dimensional hypertoric varietyMν , with hyperplane arrangement A, has a

reducible core C then we can find a four-dimensional hypertoric subvarietyMF ofMν , for some flat

HF ∈ L(A) of A with rkHF = n− 1, whose own core is reducible. Then, Lemma 3.16 implies that

the cut subspaceM≤δ

F is a suborbifold ofM≤δ
ν .

Theorem 3.17. LetMν be a 4n-dimensional hypertoric manifold whose core C is reducible. Then, for
δ ≥ 0 sufficiently large so that Zδ

ν ∩ C = ∅, the cut spaceM≤δ
ν is an orbifold.

Proof. LetMν be the hyperkähler analogue to the Kähler quotient,Xν = E∅. ThenXν is a compact

Kähler subvariety ofMν that forms one of the irreducible components of the core,Xν ⊊ C. Its image

is the bounded region ∆∅ = µR(Xν) in (tn)∗. There exists a subsetA ⊆ {1, . . . , N} for which the

bounded region ∆A is adjacent to ∆∅ in (tn)∗, meaning that ∆A ∩∆∅ ̸= ∅ and ∆A ̸= ∆∅. As the

two regions intersect, there exists a vertex v ∈ ∆A∩∆∅ which equals the intersection ofn hyperplanes

as A is simple. We can consider v to be a flat itself, {v} = HIv = ∩j∈IvHj which we represent using

the flat subset Iv ⊆ {1, . . . , N} with |Iv| = n. Furthermore, observe thatA ⊆ Iv.

There exists an element j ∈ A such that the hyperplaneHj separates ∆A from ∆∅. Note that the

choice ofHj may not necessarily be unique. Denote the flat subset obtained by removing j from Iv

by Jv,j := Iv \ {j}, so that |Jv,j| = n− 1. Its flatHJv,j
= ∩i∈Jv,j

Hi is then an affine line in (tn)∗.

SinceHj separates ∆A from ∆∅, their intersections ∆A ∩HJv,j
and ∆∅ ∩HJv,j

are both edges of

∆A and ∆∅ respectively, meeting at v, as demonstrated in Figure 3.8.

HJv,j

∆A ∩HJv,j

∆∅ ∩HJv,j

HjHJv,j

∆∅

∆A

vv

Figure 3.8: Restricted hyperplane arrangement AJv,j
of the hypertoric subvariety MJv,j

and the

hyperplane arrangement A forMν , respectively.
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The four-dimensional hypertoric subvarietyMJv,j
ofMν , that determines the flatHJv,j

via its

real moment mapHJv,j
= µR(MJv,j

), satisfies the hypotheses of Lemma 3.16. Its four-dimensional

cut spaceM≤δ
Jv,j

is therefore an orbifold, with at least one orbifold point belonging to its boundary

Zδ
Jv,j

, provided that we cutMJv,j
at a sufficiently large value for δ ∈ R≥0.

An equivalent statement of Theorem 3.17 is that the cut spaceM≤δ
ν is a manifold only ifMν

∼=
T ∗Xν , where the Kähler quotientXν is a product of projective spaces, i.e.,Xν = CPk1 × . . .×CPkm

with

∑m
i=1 ki = n, see Theorems 7.1 and 7.2 in [BD00].

A significant consequence of Theorem 3.17 is that the cut space M≤δ
ν of a generic hypertoric

varietyMν will be a compact Kähler orbifold. Hence, in Chapter 4, we will have to use the Kawasaki-

Riemann-Roch formula in the place of the Hirzebruch-Riemann-Roch formula, since the latter only

applies to smooth manifolds.
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Part II

Equivariant Localisation
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Chapter 4

Riemann-Roch-Hirzebruch Theorem

In this Chapter, we introduce the Hirzebruch-Riemann-Roch formula in Theorem 4.8, which calcu-

lates the C-vector spaceH0(M ;L) of holomorphic sections of a suitable line bundle L !M over a

compact Kähler manifoldM . It is this spaceH0(M ;L) that we will base the quantisation ofM upon,

with the holomorphic sections playing the rôle analogous to the wave functions. General references

for this chapter are [Huy05], [GH78], and [Dui11].

4.1 The Dolbeault-Dirac Operator
Suppose that M is a smooth manifold equipped with an almost-complex structure J , then we say

that J is ω-compatible if, for every point p ∈M , the bilinear form:

gp(v, w) = ωp(Jv, w), for all v, w ∈ TpM

is symmetric and positive-definite. With an ω-compatible almost-complex structure J on M , the

exterior algebra of the cotangent bundle T ∗M can be equipped with a Dolbeault structure. More

precisely, J induces a splitting of the complexified tangent bundle TCM into the +
√
−1 and −

√
−1

eigenspaces of J :

TCM := TM ⊗R C ∼= TM (1,0) ⊕ TM (0,1),

and, similarly, for its complexified cotangent bundle:

T ∗
CM := T ∗M ⊗R C ∼=

[
Λ(T ∗M)(1,0)

]
⊗C

[
Λ(T ∗M)(0,1)

]
.

This splitting of T ∗
CM also extends to its various exterior powers, equipping them with the bigrading:

Λm (T ∗
CM) ∼=

⊕
i+j=m

[
Λi(T ∗M)(1,0)

]
⊗C

[
Λj(T ∗M)(0,1)

]
,
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and, similarly, the space of differential forms onM also decomposes into a direct sum, according to

their bidegrees:

Ωm(M) := C∞ (M ; Λm(T ∗
CM)) ∼=

⊕
i+j=m

Ω(i,j)(M),

where:

Ω(i,j)(M) := C∞(M ;
[
Λi(T ∗

CM)(1,0)
]
⊗C

[
Λj(T ∗

CM)(0,1)
] )

is the space of differential forms onM of bidegree (i, j).

We can define the following projection operators:

π(i,j) : Ω•(M) −! Ω(i,j)(M),

which project a differential form onto its component of bidegree (i, j). For a differential form

α ∈ Ω(i,j)(M), one sees that:

dα ∈ Ω(i+1,j)(M)⊕ Ω(i,j+1)(M).

Using these π(i,j)
operators, we can define the following differential operators:

∂ : Ω(i,j)(M) −! Ω(i,j+1)(M),

∂ : Ω(i,j)(M) −! Ω(i+1,j)(M),
by

∂ := π(i,j+1) ◦ d,
∂ := π(i+1,j) ◦ d,

respectively. From this, we arrive at the almost-complex analogue of the (i, j)-Dolbeault complex:

{0} Ω(i,0)(M) Ω(i,1)(M) . . . Ω(i,n)(M).∂ ∂ ∂
(4.1)

The complex in (4.1) is not a genuine differential complex however, since ∂
2 ̸= 0, see, for example,

[Dui11, Chapter 2] or [Gui94, Chapter 4]. But, if the almost-complex structureJ onM is furthermore

integrable, then J becomes a bonafide complex structure from the Newlander-Nirenberg theorem,

[NN57, Theorem 1.1].

Definition 4.1. LetM be an almost-complex manifold with almost-complex structure J . Then J is

said to be integrable if either one of the following two conditions holds:

(i) for any α ∈ Ω•(M), one has that dα = ∂α + ∂α;

(ii) on Ω(1,0)(M), one has that π(0,2) ◦ d = 0.

Both of the conditions, 4.1 and 4.1 in Definition 4.1, hold whenM is a complex manifold [Huy05,

Proposition 2.6.15]. So, in a sense, the notion of integrability determines whether an almost-complex

structure J is an actual complex structure or not. The reason we are interested specifically in integrable

almost-complex structures is due to the following lemma.
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Lemma 4.2. If J is an integrable almost-complex structure, then:

∂2 = ∂
2
= 0, and ∂∂ + ∂∂ = 0. (4.2)

Conversely, if ∂2 = 0, then the almost-complex structure J is integrable.

As a corollary of Lemma 4.2, when J is integrable, the almost-complex Dolbeault complex in

(4.1) becomes exact on the right, since now we can guarantee that ∂
2
= 0:

{0} Ω(i,0)(M) Ω(i,1)(M) . . . Ω(i,n)(M) {0},∂ ∂ ∂ ∂
(4.3)

where n = dimC M . Thenceforth, we shall assume that J is a complex structure onM , as this is the

scenario that concerns us. This leads us to the following fundamental theorem, proven by Dolbeault

in [Dol53, Théorème 1]:

Theorem 4.3 (Dolbeault). LetM be an almost-complex manifold, whose almost-complex structure J
is integrable. Then the (i, j)-Dolbeault cohomology groupH(i,j)(M) is the vector space:

H(i,j)(M) := Hj(M ; Ωi(M)) ∼=
ker
(
∂ : Ω(i,j)(M) ! Ω(i,j+1)(M)

)
im
(
∂ : Ω(i,j−1)(M) ! Ω(i,j)(M)

) . (4.4)

In Theorem 4.3, observe that, when i = 0, the isomorphism in (4.4) becomes:

H(0,j)(M) = Hj(M ;OM). (4.5)

In other words,H(0,j)(M) coincides with the j-th cohomology of its sheaf of holomorphic sections

onM and, more importantly to us, when j = 0 in (4.5), we have:

H(0,0)(M) = H0(M ;OM) (4.6)

is the C-vector space of holomorphic sections of the sheaf OM !M . WhenM is compact, then the

cohomology groupsH(i,j)(M) are guaranteed to be finite-dimensional by [CS53].

Now consider the case when M is a compact symplectic manifold with symplectic two-form

ω ∈ Ω2(M), such that the cohomology class of ω is integral, [ω] ∈ H2(M ;Z). Suppose that there

exists a Hermitian line bundle L !M with a Hermitian connection ∇, whose first Chern class is

c1(L) = [ω] ∈ H2(M ;Z) and whose curvature with respect to ∇ isR(L) = (2π/
√
−1)ω. Such a

line bundle π : L !M that possesses these properties is called a pre-quantum line bundle overM .

Definition 4.4. LetM be a complex manifold and let π : L !M be a holomorphic pre-quantum

bundle overM . Then:

Ω(i,j)(M ;L) := C∞(M ;
[
Λi(T ∗

CM)(1,0)
]
⊗C

[
Λj(T ∗

CM)(0,1)
]
⊗ L

)
defines the C-vector space of L-twisted (i, j)-forms onM .
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As mentioned in [Dui11, Chapter 2.2], a Hermitian metric onM induces Hermitian structures

on both the tangent bundle TM and on the fibres of L. Moreover, there exists a complex-linear

isomorphism TCM ∼= T ∗
CM which transplants the Hermitian structure from TCM onto one on its

dual, T ∗
CM . For brevity, let us set:

Ej := T ∗
CM

(0,j) = ΛjT ∗
CM

(0,1), and E :=
n⊕

j=0

Ej.

Then for each 0 ≤ j ≤ n, the bundle Ej
inherit a Hermitian structure from T ∗

C, and so does the

direct sum E by requiring the summands to be pairwise orthogonal. Finally, the product bundles

Ej ⊗ L andE ⊗ L each picks up a Hermitian structure from those ofEj
andE, provided that L

has a Hermitian inner product too [Dui11, §2.2].

Definition 4.5. If ∇ denotes the Hermitian connection on L, then the L-twisted Dolbeault
operator, ∂L, is defined to be the operator:

∂L := ∂ ⊗ 1 + 1⊗∇ : Ej ⊗ L ! Ej+1 ⊗ L.

Many of the results above hold for the L-twisted Dolbeault operator ∂L too [Sil96]. In particular,

for (4.3) we get the L-twisted Dolbeault complex:

0 Ω(i,0)(M ;L) Ω(i,1)(M ;L) . . . Ω(i,n)(M ;L) 0,
∂L ∂L ∂L

(4.7)

and, furthermore, we also obtain the L-twisted version of Theorem 4.3.

Theorem 4.6 (L-twisted Dolbeault). LetM be an almost-complex manifold, whose almost-complex
structure J is integrable. Suppose that L ! M is a holomorphic vector bundle over M . Then the
L-twisted (i, j)-Dolbeault cohomology group,H(i,j)(M ;L), is the complex vector space:

Hj(M ; Ωi(M ;L)) ∼=
ker
(
∂L : Ω(0,j)(M ;L) ! Ω(0,j+1)(M ;L)

)
im
(
∂L : Ω(0,j−1)(M ;L) ! Ω(0,j)(M ;L)

) . (4.8)

By combining the Hermitian inner product onE ⊗L with the volume form vol(M), we can

define the adjoint operator:

∂
∗
L : Ej ⊗ L ! Ej−1 ⊗ L,

to the L-twisted Dolbeault operator ∂L. If we set:

Eeven :=
⊕
j even

Ej, and Eodd :=
⊕
j odd

Ej,
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then we can furthermore define the Dolbeault-Dirac operator, /∂C, to be the first-order elliptic

differential operator /∂L, which is given by:

/∂C :=
√
2
(
∂L + ∂

∗
L

)
: Eeven ⊗ L ! Eodd ⊗ L.

Its index, Ind/∂C
(M ;L), is the virtual vector space given by the formal difference:

Ind/∂C
(M ;L) := ker(/∂C)− coker(/∂C), (4.9)

or equivalently as the alternating direct sum of virtual vector spaces:

Ind/∂C
(M ;L) =

⊕
j≥0

(−1)jH(0,j)(M ;L). (4.10)

4.2 The Riemann-Roch-Hirzebruch Theorem
Using (4.10), we can define an important symplectic invariant [Gui94, §3.1].

Definition 4.7. Let M be a Kähler manifold with Kähler two-form ω, and let π : L ! M be a

holomorphic pre-quantum line bundle overM . Then the Riemann-Roch number of L, denoted

by χ(M ;L), is defined to be:

χ(M ;L) :=
n∑

j=0

(−1)j dimC H
(0,j)(M ;L). (4.11)

When ω is sufficiently positive then H(0,j)(M ;L) = 0 for each j ≥ 1 by Kodaira’s vanishing

theorem [Kod53]. When this holds, the index becomes:

Ind/∂C
(M ;L) = H(0,0)(M ;L) ∼= H0(M ;L)

from (4.10), whereas the Riemann-Roch number becomes:

χ(M ;L) = dimC H
0(M ;L). (4.12)

However, calculating the Euler characteristic in (4.12) is an entirely different matter. Though in the

instance where (M,ω) is a compact Kähler manifold and π : L !M is a holomorphic pre-quantum

line bundle with c1(L) = [ω] so that, by Hodge theory, the Riemann-Roch number χ(M ;L),

in (4.12) coincides with the dimension of the index Ind/∂L
(M ;L), in (4.9) for the Dolbeault-Dirac

operator, ∂L. That is to say:

χ(M ;L) = dimC Ind/∂C
(M ;L).

Thus, to calculate the Euler characteristic χ(M ;L), it suffices to calculate the Dirac-Dolbeault

index, Ind/∂L
(M ;L). An elegant way to do so is by using the Atiyah-Singer index formula, [AS68,

Theorem 4.3]:
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Theorem 4.8 (Atiyah-Singer index theorem). Let (M,ω) be a compact Kähler manifold and let
π : L !M be a holomorphic pre-quantum line bundle overM . Then the Atiyah-Singer index formula
in this case states that:

χ(M ;L) = dimC Ind/∂C
(M ;L) =

∫
M

Td(TM) ∧ Ch(L), (4.13)

where Td(TM) and Ch(L) are the Todd class of the tangent bundle TM and the Chern character
of L, respectively.

The statement in Theorem 4.8 of the Atiyah-Singer index theorem is actually a particular case of

the actual index theorem. The statement of Theorem 4.8 is also known as the Hirzebruch-Riemann-
Roch theorem, having been proven originally for complex projective algebraic varieties by Hirzebruch

in [Hir66].

The integral (4.13) in Theorem 4.8 has the characteristic class Td(TM)∧Ch(L) as its integrand,

and is made up from the Todd class Td(TM) of the tangent bundle TM , and from the Chern

character Ch(L) of the holomorphic pre-quantum line bundle π : L !M overM . To introduce

the Todd class Td(TM), we shall express it by the means of the splitting principle [BT82], which

states verbatim that:

Theorem 4.9 (Splitting principle). To prove a polynomial identity in the Chern classes of complex
vector bundles, it suffices to prove it under the assumption that the vector bundles are direct sums of line
bundles.

Theorem 4.9) permits us to assume that a vector bundle π : E !M decomposes as:

E ∼= V1 ⊕ . . .⊕ Vn, where n = dimC M, (4.14)

into a direct sum of n = dimC M complex line bundles, so Vj ∼= C for each j = 1, . . . , n.

Definition 4.10. LetM be a complex manifold of complex dimensiondimC M = n. Then, assuming

that the tangent bundle π : TM !M splits as in Theorem 4.9, we define the Todd class Td(TM)
to be the characteristic class:

Td(TM) :=
n∏

j=1

c1(Vj)

1− e−c1(Vj)
. (4.15)

The Todd class Td(TM) can be expressed explicitly as a formal power series in the Chern class,

the first few terms of which are:

Td(TM) = 1 +
c1
2
+
c21 + c2
12

+
c1c2
24

+ . . . . (4.16)

Here, cj := cj(TM) ∈ H2j(M ;Z) is the j-th Chern class of the tangent bundle TM . One can

derive (4.16) by writing (4.15) in terms of the Bernoulli numbers [Ver03, Lecture 1]. Moreover, if

n = dimC M , then the series (4.16) truncates after the n-th term.
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The other characteristic class in the integrand (4.13) of the Hirzebruch-Riemann-Roch formula

from Theorem 4.8 is that of the Chern character, Ch(L), of the holomorphic pre-quantum line

bundle, π : L ! M . Fortunately its definition is far less contrived than that of the Todd class

Td(TM).

Definition 4.11. IfM is an n-dimensional compact Kähler manifold with Kähler two-form ω, and if

π : L !M is a holomorphic pre-quantum line bundle overM , then the Chern character Ch(L)
of the line bundle L is the characteristic class:

Ch(L) := ec1(L). (4.17)

To finish this section, let us go through an example in which the Riemann-Roch number is

calculated when L = O(m) is the twisted hyperplane line bundle over the complex projective plane,

M = CP2
.

Example 4.12. Let M = CP2
with the Fubini-Study metric ω = ωFS, and equip it with the

hyperplane line bundle L = O(m) for some non-negative integer, m ∈ Z≥0. Consider the total
Chern class:

c(TCP2) := c0(TCP2) + c1(TCP2) + c2(TCP2) + . . . ,

of the tangent bundle TCP2
, along with the dual of the Euler sequence:

{0} OCP2 OCP2(1)⊕3 TCP2 {0}. (4.18)

From the multiplicativity of the Chern class, the triviality of OCP2 , and from (4.18), we have:

c(TCP2) = c(OCP2(1)⊕3) · c(OCP2) = c(OCP2(1)⊕3) = (1 + [A])3 (4.19)

where [A] ∈ H2(CP2;Z) is the fundamental class of the hyperplane section. By equating the degrees

in (4.19), we get:

c0(TCP2) = 1, c1(TCP2) = 3[A], and c2(TCP2) = 3[A]2.

Using the series (4.16), the Todd class Td(TCP2) can be written as:

Td(TCP2) = 1 + 3
2
[A] + [A]2.

Now, turning to the Chern character Ch(O(m)), the first Chern class of O(m) is just

c1(O(m)) = m[A]. Hence the Chern character Ch(O(m)) is:

Ch(O(m)) = ec1(O(k)) = em[A] = 1 +m[A] + m2

2
[A]2.
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So finally, by Theorem 4.8, the Riemann-Roch number for O(m) ! CP2
is:

χ(CP2;O(m)) =

∫
CP2

Ch(O(m)) ∧ Td(TCP2)

=

∫
CP2

(
1 +m[A] + m2

2
[A]2

)
∧
(
1 + 3

2
[A] + [A]2

)
=

∫
CP2

(
m2

2
+ 3m

2
+ 1
)
[A]2 + . . .

=
m2

2
+

3m

2
+ 1

=
(m+ 2)(m+ 1)

2
.

Observe that this result coincides with the dimension of the space of degreem homogeneous polyno-

mials on CP2
, that is:

(m+2)(m+1)
2

=

(
m+ 2

2

)
= dimC C[z0, z1, z2]m.

4.3 The Kawasaki-Riemann-Roch Formula for Orbifolds
So far in this chapter, we have consideredM to be a smooth manifold only. However, in general, from

Theorem 3.17 we will have to deal with hypertoric varieties whose cut spaces are orbifolds. The “orbifold
version” of the Hirzebruch-Riemann-Roch theorem in Theorem 4.8 is the Kawasaki-Riemann-Roch

theorem, [Kaw79], which applies to orbifolds. See Appendix A for a brief introduction to orbifold

theory.

Let M be a 2n-dimensional compact symplectic orbifold with symplectic two-form ω, then

its inertia orbifold M̂ is also a compact symplectic orbifold. By choosing a compatible positive

almost-complex structure J onM , the tangent bundles TM and TM̂ both become Hermitian vector

orbibundles. The immersion τ : M̂ !M gives rise to a normal bundleNM̂ ! M̂ induced by the

short exact sequence:

{0} TM̂ TM |τ(M̂) NM̂ {0},

and which can be equipped with a Hermitian structure.

Suppose now, that F ⊆M is a connected suborbifold ofM so that its associated orbifold F̂ is a

suborbifold of M̂ . The inclusion iF : F ↪!M from F intoM determines another normal bundle

νF of F inM from the short exact sequence:

{0} TF TM |iF (F ) νF {0}.
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Finally, by using the immersion τ : F̂ ! F we can form the pull-back bundle ν̂F = τ ∗νF ! F̂ ,

which is a vector orbibundle over F̂ .

Now, ifE !M is a holomorphic Hermitian vector orbibundle overM with Hermitian connec-

tion ∇, by pullingE back to M̂ via τ we obtain the vector orbibundle, Ê := τ ∗E ! M̂ , over the

associated orbifold, M̂ . Denote the curvature two-form associated to∇byR(Ê) ∈ Ω2(M̂ ; End(Ê)),

and denote the canonical automorphism of Ê byA(Ê) ∈ Aut(Ê), which is defined in Appendix

A.10.

Definition 4.13. We define the twisted Chern class ChM̂(Ê) of the orbifold vector bundle Ê by:

ChM̂(Ê) := Tr
(
A(Ê)eR(Ê)

)
∈ Ω2(M̂), (4.20)

and the associated characteristic formDM̂(Ê) of the orbifold vector bundle Ê by:

DM̂(Ê) := det
(
IdÊ −A(Ê)−1e−R(Ê)

)
∈ Ω2(M̂). (4.21)

The Todd class Td(TM̂) remains the same as in the manifold case, namely that if R(TM̂) ∈
Ω2(M̂ ;TM̂) is the curvature of the tangent bundle TM̂ , then:

Td(TM̂) := det

 R(TM̂)(
I − e−R(TM̂)

)
 , (4.22)

where I is the identity operator on TM̂ .

We may finally present the Kawasaki-Riemann-Roch theorem for orbifolds, which is stated in

[Mei96] and in [Sil96].

Theorem 4.14 (Kawasaki-Riemann-Roch). LetM be a compact Kähler orbifold, andE !M be
a holomorphic Hermitian orbifold vector bundle overM . Then the Riemann-Roch number χ(M ;E) is
given by the formula:

χ(M ;E) =

∫
M̂

1

dM̂

Td(TM̂) · ChM̂(Ê)

DM̂(NM̂)
. (4.23)

Here,ChM̂(Ê) andDM̂(Ê) are the twisted Chern class and the associated characteristic form of Ê from
(4.20) and from (4.21) respectively, Td(TM̂) is the Todd class of M̂ , and dM̂ is the orbifold multiplicity
of M̂ from A.
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Chapter 5

Equivariant Cohomology and Integration

As one may have guessed from Example 4.12, evaluating the Riemann-Roch-Hirzebruch formula (4.13)

in Theorem 4.8 becomes increasingly more cumbersome as the dimension ofM increases, even with

higher-dimensional complex projective spaces. Fortunately however, ifM is equipped with an effective

and Hamiltonian action of a torus T , then this provides us with a way of adding some powerful and

elegant methods to our arsenal, that are otherwise not available to us in the non-equivariant setting.

These are known as localisation formulae, and they can reduce an integral overM , whose integrand

involves characteristic classes, into a finite sum over the components of the fixed-point loci,MT
. In

particular, whenM has a T -action whose fixed-point locus is just a finite number of isolated-fixed

points, so thatMT = {p1, . . . , pk}, then the integrand is very easy to evaluate in comparison to the

Hirzebruch-Riemann-Roch formula (4.13). What is more interesting, is that only the local isotropy

data ofMT
is required to evaluate the integral, as opposed to the global data ofM – hence the term

localisation. We shall see in Chapter 6 that the fixed-point locus (M≤δ
ν )T of our cut spaceM≤δ

ν consists

solely of isolated fixed points, and, furthermore, that its moment polyptych ∆≤δ
ν encapsulates all of

the fixed point data required to evaluate the Riemann-Roch-Hirzebruch (4.13) and the Kawasaki-

Riemnn-Roch (4.23) formulae in Theorems 4.8 and 4.14, respectively.

This chapter is essentially just a review of equivariant cohomology and equivariant localisation,

with none of it original, with most of the results being quoted from either [Tu20], [GS99], [AB84],

and also [Bot99]. We begin this chapter by introducing the reader to equivariant cohomology, before

then introducing equivariant integration and the famous fixed-point formulae.

5.1 Equivariant Cohomology and the Borel Construction
The idea of equivariant cohomology is motivated by the principle that, whenM is a topological space

andG is a compact Lie group that acts freely onM , then ideally the equivariant cohomology groups
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H•
G(M) should be just the ordinary cohomology groupsH•(M/G) for the quotient manifoldM/G:

H•
G(M) ∼= H•(M/G), ifG acts freely.

IfG does not act freely onM however, then the quotientM/Gmay end up being difficult to work

with in terms of an ordinary cohomology theory – equivariant cohomology strives, therefore, to

find alternative cohomology groups, denoted byH•
G(M), that generalise the notion of an ordinary

cohomology groupH•(M/G) appropriately in such instances. This leads us to the idea of the Borel
construction ofH•

G.

Let EG be any contractible topological space, and assume that a compact Lie group G acts

freely on EG. Denote its quotient by BG := EG /G. SinceG acts freely on EG, we may consider

EG ! BG to be aG-principal fibre bundle over BG.

Definition 5.1. Let M be a topological manifold and G be a compact Lie group that acts on M .

Let EG be any contractible space on whichG acts freely. In this framework, we say that BG is the

classifying bundle ofG, and that EG ! BG is the universal bundle ofG.

Furthermore, the Borel construction, or the homotopy quotient, is defined to be the quotient

MG :=M ×G EG := (M × EG)/G (5.1)

with respect to the diagonal action ofG onM × EG.

The Borel constructionMG is then the substitute space forM , in that the ordinary cohomology

groups ofMG will be the equivariant cohomology groups ofM .

Definition 5.2. LetM be a topological manifold andG be a compact Lie group acting onM . Let

EG be any contractible space on whichG acts freely. Then theG-equivariant cohomology groups,

H•
G(M), are defined to be the ordinary cohomology groups of the Borel construction:

H•
G(M) := H•(M ×G EG). (5.2)

Example 5.3. If we assume that G acts freely on M , then the projection M × EG ! M induces

a fibration M ×G EG ! M/G, whose typical fibre is EG. Hence, since EG is assumed to be

contractible:

H•
G(M) = H•(M ×G EG) ∼= H•(M/G),

which is the result that we had been hoping for.

The reason that EG ! BG is called the “universal” G-bundle is that, if E ! B is any G-

principal fibre bundle, whose total spaceE is contractible, thenE ! B is a universalG-bundle. This

is the statement of the next theorem, and is proven in [GS99, Proposition 1.1.1, & Theorem 1.1.1].
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Theorem 5.4. The Borel constructionMG =M ×G EG, defined in (5.1), is independent of the choice
of EG.

So far, we have seen that if such aG-principal fibre bundleE ! B exists, whereE is a contractible

space, then it is must necessarily beG-equivariantly homotopic to the universalG-bundle,EG ! BG.

Of course, EG ! BG has to exist first to be of use.

One construction of a universalG-bundle is via Milnor’s join construction, [Mil56]. Milnor

considered the infinite join ofGwith itself:

EG = G ⋆ G ⋆ . . . ⋆ G ⋆ . . . = lim
−!

EG(k), where EG(k) := ⋆k
i=1G.

Intuitively, repeatedly taking joins of a topological groupG gives us a space EG(k), which becomes

more and more connected with each added join. In [Mil56], Milnor proved that his join spaces

lim
−!

EG(n) are weakly contractible in the limit, and were further proven to be contractible by Dold

later on in [Dol63, Theorem 8.1]. Hence:

Theorem 5.5. The topological space EG is contractible.

Let us see what the universalG-bundles EG ! BG are in the cases whenG = U1 andG = T n

are the circle and the n-dimensional torus respectively.

Example 5.6. LetG = U1. There is an increasing sequence of complex vector spaces:

C1 ⊂ C2 ⊂ C3 . . . ,

and therefore an increasing sequence of odd-dimensional spheres:

S1 ⊂ S3 ⊂ S5 ⊂ . . . .

The U1-action on each odd-dimensional sphere is compatible with each inclusion, thence giving rise

to the following commutative diagram of U1-principle fibre bundles:

S1 ⊂ S3 ⊂ · · · ⊂ S2k−1 ⊂ S2k+1 ⊂ · · · ,

CP0 ⊂ CP1 ⊂ · · · ⊂ CPk−1 ⊂ CPk ⊂ · · · .

Then EU1(k) ∼= S2k+1
and BU1(k) ∼= CPk

for each k ≥ 0. There is therefore an induced

U1-action on the infinite sphere, S∞ = ∪∞
k=0S

2k+1
. SinceU1 acts freely on each S2k+1

, it acts freely

on S∞
. The orbit space is the infinite-dimensional complex projective space, CP∞ = S∞/U1.

While S∞
is not a bonafide manifold due to its infinite-dimensionality, the projection S∞ !

CP∞
is topologically aU1-principal fibre bundle, and it can be shown thatS∞ ! CP∞

is topologically

60



trivial, see [Tu20, Example 3.6]. The homotopy groups all vanish, πq(S
∞) = 0 for each q ≥ 0,

and thus S∞
is weakly contractible. By Whitehead’s theorem [Hat02, Theorem 4.5], S∞

is actually

contractible, unlike any finite-dimensional sphere. Hence, EU1
∼= S∞

and BU1
∼= CP∞

, and

therefore S∞ ! CP∞
is the universal U1-bundle.

Example 5.7. Now, when G = T n
is the n-dimensional torus, Example 5.6 generalises to give

ETn(k) ∼= (S2k+1)n and BTn(k) ∼= (CPk)n. So, in taking the limit, ETn ∼= (S∞)n and BTn ∼=
(CP∞)n. Hence the universal T n

-bundle is (S∞)n ! (CP∞)n.

So far, we have see that the universal U1-bundle is EU1 ∼= S∞
in Example 5.6, and that the

universal T n
-bundle is ETn ∼= (S∞)n in Example 5.7, respectively. Let us see whatH•

G(M) is when

M is just a point, i.e., whenM = {pt}.

As the G-action of any Lie group G on a point M = {pt} is trivial, we see that the Borel

construction is:

{pt}G = {pt} ×G EG = EG /G = BG .

Hence theG-equivariant cohomology group of any point {pt} is just the ordinary cohomology group

of the classifying bundle:

H•
G({pt}) = H•({pt} ×G EG) ∼= H•(BG).

Example 5.8. From Example 5.6, we saw that BU1(k) ∼= CPk
for each k ≥ 0. Since H•(CPk) ∼=

R[u]/⟨uk+1⟩, where deg(u) = 2, after taking the limit we see that:

H•
U1
({pt}) = H•(BU1) ∼= H•(CP∞) ∼= R[u].

Example 5.9. In a similar vein to Example 5.8, whenG = T n
, we as that BTn(k) ∼= (CPk)n for each

k ≥ 0. Hence, by the Künneth formula and Example 5.8:

H•
Tn({pt}) = H•(BTn) ∼= H• ((CP∞)n) ∼=

n⊗
i=1

R[ui] ∼= R[u1, . . . , un],

where deg(ui) = 2, for each i = 1, . . . , n.

An important algebraic property found in equivariant cohomology, an which we shall refer back

to in Section 5.5, is that it every ringH•
G(−) is also aH•(BG)-algebra.

Lemma 5.10. LetM be a topological manifold and letG be a compact Lie group that acts onM . Then
theG-equivariant cohomology ringH•

G(M) is an algebra over the ringH•(BG).
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Proof. If M is a G-space, then the constant projection pr : M ! {pt} is trivially G-equivariant.

Hence it induces a map prG : MG ! {pt}G between homotopy quotients, and moreover a ring

homomorphism via the pull-back:

pr∗G : H•
G({pt}) H•(MG)

pr∗G : H•(BG) H•
G(M)

(5.3)

Using the homomorphism in (5.3), we may define a scalar-multiplication operation inH•
G(M) in the

following manner:

u · x := pr∗G(u)x, where u ∈ H•(BG) and x ∈ H•
G(M).

This scalar multiplication makesH•
G(M) into an algebra overH•(BG).

Lemma 5.10 shows thatH•
G(M) is an algebra over the ringH•(BG). However, unlike in ordinary

cohomology, it is not necessarily the case that the coefficient ringH•(BG) embeds intoH•
G(M) as a

subring for anyM . Fortunately, we have the following result whenMG ̸= ∅, [Tu20, Proposition 9.8].

Proposition 5.11. If p ∈M is a fixed-point for theG-action onM , then:

(i) the inclusion i : {p} ↪! M induces a section iG : BG ! MG of theG-principal fibre bundle,
MG ! BG;

(ii) the constant projection pr :M ! {p} induces an injection, pr∗G : H•
G({p}) ↪! H•

G(M).

Proof. For (i), since p is a fixed point, the inclusion map i : {p} ↪!M is aG-equivariant map such

that pr ◦i = Id{p}. Hence, there is an induced map of homotopy quotients such that prG ◦iG = Id.

Thus, iG : BG !MG is a section ofMG ! BG;

Next, for (ii), by functoriality [Tu20, Section 9.2]:

i∗G ◦ pr∗G = IdH•
G({pt}) .

Therefore, pr∗G : H•(BG) ! H•
G(M) is injective.

5.2 The Equivariant de Rham Theorem
Section 5.1 introduced equivariant cohomology groups and how to construct them topologically.

However, in some scenarios, it is more convenient to use equivariant de Rham theory, if there is

more geometry involved than than there is topology. WhenM is a smooth manifold acted upon by
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a compact Lie group, then one can form the Cartan model for equivariant cohomology, which is a

differential complex whose elements are equivariant differential forms. Moreover, the localisation

formulae, that we shall come across in Section 5.5, is expressed in terms of equivariant characteristic

classes which naturally arise within the Cartan model.

So, letM be ann-dimensional smooth manifold and letG be a compact Lie group acting that acts

onM . Then the quotient spaceM/G is also smooth manifold, and the projection q :M !M/G is

a principalG-fibration, [Tu20, Chapter 12]. Our first step is to investigate which differential forms on

M can be thought of those originating from the quotientM/G.

Definition 5.12. The subcomplex q∗Ω•(M/G) ⊆ Ω•(M) of differential forms on M is called

the complex of basic forms. It consists of the differential forms q∗ω on M which come from the

differential forms ω on the quotientM/G under the injective pull-back q∗ : Ω(M/G) ! Ω(M).

For any point p ∈ M , let q∗,p : TpM ! Tq(p)M denote the differential of q : M ! M/G.

Then we say that the vertical tangent space at p ∈M , denoted by Vp, is the kernel of the differential

q∗,p : TqM ! Tq(p)M . That is to say, Vp
∼= ker q∗,p. The vectors that belong to Vp are said to be

vertical to q∗ at p. The key idea here, is that the vertical vectors should be “orthogonal” to the tangent

space of the quotient under the differential q∗ : TpM ! Tq(p)(M/G), and so any vertical vector

should be killed off onceM has been collapsed into itsG-orbits after taking the quotientM/G.

For theG-principal fibre bundle q : M ! M/G, a differential form ω ∈ Ω•(M) is said to be

horizontal if, at any point p ∈M , the form ω vanishes whenever one of its arguments is a vertical

vector. That is to say, that ıXpωp = 0 for everyXp ∈ Vp. Thus, horizontal differential forms onM are

only “compatible” with non-vertical vectors. The crux of these notions is the following characterisation

of basic differential forms, which has been taken from [Tu20, Theorem 12.5].

Theorem 5.13. Let M be a smooth manifold and let G be a Lie group that acts freely on M . Let
q : M ! M/G be the G-principal fibre bundle induced by forming the quotient M/G. Then a
differential form ω ∈ Ω•(M) is basic if, and only if, it isG-invariant and horizontal.

Corollary 5.14. Suppose furthermore thatG is connected with Lie algebra g. Then a differential form
ω ∈ Ω•(M) is basic if, and only if, LX#

ω = 0 and ıX#
ω = 0 for everyX ∈ g.

Definition 5.15. LetG be a Lie group with Lie algebra g. The Weil algebra,W (g), of g is defined to

be the algebra:

W (g) := ∧(g∗)⊗C S(g
∗).

Consider aG-principal fibre bundle P !M , equipped with a g-valued connection one-form

θ ∈ Ω1(P ) on P , and with a g-valued curvature two-form Ω ∈ Ω2(P ) on P , respectively. Given the

dual Lie algebra elements, α1, . . . , αk ∈ g∗, we define now two unique algebra homomorphisms; the
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first is:

f∧ : ∧(g∗) −! Ω(P ), where f∧(α1 ∧ . . . ∧ αk) := (α1 ◦ θ) ∧ . . . ∧ (αk ◦ θ),

whereas the second is:

fS : S(g∗) −! Ω(P ), where fS(α1 ∧ . . . ∧ αk) := (α1 ◦Θ) ∧ . . . ∧ (αk ∧Θ).

We can then combine f∧ and fS together to form the bilinear mapping:

f∧ × fS : ∧(g∗)× S(g∗) ! Ω(P ), where f(α, β) := f∧(α) ∧ fS(β),

which in turn induces the linear mapping:

fW : ∧(g∗)⊗ S(g∗) ! Ω(P ), where f(α⊗ β) = f∧(α) ∧ fS(β), (5.4)

by the universal property of the tensor product.

Definition 5.16. The map fW : W (g∗) ! Ω(P ) defined in (5.4) is called the Weil map.

The Weil algebra W (g) can be made into a graded algebra, by assigning a degree of one to the

elements of g∗ in ∧(g∗), and the elements of g∗ in S(g∗) a degree of two. With these degrees, the Weil

map fW becomes a graded-algebra homomorphism.

Now let us a basisX1, . . . , Xn for the Lie algebra g with the dual basis α1, . . . , αn
for g∗. Write:

λi := αi ⊗ 1 ∈ ∧(g∗)⊗ S(g∗),

ri := 1⊗ αi ∈ ∧(g∗)⊗ S(g∗).

Then, in terms of these generators, the Weil algebraW (g) becomes:

W (g) = ∧•(λ1, . . . , λn)⊗C S
•(r1, . . . , rn),

where ∧(g∗) is the free exterior algebra generated by the λ1, . . . , λn, and S(r1, . . . , rn) ∼=
R[r1, . . . , rn] is the polynomial algebra generated by indeterminates r1, . . . , rn. In terms of the

grading, the Weil algebraW (g) can be written down explicitly as:

W (g) :=
⊕
k≥0

W k(g) :=
⊕
k≥0

⊕
p,q≥0

p+2q=k

∧p(λ1, . . . , λn)⊗ Sq(r1, . . . , rn),

where ∧p(λ1, . . . , λn) is the space of homogeneous elements of degree p in the λ1, . . . , λn, and

Sq(r1, . . . , rn) is the space of homogeneous elements of degree q in the r1, . . . , rn.
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Example 5.17. Continuing from Example 5.7, letG = T ∼= Un
1 be the n-dimensional real torus, and

let it act onM . Denote its Lie algebra by t and let t∗ be its dual. Then the Weil algebraW (t) of t is:

W (t) = ∧(t∗)⊗ S(t∗) = ∧(λ1, . . . , λn)⊗ R[r1, . . . , rn].

Since the connection one-form θ and the curvature two-form Θ are both g-valued differential

forms, they can be written uniquely in terms of the basisX1, . . . , Xn as the linear combinations:

θ =
n∑

i=1

θiXi, and Θ =
n∑

i=1

ΘiXi,

where the θi and Θi
are R-valued one- and two-forms on P , respectively. Under this guise, the Weil

map fW from (5.4) becomes:

fW (λk) = λk ◦ θ = λk ◦
(∑

θjXj

)
= θk,

fW (rk) = rk ◦Θ = rk ◦
(∑

ΘjXj

)
= Θj.

(5.5)

As θ ∈ Ω1(P ) is a connection one-form on P , it has to satisfy the second structural equation

[KN96, Theorem 5.2], whereas since Θ ∈ Ω2(P ) is a curvature two-form, it has to satisfy Bianchi’s

identity [KN96, Theorem 5.4]. These respectively are:

dθk = Θk − 1

2

∑
ckijθ

i ∧ θj, and dΘk =
∑

ckijΘ
i ∧ θj. (5.6)

Here, the ckij in (5.6) are the structure constants of the Lie algebra g.

Lemma 5.18. For a differential δ onW (g) to commute with the Weil map fW , it must satisfy:

δλk = rk −
∑
i<j

ckij [λi ∧ λj] , and δrk =
∑
i,j

ckij [ri ∧ λj] . (5.7)

Proof. Recall from (5.5) that fW (λk) = θk and fW (rk) = Θk
. Then:

dfW (λk)
(5.5)

= dθk
(5.6)

= Θk − 1

2

∑
ckij
[
θi ∧ θj

] (5.5)

= fW (rk)−
1

2

∑
ckij
[
fW (λi) ∧ fW (λj)

]
= fW

(
rk −

1

2

∑
ckijλi ∧ λj

)
,

and:

dfW (rk)
(5.5)

= dΘk
(5.6)

=
∑

ckij
[
Θi ∧ θj

] (5.5)

=
∑

ckij [fW (ri) ∧ fW (λj)]

= fW

(∑
ckij
[
rk ∧ λj

])
.

So, if we let δ act on both λk and rk as in (5.7), then we see that d ◦ fW = fW ◦ δ.
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We call the differential δ that operates on W (g) via (5.18) the Weil differential, and it can be

shown that it is indeed a bonafide differential satisfying satisfies δ2 = 0, see [Tu20, Theorem 19.1].

If we fix a Lie algebra elementA ∈ g, then we can also extend the interior derivative ıA to the Weil

algebraW (g) too. Since:

ıAθ
k = ıAθ

k = θk(A), and ıAΘ
k = 0,

then: ∑
θk(A)Xk = θ(A) = A =

∑
αk(A)Xk,

and, recalling that α1, . . . , αn is the basis of g∗, dual to the basisX1, . . . , Xn of g, we observe that:

ıAθ
k = θk(A#) = αk(A).

Hence, for the Weil map fW to preserve the interior derivative ıA on g, it should be defined onW (g)
by:

ıAλk = λk(A) = αk(A), and ıArk = 0,

so that ıA ◦ fW = fW ◦ ıA.

Finally, one may combine both exterior and interior derivatives, δ and ıA, respectively onW (g),

to define the Lie derivative onW (g):

LA : W (g) ! W (g), where LA := δ ◦ ıA + ıA ◦ δ. (5.8)

As both the Weil map fW and the interior derivative ıA commute with the Weil derivative δ, we see

that the Lie derivative LA in (5.8) does too.

Example 5.19. Since the torus T is abelian, its structure constants ckij are all zero. Hence, the Weil

differential δ from (5.7) is the anti-derivation of degree 1 onW (t), that satisfies:

δλj = rj, δrj = 0, for each j = 1, . . . , n.

For anyA ∈ t, the interior derivative ıA onW (t) is likewise the anti-derivation of degree −1, which

satisfies:

ıAλj = λj(A), ıAuj = 0, for each j = 1, . . . , n.

Lastly, the Lie derivative LA onW (t) is the derivation of degree 0, which satisfies:

LAλi = (δ ◦ ıA)(λi) + (ıA ◦ δ)(λi) = δλi(A) + ıAri = 0,

LAri = (δ ◦ ıA)(ri) + (ıA ◦ δ)(ri) = δ(0) + ıA(0) = 0.

The Weil algebra W (g), along with the derivations and anti-derivations δ, ıA, and LA of the

orders 1, −1, and 0, respectively, define what is known as a g-differential graded algebra.
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Definition 5.20. A g-differential graded algebra (g-dga) is a commutative graded algebra

Ω = ⊕k≥1Ωk equipped with an anti-derivation d : Ω ! Ω of degree 1 such that d ◦ d = 0,

and which has the two following g-actions:

ı : g× Ω ! Ω,

ı(A, ω) := ıAω,
and

L : g× Ω ! Ω,

L(A, ω) := LAω,

where, for anyA ∈ g, both ıA and LA are R-linear inA; where ıA acts on Ω as an anti-derivation of

degree −1 such that ıA ◦ ıA = 0; and where LA acts on Ω as a derivation of degree 0; furthermore, d,

ıA, and LA satisfy Cartan’s homotopy formula:

LA = d ◦ ıA + ıA ◦ d.

Of course, another example of a g-differential graded algebras is that of the de Rham complex

(Ω(P ), d) for a smooth manifold P . It follows then that the Weil map fW : W (g) ! Ω(P ) is

a morphism of g-differential graded algebras. Theorem 5.21, which follows below, shows that the

Weil algebraW (g) is the algebraic analogue to the universalG-bundle, EG ! BG, as both of their

cohomology complexes are acyclic, see [GS99, § 2.3.2].

Theorem 5.21. Let g be a Lie algebra. Then the Weil algebraW (g) is acyclic, i.e., that:

Hj (W (g), δ) ∼=

{
R, if j = 0,

0, otherwise.

Since (W (g), δ) and (Ω(P ), d) are both g-differential graded algebras, their tensor product

(W (g)⊗ Ω(P ), δ ⊗ 1 + 1⊗ d) is also a g-differential graded algebra [Tu20, Section 18.2]. Further-

more,H•(EG) ∼= H•(W (g)) since they are both acyclic and, sinceH•(M) = H•(Ω(M)) then, by

the algebraic Künneth formula [Hat02, Theorem 3B.5] we observe that:

H• (M × EG) ∼= H•(M)⊗H•(EG) = H•(M)⊗H•(W (g)).

Given that the homotopy quotientMG makes up the base of the principalG-bundleEG×M !
M , and hence the basic forms on EG×M are the pull-backs of those which already exist on the base

spaceMG, it makes sense for the basic subcomplex

(
W (g)⊗ Ω(M)

)
basic

to be a possible candidate

for the cohomology of the homotopy quotient,MG. This is indeed the case, thanks to the equivariant

de Rham theorem [Car51b; Car51a].

Theorem 5.22 (Equivariant de Rham). For a compact and connected Lie groupG, with Lie algebra
g, that acts on a manifoldM , there exists a graded algebra isomorphism:

H•
G(M) ∼= H•

((
W (g)⊗ Ω(M)

)
basic

)
.
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The complex

(
W (g)⊗ Ω(M)

)
basic

when equipped with the Weil differential δ is called the Weil
model.

Example 5.23. For the universal T -bundle ET ! BT, an algebraic model forM × ET is:

W (t)⊗ Ω(M) = ∧(λ1, . . . , λn)⊗ Ω(M)[r1, . . . , rn].

Hence an element ofW (t)⊗ Ω(M) can be written as a linear combination of monomials, as:

λI := λi1 ∧ . . . ∧ λik , (5.9)

where 1 ≤ i1 < . . . < ik ≤ n, whose coefficients are of the form:

aI := ai1...ik ∈ Ω(M)[r1, . . . , rn]. (5.10)

That is to say:

α = a+
∑
i

aiλi +
∑
i<j

aij[λi ∧ λj] + . . .+ a1...n[λ1 ∧ . . . ∧ λn]

= a+
∑

aIλI .

Let us continue to focus on the case when G = T is the n-dimensional torus. Recall from

Corollary 5.14 that a differential form α ∈ W (t)⊗ Ω(M) is basic if, and only if, for everyX ∈ t:

ıXα = 0 (i.e., α is horizontal), and ıXα = 0, (i.e., α is invariant).

Then we have the following lemma regarding the horizontal forms.

Lemma 5.24. A differential form α = a+
∑
aIλI ∈ W (t)⊗ Ω(M), where I ⊆ {1, . . . , n} is a

subset and where λI and aI are defined in (5.10) and (5.10) respectively, is horizontal if, and only if:

α =

(
n∏

i=1

(1− λiıXi
)

)
a. (5.11)

Proof. If α ∈ W (t)⊗ Ω(M) is horizontal then, for everyX ∈ t, we have that:

ıXα = 0 ⇐⇒



ai = −ıXi
a

aij = ıXi
ıXj
a,

aijk = −ıXi
ıXj
ıXk

a,
...

ai1...ik = (−1)kıXi1
. . . ıXik

a,
...

a1...n = (−1)nıX1 . . . ıXna,

⇐⇒ aI = (−1)|I|ıXI
a,
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where ıXI
:= ıXi1

. . . ıXik
and aI = ai1...ik for each subset I = {i1, . . . , ik}, analogously to (5.9)

and (5.10). This can be seen by applying the interior derivative ıXi
to α and then setting ıXi

α = 0,

before then comparing the coefficients to each basis vector λi1 ∧ . . . λik . To decompose α into the

product as in (5.11), substitute in the expressions for the coefficients ai1...ik derived above, and also

noting that ıXi
λj = δij .

Let us now deal with the invariance.

Lemma 5.25. A differential form α = a+
∑
aIλI ∈ W (t)⊗ Ω(M), where I ⊆ {1, . . . , n} is a

subset and where λI and aI are defined in (5.10) and (5.10) respectively, is invariant if, and only if:

LXa = 0, (5.12)

for everyX ∈ t.

Proof. Since LXλI = 0 for any I ⊆ {1, . . . , n}, and since aI = (−1)|I|ıXI
a from Lemma 5.24,

then:

LXα = 0 ⇐⇒ LXa+ (−1)|I|
∑
I

λILX(ıXI
a) = LXa+ (−1)|I|

∑
I

λIıXI
(LXa) = 0

⇐⇒ LXa = 0,

for everyX ∈ t, since the Lie derivative LX and the interior derivative ıX commute from (5.8).

Thence, Lemmas 5.24 and 5.25 provide the two conditions for a differential form α ∈ W (t)⊗
Ω(M) to be basic.

Corollary 5.26. An element α = a +
∑
aIλI ∈ W (t) ⊗ Ω(M), where aI ∈ Ω(M)[u1, . . . , un]

with I ⊆ {1, . . . , n}, is basic if, and only if, the two conditions:

aI = (−1)|I|ıXI
a, and LXa = 0, (5.13)

are satisfied for everyX ∈ t.

An element a ∈ Ω(M)[r1, . . . , rn] is a polynomial in the r1, . . . , rn, whose coefficients are the

differential forms onM :

a =
∑

aIr
k1
1 . . . rknn , where aI ∈ Ω(M)[r1, . . . , rn].

Since LXui = 0 for each i = 0, . . . , n:

LXa = 0 ⇐⇒ LIaI = 0, for every I ⊆ {1, . . . , n}.
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As in (5.9) and (5.10), let us abbreviate rI = ri1,...ik when I = {i1, . . . , ik} ⊆ {1, . . . , n}. Whence

a =
∑
aIrI ∈ Ω(M)[r1, . . . , rn] is invariant if, and only if, each coefficient aI ∈ Ω(M) is itself

invariant. Let us write:

Ω(M)T := { ω ∈ Ω(M) | LXω = 0 }
= { T -invariant differential forms onM } .

Our last task is express the Weil model in the terms of the Cartan model. This follows from the

following result, proven by H. Cartan in [Car51a, Théorème 4].

Theorem 5.27 (Weil-Cartan Isomorphism). For a compact and connected Lie group G, with Lie
algebra g, that acts on a manifoldM ,

Suppose thatM is a smooth manifold and thatG is a compact Lie group, with Lie algebra g, that
acts onM . Then there exists a graded-algebra homomorphism:

F :
(
W (g)⊗ Ω(M)

)
hor −! S(g∗)⊗ Ω(M),

α = a+
∑

aIλI 7−! a,
(5.14)

along with the inverse homomorphism:

H : S(g∗)⊗ Ω(M) −!
(
W (g)⊗ Ω(M)

)
hor,

a 7−!

(
n∏

i=1

(1− λiıXi
)

)
a.

(5.15)

Moreover, the graded-algebra homomorphism (5.14) induces a graded-algebra isomorphism between the
basic subalgebras:

F :
(
W (g)⊗ Ω(M)

)
basic

∼
−!

(
S(g∗)⊗ Ω(M)

)G
. (5.16)

The graded-algebra isomorphism F in (5.14) is known as the Weil-Cartan isomorphism [Tu20,

Theorem 21.1], and essentially “forgets” any term that contains a λj factor.

Definition 5.28. The complex:

Ω•
G(M) :=

(
S(g∗)⊗ Ω(M)

)G
(5.17)

is called the Cartan model. Elements that belong to the Cartan model Ω•
G(M) are called equivariant

differential forms.
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From Theorem 5.27, we get the following commutative diagram:(
W (g)⊗ Ω•(M)

)
basic

Ω•
G(M)

(
W (g)⊗ Ω•(M)

)
basic

Ω•
G(M)

δ

H

(5.15)

dg

F

(5.16)

(5.18)

where the map dg : Ω
•
G(M) ! Ω•

G(M) is a differential that is defined in (5.19) below, and which we

call the Cartan differential. In Proposition 5.29, we shall see that the Cartan differential dg equals

the image of the Weil differential δ, under the Weil-Cartan isomorphism F in (5.16).

Proposition 5.29. Let G be a connected Lie group and let g be its Lie algebra. Then, given a basis,
X1, . . . , Xn, of g, the Cartan differential dg of the Cartan complex Ω•

G(M) is:

dg : Ω
•
G(M) ! Ω•

G(M), where dgω =
(
d−

∑
uiıXi

)
ω. (5.19)

Proof. Recall from the paragraph after Theorem 5.27, that the Weil-Cartan isomorphism F in (5.16)

is the homomorphism that forgets any term that contains a λj factor, and whose inverse is H =∏
(1− λiıXi

) from (5.15).

Let α ∈ Ω•
G(M) be an equivariant differential form, then:

H(α) =
(∏

(1− λiıXi
)
)
α

= α−
∑

λiıXi
α +

∑
(λiıXi

)(λjıXj
)α− [. . .],

and:

δH(α) = δα−
∑(

ri −
1

2

∑
ciklλk ∧ λl

)
ıXi
α + [. . .], (5.20)

where we have used the term “[. . .]” to represent a sum that contains at least one λi factor. Next, since

applying F to (5.20) is the same as dropping each term containing a λj factor, we get:

FδH(α) = F (δα)−
∑

riıXi
α.

On the other hand, suppose that:

α =
∑

ri11 . . . r
in
n α̃i1...in =

∑
rI α̃I , where α̃I ∈ Ω(M).

Since δri =
∑

1≤k,l≤n c
i
kl[rk ∧ λl] from Lemma 5.18, we observe that:

δα =
∑

(δrI)α̃I +
∑

rIdα̃I =
∑

[. . .] α̃I +
∑

rIdα̃I ,
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and therefore:

FδH(ω) = F (δa)−
∑

riıXi
a

=
∑

rIdα̃I −
∑

riıXi
α.

So, if we define the usual exterior derivative d on the Cartan model Ω•
G(M) by:

dα := d
(∑

rI α̃I

)
:=
∑

rIdα̃I ,

then the Cartan differential dg is given by:

dgα =
(
d−

∑
riıXi

)(∑
rI α̃I

)
=
∑

rIdα̃I −
∑

riıXi
α = FδH(α),

That is to say, that the diagram (5.18) commutes.

Corollary 5.30. LetM be a smooth manifold and letG be a compact Lie group that acts onM with Lie
algebra g. Then:

(i) the Cartan differential dg : Ω•
G(M) ! Ω•

G(M) is an anti-derivation of degree −1;

(ii) the Cartan differential is zero on the component S(g∗)G of the Cartan model Ω•
G(M), where

Ω•
G(M) = (S(g∗)⊗ Ω(M))G from Definition 5.28.

Proof. For (i), as the Weil-Cartan isomorphism F and its inverse H = F−1
are isomorphisms be-

tween graded algebras from Theorem 5.27 and as δ is an anti-derivation of degree −1, by using the

commutative diagram (5.18) we see that dg is an anti-derivation of degree −1 too.

For (ii), if dimG = n then, since S(g∗) ∼= R[r1, . . . , rn] and as dg is an anti-derivation of degree

0, it suffices to show that dgrk = 0 for each indeterminate r1, . . . , rn. As ıXi
rk = 0, it follows from

the definition of dg in (5.19), that:

dgrk = drk −
∑n

i=1
riıXi

rk

= drk (since ıXi
rk = 0)

= 0.

Hence, dg annihilates any element belonging to S(g∗).

5.3 Equivariant Differential Forms
Whilst we said in Definition 5.28 that any element belonging to the Cartan model, say α ∈ Ω•

G(M),

is an equivariant differential form, we would to use this section to study them some more. An element
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α =
∑
rIαI =

∑
ri11 . . . r

ir
n αi1...ir in S(g∗) can be thought of as a function from g∗ into R, i.e., for

anyX ∈ g and αi1...ir ∈ R:

α(X) =
∑

r1(X)i1 . . . rn(X)inαi1...in ∈ R.

By tensoring S(g∗) with the vector space Ω•(M), we see that α(X) becomes an Ω•(M)-valued

function on g∗, i.e. after tensoring, then αi1...in ∈ Ω(M), and thus α(X) ∈ Ω(M). Furthermore,

the Lie groupG acts on g∗ via the coadjoint representation and so, if Ω(M) is aG-representation, an

invariant element α =
∑
rIαI ∈ Ω•

G(M) corresponds to a G-equivariant map α : g∗ ! Ω(M).

Hence an alternative way of viewing the definition of an equivariant differential form from Definition

5.28 is the following:

Definition 5.31. LetM be a smooth manifold and letG be a compact Lie group acting onM , with

Lie algebra g. Then we say that a G-equivariant differential form is a map α : g ! Ω(M). That is

to say, it is a differential form α =
∑
rIαI that is a polynomial in the r1, . . . , rn, with coefficients in

Ω(M), and which isG-equivariant:

α(Adg(X)) = g · α(X), for anyX ∈ g and g ∈ G.

In terms ofG-equivariant differential forms, the Cartan differential can be written as [BGV04,

§7.1]:

Proposition 5.32. The Cartan differential dg : Ω•
G(M) ! Ω•

G(M) is given by the formula:

(dgα)(X) = d (α(X))− ıX (α(X)) (5.21)

where α ∈ Ω•
G(M) andX ∈ g.

Example 5.33. WhenG = T is a torus with Lie algebra t, the adjoint action of T on the symmetric

algebra S(t) is trivial, so S(t∗)T = S(t∗) and hence, after choosing a basis r1, . . . , rn of t:

Ω•
T (M) =

(
S(t∗)⊗ Ω•(M)

)T
= S(t∗)⊗ Ω•(M)T

∼= Ω•(M)T [r1, . . . , rn].

Therefore, anyT -equivariant differential formαmust necessarily be a polynomial in the indeterminates

r1, . . . , rn, whose coefficients are T -invariant differential forms onM :

α =
∑

ri11 . . . r
in
n αi1...in =

∑
rIαI , where αI ∈ Ω•(M)T .

The Cartan differential dt is therefore given by:

dtα = dα−
∑

riıXi
αi,

with dri = 0 and ıXi
rj = 0 for each i, j = 1, . . . , n, and where dα is just the ordinary differential of

α as an element of Ω•(M).
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5.4 Equivariant Characteristic Classes
Let α ∈ Ω•(M) be a differential form on M . Given an element X ∈ g, applying the Cartan

differential dg from (5.21) twice to α, we see that:

(d2gα)(X) =
(
d− ıX

)(
d(α(X))− ıX(α(X))

)
= d2

(
α(X)

)
−
[
(d ◦ ıX)(α(X)) + (ıX ◦ d)(α(X))

]
+ ı2X

(
α(X)

)
= −LXα.

(5.22)

Hence from (5.22), we see thatαwill be an exact differential form with respect to the Cartan differential

dg if, and only if, LXα = 0. The condition that LXα = 0 is precisely the condition that α is an

invariant differential form from Lemma 5.25. This implies that the Cartan model Ω•
G(M) can be

made into a complex, by pairing it with the Cartan differential, dg.

Lemma 5.34. LetM be a smooth manifold and letG be a compact Lie group that acts onM with Lie
algebra g. Then the Cartan model Ω•

G(M) equipped with the Cartan differential dg forms the Cartan
complex, (Ω•

G(M), dg).

From Lemma 5.34, the notions of closed and exact differential forms for the de Rham differential

d carry over to that of closed and exact equivariant differential forms, in terms of the Cartan differential

dg. That is, an element α ∈ Ω•
G(M) such that dgα = 0 are called equivariantly closed differential

forms, whereas an element α such that α = dgβ for some β ∈ Ω•
G(M) are called equivariantly exact

differential forms.

WhenM is a smooth manifold and whenG is a compact Lie group acting onM , thenM is a fibre

of the homotopy quotientMG when viewed as aG-principal fibre bundleMG ! BG. The inclusion

j :M ↪!MG induces the restriction j∗ : H•(MG) ∼= H•
G(M) ! H•(M) in ordinary cohomology.

Hence, j∗ constitutes a canonical map from equivariant cohomology to ordinary cohomology.

A manifold M with a G-action is said to be equivariantly formal, if the canonical map

j∗ : H•
G(M) ! H•(M) is surjective. In ordinary cohomology, a d-closed differential form

ω ∈ Ω(M) defines a cohomology class [ω] ∈ H•(M). Analogously, if there exists a dg-closed

equivariant differential formϖ ∈ H•
G(M) such that j∗[ϖ] = [ω] ∈ H•(M), thenϖ is said to be an

equivariantly closed extension of the differential form ω.

Example 5.35. Let M be a smooth manifold and let G a compact Lie group that acts on M . A

G-equivariant differential two-formϖ ∈ Ω2
G(M) must necessarily be of the form ω̃ = ω − µ, since:

Ω2
G(M) ∼=

( (
S0(g∗)⊗ Ω2(M)

)
⊕
(
S1(g∗)⊗ Ω0(M)

) )G
,

where ω ∈ Ω2(M) is an ordinary differential two-form onM that isG-invariant and, from Section

5.3, the element µ ∈ Ω0
G(M) is a Ω0(M)-valuedG-equivariant map from g into the space of smooth

74



functions onM :

µ ∈ Ω0
G(M) ⇐⇒ µ : g ! C∞(M ;R) and µ(AdgX) = g · µ(X),

for every g ∈ G andX ∈ g.

Thus, on the one hand, as X varies smoothly throughout g, we obtain a smooth R-valued

function:

µ(X) :M ! R, given by µ(X) 7! µ(X)(p),

whereas, on the other hand, as µ is linear on g, it defines a map fromM into the dual Lie algebra g∗:

µ :M ! g∗, given by ⟨µ(m), X⟩ := ϕ(X)(p).

Hence, forϖ to be an equivariantly closed differential two-form, for everyX ∈ g, it has to satisfy:

(dgϖ)(X) = (d− ıX)(ω(X)− µ(X)) = dω(X)− dµ(X)− ıXω(X) + ıXµ(X) = 0,

which, since ıXµ(X) = 0, can be rephrased as the following two conditions:

dgϖ = 0 if, and only if, dω = 0 and ıXω = −dµX . (5.23)

Clearly, whenG acts on a symplectic manifoldM in a Hamiltonian way then, denoting byω ∈ Ω2(M)
the symplectic two-form of M , then the two conditions in (5.23) are satisfied by the moment map

µ :M ! g∗ corresponding to ω for theG-action.

We rephrase this result as:

Lemma 5.36. LetM be a symplectic manifold with symplectic two-form ω, and suppose that a compact
Lie groupG acts onM with corresponding moment map µ :M ! g∗. Then:

ϖ(X) := ω(X) + ⟨µ(−), X⟩ ∈ Ω2
G(M)

is an equivariantly closed extension of the symplectic two-form ω ∈ Ω(M). Moreover,ϖ determines the
equivariant cohomology class [ϖ] ∈ H2

G(M), sinceϖ is dg-closed.

More generally, let π : V !M be a smoothG-equivariant vector bundle overM , that induces

the map:

πG : VG := V ×G EG −!MG

between homotopy quotients. Then πG : VG ! MG is a vector bundle with the same rank as

π : V !M , and πG : VG !MG is oriented, provided that π : V !M is too.

Definition 5.37. The G-equivariant Euler class EulG(V ) of an oriented G-equivariant vector

bundle π : V !M , is just the ordinary Euler class Eul(VG) of the homotopy quotient πG : VG !
MG. That is to say:

EulG(V ) := Eul(VG) ≡ EulG(V ×G EG) ∈ H•
G(M). (5.24)
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Similarly, if π : V ! M is a complex G-equivariant vector bundle, then its G-equivariant
Chern classes are just the ordinary Chern classes ci(VG) of the homotopy quotient πG : VG !MG.

That is to say:

cGi (V ) := ci(VG) ≡ ci(V ×G EG) ∈ H•
G(M). (5.25)

If a compact Lie groupG acts onM , then the correspondence between L and P can be made

G-equivariant. If G acts trivially on M , then G acts on the fibre Lp for every point p ∈ M and,

provided thatM is connected, this action is independent of the point p. Denote the weight of this

G-action on the fibre Lp by α ∈ g∗.

Lemma 5.38 (G-equivariant first Chern classes). Let π : L !M be a holomorphic pre-quantum
line bundle over M . If G acts trivially on M and if M is connected, then the G-equivariant first
Chern class of π : L !M is:

cG1 (L) = c1(L)− α ∈ H2
G(M), (5.26)

where c1(L) is the ordinary first Chern class of π : L !M , and α ∈ g∗ is the weight of theG-action
on any fibre Lp with p ∈M .

Proof. As α ∈ g∗ is the weight of theG-action on L then, for any element g = exp(tX) ∈ Gwith

X ∈ g and t ∈ R, theG-action on the principal U1-bundle P is just multiplication by e
√
−1t⟨α,X⟩

.

Therefore:

XP = ⟨α, X⟩ ∂
∂ϕ

generates the principalU1-action on P . Denote by θ ∈ Ω1(P ) the connection one-form on P and by

Θ ∈ Ω2(M) the curvature two-form onM that satisfies dθ = π∗Θ, as in Appendix A.8. Then:

(dgθ)(X) = (dθ)(X)− ıXP
θ

= (π∗Θ)(X)− ⟨α, X⟩θ(∂/∂ϕ)
= (π∗Θ)(X)− ⟨α, X⟩,

which is to say, dgθ = π∗Θ− α. Finally, since:

c1(L) = [π∗Θ] = [dθ],

we see that:

[dgθ] = [π∗Θ− α] ⇐⇒ cG1 (L) = c1(L)− α,

and the result follows.

In the case when G = T is an n-dimensional torus, a fundamental result, that we shall very

frequently employ, is the equivariant version of the splitting principle in Theorem 4.9.
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Theorem 5.39 (Equivariant splitting principle). If T is a torus that acts on a compact manifold
M , and ifE !M is a T -equivariant holomorphic vector bundle, then one may assume thatE splits
T -equivariantly into a direct sum of complex line bundles:

E ∼= V1 ⊕ . . .⊕ Vn. (5.27)

We are now able to apply Lemma 5.38 and the equivariant splitting principle from Theorem 5.39

to determine a few equivariant characteristic classes in the most useful cases to us.

Example 5.40 (T -equivariant Euler class). Let M be an n-dimensional complex manifold, and

suppose that a torus T acts onM . Assume that the fixed-point locusMT
consists solely of isolated

fixed-points. Then, for each fixed-point p ∈ MT
, its normal bundle νp ! {p} is a T -equivariant

vector bundle since T acts trivially on {p} ⊆MT
.

By Theorem 5.39, we may assume that the normal bundle νp splits as:

νp ∼= Vαp,1 ⊕ . . .⊕ Vαp,n ,

where each Vαp,j
is a complex line bundle on which T acts with weight αp,j ∈ t∗. Then for any ξ ∈ t,

the T -equivariant Euler class, denoted by EulT (νp), of the normal bundle νp is:

EulT (νp; ξ) :=
n∏

j=1

cT1 (Vp,j; ξ) =
n∏

j=1

[
(dθj|p)(ξ)− ⟨αp,j, ξ⟩

]
= (−1)n

n∏
j=1

⟨αp,j, ξ⟩,

where dθj|p = 0 since {p} is zero-dimensional. To summarise, when p ∈ MT
is an isolated fixed

point, then:

EulT (νp) = (−1)n
n∏

j=1

αp,j. (5.28)

Example 5.41 (T -equivariant Todd class). Assuming the same hypotheses as in Example 5.40, let us

now introduce the T -equivariant Todd class, denoted by TdT (TM), of which the non-equivariant

version Td(TM) was introduced in Definition 4.10.

Again, let us the equivariant splitting principle from Theorem 5.39, this time however applied to

the tangent space TpM for some isolated fixed point p ∈MT
, so that:

TpM ∼= Vαp,1 ⊕ . . .⊕ Vαp,n ,

where T acts on each summand Vαp,j
with weight αp,j ∈ t∗.

The T -equivariant Todd class TdT (TpM) is then obtain from the formula (4.15) for the non-

equivariant Todd class Td(TpM), by replacing the non-equivariant first Chern classes c1(Vαp,j
) with
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their T -equivariant counterparts, cT1 (Vαp,j
), from Lemma 5.38. If we choose some ξ ∈ t such that

⟨αp,j, ξ⟩ ≠ 0 for each j = 1, . . . , n, then the T -equivariant Todd class for the tangent space TpM
over an isolated fixed point p ∈MT

is:

TdT (TpM ; ξ) =
n∏

j=1

cT1 (Vαp,j
; ξ)[

1− e−cT1 (Vαp,j ;ξ)
] = (−1)n

n∏
j=1

⟨αp,j, ξ⟩[
1− e⟨αp,j , ξ⟩

] .
Since {p} is zero-dimensional, observe that its tangent space in TM coincides with its normal bundle,

TpM ∼= νp. Hence, in summary:

TdT (νp) = TdT (TpM) = (−1)n
n∏

j=1

αp,j

[1− eαp,j ]
. (5.29)

5.5 Localisation and Equivariant Integration
In the category of smooth manifolds, the assignment M 7! H i(M) is contravariant, and then

the de Rham theory of cohomology coincides with any other cohomology theory that satisfies the

Eilenberg-Steenrod axioms [ES45], provided thatH•({pt}) ∼= R in dimension zero [Bot99, §3]. The

de Rham cohomology groupH•(M) is finite-dimensional whenM is compact and, furthermore, if

n = dimC M and ifM is oriented then, from the constant projection:

π :M −! {pt}, (5.30)

we obtain the push-forward:

π∗ : H
n(M) −! H0({pt}) ∼= R, (5.31)

The push-forward in (5.31) is used to define fibre-wise integration:

π∗(ω) =

∫
M

ω, (5.32)

since then the fibre of π equalsM .

Lemma 5.42. Let π : E ! B be an orientable fibre bundle over a base manifold B whose fibres
π−1(b) have codimension k in E for any b ∈ B. Then, by “integrating over the fibre variables”, the
push-forward:

π∗ : H
•(E) −! H•−k(B),

can be made into aH•(B)-homomorphism.
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Proof. This is the non-equivariant analogue to Lemma 5.10, albeit with a more general base manifold.

Let e ∈ H•(E) and b ∈ H•(B). Since:

π∗(e · π∗b) = (π∗e) · b,

let us considerH•(E) to be a product overH•(B) via e · b := e · (π∗b). Then we see that:

π∗(e · b) = π∗(e · π∗b) = (π∗e) · b (5.33)

defines a binary multiplicative operation, thus makingπ∗ into aH•(B)-module homomorphism.

Of course, Lemma 5.42 concerns itself with fibre-integration in terms of ordinary de Rham

cohomology theory – for equivariant cohomology, we expect that the map:

πG :MG −! {pt}G,

should give rise to the fibre-wise integral via the push-forward:

πG
∗ : H•

G(M) −! H•
G({pt}) ∼= H•(BG).

Recall from Lemma 5.10 that, for aG-spaceM , the equivariant cohomologyH•
G(M) is an algebra

over the coefficient ring H•(BG), yet the coefficient ring H•(BG) is not necessarily a subring of

H•
G(M). However, in Proposition 5.11, we showed that when the G-fixed-point locus MG

is non-

empty, thenH•(BG) can be embedded intoH•
G(M) as a subring.

To establish the equivariant analogue of fibre-wise integration, we must first cover some prereq-

uisites. A torsion submodule of H•
G(M) over H•(BG), is the submodule of non-zero elements

α ∈ H•
G(M) such that ω · r = 0 for some non-zero element r ∈ H•(BG). When G = T is

an n-dimensional torus, denote R[r] := R[r1, . . . , rn], so that we have H•(BT) ∼= R[r] and thus

H•
T (M) becomes an R[r]-module.

By considering now the bigger ring R[r, r−1], whose elements are the Laurent series in the inde-

terminates r1, . . . , rn, then it is possible to kill off the torsion as follows: note that an R[r]-module

A is a torsion module if, and only if, A ⊗R[r] R[r, r−1] is the trivial module. Indeed, in the larger

moduleA⊗R[r] R[r, r−1], any element α ∈ A can be written in the form (αrk)r−k
for any k ∈ Z,

thus killing off any torsion by taking k to be a large enough integer.

Now suppose that the torus T acts smoothly onM , so that its fixed-point locusMT
is a regular

submanifold [Tu20, Theorem 25.1] ofM . Assume that F ⊆MT
is a connected component of the

fixed-point locus, then as the fixed-point set F is necessarily T -invariant, the inclusion ι : F ↪!M is

T -equivariant.

BothH•
T (F ) andH•

T (M) areH•(BT)-modules and also rings – they are hence bothH•(BT)-

algebras. If there exists a non-zero element denoted by φ ∈ H•(BT), that we shall assume and whose
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existence is proven by example (5.45), then one may localiseH•
T (F ) andH•

T (M) with respect to φ,

and the inclusion ι : F ↪!M induces aH•(BT)-algebra homomorphism:

ι∗φ : H•
T (M) −! H•

T (F )φ.

The reason that we have introduced all of this is because of Borel’s localisation theorem, that is

stated in Theorem 5.43 next. What Borel’s localisation theorem says, is that the equivariant cohomology

of a T -manifold is concentrated on its fixed-point setMT
up to torsion, and that the isomorphism in

localised equivariant cohomology of the manifold and its fixed-point set is in fact a ring isomorphism.

Theorem 5.43 (Borel localisation). Suppose that a torus T acts on a manifoldM with compact fixed-
point set MT . Let F ⊆ MT be a connected component of MT , and let ι : F ↪! M be the inclusion.
Then both the kernel and cokernel of the pull-back:

ι∗ : H•
T (M) −! H•

T (F )

are torsion H•(BT)-modules. Hence, after localising with respect to some non-zero element φ ∈
H•(BT), the localised pull-back ι∗φ becomes an isomorphism:

ι∗φ : H•
T (M)φ

∼
−! H•

T (F )φ. (5.34)

See, for example, [Hsi75, Theorem (III.1)], for a proof of Theorem 5.43.

To avoid going too far afield, let us come back to the equivariant version of the fibre-wise integral

in (5.32). As above, we specialise to the case when a torus T acts locally freely on a compact manifold

M , and where F ⊆MT
is a connected component of the fixed-point set. Let:

ι : F ↪!M (5.35)

be the inclusion. Forgetting momentarily about any equivariance, the inclusion (5.35) induces a

push-forward in homology:

ι∗ : H•(F ) −! H•(M),

as well as a pull-back in cohomology:

ι∗ : H•(M) −! H•(F ).

Since F andM are both compact and oriented manifolds, via Poincaré duality, we can obtain a

push-forward in cohomology too [AB84, §2]. Namely, in denotingm = dimC M and f = dimC F
then, for any 0 ≤ q ≤ m, we have the commutative diagram:

Hq(F ) Hq(M)

Hm−f (F ) Hm−q(M)

ι∗

P. D. P. D.∼ =

ι∗

∼ =
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we obtain the Gysin, or umkehrungs, homomorphism:

ι∗ : H
•(F ) −! H•+(m−f)(M), (5.36)

As (5.35) is the inclusion, its Gysin homomorphism ι∗ : H
•(F ) ! H•(M) factors through the

Thom isomorphism [AB84, §2]:

ΦF : H•(F )
∼

−! H•+(m−f)
c (νF ), (5.37)

whereH•
c (νF ) is the compactly-supported cohomology of the normal bundle νF to F inM , as:

ι∗ : H
•(F ) H

•+(m−f)
c (νF ) H•+(m−f)(M),

ΦF
(5.38)

The image of the unit 1 ∈ H•(F ) under the Thom isomorphism (5.37) defines the Thom class
ΦF (1) ∈ Hf

c (M), which is the cohomology class that is the Poincaré dual to the fundamental class

of F inM , i.e., [F ] ∈ Hm−f (M). See, for example, [AB84] or [GS99] for more details.

One characteristic possessed by the Thom class ΦF (1) which will be essential to us, is that

its restriction to F coincides with the Euler class of the normal bundle νF to F in M , see [GS99,

Theorem 10.5.1]. Therefore, together with (5.37), we get:

(ι∗ ◦ ι∗)(1) = Eul(νF ). (5.39)

The Gysin homomorphism (5.36), in addition to the results of (5.37) and (5.39), can be extended

to the equivariant setting in a straightforward way, see [AB84, §2], as:

ι∗ : H
•
T (F ) ! H•

T (M), ι∗ : H•
T (M) ! H•

T (F ), and (ι∗ ◦ ι∗)(1) = EulT (νF ). (5.40)

As F is a connected component ofMT
, it is T -invariant, so by the Künneth formula we find that:

H•
T (F ) = H•(F ×T ET) ∼= H•(F × BT) ∼= H•(F )⊗H•(BT). (5.41)

Therefore, since EulT (νF ) ∈ H•
T (F ), from Theorem 5.43 we see that Eul(νF ) becomes invertible

after passing to some suitably-localised module:

H•
T (F )φ

∼= H•(F )⊗H•(BT)φ,

where the non-zero element φ ∈ H•(BT) appeared in the statement of Theorem 5.43.

To finally determine an example for the non-zero element φ ∈ H•(BT), assume that the T -

equivariant normal bundle νF to F decomposes as νF ∼= ⊕jVαF,j
via the equivariant splitting

principle in Theorem 5.27, where T acts on each summand VαF,j
with weight αF,j ∈ t∗. Observe
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that αF,j ̸= 0 for each j, since otherwise the component VαF,j
would be tangent to the fixed-point

component F and consequently not normal to it.

From (5.28) in Example 5.40, the T -equivariant Euler class EulT (νF ) ∈ H•
T (F ) can be written

as the product:

EulT (νF ) =
∏
j

cT1 (VαF,j
) =

∏
j

(
c1(VαF,j

)− αF,j

)
,

where the T -equivariant first Chern classes are cT1 (VαF,j
) = c1(VαF,j

)− αF,j from Lemma 5.38. Let

us define:

φF :=
∏
j

αF,j, (5.42)

which is a non-zero element of S(t∗). Therefore φF is a non-vanishing t-valued polynomial and so,

by passing to the localisationH•
T (F )φF

, we can factor EulT (νF ) as:

EulT (νF ) = φF ·
∏
j

(
1− c1(νF,j)

αF,j

)
. (5.43)

Observe that the c1(νF,j)/αF,j terms in (5.43) are nilpotent, since raising any one of them to a power

greater thanm = dimC M would annihilate it. Therefore, EulT (νF ) is invertible with inverse:

1

EulT (νF )
=

1

φF

·
∏
j

[
∞∑
k=0

(−1)k
(
c1(νF,j)

αF,j

)k
]

(5.44)

since the infinite series truncates afterm = dimC M terms.

Finally, let us an element φ ∈ S(t∗) to be the product of the φF over each connected fixed-point

component F ⊆MT
, so that:

φ :=
∏

F⊆MT

φF =
∏

F⊆MT

∏
j

αF,j ∈ S(t∗). (5.45)

Then φ is also non-zero as each φF is, and so it follows that the localised isomorphism (5.40):

ι∗ ◦ ι∗ = Eul(νF ) : H
•
T (F )φ

∼
−! H•

T (M)φ,

is can be explicitly inverted. Namely, if we denote:

Q =
∑

F⊆MT

ι∗F
EulT (νF )

: H•
T (M)φ −! H•

T (F )φ,

where ιF : F ↪!M , thenQ defines the inverse to the ring homomorphism:

ι∗ : H
•
T (F )φ −! H•

T (M)φ.
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Thence, for any T -equivariant differential form α ∈ H•
T (M), by considering the localisation

H•
T (M) ⊆ H•

T (M)φ, we see that:

α = (ι∗ ◦Q) (α) =
∑

F⊆MT

1

Eul(νF )
(ι∗ ◦ ι∗)(α). (5.46)

Then, by finally applying the equivariant push-forward:

πM
∗ : H•

T (M) −! H•(BT)

to both sides of (5.46), and by using the functoriality of push-forwards, i.e., that (πM
∗ ◦ ι∗|F ) = πF

∗ ,

then we finally obtain the equivariant integration formula:

πM
∗ (ω) =

∑
F⊆MT

πF
∗

{
ι∗F (ω)

EulT (νF )

}
=
∑

F⊆MT

∫
F

ι∗F (ω)

EulT (νF )
∈ H•(BT). (5.47)

In terms of the dual basis r1, . . . , rN of t∗, the push-forward πM
∗ is represented by the operation

that sends an equivariant differential form:

α =
∑
I

α̃Ir
I

to the integral:

πM
∗ (α) =

∑
I

(∫
M

αI

)
rI ,

giving us a polynomial with respect to the variables,H•(BT) ∼= R[r1, . . . , rn].

The derivation of the equivariant integral formula in 5.48 is the one used by Atiyah and Bott in

[AB84]. In [BV82], Berline and Vergne however adopted a more geometric stance in their proof of

what is now called the Atiyah-Bott-Berline-Vergne localisation formula.

Theorem 5.44 (Atiyah-Bott-Berline-Vergne localisation formula). Let T be an n-dimensional
torus acting on a compact manifoldM . For any T -equivariant characteristic class α ∈ H•

T (M),

πM
∗ (α) =

∫
M

α =
∑

F⊆MT

∫
F

i∗Fα

EulT (νF )
, (5.48)

where i∗F : H•
T (M)φ ! H•

T (F )φ is the restriction of α to the connected T -fixed-point component
F ⊆MT , and where νF is the normal bundle to the F in TM .
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Observe that in the Atiyah-Bott-Berline-Vergne localisation formula (5.48), the left-hand side

belongs to H•
T (M), whereas the right-hand side belongs to the localisation H•

T (M)φ. Hence, one

should expect there to be a remarkable amount of cancellation on the right-hand side of (5.48) with

integrands whose terms involve several non-trivial denominators.

WhenMT
consists of a finite number isolated fixed-points, Theorem 5.44 simplifies to a finite

sum of terms over the fixed points ofMT
.

Corollary 5.45. Assuming the hypotheses of Theorem 5.44, and that the fixed-point locusMT consists of
finitely-many isolated fixed-points. Then the equivariant integration formula in (5.48) becomes:

πM
∗ (ω) =

∫
M

ω =
∑
p∈MT

i∗pω

EulT (νp)
(5.49)

When (M,ω) is a compact Kähler manifold that is furthermore acted upon by a torus T in an

effective and Hamiltonian way with n = dimC M = dimR T and corresponding the moment map

µ : M ! t∗. If the fixed-point locus MT
for the T -action is non-empty, then we may apply the

localisation formula (5.48) from Theorem 5.44 to the Riemann-Roch-Hirzebruch formula from

Theorem 4.8, which simplifies its evaluation significantly.

When L !M is a holomorphic pre-quantum line bundle overM , so that its first Chern class is

c1(L) = [ω], and moreover assume that the action of T onM lifts up to one on L. Over a fixed-point

p ∈MT
, we have that νp ∼= TpM since {p} is zero-dimensional, and moreover let us assume that νp

decomposes via the equivariant splitting principle (5.27) of Theorem 5.39, as:

νp ∼= Vαp,1 ⊕ . . . Vαp,n ,

where T acts on each Vαp,j
with weightαp,j ∈ t∗ for each j = 1, . . . , n. Additionally from Appendix

A.8, the T -weight on the line bundle L is given by the value µ(p) ∈ t∗ of the moment map for the

T -action. By applying the localisation formula (5.49) from Corollary 5.45 to the Hirzebruch-Riemann-

Roch formula (4.13) from Theorem 4.8, we obtain the equivariant index formula for when M is

smooth.

Theorem 5.46 (Equivariant index theorem). For any elementX ∈ t such that ⟨αp,j, X⟩ ≠ 0 for
each j = 1, . . . , n, the equivariant Riemann-Roch number χ is given by the formula:

(χ ◦ exp)(X) =
∑
p∈MT

e⟨µ(p), X⟩∏n
j=1

(
1− e⟨αp,j , X⟩

) , (5.50)

where χ : T ! H•(BT) is the representation ring for the T -action on the L-twisted Dolbeault
cohomology group,H0(M ;L).
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5.6 The Equivariant Kawasaki-Riemann-Roch Theorem
There still remains a proverbial “elephant in the room” to address, namely that the the scope of

Theorem 5.46 does not extend to orbifolds. Yet, in general, from Theorem 3.17 we know that most

of our cut spaces will be orbifolds. This dilemma forces us to consider the equivariant analogue of

Theorem 4.14, the Kawasaki-Riemann-Roch theorem.

Let M be a compact symplectic orbifold with symplectic two-form ω, and let L ! M be a

holomorphic pre-quantum orbifold line bundle overM . Assume that a torus T acts onM effectively

and in a Hamiltonian way with corresponding moment map µ : M ! t∗, and assume that MT

consists of finitely-many isolated fixed points.

Denote by M̂ and p̂ the inertia orbifolds ofM and {p} respectively, defined in the Appendix A,

and let τ : M̂ !M be the corresponding immersion. We can lift the action of T onM up to one on

M̂ via its fundamental vector fields [Dui11, §15.4]. From the inclusion {p} ↪!M , we get the normal

bundle νp and we assume that it splits T -equivariantly as:

νp ∼= V̂p,1 ⊕ . . .⊕ V̂p,n.

Denote the pull-backs of each Vp,j via τ by V̂p,j := τ ∗νp for each j = 1, . . . , n, in addition to the

pull-back of the fibre Lp via τ as L̂p := τ ∗Lp.

The components of the inertia orbifold p̂ are indexed by the conjugacy classes γ ∈ Conj(Γp).

Denote the canonical automorphisms of L̂p and of V̂p,j byA(L̂) andA(V̂p,j), induced by the action

of Γp on p̂γ . As Γp is a finite abelian group and since each L̂p and V̂p,j is a line bundle, when restricted

to the component p̂γ , the automorphismsA(L̂) andA(V̂p,j) can be identified with elements of U1,

see [Sil96, Remark 10.10]. That is to say, they give us the following characters for the Γp-representation

for L̂p as:

χp,0(γ) = A(L̂p)|p̂γ ∈ U1,

and for V̂p,j as:

χp,j(γ) = A(V̂p,j)|p̂γ ∈ U1,

where j = 1, . . . , n.

Fix an element ξ ∈ t. From Definition 4.4, restricting the T -equivariant twisted Chern class

ChT
M̂
(L̂p) to p̂γ we have:

ChT
M̂
(L̂p)|p̂γ = χp,0(γ) · ec

T
1 (Lp;ξ) = χp,0(γ) · e⟨µ(p), ξ⟩.

Similarly, we get for V̂p,j :

ChT
M̂
(V̂p,j)|p̂γ = χp,j(γ) · ec

T
1 (Vp,j ;ξ) = χp,j(γ) · e⟨αp,j , ξ⟩,
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where each αp,j ∈ t∗ denotes the isotropy weight for the T -action on Vp,j for j = 1, . . . , n.

For the associated characteristic classDp̂γ defined in (4.21) using the immersion τ |p̂γ : {p̂γ} !
{p}, since dimR{p̂γ} = dimR{p} = 0 we have thatDp̂γ (Np̂γ ) = 1. Furthermore, using Frobenius’

formula [GGK02, Appendix I], for any class function χ, we have that:∑
γ∈Conj(Γp)

ρ(γ)

dmp̂

=
1

|Γp|
∑
g∈Γp

ρ(g).

Here, it is the characters χp,0 and χp,j that we consider as class functions. Then, by applying the

Atiyah-Bott-Berline-Vergne localisation formula (5.48) to the Kawasaki-Riemann-Roch formula (4.23),

we get:

Theorem 5.47 (Equivariant Kawasaki-Riemann-Roch formula). Suppose that MT consists of
finitely-many isolated fixed points. Given an element ξ ∈ t such that ⟨αp,j ξ⟩ ≠ 0 for each j = 1, . . . , n,
the equivariant character χ : T ! H•(BT) ofH0(M ;L) is given by the formula:

(χ ◦ exp)(ξ) =
∑
p∈MT

1

|Γp|
∑
g∈Γp

χp,0(g) · e⟨µ(p), ξ⟩∏n
j=1

(
1− χp,j(g) · e⟨αp,j , ξ⟩

) . (5.51)
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Chapter 6

Isotropy Data of the Cut Spaces

In order to apply the equivariant localisation formulae (5.48) of Atiyah-Bott-Berline-Vergne from

Theorem 5.44 to a cut spaceM≤δ
ν , one must first know the prerequisite isotropy data. Namely, we

need to know what points make up the fixed-point locus (M≤δ
ν )T for the residual T -action onM≤δ

ν ,

in addition to the isotropy data associated to each connected fixed-point component F ⊆ (M≤δ
ν )T .

If applicable, orbifold data will also have to be ascertained ifM≤δ
ν is an orbifold, so that we can then

apply the Kawasaki-Riemann-Roch formula (4.23) from Theorem 4.14.

6.1 Fixed-Point Data of the Cut Spaces
Given a regular value ν ∈ k∗, letMν be a hypertoric variety and A = {H1, . . . , HN} be its a simple

hyperplane arrangement in t∗. Given a suitable value of δ ∈ R≥0 so that the cut space M≤δ
ν is at

least an orbifold, and denote by ∆≤δ
ν = µR(M

≤δ
ν ) its moment polyptych. Given a point v ∈ ∆≤δ

ν

of the polyptych, recall that Iv ⊆ {1, . . . , N} is the subset defined by Iv = { i | v ∈ Hi }, and

determines the flat HIv ∈ L(A). If rkHIv = k then, as the arrangement A is simple, we have

dimR HIv = n− k and so if rkHIv = n, then v = HIv is an interior vertex of ∆≤δ
ν . On the other

hand, if v ∈ Πδ
ν is a vertex of the polyptych boundary, then rkHIv = n− 1 and the flatHIv is the

affine line passing through v in addition to another single boundary vertex on the opposite side of the

polyptych boundary Πδ
ν .

Lemma 6.1. A point p ∈M≤δ
ν is a fixed point for the T -action onM≤δ

ν if, and only if, v = µR(p) is a
vertex of the moment polyptych ∆≤δ

ν . Furthermore, the fixed points ofM≤δ
ν come in one of two types:

(i) points p ∈M<δ
ν that belong to the interior of the cut spaceM≤δ

ν , each of which is mapped onto a
vertex v = HIv in the polyptych interior ∆<δ

ν ;

(ii) points p ∈ Zδ
ν that belong to the boundary of the cut spaceM≤δ

ν , each of which is mapped onto a
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vertex v ∈ Πδ
ν on the polyptych boundary Πδ

ν .

Proof. For (i), from [BD00, Theorem 3.1], if a point p ∈ M<δ
ν lies in the interior of the cut space

M≤δ
ν whose image is in the moment polyptych ∆≤δ

ν is v = µR(p) ∈ ∆≤δ
ν , then pwill be fixed by T if,

and only if, v = HIv with rkHIv = n since A is simple.

Then for (ii), suppose that p ∈ Zδ
ν is a point on the boundary ofM≤δ

ν and that v = µR(p) ∈ Πδ
ν .

Then p is fixed by the residual U1-action on M≤δ
ν , since Zδ

ν = Φ−1(δ)/U1 by the definition of the

symplectic cut. So, for p to be fixed by the residual torus T as well, it is necessary for v to belong to

n− 1 hyperplanes. That is to say, with v ∈ Πδ
ν ∩HIv whereHIv = ∩j∈IvHj withHIv ∈ L(A) a

flat of rank rkHIv = n− 1.

To prove the sufficiency, consider the four-dimensional hypertoric subvarietyMIv ofMν that

is determined by the flat HIv . From Proposition 3.14, M≤δ
Iv is a closed Kähler subvariety of the cut

spaceM≤δ
ν and, since v ∈ HIv , the boundary point p ∈ Zδ

ν is also a point belonging to the boundary

Zδ
Iv of the cut subspace M≤δ

Iv . Since M≤δ
Iv ⊆ M≤δ

ν , the moment polyptych ∆≤δ
Iv coincides with the

intersection ∆≤δ
Iv = ∆≤δ

ν ∩HIv , and similarly for its polyptych boundary Π≤δ
Iv = Πδ

ν ∩HIv .

As v ∈ Πδ
ν ∩HIv , from the end of the last paragraph, it is also a boundary vertex of ∆≤δ

Iv , hence

p ∈ Zδ
Iv from Proposition 3.14. However, as rkHIv = n − 1, the residual torus T crk Iv

that acts

on M≤δ
Iv is one-dimensional, and thus T crk Iv ∼= U1 from Proposition 2.11. It follows then that the

one-dimensional residual torus T crk Iv
and the residual circle U1 have the same fixed-point set, thus

T crk Iv
fixes p ∈ Zδ

Iv . Finally, as the embedding ι : M≤δ
Iv ↪! M≤δ

ν is T crk Iv
-equivariant, the point

p ∈ Zδ
Iv ⊂ Zδ

ν is fixed by the T -action.

With the T -fixed-point locus (M≤δ
ν )T of the cut space M≤δ

ν determined, the next step is to

determine the isotropy representation of T on the tangent space TpM
≤δ
ν to each fixed point p ∈

(M≤δ
ν )T . Let v = µR(p) denote its corresponding point in the moment polyptych ∆≤δ

ν so that, from

Lemma 6.1, v must be either an interior vertex or a boundary vertex. Let Hj ∈ A be one of the

hyperplanes that contains v, which implies that j ∈ Iv.

We will denote the edge emanating out from v by εv,j , whose edge vector we will denote by

ϱp,j ∈ t∗, and orient it by the condition that ⟨ϱp,j, uj⟩ = 1. Similarly, we will denote the “opposite”

edge emanating out from v byφv,j , whose edge vector we will denote by ςp,j ∈ t∗, and orient it by the

condition that ⟨ςp,j, uj⟩ = −1. Note that these two conditions imply that the edges, εv,j and φv,j ,

do not lie along the hyperplaneHj in the polyptych ∆≤δ
ν .

If HIv ∈ L(A) is a rank rkHIv = n flat, then v = HIv is an interior vertex. In this case, for

each j ∈ Iv, the corresponding hyperplaneHj determines the edge pair {εv,j, φv,j} emanating out

from v as in Figure 6.1, since A is a simple hyperplane arrangement.

On the other hand, if HIv is a rank rkHIv = n − 1 flat, then v ∈ HIv ∩ Πδ
ν is a boundary
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Hj

εv,j

φv,j

uj

ςp,j

ϱp,j

v

Figure 6.1: An edge pair {εv,j, φv,j} emanating out from an interior vertex v, corresponding to the

hyperplaneHj .

vertex. For each j ∈ Iv, we shall continue to denote by {εv,j, φv,j} the edge pair corresponding to

the hyperplaneHj as before. Additionally however, we denote the edge emanating inwards from v
by κv, whose edge vector we will denote by ϑp ∈ t∗ and, for any subsetA ⊆ {1, . . . , N} such that

v ∈ Πδ
A, orient it by the condition that ⟨ϑp, uA⟩ = 1. Despite there being several possible choices for

the subsetA, the pairing between the edge vector ϑp and the residual U1-action generator uA ∈ t is

well-defined, since:

uA ≡ uB mod SpanR{uj | j ∈ Iv}, for eachA,B ⊆ {1, . . . , N} such that v ∈ Πδ
A ∩ Πδ

B,

and, as κp ⊊ HIv :

ϑp ∈
⋂
j∈Iv

Annt∗{uj},

which can be seen in Figure 6.2.

Πδ
B

uB

Πδ
A

uA

Hj

uj

ϱp,j

ςp,j

ϑp

v

Figure 6.2: An edge triple {ϑp, εv,j, φv,j} emanating out from a boundary vertex v. Since uB =
uA + uj , and as ϑp annihilates uj , we have that ⟨ϑp, uA⟩ = ⟨ϑp, uB⟩.

Theorem 6.2. LetMν be a hypertoric variety with 2n = dimC Mν , and let A be its simple hyperplane
arrangement in t∗. Denote byM≤δ

ν its cut space with corresponding moment polyptych ∆≤δ
ν . Then:
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(i) if v = HIv is an interior vertex, where Iv ∈ L(A) is a rank rkHIv = n flat, then there exist
2n distinct edges, {εj, φj}j∈Iv , emanating out from v;

(ii) if v ∈ Πδ
A ∩HIv is a boundary vertex, where Iv ∈ L(A) is a rank rkHIv = n− 1 flat and

for some subset A ⊆ {1, . . . , N}, then there exist 2n − 1 distinct edges, {κv, εv,j, φv,j}j∈Iv ,
emanating out from v.

Proof. For (i), this is proven in [HH05, Proposition]. For (ii), the result is clear when n = 1, since

then t∗ ∼= R and so the moment polyptych ∆≤δ
ν is equal to a finite union of closed line intervals

in R. Therefore, one of the two endpoints of ∆≤δ
ν is the vertex v, and the edge κv is the polyptych

component ∆≤δ
A for which v ∈ Πδ

A.

When n = 2, so that now t∗ ∼= R2
, we can write the boundary vertex as the intersection

v = Πδ
A ∩ Πδ

B for some pair of subsets A,B ⊆ {1, . . . , N} such that B = A ∪ {j}, where

j ∈ B \ A. This implies that the hyperplaneHj contains v and thatHj separates the two regions,

∆A and ∆B , from each other as in Figure 6.3.

Πδ
B

Πδ
A

Hj

uj

v

∆≤δ

A

∆≤δ

B

Figure 6.3: The vertex v = Πδ
A ∩ Πδ

B belongs to the hyperplaneHj , which separates ∆≤δ

A from ∆≤δ

B .

The edge εv,j emanates out from v along the boundary componentΠδ
A, sinceΠδ

A is also cooriented

positively with respect to the half-spaceH+
j since, for anyα ∈ Πδ

A, we have that ⟨α, uj⟩ ≥ 0. Similarly,

the edgeφv,j emanates out from v along the boundary componentΠδ
B , albeit now withΠδ

B cooriented

negatively with respect to the half-spaceH+
j since, for any β ∈ Πδ

B , we have that ⟨β, uj⟩ ≤ 0.

Therefore, we have the two edges, εv,j and φv,j . The third and final edge κv is, of course, the edge

emanating out from v along the interface ∆≤δ
A ∩∆≤δ

B between the polyptych components. That is to

say, for any γ ∈ ∆≤δ
A ∩∆≤δ

B , we have that ⟨γ, uj⟩ = 0. We therefore have 3 = 2n− 1 edges, namely

{κv, εv,j, φv,j}, when n = 2.

Now, for the general n ≥ 3 case, fix a boundary vertex v ∈ Πδ
ν ∩HIv where the flatHIv ∈ L(A)

has rank rkHIv = n− 1. Let y be the interior vertex that is adjacent to v, so that y = HIy , where

Iy ∈ L(A) is a flat of rank rkHIy = n. Observe that the edge κv connects v to y along the affine
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subspace HIv since rkHIv = n − 1 < n = rkHIy , and as y = HIy ⊊ HIv , we have that

Iy = Iv ∪ {j}, for some element j ∈ Iy since A is a simple arrangement.

Now, let us fix another element k ∈ Iv, and define a new flatHJv,y,k
∈ L(A) using the subset:

Jv,y,k := Iv \ {k} = Iy \ {j, k}.

Then clearly, Jv,y,k has cardinality |Jv,y,k| = rkHJv,y,k
= n− 2 as A is simple, and also:

Jv,y,k ⊊ Iv ⊊ Iy, which implies that HIy ⊊ HIv ⊊ HJv,y,k
. (6.1)

As rkHJv,y,k
= n− 2 and as an affine space in t∗,HJv,y,k

is two-dimensional and contains the flat

HIv as an affine line, as well as the two vertices v and y from (6.1). The intersection ofHJv,y,k
with

the moment polyptych ∆≤δ
ν is the subpolyptych ∆≤δ

Jv,y,k
= ∆≤δ

ν ∩HJv,y,k
which contains the vertices

v and y, since v, y ∈ HIv ⊊ HJv,y,k
, as demonstrated in Figure 6.4.

∆≤δ
ν

y

v

∆≤δ
ν ∩HJv,y,k

y

v

∆≤δ
ν ∩HIv

Figure 6.4: A moment polyptych ∆≤δ
ν and two of its subpolyptychs ∆≤δ

Jv,y,k
and ∆≤δ

Iv , with each

corresponding to the intersection of ∆≤δ
ν with the flats, respectivelyHJv,y,k

andHIv , of A.

The subpolyptych∆≤δ

Jv,y,k
is the moment polyptych of the closed Kähler subvariety by Proposition

3.14:

M≤δ

Jv,y,k

∼= { [z, w] ∈M≤δ

ν | zl = wl = 0 for each l ∈ Jv,y,k } .

As rkHJv,y,k
= 2, then dimR M

≤δ

Jv,y,k
= 4n− 4(n− 2) = 8. Therefore, the cut subspaceMJv,y,k

satisfies the hypotheses for the case when n = 2, since v ∈ Πδ
Jv,y,k

is a boundary vertex of the

subpolyptych ∆≤δ
Jv,y,k

, and y ∈ ∆<δ

Jv,y,k
is an interior vertex of the subpolyptych ∆≤δ

Jv,y,k
as both are

connected via the edge κv that lies along the flatHIy , which itself is a subspace of the flatHJv,y,k
, so

HIv ⊊ HJv,y,k
.

The edge κv emanates out from v along HIv with edge vector ϑp ∈ t∗, whereas the edge εv,j
emanates out from v along Πδ

A ∩HJv,y,k
with edge vector ϱp,j ∈ t∗, and lastly the edgeφv,j emanates
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out from v alongΠδ
B∩HJv,y,k

with edge vector ςp,j ∈ t∗. Finally, asIy = Iv∪{j} = Jv,y,k∪{j, k},

we see that HIv ⊊ HJv,y,k
for each k ∈ Iv. There are n − 1 choices of element for k ∈ Iv since

rkHIv = n− 1, with each choice producing an additional edge pair {εv,j, φv,j} towards the final

edge count, contributing 2n− 2 edges in total. As κv is a common subset in each affine planeHJv,y,k
,

we only count κp once to get us 2n− 1 edges, {κv, εv,j, φv,j}j∈Iv , overall.

As argued in [HH05], let εv,j be an edge in t∗ emanating out from a vertex v ∈ ∆≤δ
ν , for any given

j ∈ Iv. Then εv,j lies entirely outside of one of the hyperplanesHj that contains v, and moreover

εv,j determines an edge of a polyptych component ∆≤δ
A in t∗, which is equal to the image of a cut

component ∆≤δ
A = µR(E≤δ

A ). Let p ∈ (E≤δ
A )T denote the fixed point in E≤δ

A that corresponds to

the vertex, i.e., such that v = µR(p). As each cut component E≤δ
A is itself a compact toric Kähler

variety then, by the equivariant Darboux-Weinstein theorem [Wei77, Lecture 5], there exists a one-

dimensional T -weight space TpE≤δ
A of TpM

≤δ
ν corresponding to the edge εv,j , whose isotropy weight

ϱp,j ∈ t∗ satisfies ⟨ϱp, uj⟩ = 1.

When v = HIv is an interior vertex of ∆≤δ
ν so that rkHIv = n then, from Theorem 6.2, to

each hyperplane Hj for which j ∈ Iv, we can associate to it the edge pair, {εv,j, φv,j}. From the

discussion in the previous paragraph, each edge has a corresponding T -weight which coincides with

the corresponding edge vector, so ϱp,j ∈ t∗ for εv,j , and ςp,j ∈ t∗ for φv,j . On the other hand, when

v ∈ Πδ
ν ∩HIv is a boundary vertex, then it is not quite so obvious as to which edge should correspond

to which T -weight. This is because, from Theorem 6.2, there exist only 2n− 2 edges that correspond

to the n− 1 hyperplanesHj with j ∈ Iv. However, we expect there to be 2n T -weights in total since

dimC M
≤δ
ν = 2n, and the irreducible weight spaces of TpM

≤δ
ν are all complex lines, i.e., of complex

dimension one. So we have 2n− 2(n− 1) = 2 complex dimensions yet to be accounted for, and yet

only one edge left, namely κv with edge vector ϑp ∈ t∗.

Proposition 6.3. Let Mν be a hypertoric variety with dimC Mν = 2n, and let A be its simple hy-
perplane arrangement in t∗. Denote byM≤δ

ν its cut space with corresponding moment polyptych ∆≤δ
ν .

Then:

(i) if p ∈ (M<δ
ν )T is an interior fixed point and v = µR(p) is its interior vertex in ∆<δ

ν , then the
isotropy representation of T on TpM≤δ

ν splits as:

TpM
≤δ

ν
∼=
⊕
j∈Iv

(
Vϱp,j ⊕ Vςp,j

)
. (6.2)

Here, each summand Vϱp,j and Vςp,j in (6.2) is a weight space of the isotropy representation of T
on TpM≤δ

ν , with isotropy weights ϱp,j and ςp,j in t∗, respectively;

(ii) if p ∈ (Zδ
ν)

T is a boundary fixed point and v = µR(q) is its boundary vertex point in Πδ
ν , then

the isotropy representation of T on TpM≤δ
ν splits as:

TpM
≤δ

ν
∼=
(
Vϑp ⊕ Vϑp

)
⊕
⊕
j∈Iv

(
Vϱp,j ⊕ Vςp,j

)
, (6.3)
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Here, each summand Vϑp , Vϱp,j , and Vςp,j in (6.3) is a weight space of the isotropy representation
of T on TpM≤δ

ν , with isotropy weights ϑp, ϱp,j , and ςp,j in t∗, respectively.

Proof. For (i), this comes from the proof of [HH05, Proposition 3.2]. For (ii), fix a boundary vertex

v ∈ Πδ
ν ∩ HIv . From Lemma 6.2, there exist 2n − 1 edges, {κv, εv,j, φv,j}j∈Iv , which emanate

out from v where 2n− 2 of the edges, {εv,j, φv,j}j∈Iv , correspond to the n− 1 hyperplanesHj for

which j ∈ Iv. These contribute 2n− 2 of the isotropy weights in total, namely ϱp,j and ςp,j for each

j ∈ Iv.

Now, for the remaining edge κv, consider the hypertoric subvariety MIv of Mν where

dimC MIv = 2, along with its cut subspace, M≤δ
Iv . Since v ∈ Πδ

ν ∩ HIv ⊊ Πδ
ν , from Proposi-

tion 3.14 we see that v is a boundary vertex of the subpolyptych∆≤δ

Iv = ∆≤δ
ν ∩HIv . The subpolyptych

∆≤δ

Iv is a subset of the real line as (tcrk Iv)∗ ∼= R, so the edge κv is the only possible edge which can em-

anate out from v. Hence, κv has at least one isotropy weight given by the edge vector ϑp ∈ (tcrk Ib)∗.

However, since dimC M
≤δ
Iv , then TpM

≤δ
Iv

∼= C2
. Furthermore, as M≤δ

Ib is a compact Kähler toric

variety, by a dimensionality argument we must have that TpM
≤δ
Iv

∼= Vϑp ⊕ Vϑp . Hence the last two

isotropy weights come from the edge vector ϑp counted multiplicity two.

To represent the isotropy data for a fixed point p ∈ M≤δ
ν , we superpose each corresponding

isotropy weight as a vector pointing along its respective edge as in Figure 6.5. For the isotropy weights

ϱp,j and ςp,j corresponding to the hyperplane Hj , recall that they are cooriented via the condition

that ⟨ϱp,j, uj⟩ = 1 and ⟨ςp,j, uj⟩ = −1, for each j ∈ Iv, and also recall that ϱp,j and ςp,j are the two

weights in t∗ which do not lie alongHj .

Relative to the moment polyptych ∆≤δ
ν , one sees that ϱp,j points inwards towards ∆≤δ

∅ , whereas

ςp,j points outwards and away from the distinguished base region, ∆≤δ

∅ . Furthermore, ϱp,j and ςp,j
are in some sense opposites to one another, since ϱp,j = −ςp,j when p ∈ (M≤δ

ν )T is an interior fixed

point, and since ϱp,j = −ςp,j mod Annt∗{uk | k ∈ Iv} when p ∈ (Zδ
ν)

T
is a boundary fixed point.

Finally, for the isotropy weight ϑp of multiplicity two that points along the flatHIv , we represent it

using a double-headed arrow for purely illustrative purposes as in Figure 6.5.

εj

φj

ςp,j

ϱp,j v

uj

(a) Isotropy weights of an interior fixed point.

φj

εj

κv

uj

ϱp,j
ςp,j

ϑp

v

(b) Isotropy weights of an interior fixed point.

Figure 6.5: Isotropy weights of a fixed point p ∈ M≤δ
ν , represented as edge vectors emanating out

from its corresponding vertex v = µR(p) ∈ ∆≤δ
ν .
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6.2 The Finite Subgroup associated to a Flat
There is additional isotropy data yet to be specified in the case when the cut spaceM≤δ

ν is an orbifold.

To start, let A = {H1, . . . , HN} be the simple hyperplane arrangement in t∗ that corresponds to

the hypertoric variety Mν , and let HF ∈ L(A) be a flat of A with F ⊆ {1, . . . , N}. Recall from

Section 2.4 the sublattices, UF = ⊕j∈FR · uj and VF = ⟨F⟩ ∩ tnZ, of tnZ in (2.8). Furthermore in

(2.11), we obtained the quotient tori, T rkF
U = ⟨F⟩/UF and T rkF

V = ⟨F⟩/VF . Finally, these lattices

can be used to define the finite abelian group ΓF = VF/UF , which is trivial if and only if onlyUF is

a saturated sublattice of VF .

Let us focus on the instance where the flatHF corresponds to an interior vertex v ∈ ∆<δ
ν of the

moment polyptych ∆≤δ
ν . Then we have that F ≡ Iv with rkHIv = n, that VIv

∼= tnZ, and also that

v = HIv . If p ∈ (M<δ
ν )T

n
denotes the interior fixed point such that v = µR(p) then, from [LT97,

Lemma 6.6], its orbifold structure group is:

Γp
∼= ΓIv = VIv/UIv

∼= tnZ/ SpanZ { uj | j ∈ Iv } . (6.4)

The same discussion essentially applies whenv is a boundary vertex of∆≤δ
ν , with the only difference

now being that F ≡ Iv will have rank Iv = n − 1. Let A ⊆ {1, . . . , N} be a subset for which

v ∈ Πδ
A. In this case, introduce the following sublattice:

UA
Iv := SpanZ

{
uj, uA

∣∣ j ∈ Iv and v ∈ Πδ
A

}
,

and denote:

V A
Iv := SpanR

{
uj, uA

∣∣ j ∈ Iv and v ∈ Πδ
A

} ∼= tnZ.

Since, for any other subsetB ⊆ {1, . . . , N} for which v ∈ Πδ
B , the set difference betweenA and

B consists only of elements in Iv, we have that UB
Iv

∼= UA
Iv . Hence the sublattice UA

Iv is well-defined,

regardless which subset A ⊆ {1, . . . , N} we choose to specify the boundary vertex v ∈ Πδ
A. If

p ∈ (Zδ
ν)

Tn
is a boundary fixed point such that v = µR(p) ∈ HIv ∩Πδ

A, then it follows from [LT97,

Lemma 6.6] again that its orbifold structure group is given by:

Γp
∼= ΓA

Iv := V A
Iv/U

A
Iv

∼= tnZ/ SpanZ

{
uj, uA

∣∣ j ∈ Iv and v ∈ Πδ
A

}
. (6.5)

To summarise:

Lemma 6.4. LetMν be a hypertoric variety and let A = {H1, . . . , Hn} be its corresponding simple
hyperplane arrangement. If p ∈ (M≤δ

ν )T
n is a fixed point in the cut space M≤δ

ν for the residual T n-
action, and if v = µR(p) ∈ ∆≤δ

ν is its corresponding vertex of the moment polyptych ∆≤δ
ν , then the

orbifold structure group Γp is given by:

Γp
∼=

{
ΓIv = tnZ/ SpanZ { uj | j ∈ Iv } , if v ∈ ∆<δ

ν ,

ΓA
Iv = tnZ/ SpanZ { uj, uA | j ∈ Iv and v ∈ Πδ

A } , if v ∈ Πδ
ν .
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Observe that either specification of the orbifold structure group in (6.4) or in (6.5) implies that

Γp is a finite subgroup of the residual torus T n
. Indeed, since bothUIv andUA

Iv are sublattices of tnZ,

we see that:

ΓIv
∼= tnZ/UIv

ΓA
Iv

∼= tnZ/U
A
Iv

}
⊊ tn/tnZ

∼= T n. (6.6)

Furthermore, if we denote the multiplicity of an orbifold point p ∈ M≤δ
ν bymp, then it coincides

with the order of the orbifold structure group Γp:

mp =

{
mIv := |ΓIv | = [VIv : UIv ], if v ∈ ∆<δ

ν ,

mA
Iv := |ΓA

Iv | = [V A
Iv : UA

Iv ], if v ∈ Πδ
A,

(6.7)

and hence Γp
∼= Z/mpZ.

6.3 Canonical Automorphisms of the Cut Line Bundle L≤δ
ν

For this section, assume that a holomorphicT n
-equivariant pre-quantum orbifold line bundleL exists

over the cut spaceM≤δ
ν . For a fixed point p ∈ (M≤δ

ν )T
n

, we wish to determine what the characters:

χp,j : Γp !

{
Aut(L̂p) ∈ U1, for j = 0;

Aut(V̂p,j) ∈ U1, for j = 1, . . . , 2n,

are, for the representations L̂p and V̂p,j of Γp that make an appearance in the equivariant Kawasaki-

Riemann-Roch formula (5.51) of Theorem 5.47. As in Section 6.2 before, regardless of whether p
belongs to the interiorM<δ

ν or the boundary Zδ
ν of the cut space, for clarity we shall denote:

Up :=

{
SpanZ { uj | j ∈ Iv } , if p ∈M<δ

ν ;

SpanZ

{
uj, uA

∣∣ j ∈ Iv and p ∈ Zδ
A

}
, if p ∈ Zδ

ν ,
(6.8)

so that we can write its orbifold structure group Γp and multiplicitymp respectively as:

Γp = tnZ/Up, and mp = |Γp| = [tnZ : Up].

By definition, the dual lattice U∗
p to Up is then isomorphic to:

U∗
p
∼=

{
{ ϱp,j | j ∈ Iv } , if p ∈M≤δ

ν ;{
ϱp,j, ϑp

∣∣ j ∈ Iv and p ∈ Zδ
A

}
, if p ∈ Zδ

ν ,
(6.9)

since ⟨ϱp,j, uj⟩ = 1 for each j = 1, . . . , nwhenever µR(p) ∈ Hj , and also because ⟨ϑp, uA⟩ = 1 if

additionally p ∈ Zδ
A. Since Up ⊆ tnZ, we therefore see that (tnZ)

∗ ⊆ U∗
p . If we set:

Γ∗
p := U∗

p/(t
n
Z)

∗,
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and if γ ∈ tnZ represents the element g ∈ Γp and similarly if α ∈ U∗
p represents the element a ∈ Γ∗

p,

then from [CLS11a, Proposition 1.3.18], the pairing:

Γ∗
p × Γp :−! U1, where (a, g) 7−! e2π

√
−1⟨α, γ⟩, (6.10)

is well-defined and induces an isomorphism Γp
∼= HomZ(Γ

∗
p;U1). From [KSW07], we can use (6.10)

to express the character of the representation L̂p of Γp as:

χp,0(γ) = e2π
√
−1⟨µR(p), γ⟩ ∈ U1,

and also:

χp,j(γ) =


ρp,j(γ) := e2π

√
−1⟨ϱp,j , γ⟩, on V̂ϱp,j ;

σp,j(γ) := e2π
√
−1⟨ςp,j , γ⟩, on V̂ςp,j ;

θp(γ) := e2π
√
−1⟨ϑp, γ⟩, on V̂ϑp .

(6.11)
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Chapter 7

Equivariant Quantisation of Hypertoric
Varieties

Let us discuss our strategy; for a hypertoric varietyMν , we formed its compact cut spaceM≤δ
ν and

determined the isotropy data for the T n
-action. Using the results of Chapter 6, this isotropy data

can be superposed over the moment polyptych ∆≤δ
ν given by the image of the real moment map,

∆≤δ
ν = µR(M

≤δ
ν ) in (tn)∗. We now turn to deriving a formula for the subspace H0(Mν ;Lν)d of

weight-d holomorphic sections on the hypertoric varietyMν , where d ∈ Z≥0 is some suitable non-

negative integer. We accomplish this by first calculating the equivariant characterχ : T n ! H•(BTn)
for the T n

-representation, H0(M≤d
ν ;L≤d

ν ), in Theorem 7.3. We then derive an expression for the

weight-d subspace H0(Mν ;Lν)d as a quotient of the spaces H0(M≤d
ν ;Ld

ν) in Theorem 7.8 and

Corollary 7.9, and consequently its sought-after dimension formula.

7.1 Pre-Quantum Line Bundles on the Cut Spaces
To start, denote:

Fλ := T ∗CN × Cλ −! T ∗CN

the TN
-equivariant line bundle over T ∗CN

, which we consider to be holomorphic with respect to

the complex-structure I1 on T ∗CN
. Here, TN

acts on Fν with weight λ ∈ (tNZ )∗. We can make

Fλ into an I1-holomorphic TN
-equivariant pre-quantum line bundle over T ∗CN

by equipping Fλ

with the Hermitian metric from (1.32), with Chern connection ∇L whose curvature is R(Fλ) =
(2π/

√
−1)ωR, similar to what was done before in Section 1.5 following [Kon00] and [DGMW, §3].

Let ν ∈ k∗Z be the image of λ under ı∗ : (tN)∗ ! k∗ from (1.11), and restrict Fλ to the level-set

ϕ−1
HK(ν, 0). By an abuse of notation, relabel:

Fν := ϕ−1
HK(ν, 0)× Cν −! ϕ−1

HK(ν, 0)
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to denote the resulting I1-holomorphic TN
-equivariant pre-quantum line bundle over ϕ−1

HK(ν, 0).

The subtorus K ⊴ TN
preserves the I1-holomorphic pre-quantum structure on Fν and so, if

(ν, 0) ∈ k∗Z ⊗ Im(H) is a regular value of the hyperkähler moment map ϕHK, then Fν descends to

the I1-holomorphic pre-quantum line bundle:

Lν := Fν/K := ϕ−1
HK(ν, 0)×K Cν −!Mν

over the hypertoric varietyMν . Since Fν is TN
-equivariant, it follows then that the I1-holomorphic

pre-quantum line bundle Lν is furthermore T n
-equivariant.

Similarly, we let:

LC := C × C −! C

be the trivial holomorphic line bundle over C with respect to the standard complex structure, IC say,

and equip it with the Hermitian metric:∥∥(ξ, ζ)∥∥ := |ζ|e−
1
2
|ξ|2 ,

thus inducing the Chern connection ∇C on LC, whose curvature isR(LC) = (2π/
√
−1)dξ ∧ dξ̄

similar to before. Hence LC is also pre-quantisable in essentially the same way that Fλ is, though one

can consult [DGMW, §3] for more details.

Now, let us consider the product orbifoldMν × C, along with the diagram:

Lν ⊠ LC

Lν Mν × C LC

Mν C
pr1 pr2

where:

Lν ⊠ LC := pr∗1 Lν ⊗ pr∗2 LC −!Mν × C

is the external tensor product ofLν andLC. ThenLν⊠LC is an (I1⊠IC)-holomorphic pre-quantum

line bundle over Mν × C via its product structure, namely that of the product Chern connection

∇L ⊠∇C, see [DGMW, §3]. From Section 3.2, recall that the Hamiltonian actions of U1 onMν and

on the productMν × C gave rise to the following moment maps:

Φ :Mν ! R≥0, Φ[z, w] = ∥w∥2,

and:

ρ :Mν × C ! R≥0, ρ ([z, w], ξ) = Φ[z, w] + |ξ|2,
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respectively. Provided that we choose a “suitable”, i.e. large enough and integral, d ∈ Z≥0, then

we can lift the diagonal U1-action on Mν × C up to an action on Lν ⊠ LC, thus obtaining an

(I1 ⊠ IC)-holomorphic (T n × U1)-equivariant pre-quantum line bundle overMν × C.

After taking the quotient with respect to the U1-action to form the cut spaceM≤d
ν , then Lν ⊠

LC descends M≤d
ν to become a T n

-equivariant pre-quantum line bundle over M≤d
ν , which is now

holomorphic with respect to the complex structure I1 that descends toM≤d
ν [Mei98, Theorem 4.5],

that we denote by:

L≤d

ν :=
(
(Lν ⊠ LC) |ρ−1(d)

)/
U1 −!M≤d

ν . (7.1)

Over the suborbifold {Φ < d} of ρ−1(d), there exist two candidate line bundles; one arising

from the embedding {Φ < d} ↪! Mν , and one arising from the embedding {Φ < d} ↪! M≤d
ν .

Fortunately there is no cause of confusion between these line bundles, since they can be identified

with one another thanks to the following lemma, proven in [Mei98, Theorem 4.5].

Lemma 7.1. There exists the canonical isomorphisms of holomorphic T n-equivariant pre-quantum line
bundles over the cut spaceM≤d

ν :

L≤d

ν |M<d
ν

∼= Lν |{Φ<d}, and L≤d

ν |Zd
ν

∼=
(
Lν |Φ−1(d)

)
/U1.

Since L≤d
ν is a Hermitian pre-quantum line bundle that is holomorphic with respect to the

complex structure I1, from Section 4.1 the L≤d
ν -twisted Dolbeault operator ∂L can be defined in this

case. Therefore we can consider the L≤d
ν -twisted Dolbeault cohomology groups:

H(0,j)(M≤d

ν ;L≤d

ν ) = H0(M≤d

ν ; Ωj(M≤d

ν ;L≤d

ν )), for j ≥ 0,

for the sheaf of L≤d
ν -twisted differential forms over the cut spaceM≤d

ν . However, since L≤d
ν is both

holomorphic and Hermitian however, by Kodaira’s vanishing theorem, only the j = 0 cohomology

group is non-trivial, and therefore:

H0(M≤d

ν ;L≤d

ν ) ≡ H0(M≤d

ν ; Γ(M≤d

ν ;L≤d

ν )) = Ind/∂L
(M≤d

ν ;L≤d

ν ).

7.2 U1-Equivariant Quantisation of Hypertoric Varieties
Our aim now is to determine the dimension ofH0(M≤d

ν ;L≤d
ν ), which is finite dimensional sinceM≤d

ν

is compact [CS53]. By Kodaira’s vanishing theorem, the Riemann-Roch number χ(M≤d
ν ;L≤d

ν ) from

(4.11) is equal to the index,H0(M≤d
ν ;L≤d

ν ) = Ind/∂
L≤d
ν

(M≤d
ν ;L≤d

ν ). We therefore could theoretically

calculate the dimension dimC H
0(M≤d

ν ;L≤d
ν ) either the Riemann-Roch theorem from Theorem 4.8,

or the Kawasaki-Riemann-Roch theorem from Theorem 4.14.

In practice, using the non-equivariant formulae would be difficult. However, if we apply the

Atiyah-Bott-Berline-Vergne localisation formula from Theorem 5.44 to the index formula instead,
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then we get an expression for the equivariant character, denoted by χ : T n ! H•(BTn), for the

C-vector spaceH0(M≤d
ν ;L≤d

ν ), considering it now as a representation of T n
. To obtain an expression

for the dimension by means of the equivariant character, the following definition is required.

Definition 7.2. Consider a simple hyperplane arrangement A = {H1, . . . , HN} in (tn)∗ where,

for each j = 1, . . . , N , the hyperplaneHj ∈ A has the corresponding normal vector uj ∈ tn. Let

αj ∈ (tn) be such that ⟨αj, uk⟩ = δjk, where δjk is the Kronecker delta function. Then we say that

an element ξ ∈ tn is generic if ⟨αj, ξ⟩ ≠ 0, for each j = 1, . . . , N .

In particular, if ξ ∈ tn is a generic element then, by definition [FH91, §2.1]:

χ(eξ) := Tr(eξ), (7.2)

where eξ on the right-hand of (7.2) should be thought of as the respective automorphism of

H0(M≤d
ν ;L≤d

ν ). Therefore, if we take the limit as ξ tends towards 0:

lim
ξ!0

χ(eξ) = Tr(e0) = Tr(1) = dimC H
0(M≤d

ν ;L≤d

ν ),

then we recover the dimension dimC H
0(M≤d

ν ;L≤d
ν ), thus circumventing any difficult evaluation of

the non-equivariant index formulae.

Our plan therefore is to apply the localisation formula (5.48) to either the Hirzebruch-Riemann-

Roch formula (4.13) ifM≤d
ν is smooth, or the Kawasaki-Riemann-Roch formula (4.23) ifM≤d

ν is an

orbifold. Since the fixed-point locus (M≤d
ν )T

n
consists of finitely-many isolated fixed points from

Lemma 6.1, it will actually be feasible to obtain a formula for the equivariant character χ(eξ) from

either Corollary 5.45 or from Theorem 5.47, before setting limξ!0 χ(e
ξ) = dimC H

0(M≤d
ν ;L≤d

ν ).

This gets us an expression for the dimension of the zeroth cohomology of the sheaf of holomorphic

section over the cut spaceM≤d
ν , but nothing so far regarding the original hypertoric varietyMν . We

shall deal with this last part in Section 7.4.

Theorem 7.3. Given a regular integral value ν ∈ k∗Z, letMν be a hypertoric variety with corresponding
simple hyperplane arrangement A in (tn)∗. Denote byM≤d

ν its cut space with moment polyptych ∆≤d
ν .

For each fixed point p ∈ (M≤d
ν )T , denote its orbifold structure group by Γp. Given a generic element

ξ ∈ tn, define a the equivariant character χ : T n ! H•(BTn) for the representationH0(M≤d
ν ;L≤d

ν )
of T n is given by the formula:

χ(eξ) =
∑

p∈(M<d
ν )T

1

|Γp|
∑
g∈Γp

e2π
√
−1⟨µR(p), γ⟩e⟨µR(p), ξ⟩[∏

j∈Iv(1− e2π
√
−1⟨ϱp,j , γ⟩e⟨ϱp,j , ξ⟩)(1− e2π

√
−1⟨ςp,j , γ⟩e⟨ςp,j , ξ⟩)

]
+

∑
p∈(Zd

ν )
T

1

|Γp|
∑
g∈Γp

e2π
√
−1⟨µR(p), γ⟩e⟨µR(p), ξ⟩[(

1− e2π
√
−1⟨ϑp, γ⟩e⟨ϑp, ξ⟩

)2 (∏
j∈Iv(1− e2π

√
−1⟨ϱp,j , γ⟩e⟨ϱp,j , ξ⟩)(1− e2π

√
−1⟨ςp,j , γ⟩e⟨ςp,j , ξ⟩)

)] , (7.3)

where ϱp,j , ςp,j , and ϑp, are the T n-weights defined in Section 6.1.
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Proof. The components that go into proving this theorem have essentially been proven already. From

Lemma 6.1, the fixed point (M≤d
ν )T

n
set of the cut space has been shown to consist of finitely-many

isolated fixed points, and can be dichotomised into either fixed points in the cut space interiorM<δ
ν

that correspond to interior vertices of the moment polyptych ∆≤d
ν , or those on the boundary Zδ

ν that

correspond to boundary vertices of ∆≤d
ν . Hence by combining the equivariant Kawasaki-Riemann-

Roch formula (5.51) from Theorem 4.14 with Lemma 6.1, we can split the localisation formula into

two sums; one over the interior fixed points, and the other over the boundary ones.

First though, if p ∈ (M≤d
ν )T

n
and for a generic element ξ ∈ tn then, for brevity, let us introduce

the “local trace” χp [SG99], as:

χp(e
ξ) :=

1

|Γp|
∑
g∈Γp

χp,0(g) · e⟨µR(p), ξ⟩∏n
j=1

(
1− χp,j(g) · e⟨αp,j , ξ⟩

) ,
which is the contribution towards χ from each fixed point p. Then, since M≤d

ν
∼= M<d

ν ⊔ Zd
ν , the

equivariant Kawasaki-Riemann-Roch formula (5.51) can be decomposed as:

χ(eξ) =
∑

p∈(M<d
ν )Tn

χp(e
ξ) +

∑
p∈(Zd

ν )
Tn

χp(e
ξ). (7.4)

Let us first deal with the first term on the right-hand side of (7.4). So consider an interior fixed

point p ∈ (M<d
ν )T

n
, and let v = µR(p) ∈ ∆≤d

ν be its corresponding interior vertex, which is equal to

the rank n flat {v} = HIv , with Iv ⊆ {1, . . . , N}. In (6.2) from Proposition 6.3, its tangent space

decomposes as:

TpM
≤d

ν
∼=
⊕
j∈Iv

(
Vϱp,j ⊕ Vςp,j

)
,

withϱp,j ∈ (tn)∗ the isotropy weight for the representationVϱp,j ofT n
, and similarly with ςp,j ∈ (tn)∗

for Vςp,j . To summarise so far, the local trace χp for the interior fixed point p ∈ (M<d
ν )T

n
is given by:

χp(e
ξ) =

1

|Γp|
∑
g∈Γp

χp,0(g) · e⟨µR(p), ξ⟩[∏
j∈Iv(1− χp,j(g) · e⟨ϱp,j , ξ⟩)(1− χp,j(g) · e⟨ςp,j , ξ⟩)

] . (7.5)

If the interior fixed point p is an orbifold point so that its orbifold structure groupΓp is non-trivial,

then we have to take the orbifold structure of the cut spaceM≤d
ν into account, though this was covered

in Section 6.3. From (6.11), if we let γ ∈ tnZ represent the element g ∈ Γp, we see that:

χp,j(g) =


χp,0(g) = e2π

√
−1⟨µR(p), γ⟩, on L̂p;

ρp,j(g) = e2π
√
−1⟨ϱp,j , γ⟩, on V̂ϱp,j ;

σp,j(g) = e2π
√
−1⟨ςp,j , γ⟩, on V̂ςp,j .

(7.6)
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Substituting the characters (7.6) into the expression (7.5) for the local trace χp(e
ξ) finally yields the

first term on the right-hand side of (7.4).

As for the other case when p ∈ (Zd
ν)

Tn
is a boundary fixed point, the reasoning is essentially the

same as that for interior fixed points and so, given this, we shall cover it more quickly. Denote the

corresponding boundary vertex by v = µR(p) ∈ Πd
ν ∩HIv , whereHIv is the rank (n− 1) flat. From

Lemma 6.1, we have the decomposition:

TpM
≤δ

ν
∼=
(
Vϑp ⊕ Vϑp

)
⊕
⊕
j∈Iv

(
Vϱp,j ⊕ Vςp,j

)
,

with T n
acting on Vϑp with weight ϑp ∈ (tn)∗, and on Vϱp,j and Vςp,j as in the interior point case. For

the boundary fixed point p, we thus have the following local trace:

χp(e
ξ) = 1

|Γp|
∑
g∈Γp

χp,0(g)·e⟨µR(p), ξ⟩[
(1−χp,j(g)e

⟨ϑp, ξ⟩)
2
(
∏

j∈Iv(1−χp,j(g)e
⟨ϱp,j , ξ⟩)(1−χp,j(g)e

⟨ςp,j , ξ⟩))
] . (7.7)

If p is additionally an orbifold point then, from (6.11) and via the same discussion as in the interior

fixed-point case, we have:

χp,j(g) =

{
θp(g) = e2π

√
−1⟨ϑp, γ⟩, on V̂ϑp ;

Interior point case, (7.6), otherwise.

(7.8)

Thus, by substituting into (7.7) the characters from (7.6) and (7.8), we obtain the second term on the

right-hand side of (7.4), and hence the equivariant Kawasaki-Riemann-Roch formula (7.3) for the cut

spaceM≤d
ν .

7.3 Algebraic Cutting
Recall, from Definition 1.19, that a complex normal quasi-projective variety M is said to be semi-

projective if it is projective over an affine varietyM0. In this section, we will introduce an algebraic

analogue to Lerman’s symplectic cutM≤d
in the instance whenM is semi-projective. An algebraic

analogue to the symplectic cut was introduced by Edidin and William in [EG98], called the “algebraic
cut”, and considered projective algebraic varieties with a linearised action of the one-dimensional split

torus Gm
∼= C∗

. Our method here is different to that presented in [EG98], since our method forms

the algebraic cut by the means of the Proj-construction being applied to semi-projective varieties, as

described in Section 1.4.

Since M is semi-projective, there exist the isomorphisms, M ∼= ProjR and M0
∼= SpecR0,

whereR is a Z-graded C-algebra, that is furthermore finitely-generated byR1 as anR0-algebra. More-

over, from the projective structure morphism π :M !M0, we get an ample line bundle LM over
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M that is very ample relative to π. Now suppose thatM is acted upon by the algebraic circle C∗
, and

that this C∗
-action lifts to LM a C∗

-linearised ample line bundle.

Similarly, consider the linear C∗
-action on C. Then, on the one hand, as a C∗

-action on an affine

variety is equivalent to a Z-grading on its ring of regular functions, we obtain a Z-grading on the

affine coordinate ring OC(C) of C, where the grading is given by the degree of the homogeneous

polynomials. However, on the other hand, we can define another Z≥0-grading on the coordinate ring

OC(C) ∼= C[ξ] by adjoining a dummy variable as C[ξ][Y ], and asserting that deg(ξ) = 0 and that

deg(Y ) = 1. With respect to this Z≥0-grading, C becomes a semi-projective variety as follows: for

each q ∈ Z≥0, define the following C-algebras, Sq := C[ξ] · Y q
, where deg(ξ) = 0 and deg(Y ) = 1.

Then:

S :=
⊕
q≥0

Sq =
⊕
q≥0

C[ξ] · Y q ∼= C[ξ][Y ]

is a Z≥0-graded C-algebra, graded with respect to the variable Y , and is finitely-generated as an S0-

algebra by S1. Therefore, the structure morphism is:

C ∼= ProjS ∼= ProjC[ξ][Y ]
∼

−! SpecS0 = C[ξ] ∼= C,

showing, in particular, that C is projective over itself.

Given now thatM ∼= ProjR and C ∼= ProjS, whereR and S are both C-algebras, then define

the Segre product ofR and S to be:

R×C S :=
⊕
m∈Z

Rm ⊗C Sm. (7.9)

The following lemma is from [Har77, Exercise 5.11].

Lemma 7.4. LetA be a ring, and letR and S be two Z-gradedA-algebras. IfR is finitely-generated
as anR0-algebra byR1, and if S is finitely-generated as an S0-algebra by S1, thenR×A S is finitely-
generated by (R⊗A S)1 as an (R⊗A S)0-algebra.

From Lemma 7.4, we see thatR×C S is again a Z-graded C-algebra, finitely-generated by (R1⊗C

S1) as an (R0 ⊗ S0)-algebra. Hence the productM ×C C is isomorphic to the projective spectrum

of the respective Segre product:

M ×C C = ProjR×C ProjS ∼= Proj (R×C S) .

The exterior tensor product L = LM ⊠ LC is also ample overM ×C C, and the C∗
-action makes L

into an ample C∗
-linearised line bundle.

Definition 7.5. LetM ∼= R be a normal semi-projective variety, whereR ∼= ⊕p≥0Rp is a C-algebra,

finitely-generated as anR0-module by R1. Let LM ! M be the ample line bundle over M that is

very ample relative to the structure morphism, π : M ! SpecR0. Further suppose that C∗
acts
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linearly onM . Then, for an integer d ∈ Z, we define the algebraic cut ofM at the level d, to be the

projective GIT quotient:

M≤d := (M ×C C) �d C∗ = Proj
⊕
m≥0

H0(M ×C C;L⊗md)C∗
, (7.10)

where L = LM ⊠ LC is the external tensor product over the Cartesian productM ×C C.

The Proj-construction approach makes it particularly straightforward to come up with some

examples of algebraic cuts.

Example 7.6. Consider the Z≥0-graded rings,R and S, given by:

R = R0[X], where R0 = C[z1, . . . , zN ],

with deg(zi) = 0, for each i = 1, . . . , N , and deg(X) = 1, and also:

S = S0[Y ], where S0 = C[ξ],

with deg(ξ) = 0 and deg(Y ) = 1. Then CN = SpecR0
∼= ProjR, and C = SpecS0

∼= ProjR.

Their Segre productR×C S is then:

R×C S = C[z1, . . . , zn, ξ][Z], where Z := X ⊗ Y.

To construct the algebraic cut of CN
, let C∗

act onR0 and on S0 as:

τ · zi = τ−1zi, and τ · ξ = τ−1ξ,

respectively, which carries over toR×C S. Furthermore, for some integer d ∈ Z, set:

τ · Z = τ dZ.

Hence the Cartesian product CN ×C C of CN
with C is:

CN ×C C ∼= ProjR⊗C S ∼= ProjC[z1, . . . , zN , ξ;Z].

There are various different outcomes for the algebraic cutM≤d = (Cn ×C C) �d C∗
, depending on

which value for d is chosen.

Case 1: (d ≤ 0). In this case, (R×C S)
C∗

= C, and so:

(Cn ×C C) �d C∗ = Proj(R×C S)
C∗

= ProjC = ∅.
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Case 2: (d = 1). Now in this case:

(R×C S)
C∗

= C[z1Z, . . . , zNZ, ξZ] ∼= C[X0, . . . , Xn],

after relabelling the indeterminates as Z0 := ξX andXi := ziZ , for i = 1, . . . , N . As each

Xi has degree one, they are all homogeneous; hence the algebraic cut is:

(CN ×C C) �1 C∗ = Proj(R⊗C S)
C∗

= ProjC[X0, . . . , Xn] ∼= CPn,

and equipped with the line bundle: OCPn(1).

Case 3: (d ≥ 2). In this case, we still get:

(Cn ×C C) �d C∗ ∼= CPn,

but now it comes with the d-twisted line bundle OCPn(d).

Example 7.7. LetR and S be the same as in Example 7.6, so that:

R×C S = C[z1, . . . , zn, ξ][Z].

However, now let C∗
act onR×C S as:

τ · zi = τ−1zi, and τ · ξ = τξ,

and again with:

τ · Z = τ dZ,

for some d ∈ Z. Let us see what happens when we let the value of d vary:

Case 1: (d ≤ 0). In this case:

(R×C S)
C∗ ∼= C[z1ξ, . . . , znξ][ξ

dZ] ∼= C[x1, . . . , xn][X],

after relabelling xi := ziξ, for i = 1, . . . , N , andX := ξdZ . Hence:

(Cn ×C C) �d C∗ = ProjC[x1, . . . , xn][X] ∼= SpecC[x1, . . . , xn] = Cn.

Case 2: (d = 1). Now we have that:

(R×C S)
C∗

= C[z1ξ, . . . , znξ][z1Z, . . . , znZ]

∼=
C[y1, . . . , yn][X1, . . . , Xn]

⟨yiXj − yjXi | i, j = 1, . . . , n⟩
,

where xi := ziξ andXi = z1Z , for i = 1, . . . , n. Hence, in this case, the algebraic cut of Cn

is the blow-up of Cn
at the origin:

(Cn ×C C) �1 C∗ = Proj(R×C S)
C∗

= Proj
C[x1, . . . , xN ;Y1, . . . , YN ]

⟨yiXj − yjXi | i, j = 1, . . . , N⟩
∼= Bl0 Cn.
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Case 3: (d ≥ 2). In the last case, we still get that (Cn ×C C) �d C∗ ∼= Bl0 Cn
, but CPN−1

should be considered

as being in its d-th Veronese embedding.

Consider a normal semi-projective varietyM with an ample line bundle LM !M over it. If the

ample line bundle L is not very ample, then we may replace it with the very ample line bundle L⊗m1
,

wherem1 ∈ Z≥0 is sufficiently large. For each p ∈ Z≥0, set:

Rp := H0(M ;L⊗p
M ) and R :=

⊕
p≥0

Rp. (7.11)

ThenR is a Z≥0-graded C-algebra. By replacing LM with L⊗m2
M for some sufficiently largem2 ∈ Z≥0

in (7.11) if necessary, we may assume thatR is finitely-generated byR1 = H0(M ;LM) as anR0-algebra

[Har77, Exercise 5.9, Exercise 5.13, & Exercise 5.14].

7.4 U1-Equivariant Quantisation
Theorem 7.3 yields a formulae for the equivariant character χ : T n ! H•(BTn) for the representa-

tion of T n
onH0(M≤d

ν ;L≤d
ν ), and thus a way to obtain its dimension. We shall now use the finite-

dimensional spaces H0(M≤d
ν ;L≤d

ν ) to find an expression for the weight d subspace H0(Mν ;Lν)d,

and consequently a formula for its dimension too. We first begin by proving a theorem that can be

applied more general varieties than just hypertoric ones.

Theorem 7.8. LetM be a complex semi-projective normal variety, and let LM be an ample line bundle
overM , that is very ample relative to the structure morphism π :M ! SpecR0. Suppose that C∗ acts
onM , and that this action lifts to make LM into a C∗-linearised ample line bundle.

For d ∈ Z≥0 large enough, letH0(M ;LM)d represent the weight d subspace ofH0(M ;LM) for
the C∗-action. Then we have the isomorphism:

H0(M ;LM)d ∼= H0(M≤d;L≤d

M )
/
H0(M≤d−1;L≤d−1

M ), (7.12)

of C-vector spaces.

Proof. Recall from Definition 7.5 that the the algebraic cut of M is the projective GIT quotient,

M≤d = (M×C C)�d C∗
, with the ample line bundleL≤d

M = (LM ⊠LC)�d C∗
over it. The C-vector

space of holomorphic sections onM≤d
is then:

H0(M≤d;L≤d

M ) = H0
(
(M ×C C) �δ C∗; (LM ⊠ LC) �d C∗). (7.13)

Denote by (LM ⊠ LC)(d) the twist of LM ⊠ LC by the C∗
-character, χd(τ) = τ d. A section

σ ∈ H0(M ×C C;LM ⊠ LC) descends to a section σ̃ ∈ H0(M≤d;L≤d) if, and only if, σ is C∗
-

invariant with respect to the action induced by χd. In other words, there exists a bijection:

H0
(
(M ×C C) �d C∗; (LM ⊠ LC) �d C∗) ∼= H0

(
M ×C C; (LM ⊠ LC)(d)

)C∗
. (7.14)
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The term on the right-hand side of (7.14) is the space of χd-twisted C∗
-invariant global sections,

which is the same as the space global sections of C∗
-weight d. That is:

H0
(
M ×C C; (LM ⊠ LC)(d)

)C∗ ∼= H0(M ×C C;LM ⊠ LC)d ,

which, by the Künneth formula [Kem93, Proposition 9.2.4], is isomorphic to:

H0(M ×C C;LM ⊠ LC)d
∼=
[
H0(M ;LM)⊗C H

0(C;LC)
]
d
.

AsM and C are both normal varieties, the line bundles LM and LC both admit C∗
-linearisations.

Their individual spaces of global sections then decompose into their respective direct sums of C∗
-weight

spaces:

[
H0(M ;LM)⊗C H

0(C;LC)
]
d
∼=

[(⊕
i∈Z

H0(M ;LM)i

)
⊗C

(⊕
j≥0

H0(C;LC)j

)]
d

∼=
⊕
i+j=d
j≥0

(
H0(M ;LM)i ⊗C H

0(C;LC)j
)
.

SinceH0(C;LC) ∼= C[ξ] where deg(ξ) = 0, each C∗
-weight space has complex dimension one.

Hence, as C-vector spaces:

H0(C;LC)j ∼= C, for each j ≥ 0.

Therefore: ⊕
i+j=d
j≥0

(
H0(M ;LM)i ⊗C H

0(C;LC)j
) ∼=⊕

i≤d

H0(M ;LM)i,

and so, after tracing back through the isomorphisms:

H0(M≤d;L≤d
M ) ∼=

⊕
i≤d

H0(M ;LM)i

as C-vector spaces. Thus we may extract the subspace of C∗
-weight dfromH0(M ;LM) by taking the

quotient:

H0(M≤d;L≤d

M )
/
H0(M≤d;L≤d−1

M ) ∼=
⊕
i≤d

H0(M ;LM)i

/⊕
i≤d−1

H0(M ;LM)i

∼= H0(M ;LM)d,

which strips away the lower C∗
-weight subspaces, yielding the desired result.
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Whilst Theorem 7.8 applies to any normal semi-projective variety, we are interested in applying

it to a hypertoric varietyMν . From Theorem 7.3, we can calculate the equivariant character χ(eξ),

where ξ ∈ t is generic relative to each hyperplane of the arrangement A, for the T n
-action on the

spaceH0(M≤d
ν ;L≤d

ν ) of holomorphic sections overM≤d
ν and whose dimension we calculate by taking

the limit, limξ!0 χ(e
ξ) = dimC H

0(M≤d
ν ;L≤d

ν ). Then, from Theorem 7.8, we see that:

H0(Mν ;Lν)d ∼= H0(M≤d

ν ;L≤d

ν )
/
H0(M≤(d−1)

ν ;L≤(d−1)

ν ),

and so by considering their dimensions:

dimC H
0(Mν ;Lν)d = dimC H

0(M≤d

ν ;L≤d

ν )− dimC H
0(M≤(d−1)

ν ;L≤(d−1)

ν ).

Therefore, despite the dimension ofH0(Mν ;Lν) being infinite, the residual C∗
-action on the

hypertoric varietyMν causesH0(Mν ;Lν) to decompose into its finite-dimensional C∗
-weights spaces,

H0(Mν ;Lν)d, for each d ∈ Z≥0, as:

H0(Mν ;Lν) ∼=
⊕
d≥0

H0(Mν ;Lν)d.

Let us summarise this result.

Corollary 7.9. For a regular value ν ∈ k∗Z, let Mν be the corresponding hypertoric variety, and let
Lν = ϕ−1

HK(ν, 0)×K Cν !Mν be the holomorphic pre-quantum ample line bundle overMν . For an
integer d ∈ Z≥0, letH0(Mν ;Lν)d denote the subspace of the C-vector spaceH0(Mν ;Lν) of C∗-weight
d, induced from the residual C∗-action onMν . Then the complex dimension ofH0(Mν ;Lν)d is given
by the formula:

dimC H
0(Mν ;Lν)d = dimC H

0(M≤d

ν ;L≤d

ν )− dimC H
0(M≤(d−1)

ν ;L≤(d−1)

ν ), (7.15)

where M≤d
ν is the cut space of Mν at the level d, and where L≤d

ν is the I1-holomorphic T n-linearised
ample line bundle overMν defined in (7.1).

7.5 Examples of U1-Equivariant Quantisations
Despite looking imposing, it is not too difficult to see how to put the formulae presented in Theorem

7.3 and Corollary 7.9 to use, once we have seen them in action with some examples. The calcula-

tions involving manifolds can be done by hand, whereas those involving orbifolds were calculated

numerically using SymPy, [SymPy].

7.5.1 Equivariant Quantisation of T ∗CP1

Here, we setm = ν ∈ k∗Z
∼= Z and d = δ ∈ Z≥0. Then, continuing on from Examples 2.4 and 3.9,

the cut space is now denoted byM≤d
m = (T ∗CP1)≤d

with moment polyptych ∆≤d
ν .
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The required isotropy data to calculate the character χm,d for the representation of T 1
on

H0(M≤δ
ν ;L≤δ

ν ) is displayed in Figure 7.1, which the isotropy data presented below. Here, we let

vi = µR(pi) and bi = µR(qi) for i = 1, 2, where pi ∈ (M<δ
ν ) are the two interior fixed points, and

qi ∈ (Zδ
ν) are the two boundary fixed points.

v1

H1

v2

H2

b1 b2

ϱp1,1ςp1,1 ϱp2,2ςp2,2ϑq1 ϑq2

u1 u2u{1} u{2}

Figure 7.1: Labelling of the moment polyptych ∆≤δ
ν forMν = T ∗CP1

.

v1 = 0

{
ϱp1,1 = +1,

ςp1,1 = −1,
v2 = m

{
ϱp2,2 = −1,

ςp2,2 = +1

b1 = −d
{
ϑq1 = +1, b2 = m+ d

{
ϑq2 = −1.

Now let eξ = t ∈ T 1
. Then, from (7.3), we obtain the following expression for the equivariant

character:

χm,d(t) =
1

(1− t)(1− t−1)
+

tm

(1− t)(1− t−1)
+

t−d

(1− t)2
+

tm+d

(1− t−1)2

=

[
1

1− t
+

tm+d

1− t−1

]
·
[

1

1− t−1
+

t−d

1− t

]
=

[
m+d∑
k=0

tk

]
·

[
d∑

l=0

t−l

]
.

By taking the limit ξ ! 0 so that t! 1, we obtain:

dimC H
0(M≤d

ν ;L≤d
ν ) = (m+ d+ 1)(d+ 1),

and hence, from Corollary 7.9, we finally get:

dimC H
0(Mν ;Lν)d = dimC H

0(M≤d
ν ;L≤d

ν )− dimC H
0(M≤(d−1)

ν ;L≤(d−1)
ν )

= m+ 2d+ 1.
(7.16)
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7.5.2 Equivariant Quantisation of T ∗CP2

Again, letm, d ∈ Z≥0, and now considerMν = T ∗CP2
from Example 2.6. The cut spaceM≤d

m =
(T ∗CP2)≤d

has the moment polyptych ∆≤δ
ν that was presented in Figure 3.3 and which we reproduce

below in Figure 7.2, along with the superposed isotropy weights.

H1

H2

H3

v12 v23

v23

u1

u2

u3

ϱ1

ϱ2

ς1

ς2

ς3ϱ3

ϱ2

ς2

ς3

ϱ3

ς1

ϱ1

ϱ2

ς2

ϑ

ϱ1

ς1

ϑ

ϑ

ϱ2

ς2

ϑ

ς3

ϱ3

ϑ

ϱ1

ς1

ϑ

ς3

ϱ3

Figure 7.2: Moment polyptych ∆≤δ
ν of the cut spaceM≤δ

ν = (T ∗CP2)≤d
.

Below, we list the vertices of the polyptych ∆≤d
ν and the corresponding isotropy weights. Here,

vij = µR(pij) ∈ ∆<d
ν represent the interior vertices whereas b

(k)
ij = µR(q

(k)
ij ) ∈ Πd

ν represent the

boundary vertices.

v12 = (0, 0)


ϱp12,1 = (1, 0),

ςp12,1 = (−1, 0),

ϱp12,2 = (0, 1),

ςp12,2 = (0,−1),

v23 = (m, 0)


ϱp23,2 = (−1, 1),

ςp23,2 = (1,−1),

ϱp23,3 = (−1, 0),

ςp23,3 = (1, 0),
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v13 = (0,m)


ϱp13,1 = (1,−1),

ςp13,1 = (−1, 1),

ϱp13,3 = (0, 1),

ςp13,3 = (0,−1),

b
(1)
12 = (0,−d)


ϱ
q
(1)
12 ,1

= (1, 0),

ς
q
(1)
12 ,1

= (−1, 1),

ϑ
q
(1)
12

= (0, 1),

b
(2)
12 = (−d, 0)


ϱ
q
(2)
12 ,2

= (0, 1),

ς
q
(2)
12 ,2

= (1,−1),

ϑ
q
(2)
12

= (1, 0),

b
(2)
23 = (m+ d, 0)


ϱ
q
(2)
23 ,2

= (−1, 1),

ς
q
(2)
23 ,2

= (0,−1),

ϑ
q
(2)
23

= (−1, 0),

b
(3)
23 = (m+ d, 0)


ϱ
q
(3)
23 ,3

= (−1, 0),

ς
q
(3)
23 ,3

= (0, 1),

ϑ
q
(3)
23

= (−1, 1),

b
(1)
13 = (0,m+ d)


ϱ
q
(1)
13 ,1

= (1,−1),

ς
q
(1)
13 ,1

= (−1, 0),

ϑ
q
(1)
13

= (0,−1),

b
(3)
13 = (−d,m+ d)


ϱ
q
(3)
13 ,3

= (0,−1),

ς
q
(3)
13 ,3

= (1, 0),

ϑ
q
(3)
13

= (1,−1),

Let us set eξ = (t1, t2). Then, by using (7.3), we obtain:

χ(eξ) =

[
1

(1− t1)(1− t2)
+

tm+d
1

(1− t−1
1 )(1− t−1

1 t2)
+

tm+d
2

(1− t−1
2 )(1− t1t

−1
2 )

]
·
[

1

(1− t−1
1 )(1− t−1

2 )
+

t−d
1

(1− t1)(1− t1t
−1
2 )

+
t−d
2

(1− t2)(1− t−1
1 t2)

]
=

[ ∑
l1+l2≤m+d

tl11 t
l2
2

]
·

[ ∑
d1+d2≤d

t−d1
1 t−d2

2

]
.

As before, letting (t1, t2) ! (1, 1), we obtain the dimension ofH0(M≤d
m ;L≤d

m ), yielding:

dimC H
0(M≤d

m ;L≤d
m ) =

(m+ d+ 1)(m+ d+ 2)

2

(d+ 1)(d+ 2)

2
.

Hence, from Corollary 7.9:

dimC H
0(Mν ;Lν)d = (m+ 2d+ 1)(m+ d+ 1)(d+ 1). (7.17)
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7.5.3 Equivariant Quantisation of T ∗(CP1 × CP1)

The hypertoric manifold Mν = T ∗(CP1 × CP1) and its hyperplane arrangement A =
{H1, H2, H3, H4} were introduced in Example 2.7. We set λ = (0, 0,m, n) ∈ (t4Z)

∗
so that

ν = (m,n) = ı∗(λ), and also set d = δ ∈ Z≥0. We have denoted vij = Hi ∩ Hj for the in-

terior vertices, and b
(k)
ij for the boundary vertex, whose adjacent interior vertex is vij and satisfies

b
(k)
ij ∈ Hk. The moment polyptych ∆≤δ

ν is recreated in Figure 7.3 with the corresponding isotropy

data.

v12 v23

v34v14

b
(1)
12

b
(2)
12 b

(2)
23

b
(3)
23

b
(3)
34

b
(4)
34

b
(1)
14

b
(4)
14

u1

u2

u3

u4

ϱ1

ϱ2

ς1

ς2

ς3

ϱ3

ϱ2

ς2

ϱ4

ς4

ϱ1

ς1

ϱ4

ς4

ϱ3

ς3

ϱ2

ς2

ϑ

ϱ1

ϱ1

ϑ

ϑ

ς2

ϱ2

ϑ
ς3

ϱ3

ϑ

ς3

ϱ3

ϑ

ς4

ϱ4

ϑ

ς4

ϱ4

ϑ

ϱ1

ς1

Figure 7.3: Moment polyptych forM≤δ
ν whenMν

∼= T ∗(CP1 × CP1).

v12 = (0, 0)


ϱp12,1 = (1, 0),

ςp12,1 = (−1, 0),

ϱp12,2 = (0, 1),

ςp12,2 = (0,−1),

v23 = (m, 0)


ϱp23,2 = (0, 1),

ςp23,2 = (0,−1),

ϱp23,3 = (−1, 0),

ςp23,3 = (1, 0),

v34 = (m,m)


ϱp34,3 = (−1, 0),

ςp34,3 = (1, 0),

ϱp34,4 = (0,−1),

ςp34,4 = (0, 1),

v14 = (0,m)


ϱp14,1 = (1, 0),

ςp14,1 = (−1, 0),

ϱp14,4 = (0,−1),

ςp14,4 = (0, 1),
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b
(1)
12 = (0,−d)


ϱ
q
(1)
12 ,1

= (1, 0),

ς
q
(1)
12 ,1

= (−1, 1),

ϑ
q
(1)
12

= (0, 1),

b
(2)
12 = (−d, 0)


ϱ
q
(2)
12 ,2

= (0, 1),

ς
q
(2)
12 ,2

= (1,−1),

ϑ
q
(2)
12

= (1, 0),

b
(2)
23 = (m+ d, 0)


ϱ
q
(2)
23 ,2

= (0, 1),

ς
q
(2)
23 ,2

= (−1, 1),

ϑ
q
(2)
23

= (−1, 0),

b
(3)
23 = (m,−d)


ϱ
q
(3)
23 ,2

= (−1, 0),

ς
q
(3)
23 ,2

= (1,−1),

ϑ
q
(3)
23

= (0, 1),

b
(3)
34 = (m,m+ d)


ϱ
q
(3)
34 ,3

= (−1, 0),

ς
q
(3)
34 ,3

= (1,−1),

ϑ
q
(3)
34

= (0,−1),

b
(4)
34 = (m+ d,m)


ϱ
q
(4)
34 ,4

= (0,−1),

ς
q
(4)
34 ,4

= (−1, 1),

ϑ
q
(4)
34

= (−1, 0),

b
(1)
14 = (m,m+ d)


ϱ
q
(1)
14 ,1

= (1, 0),

ς
q
(1)
14 ,1

= (−1,−1),

ϑ
q
(1)
14

= (0,−1),

b
(4)
14 = (m+ d,m)


ϱ
q
(4)
14 ,4

= (0,−1),

ς
q
(4)
14 ,4

= (1, 1),

ϑ
q
(4)
14

= (1, 0),

Setting eξ = (t1, t2) ∈ T 2
, we then can calculate the equivariant character χ(t1, t2) using (7.3):

χν,d(t1, t2) =
1

(1− t1)(1− t2)

[
1

(1− t−1
1 )(1− t−1

2 )
+

t−d
1

(1− t1)(1− t1t
−1
2 )

+
t−d
2

(1− t−1
1 t2)(1− t2)

]
+

tm1
(1− t−1

1 )(1− t2)

[
1

(1− t1)(1− t−1
2 )

+
td1

(1− t−1
1 )(1− t−1

1 t−1
2 )

+
t−d
2

(1− t1t2)(1− t−1
1 )

]
+

tn2
(1− t1)(1− t−1

2 )

[
1

(1− t−1
1 )(1− t2)

+
t−d
1

(1− t1)(1− t1t
−1
2 )

+
t−d
2

(1− t−1
1 t−1

2 )(1− t−1
2 )

]
+

tm1 t
n
2

(1− t−1
1 )(1− t−1

2 )

[
1

(1− t1)(1− t2)
+

td1
(1− t−1

1 )(1− t−1
1 t2)

+
td2

(1− t−1
2 )(1− t1t

−1
2 )

]
=

1

(1− t1)(1− t2)

[ ∑
d1+d2≤d

t−d1
1 t−d2

2

]
+

tm1
(1− t−1

1 )(1− t2)

[ ∑
d1+d2≤d

td11 t
−d2
2

]

+
tn2

(1− t1)(1− t−1
2 )

[ ∑
d1+d2≤d

t−d1
1 td22

]
+

tm1 t
n
2

(1− t−1
1 )(1− t−1

2 )

[ ∑
d1+d2≤d

td11 t
d2
2

]

=
∑

d1+d2≤d

t−d1
1 t−d2

2

(
1

1− t2

[
1

1− t1
+
tm+2d1
1

1− t−1
1

]
+

tn+2d2
2

1− t−1
2

[
1

1− t1
+
tm+2d1
1

1− t−1
1

])
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=
∑

d1+d2≤d

t−d1
1 t−d2

2

([
1

1− t1
+
tm+2d1
1

1− t−1
2

]
·
[

1

1− t2
+

tn+2d2
2

1− t−1
2

])

=
∑

d1+d2≤d

t−d1
1 t−d2

2

([
m+2d1∑
l1=0

tl11

]
·

[
n+2d2∑
l2=0

tl22

])

=
d∑

d1=0

t−d1
1

d−d1∑
d2=0

t−d2
2

 ∑
0≤l1≤m+2d1
0≤l2≤n+2d2

tl11 t
l2
2


 .

In taking the limit (t1, t2) ! (1, 1), we get:

dimH0(M≤d
ν ;L≤d

ν ) =
d∑

d1=0

(
d−d1∑
d2=0

(m+ 2d1 + 1)(n+ 2d2 + 1)

)

=
d∑

d1=0

(d− d1 + 1)(2d1 +m+ 1)(d− d1 + n+ 1)

=
(d+ 1)(d+ 2)(d2 + 2dm+ 2dn+ 3d+ 3mn+ 3m+ 3n+ 3)

6
,

so that by (7.14), the dimension ofH0(Mν ;Lν)d is:

dimC H
0(Mν ;Lν)d = dimC H

0(M≤d
ν ;L≤d

ν )− dimC H
0(M≤(d−1)

ν ;L≤(d−1)
ν )

=
(d+ 1)(2d2 + 3dm+ 3dn+ 4d+ 3mn+ 3m+ 3n+ 3)

3
.

7.5.4 Equivariant Quantisation of Mν with a Reducible Core
The previous examples have all involved a hypertoric variety whose cut space ended up being a manifold,

or equivalently, that its core was irreducible. But from Theorem 3.17, any hypertoric variety whose core

is reducible will have an orbifold for its cut space, thus requiring the equivariant Kawasaki-Riemann-

Roch formula to express the equivariant character.

Let us continue with the tradition of going through the examples from Section 2.3, by continuing

onto Example 2.8 in which the core C of the hypertoric varietyMν consisted of the first Hirzebruch

surface and the complex projective plane, C = H1 ∪ CP2
. There are two cases depending on

whether the Kähler quotientXν is H1 or CP2
. For both cases however, let us fix an integral element

(m + n, n) = ν ∈ k∗Z, and let d = δ ∈ 2Z≥0 be an even positive integer since, otherwise, no

pre-quantum line bundle L≤d
ν ! M≤d

ν overM≤d
ν , that would additionally be compatible with the

orbifold structure, would exist. This is due to the presence of orbifold points appearing along the

boundaries Zd
ν of the cut spaces in both examples, whose orbifold structure groups are isomorphic to

Z/2Z. See [Sil96, §11] for a more explicit example of this phenomenon.
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Case: Xν
∼= H1

In this case, the moment polyptych ∆≤d
ν of the cut space M≤d

ν is presented in Figure 7.4, with its

interior and boundary vertices labelled using v’s and b’s, respectively. Also labelled are the polyptych

boundary components Πd
A for the corresponding subsetA ⊆ {1, 2, 3, 4}.

v12

v23

v14 v34

v13

b
(1)
12

b
(3)
23

b
(2)
23

b
(4)
34

b
(1)
13

b
(3)
13

b
(4)
14

b
(2)
12

H1

H2

H4

H3

∆∅

∆4

Πd
2

Πd
23

Πd
3

Πd
34

Πd
134

Πd
14

Πd
1

Πd
12

Figure 7.4: Moment polyptych ∆≤d
ν whenXν

∼= H1.

One can see that for the subsetA = {1, 3, 4}, theU1-action generator u{134} = u1+u3+u4 =
(0,−2) is non-primitive relative to (t2)∗ ∼= Z2

, and therefore the two boundary vertices, denoted

b
(1)
13 and b

(3)
13 here, of the component Πd

134 correspond to two orbifold points which we denote by

q
(1)
13 , q

(3)
13 ∈ Zd

134. The isotropy data for q
(1)
13 is:

b
(1)
13 =

(
0,m+ n+ d

2

)
ϱq,1 =

(
1,−1

2

)
,

ςq,1 = (−1, 0),

ϑq =
(
0, 1

2

)
,

and, since b
(1)
13 ∈ H1 ∩ Πd

134, the orbifold structure group Γ
{134}
12(1)

of q
(1)
13 is:

Γ
{134}
12(1)

∼= t2Z/ SpanZ

{
u1 = (1, 0), u{134} = u1 + u3 + u4 = (0,−2)

} ∼= {0} ⊕ Z/2Z.
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Note that we could have also used Πd
34 instead of Πd

134, since u{34} = u3 + u4 = (−1,−2) and thus:

SpanZ

{
u1 = (1, 0), u{34} = (−1,−2)

} ∼= SpanZ

{
u1 = (1, 0), u{134} = (0,−2)

}
,

and therefore Γ
{34}
12(1)

∼= Γ
{134}
12(1)

, so it does not matter which polyptych boundary component Πd
A that

we use, just as long as the vertex does indeed belong to it.

Similarly, the isotropy data for q
(1)
13 ∈ Zd

134 is:

b
(3)
13 =

(
−d

2
,m+ n+ d

2

)
ϱq,3 =

(
−1

2
,−1

2

)
,

ςq,3 = (1, 0),

ϑq =
(
1
2
, 1
2

)
,

and so its orbifold structure group Γ
{134}
12(3)

is:

Γ
{134}
12(3)

= t2Z/ SpanZ

{
u3 = (−1,−1), u{134} = (0,−2)

} ∼= {0} ⊕ Z/2Z.

The remaining vertices are not orbifold points, and the isotropy data regarding their corresponding

fixed points is listed below:

v12 = (0, 0)


ϱp,1 = (1, 0),

ςp,1 = (−1, 0),

ϱp,2 = (0, 1),

ςp,2 = (0,−1),

v23 = (m+ n, 0)


ϱp,2 = (−1, 1),

ςp,2 = (1,−1),

ϱp,3 = (−1, 0),

ςp,3 = (1, 0),

v34 = (m,n)


ϱp,3 = (−1, 0),

ςp,3 = (1, 0),

ϱp,4 = (1,−1),

ςp,4 = (−1, 1),

v14 = (0, n)


ϱp,1 = (1, 0),

ςp,1 = (−1, 0),

ϱp,4 = (0,−1),

ςp,4 = (0, 1),

v13 = (0,m+ n)


ϱp,1 = (1,−1),

ςp,1 = (−1, 1),

ϱp,3 = (0,−1),

ςp,3 = (0, 1),

b
(1)
12 = (0,−m− 2)


ϱq,1 = (1, 0),

ςq,1 = (−1, 1),

ϑq = (0, 1),

b
(2)
12 = (−m− d, 0)


ϱq,2 = (0, 1),

ςq,2 = (1,−1),

ϑq = (1, 0),

b
(4)
34 = (2m+ d, n)


ϱq,4 = (1,−1),

ςq,4 =
(
−1, 1

2

)
,

ϑq = (−1, 0),
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b
(3)
23 = (2m+ n+ d,−m− d)


ϱq,3 = (−1, 0),

ςq,3 = (0, 1),

ϑq = (−1, 1),

b
(2)
23 = (2m+ n+ d, 0)


ϱq,2 = (−1, 1),

ςq,2 = (0,−1),

ϑq = (−1, 0),

b
(4)
14 = (−m− d, n)


ϱq,4 = (0,−1),

ςq,4 = (1, 1),

ϑq = (1, 0).

With all of the isotropy data listed, we consider ξ = (t, 3t) ∈ t2, where t ∈ R>0 is some positive

real variable, such that ξ is a generic element. Then by using (7.3), we have the following expression

for the equivariant character χ(eξ):

χ(eξ) =
∑

p∈(M<d
ν )T2

χp(e
ξ) +

∑
p∈(Z<d

ν )T
2

Γp
∼={1}

χp(e
ξ) +

∑
p∈(Z<d

ν )T
2

Γp ̸∼={1}

χp(e
ξ),

where the contribution from the smooth interior fixed points is:

∑
p∈(M<d

ν )T2

χp(e
ξ) =

et(m+n)

(1− e−2t) (1− e−t) (1− et) (1− e2t)
+

emt+3nt

(1− e−2t) (1− e−t) (1− et) (1− e2t)

+
e3nt

(1− e−3t) (1− e−t) (1− et) (1− e3t)
+

1

(1− e−3t) (1− e−t) (1− et) (1− e3t)

+
e3t(m+n)

(1− e−3t) (1− e−2t) (1− e2t) (1− e3t)
,

the contribution from the smooth boundary fixed points is:

∑
p∈(Z<d

ν )T
2

Γp
∼={1}

χp(e
ξ) =

e3t(−d−m)

(1− et) (1− e2t) (1− e3t)2
+

e3t(−d−m)+t(d+2m+n)

(1− e−t) (1− e2t)2 · (1− e3t)

+
et(−d−m)

(1− e−2t) (1− et)2 · (1− e3t)
+

e3nt+t(d+2m)

(1− e−2t) (1− e−t)2 · (1− et)

+
e3nt+t(−d−m)

(1− e−3t) (1− et)2 · (1− e4t)
+

et(d+2m+n)

(1− e−3t) (1− e−t)2 · (1− e2t)
,
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and the contributions from each orbifold boundary fixed point:

q
(1)
13 =

(
0,m+ n+ d

2

)
, and q

(3)
13 =

(
−d

2
,m+ n+ d

2

)
respectively, are:

χ
q
(1)
13
(eξ) =

e3t(
d
2
+m+n)

2
(
1 + e−

3t
2

)2
· (1− e−t)

(
1 + e−

t
2

) +
e3t(

d
2
+m+n)

2
(
1− e−

3t
2

)2
· (1− e−t)

(
1− e−

t
2

)
and:

χ
q
(3)
13
(eξ) =

e−
dt
2
+3t( d

2
+m+n)

2 · (1 + e−2t) (1 + e−t)2 · (1− et)
+

e−
dt
2
+3t( d

2
+m+n)

2 · (1− e−2t) (1− e−t)2 · (1− et)
.

Letting t ! 0, so that eξ ! 1, we obtain the following formula for the dimension of

H0(M≤d
ν ;L≤d

ν ):

dimC H
0(M≤d

ν ;L≤d

ν ) = lim
ξ!0

χ(eξ)

=
17d4

6
+ 8d3m+ 4d3n+

17d3

2
+ 8d2m2 + 8d2mn+ 18d2m

+ d2n2 + 9d2n+
29d2

3
+

10dm3

3
+ 5dm2n+ 12dm2 + dmn2

+ 12dmn+
41dm

3
+

3dn2

2
+

13dn

2
+ 5d+

m4

2
+m3n+

5m3

2

+
m2n2

4
+

15m2n

4
+

9m2

2
+

3mn2

4
+

17mn

4
+

7m

2
+
n2

2
+

3n

2
+ 1,

and so from Corollary 7.9, recalling that d ∈ 2Z≥0, we calculate:

dimC H
0(Mν ;Lν)d = dimC H

0(M≤d

ν ;L≤d

ν )− dimC H
0(M≤(d−2)

ν ;L≤(d−2)

ν )

=
17d3

12
+ 6d2m+ 3d2n+

17d2

8
+ 8dm2 + 8dmn+ 6dm+ dn2

+ 3dn+
31d

12
+

10m3

3
+ 5m2n+ 4m2 +mn2 + 4mn

+
11m

3
+
n2

2
+

3n

2
+ 1.

(7.18)

Case: Xν
∼= CP2

Recall from Example 2.8 that this case is obtained by inverting the sign of the normal vector to the

hyperplane H4 as u4 = −e2 7! e2 = (0, 1). This changes the poset P(A) of regions of A, so
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that now the hypertoric variety Mν is the hyperkähler analogue to the complex projective plane,

Xν
∼= CP2

.

As before in the previous case, we form the cut space M≤d
ν relative to a positive even integer

d ∈ 2Z≥0, and we present the resulting moment polyptych ∆≤d
ν in Figure 7.5.

Πd
24

Πd
234

Πd
34

Πd
3

Πd
13

Πd
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Πd
14

Πd
124

v12

v23

v14 v34
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b
(1)
12 b

(3)
23

b
(2)
23

b
(4)
34

b
(1)
13b

(3)
13

b
(4)
14

b
(2)
12

H1

H2

H3

H4

∆∅

∆4

Figure 7.5: Moment polyptych ∆≤d
ν whenXν

∼= CP2
.

For the subset A = {2, 4} now, it is the U1-action generator u{24} = u2 + u4 = (0, 2) that

is non-primitive relative to Z2
. Hence the boundary vertices b

(1)
12 and b

(3)
23 that lie on the boundary

component Πd
24 are the ones corresponding to the orbifold points, q

(1)
12 , q

(3)
23 ∈ Zd

24. The isotropy

data for q
(1)
12 is:

b
(1)
12 =

(
0,−d

2

) 
ϱq,1 = (1, 0),

ςq,1 =
(
−1, 1

2

)
,

ϑq =
(
0, 1

2

)
,

and from Lemma 6.4, the orbifold structure group Γ
{134}
12(1)

of q
(1)
13 is:

Γ
{24}
12(1)

∼= t2Z/ SpanZ

{
u1 = (1, 0), u{24} = u2 + u4 = (0, 2)

} ∼= {0} ⊕ Z/2Z,
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since b
(1)
12 ∈ H1 ∩ Πd

24.

Similarly for q
(3)
23 ∈ Zd

24, we have:

b
(3)
23 =

(
m+ n+ d

2
,−d

2

) 
ϱq,3 = (−1, 0),

ςq,3 =
(
1
2
, 1
2

)
,

ϑq =
(
−1

2
, 1
2

)
,

as b
(3)
23 ∈ H3 ∩ Πd

24, and so from Lemma 6.4, its orbifold structure group Γ
{24}
23(3)

is:

Γ
{24}
23(3)

= t2Z/ SpanZ

{
u3 = (−1,−1), u{24} = (0, 2)

} ∼= {0} ⊕ Z/2Z,

and the other vertices do not correspond to orbifold points, just like before. The isotropy data of their

corresponding fixed points is listed below:

v12 = (0, 0)


ϱp,1 = (1, 0),

ςp,1 = (−1, 0),

ϱp,2 = (0, 1),

ςp,2 = (0,−1),

v23 = (m+ n, 0)


ϱp,2 = (−1, 1),

ςp,2 = (1,−1),

ϱp,3 = (−1, 0),

ςp,3 = (1, 0),

v34 = (m,n)


ϱp,3 = (−1, 0),

ςp,3 = (1, 0),

ϱp,4 = (1,−1),

ςp,4 = (−1, 1),

v14 = (0, n)


ϱp,1 = (1, 0),

ςp,1 = (−1, 0),

ϱp,4 = (0,−1),

ςp,4 = (0, 1),

v13 = (0,m+ n)


ϱp,1 = (1,−1),

ςp,1 = (−1, 1),

ϱp,3 = (0,−1),

ςp,3 = (0, 1),

b
(2)
12 = (−d, 0)


ϱq,2 = (−1, 1),

ςq,2 =
(
1,−1

2

)
,

ϑq = (1, 0),

b
(4)
14 = (−n− d, n)


ϱq,4 = (0, 1),

ςq,4 = (1,−1),

ϑq = (1, 0),

b
(4)
34 = (m+ n+ d, n)


ϱq,4 = (−1, 1),

ςq,4 = (0,−1),

ϑq = (−1, 0),

b
(1)
13 = (0,m+ 2n+ d)


ϱq,1 = (1,−1),

ςq,1 = (−1, 0),

ϑq = (0,−1),
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b
(3)
13 = (−n− d,m+ 2n+ d)


ϱq,3 = (0,−1),

ςq,3 = (1, 0),

ϑq = (1,−1),

As in the first case, we express the equivariant character ξ(eξ) using (7.3) by choosing the generic

element ξ = (t, 3t) ∈ t2, and writing:

χ(eξ) =
∑

p∈(M<d
ν )T

2

χp(e
ξ) +

∑
p∈(Z<d

ν )T
2

Γp
∼={1}

χp(e
ξ) +

∑
p∈(Z<d

ν )T
2

Γp ̸∼={1}

χp(e
ξ),

where the contribution from the smooth interior fixed points is:

∑
p∈(M<d

ν )T2

χp(e
ξ) =

et(m+n)

(1− e−2t) (1− e−t) (1− et) (1− e2t)
+

emt+3nt

(1− e−2t) (1− e−t) (1− et) (1− e2t)

+
e3nt

(1− e−3t) (1− e−t) (1− et) (1− e3t)
+

1

(1− e−3t) (1− e−t) (1− et) (1− e3t)

+
e3t(m+n)

(1− e−3t) (1− e−2t) (1− e2t) (1− e3t)
,

the contribution from the smooth boundary fixed points is:

∑
p∈(Z<d

ν )T
2

Γp
∼={1}

χp(e
ξ) =

e−dt

(1− e−t) (1− et)2 · (1− e2t)
+

e3nt+t(−d−n)

(1− e−2t) (1− et)2 · (1− e3t)

+
e3nt+t(d+m+n)

(1− e−3t) (1− e−t)2 · (1− e2t)
+

et(−d−n)+3t(d+m+2n)

(1− e−3t) (1− e−2t)2 · (1− et)

+
e3t(d+m+2n)

(1− e−3t)2 · (1− e−2t) (1− e−t)
+

et(d+m+n)

(1− e−4t) (1− e−t)2 · (1− e3t)
,

and the contributions from each orbifold boundary fixed point:

q
(1)
12 =

(
0,−d

2

)
, and q

(3)
23 =

(
m+ n+ d

2
,−d

2

)
respectively, are:

χ
q
(1)
12
(eξ) =

e−
3dt
2

2 · (1− et)
(
e

t
2 + 1

)(
e

3t
2 + 1

)2 +
e−

3dt
2

2 ·
(
1− e

t
2

)
(1− et)

(
1− e

3t
2

)2 ,
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and:

χ
q
(3)
23
(eξ) =

e−
3dt
2

+t( d
2
+m+n)

2 · (1− e−t) (et + 1)2 (e2t + 1)
+

e−
3dt
2

+t( d
2
+m+n)

2 · (1− e−t) (1− et)2 · (1− e2t)
,

Taking the limit t! 0 so that eξ ! 1, we get:

dimC H
0(M≤d

ν ;L≤d

ν ) = lim
ξ!0

χ(eξ)

=
17d4

96
+

5d3m

12
+

11d3n

12
+

17d3

16
+
d2m2

4
+

3d2mn

2
+

15d2m

8

+
3d2n2

2
+

33d2n

8
+

29d2

12
+
dm2n

2
+

3dm2

4
+

3dmn2

2
+

9dmn

2

+
17dm

6
+ dn3 +

9dn2

2
+

73dn

12
+

5d

2
+
m2n2

4
+

3m2n

4
+
m2

2

+
mn3

2
+

9mn2

4
+

13mn

4
+

3m

2
+
n4

4
+

3n3

2
+

13n2

4
+ 3n+ 1,

which, recalling again that d ∈ 2Z≥0, leads to:

dimC H
0(Mν ;Lν)d = dimC H

0(M≤d

ν ;L≤d

ν )− dimC H
0(M≤(d−2)

ν ;L≤(d−2)

ν )

=
17d3

12
+

5d2m

2
+

11d2n

2
+

17d2

8
+ dm2 + 6dmn+

5dm

2
+ 6dn2

+
11dn

2
+

31d

12
+m2n+

m2

2
+ 3mn2 + 3mn+

3m

2
+ 2n3 + 3n2 + 3n+ 1.

(7.19)
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Chapter 8

Conclusion

In this thesis, we have provided a formula in Corollary 7.9 that calculates the U1-weight subspaces

of the space of holomorphic sectionsH0(Mν ;Lν), whenMν is a hypertoric variety and when Lν is

a T n
-equivariant pre-quantum line bundle, holomorphic with respect to the complex structure I1

onMν . We accomplished this by applying Lerman’s symplectic cut toMν with respect to a residual

U1-action, which every hypertoric variety possesses. Doing so resulted in a cut spaceM≤δ
ν which in

particular was compact, since the moment map for theU1-action was proper, and furthermore was

Kähler with respect to the complex structure I1 inherited fromMν .

In a sense, these cut spacesM≤δ
ν acted as auxiliary objects when it came to calculating the dimension

ofH0(Mν ;Lν), but their importance here should not be understated. To each cut spaceM≤δ
ν there

was a so-called “moment polyptych”, which was denoted ∆≤δ
ν , that can be seen combinatorially as

coming the hyperplane arrangement A corresponding to Mν by truncating A in a prescribed way

that depended on the coorientation of A. The moment polyptych ∆≤δ
ν allowed us to read off the

necessary isotropy data for M≤δ
ν , allowing us then to use Theorem 5.44, that is the Atiyah-Bott-

Berline-Vergne localisation theorem, and hence obtain an expression for the equivariant character

χ : T n ! H•(BTn) for the representation ofT n
onH0(M≤δ

ν ;L≤δ
ν ). Provided that we chose suitable

integral values ν ∈ k∗Z and d ∈ Z≥0, then the subspace H0(Mν ;Lν)d of U1-weight d was given by

the formula:

H0(Mν ;Ln)d ∼= H0(M≤d

ν ;L≤d

ν )
/
H0(M≤d−1

ν ;L≤d−1

ν ),

whose derivation formed the content of Corollary 7.9 for hypertoric varietyMν , though we proved a

more general result for normal semi-projective varieties in Theorem 7.8. Finally, we then went through

some examples of calculatingH0(Mν ;Lν)d.

It would be very interesting if one could simply read off the dimension dimC H
0(Mν ;Lν)d from

the moment polyptych ∆≤δ
ν of the cut spaceM≤δ

ν . For example, a combinatorial method such as a

lattice-point count analogous to the case of a toric variety X , say, since the dimension of its space
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H0(X;L⊗k
X ) of holomorphic sections coincides with the number of lattice points that are inscribed

within its moment polytope ∆X = µ(X), i.e., dimC H
0(X;L⊗k

X ) = #{(k ·∆) ∩ Rn}. However,

since the moment polyptych ∆≤d
ν consists of several polytopes all fitted together, their contributions

appear to be conflated and it is not quite so straightforward to identify what counting algorithm

should be implemented here, if at all. Furthermore, the asymptotic result that links the continuous

volume of a lattice polytope ∆ in Rn
with its lattice-point count [BR15, §3.6], namely that of:

vol(∆) = lim
d!∞

#(d ·∆) ∩ Zn

dn
= lim

d!∞

dimC H
0(X;L⊗d

X )

dn
,

yields, for example using the dimension of dimC H
0(Mν ;Lν)d from (7.18):

dimC H
0(Mν ;Lν)d
d2

∼ O(d) −! ∞, as d! ∞.

In fact, each of the two-dimensional examples (i.e., with n = 2) exhibit this phenomenon with

dimC H
0(Mν ;Lν)d behaving cubically with respect to d. On the other hand, for the one-dimensional

example ofMν
∼= T ∗CP1

(i.e., with n = 1), we see from (7.17) that:

dimC H
0(T ∗CP1;Lν)d
d

= 2.

On the other hand, the moment polyptych in Section 7.5.1 withMν
∼= T ∗CP1

is made up of three

closed intervals; ∆∅ = [0,m], ∆≤δ

1 = [−d, 0], and ∆≤δ

2 = [m,m+ d]. Then:

#
(
∆≤d

ν ∩ (t1Z)
∗) = #([0,m] ∩ Z) + # ([−d, 0] ∩ Z) + # ([m,m+ d] ∩ Z)

= (m+ 1) + d+ d

= m+ 2d+ 1,

which does actually coincide with the dimension ofH0(Mν ;Lν)d in (7.16). Therefore, some hope

for a combinatorial description of dimC H
0(Mν ;Lν) does persist.

124



Appendix A

Orbifolds

We have delegated this appendix to be a brief introduction to orbifolds, hopefully so that this thesis

is more self-contained. The notion of an orbifold was first introduced by Satake in [Sat56] when

he first introduced them as “V -manifolds”. More general and sophisticated references for orbifolds

include [Dui11, Chapter 14] and [BG08, Chapter 4], and this appendix is heavily influenced by [Sil96,

Appendix A].

A.1 Orbifolds and their Charts
Let |M | be a Hausdorff topological space.

Definition A.1. An orbifold chart forM is a triple (Ũ ,Γ, ϕ) that consists of:

(i) a connected and open subset Ũ of Rn
;

(ii) a finite group Γ acting linearly on Ũ ;

(iii) a continuous Γ-invariant map ϕ̃ : Ũ ! |M |, that induces a homeomorphism:

ϕ : Ũ/Γ ! U := ϕ(Ũ) ⊆ |M |.

Definition A.2. An orbifold atlas forM is a collection of orbifold charts (Ũi,Γi, ϕi), such that:

(i) the collection of open subsets Ũi forms a basis of |M |;

(ii) the collection of charts (Ũi,Γi, ϕi) satisfy the following compatibility criteria: if Ũi ⊆ Ũj , then

there exists a diffeomorphism ι : Ũ1 ! Ũ2 and an isomorphism J : Γ1 ! Γ2, such that
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ϕ1 = ϕ2 ◦ i, and that ι is J -equivariant:

ι ◦ γ = J(γ) ◦ i, for all γ ∈ Γ1.

Definition A.3. An n-dimensional orbifoldM is a Hausdorff topological space |M | along with an

atlas of orbifold charts, (Ũi,Γi, ϕi).

Example A.4. Every ordinary manifold is a special case of an orbifold, obtained by considering each

manifold chart as an orbifold chart with the trivial group for Γ.

Proposition A.5. LetG be a compact Lie group that acts locally freely on a smooth manifoldM . Then
the orbit spaceM/G has a natural orbifold structure.

Proof. This proof is from [Dui11, §14.1]. For any point p ∈M , the stabiliser subgroupGp of p inG
is finite. The linearisation of the localGp-action implies the existence of a “slice” through p for the

G-action, i.e., a smoothGp-invariant manifold S through p, such that TpM ∼= TpS ⊕ Tp(G · p), and

such that each nearbyG-orbit inM intersects S in aGp-orbit in S. From this, the neighbourhoods

U inM/G of the orbits Op = G · p are identified with the quotients S/Gp of smooth manifolds by

finite groupsGp, thus yielding the sought-after orbifold charts.

Let M be an n-dimensional orbifold, p ∈ M a point, and (Ũ ,Γ, ϕ) an orbifold chart for a

neighbourhood U of p.

Definition A.6. The orbifold structure group, Γp, of p, is the isotropy group of a pre-image of p
under ϕ.

The orbifold structure group Γp is well-defined up to isomorphism, and one may choose an

orbifold chart (Ũ ,Γ, ϕ) for which ϕ−1(p) is a single point fixed by Γ. In this case, Γ ∼= Γp, and

(Ũ ,Γp, ϕ) is called a structure chart for the point p.

There is a natural stratification of the orbifoldM into suborbifolds, according to their orbifold

structure group types, which is called the orbifold stratification. On each connected component of

M , there is an open and dense set of regular points inM , for which the order of the structure group

is minimal. This is called the principal stratum ofM . On each connected component ofM , the

abstract isotropy group of its principal stratum is called the structure group of that component, and

its order of the group is said to be multiplicity of that component. By varying over each connected

component ofM , the multiplicities of each define a locally constant functionmM :M ! N, called

the multiplicity function.

In contrast to manifolds, orbifolds are allowed to have quotient-singularities, which fortunately

are only mild ones.
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Proposition A.7. Let M be an orbifold. Then M is normal, Cohen-Macaulay, with only rational
singularities.

Proof. For the proof thatM is normal, see [Car57, Théorème 4]; thatM has only rational singularities,

see [Vie77, Proposition 1]; and thatM is Cohen-Macaulay, see [Sta79, Proposition 3.2].

A.2 Suborbifolds
Suppose thatM andN are two orbifolds with a continuous inclusion |ı| : |M | ↪! |N | between their

underlying topological spaces. Assume that there exists an atlas of orbifold charts (Ũ ,Γ, ϕ) for N
such that, for each chart (Ũ ,Γ, ϕ) which intersectsM , by which we mean that ϕ(Ũ)∩ |ı|(|M |) ̸= ∅,

then the pre-image ofN is given by the intersection of Ũ with a linear subspace V of Rn
. Let ΓV be

the subgroup of Γ that consists of the elements whose action preserves V .

Definition A.8. We say thatM is a suborbifold ofN if the collection (Ũ ∩V,ΓV , ϕ|Ũ∩V ) of triples,

along with their induced injections, forms an atlas of orbifold charts forN .

For each orbifold chart (Ũ ,Γ, ϕ), we can find the subgroup of transformations in Γ which

becomes the identity when restricted to Ũ ∩ V . The subgroup is well-defined as an abstract group for

each connected component ofN , since it is just the isotropy group of the respective principal stratum.

In particular, whenN is a connected component, then it is just the structure group ofN .

A.3 Maps & Group Actions on Orbifolds
Definition A.9. We say that a smooth map between orbifolds, f :M ! N , is a continuous map

between the underlying topological spaces that satisfies the following condition: given p ∈ M , let

(Ṽ ,Γf(p), ψ) be a structure chart for f(p). Then there exists a structure chart (Ũ ,Γp, ϕ) for p, in

addition to a smooth map f̃ : Ũ ! Ṽ , such that f ◦ ϕ = ψ ◦ f̃ .

Definition A.10. A smooth function onM is a collection of smooth invariant functions on each

orbifold chart (Ũ ,Γ, ϕ) that agree on the overlaps of the images ϕ(Ũ).

Definition A.11. A smooth action τ of a Lie groupG on an orbifoldM is a smooth orbifold map

τ : G× ! M that satisfies the ordinary group action axioms: for every g, h ∈ G and p ∈ M , we

have that:

τ
(
g, τ(h, p)

)
= τ(gh, p), and τ(eG, p) = p.
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A.4 Fibre & Vector Orbibundles
Definition A.12. An orbifold fibre bundle π : E ! M is a collection of Γ-equivariant fibre

bundles:

Z EŨ

Ũ

πŨ

over each chart (Ũ ,Γ, ϕ), together with suitable compatibility criteria.

For each p ∈M , in general the fibres π−1(p) are not diffeomorphic toZ . Rather they are only

diffeomorphic to some quotient ofZ by an action of the structure group Γp. If V is a vector space

and Γ ⊆ GL(V ) is a finite subgroup, quotients of the form V/Γ are called vector orbispaces. If

each fibre π−1(p) is a vector orbispace, then π : E !M is a orbifold vector bundle. Denoting by

N(Γ) the normaliser group of Γ in GL(V ), then the group GL(V/Γ) acts on the orbifold V/Γ.

A Riemannian metric on an orbifold vector bundleE is a Γ-invariant smooth type (2, 0) tensor

field of inner product:

⟨−, −⟩ ∈ H0(M ;E∗ ⊗ E∗)

on the fibres of EŨ , for each orbifold chart (Ũ ,Γp, ϕ) and agreeing on their overlaps. A complex
orbifold vector bundle is an orbifold vector bundle equipped with an almost-complex structure. A

complex structure on an orbifold vector bundleE is a Γ-invariant smooth type (1, 1) tensor field of

linear operators:

J ∈ H0(M ;E ⊗ E∗)

with J ◦ J = − IdE , on the fibres of EŨ for each orbifold chart (Ũ ,Γp, ϕ) and agreeing on their

overlaps.

A Hermitian orbifold vector bundle is a complex orbifold vector bundleπ : E !M equipped

with a Hermitian structure, which is a smooth type (2, 0) tensor field:

⟨−, −⟩ ∈ H0(M ;E∗ ⊗ E∗)

of positive-definite Hermitian structures on the fibres ofE. That is to say, for any smooth sections,

σ1, σ2, σ ∈ H0(M ;E), the inner-product ⟨σ1, σ2⟩ is a C-valued smooth function that is complex

linear in its first argument, complex anti-linear in its second argument, and satisfies:

⟨σ1, σ2⟩ = ⟨σ2, σ1⟩, and ⟨σ, σ⟩ > 0, if σ ̸= 0.

One may extend the familiar notions of duals, tensor products, exterior products, etc., to orbifold

vector bundles too by forming these constructions over each orbifold chart and enforcing suitable

compatibility criteria on their overlaps.
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An orbifold section of an orbifold fibre bundle π : E !M is defined by a Γ-invariant section

on the orbifold charts (Ũ ,Γ, ϕ) of M , that agrees on overlaps. If E is a complex orbifold vector

bundle, then an orbifold connection onE is a differential operator:

∇ : H0(M ;E) −! H0(M ;T ∗M ⊗ E)

that satisfies the condition:

∇(fσ) = df ⊗ σ + f∇σ, for all f ∈ C∞(M), σ ∈ H0(M ;E).

Given a Hermitian orbifold vector bundle π : E !M and orbifold connection ∇ onE, we say that

∇ is a Hermitian connection if, for any vector field v ∈ H0(M ;TM) onM , we have that:

v⟨σ1, σ2⟩ = ⟨∇vσ1, σ2⟩+ ⟨σ1, ∇vσ2⟩, for all σ1, σ2 ∈ H0(M ;E).

A.5 Orbifold Characteristic Classes
If π : E !M is a Hermitian orbifold vector bundle with Hermitian connection ∇, then one may

define the orbifold versions of the curvature, characteristic classes, and so on. If F ∈ Ω2(M) is the

curvature two-form with respect to ∇, then R(E) = (
√
−1/2π)F is a real-valued closed two-form

onM . The first Chern class ofE is then the cohomology class:

c1(E) := [TrR(E)].

Similarly, the Chern character ofE is:

Ch(E) =
[
Tr eR(E)

]
.

There also is an orbifold version of the splitting principle from Theorem 4.9, so a complex orbifold

vector bundleE with dimC E = n, decomposes as the formal direct sum:

E = V1 ⊕ Vn,

where Vj ∼= C for j = 1, . . . , n. Then the orbifold Todd class ofE is given by:

Td(E) =
n∏

j=1

c1(Vj)[
1− e−c1(Vj)

] .
Given a point p ofM and a structure chart (Ũ ,Γp, ϕ) for p, the orbifold tangent space to p is

the quotient of the tangent space to p̃ := ϕ−1(p) in Ũ by the induced action of Γ:

TpM := Tp̃Ũ/Γp.
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Taking the union of the orbifold tangent spaces as p ranges through M , along with the transition

functions defined by the compatibility criteria, allows us to construct the orbifold tangent bundle
π : TM ! M of M . A vector field on M is a section v of the orbifold tangent bundle TM , so

v ∈ H0(M ;TM). A similar argument can be applied to define orbifold differential forms as

sections of the exterior algebra of the orbifold cotangent bundle. A Riemannian orbifold is an

orbifold equipped with a Riemannian metric on its orbifold tangent bundle. An almost-complex
orbifold is an orbifold with an almost-complex structure on its tangent bundle. The Todd class of

an almost-complex orbifold is just the Todd class of its orbifold tangent bundle. One may successively

progress this way to define the orbifold analogues to de Rham theory and Dolbeault theory.

An orbifoldM is orientable if we can assign an orientation to the subset Ũ of each orbifold chart

(Ũ ,Γ, ϕ), and which agrees on their overlaps. If M is an n-dimensional orientable orbifold and if

ω ∈ Ωn(M) is a differential top form of compact support on an open and connected set Ũ , trivialised

by an orbifold chart (Ũ ,Γ, ϕ), then the integral of ω is:∫
M

ω =
mU

|Γ|

∫
Ũ

ω̃,

wheremU is the multiplicity of the connected component ofM containingU , and ω̃ is theΓ-invariant

form on U that represents ω. The integral of an arbitrary top-degree form onM is then defined via

partitions of unity.

A.6 Connections on Line Bundles
Let L !M be a holomorphic orbifold line bundle overM , and denote L∗ := L − {zero section}.

Given a connection ∇ on L, there exists a unique one-form θ ∈ Ω1(L∗) such that:

• θ is invariant under the C∗
-action;

• for any p ∈ M , we have that θ|L∗
p
= αp, where θp is the unique one-form on L∗

p such that

s∗(αp) = dz/z for any map s : C∗ ! L∗
p;

• given a local section σ : U ! L∗|U for each open subsetU ⊆M , we have that ∇σ/σ = s∗θ.

The one-form θ ∈ Ω1(L∗) is called the connection one-form of (L,∇). Given a vector field

XM onM , there exists a unique horizontal vector fieldXL on L such that π∗XL = XM , called the

horizontal lift ofXM by ∇, and a horizontal section is a section σ : U !M such that ∇σ = 0.

The exterior derivative dθ ∈ Ω2(L∗) of the connection one-form θ is a C∗
-invariant horizontal

two-form. Hence there exists a unique closed two-form Θ ∈ Ω2(M) on M , called the curvature
two-form of (L,∇), such that π∗Θ = dθ, where π : L∗ !M . Since any two connection one-forms

onM differ by a one-form, the cohomology class [Θ] of Θ is independent of the choice of connection

∇ on L.
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Lemma A.13. When ∇ is a Hermitian connection on L and ⟨σ, σ⟩ = 1, then ∇ satisfies:

σ∗θ + σ∗θ = 0.

Proof. For anyX ∈ TM :

0 = X⟨σ, σ⟩ = ⟨ıX∇σ, σ⟩+ ⟨σ, ıX∇σ⟩ = ıX

(
⟨∇σ, σ⟩+ ⟨σ, ∇σ⟩

)
= ıX

(
σ∗θ + σ∗θ

)
.

We therefore have Θ+Θ = 0, hence (
√
−1/2π)Θ is a real-valued integral closed two-form on

M , and hence ω := (
√
−1/2π)Θ is a Chern form for L, and the cohomology class that it represents

is the Chern class c1(L) = [(
√
−1/2π)Θ] of L.

A Hermitian orbifold line bundle L with a Hermitian connection ∇ is equivalent to a orbifold

principal U1-fibre bundle P !M with connection one-form θ ∈ Ω1(P ), such that L = P ×U1 C,

such that the connection ∇ on L is induced by a connection one-form on P . The corresponding

connection one-form θ on P satisfies θ(∂/∂ϕ) = 1, where ∂/∂ϕ is the vector field generating the

principal U1-action on P .

A.7 Symplectic Orbifolds
A symplectic orbifold is an orbifold M equipped with a closed non-degenerate two-form ω ∈
Ω2(M). An orbifold almost-complex structure J onM is compatible with ω if, for every p ∈ M ,

the bilinear form:

gp(v1, v2) := ωp(Jpv, w), where v1, v2 ∈ TpM,

is symmetric and positive-definite. A groupG acts symplectically onM if theG-action preserves ω.

A moment map for a symplecticG-action is aG-equivariant map µ :M ! g∗ such that:

ıXω = dµX , for allX ∈ g.

If a moment map exists for aG-action onM , then we say that the action is Hamiltonian.

For a symplectic action of a connected Lie groupG on a symplectic orbifold (M,ω), the fixed-point

locus MG
is a suborbifold of M . For a fixed point p ∈ MG

with structure chart (Ũ ,Γp, ϕ), then

there is a local action ofG on Ũ . IfG is furthermore compact, then this local action gives rise to an

action of some finite cover G̃ of the identity componentG0
ofG, commuting with the action of Γp.

The group G̃ is an extension ofG of degree no larger than the order of Γp, [Dui11, Proposition 15.4].

The G̃-action induces a linear representation of G̃ on Tϕ−1(p)U via its derivative, with weight

αp,j ∈ g∗ for each j = 1, . . . , n. The αp,j are called the isotropy weights of the G-action on the
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fixed point p. Note that, unlike in the manifold case, only each |Γp| · αp,j needs to lie in the integral

weight lattice g∗Z of G, whereas the weights αp,j themselves may be rational. The weights αp,j are

well-defined since they are independent of the choice of orbifold chart, and of the choice of compatible

almost-complex structure.

A.8 Equivariant Pre-Quantisation
When (L,∇) is a Hermitian orbifold line bundle overM with Hermitian connection ∇, let θ be the

corresponding connection one-form and Θ the curvature two-form. Suppose that an n-dimensional

torus T acts onM , and that this T -action lifts to L. We can assume that θ is a T -invariant one-form,

since we can take its average overM if necessary, so that ∇ is a T -invariant connection.

Denote by XL the vector field on L∗
that is generated by an element X ∈ t. Then θ(X) is

constant along the fibres, and we can therefore define a map µ :M ! t∗ by:

π∗⟨µ, X⟩ = (
√
−1/2π)θ(X),

and µ is T -invariant since θ is. We then have that:

⟨dµ, X⟩ = (
√
−1/2π)ıXM

Θ.

Hence µ is a moment map for the T -action onM with respect to (
√
−1/2π)Θ.

The vector fieldXL −XM is a vertical vector field on L, whereXM is the horizontal lift of the

vector field onM that is generated byX ∈ t. For some value α ∈ t∗, on the level-set µ−1(α) we have:

XL = XM − 2π
√
−1⟨α, X⟩(∂/∂ϕ),

where ∂/∂ϕ is the vector field generating the principal U1-action on P from A.6.

If p ∈ MT
is a fixed point, then XM = 0, the vector field XL is vertical for every X ∈ t, and

the fibre Lp is a linear orbifold representation of T given by some character χ : T ! U1, where

eX 7! e⟨αp, X⟩
for everyX ∈ t and a fixed rational weight αp ∈ Q. Then we have:

XL(ζ) = ⟨αp, X⟩(∂/∂ϕ),

where ζ ∈ Lp is the fibre coordinate.

Proof. The Lie algebra representation (dχ)e : t ! R is given by ξ 7! ⟨αp, ξ⟩, so we have:

XL(ζ) =

(
d

dt
χ(etX)(ζ)

)∣∣∣∣t=0 = χ′(ζ)

(
∂

∂ϕ

)
= ⟨αp, X⟩

(
∂

∂ϕ

)
.

132



Hence:

⟨µ(p), X⟩ =
(√

−1

2π

)
θ

(
⟨αp, X⟩

(
∂

∂ϕ

))
=

(√
−1

2π

)
⟨αp, X⟩,

and so:

αp = (2π/
√
−1)µ(p).

A.9 Inertia Orbifolds
Definition A.14. Given an orbifoldM , the inertia, or the associated, orbifold M̂ toM is defined

using the orbifold charts (Ṽ ,Γ,Ψ) that are defined as follows: for each orbifold chart (Ũ ,Γ, ϕ) for

M , define:

Ṽ :=
{
(u, γ) ∈ Ũ × Γ

∣∣∣ γ · u = u
}
, (A.1)

and let Γ act on each subset Ṽ by:

g · (u, γ) := (g · u, g−1γg), for all (u, γ) ∈ Ũ × Γ, g ∈ Γ.

Lastly, we set:

V := Ṽ/Γ.

The orbifold charts (Ṽ ,Γ,Ψ) inherit the compatibility criteria from the orbifold charts (Ũ ,Γ, ϕ)

forM . In general, the inertia orbifold M̂ has several connected components of varying dimension

which can be described as follows: recall that for any point p ∈ M there exists a structure chart

(Ũp,Γp, ϕ) with p ∈ Up := ϕ(Ũp). If q ∈ Up then, up to conjugation, there exists an injective

homomorphism Γq ↪! Γp. Also for any γ ∈ Γq, the conjugacy class (γ)Γp ∈ Conj(Γp) is well-

defined and lets us define an equivalence relation (γ)Γq ∼ (γ)Γp . We shall use (γ) to denote the

equivalence class that (γ)Γq belongs to, and Γ/∼ to refer to the set of all equivalence classes in Γ.

Then underlying topological set |M̂ | is given by the disjoint union of connected components:

|M̂ | =
⊔

(γ)∈Γ/∼

M(γ),

where:

M(γ) :=
{ (
p, (γ)Γp

)
∈M × Conj(Γp)

∣∣ γ ∈ Γp, (γ)Γp ∈ (γ)
}
.

Definition A.15. The componentM(e) = |M | is called the non-twisted sector ofM , whereas we

call its complement suborbifoldM(γ) with γ ̸= e the twisted sector ofM .
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An intuitive geometric description of an inertia orbifold M̂ is that they provide a method of

parametrising the points p of an orbifold M along with their automorphisms in the form of the

isotropy groups Γp. The non-twisted sectorM(e) is just the original orbifoldM , whereas the twisted

sectorM(γ) consists of the points p ∈M and their non-trivial structure groups Γp.

On each orbifold chart (Ṽ ,Γ,Ψ) of M̂ associated to the orbifold chart (Ũ ,Γ, ϕ) of M , there

exists a Γ-equivariant immersion Ṽ ! Ũ . By considering each orbifold chart for M̂ and forM , we

may glue them together to give a Γ-equivariant immersion, ρ : M̂ !M . Let νM̂ ! M̂ denote the

normal bundle to M̂ in TM that is induced by this immersion ρ. Locally, νM̂ is obtained from each

normal bundle νṼ ! Ṽ to the immersion Ṽ ! Ũ over the orbifold chart (Ṽ ,Γ,Ψ), and then by

dividing out the Γ-action.

A.10 Canonical Automorphisms
For any orbifold vector bundle π̂E : Ê ! M̂ over the inertia orbifold M̂ , there exists a canonical
automorphism,A(Ê) ∈ Aut Ê, which can be described as follows: given an orbifold chart (Ũ ,Γ, ϕ)

ofM , let (Ṽ ,Γ,Ψ) be the the associated chart of M̂ . If (p, γ) ∈ Ṽ , then γ acts on this point as:

γ · (p, γ) = (γ · p,Adγ(γ)) = (p, γ), (A.2)

and therefore (p, γ) is fixed by γ. However, we may lift the action of γ on (p, γ) up to the fibre

π̂−1(p, γ) = Ê(p,γ) ! Ṽ of the local Γ-equivariant orbifold vector bundle ÊṼ ! Ṽ . This lifting

defines an automorphismAṼ ∈ Aut(ÊṼ ). Gluing the automorphismsAṼ together over the orbifold

charts (Ṽ ,Γ,Ψ) then gives rise to a canonical sectionA of the automorphism bundle Aut(Ê) of Ê.
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