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Abstract

In this thesis, we develop a method to investigate the geometric quantisation of a hypertoric variety
from an equivariant viewpoint, in analogy with the equivariant Verlinde formula for Higgs bundles.
We do this by first using the residual circle action on a hypertoric variety to construct its symplectic
cut that results in a compact cut space, which is needed for the localisation formulae to be well-defined
and for the quantisation to be finite-dimensional. The hyperplane arrangement corresponding to the
hypertoric variety is also affected by the symplectic cut, and to describe its effect we introduce the
notion of a moment polyptych that is associated to the cut space. Also, we see that the prerequisite
isotropy data that is needed for the localisation formulae can be read oft from the combinatorial
features of the moment polyptych. The equivariant Kawasaki-Riemann-Roch formula is then applied
to the pre-quantum line bundle over each cut space, producing a formula for the equivariant character
for the torus action on the quantisation of the cut space. Finally, using the quantisation of each cut
space, we derive a formula expressing the dimension of each circle weight subspace of the quantisation
of the hypertoric variety.
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Chapter 1

Introduction

.1 The Lay Summary

Given a symplectic manifold M, provided that it satisfies some constraints, can be associated with a
quantisation Q(M ) whose elements are reminiscent of “wave functions”. Our work here involves
a special type of symplectic manifold called a “hypertoric manifold” M, and this work focusses on
studying its quantisation Q(M ) and its properties. The space Q(M ) will be infinite-dimensional
since M is non-compact which, in an informal way, means that it is indefinitely expansive as an object.
Instead of studying Q(M ) however, what we consider instead in this thesis will be subspaces of Q(M)
that are actually finite-dimensional.

To do this, we can break up Q(M ) into these finite-dimensional subspaces, called weight spaces,
by exploiting a symmetry inherent to M which, with regards to our own intents and purposes, are
much more tractable to study given that they are finite dimensional. To be precise, this symmetry
is that of a circle Uy acting on M, which rotates half of the coordinates used to define a point of M.
Moreover, this U;-symmetry lets us perform a procedure called “symplectic cutting”, which effectively
corresponds to trimming oft most of M but keeping just some finite part of it. How much we trim
off depends on a parameter § € R>, and the new space which we get from trimming down M is
what we call the “cut space”, M =

A consequence of M=% being compact is that the quantisation Q(M=%) associated to it is a

finite-dimensional vector space. Whilst we are interested in subspaces of Q(M ), what we do is we
use Q(M=?) as an auxiliary, allowing us to calculate the dimension of the weight spaces of Q(M);
this is possible since the weight spaces of Q(M ) and the cut spaces M= are defined via the same
U;-symmetry, and a connection between their corresponding quantisations can be shown. With this
in hand, then we can calculate the dimension of Q(M=?) via localisation formulae which cannot be
applied to Q(M) itself; this again is due to the non-compactness of the M.



An interesting property about a hypertoric manifold M is that we can associate to it an arrange-
ment of hyperplanes, A. There are correspondences between the combinatorics of the hyperplane
arrangement .4 and the geometry of the hypertoric manifold M. We find that the cut space M =? also
shares a combinatorial configuration that stems from .4, that comes from truncating it. The result
is an arrangement of convex and bounded polytopes, separated by where a hyperplane of A used to
be; we call this arrangement a “moment polyptych?, since it depends on both the arrangement A
in addition to a consistent choice of sign attached to each hyperplane of A. We hope that there is a
combinatorial formula to be found, which expresses the dimension of each subspace of Q(A) in
terms of the data associated to the polyptych of M <9 without the need to perform any analytical
computations. Such a correspondence exists already in the framework of toric varieties and convex
bounded polytopes; if X is a toric variety then there exists a polytope that corresponds to it. It then
follows that the dimension of the quantisation Q(.X') coincides with the number of integral lattice
points within its corresponding polytope.

1.2 The Story so far

The modern-day understanding of geometric quantisation was first developed by Kostant [Kos7o]
and Souriau [Sou66] in the 1960s. Given a symplectic manifold (X, w), itis a framework in which one
attempts to associate to X a Hilbert space Q(.X'), along with a correspondence between the real-valued
functions on X with quantum mechanical operators of Q(X). The existence of such a quantisation
Q(X') depends on two types of prerequisite data: the first is that of a Hermitian line bundle £ — X
with a Hermitian connection V whose curvature coincides with the symplectic two-form w on X as
R(L) = (v/—1/27)w. Such a line bundle L is called a pre-quantum line bundle over X which exists
if, and only if, the class of w is integral, i.e., that [w] € H 2(X;Z). Furthermore, L is unique up to
gauge equivalence provided that X is a simply-connected manifold.

The second datum is that of a choice of polarisation on X, which prescribes how the coordinates
of X should be effectively sorted into canonical position and momenta. The fact that a choice of
polarisation must be made means that there is no canonical way of geometrically quantising each
symplectic manifold X via a pre-quantum line bundle £ over it, and, in general, a different choice of
polarisation for X gives rise to distinct quantisations Q(.X). A further condition on the quantisation
Q(X) is that, should a compact Lie group G act on X in a Hamiltonian way, then this action should
carry over to Q(X) as a unitary representation of G.

Fortunately, the quantisation procedure becomes much simpler when (X, w, I) is additionally
Kihler with complex structure I, and when L is furthermore a holomorphic pre-quantum line bundle
over X. When these conditions hold, a natural choice of polarisation on X is obtained by considering
the holomorphic sections of L; such a choice of polarisation is called the complex, or Kiihler, polarisation.
We may then take the quantisation of X to be the C-vector space Q(X) = H®(X; L) of holomorphic
sections of the line bundle £ over X.
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When X is a symplectic toric variety, that is to say when dimg X = 2n and X is equipped with
an effective Hamiltonian action of a torus 7™, along with a moment map pt : X — (t")*, thena
classical result — usually attributed to Danilov [Dan78] - states that the dimension of H°(X; L&)
coincides with the number of integral lattice points inscribed within the moment polytope A =
w(X) of X. Le., that dime H(X; L) = # {k- AN (£2)*}. More generally, if (X,w, ) isa
compact complex-analytic manifold and if £ — X is a holomorphic pre-quantum line bundle over i,
then the eponymously-named index theorem of Atiyah and Singer [AS63] can be used, and which
itself generalises the Hirzebruch-Riemann-Roch formula, [Hir66]. These theorems state that the
quantisation Q(X) is isomorphic to the index of the Spin-C Dirac operator @Jc on X:

Indy_(X; L) = H(X; L),

and that their dimensions can be expressed as an integral over X of two specific characteristic classes,

namely the 7odd class Td(T X) of the tangent bundle 7'X, and the Chern character Ch(L) of L:

dime Indy, (X; £) = dimc H*(X; £) = / Td(TX) A Ch(L).
X

So far, we have only considered (X, /) to be at least a compact complex-analytic manifold which,
by a theorem of Serre and Cartan [CSs3], guarantees that the sheaf cohomology H9(.X; F) is a finite-
dimensional C-vector space for any coherent analytic sheaf F over X, and where ¢ € Z>. If, instead,
X is non-compact, then the quantisation Q(.X) ends up being infinite-dimensional and so, in this
case, a suitably adjusted question has to be asked instead if we are to work with something concrete.
Further complications arise when X is no longer a smooth manifold. If X is still “reasonably smooth”
however, in the sense that it has at worst orbifold singularities, then the Kawasaki-Riemann-Roch
theorem must be used in the place of the Hirzebruch-Riemann-Roch theorem, [Kawz9].

1.3 On this Research

This research presented in this thesis concerns itself with developing a suitable framework of quantising
hypertoric varies which are non-compact, and therefore the traditional geometric quantisation must
be adapted to take this into account. Hypertoric varieties can be thought of as the quaternionic
cousins to symplectic toric varieties. They were first introduced by Bielawski and Dancer in [BDoo],
as the hyperkihler quotients of flat quaternionic vector spaces of an effective torus action, analogously
to Delzant’s construction of symplectic toric manifolds [Del88].

Just as the geometry of a symplectic toric variety is intimately related to the combinatorics of a
convex polytope, an interplay exists between the geometry of a hypertoric variety and the combinatorics
of a real hyperplane arrangement. In particular, the hyperplane arrangement involves the entirety of its
ambient space, reflecting the fact that a hypertoric variety is non-compact. So, if one wished to study
the quantisation Q(M ) of a hypertoric variety M, they would soon find that it is infinite dimensional.
This is not necessarily an issue per se, since infinite-dimensional quantum systems appear often in
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the mathematical physics literature. However, in the case of a hypertoric variety M, we want to say
more about the quantisation. We should remark here that, to consider geometric quantisation in its
fullest of forms, one should further consider how to endow Q(M ) with a Hilbert space structure.
This would involve the introduction of an inner-product on Q(M ), say by the metaplectic correction.
We do not concern ourselves with this question, and instead just consider Q(M) as a C-vector space.

Unlike toric varieties, a hypertoric variety M is endowed with a Hamiltonian action of the circle
Uy, which acts on it by rotating its cotangent coordinates via scalar multiplication. This U;-action
has a moment map ® : M — R, which is proper. Hence we are in the situation where we can
use Lerman’s symplectic cutting procedure to form the symplectic cut of M, [Leros]. This produces
a compact cut space M;° = (M x C) /5 Uy, for some value 0 € Rx. Since M° is compact, the
conventional geometric quantisation procedures can now be applied to the cut space M * instead of
its hypertoric variety M,,.

Some comments are in order here: first, the cut space M’ is no longer hyperkihler but just
Kihler, since the U;-action preserves only one of the three hyperkihler two-forms. Hence the complex
polarisation that we consider on M is determined by the complex structure associated to the Kihler
two-form on M, that survives under the U;-action. The second comment is that the U-action on M,
can be described combinatorially, by restricting our attention to specific half-dimensional subvarieties
of M, that make up its so-called extended core £. The components £, of the extended core £ are
indexed by finite subsets A C {1, 2, ...}, with the U;-action on each £4 depending on the subset A.
This is reflected in the cutting procedure and results in a “truncation” of the hyperplane arrangement
A. We coined the term moment polyptych to refer the resulting polytopal arrangement, that we denote
by A5, emphasising its dependence on not just A itself but also on the posez of regions P(.A) of A. The
partial order of P(.A) is given by “how far away” each region is from a pre-determined distinguished
base region of A. In particular, for the same hyperplane arrangement, distinct base regions give rise to
non-isomorphic posets of regions and thus non-equivalent moment polyptychs.

Our approach to forming this cut space shares analogies with Hausel’s thesis [Hauo8]), in which he
uses the Uy-action, or the “Hitchin action” after [Hit87], on the moduli spaces of Higgs bundles M
over a Riemann surface. The Hitchin action acts by rotating the Higgs field associated to a holomorphic
vector bundle, akin to how our U; -action rotates the cotangent fibre coordinates over a pointin the base
space and since both actions are Hamiltonian. Another way in which research on the moduli spaces
of Higgs bundles has inspired the work presented here, is by that of the equivariant Verlinde formula,
which was introduced by Pei, Gukov, and Andersen in [|GPr7;|AGP16], and also by Halpern-Leistner
in [HL16]. Since the moduli spaces of Higgs bundles are non-compact, their idea to circumvent this
issue was to decompose the infinite-dimensional space H(M; L&*) of holomorphic sections of a
pre-quantum line bundle £ — M over M into a Z-graded direct sum of finite-dimensional weight
subspaces H%(M; L&%);, where d € Z denotes the weight of Hitchin’s U;-action on H?(M; L&),
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That s to say:

£®k £®k

=
d>0

On the other hand - and backtracking slightly — the non-equivariant Verlinde formula prescribes
a simple recipe to calculate the dimension of the vector space H(X'; L#*) of holomorphic sections of
a pre-quantum line bundle £ — & over X', the moduli space of flat G-connections over a Riemann
surface. This is sometimes phrased in the physics literature as being the number of conformal blocks
in a two-dimensional conformal field theory on a Riemann surface, [Ver88]. When G' = SUs,
it was shown: that X' can quantised using a real polarisation by Weitsman, in [Weig2]]; that the
quantisation dimension for a real polarisation agrees with that for a complex polarisation and hence
the Verlinde formula, in [JWo92]; and that a lattice-point count exists for the Verlinde point by the
means of a moment polytope, in [JWo4]]. This thesis is motivated by the question on whether a similar
phenomenon exists between hypertoric varieties and the equivariant Verlinde formula. In Tables
and turther analogies between symplectic toric varieties and the moduli space of flat connections
are presented, as well as those between hypertoric varieties and the moduli spaces of Higgs bundles.

‘ Symplectic Toric Variety X

H Moduli Space of Flat G-Connections X ‘

Symplectic quotient: X,, = cV /), K

Symplectic quotient: X = A /¢ G

Compact Kihler

Compact Kihler

dimec HY(X,; £®k) =
lattice points in moment polytope

#(k - p(X)NZ"),

dimc HO(X; L%%) = Verlinde formula at

level-k, [Ver88|

Table 1.1: Table detailing the non-equivariant analogies.

Hypertoric Variety M H Moduli Space of G-Higgs Bundles M ‘
Hyperkihler quotient: Hyperkihler quotient:
M, =TCVl K M= A" o 0\ G

Non-compact hyperkihler

Non-compact hyperkihler

Residual Hamiltonian Uj-action with
proper moment map ® : M, — R

Hitchin’s Hamiltonian U;-action with
proper moment map ¢ : M — R

T*X, C M, withwgr|x, = wy, and
o1(0) = X,

"X = MWithWJ1|X = Wy and
O1(0) = X

Cutspace: M;° = (M, x C) /s Uy

U, -weight space decomposition:
HO(MV; E) = @dZOHU(Mu; ’Cl/)d

U-weight space decomposition:

HY(M; L) 2 ®g>0H(M; L),

Hausel’s compactification of M, [Hau98E

dime HY(M,; L£,)q = equation from
Corollary

dimc H(M; £)4 = equivariant Verlinde

Table 1.2: Table detailing the equivariant analogies.

ix

formula of [GP17; AGP16; HL16]




1.4 Thesis Outline
The outline of this thesis is as follows:

* In the first half of this thesis we focus mostly on introducing hypertoric varieties and their
symplectic cuts. We begin first of all with Chapter|t, in which we introduce the geometric
approach to defining hypertoric varieties, denoted throughout by M, as hyperkihler quotients
of the flat N-dimensional quaternionic vector space HY by subtori K of the N-dimensional real
torus TV, where v € €* is an element in the dual space the Lie algebra € = Lie(K). We do this
by discussing hyperkahler manifolds in general in Section before moving onto hyperkihler
quotients in Section [1.2} which is a fruitious source of “more-interesting” hyperkihler orbifolds
that are presented as quotients of HN by a Lie group G. Of course, a family of these “more-
interesting” hyperkihler orbifolds include hypertoric varieties which are first defined in Section

For the latter half of Chapter we shift to the algebraic way of defining hypertoric varieties
which is via Geometric Invariant Theory (GIT), which we discuss generally in Sectionat
first, before honing in to hypertoric varieties in Section Each point of view provides its
own benefits when studying a hypertoric variety. On the one hand for example, the geometric
lens reveals the combinatorial links between hypertoric varieties and hyperplane arrangements,
whereas the GIT lens provides us with a firmer grasp over the space of global sections of some
line bundle £, — M, over the hypertoric variety M,;

* Next, in Chapter we discuss how one can associate a hypertoric variety M,, with a hyperplane
arrangement A. The hyperkihler moment map ppk : M, — (t*)* ®g Im(H) can be split
into its real and complex components, as figk = fr + ific, where g : M, — (£7)* is said
to be the real moment map and pc : M, — (t")* ®@g C the complex moment map. The
hyperplane arrangement A is then determined by the image of the hypertoric variety M, under
the real moment map pig in (£")*), and this correspondence is studied in Section .1 One such
property, that we subsequently look into in Section is that the regions of A are given by the
Kihler subvarieties of M, under ;ig. We denote the union of these subvarieties by £ and call it
the extended core, whereas we denote the union of the compact subvarieties by C, which we call
the core.

Then in Section 2.4}, we introduce what are known as flats of the hyperplane arrangement,
which are expressed as non-empty intersections of a selection of hyperplanes. For each flat, we
then obtain a decomposition of the torus 7™ into two components — one “tangential” to the
flat and the other one “normal” to it. The significance of this is made clear in Section which
is novel, as each flat of A determines a hypertoric subvariety of M,,, whose torus is the one that
acts tangentially in the 7"-decomposition. Whilst the concept of a hypertoric subvariety may
appear to be a non sequitur at first, it becomes instrumental when proving the more complicated
propositions and theorems that appear later on, since then they can be reduced down to one-



or two-dimensional problems via an inductive argument that are much easier to prove, for

example as in the proofs of Theorem[3.17] Lemma|6.1l Theorem[6.2] and Proposition 6.
p P 3-17 P 3

We begin Chapter[j] by recalling in general Lerman’s symplectic cut [Lergs] in Section[s.1, which
requires the Hamiltonian action of the circle Uj, and for which we need to specify a value
d € R> to cut at. For a hypertoric variety M,,, we introduce such a U;-action in Section
before then, in Section investigating its combinatorially behaviour when restricted to
different extended core.

We now move onto work that is original in Section when we form the symplectic cut of
M,, referring aptly to it as being the cut space M;° of M,,. By construction, M;° is a compact
variety, and the torus 7™ that acted originally on M, descends to M, as does the real moment
map jir. Doing this, we see in Section [3.s|that we obtain a polytopal arrangement from the
image of the cut space M;° under pg, that is essentially obtained by bounding the unbounded
regions of the hyperplane arrangement A, which we call the moment polyptych and denote it
by A5 = pr(M;?). The coinage of the term polyprych is to emphasise its dependence on the
way that the hyperplanes are cooriented. Finally, we wrap up the chapter by providing some
examples in Section and establishing some properties possessed by the cut spaces in Section
In particular, we find that a generic choice of hypertoric variety will result in its cut space
being an orbifold;

For the latter half of this thesis, we shift our attention onto the “quantisation” of hypertoric
varieties. Chapter |4]is a review chapter, and we start by first introducing the notion of a
holomorphic pre-quantum line bundle £ — M over a general Kihler manifold M, in ad-
dition to its Dolbeault cohomology group H"(M; L), in Section We also introduce the
Dolbeault-Dirac operator @ whose index, in the case particular to us, coincides with the Dol-
beault cohomology group. In Section we introduce a specific characteristic number called
the Riemann-Roch number x(M; L) that also equals dim¢ H°(M; £). The Riemann-Roch-
Hirzebruch theorem is also provided, which provides us with an equation to calculate x (M; £).
The Riemann-Roch-Hirzebruch theorem only applies to manifolds however, so, in Section

the Kawasaki-Riemann-Roch theorem is also provided, which calculates x (M; £) even if M is
an orbifold;

Despite having now acquired a way of expressing the Riemann-Roch number x (M £), actually
evaluating it by using the Riemann-Roch-Hirzebruch theorem proves to be another matter.
Luckily, when the manifold M is acted upon by a torus 7" such that its action has only a finite
number of fixed points that are isolated, then there is an easier way to obtain x (M; £). Such
methods are detailed in Chapter[s|which serves more as a review of equivariant cohomology
and localisation formulae. Indeed, Sectionintroduces equivariant cohomology groups from
the ground up in terms of the Borel construction, and then Section introduces both the
Weil and Cartan models of equivariant cohomology. Elements of the Cartan model are called
equivariant differential forms, which we talk about in Section[s.3} and which possess the notions
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of closedness and exactness, leading us in Section to discuss equivariant characteristic classes.

The chapter culminates with the Atzyah-Bott-Berline-Vergne localisation formula in Section
which is the key to transforming the integral over M from the Riemann-Roch-Hirzebruch
formula into a finite sum whose terms involve local isotropy data for the T-action on M. Of
course, this only holds when M is only a manifold since the Hirzebruch-Riemann-Roch formula
is used. However, the localisation formula may also be applied to the Kawasaki-Riemann-Roch
formula to obtain an analogous expression in the case when M is an orbifold, which is the

content of Section|[s.6}

In order to apply the equivariant localisation formulae to our cut spaces M, we must deter-
mine what the fixed points along with their isotropy data. This is the objective of Chapter6]
and the content from here onwards contains completely new results unless cited. In Section
we determine that the fixed points are finite in number and that each is isolated, with some
being located in the interior of M;°, whereas the rest are located along its boundary, and are
produced when performing the symplectic cut. For each fixed point p, we then determine the
isotropy weights for the 7™ -action on its tangent space T,,M;°, and find that they coincide
with the edge vectors emanating out from the vertex v that p is mapped onto under g, so that
v = pr(p). If M? is an orbifold then each orbifold point possesses additional isotropy data,
which we deal with in Section[6.2}

The main body of this thesis culminates in Chapter where we derive an expression for the
dimension for the “equivariant quantisation” of a hypertoric variety M,,. That is to say, if
L, — M, denotes a holomorphic pre-quantum line bundle over the hypertoric variety M,,
then we determine an equation for dim¢ H O(M,; L,), where d € Z> is the weight of the
representation of U; on the C-vector space, O(M,; L,).

To accomplish this, we first fix an integer d € Z>, before then looking at how the pre-
quantum line bundle £, — M, descends to the cut space M* as the pre-quantum line
bundle £5* — M " in Section[7.1} Then, since we located the fixed points for the 7"-action
on M, as well as their isotropy data, in Sectionwe obtain a formula for the dimension
dime HO(MZ%; L5?) using the Atiyah-Bott-Berline-Vergne equivariant localisation formula
applied either to the Hirzebruch-Riemann-Roch theorem, if M is a manifold, or to the
Kawasaki-Riemann-Roch theorem if M ¢ is otherwise an orbifold. In either case, we need
to find a way to connect H%(M,; L,)), with H°(M3%; £5%). This is the goal of Section
in which the algebraic cut is introduced - first mentioned by Edidin and William in [EG98] —
and is the algebraic analogue of the symplectic cut. Here, we introduce the algebraic cut for
semi-projective normal varieties is introduced, before using it to derive the formula:

dimec H°(M,; £,)4 = dime H° (M3 £57) — dime HO(MF=; £5067D),

We then finish the chapter, and indeed the main body of this thesis, by seeing the formula in
action with some examples in Section
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* Lastly, Appendix@ contains some more general results pertaining to the theory of orbifolds,
which we quote at times throughout this thesis.
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Part 1

Hypertoric Varieties, Cut Spaces, and
Moment Polyptchs



Chapter 1

Hypertoric Varieties

We begin by introducing the background theory and results on the hypertoric varieties of Bielawski
and Dancer [BDoo|, beginning first with the hyperkihler quotient.

.1 Hyperkihler Manifolds

First defined by Calabi in 1979 [Cal79], a hyperkihler manifold is a Riemannian manifold (), ¢) with
three complex structures, Ji, Jo, and J3, which satisty the quaternionic identities and are compatible
with the Riemannian metric g on M. By compatibility with, g, we mean that there exist three
symplectic two-forms, wy, wo, and ws, on M, that satisfy the identities:

wi(v,w) = g(Jiv,w), wa(v,w) = g(Jv,w), ws(v,w)=g(Jsv,w).

This condition is equivalent to each symplectic two-form, w;, wo, and w3, additionally being Kihler
for the complex structures, J1, Jo, and J3, respectively.

If we fix one of the complex structures, J; say, then we may define a complex-valued two-form
wc = wa+ 1wz on M, which is holomorphic with respect to the complex structure .J;. Hence, any hy-

perkihler manifold, (M, J;, w;), can be thought of as a holomorphic-symplectic manifold, (M, J;, wc).

Example 1.1. A basic yet fundamental example of a hyperkihler manifold is that of the four-
dimensional flat quaternionic vector space, H = R4 Denoting the coordinates of H by
(o, 1, T2, x3) € R, its three Kihler two-forms, wy, ws, and ws, can be written as:

w1 = dCL’O VAN d.f(]l + dZEQ VAN dl’3,
Wy = diIZ’O A dl’z + dl'g VAN dl’l,
W3 = dl’o AN d(L’g + dl‘l AN d(L’Q.



As mentioned previously, we may view H as a holomorphic-symplectic manifold by fixing the complex
structure J; = 7, and by setting 2 = x¢ + i1 and w = @5 + ix3. Then the holomorphic-symplectic
two-form wg is:

we = wq + iwg = (dxg + idzy) A (dzg + ides) = dz A dw = —d(wdz) = db,

which one may identify with the Poincaré two-form on 7 C, given by the exterior derivative of the
Liouville one-form 6 = —wdz on T*C. Analogously, we introduce a “real” Kihler two-form on M

by just relabelling:

WR = wy = dxg A dry + dzo N dxs
= (1/2) [(dzo + idz1) A (dxg — idx1) + (dxg + idxs) A (dxg —idxs)]  (r1)
= (i/2) [dz N\ dZ + dw A dw] .

The above example naturally generalises to the 4/N-dimensional vector space HY, and we will
make heavy use of the identification HYN = 7*CN throughout this thesis.

1.2 Hyperkihler Reduction

Let G be a compact Lie group with Lie algebra g, and let g* denote its dual Lie algebra. We say that an
action of GG on a hyperkihler manifold M is hyperhamiltonian if it is independently Hamiltonian
for each Kihler two-form, wy, ws, and ws, on M. Precisely, this means that for each Kihler two-form,
there exist three corresponding G-equivariant maps (i1, to, 3 : M — g* which, for any element
X € g, satisfy:

(dp;, X) = 1xwi,

where X is the fundamental vector field on M associated to the element X € g. We may combine
these three moment maps into a single hyperkihler moment map, as:

Puk = P11 D P2 D 3 : M — g* ® Im(H). (r.2)

Similarly to how we introduced the real and holomorphic-symplectic two-forms, wg and wc, we
may relabel the first moment map ¢, as a “real” moment map:

¢r=¢1: M — g,

and additionally combine the latter two moment maps, ¢, and ¢s, into a single complex-valued
moment map:

dc =2 Digs: M — g" ®C.



Given a central element v € g* ® Im(H) for the coadjoint action of G on g*, the level-set ¢y (1)
is a G-invariant submanifold of M. The hyperkihler quotient is then defined to be the quotient:

M, = Mfjf G = éyx(v)/G,

and which also has the structure of a hyperkihler manifold by the following theorem of Hitchin,
Karlhede, Lindstrom, and Rovéek in [HKLR].

Theorem 1.2 ((HKLR]). Lez M be a hyperkibler manifold equipped with a byperbamiltonian action
of a Lie group G, with corresponding byperkibler moment map ¢nx : M — g* @ Im(H). Suppose
that v € g* ® Im(H) is a regular value for g and invariant under the coadjoint action of G. Then,
if G acts freely on ¢y (), the byperkéhler quotient M, is a hyperkéibler manifold. Moreover, if G is
compact and M is complete, then M, is a complete byperkébler manifold.

As stated in Theorem the hyperkihler quotient M, = T*CYj) G is a manifold, provided
that the G-action on the level-set ¢yy; (1) is free, which means that the stabiliser subgroup for every
pointp € ¢y (V) is trivial. More generally, the hyperkihler quotient M, is an orbifold if the G-action
on ¢ (1) is locally free, which means that the stabiliser subgroup for every point p € ¢y (1) is at
worst finite.

Let us focus now on the case when G is a compact Lie group acting linearly on CV, which is
Hamiltonian with corresponding moment map:

¢:CY — g~ (3)

This induces a linear G-action on the cotangent bundle 7*C¥, and which we subsequently identify
as T*CN =~ HV, In doing so, T*CV inherits the hyperkihler structure from HY where the real
Kihler two-form wg € Q2(T*C") and the holomorphic-symplectic two-form we € w?(T*CY)
were defined in Example That is to say, wr is given by the sum of the pull-backs of the standard
symplectic two-forms on C" and on (CN )* respectively, whereas wc is given by we = df, where
6 € Q' (T*CN) is the Liouville one-form on the complex cotangent bundle 7*C".

As the G-action on T*C¥ is H-linear, it is hyperhamiltonian with corresponding hyperkihler
moment map ¢gx = ¢r B ¢c : T*CY — g* @ Im(H), where the real and complex moment maps
are respectively:

Pr(z,w) = ¢(2) — o(w), and (2, w)(X) = w(X),

where w € TYCV, X € gc,and X € T,C¥ is the vector field induced by the Lie algebra element
X.Ifv € g*isa central regular value for the real moment map ¢g, and if (,0) € g* ® Im(H) isa
central regular value for the hyperkihler moment map ¢ then, following [HPo4, §1], we call the
hyperkihler quotient M = T*C¥ M.0)G the hyperkihler analogue for the Kihler quotient

X=CVJ, G.



1.3 Hypertoric Varieties as Hyperkihler Quotients

Let us restrict our focus further to the case when G is an N-dimensional compact connected abelian
Lie group, i.e., when G = T = U(1)" is the N-dimensional real torus with Lie algebra t"'. The
character lattice t) of tV is the kernel of the exponential map exp : tV — TV, so:

2 = ker (exp:tN —>TN).
Denote the dual space to the Lie algebra t" by (t")*. Then by using a 7" -invariant bilinear form
(—, —) on t", we define the weight lattice () )* of (t")* by

) ={ae () | (o, X)€2rZforall X € 5 }.

By choosing a basis ey, . . ., ex for the character lattice (27th)N , we may identify tg ~ ZN and
tV = RN Finally, let 1, . . ., € be the basis for the weight lattice (t2)*, dual to thatof ey, . . ., ex.

The N-dimensional real torus TV acts linearly on the N-dimensional flat complex vector space
cV, namely:
(tla s 7tN> ’ (Zh R ZN) - (tlzh s 7tNZN)7 (14)

and this action is Hamiltonian and its corresponding moment map is

N
¢:CN = (), z) =) |ule = (|-l (1)
=1

We extend this action to an induced one 7*C" by:
(t1, oo tn) - (2150 28, W01, W) = (B121, 0 Evens B W, B W), (1.6)
which is hyperhamiltonian with corresponding hyperkihler moment map:
Pk = ¢r ® ¢c : T*CN — (V)" ® Im(H), (1.7)

where éR and qgc are the real and complex moment maps for (BHK, respectively. They can be written
explicitly as:

N
r(z,w) = (Jaf* — |wil)ei € ()7,

=1

N (1.8)
&C(%UJ) = Z(ZZ"LU@')Q S (fN)* ® C.

=1



We define a subtorus K C TV as follows: consider a collection of N distinct non-zero integral
vectors {uy, ..., uy } in t%, whose real span equals t". Define the map:

Tt =" by 7w(e) =

Sett := ker mand let 7 : € — ¢V denote the inclusion. This yields the short exact sequence:

{0} y PtV T » {0}. (1.9)

Then, on the one hand, by exponentiating (1.9)) we obtain a short exact sequence of tori:

{1} y K —— TN —Z " > {1}. (1.10)

Whereas, on the other hand, we may dualise (1.9)) to obtain a short exact sequence of dual spaces, along
with their respective lattices:

{0} « B (V) (1) «—— {0}
] * ] * ] (r.m)
{0} < & —— () «— (&) +— {0}.

Denote the dimension of K by £ = dimg kK, and set:
a; = (a4, ..., ax) =1"(¢;) € €5, foreachi=1,... N.

Then, if we denote the image of (t1, . .., t) € K under by:

oty .. ty) = (81, .., tY) e TV, where £ =
thenthe avy, ..., an € B are the weights for the K-action on 7*C". That is:
t (21,28, W, wn) = (8% 2y, NV 2yt My, Lt N wy). (r12)
The weights oy, . . ., v can be arranged into an (k X N)-matrix
aip Q2 -+ Q1IN
A:plmaﬂ:a?@zfa@:@reg (L13)
Ay - o apy
which represents that linear map ¢* relative to the €y, . . . , €y basis of (t5)*. Thatis to say, A = [+*].

6



The subtorus K acts on T*C¥ via the inclusion homomorphism 2 from K into TN, As K
is a subtorus of TV which itself acts on 7*C" in a hyperhamiltonian way, the action of K is also
hyperhamiltonian, whose corresponding hyperkihler moment map ¢p is:

PrK = ¢r D dc = (1* 0 9r) ® (18 0 Ppc) — € @ Im(H).
In coordinates, i is given by the equations:
Pr(z,w) = (l* o QZ;R) (2, w) = liﬂzﬂz — |wil*)a; € ¥,
23

dc(z,w) = (zé o gzNSC> (z,w) = iv:(ziwi)ozi € .

=1

(114)

The following proposition states the conditions for an element (v, 0,0) € £ @ Im(H) tobe a
regular value for the hyperkihler moment map ¢nk, and is due to Konno [Konoo].

Proposition 1.3. Fix an element v € €*. Then the following are equivalent:
(z) (v,0,0) € € ® Im(H) is a regular value for the byperkibler moment map ¢yx;

(iz) forany J C {1,..., N }, whose cardinality | J| is strictly less than dim €* = k, the element v
is not contained in the subspace of € spanned by {c; | j € J}.

A combinatorial geometric interpretation of Propositionfor an element v € € to be a regular
value of the real moment map ¢g, is that ¥ must not be contained in any proper subspace generated
by any combination of the K-weights o;, where¢ = 1,..., V.

With this established, we can define the main objects of interest, namely that of hypertoric varieties.
They were first introduced by Bielawski and Dancer in [BDoo] who considered them from the
differential-geometric angle, whereas Hausel and Sturmfels in [HSo2] considered them from the
algebro-geometric angle not too long afterwards.

Definition 1.4. Let K < T be the subtorus defined by K := ker 7 as in the short exact sequence
(10), and let (,0,0) € & ® dux be a regular value for the hyperkihler moment map ¢ux. A
hypertoric variety M, is the hyperkihler quotient of the complex cotangent space 7*C", with
respect to the action of the subtorus K C T at the regular value (v, 0,0) € € @ Im(H), so:

M, = T*CVf ) K = (v, 0)/ K = (¢ () N 6" (0))/ K. (r15)

There is a residual quotient torus 1" = ™ /K, that acts on the hypertoric variety M, in
a hyperhamiltonian way and induces the hyperkihler moment map pipx = pr ® pc : M, —



(t")* ® Im(H). With respect to coordinates:

N
1
UR(z, w| = 5 z;(|zz|2 — Jwi* = \i)es € (17)* =2 kera*,
sz (r.16)
pclz, w| = Z(zzwz)ez € (t8)" = kerg.
i=1

Here, [z, w] € M, denotes the K -equivalence class of the point (2, w) € ¢ (v,0).

1.4 Hypertoric Varieties as Algebro-Geometric Quotients

As mentioned in the paragraph before Definition[r.4} there is an alternative algebro-geometric way to
construct a hypertoric variety using the Proj construction and Geometric Invariant Theory (GIT), and
was first considered in [HSo2]. The differential- and algebro-geometric methods result in equivalent
hypertoric varieties due to the Kempf-Ness theorem, with the latter method being essential to us when
studying the equivariant quantisation of a hypertoric variety in Chapter[7] Several results in this
section come from [Har77, Chapter II], [Dolos|], [MFKo94], and [Muko3], which themselves provide
more wider-ranging discussions of the Proj construction and also GIT.

To start, suppose that X is a complex normal quasi-projective variety, that G is a linear algebraic
group that acting linearly over X, andlet 7 : £ — X be aline bundle on X. Then, the process of
lifting the G-action on X up to one on £ boils down to choosing a linearisation of the G-action on

X.

Definition r.5. Let G be a linear algebraic group acting on an affine variety X. A linearisation of
the action is a line bundle 7 : £ — X together with a choice of G-action on £, such that:

(i) the bundle projection 7 : £ — X is G-equivariant;
(ii) forevery g € G'andp € X, the induced map between the fibres:
Ll = Llgp,  1—=g-1
is linear, where [ € L], is an element in the fibre over the point p € X.

A linearisation of a G-action on a line bundle 7 : £ — X is equivalently called a G-equivariant
line bundle. It is common to refer to the lifting of the G-action on X to one on £ implicitly, by simply
stating that the line bundle 7 : £ — X is a G-linearised line bundle, i.c., we do not distinguish
between a line bundle and its linearisation.

Example 1.6. Suppose that X = Spec A is an affine variety for some integral C-algebra A, and that
7 : L =X xC — X isthe trivial line bundle over X . If G acts on X, then each G-linearisation of £



corresponds uniquely to a choice of character x : G — C*, see [Dolo3, Theorem 7.1 & Corollary 7.1].
This correspondence is given via:

Gx(XxC)—=XxC, where (g,p,8)— (9-p,x(9)¢)

Example 1.7. Given a G-linearised line bundle £ — X, not necessarily trivial, and a character
X : G — C*, which does not necessarily define the G-action on £, then we can form a new G-
linearisation £,, — X by twisting £ by the character X, [B+18, §1]. More explicitly, we set
Ly, =L® Og?), where (92() = X x Cis the trivial bundle over X equipped with a G-linearisation
defined by the character X, as in Examplelr.¢]

It turns out that, when a connected linear algebraic group G acts on a normal variety X over
afield F, with 7 : £ — X aline bundle over X, then some positive tensor power L& admits a
G-linearisation provided that X is proper, as proven in [MFKo4, Corollary 1.6].

Now we shall consider how a linearisation affects the sections of a linearised line bundle. Given
m: L — X over X, we let H(X; £) denote its space of global sections; if 7 : £ — X is
the projection, then sections are the maps ¢ : X — L such that m o 0 = Idx. If furthermore
L = X x Cis trivial then, as a regular function s € C[X] is simply a morphism s : X — C, we may
identify the ring of global sections H°(X; £) on X with its ring of regular functions C[X]. Explicitly,
for a section ¢ there exists a unique regular function s such that:

o(p) = (p,s(p)) € X xC =L, foranyp € X. (L.17)

When the line bundle £ on X is G-linearised, then there is an additional induced action of G on
HY(X; L), given by:

(g-0)(p):=g-(c(g7" D)), foranyg € G, andp € X. (1.18)

Definition 1.8. We define the subspace H°(X; £)¢ of G-invariant sections, by:

HY(X;L):={oce€ H'X;L) | g-0=0, foranyge G }. (1.19)

Similarly, we define the subspace C[X ], of semi-invariants of weight X, by:

ClX)i= { s ol | e ) (120

When X is affine then, from Example every linebundle7 : £ = X x C — X over X is
trivial and their G-linearisations are defined by a character x : G' — C*. In this case, we have the
following lemma from [CLS1ra, Lemma 14.1.1].



Lemma r.9. Let 7 : L, — X be the G-linearised line bundle on X determined by the character
X : G — C*. Then:

(i) if o is the global section of L., corresponding to s, then g - o is the global section defined by:
(9-0)p) = (p.x(9)s(9™" - p)), (r.21)
foranyg € Gandp € X;

(11) the space of G-invariant global sections is isomorphic to the space of semi-invariants of weight x:
H(X; L)% = C[X],. (r.22)

Proof. To provel(i)} by (118), an element g € G acts on a global section o € H(X; L, ) as:
(9-0)p)=9g-(olg™"p)) (from (L.18))
=g- (9" -pslg-p)) (aso(p) = (p.5(p)))
=(9-97"pg-s(g7"p))
= (p.g-s(g™" - p)).
We therefore see that:
p—"— (p.g-s(g~-p)) —— p,
ie,thatmo (g-0) =Idx. Thus g - o isaglobal section for the line bundle 7 : £,, — X.
For recall that the G-action on L, is via the character, x : G — C*. From part for every
g€ Gandp € X:
(9-0)p) = (p.g-s(g™" ) = (px(9)s(g™" - D)) (r.23)

Hence, for any p € X, we have that (¢ - 0)(p) = o(p) if, and only if, x(g9)s(g™* - p) = s(p)
from if, and only if, s(g - p) = x(g)s(p), which implies that s € C[X],. Hence, the lemma
follows. ]

For each m > 0, define the C-algebra of

10y pEm\G o s(g-p) = x(9)"s(p),
o = HA(XG L) _{SGC[X]' forallg € G, andpe X [

where the isomorphism comes from Lemmalr.o|(ii)l Hence each R, is the subring of semi-invariants
for the character ™", and these subrings can be assembled together as the graded components of a

Z>-graded C-algebra that is defined by:
R .= @ H(X; £§m)G. (1.24)

m>0

I0



We call R in (1.24)) the invariant subring.

When X is an affine variety and G is a reductive linear algebraic group that acts X, then the
invariant subring R is a finitely-generated C-algebra, due to the positive-affirmation of Hilbert’s
Fourteenth Problem [Hilo2, Problem 14] when X is normal. The same holds for each R,,, with
m > 0, in addition to being Ry-algebras too.

Definition 1.10. Let X be an affine variety, G’ be a reductive linear algebraic group that acts on X,
and £,, — X be a G-linearised line bundle on X defined by a character x : G — C*. Then the GIT
quotient X //, G of X by G is

X /G := Proj R® = Proj (@ H(X; £;€§m)G) : (1.25)

m>0

Whilst easy to state, it is not quite so easy to see what the GIT quotient X //, G in Definition
represents geometrically. In order to do so, we introduce the following notion of stability for a
G-linearised line bundle.

Definition r.ax. Let 7 : £, — X be a G-linearised line bundle over X, defined by a character
X : G — C*,andletp € X be a point. Then:

(i) pissaid to be semi-stable with respect to £, if there exists an m > 1, and a G-invariant section
s € H(X; LZ™)Y, such that the semi-stable locus:

XX ={reX|s(x)#0}
is affine and contains p;

(i) p is said to be stable with respect to L, if there exists a section s as in[(i)} and additionally the
stabiliser subgroup Stab¢ (p) is finite and every orbit of G in XX~ is closed. The stable locus
is then defined to be:

Xt = {y € XX | Stabg(p) is finite,and G -y = G - y } ;

(iii) p is said to be unstable with respect to £, if it is not semi-stable. The unstable locus is defined
to be:
XX = X — XX,

We may introduce an equivalence relation on the x-semi-stable locus XX~ by defining:

r~y, foreveryzr,y € XX < G-zNG-ynXX £, (1.26)

Then one of the fundamental results of geometric invariant theory is that X /. G is a geometric
quotient of XX~ by G.

1I



Theorem 1.2, There exists a good categorical quotient:
W XX — XX/
with (x) = Y(y) if; and only if; the closures of the orbits G - x and G - y intersect in X. Furthermore:
(1) XX%/~ is a quasi-projective variety;

(i7) there exists an open subset U in XX~/ ~ such that =1 (U) = XX, and the restriction of 1) to
XX 45 a geometric quotient of XX~ by G;

(i12) there exists an ample line bundle F on XX7%/ ~, such that *(F) = L™ when restricted to
XX/ ~, for some m > 0;

(1v) we may identify the categorical quotient with the GIT quotient:
XX G = Proj R = XX/~ . (1.27)

For the proofs of] and((iii), one may consult [MFKo4], [New78], or [Dolos], for example.
For a further details regarding the identification stated in|(iv), see [Nakgg] or [Proos].

1.5 Hypertoric Varieties as GIT Quotients

If we apply the Homz (—; C*) functor to the short exact sequence of lattices in , then we obtain
the following short exact sequence of complex algebraic tori:

{1} > KC <

2

Ty s TR > {1}. (1.28)

In the same way as when we were dealing with real tori in Section|r.3} we let the complexified torus
Tév act linearly on T*CN, yielding the complex moment map:

N
dc : T*CN — (tY)7, dc(z,w) = szwjej.
j=1

Here, recall that ey, . . ., e isa basis for (tYV)*, dual to that of ey, . . . , e,y for the Lie algebra tV. Given
an integral weight A € (t2)* of T{', we obtain a character x,, : 7" — C* via:

o T — C, xa(exp(X)) := X forany X € tV.

Let Op«cnv = T*CY x C be the holomorphic trivial line bundle on the complex cotangent space
T*CN. The integral weight A € (t)* defines a character ) : T& — C*, and hence a lift of the
T& -action on T*CY up to on Or-cn from Exampler.6} via:

t- ((z,w),f’) = (t . (z,w),t-ﬁ) = ((tz,t_lw),x)\(t)f'). (1.29)
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As ¢ (0) is a submanifold of T*CY, we can restrict the trivial line bundle 7 : Opvcnv — T*CV
to obtain one on ¢ ' (0). If j : ' (0) — T*C¥ is the inclusion, then we get a holomorphic trivial
line bundle 7 : £ — ¢¢'(0) by:

Oycr(0) = ¢ (0) x C= j"Opucw — 6! (0).

C

Furthermore, since K¢ is a subtorus of T¢¥ and since T2 acts linearly on T*C", we have an induced
action of K¢ on ¢ (0). The following lemma describes the relationship between the weights of T¢Y
with those of its subtorus Kc.

Lemma r.13. An clement v = 1*(\) € ¥ occurs as a weight of K¢ if, and only if, A\ + p € (t5)*
occurs as a weight of TY for some ji € (£5)* N kerv*.

Proof. Let us fix some notation: suppose a = eX € K¢ forsome X € £ Denote their respective
images under ¢ and its derivative ¢, by b := 12(a) € T and Y = 1.(X) € " respectively, so that
b = e¥. Then we have the diagram:

X s Y = 1.(X)
E— N

lexp lexp

Kc—Z>TéV

IfA+ p € ()%, where € (£)* Nkere*, occurs as a weight of TZ', then:

o (D) = xagu(e)) = W) = At (X))

_ O, X) O, X) (0 X)

= xv(e¥)
= xv(a),
whence if A + p € ()" occurs as a weight of T, then v € € occurs as a weight of Kc. [

We see from Lemma that there are infinitely many weights v + A € (t3)* that get projected
onto the same weight v € £, provided that A € ker+*. In Section we shall see that the weight
v determines a hyperplane arrangement A in (t"*)*, and a choice of A € ker¢* corresponds to a
translation of A.

Definition 1.14. An integral weight v € & is called generic, if it is not contained in any proper
subspace generated by the Kc-weights o;, where¢ = 1,..., N.
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Thus let us fix an integral weight v € £ and denote its corresponding character by x,, : K¢ —
C*. Consequently, we obtain a K¢-linearised line bundle 7 : £,, — ¢¢'(0) obtained by twisting
the trivial line bundle  : £ — ¢¢'(0) over ' (0) by x,.

The next technical lemma characterises the stable and semi-stable loci in ¢ (0) with respect to
the Kc-linearised linebundle, 7 : £, — ¢¢ 1(0), and was proven by Konno in [Kono8, Lemma 3.4].

Lemma v.15. Fix an integral weight v € €. Then:

(i) a point (z,w) € ¢g'(0) is x,-semi-stable if; and only if:

Ve Z (R>o - o) Z (RZO'ai)§ (1.30)

{i] 2 #0} {i|w; #0}

(iz) suppose that (z,w) € ¢c'(0)X* ™, Then the Kc-orbit through (z,w) is dlosed in ¢g* (0)X»
if, and only if:
vV E Z R>Q O-/z Z (R>0 : O{i) . (I.}I)
{il 2 #0} {iwi #0}
Finally, we can state the definition of a hypertoric variety when it is defined using GIT.
Definition 1.16. Suppose that the integral weight v € £ is generic, and let:
L, = ¢81(0>V_SS Xke Cy, = My

be the K¢-linearised line bundle over ¢¢'(0). Then the (algebro-geometric) hypertoric variety
M,, is defined to be the projective quotient:

M, = ¢c'(0)"* /., Kc = Proj (EB HO (¢ (0); ﬁf?m)Kc> :

m>0

The last part of this section is to show that both of the two quotient constructions presented
thus far, i.c., that of Definitions|r.4|and 16| for a hypertoric variety M,, coincide. To do so, following
Konno [Kono8], let us first define a fibre-wise Hermitian metric on the holomorphic trivial line

bundle £ — ¢¢'(0) over the level-set ¢ *(0), as:

1((z,w).0) | _K|€f§(||zn2+uwu2)_ (132)

This metric induces the Chern connection V on the holomorphic trivial line bundle 7 : £ — ¢¢ ' (0),
whose first Chern form is ¢; (V) = wg| o5l (0 where wg is the real Kihler two-form from Example
The action of the subtorus K¢ on £ preserves this holomorphic structure, as well as its Hermitian

metric (1.32)) and hence its Chern connection, V.
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The fundamental result that lets us identify the hypertoric variety M,, presented as a hyperkihler
quotient T*CN )/ (v,0) I8 with that from the analogous GIT quotient ¢¢ 1(0) /., Kc is the following
fundamental result. Its proof requires that the K¢-linearised line bundle to have a Hermitian structure
defined on it, hence our preamble above.

Theorem r.r7 (Kempf-Ness-King). Consider the restricted real moment map, ¢r = ' (0) — €*.
Then, the level-set p3' (V) C ¢c'(0) meets each Kc-orbit in precisely one K-orbit, and meets no
other Kc-orbit. Furthermore, each Kc-orbit is closed in ¢ (0)Y ™. In particular, the natural map

or' (V) /K = ¢y (v,0)/ K — ¢El(0)”_ss//XVKc is a bijection.

The above theorem is actually a generalisation of the Kempf-Ness theorem by King [King4),
Theorem 6.1 & Corollary 6.2], since the original Kempf-Ness theorem [KN79] only considers the case
when v = 0.

Corollary 1.18. The differential-geometric definition of a hypertoric variety in Definition|t.4) and the
algebro-geometric definition of a hypertoric variety in Definition|1.16| coincide.

To finish this section, suppose that M is a normal quasi-projective variety that can be described
using the Proj construction in the form of M = Proj R, where R = @jcz.,R; is a C-algebra
that is finitely-generated as an IRy-algebra by R, and suppose that the canonical structure morphism
M — M, = Spec Ry is projective. In this case, then we say that M is projective over the affine
variety M,. Hypertoric varieties make up an example of a variety that is projective over an affine one,
as a hypertoric variety M, is projective over its affinisation, M.

To be more precise, if the structure morphism

ms : M = Proj GB R,, — My = Spec Ry (133)

m=0

is projective, then we have the following diagram:

> My x P(RY)
\ / \ (134

where i : M, — My x P(R}) is a closed embedding, where pr; : M, x P(R;) — M and

1y : My x P(R}) — P(R}) are the projections from My x P(R}) onto its respective first, My, and
second, P(R}), factors, and where the structure morphism wg : M, — M, factors as g = pr; 014,
[Har77, Chapter ILs].

Since i in (1.34) is an immersion, the variety M is isomorphic to a closed subscheme of M x P(RY).
It follows then, that there exists an ample line bundle £ — M over M which is said to be very ample
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relative to M. It is obtained via £, = i*O(1), where O(1) = prj Op(gs)(1) is the pull-back
of the twisting sheaf O(1) on P(R7), [Har77, Remark 5.16.1]. These properties are summarised in
the following definition, first applied in [HSo2, §1] to toric varieties that are projective over their
affinisations, in addition to having at least one torus fixed point.

Definition 1.19. We say that a normal quasi-projective variety M is semi-projective, if it is projective
over an affine variety M. That is to say, that there exists a Z>(-graded C-algebra R = ®jcz.  R;,
finitely-generated as an Ry-algebraby R, and such that the structure morphism g : M = Proj R —
My = Spec Ry is projective.

Examples of semi-projective varieties include hypertoric varieties [HSo2] of course, but also
quiver varieties [Reio3]]. The GIT quotient construction, and more generally this algebraic approach,
reveals several properties possessed by a hypertoric variety which were not immediately apparent
from the hyperkihler quotient construction. For example, the following lemma is proven in [BKi2,
Lemmas 4.7 & 4.10] using the GIT method of constructing hypertoric varieties.

Lemma 1.20. The moment map ¢c : T*CN — (tc)* is flat and ¢ (0) is a reduced complete
intersection in T*CVN. Furthermore, ifv € & is generic, then M, is arithmetically Coben-Macaulay.
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Chapter 2

Hyperplane Arrangements and Hypertoric
Subvarieties

In [Del88]], Delzant established a classification result which associates to each compact symplectic
toric manifold a corresponding smooth closed convex polytope that equals the image of the manifold
under the moment map. His result was further generalised by Lerman and Tolman in [LT97], who
extended it to compact symplectic toric orbifolds by relating them to szmple closed convex polytopes.

In this chapter, we wish to investigate an analogous phenomenon, which relates a hypertoric variety
to a hyperplane arrangement. Geometric properties such as the smoothness of a hypertoric variety
is then represented in the combinatorics of a hyperplane arrangement, and vice versa. Hyperplane
arrangements will allow us to express the results regarding hypertoric varieties visually, and thus make
for instrumental tools when proving results that concern hypertoric varieties.

2.1 Hyperplane Arrangements

The data used to construct a hypertoric variety M, can be compactly encoded within a hyperplane
arrangement in the dual space (t")*, where (t")* is the Lie algebra of the residual torus 7™ acting
on M,. Consider an integral vector u € 3, along with an element A € (t")*. From this data, a
hyperplane H C (t")* can be expressed as:

H={ze ") |(z,uy+Ag=0}. (2.1)

Thus, the integral vector u corresponds to the normal vector of , whereas A iy determines the position
of H in the vector space (t")*. We say that a hyperplane H is weighted if u is not a primitive vector in
t7, i.e., that for any other vector v € t5 such thatu = kv for some k& € Z>, then we must necessarily
have that £ = 1. We also say that the hyperplane H is affine if it does not pass through the origin in
.
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Going one step further, given a set {ul, RN 7) N} of vectors in t", we say that an arrangement
of hyperplanes, or a hyperplane arrangement, is a set A := {H;,..., Hy} of hyperplanes
Hy,...,Hyin (")*, each being of the form (2.1). We say that a hyperplane arrangement A is simple
if, for every non-empty intersection of hyperplanes N_, H; # 0, the set of normal vectors {u;, }5_,
is linearly independent. Furthermore, we say that a hyperplane arrangement 4 is smooth, if each
set {u;, }¥_, as above additionally forms a Z-basis for t3. In the sequel, we shall assume that each

hyperplane H; in a hyperplane arrangement A is distinct.

As remarked in the paragraph after Lemmalt.i3} the element A € (tV)* is alift of the element
v € ¥* along the projection 2", i.e., A = A+ p1 = 2*v forany p1 € ker¢*. Hence, themap A — XA+ 1
corresponds to translating each hyperplane H; in the hyperplane arrangement A by the vector ,
provided that ;1 € ker*.

Each hyperplane H; determines the two following half-spaces in (")*:
Hf ={ze ) | {(z,u)+ >0}, H ={zet)|{(r,u)+N <0}, (22)

sothat H; = H;" N H; . An arrangement .A divides (t")* into a finite family of simple closed and
convex polyhedra, not necessarily bounded, which we call the regions of A. Each region of A can be
expressed as a finite intersection of the half-spaces:

Ay = (NigaH;") N (NieaH; ), (23)

which we index by subsets A C {1,..., N}. Wedenoteby R(A) = { Ay | AC {1,...,N} } the
set of regions of an arrangement .4, and say that A is the base, or the distinguished, region of A.

Remark 2.1. The set of regions R(.A) of A can be further equipped with a partial order <, defined
by the relation:
Ay = Ap, ifandonlyif AC B.

This makes R(.A) into a poset P(A) := (R(A), <), called the poset of regions of the arrangement
A, [Ede84]. Implicit in this construction is that P(.A) depends on both the arrangement A and on
the choice of base region Ay, since the partial order records how many hyperplanes separate the region
A 4 from Ay. Different choices of Ay for the same arrangement A gives rise to non-isomorphic posets
P(A), since Ay is the unique infimum or meet of the poset P(A). The choice of Ay is equivalent
to a choice of coorientation for A.

2.2 The Core and Extended Core of a Hypertoric Variety

Following [HPo4]], we define the extended core £ of M, to be the zero level-set of the complex
moment map fic:

E = puz"'(0) ={[2,w] € M, | zw; = 0 foreachi }, (2.4)
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which is a 2n-dimensional reducible subvariety of M,,. For each subset A C {1, ..., N}, the subvari-

ety:
Ea=pr' (Aa)NE

is then an irreducible component of the extended core £, and one should observe that £ = U4 E€4.

The following lemma expresses how the image 11r(€) is partitioned by a hyperplane arrangement
into the regions A 4, and was proven in [HPo4, Lemma 3.1]:

Lemma 2.2. Consider a point [2,w] € & C M,. Then, ifw; = 0 then ir|z,w| € H;", whereas if
zi = 0 then gz, w] € H; . Then:

Exa={lz,weM,|w=05fi ¢ Aand z; =0ifi € A}.

Fortheset ] = { A C {1,..., N} | A4isbounded }, we define the core of M, to be:

C =Uaeréa, (2-5)

and observe that C C &. We say that the core C is reducible if there exist at least two distinct and
proper components E4,Ep € C, such that C = £4 U Ep. Otherwise, we say that the core C is
irreducible. Each core component £4 C C is a 2n-dimensional wc-Lagrangian subvariety of M,
and can be identified with the wr-Kihler toric variety corresponding to the bounded polytope A 4.

In particular, the variety Mj corresponds to the Kihler quotient of the zero-section C¥ C T*C¥,
since then X, := My = CV /K with T*X,, C M, as an open subset [BDoo].

Remark 2.3. As mentioned in Remark different coorientations of A give rise to non-isomorphic
posets of regions P(A). Therefore if the core C C M, is reducible, a different coorientation of A will
resultin a different base region Ay of the same arrangement. The Kihler toric variety & is independent
of the coorientation [HPo4, Lemma 2.2], but the Kihler quotient X,, = & that M, is the hyperkihler
analogue to, does depend on the coorientation of A. To emphasise this nuanced behaviour, in [Proo4;
HPo4|, Proudfoot and Harada refer to hypertoric varieties of this form as hyperkihler analogues of
a given presentation of the Kihler quotient, which reflects the dependency on the poset of regions

P(A).
2.3 Examples

Here, we introduce a few examples that we will develop upon further during the course of this thesis.

Example 2.4. Letu; = ¢; and uy = —ey,s0then K = {(t,t) € T? |t € U;} = U,. Choose
A= (A, \2) € ()" with Ay < Ayand*(\) = A + A2 = v, then the Kihler quotient is
X, = CP!', and whose hyperkihler analogue is M,, = T*CP!. The hyperplane arrangement A for
the hypertoric variety M, = T*CP!is displayed in Figure
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Figure 2.1: Hyperplane arrangement when M, = T*CP! is the hyperkihler analogue to X, = CP'.

Example 2.5 ([BDoo]). Letu; = €; and uy = ug = —e1, 50 K = {(t1t9, 11, t2) | (t1,12) € T?}.
Choose A = (0, A2, A3) € (£3)*, with 0 < Ay < A3. Then the Kihler quotient is the resolution
of the Kleinian singularity, X, = C?/Z?, and M,, is a hyperkihler analogue of it. Its hyperplane
arrangement A is displayed in Figure

...............................

Figure 2.2: Hyperplane arrangement when M, is the hyperkihler analogue of the Kleinian singularity
resolution, X, = C?/Z3.

Example 2.6. Generalising Exampleto thecasewhen N = n + 1, weletu;, = e¢;forl <i <n,
and U1 = —e; — ... —e,. Then K = { (t,¢,...,t,t) € T" | t € U } = Uy is the diagonal
circle subgroup in 7. Choose A € (+)* \ {0} such that 2*(\) = v for some regular value v € €*.
Analogously to Example the Kihler quotient is X,, = CP™ and the hyperkihler quotient is
M, = T*CP". The hyperplane arrangement in the N = 3 case (i.e., when n = 2) is displayed in
Figure|2.3}

H
Hy !
U2 Ay
| H,
T Us )\

Figure 2.3: Hyperplane arrangement when M, = T*CP? is the hyperkihler analogue to X, = CP2.
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Example 2.7. Nowlet N = 4andn = 2, and consider u; = —u3 = e1,and us = —uy = es. Then
K= { (tl,t27t17t2) | (thtg) €T? } >~ T2, Choose A = (07 0, A3, )\4) S (t4)* with 0 < A3 and
0 < Ay, suchthate*(\) = v € €. Then the Kihler quotientis X, = CP!x CP!, andits hyperkihler
analogue is M, = T*(CP! x C'). The hyperplane arrangement A for M, = T*(CP' x C!) is
presented in Figure[z.4}

Uus
— JAY) —
Uy
H, TW
H, Hs;

Figure 2.4: Hyperplane arrangement when M, = T*(CP! x CP!) is the hyperkihler analogue to
X, = CP! x CP.

Example 2.8. When N = 4andn = 2,setuy = e1,us = €g,u3 = —eg3—eganduy = —uy = —es.
Choose A = (A1, A2, A3, \y) € (t4)*with A1 < Azand Ay < Ay < A3, wheret*(\) = v € £*. Then
K = { (t1,t1ta, t1,t2) | (t1,t2) € T? } = T?. Then the Kihler quotient is the first Hirzebruch
surface X,, = Hi, with M, its hyperkihler analogue. The hyperplane arrangement is presented
in Figure However, if we now let invert the sign of the normal vector, uy +— €3 = us, but
keep everything else the same, then K = { (t1,t1to, b1, t;l) ‘ (t1,t2) € T? } =~ T2, Now the
Kihler quotient is the complex projective plane X, = CP?, with M,, its hyperkihler analogue whose
hyperplane arrangement is presented in Figure

Ay Ay TM
H, — J H,
Ay “ Ay
H2 H2
H1 H3 Hl H3
(a) Arrangement when X, = H;. (b) Arrangement when X, = CPL.

Figure 2.5: Different coorientations for the same hyperplane arrangement give rise to distinct hyper-
kihler analogues.
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So, just by swapping u4 — —14, we have obtained two different hypertoric varieties from the same
arrangement A, albeit now with a different coorientation. Both are TQ—equivariantly diffeomorphic
however, see [HPo4, Lemma 2.2].

2.4 Flats of an Arrangement

In Chapter we will encounter several issues for which a direct approach would be difficult and
tedious. In low dimensions however, the solutions to these problems appear suddenly to be obvious
and essentially look as if they are trivial. Therefore, if we were able to reduce a complicated high-
dimensional problem to a lower-dimensional one whose solution we can brute-force our way to, then
the high-dimensional case is also dealt with via an inductive argument. To convert these problems
from a high-dimensional setting to a low-dimensional one, we will devote the rest of this chapter to
introducing hypertoric subvarieties, in addition to studying their properties.

Thus,let A = {Hy, ..., Hy} beasimple hyperplane arrangementin (")* whose corresponding
set of normal vectorsis {uy, ..., un}, whereu; € 3 foreachj =1,... N.

Definition 2.9. Given asubset F C {1,..., N}, we say that the intersection Hr = N;erH; of
hyperplanes, whose indices are the elements of F, is a flat of the hyperplane arrangement A, provided
that H z is non-empty. For convenience, let us refer to the subset 7 C {1,..., N'} as the subset of
the flat H 7, or the flat subset.

Definition 2.10. Denote by L(.A) the set of all flats Hz of A, along with (t")* which we consider to
be the trivial flat. Equip L(.A) with the partial order given by the reverse inclusion of subsets:

Hr < Hg, foreach Hgz,Hg € L(A) if, and only if, Hg CHr.  (2.6)

Then we say that L(.A) is the intersection poset of the hyperplane arrangement A.

Given a flat Hr € L(A), we define the arrangement under (the flat) H 7, the restricted
arrangement, or just the restriction, to be the hyperplane arrangement:

AT ={H,NHr|i¢g F}.
Intuitively, if A is a simple hyperplane arrangement, then the restricted arrangement A7 is made up

of the intersections of the | F¢| = N — | F| hyperplanes whose indices do not belong to the flat subset
F with the flat H 7 itself.

Foraflat Hr € L(A), let us define the following R-vector spaces:

(F) = EDRu;, and (F)':=t"/(F), (2.7)
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which one can regard as being subspaces of t". Then we define the rank and the corank of the flat
Hr tobe:

rk Hr := | F| = dimg(F), and crk Hr :=n — |F| = dimg(F)*,

respectively. That is to say, the dimension and the codimension of the subspace (F) from in t",

respectively.

Now let us define the lattice:

Ur =D Zu; € (F), (2.8)
i€F
which has rank tk Uz = |F|. Then we see that U is a sublattice of t3 which is not necessarily

saturated. To Ur we may associate another lattice:
V]: = <f> N tg, (2'9)
of (F) with rank rk Vr = | F| as well.

The sublattice Vr of t3 is necessarily saturated by construction, and is a superlattice of Uz. They
are distinct if U is an unsaturated sublattice in t3, and their quotient is the finite abelian group:

Iy = Vr/Uf, (2.10)
whose order is the index |I'z| = [V : Uz].
The quotients of (F) by the lattices, Ur and V, are the | F|-dimensional real tori:
T = (F))Ur, and TF = (F)/VF, (2.11)
and, by using 7757, we may also define the quotient (crk F)-dimensional real torus:
TET =TT = (0)8) ) ((F) V) = (F)* V- (2)

Here, we have used subscripts to keep track of which lattice has been used to define each torus
respectively.

Proposition 2.ax. Let A = {Hy, ..., Hy} be a simple byperplane arrangement in (£*)*, and let
Hyr € L(A) bea flat of A for a given subset F C {1, ..., N}. Then:

rk F rk F
TV = TU / L'z,
and moreover there exists a non-canonical decomposition of the n-dimensional real torus T™:
n ~v grk F crk F ~ rk F crk F
T = Ty < Ty = (T )TF) x T,

where TF* is defined in .
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Proof. Since V is a saturated sublattice of t3, the quotient t3 /Vr is torsion-free. Hence there exists a
complementary sublattice V£ of V in t2, and a non-canonical splitting [CLStb, Exercise 1.3.5]:

=V Vi (2.13)

The inclusion Ur < V7 induces the dualised short exact sequence:

{0} > Vi > Us » ' = Uy /VE —— {0}

Applying the contravariant and left-exact functor Homz (—; Uy) to this sequence, and by noting
that Uy is a divisible group [CLS1za, Proposition 1.3.18], we obtain the following short exact sequence:

{0} — Homz(I'%;U;) — Homz(Ux;U;) — Homgz (V% Uy) — {0},
2 2 2
{0} » T'r » THkS ———————— TiF ——— {0},

This implies that T“}kf = T(r]kf /T 7. This result, along with the splitting , then provides the
desired splitting of tori:

" o (trk]-'/v}_) ey (tcrk]:/v]{__) ~~ T‘l;k % T‘C/rk]: oY (Ték]:/l—w}_) % T‘(}rk]-' (2’.14)

for us. 0

2.5 Hypertoric Subvarieties

The aim of this section is to formalise the notion of a hypertoric subvariety, the reason for this being

that we will use hypertoric subvarieties in the proofs of Theorem Lemma Theorem and
Proposition

Despite the term “hypertoric subvariety” having been used in the literature previously, see [GHo8]|
and [RSZV22], a formal definition has not yet been proposed — so let us start by doing so.

Definition 2.12. Let (M, wM  T™) and (N, w?, T™) be hypertoric varieties, where the tori 7™ and
T™ acton M and N in an effective and hyperhamiltonian fashion. Furthermore, suppose that [V is a
hyperkébler subvariety of M. Then we say that IV is a hypertoric subvariety of M if there exists a
T"-equivariant embedding:

t:N < M, suchthat *(wM)=wY, foreachi=1,23.

(2 (2

The type of hypertoric subvariety that we shall be interested in are those which will correspond
to the flats of the hyperplane arrangement.
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So,let A = {Hy,..., Hy} be asimple hyperplane arrangement in (t")*, and let Hr € L(.A)
be a flat of A for a given subset 71, ..., N. Denote by C”" the coordinate subspace of C" supported
on the flat subset F, that is:

C™:={zeC"|ifie F,thenz; =01},
and let T*C”* be the cotangent space to C’7* which, as a subspace of T*CV, can be expressed as:
T*Cr" .= { (z,w) € T*cN ‘ ifi € F,thenz; =w; =0 }

Analogously, denote by t” and +** the subspaces of ¥ that are supported on the flat subsets F and
F¢ respectively. That is to say:

tf::{xetN‘ifigé]:,thenxi:()};

. 2.1
t" i={zet"|ific F thenz; =0}. (e15)
Let us introduce the projection map:
i S e) =< " ’ 2.16
b ple) {o, ifi e F, (216)

that projects from tV onto the subspace t/°. Furthermore, let us denote the image of the restriction
of pto & C tV by:
£ = p(e). (2.17)

As shown in [Konool, Section 7], since 7(e;) # 0 for each i € F, the restriction p|e : € — £ isan
isomorphism. We therefore obtain the following diagram:

{0} yb—t—— Y T " > {0},
zlple lp lﬁ (2.18)
{0} y 87 T P T ek > {0}.

We may then dualise the diagram to obtain:

* *

{0} < e (V) ——— (") «+—— {0},

ZT(ple)* Tp* Tp* (2.19)

{0} —— (7)) e () «F— () e—— {0},
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Finally, using the coordinate subspaces introduced in , we obtain the following tori:

T ={teT" |ifi¢ Fthent; =11},
T ={teT" |ific Fthent;=1},

(2.20)

which are subtori of TV since coordinate-wise, we have that 77 = TV /T and that T = TN /T7",
Their images in 7" under 7 are denoted respectively by 7757 and 7% 7, with 7%/ o 7™ /7"
and similarly with 787 o 7™ /e 7

Now, if we assume that the simple hyperplane arrangement A corresponds to a hypertoric variety
M, then the next theorem shows us that each flat Hr € L(A), with F C {1,..., N}, will
determine a respective hypertoric subvariety that we will denote by M. We also will see that the

hypertoric subvariety M is cut out from the hypertoric variety M,, by the equation z; = w; = 0 for
whichi € F.

Theorem 2.13. Let M, be a 4n-dimensional hypertoric variety with the corresponding simple byperplane
arrangement Ain (1")*. Let Hr € L(A) be a flat of A for some flat subset F C {1,..., N}, and
let AT be its restricted arvangement in Hr. Then there exists a unique element vy € € such that
v = (ple)*(vr), for which the hypertoric variety M r is a (vk F)-codimensional bypertoric subvariety of
M,

Proof. Ast = ¢/, from the diagram in , there exists a unique vz € (87°)* such that v =
(ple)*(v7). The torus 77" acts on T*C”" in a hyperhamiltonian way with hyperkihler moment map:
Tt T*CTT — () @ Im(H), (2.21)

and the subtorus K7 acts on T*C”* via the inclusion ¢ zc : K7 < T7°. This K7 -action is also
hyperhamiltonian with hyperkihler moment map:

i = (1 @1d) o ¢l : T*CT" — (#7)* @ Im(H). (2.22)

Now let:

(0,0), ifie F,

TET ST, where s () {(zi,wi), ifi € Fe, (2.23)
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define a closed embedding. Then the maps (2.21), (2.22)), and (2.23) fit into the following diagram:

FC
/N

c o c Z*c d c
TCF P () @ Tm(H) — 220 (87°)* @g Im(H),

lﬂ lp*@ld l(pg)*@ld (2.24)

T CN — Py (V) @g Im(H) ——Z 5 ¢ @g Im(H).

HHK

The isomorphism (p|e)* : (87°)* = £* allows us to identify the elements (p|¢)*(v#) = v, and
implies that:

Mz = ()~ (7, 0) /K7 = (g (v, 0) N T*CT") /K C e (v, 0)/ K = M, (2.25)

Hence from , we see that M can be seen as the subvariety of the hypertoric variety M,, that
has been carved out by the closed subvarieties, {[z,w] € M, (A) |ifi € F then z; = w; = 0}. We
also obtain an expression for M as the hyperkihler quotient (Mz, T, i}, ), where T8 7 =
T /T . Hence M is itself hypertoric variety that is also a closed subvariety of M,,.

For M to satisty Definition it remains to show that there exists a 7<% -equivariant em-

bedding of M into M,,. The closed embedding ¢ : T*C7° — T*CN from isTN -equivariant,
and hence the induced embedding 7 : Mz < M, is T"-equivariant since K C TV. From Propo-
sition there exists a non-canonical splitting 7" = TkF % T%7 and this implies that 7 is
Terk” -equivariant as Tk acts on M, via the inclusion 757 < TF x Tk 7

Lastly, 7 is a holomorphic-symplectic embedding since the Kihler two-forms, wa and wg ,on Mx
are just obtained by restricting those from M,

T F —x F

U'WR = W =w and T'wec=w = Wa.
In summary, 7 : Mz < M, is the required closed Terk” -equivariant embedding in Deﬁnition
for M to be a hypertoric subvariety of M,,. O

Constructions reminiscent to the statement in Theoremhave been made before, for example
in the proof of Theorem 6.7 in [BDoo], in Claim 7.1 of [Konoo, and also in Proposition 2.1 of
[PWo7|. Our contribution generalises them, in that we prove the hyperkihler subvariety, which itself
is a hypertoric variety, is then a hypertoric subvariety in the sense of our proposed Definition .12} by
using Proposition [2.11) to show that the inclusion is an equivariant embedding.
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Given a hypertoric variety M, with a simple hyperplane arrangement A in (£*)*, Theorem .13]
tells us that each flat Hx € L(.A) determines a hypertoric subvariety Mz of M,,. The image of u
surjects onto the affine space H r = MjcrH;, and the restricted hyperplane arrangement A% in Hris
subsequently the hyperplane arrangement for the hypertoric variety M.

As itis a hypertoric variety in its own right, Mz comes equipped with a hyperhamiltonian action
of T 7 on Mz, and therefore possesses a hyperkihler moment map:

g = g ® p Mz — (1) @ Im(H).

The real moment map component £ will therefore determine a hyperplane arrangement of its own
for Mz, which we denote by:
AT =L F i€ F°}, (2.26)

tcrk F

with each hyperplane F; lying in ( )*, foreach i € F°. Let us express each hyperplane of A%

as:

Fi = { r € (1) <m, ufn> + X =0 } , (2.27)
where \7* € (t7°)* satisfies p* (A7) = A € (tV)*, and where v} := 77 (p(e;)) € t7.

The following proposition identifies the hyperplane arrangement A% in (+%)* with the
restricted hyperplane arrangement A7 under the flat Hz, and is similar to [Konoo, Claim 7.1].

Proposition 2.14. The restricted hyperplane arrangement A” = {H; N Hz | i ¢ F}in Hr can be
identified with the arrangement A7 given by in (85, whose hyperplanes F; are given by
, where \° € (V) satisfies p* (V") = X € (), and u]” = mxe(p(e;)) € %7,

Proof. First of all, note that
) ="/ 2 A t, and () 2 (/)" 2 Anngey (2.28)
Fix a pointyo € Hr C (t")*. This implies that (yo, ;) + A\; = 0asyy € H;. But then:
(Yo, wi) + N = (yo, w(e;)) + X = (7" (yo) + A, &) =0, (2.29)

foreachi € F. Thus 7*(yo) + A belongs to the annihilator of t* in (t")*, hence from there
exists an element ¥ € (t7°)* such that p*(\") = 7* (o) + \.

Since:

((ple)™ 0 2 ) (A7)

(1 o p*)(A) (as (ple)* 0 1% = 1" 0 p* from )
7" (ﬂ'* (’yo) + )\)
*(\) (as omt = 0)

I
~

v,
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it follows that 1% (A\”") = 17" because (pl¢)* : (¢°)* — €* is an isomorphism, and therefore
(ple) (") = v.

Let us the following map:
My (E7) — (87, by  my(x) :==p*(x) + yo. (230)

Then, by recalling (2.16)), , and that p*(A\"") = 7*(yo) + A, foragiven z € (t%7)*, we have:

(Myo (), ui) + N = <]5*(f’5) + Yo, 7T*<€i)> + A (from (2:30))
= < T Oﬁ*)(x) + 7 (y0) + A, €i> (2.31)

(
= ("o m3) (@), ) + (n"(30) + A 1) (from @.19))-

On the one hand, if i € F, then (7*(yo) + A, €;) = Osinceyy € Hz. So becomes:

(" omr) (@) + 7 (o) + A i) = (2, (mre0p)(e5)) =0,

as p(e;) = 0 from (2.16). Whereas, on the other hand, p*(\*") = 7*(yo) + ) and therefore, when
1 € F¢, we have:

(" oms) (@) + 7o) + A, i) = (0" 0 m5) (@) + 0" (W), )
= <7r}‘}(ac) + 27, p(ei)>
= <7T§_-C(:E) + 2 62‘> (asp(e;) = e; from )

Hence, for a given point yo € Hr, (2.31) shows that the image of 1, in (t")* is Hr and, for each
hyperplane F; C (t%7)* defined in 1) we getn(F;) = H; N Hr foreacht € F°. O

Example 2.15. As an example, Figure[2.6|displays the hyperkihler analogue of the resolution of the
Kleinian singularity from Example[o.s} which we denote here by Mz with F = {1}, as a hypertoric
subvariety of the hyperkihler analogue to the first Hirzebruch surface from Example[2.8} which we
denote here by M,,.

If A is the hyperplane arrangement for M,, then the restricted hyperplane arrangement for the
hypertoric subvariety Mr is given by AF = {F,=H;,NH,|i=2,3,4},whereeach F; € A7 is
a hyperplane in the flat Hr = H; = (t')* of A, since crck F = n — 1k F = 1.
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F377‘77 \\\
Fy--1-- Hy

FQ***** HQ

Hj
(tcrk}')* H]__ — I_]'1 (tn)*

Figure 2.6: Restricted hyperplane arrangement A” for the hypertoric subvariety M, from Example
and a subvariety Mz, where F = {1}.

Remark 2.16. We may further introduce the halt-spaces

Ff o= {z e ()" [{z, wf") + N = 0},
| (232)

'7;’
Fro={o e (%7 | (2, uF") + AT <0,

for each hyperplane F; € AT Analogously to what was done in Proposition one can show
that 7, (A 47e) = Ay N Hz, where we have defined the subset:

AT =i € ANF | AANHr£0} C{1,....N}nF"

This observation naturally leads the notion of a moment subpolyptych, which we define in Definition

and will use when proving Theorem|6.2]and Proposition
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Chapter 3

The Symplectic Cut of a Hypertoric Variety

There exists a procedure called symplectic cutting which has the effect of slicing away part of a symplectic
manifold, provided that it is equipped with a suitable U;-action. Recall from the introduction of
Chapter 2] that there exists a correspondence between symplectic toric varieties and simple convex
polytopes. For these varieties, the symplectic cut can be arranged so that the corresponding polytope
(or polyhedron) gets truncated, by intersecting it with a half-space whose normal vector depends on
the U;-action, as is mentioned in [Lergs, Remark 1.5].

In this chapter, we wish to construct the symplectic cut of a hypertoric variety M, in order to
obtain something compact. In Lemma 3.4} we show that the moment map p, corresponding to the
Uj-action that is used to define the symplectic cut of M,, is proper, provided that its hyperplane
arrangement A contains at least one bounded region. Therefore we end up taking the quotient of a
compact level-set p1(0), where § € R>0, of p by the circle Uy, resulting in a compact orbifold which
we call the cut space, M3, of the hypertoric variety M,,.

14

The residual torus 7™ that acted on M,, descends to M;°, as does its real moment map pr :
M3’ — (t")*. The compactness of M’ is reflected in the hyperplane arrangement A, in that it
becomes a truncated arrangement of sorts, which we call the moment polyptych of M;°, and is denoted
by A>°. Each unbounded region of the original arrangement A is replaced by a bounded polytope
which, from either Delzant’s or Lerman and Tolman’s classification schema, shows that M/ >° is made
up from various toric Kihler subvarieties. We shall exploit the properties of the cut spaces M;° and
their moment polyptychs A>° in later chapters, and especially in Chapter [6| when we are able to
associate specific isotropy data to the vertices of AJ°.
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3.1 Symplectic Cutting

Symplectic cutting is a technique first introduced by Lerman in [Lergs|, which lets one construct
new symplectic varieties from old ones, if they are equipped with a Hamiltonian Uj-action. The
general procedure process is follows: let M be a symplectic orbifold with a Hamiltonian U;-action
and moment map ® : M — R. Consider the product M x C and let U; act on it diagonally, so:

e (p, &) = (e - p,e?¢), for €® €Uy, and(p,&) € M x C. (3.1)
The diagonal Uy -action in (3.1) is also Hamiltonian with moment map:
prMxC—R,  where  p(p.€) = 0(p) + 3¢

Then the symplectic cut, M/ <0 of M at § is defined to be the symplectic quotient of M x C with
respect to the diagonal U;-action:

M=’ := (M x C) [/s Uy = p~"(8)/Uy,
where § € Rsg is a regular value of p.
The level-set:
p ) ={ (P& eMxC|o(p) +[f=0}cMxC (3:2)

fits into the following diagram:

p~(6)
pry d (3-3)

M= = = (8)/U,

where pr; : p71(d) — M is the projection pry(p,§) = p onto the first factor. Its image in M is
im(pry) = {p € M | ®(p) < §}. On the other hand, the map ¢ : p~1(§) — M=’ is the quotient
map for the diagonal U;-action on p~*(§).

The level-set p~1(4) in decomposes into the disjoint union:
p71(5> = El L ZQ,

where:

SRS
1l

{(p,) e M xC|D(p)+[¢>=06,£#0},
{(p,0) e M xC|[P(p)=467}.
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On the suborbifold 31, we have [£| > 0. Itis possible therefore to find an element { € C with
Re(§) > 0and Im(§) = 0. This allows for a global section o : M — p~1(§) of pry : p~1(§) — M

to be defined, by:
op) = (p,§),  where  {=+/0—P(p).

Since any U;-orbit contains a unique (p, £) when Re(§) > 0and Im(&§) = 0, the section o is a
Uj-equivariant diffeomorphism and identifies o : {p € M | ®(p) < §} = X;/U;. On the other
hand, the quotient of its complement Y5 /U is just the symplectic quotient () /U;.

For the linear U;-action on C, the only critical value of its moment map £ — [€]? is zero. It
follows then that the diagonal action on M x C is locally free, except at the points which belong to
the fixed-point set, MY* x {0}. Therefore, to avoid quotients whose singular nature is worse than
that of an orbifold, we will assume that § € R is always a regular value for the moment map p by
choosing ¢ to be large enough, as to avoid any critical points.

Example 3.1. Let U act on CV in the standard linear way, and extend this action to the product

CV x Cas:
T ((zl,...,zN),f) = ((7'21, o ,TzN),Tf'). (3.4)

The moment map p : CV x C — Rxgis p(z,&) = 3||z||* + ]¢|* and, for some § € R, the
level-set p~*(4) is the (2N + 1)-dimensional sphere:

P k) = { (2,6) € CY x C | L + Lfef2 = 5} = 52+,
Hence the symplectic cut (CN x C) /s Uy of CV with respect to the Uy-action () is:

(CY x C) JJs Uy = S*N*1 /U, = CPY.

The next example comes from [GS89], whose work was a precursor to Lerman’s [Leros)].
Example 3.2. In Example if we instead let U; act on the product CV x Cas:
T (21,0, 28),8) = ((r21, 0 T2n), 7716), (35)

then, taking the symplectic cut, we obtain the blow-up M 20 — B, CV of CV at the origin, instead.
Indeed, the moment map p : C¥ x C — R for the Uj-action in now becomes p(z,&) =
|z]|* — €] and so, again for some & > 0, the level-set p~* () is the hypersurface:

p0)={(2,8 eC"xC||al+...+|an[ =0+ } cCV xC.

Let us set:

v=_¢, and u; = (6 + |v|*) "%, foreachi=1,..., N.
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Then, in terms of the (u, v)-coordinates, p~*(8) = S*N~! x C, where:
ST lwelCN | |Juf +.. . +lun)*=1} cCN,

whilst v € Cisunconstrained. The U;-action in these coordinates sends u; — Tu;, fori =1,..., N,
1

andv — 77 0.
The symplectic cut M 26 (the > 4 superscript is intentional) obtained by taking the quotient
with respect to this Uj-action is M=° = (CV x C) /5 U;. There exists an injection:

i:(CY xC)/sU — CPN"txCV,

[ug, ..., uy,v] — ([ul, —ooun], (ugv, .. ,qu)),
whose image in CPV 1 x C identifies the symplectic cut M= with the blow-up:

Blo CY = { ([U],v) € CPN~' x CY | v;U; = v;U;, foreachi, j=1,...,N }.

3.2 The Residual U;-Action on a Hypertoric Variety

In the Section We saw that, to take a symplectic cut of a symplectic orbifold, it suffices for it to be
equipped with a Hamiltonian Uy -action. A suitable U;-action on a hypertoric variety has been studied
before in [HPo4], which we recall here by first considering the complex cotangent space 7*C". Then
there is a U;-action which “rotates” the cotangent fibre coordinates 77 CV over a point 2 € cN,
which is to say:

T (z,w) = (2, Tw). (3.6)

This action is Hamiltonian with respect to the real Kihler two-form wg on T*CN, but it does not
preserve the holomorphic-symplectic two-form we however, since 7*we = Twe. With respect to wr,
the moment map for this U;-action is:

o:T°CN —-R,  P(z,w) = |Juw? (3.7)

up to the addition of a constant. As this U;-action T*C"N commutes with the TV -action, it descends
to a residual Hamiltonian Uj-action on the hypertoric variety M,, whose moment map we shall
continue to denote by ®. It was proven in [HPo4, Proposition 1.3] that if the original moment map
¢ : CV — ¥ for the K-action on ¢y (v, 0) is proper, then so is the moment map ® : M, — Rxg
for the residual U, -action.

Since ®1(0) = X, properness of 1 is therefore equivalent to the compactness of the Kihler
variety X,, or equivalently to the boundedness of Ay. If we assume that the hyperplane arrangement
A ={H,,..., Hy} for the hypertoric variety M, is simple, then Ay will always be bounded, since
any subcollection of n normal vectors from the uy, . . ., ux, will form an R-basis for t". Hence there
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exists a vertex that is equal to the intersection of n hyperplanes from the arrangement A, which is
trivially bounded [BDoo), §6].

It will be interesting to know what the fixed-point locus M is for the residual Uy -action.
Moreover, knowing this fixed-point data is important when we take the symplectic cut of M, in
Section as we will want to avoid cutting into it. As the complex moment map pic : M, — (t&)*is
Uj-equivariant, and as Uy acts freely on (t2)* — {0}, as discussed in [Proo4, §3.2] the Uy -fixed-point
locus MU will be contained within the extended core € of M,,, thatis MY C uc'(0) = €.

Hence, for us to study the fixed-point locus M U1 it suffices to restrict our attention purely to
the extended core & of M,,. We shall revisit the question of what the fixed-point locus is in Section
once we have established a combinatorial description for the U;-action on each extended core
component, £4.

3.3 Combinatorics of the Residual U;-Action

As the Hamiltonian U;-action on T*CY descends to a residual one on the hypertoric variety M,,
whose moment map ¢ : M,, — R is proper if, and only if, the core C of M,, is non-empty. This
residual U -action does not act on M, as a circle subgroup of the torus 7™ globally, but it does when
restricted to an extended core component .

Givenasubset A C {1,..., N}, recall that the extended core component £4 = u;l (Aa)NE
can be combinatorially expressed as:

Ea={[z,w] €M, |w; =0ifi & Aand z; =0ifi € A }.
Hence, for 7 € U and [z, w] € €4, the circle U; acts as:

1, ifi e A,
1, ifi & A.

T [z, w] = [z, 7w] = [Mz1, .., TNEN; T W, -, T W], where Ty = {

With this observation, we may express the restricted U;-action on the component £4 as that
of a circle subgroup of TN. To see this, we express this as the image of U; under the inclusion

g4 : Uy — TV, defined by:

=, ifi € A,

1, ifidA ()

Ja(T) = (11, .., TN), where T, = {

The composition of the inclusion 74 with the projection 7 : T — T™ prescribes how the circle fits
inside of 7™, when its action is restricted to the subvariety £4. For conciseness, denote:

eA::—ZeiEtN, uA::—ZuiEt", and /\A::Z)\iER. (3.9)

i€A €A i€A
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On the Lie algebra level, the generator for the restricted U -action is just the image of 1 € R under the
map

(moga)e : R —— tV >t 12 o) —" uy. (3.10)

We shall call the vector ug = (7 0 74)+(1) € t" the restricted U;-action generator for the
component E4. Since ™ 0 74 : Uy < T™ is an inclusion and since 7™ acts in a Hamiltonian way on
M, there is a moment map associated with the U;-action on €4 obtained from the composition of

pirle, © €4 — (£")* with the projection (3.10):
Dy:=(moga) ourle, : €4 — R,
Dalz,w] = </LR[27w], UA> = %Z lwi]? + Aa. (3.11)

i€A

3.4 The Cut Space of a Hypertoric Variety

Having described in Section[3.3 how the residual U;-action on a hypertoric variety M, acts when
restricted an extended core component € 4, we may now form the symplectic cut of M,,. As in Section

let U, act diagonally on the product M, x C, as:
7 ([z,w],€) = ([z,Tw],TS), where 71 € Uy, ([z,w],g) e M, xC. (3.12)
This action is Hamiltonian with moment map:

p:M,xC =Rz,  p(lzw]§) = @l w] + €] = [lw]* + [¢]*.

Given a regular value € R of p, the circle U; acts locally freely on the level-set:
p 1 (0) = { ([z:w],€§) € M, x C| Jllwl® +3[¢* =6 }.
Then, from Section the symplectic cut of M, is the symplectic quotient:

p0)/U = { [z,w] € M, | Ljwl? <5}

=~ {[z,w] €M, | Hw|*<s}u[{[zw] € M, | Lw|*=46}/U4]. (3.13)

Definition 3.3. Given a hypertoric variety M, and a regular value § > 0 for the moment map
p: M, x C — R, we define the cut space Mf‘s of M, to be the symplectic cut of M,,

MZ=° .= (M, x C) J/s Uy.

v

Our motivation for taking the symplectic cut of a hypertoric variety M, is that the cut space M=°
is compact. This follows from the following lemma, the proof of which is a minor adaptation from
that from [HPo4, Proposition 1.3].
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Lemma 3.4. Ifthe original moment map ¢ : C" — € from is proper, then so is the moment map
p: M, xC— R

Proof. Mutatus mutandi, by the same argument as in [HPo4, Proposition 1.3], for some R > 0, we
need to show that the set:

p710.6) = { (220.€) | dr(z,w) = v, gz w) = 0, Hul? + LeP < R} /K
is compact. But this set is a closed subset of:
o ({4 0(w) | wl? < BY) x { (w.&) | Huwl? + HeP < R} < T°CY x C.

which is compact since ¢ is proper, and therefore so is p. ]
Corollary 3.5. The cut space M;° of a hypertoric variety M, is compact.

Proof. Since p is proper, the level-set p~1(0) C M, x Cis compact. As the circle Uy is a compact Lie
group, the quotient M3>* = p~1(8)/U; is also compact. O

The T™- and U;-actions on M,, commute and thus descend to the respective actions on the cut
space, M>°, and we continue to denote their moment maps by pg : M — (t")*and © : M —
R>0, respectively. As explained in Section the cut space M=% can be decomposed into the disjoint
union:

M= ME U Z], (3.14)
where we have defined the interior:
M= {[z,w] € M, | 3llw|]* <4}, (3.15)
and the boundary:
2= 071(5)/0, (316)

of the cut space M=°. The interior M, can be thought of as both a subvariety of the original
hypertoric variety M, or as a subvariety of the cut space M.

Asitstandsso far, Deﬁnitionof the cut space M;° refers to the global Uy -action on M, butitis
more informative combinatorially to restrict the action to an extended core component £4, where A C
{1,..., N}. This is because the U;-action can then be described combinatorially via the inclusion
introduced in Section providing us with a more concrete grasp of the connection between
the geometry of the cut space M’ and how the cutting procedure is reflected in the hyperplane
arrangement A
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Definition 3.6. Let M, be a hypertoric variety and let M >° be its cut space for some d > 0. Given a
subset A C {1,..., N}, we define the cut component £5° of M3’ to be the subvariety:

£ = [5A N M;ﬂ U [@;11(5) /Ul] C M=,

Equivalently, a cut component £5° can be thought of as the symplectic cut of the corresponding
extended core component, £5° = (€4 X C) /5 Uy, and thus it can be identified with the disjoint
union, Efé >~ £3° U 29, where:

Efl=E N M, and 24 = 0,'(0)/Uh (3.17)

Analogously to the definitions of the cut space interior M, (3.4) and the cut space boundary ZJ
(3.16), we say that £5% and Z are the cut component interior and the cut component boundary
of £, respectively.

3.5 Moment Polyptychs

Recall, from the preamble to this chapter, that there is a correspondence between symplectic toric
varieties and moment polyhedra from the work of Delzant [Del88]| in the case of manifolds, and of
Lerman and Tolman [LT'97] in the case of orbifolds, and furthermore one between hypertoric varieties
and hyperplane arrangements from the work of Bielawski and Dancer [BDoo||. In both cases, the
connection is formed via a moment map, which maps the geometric object onto the combinatorial
object. This section is dedicated towards studying the image of a cut space M ;° under the real moment
map /iR, and seeing what combinatorial results arise from this.

In our situation, each cut component €4 is a symplectic toric variety in its own right, since the
residual torus 7™ acts in a Hamiltonian and effective way on €4, whose Kihler structure comes from
the real Kihler two-form wg that descends from M,,. Our choice of U;-action in guarantees that
&3 will be compact, since the circle moment map @ is proper. On the combinatorial side, symplectic
cutting has the effect of truncating the corresponding region A 4 to €4, by intersecting it with a
half-space whose normal vector is oriented inwards (i.e., directed towards Ap) by the Uy -action, as
mentioned in [Lergs, Remark r.5].

Proposition 3.7. The image ur(E5°) of the cut component E5° in ()" coincides with the convex

polytope:
prR(ES) =Aan{y e (") [ (y, ua) +0+A1 >0},

Proof. Recall, from , that:

uA:—Zu,;, eA:—Zei, and AA:Z/\i.

i€A i€A i€A
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Given a point ([z,w],§) € p~'(6) N (4 x C), observe that:

(rlz,w], wa) = (urlz,w], m.(ea))
= < (7" o uRr) [z, w], 6A>
= <¢R(z,w) — A\, 6A>
= <¢R(z,w), eA> — (A, ea)

= - <i (I — [l . Z> + <A’ Z>

i=1 i€A 1€A

icA
<0+ Ay,

where the inequality >, , |w;|? < § comes from the symplectic cut. Hence:

[z,w] € E° if, and only if (prlz, W], ua) + 0+ Ay > 0. O

Applying Proposition[3.7]to each cut component £5° essentially “truncates” the arrangement

A, by trimming down any region A4 of A that is unbounded. As the half-spaces that appear in

Proposition are defined using the restricted Uy -action generator u , it is clear that the cut space

- should depend on the coorientation of 4. Let us now being to formalise this construction by
introducing some definitions.

Definition 3.8. Let M5’ be a cut space and pig : M’ — (")* its moment map for the 7"-action.
We define its moment polyptych, denoted by A>°, to be the image of the cut space M,;° under jig:

AZ = p(ME) C (¢)". (5.18)

Similarly, we define the polyptych boundary, denoted by II), to be the image of the cut space
boundary Z? under pig:
IL, = pr(2)) C A (3.19)

v

Likewise, for each subset A C {1,..., N}, we define the polyptych component, denoted by
A%’ to be the image of the cut space component £5° under fig:

AL = pr(EX) = Aan{a e (") [ (2, ua) + Aa+6 =0} C AP, (3.20)
and also we define the polyptych boundary component, denoted by I1°,, to be:

I = pr(Z5) =T NAS = {2z € (") | (r, ua) + Aa+0 =0} C A,
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Having introduced these definitions, the value § € R>( will be a regular one for the moment
map p : M, x — R, provided that the boundary II}, of the moment polyptych A>°® avoids passing
through any vertex of the hyperplane arrangement A.

The term “moment polyptych” was chosen to reflect the fact that the cut space M, and hence
its moment polyptych A5’ in (t")*, both depend on the hyperplane arrangement A in addition to a
choice of distinguished base region, Ay. This is due to the fact that changing the coorientation of
just one hyperplane changes the residual Uy -action generator u 4 on each cut component £5°. To
say this in a more succinct manner, the moment polyptych A>° depends on both the hyperplane
arrangement azd its poset of regions P (A), which is defined relative to a distinguished base region
Ay as was discussed at the end of Section[z.1]

3.6 Examples
Finally, let us present some examples.

Example 3.9. Let M, = T*CP! and X, = CP! beasin Example Forany § € R, we form
the cut space M5° = (T*CP)=’. We see that A5’ = Ay since the core of M, is irreducible, so that
C = X, CP!. Its moment polyptych A§5 is presented in Figure

113 u_1> Uz I
-6 AT 0 Ay Ao A5 V4§

Figure 3.1: Moment polyptych AZ® of M, = T*CP.

Example 3.10. Let X, be the resolution of C? / Z%and M, is hyperkihler analogue, as in Example
Choose 6 > A3 to avoid cutting into the reducible core C, so that Ag‘g ~ Agand A5 = Ay. Then
the moment polyptych AS? of the cut space M3 is presented in Figure

H? E} U23 Hg3
) AP 0 Ay PYRVACEED VLY D VS W 152

Figure 3.2: Moment polyptych AZ? of the cut space (T* M, )= in t* 2 R, where X, is the resolution
of C?/Z3.
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Example 3.0x. Let M, = T*CP? and X, = CP? be as in Example Forany 6 € R, form
the cut space M= = (T*CP?)=%. AsC is irreducible again, we have C = X,, = CP?2. Its moment
polyptych A3’ is presented in Figure

§
H3 |
<5
<)
6
H(S H23
13 ASS
ASE 23
13
Ay
T <5 <o
AT ASS < 11e
H5 12 2
1
w 5
| H12

Figure 3.3: Moment polyptych AS° of the cut space M=° = (T*CP?)=°,

Example 3.12. Now consider M, = T*(CP! x CP!) and X,, = CP! x CP! from Example
Choose any value 0 € R>( to form the cut space M°, whose moment polyptych A>° is presented in

Figure

I 5 I
| H4 |
5 5
117, AV I3,
<8 <é
Ay Azy
5| A<s <5 | 176
19 | Ag JAY) A3 115
<s <é
Al Az
5 AS° 5
117, 2 NEN
| Hg |

Figure 3.4: Moment polyptych A% in (t*)* = R? of the cut space M3° when M,, = T*(CP! x CP!).
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Example 3.13. Finally, consider the hyperkihler analogue M, to the first Hirzebruch surface X, = H,4
from Example Choose § € R large enough to avoid cutting into its core C, since C is reducible
now. In this case, the moment polyptych A5 is presented in Figure[3.sa]

On the other hand, if we instead take M, to be the hyperkihler analogue to X, = CP2, then
cutting at  we get obtain the moment polyptych A3’ in Figure We see then, that different
hyperkihler analogues M,, give rise to different cut spaces M,;* and hence different moment polyptychs
A3’ In particular, just changing the coorientation of a hyperplane in the arrangement A can drastically
alter the cut space M;’, since then the U;-action generators are all different.

(a) Polyptych AS° when X, = H;. (b) Polyptych AS® when X,, 2 CPL.

Figure 3.5: Moment polyptychs A5’ arising from two different coorientations for the arrangement A.

3.7 Properties of Cut Spaces

Let M, be a hypertoric variety and A be its hyperplane arrangement in (t")*. In Section 2.5} we
proposed a definition for a hypertoric subvariety of M,,, and showed that each flat Hxr € L(.A) of the
arrangement corresponded to a hypertoric subvariety Mz in In Proposition we identified
the restricted arrangement .A” with its own corresponding hyperplane arrangement A“%7 in the
affine space Hr.

Let us continue in this manner by showing that, if M is a hypertoric subvariety of M,, then its
cut space M5’ is a closed Kihler subvariety of M;°. Furthermore, we shall show that its moment
polyptych A% in (+*%%)* can be identified with its intersection A’ N H in (£")*.

Proposition 3.14. Let M, be a bypertoric variety and A be its simple byperplane arrangement in (£")*.
Let M be the bypertoric subvariety of M, determined by the flat Hr € L(A) for a given flat subset
F C{1,...,N}, and let A” be its restricted arrangement in the affine space H . Then, for a suitably
large d € Rxq, we have the following:
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(i) the cut space M3° is a closed Kibler subvariety of M;°;
(11) the moment polyptych As° of M =° can be identified with the intersection \5;° (VH z of the moment
polyptych A5° of M>° with the affine subspace Hr.

Proof. For note that the embedding ¢ : T C7° — T*C! defined in 1) is clearly U;-equivariant.
Thus the induced hyperkihler embedding 7 : M — M, is additionally TKF < U 1)-equivariant.
It is straightforward to see then, that:

Mz = M3 n{[z,w] € M>*|ifi € F then z; = w; = 0}

is a Kahler subvariety of M °, whose Kihler two-form is w§ = wg| MES It is closed since M=’ is cut
out from M ° by the hypersurfaces {z; = 0} and {w; = 0} for cach’i € F.

For introduce the half-spaces:

Fr={z € () | (z, u]") + \]" >0},
S o e (%) o ul) + AT <0,

determined by the hyperplane arrangement A" = {F; | i € F¢} that was introduced in Proposi-
tion[2.14] For some yy € H, recall from (2.30) the map 1, : (t7)* — (+")*, and also from (2.31)

that its image is im(7,, ) = H.
If we define:
AT ={i€e ANF | AANHs#0}C{1,...,N}nF,
then the arrangement A% in (1% 7)* corresponding M is defined by the regions:

AA]:C = (mi¢A}"CFi+) N (mieA}'c.F;-_) .
Furthermore, forany x € A 4rc and for each i € F*:

P () + yo, wi) + A

) + yo, m(€:)) + Ni

T o ) (&) + 7 (yo) + A, €i) + (P (mhe (@) + X7), €5)
z,ul )+ AN >0, 1fz§éAﬁ]-"c,

u) + N <0, ifi e AN Fe

/\/\/\
he]]
*

% —~

Il
—N—
"R
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Now suppose that z € ijc = {z € (t"7)* | (z, uj;c> FO+ A = 0}. Then:

<77y0($), UA> = <<7T* Oﬁ*)(:c) + 7T*<y0)7 €A>
- <(p* © W;—'C)(x)a €A> + <p*()\]-‘c) - )\, 6A>

= <.T, ’UJ;Z:;C> + )\f;c — )\A =—0— )\A,
that is to say:
(Nyo (), wa) + 64+ Xg =0, forallz € 1% 5.
Therefore: 7,, (Hj »e) = 119, proving((ii) O

In light of Proposition and as briefly mentioned in Remark we have the following

definition.

Definition 3.15. Let A be a hyperplane arrangement in (t")* for a hypertoric variety M,, let M be
its cut space with moment polyptych A3 in (t")*. Givenaflat Hr € L(A) with F C {1,..., N},
we define a moment subpolyptych, denoted A?, to be the intersection:

A;—é = Asé N H]:.

In calling M,, a hypertoric variety, we have been intentionally ambiguous to whether M, is a
manifold or an orbifold. The reason for this is that the symplectic cutting operation is closed within
the category of symplectic toric orbifolds equipped with a Hamiltonian U; -action, but this is not the
case for manifolds when the circle only acts locally freely. When it comes to forming a cut space M;°,
the result of Theoremis that, if the core C of the hypertoric variety M, is reducible, then the cut

space M is an orbifold even — when if M, itself is smooth.

Given a pointv € A3’ of the moment polyptych A>°, denote by Z,, the flat subset:
Z,={i|lve H;} C{1,...,N}. (3.21)

Thatis, Z, tracks the indices of which hyperplanes contain the point v, if any. We will assume that
each cut space M’ is constructed by choosing a § > 0 large enough, so that no part of the core C
gets cut away, i.e., that Z2 N C = ().

Let us begin with the n = 1 case first, so that dimg M, = 4.

Lemma 3.156. Let M, be a four-dimensional hypertoric manifold whose core C is reducible. Then, for a
sufficiently large value § € Rsq such that Z5 N C = 0, the cut space M is an orbifold.

Proof. As M, is four-dimensional, let us identify (t')* 2 R. Then its arrangement A liesin R, and A
must have at least three hyperplanes to guarantee the existence of at least two bounded regions, which
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will be the images of components of the core, C. Being in R, these regions will therefore just be closed
line intervals in R = pr(M,,), with each intersecting pair meeting a at a common vertex.

We shall write A = {Hy, ..., Hy} where N > 3. Assume that M, is the hyperkihler analogue
to the Kihler quotient X, = &j. Then X, C C since C is reducible, and its region Ay = pr(X,) is
a closed line interval in R, it defines the distinguished base region for the poset of regions P(.A) of A.

There exist two proper chains within the poset P(.A), each corresponding to the two endpoints
of AginR. As Ay # C, there exists an adjacent core component £; C C, where 1 < j < N, such
that & N X, # (0 and M; # X,. Its corresponding region A; = pr(E;) in R is another bounded
line interval intersecting Ay in the hyperplane H; = Ay N A, (which isjusta vertex in R). Considered

as a poset element, A; covers Ay in P(A), see Figure 3. for the simplest N = 3 case.

Figure 3.6: Example with NV = 3. The distinguished region is Ay, the other bounded region is A,
and A 4 is their lowest upper bound in P(A).

By continuing along the chain in P(.A) containing A;, one arrives at its lowest upper bound
Ag=AyV A, where A C {1,..., N}isasubset with j € Aand |A| > 2. As the real moment
map pR surjects onto R, we see that A 4 is an unbounded interval. Let £4 denote the non-compact
Kihler subvariety corresponding to A 4.

Since A lies within R, the normal vector to each hyperplane H; must necessarily either u; = £1.
Each of the two proper chains in PP(\A) consist solely of regions that are separated by hyperplanes
whose normal vectors have the same sign. Hence, as |A| > 2, the restricted Uy -action generator on
Eqiseitherug = £rk Ay, wheretk Ay = |A| > 2. In particular, w4 is not primitive relative to
the lattice t% ~ 7 asin Figure

Figure 3.7: Example with N = 3. The U;-action generator u 4 is non-primitive, with [u4| > 2.
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Hence, provided that 6 > 0 is sufficiently large, then the intersection of the extended core
component &4 with level-set O-1(d)is justa point, py 1= CIDZI (), on which Uj acts locally freely.
Hence, after taking the symplectic cut to obtain the cut space M ;°, the point p4 is an orbifold point
whose orbifold structure group I, has order m,,, = |A| from[A.{ ]

The generalisation of Lemma to a higher-dimensional hypertoric variety is now quite straight-
forward. Indeed, if a 4n-dimensional hypertoric variety M,,, with hyperplane arrangement A, has a
reducible core C then we can find a four-dimensional hypertoric subvariety Mz of M,,, for some flat
Hr € L(A) of Awithrk Hr = n — 1, whose own core is reducible. Then, Lemmal3.1¢implies that
the cut subspace M2’ is a suborbifold of M3,

Theorem 3.17. Let M, be a An-dimensional hypertoric manifold whose core C is reducible. Then, for
§ > 0 sufficiently large so that Z3 N C = (), the cut space M= is an orbifold.

Proof. Let M,, be the hyperkihler analogue to the Kihler quotient, X, = &p. Then X, is a compact
Kihler subvariety of M, that forms one of the irreducible components of the core, X,, C C. Its image
is the bounded region Ay = pr(X, ) in (£")*. There exists a subset A C {1, ..., N} for which the
bounded region A 4 is adjacent to Ay in (")*, meaning that Ay N Ay # @ and Ay # Ay. As the
two regions intersect, there exists a vertex v € A4 N Ay which equals the intersection of 7 hyperplanes
as A is simple. We can consider v to be a flatitself, {v} = Hz, = Nj;ez, H; which we represent using
the flat subset Z, C {1, ..., N} with |Z,| = n. Furthermore, observe that A C Z,.

There exists an element j € A such that the hyperplane [ separates A 4 from Ay. Note that the
choice of H; may not necessarily be unique. Denote the flat subset obtained by removing j from Z,
by Juj =L, \ {j},sothat |7, ;| =n — L. Itsflat H 7, | = Nicy, ; H; is then an affine line in (£")*.
Since H separates A 4 from Ay, their intersections Ay N H 7, - and Ay N Hy, ; are both edges of
A 4 and Ay respectively, meeting at v, as demonstrated in Figure

N

Figure 3.8: Restricted hyperplane arrangement A7 of the hypertoric subvariety M,  and the
hyperplane arrangement A for M, respectively.
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The four-dimensional hypertoric subvariety M7, ; of M,, that determines the flat H 7, _ via its
real moment map H 7, . = pr(Mg, ,), satisfies the hypotheses of Lemrna Its four-dimensional
cut space Mi“j is therefore an orbifold, with at least one orbifold point belonging to its boundary

Zf% > provided that we cut Mz, ; at a sufficiently large value for € R>o. [l

An equivalent statement of Theoremis that the cut space M is a manifold only if M, =
T* X,, where the Kihler quotient X, is a product of projective spaces, i.e., X, = CPf x ... x CPFm
with > | k; = n, see Theorems 7.1and 7.2 in [BDoo].

A significant consequence of Theorem is that the cut space M;;° of a generic hypertoric
variety M,, will be a compact Kihler orbifold. Hence, in Chapter |4, we will have to use the Kawasaki-
Riemann-Roch formula in the place of the Hirzebruch-Riemann-Roch formula, since the latter only
applies to smooth manifolds.
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Part 11

Equivariant Localisation
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Chapter 4

Riemann-Roch-Hirzebruch Theorem

In this Chapter, we introduce the Hirzebruch-Riemann-Roch formula in Theorem which calcu-
lates the C-vector space H°(M; L) of holomorphic sections of a suitable line bundle £ — M over a
compact Kihler manifold M. It s this space H°(M; £) that we will base the quantisation of M upon,
with the holomorphic sections playing the réle analogous to the wave functions. General references
for this chapter are [Huyos], [GH78]|, and [Dui].

4.1 The Dolbeault-Dirac Operator

Suppose that M is a smooth manifold equipped with an almost-complex structure J, then we say
that J is w-compatible if, for every point p € M, the bilinear form:

gp(v,w) = wy(Jv,w), foralv,w e T,M

is symmetric and positive-definite. With an w-compatible almost-complex structure .J on M, the
exterior algebra of the cotangent bundle 7™ M can be equipped with a Dolbeault structure. More
precisely, J induces a splitting of the complexified tangent bundle T M into the +y/—1land —/—1
eigenspaces of J:

TeM :=TM @ C = TMM ¢ TV,

and, similarly, for its complexified cotangent bundle:
TEM == T"M ®g C = [A(T*M)MY] @c [AMT*M)OV].
This splitting of TX M also extends to its various exterior powers, equipping them with the bigrading:

A™(TEM) = @ (AT M) @c [M(T*M)OD]

1+j=m
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and, similarly, the space of differential forms on M also decomposes into a direct sum, according to

their bidegrees:
Q™(M) == C™ (M; A™(TeM)) = @ QU9 (M),
i+j=m
where:

QED (M) == O (M; [A(TgM) Y] @c [A/(TeM)OD])
is the space of differential forms on M of bidegree (7, j).
We can define the following projection operators:
(i) . Q (M) — Qi) (M),

which project a differential form onto its component of bidegree (¢, j). For a differential form
a € QU9 (M), one sees that:

da € QUL (M) @ QUITD (M),
Using these r(B9) operators, we can define the following differential operators:

0 : QI (M) — QM) " 0 =71 o,
0:QUI(M) — QD) Y 9i=g

respectively. From this, we arrive at the almost-complex analogue of the (¢, 7)-Dolbeault complex:

{0} —— QEO(M) —2 QD (M) —2 » QG (M), (4.1)

QI

The complex in is not a genuine differential complex however, since 52 # 0, see, for example,
[Duirs, Chapter 2] or [Guig4, Chapter 4]. Bug, if the almost-complex structure JJ on M is furthermore
integrable, then J becomes a bonafide complex structure from the Newlander-Nirenberg theorem,
[NNs7, Theorem r.1].

Definition 4.1. Let M be an almost-complex manifold with almost-complex structure J. Then J is
said to be integrable if either one of the following two conditions holds:

(i) forany v € Q*(M), one has that da = dav + o
(ii) on QMO (M), one has that 72 o d = 0.

Both of the conditions, [4.]land 4.1 in Definition [4.1], hold when M is a complex manifold [Huyos,
Proposition 2.6.15]. So, in a sense, the notion of integrability determines whether an almost-complex
structure J is an actual complex structure or not. The reason we are interested specifically in integrable
almost-complex structures is due to the following lemma.
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Lemma 4.2. If J is an integrable almost-complex structure, then:
=0 = 0, and 90 + 00 = 0. (4.2)
Conversely, if 52 = 0, then the almost-complex structure J is integrable.

As a corollary of Lemma when J is integrable, the almost-complex Dolbeault complex in
. . =2
1) becomes exact on the right, since now we can guarantee that 9" = 0:

{0} —— Q@O (M) —2 QED(M) —2 .. —25 QEm(A) —25 {0}, (43)

where n = dime M. Thenceforth, we shall assume that J is a complex structure on M, as this is the
scenario that concerns us. This leads us to the following fundamental theorem, proven by Dolbeault
in [Dols3, Théoréme 1]:

Theorem 4.3 (Dolbeault). Let M be an almost-complex manifold, whose almost-complex structure J
is integrable. Then the (i, j)-Dolbeault cobomology group H D (M) is the vector space:

ker (5 L QU (M) — Q<w‘+1>(M)>

H")(M) == H(M; Q' (M)) = : (4.4)
im (9: QUI-D(M) — QUEI(M))
In Theorem observe that, when ¢ = 0, the isomorphism in becomes:
H')(M) = H(M; Oy). (4:5)

In other words, H %) (M) coincides with the j-th cohomology of its sheaf of holomorphic sections
on M and, more importantly to us, when j = 0in , we have:

HOO(M) = H(M; Oy) (4.6)

is the C-vector space of holomorphic sections of the sheaf Oy — M. When M is compact, then the
cohomology groups H“7) (M) are guaranteed to be finite-dimensional by [CSs3].

Now consider the case when M is a compact symplectic manifold with symplectic two-form
w € Q%(M), such that the cohomology class of w is integral, [w] € H?(M; Z). Suppose that there
exists a Hermitian line bundle £ — M with a Hermitian connection V, whose first Chern class is
c1(L) = [w] € H*(M;Z) and whose curvature with respect to V is R(L) = (27/+/—1)w. Such a
line bundle 7 : £ — M that possesses these properties is called a pre-quantum line bundle over M.

Definition 4.4. Let M be a complex manifold and let 7 : £ — M be a holomorphic pre-quantum
bundle over M. Then:

defines the C-vector space of L-twisted (7, j)-forms on M.
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As mentioned in [Duirr, Chapter 2.2], a Hermitian metric on M induces Hermitian structures
on both the tangent bundle 7'M and on the fibres of £. Moreover, there exists a complex-linear
isomorphism Tc M = TEM which transplants the Hermitian structure from 7¢c M onto one on its
dual, TE M. For brevity, let us set:

E=TeMO) = NTEMOY, and E:=HE’.
=0

Then for each 0 < j < n, the bundle E7 inherit a Hermitian structure from 7¢, and so does the
direct sum £ by requiring the summands to be pairwise orthogonal. Finally, the product bundles
Ei @ Land E ® L each picks up a Hermitian structure from those of Eiand E, provided that £
has a Hermitian inner product too [Duirr, §2.2].

Definition 4.5. If V denotes the Hermitian connection on L, then the L-twisted Dolbeault
operator, 0., is defined to be the operator:

0 =01+10V:EFeL— FH'eLl.

Many of the results above hold for the £-twisted Dolbeault operator 0y too [Sil6]. In particular,
for we get the L-twisted Dolbeault complex:

0 —— QEO(L L) 22 QDAL L) 2o P QUMM L) —— 0, (47)

and, furthermore, we also obtain the £L-twisted version of Theorem|4.3]

Theorem 4.6 (L-twisted Dolbeault). Let M be an almost-complex manifold, whose almost-complex
structure J is integrable. Suppose that L — M is a holomorphic vector bundle over M. Then the
L-twisted (i, j)-Dolbeault cobomology group, H'"9)(M; L), is the complex vector space:

ker (9 : QU (M; L) — QOITI(M; L))
im (9, : QOI-D(M; L) — QO (M; L))

1%

HY (M;Q4(M; L)) (4.8)

By combining the Hermitian inner product on £ ® £ with the volume form vol(M ), we can
define the adjoint operator:

0 oL —E'oL,

to the L-twisted Dolbeault operator 0. If we set:

Eeven . — @ ‘Ej7 and Eodd = @Ej’

J even 7 odd
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then we can furthermore define the Dolbeault-Dirac operator, @, to be the first-order elliptic
differential operator @, which is given by:

@C =2 (5[; + 52) B L — BY e L.

Its index, Ind_(M; L), is the virtual vector space given by the formal difference:

IndaC(M; L) := kef(ac) - COkef(ac% (4.9)
or equivalently as the alternating direct sum of virtual vector spaces:
Indy. (M; £) = @ (1) HOD(M; L). (4.10)
j=0

4.2 The Riemann-Roch-Hirzebruch Theorem
Using (4.10), we can define an important symplectic invariant [Guig4} §3.1].

Definition 4.7. Let M be a Kihler manifold with Kihler two-form w, and let 7w : £ — M be a
holomorphic pre-quantum line bundle over M. Then the Riemann-Roch number of £, denoted

by x(M; L), is defined to be:
X(M; L) := (=1)’ dimc H)(M; L). (4.11)

J=0

When w is sufficiently positive then H (0.7) (M; L) = 0foreach j > 1 by Kodaira’s vanishing
theorem [Kods3]. When this holds, the index becomes:

Indy (M; L) = HOO(M; L) = H(M; L)
from (4.10), whereas the Riemann-Roch number becomes:
x(M; L) = dimec H°(M; L). (4.12)

However, calculating the Euler characteristic in is an entirely different matter. Though in the
instance where (M, w) is a compact Kihler manifold and 7 : £ — M is a holomorphic pre-quantum
line bundle with ¢;(£) = [w] so that, by Hodge theory, the Riemann-Roch number x(M; L),
in 1} coincides with the dimension of the index Indy, (M; £), in for the Dolbeault-Dirac

operator, d.. That is to say:
X(M; £) = dimc Indy_(M; £).

Thus, to calculate the Euler characteristic x(M; £), it suffices to calculate the Dirac-Dolbeault
index, Indy . (M; £). An elegant way to do so is by using the Atiyah-Singer index formula, [AS68,
Theorem 4.3]:
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Theorem 4.8 (Atiyah-Singer index theorem). Ler (M, w) be a compact Kiihler manifold and let
7+ L — M be a holomorphic pre-quantum line bundle over M. Then the Atiyab-Singer index formula
in this case states that:

(M5 £) = dime Indy, (M; £) = / Td(TM) A Ch(L), (413)
M

where TA(T' M) and Ch(L) are the Todd class of the tangent bundle T M and the Chern character
of L, respectively.

The statement in Theorem of the Atiyah-Singer index theorem is actually a particular case of
the actual index theorem. The statement of Theorem 4.8]is also known as the Hirzebruch-Riemann-

Roch theorem, having been proven originally for complex projective algebraic varieties by Hirzebruch
in [Hir66].

The integral in Theorem 4.8|has the characteristic class Td(T'M) A Ch(L) as its integrand,
and is made up from the Todd class Td(7'M) of the tangent bundle 7'M, and from the Chern
character Ch(£) of the holomorphic pre-quantum line bundle 7 : £ — M over M. To introduce
the Todd class Td(7"M ), we shall express it by the means of the splitting principle [BT82], which

states verbatim that:

Theorem 4.9 (Splitting principle). 7o prove a polynomial identity in the Chern classes of complex
vector bundles, it suffices to prove it under the assumption that the vector bundles are direct sums of line

bundles.

Theorem 9)) permits us to assume that a vector bundle 7 : ' — M decomposes as:
E=Vie...eV,, where n = dim¢ M, (4.14)

into a direct sum of n = dimc M complex line bundles,so V; = Cforeachj =1,...,n.

Definition 4.10. Let M/ be a complex manifold of complex dimension dimc M = n. Then, assuming
that the tangent bundle 7w : T'M — M splits as in Theorem | we define the Todd class Td (7' M)
to be the characteristic class: .

=1l—— q(v (4.15)

J=1

The Todd class Td(7'M ) can be expressed explicitly as a formal power series in the Chern class,
the first few terms of which are:

2
Ccy ]+ ¢ C1C2
Td(TM) =1+ —
( ) + 2 * 12 24
Here, ¢; := ¢;(TM) € H?*(M;Z) is the j-th Chern class of the tangent bundle 7M. One can
derive (4.16)) by writing in terms of the Bernoulli numbers [Vero3, Lecture 1]. Moreover, if
n = dimg M, then the series (4.16)) truncates after the n-th term.

+. (4.16)

54



The other characteristic class in the integrand of the Hirzebruch-Riemann-Roch formula
from Theorem |4.8|is that of the Chern character, Ch(L), of the holomorphic pre-quantum line

bundle, 7 : £ — M. Fortunately its definition is far less contrived than that of the Todd class
Td(TM).

Definition 4.xx. If M is an n-dimensional compact Kihler manifold with Kihler two-form w, and if
7 : L — M is aholomorphic pre-quantum line bundle over M, then the Chern character Ch(L)
of the line bundle L is the characteristic class:

Ch(L) := =¥, (4.17)

To finish this section, let us go through an example in which the Riemann-Roch number is
calculated when £ = O(m) is the twisted hyperplane line bundle over the complex projective plane,

M = CP2

Example 4.12. Let M = CP? with the Fubini-Study metric w = wgs, and equip it with the
hyperplane line bundle £ = O(m) for some non-negative integer, m € Zx(. Consider the total
Chern class:

c(TCP?) := ¢y(TCP?) + ¢;(TCP?) + ¢o(TCP?) + ...,

of the tangent bundle TCP?, along with the dual of the Euler sequence:
{0} —— Ocpz — Ocp2(1)®3 —— TCP? —— {0}. (4.18)
From the multiplicativity of the Chern class, the triviality of Ocp2, and from (4.18)), we have:
o(TCP?) = ¢(Ocp2 (1)) - ¢(Ocp2) = c(Ocp2(1)*) = (1 + [A])* (4.19)

where [A] € H?(CP?; Z) is the fundamental class of the hyperplane section. By equating the degrees

in,weget:
co(TCP?) =1, ¢ (TCP?) =3[A], and c(TCP?) = 3[A]%.

Using the series , the Todd class Td(7T'CP?) can be written as:
Td(TCP?) =1+ 3[A] + [A]>.
Now, turning to the Chern character Ch(O(m)), the first Chern class of O(m) is just
c1(O(m)) = m|A]. Hence the Chern character Ch(O(m)) is:
Ch(O(m)) = e ©®) = emldl = 1 4 m[A] + 2 [A]%.
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So finally, by Theorem|[4.8] the Riemann-Roch number for O(m) — CP?is:

x(CP%,0O(m)) = /(:P2 Ch(O(m)) A Td(TCP?)
_ /CPQ (1-+mlA] + ZELAP) A (1+ 314] + [4P)

:/Cp2 (%2+37m+1>[A]2+...

m?  3m

—+1
2 * 2 *
(m+2)(m+1)
N 2
Observe that this result coincides with the dimension of the space of degree m homogeneous polyno-
mials on CP?, that is:

(m+2)(m+1) _ (m +2

2 9 ) = dimc C[20721722]m-

4.3 The Kawasaki-Riemann-Roch Formula for Orbifolds

So far in this chapter, we have considered M to be a smooth manifold only. However, in general, from
Theoremwe will have to deal with hypertoric varieties whose cut spaces are orbifolds. The “vrbifold
version” of the Hirzebruch-Riemann-Roch theorem in Theorem|4.8]is the Kawasaki-Riemann-Roch
theorem, [Kaw79], which applies to orbifolds. See Appendix[Alfor a brief introduction to orbifold
theory.

Let M be a 2n-dimensional compact symplectic orbifold with symplectic two-form w, then
its inertia orbifold M is also a compact symplectic orbifold. By choosing a compatible positive
almost-complex structure J on M, the tangent bundles 7'M and T"M both become Hermitian vector

orbibundles. The immersion 7 : M — M gives rise to a normal bundle N3 — M induced by the
short exact sequence:

{0} — TM —— TM| s Noy » {0},

and which can be equipped with a Hermitian structure.

Suppose now, that F' C M is a connected suborbifold of M so that its associated orbifold Fisa

suborbifold of M. The inclusion i 5 F'— M from F into M determines another normal bundle
vp of F'in M from the short exact sequence:

{0} ——= TF —— TM];,.(r) > Up > {0}.
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Finally, by using the immersion 7 : F — F we can form the pull-back bundle vp = T*vp — F ,
which is a vector orbibundle over F'.

Now,if E — M isa holomorphic Hermitian vector orbibundle over M with Hermitian connec-
tion V, by pulling £ back to M via T we obtain the vector orbibundle, E := 7*E — M, over the
associated orbifold, M. Denote the curvature two-form associated to V by R(E ) € 02 (M End(E ))

and denote the canonical automorphism of E by A(E ) € Aut(E), which is defined in Appendix
A 10l

Definition 4.13. We define the twisted Chern class Ch;(E ) of the orbifold vector bundle by:

Cho(B) := Tt (A(E)eR(E)> e O¥(M), (4.20)

M
and the associated characteristic form DM(E ) of the orbifold vector bundle £ by:

D(E) = det (IdE —A(E)*le%@)) e Q2(M). (4.21)

The Todd class Td(TM\ ) remains the same as in the manifold case, namely that if R(T]\/Z ) €
Q2(M; T M) is the curvature of the tangent bundle 7'M, then:

R(TM)

Td(T]\/Z) :=det —
([ _ e—R(TM))

, (4.22)

where [ is the identity operator on T'M.

We may finally present the Kawasaki-Riemann-Roch theorem for orbifolds, which is stated in
[Meig6]] and in [Sil96].

Theorem 4.14 (Kawasaki-Riemann-Roch). Let M be a compact Kéibler orbifold, and E — M be
a holomorphic Hermitian orbifold vector bundle over M. Then the Riemann-Roch number x(M; E) is
given by the formula:

1 Td(TM) - Ch(E)
idg  Dg(Ng)

X(M; E) = (423)
Here, Chy;(E ) E)and D(E ) are the twisted Chern class and the associated characteristic form of E from
(@ and from (4.21) respectively, Td(TM ) is the Todd class of M, and d s the orbifold multiplicity
of M from
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Chapter s

Equivariant Cohomology and Integration

As one may have guessed from Example evaluating the Riemann-Roch-Hirzebruch formula
in Theorembecomes increasingly more cumbersome as the dimension of M increases, even with
higher-dimensional complex projective spaces. Fortunately however, it M is equipped with an effective
and Hamiltonian action of a torus 7', then this provides us with a way of adding some powerful and
elegant methods to our arsenal, that are otherwise not available to us in the non-equivariant setting.

These are known as localisation formulae, and they can reduce an integral over M, whose integrand
involves characteristic classes, into a finite sum over the components of the fixed-point loci, /M T In
particular, when M has a T-action whose fixed-point locus is just a finite number of isolated-fixed
points, so that M T ={pi,...,px}, then the integrand is very easy to evaluate in comparison to the
Hirzebruch-Riemann-Roch formula (4.13). What is more interesting, is that only the local isotropy
dataof M7 is required to evaluate the integral, as opposed to the global data of M — hence the term
localisation. We shall see in Chapterthat the fixed-point locus (M3*)" of our cut space M3 consists
solely of isolated fixed points, and, furthermore, that its moment polyptych A5’ encapsulates all of
the fixed point data required to evaluate the Riemann-Roch-Hirzebruch and the Kawasaki-

Riemnn-Roch formulae in Theoremsand respectively.

This chapter is essentially just a review of equivariant cohomology and equivariant localisation,
with none of it original, with most of the results being quoted from either [Tu2o0|, [GS99], [AB84],
and also [Botgg|]. We begin this chapter by introducing the reader to equivariant cohomology, before
then introducing equivariant integration and the famous fixed-point formulae.

5.1  Equivariant Cohomology and the Borel Construction

The idea of equivariant cohomology is motivated by the principle that, when M is a topological space
and G is a compact Lie group that acts freely on M, then ideally the equivariant cohomology groups
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H?.(M) should be just the ordinary cohomology groups H* (M /G) for the quotient manifold M /G-
H: (M) = H*(M/G), if G acts freely.

If G does not act freely on M however, then the quotient M/ /G may end up being difficult to work
with in terms of an ordinary cohomology theory — equivariant cohomology strives, therefore, to
find alternative cohomology groups, denoted by H¢.(M), that generalise the notion of an ordinary
cohomology group H* (M /G) appropriately in such instances. This leads us to the idea of the Borel

construction of HZ,.

Let EG be any contractible topological space, and assume that a compact Lie group G acts
freely on EG. Denote its quotient by BG := EG /G. Since G acts freely on EG, we may consider
EG — BG to be a G-principal fibre bundle over BG.

Definition s.x. Let M be a topological manifold and G be a compact Lie group that acts on M.
Let EG be any contractible space on which G acts freely. In this framework, we say that BG is the
classifying bundle of G, and that EG — BG is the universal bundle of G.

Furthermore, the Borel construction, or the homotopy quotient, is defined to be the quotient
Mg := M xc EG := (M x EG)/G (5.1)
with respect to the diagonal action of G on M x EG.

The Borel construction M is then the substitute space for M, in that the ordinary cohomology
groups of M¢ will be the equivariant cohomology groups of M.

Definition 5.2. Let M be a topological manifold and G be a compact Lie group acting on M. Let
EG be any contractible space on which G acts freely. Then the G-equivariant cohomology groups,
H?.(M), are defined to be the ordinary cohomology groups of the Borel construction:

HX(M) .= H*(M x¢ EG). (5-2)

Example s.3. If we assume that G acts freely on M, then the projection M x EG — M induces
a fibration M xg EG — M/G, whose typical fibre is EG. Hence, since EG is assumed to be
contractible:

H!(M)=H*(M x¢ EG) = H*(M/G),
which is the result that we had been hoping for.

The reason that EG — BG is called the “universal” G-bundle is that, it E — B is any G-
principal fibre bundle, whose total space E is contractible, then £ — B is a universal G-bundle. This
is the statement of the next theorem, and is proven in [GS99, Proposition r.1.1, & Theorem r.1.1].
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Theorem s.4. The Borel construction Mg = M X ¢ EG, defined in @, is independent of the choice
of EG.

So far, we have seen that 7f such a G-principal fibre bundle /' — B exists, where £ is a contractible
space, then it is must necessarily be G-equivariantly homotopic to the universal G-bundle, EG — BG.
Of course, EG — BG has to exist first to be of use.

One construction of a universal G-bundle is via Milnor’s join construction, [Mils6|]. Milnor
considered the infinite join of G with itself:

EG=G*Gx*...xG*...=limEG(k), where EG(k) :== %5 ,G.

Intuitively, repeatedly taking joins of a topological group G gives us a space EG(k), which becomes
more and more connected with each added join. In [Mils6], Milnor proved that his join spaces
lim EG(n) are weakly contractible in the limit, and were further proven to be contractible by Dold

later on in [Dol63, Theorem 8.1]. Hence:
Theorem s.s. The topological space EG is contractible.

Let us see what the universal G-bundles EG — BQG are in the cases when G = Uy and G =T™"
are the circle and the n-dimensional torus respectively.

Example 5.6. Let G = U;. There is an increasing sequence of complex vector spaces:
ctcc*cc...,
and therefore an increasing sequence of odd-dimensional spheres:
Stcs*cs c....

The U;-action on each odd-dimensional sphere is compatible with each inclusion, thence giving rise
to the following commutative diagram of Uy -principle fibre bundles:

st c S8 c ... Cc S o g ..
CP° ¢ CP' ¢ -~ Cc CP+' ¢ CPFr C

Then EU, (k) = S**1 and BU, (k) = CP* for each k > 0. There is therefore an induced
Uy -action on the infinite sphere, S = U2, S? L. Since Uy acts freely on each S?*, it acts freely
on S°°. The orbit space is the infinite-dimensional complex projective space, CP> = S> /Uj.

While S°° is not a bonafide manifold due to its infinite-dimensionality, the projection S —
CP*is topologically a U -principal fibre bundle, and it can be shown that S°° — CP*° is topologically
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trivial, see [Tuz0, Example 3.6]. The homotopy groups all vanish, 7,(5>°) = 0 for each ¢ > 0,
and thus S is weakly contractible. By Whitehead’s theorem [Hatoz, Theorem 4.5], S° is actually
contractible, unlike any finite-dimensional sphere. Hence, EU; = 5° and BU; = CP®°, and
therefore S°° — CP®° is the universal U;-bundle.

Example 5.7. Now, when G = T" is the n-dimensional torus, Example generalises to give
ET"(k) = (S%+1)" and BT" (k) = (CP*)™. So, in taking the limit, ET" & (S*°)" and BT" 2
(CP>)™. Hence the universal 7"-bundle is (5*°)" — (CP>)".

So far, we have see that the universal U;-bundle is EU? & S in Example and that the
universal 7"-bundle is ET" = (S>)" in Example[s.7} respectively. Let us see what H& (M) is when
M isjusta point, i.e., when M = {pt}.

As the G-action of any Lie group G on a point M = {pt} is trivial, we see that the Borel
construction is:

{pt}G = {pt} Xa EG = EG/G: BG.

Hence the G-equivariant cohomology group of any point {pt } is just the ordinary cohomology group
of the classifying bundle:

Hg({pt}) = H*({pt} xc EG) = H*(BG).
Example 5.8. From Example we saw that BU; (k) = CP* for each k > 0. Since H*(CP*) =
Rlu]/(u*1), where deg(u) = 2, after taking the limit we see that:

Hp, ({pt}) = H*(BU') = H*(CP*) = R[u].

Example 5.9. In asimilar vein to Example[s.8] when G = T™, we as that BT" (k) 2 (CP*)" for each
k > 0. Hence, by the Kiinneth formula and Example]s.8}

Hpn({pt}) = H*(BT") = H* ((CP™)") = ® Rlui] = Rluy, ..., un],

where deg(u;) = 2,foreachi =1,... n.

An important algebraic property found in equivariant cohomology, an which we shall refer back
to in Section[s.s} is that it every ring H&(—) is also a H*(BG)-algebra.

Lemma s.1o0. Let M be a topological manifold and let G be a compact Lie group that acts on M. Then
the G-equivariant cobomology ring H2.(M) is an algebra over the ring H*(BG).
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Proof. If M is a G-space, then the constant projection pr : M — {pt} is trivially G-equivariant.
Hence it induces a map prg; : Mg — {pt}g between homotopy quotients, and moreover a ring
homomorphism via the pull-back:

prg; - He({pt}) —— H*(Mg)

| (5:3)
pr, : H*(BG) —— H& (M)

Using the homomorphism in (5.3), we may define a scalar-multiplication operation in H& (M) in the
following manner:

u-x = prg(u)z, whereu € H*(BG)andz € HE(M).

This scalar multiplication makes H¢ (M) into an algebra over H*(BG). O

Lemmals.1o|shows that H& (M ) is an algebra over the ring H*(BG). However, unlike in ordinary
cohomology, it is not necessarily the case that the coefficient ring H*(BG) embeds into HZ(M ) asa
subring for any M. Fortunately, we have the following result when M # (), [Tuz20, Proposition 9.8].

Proposition s.ax. Ifp € M is a fixed-point for the G-action on M, then:

(z) the incusion i : {p} — M induces a section ic; : BG — M of the G-principal fibre bundle,
MG — BG,

(iz) the constant projection pr : M — {p} induces an injection, pry, : HE({p}) — H&(M).

Proof. For[(i)} since p is a fixed point, the inclusion map i : {p} < M is a G-equivariant map such
that pr o7 = Idy,;. Hence, there is an induced map of homotopy quotients such that prg oig = Id.
Thus, i : BG — Mg is a section of Mg — BG;

Next, for (i)} by functoriality [Tu20} Section 9.2]:
ig o prg = ldag, (o)) -

Therefore, pry, : H*(BG) — H (M) is injective. O

s.2 The Equivariant de Rham Theorem

Section [5.1jintroduced equivariant cohomology groups and how to construct them topologically.
However, in some scenarios, it is more convenient to use equivariant de Rham theory, if there is
more geometry involved than than there is topology. When M is a smooth manifold acted upon by
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a compact Lie group, then one can form the Cartan model for equivariant cohomology, which is a
differential complex whose elements are equivariant differential forms. Moreover, the localisation
formulae, that we shall come across in Section is expressed in terms of equivariant characteristic
classes which naturally arise within the Cartan model.

So, let M be an n-dimensional smooth manifold and let G' be a compact Lie group acting that acts
on M. Then the quotient space M /G is also smooth manifold, and the projection ¢ : M — M /G is
a principal G-fibration, [Tu2o, Chapter 12]. Our first step is to investigate which differential forms on

M can be thought of those originating from the quotient M/ G.

Definition s.r2. The subcomplex ¢*Q*(M/G) C Q°*(M) of differential forms on M is called
the complex of basic forms. It consists of the differential forms ¢*w on M which come from the
differential forms w on the quotient M /G under the injective pull-back ¢* : Q(M/G) — Q(M).

For any pointp € M, let g, p, : T,M — Ty, M denote the differential of ¢ : M — M/G.
Then we say that the vertical tangent space at p € M, denoted by V), is the kernel of the differential
Qup + TgM — Ty M. That s to say, V), = ker g, . The vectors that belong to V), are said to be
vertical to ¢, at p. The key idea here, is that the vertical vectors should be “orthogonal” to the tangent
space of the quotient under the differential ¢, : T,M — T},)(M/G), and so any vertical vector
should be killed off once M has been collapsed into its G-orbits after taking the quotient M/ G.

For the G-principal fibre bundle g : M — M /G, a differential form w € Q*(M) is said to be
horizontal if, at any point p € M, the form w vanishes whenever one of its arguments is a vertical
vector. Thatis to say, that 1x,w, = 0 forevery X, € V. Thus, horizontal differential forms on M are
only “compatible” with non-vertical vectors. The crux of these notions is the following characterisation
of basic differential forms, which has been taken from [Tu20, Theorem 12.5].

Theorem s.33. Let M be a smooth manifold and let G be a Lie group that acts freely on M. Let
q: M — M/G be the G-principal fibre bundle induced by forming the guotient M /G. Then a
differential form w € Q°*(M) is basic if, and only if, it is G-invariant and horizontal.

Corollary s.a4. Suppose furthermore that G is connected with Lie algebra §. Then a differential form
w € Q¥(M) is basic if; and only i, Lx ,w = 0 and 1x ,w = 0 for every X € g.

Definition s.1s. Let G be a Lie group with Lie algebra g. The Weil algebra, 1V (g), of g is defined to
be the algebra:

W(g) := A (g") @c S(g").

Consider a G-principal fibre bundle P — M, equipped with a g-valued connection one-form
6 € Q'(P) on P, and with a g-valued curvature two-form © € Q?(P) on P, respectively. Given the
dual Lie algebra elements, a1, . . ., ay, € g%, we define now two unique algebra homomorphisms; the
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first is:
fa i N(g") — Q(P), where falag A...Aag) =(pof)A...A (g 00),
whereas the second is:

fs:S(g") — Q(P), where fs(lagA...Nag) =(a10O)A...A (g AO).

We can then combine f, and fg together to form the bilinear mapping:

Ia X fs:N(g") x S(g*) — Q(P), where f(a,f):= fala) A fs(8),
which in turn induces the linear mapping:

fw i Mg") @ 5(g") — QP),  where  fla®f) = fa(a) A fs(B), (5-4)
by the universal property of the tensor product.
Definition s.16. The map fir : W(g*) — Q(P) defined in is called the Weil map.

The Weil algebra W (g) can be made into a graded algebra, by assigning a degree of one to the
elements of g* in A(g*), and the elements of g* in S(g*) a degree of two. With these degrees, the Weil
map fy becomes a graded-algebra homomorphism.

Now let us a basis X1, ..., X,, for the Lie algebra g with the dual basis o', . . . , o for g*. Write:
Aii=ad ®1eAg")®S(g"),
rii=1®a" € Ag*) @ S(g").
Then, in terms of these generators, the Weil algebra W (g) becomes:

W(g) = /\.()\17 .. ,)\n) ®C S.(Tl, e ,Tn),

Y

where A(g*) is the free exterior algebra generated by the Ay,..., \,, and S(ry,...,r,) =
R[r1,...,m,] is the polynomial algebra generated by indeterminates 71, ...,7,. In terms of the
grading, the Weil algebra W (g) can be written down explicitly as:

W(g) =W e) = @ A"(\.....A) @8Ur,...,m0),

k>0 k>0 p,q=20
pt+2q=k
where AP(Aq, ..., \,) is the space of homogeneous elements of degree p in the Ay, ..., \,, and
S (ry,...,ry) is the space of homogeneous elements of degree g in the ry, . . ., 7.
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Example s.r7. Continuing from Example[s.7} let G = T' = U be the n-dimensional real torus, and
letitact on M. Denote its Lie algebra by t and let t* be its dual. Then the Weil algebra W (t) of tis:

W) = A6) @ SE) = A, -, An) @R[ - . 7l

Since the connection one-form # and the curvature two-form © are both g-valued differential
forms, they can be written uniquely in terms of the basis X7, . . ., X, as the linear combinations:

0=> 06X, and  ©=) OX;,
i=1 i=1
where the #* and © are R-valued one- and two-forms on P, respectively. Under this guise, the Weil
map fw from becomes:
Jw(Ap) = Ag ol = X0 (Z (9ij> = 0",

. . (s-5)
fw(Tk> = TkO@ =70 (Z @JX].> = O, S-S

As 6 € Q(P) is a connection one-form on P, it has to satisfy the second structural equation
[KN96, Theorem s.2], whereas since © € Q?(P) is a curvature two-form, it has to satisfy Bianchi’s
identity [KN96, Theorem s.4]. These respectively are:

1 i ; i j
do* = eF — 5 > ot ne, and  dOF =) FOIAE. (5.6)
Here, the cfj in 1’ are the structure constants of the Lie algebra g.

Lemma s.18. Fora differential § on W (g) to commute with the Weil map fw, it must satisfy:

e=rr—Y i NAN],  and =) iiAN] (57)

i<j 1,

Proof. Recall from that fyr(\x) = 0% and fy (ry,) = OF. Then:

dfw(\e) = do* = ©F — %Zcﬁ@ 0N = fw(rs) - %Zcfj [fw(Z) A fw (A)]

1
:fW (Tk—EZCZ)\l/\)\j),

and:
: <
dfw(re) = dOF =Y " [0 A7) = ek [fw(ri) A fw(N)]
= fW (ZCZ[T% /\)\j}) .
So, if we let § act on both A and 7, as in (5.7), then we see that d o fyr = fy 0 6. O
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We call the differential ¢ that operates on W (g) via (5.18) the Weil differential, and it can be
shown that it is indeed a bonafide differential satisfying satisfies §* = 0, see [Tuz0, Theorem 19.1].
If we fix a Lie algebra element A € g, then we can also extend the interior derivative 14 to the Weil
algebra W (g) too. Since:

108 = 140" = 65 (A), and 140% =0,
then:
> OFA)XE =0(A) = A=) a"(A)X;,

and, recalling that o, . . ., o, is the basis of g*, dual to the basis X1, . .., X, of g, we observe that:
140 = 0F(Ay) = oF(A).

Hence, for the Weil map fyy to preserve the interior derivative 24 on g, it should be defined on W (g)
by:
ZA)\k = )\k(A) = Oék(A), and AT — O,

sothatiy o fiy = fwr o 14.

Finally, one may combine both exterior and interior derivatives,  and 24, respectively on W (g),
to define the Lie derivative on W (g):

La:W(g) — W(g), where Lya:=06014+1400. (5-8)

As both the Weil map fy and the interior derivative 24 commute with the Weil derivative ¢, we see
that the Lie derivative L 4 in (5.8)) does too.

Example 5.19. Since the torus 7" is abelian, its structure constants cfj are all zero. Hence, the Weil

differential 6 from is the anti-derivation of degree 1 on W (1), that satisfies:
0N =1y, or; =0, foreachj=1,... n.

Forany A € t, the interior derivative 14 on W (t) is likewise the anti-derivation of degree —1, which
satisfies:
1 = Ai(4), 1au; =0, foreachj=1,...,n.

Lastly, the Lie derivative L 4 on W (t) is the derivation of degree 0, which satisfies:

LA)\i = (5 0] ZA)<>\Z) —+ (ZA e} 5)()\2) = 5)\Z<A) + 4T = O,
Lar; = (0014)(r;) + (24 08)(r;) = 6(0) +24(0) = 0.

The Weil algebra W (g), along with the derivations and anti-derivations d, 24, and L 4 of the
orders 1, —1, and 0, respectively, define what is known as a g-differential graded algebra.
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Definition s.20. A g-differential graded algebra (g-dga) is a commutative graded algebra
Q0 = @p>18; equipped with an anti-derivation d : €2 — €2 of degree 1 such thatd o d = 0,
and which has the two following g-actions:

1:g X Q— €, q L:gxQ—Q,

1A, w) = 14w, o L(Aw) :== Lw,
where, for any A € g, both 14 and L4 are R-linear in A; where 24 acts on € as an anti-derivation of
degree —1 such that24 014 = 0; and where L 4 acts on (2 as a derivation of degree 0; furthermore, d,
14, and L 4 satisfy Cartan’s homotopy formula:

LA:dOZA—f-ZAOd.

Of course, another example of a g-differential graded algebras is that of the de Rham complex
(Q(P),d) for a smooth manifold P. It follows then that the Weil map fyr : W(g) — Q(P) is
a morphism of g-differential graded algebras. Theorem which follows below, shows that the
Weil algebra W (g) is the algebraic analogue to the universal G-bundle, EG — BG, as both of their
cohomology complexes are acyclic, see [GS99, § 2.3.2].

Theorem s.21. Let g be a Lie algebra. Then the Weil algebra W (g) is acyclic, i.e., that:

9 (W/(g), ) = {R’ G

0, otherwise.

Since (W(g), ) and (Q(P), d) are both g-differential graded algebras, their tensor product
(W(g) ® QP),0 ® 1+ 1® d) is also a g-differential graded algebra [Tu20, Section 18.2]. Further-
more, H*(EG) = H*(W (g)) since they are both acyclic and, since H* (M) = H*(£2(M)) then, by
the algebraic Kiinneth formula [Hato2, Theorem 3B.5] we observe that:

H* (M x EG) = H*(M) ® H*(EG) = H*(M) ® H*(W(g)).

Given that the homotopy quotient M makes up the base of the principal G-bundle EG x M —
M, and hence the basic forms on EG x M are the pull-backs of those which already exist on the base
space Mg, it makes sense for the basic subcomplex (W (g) @ Q(M ))basic to be a possible candidate
for the cohomology of the homotopy quotient, M. This is indeed the case, thanks to the equivariant
de Rham theorem [[Carsib; Carsia).

Theorem s.22 (Equivariant de Rham). For a compact and connected Lie group G, with Lie algebra
0, that acts on a manifold M, there exists a graded algebra isomorphism:

He (M) = 1 ((W(e) 8 2(0),,,).
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The complex (W (g) @ Q(M))

model.

when equipped with the Weil differential J is called the Weil

basic

Example s5.23. For the universal T-bundle ET — BT, an algebraic model for M x ET is:
W) Q) = A, A) ® UM 7]

Hence an element of W (t) ® (M) can be written as a linear combination of monomials, as:

A=A A A N, (5-9)
where 1 <4y < ... < 1; < n, whose coefficients are of the form:
ar = a;,. i, € UM)[ry,... 7). (s.10)

That is to say:
o = CL-{—ZCLZ‘)\Z‘ +ZGU[)\Z/\)\J] —+ ... +a1._,n[/\1 VAN /\/\n]
7 1<j

= a+Za1)\1.

Let us continue to focus on the case when G = 7T is the n-dimensional torus. Recall from

Corollary[s.14]that a differential form o € W (t) ® Q(M) is basic if, and only if, for every X € t:
1xae =0 (i.e., v is horizontal), and ixa =0, (ie., «is invariant).
Then we have the following lemma regarding the horizontal forms.

Lemma s.24. A differential form oo = a+ Y ajA; € W(t) @ Q(M), wherel C{1,...,n}isa
subset and where \; and ay are defined in and respectively, is horigontal if, and only if:

a= (H(l - Aﬂ)g-)) a. (5.11)

i=1

Proof. If € W(t) ® Q(M) is horizontal then, for every X € t, we have that:

.
a; = —1x,a

Qij = 1x,;1Xx,;a,
Aijke = —Ux;1X,;1X, Ay
ixa=0 <= : <~ ar; = (—1)”'2;{1(1,

iy ..if, = (—1)kin1 SLolx, @,

*k

L A1..n = (_1)n'lX1 colx, @,
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where 1y, 1= 1x, ...1x, anda; = a;, i, for each subset I = {i1, ..., i}, analogously to
and (5.10). This can be seen by applying the interior derivative 2x, to a and then setting 2.x,ov = 0,
before then comparing the coefficients to each basis vector A;; A ... \;,. To decompose « into the
product as in , substitute in the expressions for the coeflicients a;, . ;, derived above, and also
noting that 1x,\; = d;;. [l

Let us now deal with the invariance.

Lemma s.25. A4 differential formo = a+ > ajh; € W(t) @ Q(M), whereI C{1,... ,n}isa
subset and where \; and ay are defined in and respectively, is invariant if; and only if:

Lxa =0, (5.12)

Jforevery X € t.

Proof. Since LxA; = Oforany I C {1,...,n},andsince a; = (—1)lix,a from Lemma
then:

Lxa=0 < Lyxa+ (-1)""Y "N\ Lx(1x,a) = Lya+ (—1)" Y " Apx, (Lya) =0
I I
<= Lxa=0,

for every X € t, since the Lie derivative L x and the interior derivative 2x commute from (5.8). [

Thence, Lemmasandprovide the two conditions for a differential form o € W () ®
Q(M) to be basic.

Corollary 5.26. An clementa = a+ Y arA; € W(t) @ Q(M), where a; € Q(M)[uy, . .., uy)
with I C{1,...,n}, is basic if; and only if; the two conditions:

ar = (—1)|I‘ZXIa, and Lxa =0, (5.13)
are satisfied for every X € t.

Anelementa € Q(M)[ry,...,7,]isapolynomial in the ry, . .., r,,, whose coefficients are the
differential forms on M:

a:ZaIr]fl...rﬁ", where ar € Q(M)[ry, ...,
Since Lxu; = Oforeachi =0,...,n:
Lxa=0 <= Lja; =0, forevery I C {1,...,n}.
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Asin and , let us abbreviate r; = 7, _;, when I = {iy,... i} C{1,...,n}. Whence
a=>Y arr; € QUM)[ry,...,r,]is invariant if, and only if, each coefficient a; € Q(M) is itself
invariant. Let us write:

QM) ={weQM)|Lxw=0}

= { T-invariant differential forms on M } .

Our last task is express the Weil model in the terms of the Cartan model. This follows from the
following result, proven by H. Cartan in [Carsra, Théoréme 4].

Theorem s.27 (Weil-Cartan Isomorphism). For a compact and connected Lie group G, with Lie
algebra g, that acts on a manifold M,

Suppose that M is a smooth manifold and that G is a compact Lie group, with Lie algebra g, that
actson M. Then there exists a graded-algebra homomorphism:

F: (W(g) @ QUM)), — S(g") @ UM),

a=a+ Za;)\l — a, (5.14)
along with the inverse homomorphism:
H:S(g") @ QM) — (W(g) @ QM)),,,
ar— (ﬁ(l - /\izXZ.)> a. (5:15)
i=1

Moreover, the graded-algebra homomorphism induces a graded-algebra isomorphism between the

basic subalgebras:

F:(W(g)®QM)), > (S(g") ©QM))°. (5.16)

basic

The graded-algebra isomorphism F' in is known as the Weil-Cartan isomorphism [Tuzo,

Theorem 21.1], and essentially “forgets” any term that contains a \; factor.

Definition 5.28. The complex:

O%(M) = (S(g") ® Q(M))© (5.17)

is called the Cartan model. Elements that belong to the Cartan model 2, (M) are called equivariant
differential forms.
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From Theorem we get the following commutative diagram:

(W(g) @ Q2 (M), . o Q(M)

basic (%) |
5 idg (5.18)
(W(g) @ Q*(M)),.. —=— (M)

where the map dg : Q%(M) — Q¢ (M) is a differential that is defined in below, and which we
call the Cartan differential. In Proposition[s.29} we shall see that the Cartan differential dg equals
the image of the Weil differential J, under the Weil-Cartan isomorphism £ in (s.16]).

Proposition 5.29. Let G be a connected Lie group and let g be its Lie algebra. Then, given a basis,
Xy, ..., Xy, of g, the Cartan differential dg of the Cartan complex Q2,(M ) is:

dy: Qu(M) — Q%(M),  where  dgw = (d - Zum) w. (s.19)

Proof. Recall from the paragraph after Theorem(s.27} that the Weil-Cartan isomorphism F" in (s5.16)

is the homomorphism that forgets any term that contains a A; factor, and whose inverse is H =

[T(1 — Airx,) from (s.1s).
Let a € 2%,(M) be an equivariant differential form, then:
H(a) = (H(l - /\iin)) a
= — Z Aitx, o+ Z(Aiin)(Ajsz)a —[..]
and:
0H(a) = da — Z (ri — % ZCZZ)% A )\l> i+ [, (5.20)

where we have used the term “[. . .]” to represent a sum that contains at least one \; factor. Next, since

applying F' to is the same as dropping each term containing a \; factor, we get:
FéH(a) = F(da) — Z Titx, Q.

On the other hand, suppose that:
o= Zr? Ty = Zr"d;, where &y € Q(M).
Since 67 = 1 <p j<p ChalTx A A] from Lemma we observe that:
S =Y (orh)ar +> rlday =Y [.]a + Y r'day,
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and therefore:
FéH(w) = F(da) — Zrizxia

= E rlda; — E Titx, L.

So, if we define the usual exterior derivative d on the Cartan model QZ.(M ) by:

doa :=d (Z 7"[641> = Zrld@h

then the Cartan differential d,; is given by:

dga = (d - Zrile) (Z Tld[> = Zrldd[ — Zrilxia = FéH (o),

That is to say, that the diagram (5.18)) commutes. O]

Corollary s.30. Let M be a smooth manifold and let G be a compact Lie group that acts on M with Lie
algebra g. Then:

(i) the Cartan differential dy : Q%.(M) — Q(M) is an anti-derivation of degree —1;
(i1) the Cartan differential is zero on the component S(g*)© of the Cartan model Q%,(M ), where
Q% (M) = (S(g%) @ QM) from Dq‘fnz'tz’on

Proof- For as the Weil-Cartan isomorphism F' and its inverse H = [ 1 are isomorphisms be-
tween graded algebras from Theoremand as 0 is an anti-derivation of degree —1, by using the
commutative diagram (s.18)) we see that d; is an anti-derivation of degree —1 too.

For|(ii)} if dim G' = n then, since S(g*) = R[rq, ..., 7,| and as d; is an anti-derivation of degree
0, it suffices to show that dyr, = 0 for each indeterminate ry, ..., 7. Astx, 71 = 0, it follows from

the definition of d, in , that:

n
dgry = dry, — E o TR
=dry (since 1x, 7 = 0)
= 0.

Hence, dy annihilates any element belonging to S(g*). O

5.3 Equivariant Differential Forms

Whilst we said in Definition [5.28|that any element belonging to the Cartan model, say ov € Qg (M),
is an equivariant differential form, we would to use this section to study them some more. An element
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a=>rla;=S"r". . .rira; ; in S(g*) canbe thought of as a function from g* into R, i.e., for
any X € gand oy, ;. € R:

a(X) = r(X)" . (X) " ,, €R.

By tensoring S(g*) with the vector space (2°(M), we see that a(X') becomes an Q°*(M )-valued
function on g*, i.e. after tensoring, then o, ;, € Q(M), and thus a(X) € Q(M). Furthermore,
the Lie group G acts on g* via the coadjoint representation and so, if €2(M) is a G-representation, an
invariant element @ = > rla; € Q% (M) corresponds to a G-equivariant map « : g* — Q(M).
Hence an alternative way of viewing the definition of an equivariant differential form from Definition

is the following:

Definition 5.31. Let M/ be a smooth manifold and let G be a compact Lie group acting on M, with
Lie algebra g. Then we say that a G-equivariant differential form isamap o : g — Q(M). Thatis
to say, it is a differential form v = >_ r’a; that is a polynomial in the 7y, . . . , 7, with coefficients in

(M), and which is G-equivariant:
a(Ady(X)) =g - a(X), forany X € gandg € G.

In terms of G-equivariant differential forms, the Cartan differential can be written as [BGVo4,

§7.1]:

Proposition s.32. The Cartan differential dg : Qg,(M) — Q% (M) is given by the formula:
(dga)(X) = d(a(X)) —1x (a(X)) (5-21)

where v € Qg(M) and X € g.

Example 5.33. When G = T'is a torus with Lie algebra t, the adjoint action of 7" on the symmetric
algebra S(t) is trivial, so S(t*)” = S(t*) and hence, after choosing a basis 71, . . ., r, of t:

Q(M) = (S(t) @ Q°(M))" = S(€) © Q*(M)”
>~ QY (M) e, ... ).

Therefore, any T-equivariant differential form av must necessarily be a polynomial in the indeterminates
r1,...,7n, whose coefficients are T-invariant differential forms on M

o= g Ty, = g rlag, where oy € Q°(M)7,

The Cartan differential d; is therefore given by:

div = dov — g rix,; O,

with dr; = 0and1x,7; = Oforeach?,j = 1,...,n, and where do is just the ordinary differential of
a as an element of Q2°(M).
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s.4 Equivariant Characteristic Classes

Let v € Q°(M) be a differential form on M. Given an element X € g, applying the Cartan
differential d, from twice to o, we see that:

(dge)(X) = (d —1x) (d(a(X)) — 2x(a (X))
= d*(a(X)) = [(doux)(a(X)) + (2x 0 d)(a(X))] + 2% (a(X)) (5.22)
= —LXa.

Hence from , we see that o will be an exact differential form with respect to the Cartan differential
dy if, and only if, Lxa = 0. The condition that Ly = 0 is precisely the condition that « is an
invariant differential form from Lemmals.2s| This implies that the Cartan model Q¢ (M) can be
made into a complex, by pairing it with the Cartan differential, dj.

Lemma 5.34. Let M be a smooth manifold and let G be a compact Lie group that acts on M with Lie
algebra g. Then the Cartan model Q% (M) equipped with the Cartan differential dg forms the Cartan
complex, (QU2,(M), dy).

From Lemmals.34} the notions of closed and exact differential forms for the de Rham differential
d carry over to that of closed and exact equivariant differential forms, in terms of the Cartan differential
dg. Thatis, an element a € Q% (M) such that dya = 0 are called equivariantly cosed differential
forms, whereas an element o such that v = dy 3 for some 3 € Qg (M) are called equivariantly exact
differential forms.

When M is a smooth manifold and when G is a compact Lie group acting on M, then M is a fibre
of the homotopy quotient M when viewed as a G-principal fibre bundle M — BG. The inclusion
J : M — Mg induces therestriction j* : H*(M¢) = Hg(M) — H* (M) in ordinary cohomology.

Hence, j* constitutes a canonical map from equivariant cohomology to ordinary cohomology.

A manifold M with a G-action is said to be equivariantly formal, if the canonical map
J* + HA(M) — H°®(M) is surjective. In ordinary cohomology, a d-closed differential form
w € Q(M) defines a cohomology class [w] € H*(M). Analogously, if there exists a dg-closed
equivariant differential form @ € H& (M) such that j*[w] = [w] € H*(M), then w is said to be an
equivariantly closed extension of the differential form w.

Example 5.35. Let M be a smooth manifold and let G a compact Lie group that acts on M. A
G-equivariant differential two-form cw € QZ (M) must necessarily be of the form & = w — p, since:

03 (00) = ( (g & (M) & (5'(a") © (M) )

where w € Q*(M) is an ordinary differential two-form on M that is G-invariant and, from Section
the element p € Q% (M) is a Q° (M )-valued G-equivariant map from g into the space of smooth

74



functions on M:
peQHM) <= p:g—C°(M;R) and pu(Ad,X)=g-pu(X),
forevery g € Gand X € g.

Thus, on the one hand, as X varies smoothly throughout g, we obtain a smooth R-valued
function:

p(X): M =R, givenby  u(X)— p(X)(p),

whereas, on the other hand, as f1 is linear on g, it defines a map from M into the dual Lie algebra g*:
piM g, givenby  (u(m), X) = o(X)()
Hence, for @ to be an equivariantly closed difterential two-form, for every X € g, it has to satisfy:
(dgw)(X) = (d = 1x)(W(X) = (X)) = dw(X) — dp(X) — 1xw(X) +1xp(X) = 0,

which, since 2x 11(X) = 0, can be rephrased as the following two conditions:

X

dyw =0 if, and only if, do=0 and 1xw= —du". (5.23)

Clearly, when G acts on a symplectic manifold A/ in a Hamiltonian way then, denotingby w € Q?(M)
the symplectic two-form of M, then the two conditions in are satisfied by the moment map
p: M — g* corresponding to w for the G-action.

We rephrase this result as:

Lemma 5.36. Ler M be a symplectic manifold with symplectic two-form w, and suppose that a compact
Lie group G acts on M with corresponding moment map v - M — g*. Then:

@(X) = w(X) + (u(-), X) € QG(M)

is an equivariantly closed extension of the symplectic two-form w € Q(M). Moreover, w determines the
equivariant cobomology class [to] € HE(M), since @ is dy-closed.

More generally, let 7 : V' — M be a smooth G-equivariant vector bundle over M, that induces

the map:
ngVG ZZVXGEG—>MG

between homotopy quotients. Then 7g : Vo — Mg is a vector bundle with the same rank as
m:V — M,and g : Vg — Mg is oriented, provided that 7 : V' — M is too.

Definition s.37. The G-equivariant Euler class Eul”(V/) of an oriented G-equivariant vector
bundle 7 : V' — M, is just the ordinary Euler class Eul(V4;) of the homotopy quotient 7¢; : Vg —
M. Thatis to say:

Eul®(V) := Eul(Vg) = Eul®(V x¢ EG) € Hy(M). (5.24)
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Similarly, it 7 : V' — M is a complex G-equivariant vector bundle, then its G-equivariant
Chern classes are just the ordinary Chern classes ¢; (V) of the homotopy quotient ¢ : Vg — M.
That is to say:

(V) i=c¢i(Vg) = ci(V xg EG) € Ho(M). (5.25)

If a compact Lie group G acts on M, then the correspondence between £ and P can be made
G-equivariant. If G acts trivially on M, then G acts on the fibre £, for every point p € M and,
provided that M is connected, this action is independent of the point p. Denote the weight of this
G-action on the fibre £, by o € g*.

Lemma 5.38 (G-equivariant first Chern classes). Let 7 : L — M be a holomorphic pre-quantum
line bundle over M. If G acts trivially on M and if M is connected, then the G-equivariant first
Chern class of 7 : L — M is:

§(L) = er(L) — a € HA(M), (5.26)
where c1(L) is the ordinary first Chern dassof m : L — M, and o € g* is the weight of the G-action
on any fibre L, withp € M.

Proof. As o € g* is the weight of the G-action on L then, for any element g = exp(tX) € G with
X € gandt € R, the G-action on the principal U;-bundle P is just multiplication by eV~ X),
Therefore: 9

¢
generates the principal U;-action on P. Denote by § € Q'(P) the connection one-form on P and by
© € Q?(M) the curvature two-form on M that satisfies df = 76, as in Appendix[A.8| Then:

XP = <Oé, X)

(d8)(X) = (dO)(X) — 1x,8

= (M0)(X) = (a, X)0(9/0¢)
= (7"0)(X) = (a, X),

which is to say, dg0 = 7*© — «. Finally, since:
ci(L) = [r"©] = [df],

we see that:

[d0] = [170 — a] <= (L) =1 (L) - q,

and the result follows. O]

In the case when G = T is an n-dimensional torus, a fundamental result, that we shall very
frequently employ, is the equivariant version of the splitting principle in Theorem
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Theorem s5.39 (Equivariant splitting principle). If'T" is a torus that acts on a compact manifold
M, and if E — M is a T-equivariant holomorphic vector bundle, then one may assume that E splits
T-equivariantly into a direct sum of complex line bundles:

E=2Via...eV,. (5.27)

We are now able to apply Lemmals.38|and the equivariant splitting principle from Theorem|[s.39
to determine a few equivariant characteristic classes in the most useful cases to us.

Example s.40 (T-equivariant Euler class). Let M be an n-dimensional complex manifold, and
suppose that a torus 7" acts on M. Assume that the fixed-point locus M7 consists solely of isolated
fixed-points. Then, for each fixed-point p € M7, its normal bundle v, — {p} is a T-equivariant
vector bundle since T acts trivially on {p} C M7.

By Theorem|s.39} we may assume that the normal bundle v, splits as:

Vp ZE Vo, &...0V,

Qpno

where each V,, ,  is a complex line bundle on which 7" acts with weight c,, ; € t*. Then forany § € t,
the T-equivariant Euler class, denoted by EulT(up), of the normal bundle v, is:

n n

Eul”( (vp; §) = HC (Vpg5€) = [(d9j|p)(€) —{ap, §)] = nH pj; €,
1

Jj=1 J= J=1

where df;|, = 0 since {p} is zero-dimensional. To summarise, when p € M7 is an isolated fixed
point, then:

Eul”( (vp) = Hozpj (5.28)

Example .41 (T-equivariant Todd class). Assuming the same hypotheses as in Example[s.40] let us
now introduce the T-equivariant Todd class, denoted by Td" (T'M), of which the non-equivariant
version Td (7'M ) was introduced in Definition[4.10}

Again, let us the equivariant splitting principle from Theorem s.39} this time however applied to
the tangent space T),M for some isolated fixed point p € M7, so that:

M=V, @©...0V,

Qap,1 Qp,n >

where T acts on each summand V,,, ; with weight o, ; € t*.

The T-equivariant Todd class Td” (7}, M) is then obtain from the formula for the non-
equivariant Todd class Td(7}, M), by replacing the non-equivariant first Chern classes ¢, (V,,,, ;) with
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their T-equivariant counterparts, ¢{ (V,,, ), from Lemma If we choose some £ € tsuch that
(0, &) # 0foreach j = 1,...,n, then the T-equivariant Todd class for the tangent space T, M/
over an isolated fixed point p € M7 is:

n T n
T e\ (V36 \n {ap; §)
Td" (T,M;§) = U [1 _e—clT(va,,,j;e)] =(=1) U [1— elows 8]
7j=1

Since {p} is zero-dimensional, observe that its tangent space in 7'M coincides with its normal bundle,
T,M = v,. Hence, in summary:

" a
Td"(v,) = Td" (T, M) )" H i —peim (5-29)
]:1

s.s Localisation and Equivariant Integration

In the category of smooth manifolds, the assignment M +— H*(M) is contravariant, and then
the de Rham theory of cohomology coincides with any other cohomology theory that satisfies the
Eilenberg-Steenrod axioms [ES4s|), provided that H*({pt}) = R in dimension zero [Botgo), §3]. The
de Rham cohomology group H*®(M) is finite-dimensional when M is compact and, furthermore, if
n = dime M and it M is oriented then, from the constant projection:

m: M — {pt}, (5:30)
we obtain the push-forward:
mo s HY(M) — HO({pt}) =R, (531

The push-forward in (5.31) is used to define fibre-wise integration:

e (W) :/Mw, (532)

since then the fibre of 7 equals M.

Lemma s.42. Let ™ : E — B be an orientable fibre bundle over a base manifold B whose fibres
71 (b) have codimension k in E for any b € B. Then, by “integrating over the fibre variables’, the
push-forward:

T, : H*(E) — H*"(B),

can be made into a H*(B)-homomorphism.
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Proof. This is the non-equivariant analogue to Lemma albeit with a more general base manifold.
Lete € H*(E)and b € H*(B). Since:

(e b)) = (m.e) - b,
let us consider H*(E) to be a product over H*(B) viae - b := e - (7*b). Then we see that:
me(e-b) =m(e-wb) = (mee) - b (533)

defines a binary multiplicative operation, thus making 7, into a H*(B)-module homomorphism. [

Of course, Lemma concerns itself with fibre-integration in terms of ordinary de Rham
cohomology theory — for equivariant cohomology, we expect that the map:

7% Mg — {pt}a,
should give rise to the fibre-wise integral via the push-forward:

)t Hy(M) — Hg({pt}) = H*(BG).

Recall from Lemma that, for a G-space M, the equivariant cohomology H¢, (M) is an algebra
over the coefficient ring H*(BG), yet the coefficient ring H*(BG) is not necessarily a subring of
H?.(M). However, in Proposition we showed that when the G-fixed-point locus M ¢ is non-
empty, then H*(BG) can be embedded into H&, (M) as a subring.

To establish the equivariant analogue of fibre-wise integration, we must first cover some prereq-
uisites. A torsion submodule of H2.(M) over H*(BG), is the submodule of non-zero elements
a € HX(M) such thatw - 7 = 0 for some non-zero element 7 € H*(BG). When G = T'is
an n-dimensional torus, denote R[r] := R[ry, ..., r,], so that we have H*(BT) = R[r] and thus
H2(M) becomes an R[r]-module.

By considering now the bigger ring R[r, 7 '], whose elements are the Laurent series in the inde-
terminates 'y, . . ., 7', then it is possible to kill off the torsion as follows: note that an R[r|-module
A is a torsion module if, and only if, A ®gjy R[r, 7] is the trivial module. Indeed, in the larger
module A ®gy, R[r, 77!, any element o € A can be written in the form (ar*)r=" forany k € Z,
thus killing off any torsion by taking £ to be a large enough integer.

Now suppose that the torus 7" acts smoothly on M, so that its fixed-point locus M7 is a regular
submanifold [Tu20, Theorem 25.1] of M. Assume that F' C M7 is a connected component of the
fixed-point locus, then as the fixed-point set [ is necessarily 7-invariant, the inclusion ¢ : ' — M is
T-equivariant.

Both H}.(F') and H}.(M ) are H*(BT)-modules and also rings — they are hence both H*(BT)-
algebras. If there exists a zon-zero element denoted by ¢ € H*(BT), that we shall assume and whose
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existence is proven by example (5.45), then one may localise H3.(F') and H3.(M ) with respect to ¢,
and the inclusion ¢ : F' — M induces 2 H*(BT)-algebra homomorphism:

i HE(M) — H3(F),.

The reason that we have introduced all of this is because of Borel’s localisation theorem, that is
stated in Theoremnext. What Borel’s localisation theorem says, is that the equivariant cohomology
of a T-manifold is concentrated on its fixed-point set M7 up to torsion, and that the isomorphism in
localised equivariant cohomology of the manifold and its fixed-point set is in fact a 77%g isomorphism.

Theorem s.43 (Borel localisation). Suppose that a torus'T" acts on a manifold M with compact fixed-
point set M T Let F C M7 be a connected component of M T andlet1 . F — M be the inclusion.
Then both the kernel and cokernel of the pull-back:

L HA (M) — Ha(F)

are torsion H*(BT)-modules. Hence, after localising with respect to some non-zero element ¢ €
H*(BT), the localised pull-back 17, becomes an isomorphism:

vy Hy (M), — Hp(F),. (5-34)

See, for example, [Hsi7s, Theorem (IIL1)], for a proof of Theorem|s.43

To avoid going too far afield, let us come back to the equivariant version of the fibre-wise integral
in (5.32). As above, we specialise to the case when a torus 1" acts locally freely on a compact manifold
M, and where F' C M7 is a connected component of the fixed-point set. Let:

L F s M (5.35)

be the inclusion. Forgetting momentarily about any equivariance, the inclusion (s.3s) induces a

push-forward in homology:
Ly Ho(F) — Ho (M),

as well as a pull-back in cohomology:
o HY (M) — H*(F).
Since £ and M are both compact and oriented manifolds, via Poincaré duality, we can obtain a

push-forward in cohomology too [AB84, §2]. Namely, in denoting m = dim¢ M and f = dim¢ F
then, for any 0 < ¢ < m, we have the commutative diagram:

Hq(F> ;) Hq(M>
Al .. Al ..
H™H(F) -~ H™ (M)
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we obtain the Gysin, or umkebrungs, homomorphism:
Ly s HY(F) — H*Tm=D(Ar), (5.36)
As is the inclusion, its Gysin homomorphism ¢, : H*(F') — H*(M) factors through the
Thom isomorphism [AB84) §2]:
Op: HY(F) = H" D (), (5:37)

where H? (vr) is the compactly-supported cohomology of the normal bundle v to F'in M, as:

b HY(F) =25 gD () —— He+m=D (1), (5.38)

The image of the unit 1 € H*(F’) under the Thom isomorphism defines the Thom class
®r(1) € H/ (M), which is the cohomology class that is the Poincaré dual to the fundamental class
of Flin M, ie., [F| € Hy—¢(M). See, for example, [AB84] or [GS99|] for more details.

One characteristic possessed by the Thom class ® (1) which will be essential to us, is that
its restriction to F' coincides with the Euler class of the normal bundle vg to F' in M, see [GS99,

Theorem 10.5.1]. Therefore, together with (5.37)), we get:

("0 1.)(1) = Eul(vi). (5.39)

The Gysin homomorphism (5.36)), in addition to the results of and (5.39)), can be extended
to the equivariant setting in a straightforward way, see [AB84, §2], as:
Lyt HY(F) — H3M(M), o HW(M) — H3(F), and (¢*o)(1) = Eul” (vg). (s.40)
As F is a connected component of M T it is T-invariant, so by the Kiinneth formula we find that:
HY(F)=H*(F xp ET) = H*(F x BT) 2 H*(F) ® H*(BT). (5.41)

Therefore, since Bul” (v) € H$(F), from Theoremwe see that Eul(vp) becomes invertible
after passing to some suitably-localised module:

H(F), = H*(F) ® H*(BT),,
where the non-zero element ¢ € H*(BT) appeared in the statement of Theorem|s.43]

To finally determine an example for the non-zero element ¢ € H*(BT), assume that the 7"
equivariant normal bundle vp to I’ decomposes as vy = @,V , Via the equivariant splitting
principle in Theorem[s.27} where 7" acts on each summand V. ; with weight ar; € t*. Observe
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that ap; # 0 for each j, since otherwise the component V. ; would be tangent to the fixed-point
component /' and consequently not normal to it.

From in Example the T-equivariant Euler class Eul” (v) € H$.(F) can be written

as the product:
EUI Hcl aF] = H(Cl(VaF,j) _aij) ’
J

where the T-equivariant first Chern classes are ¢f (Va,.,;) = ¢1(Vay.,) — op; from Lemma Let

oF,j
us define:

PF = HOéF,j, (5.42)
J

which is a non-zero element of S(t*). Therefore ¢ is a non-vanishing t-valued polynomial and so,
by passing to the localisation H}.(F).,,., we can factor Eul” (1) as:

Eul = Qp- H( a VFJ ) . (5-43)

Observe that the ¢; (Vg ;) /g ; terms in 1) are nilpotent, since raising any one of them to a power
greater than m = dim¢ M would annihilate it. Therefore, Eul” (vp) is invertible with inverse:

ﬁ 11 i (CI VFJ)Y] (5-44)

= ar;

since the infinite series truncates after m = dimc M terms.

Finally, let us an element ¢ € S(t*) to be the product of the ¢ over each connected fixed-point
component F' C M T so that:

II ¢r= I T[ewscs®). (5-45)

FCMT FCMT j
Then ¢ is also non-zero as each ¢ is, and so it follows that the localised isomorphism :
Lot =Eul(vp) : HY(F), — H3(M),,

is can be explicitly inverted. Namely, if we denote:
L* [ ] ( ]
Q=) —F—:Hy(M), — H}(F),,
Eul F
where tp : F' < M, then () defines the inverse to the ring homomorphism:
L (), — H3 (M),

82



Thence, for any T-equivariant differential form a € H3. (M), by considering the localisation
H3(M) C H3(M),, we see that:

0= (0@ 0) = Y s or)(e) (546

FCMT (vr
Then, by finally applying the equivariant push-forward:
M. H$(M) — H*(BT)

to both sides of , and by using the functoriality of push-forwards, i.e., that (Mo, |p) =nE,

then we finally obtain the equivariant integration formula:

R S el SN Ao et Y

FCMT FCMT

In terms of the dual basis 71, . . ., ry of t*, the push-forward aMis represented by the operation
that sends an equivariant differential form:

o = E d[’f’l
I

:;(/Ma])rf,

giving us a polynomial with respect to the variables, H*(BT) = R[rq, ..., 7).

to the integral:

The derivation of the equivariant integral formula inis the one used by Atiyah and Bott in
[AB84]. In [BV82], Berline and Vergne however adopted a more geometric stance in their proof of
what is now called the Atiyah-Bott-Berline-Vergne localisation formula.

Theorem s.44 (Atiyah-Bott-Berline-Vergne localisation formula). Let T be an n-dimensional
torus acting on a compact manifold M. For any T-equivariant characteristic class o« € Hy.(M),

M N _ _ ipQy
T (Oz)—/]\/[(l/— Z /FEulT(VF)7 (5-48)

FCMT
where 1, © Hyp (M), — H}(F), is the restriction of « to the connected T-fixed-point component
F C M7T, and where vi is the normal bundle to the F in T M.
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Observe that in the Atiyah-Bott-Berline-Vergne localisation formula , the left-hand side
belongs to HY.(M ), whereas the right-hand side belongs to the localisation H3.(M ). Hence, one
should expect there to be a remarkable amount of cancellation on the right-hand side of with
integrands whose terms involve several non-trivial denominators.

When M7 consists of a finite number isolated fixed-points, Theorem simplifies to a finite
sum of terms over the fixed points of M T,

Corollary s.45. Assuming the bypotheses of Theorem and that the fixed-point locus M consists of
finitely-many isolated fixed-points. Then the equivariant integration formula in becomes:

[T

peMT

When (M, w) is a compact Kihler manifold that is furthermore acted upon by a torus 7" in an
effective and Hamiltonian way with n = dim¢ M = dimg 7" and corresponding the moment map
p: M — t*. If the fixed-point locus M for the T-action is non-empty, then we may apply the
localisation formula from Theorem to the Riemann-Roch-Hirzebruch formula from
Theorem which simplifies its evaluation significantly.

When £ — M is a holomorphic pre-quantum line bundle over M, so that its first Chern class is
¢1(L) = [w], and moreover assume that the action of 7" on M lifts up to one on L. Over a fixed-point
p € M7, we have that v, = T, M since {p} is zero-dimensional, and moreover let us assume that v,

decomposes via the equivariant splitting principle (5.27)) of Theoremf[s.39} as:

Vp E Vo, &... Vo

p,n?

where T"acts on each V,, ; with weight v, ; € t* foreach j =1, ..., n. Additionally from Appendix
the T'-weight on the line bundle £ is given by the value ;1(p) € t* of the moment map for the
T-action. By applying the localisation formula from Corollary[s.4s|to the Hirzebruch-Riemann-
Roch formula from Theorem we obtain the equivariant index formula for when M is

smooth.

Theorem s5.46 (Equivariant index theorem). For any element X € tsuch that (o, ;, X) # 0 for

cach j = 1,...,n, the equivariant Riemann-Roch number X is given by the formula:
elu(p), X)
(x o exp)( , (s-50)
peZ]W:T H] 1 1 — elap,s X))

where x T — H*(BT) is the representation ring for the T-action on the L-twisted Dolbeanlt
cobomology group, H(M; L).
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5.6 The Equivariant Kawasaki-Riemann-Roch Theorem

There still remains a proverbial “elephant in the room” to address, namely that the the scope of
Theorem does not extend to orbifolds. Yet, in general, from Theoremwe know that most
of our cut spaces will be orbifolds. This dilemma forces us to consider the equivariant analogue of
Theorem the Kawasaki-Riemann-Roch theorem.

Let M be a compact symplectic orbifold with symplectic two-form w, and let L — M be a
holomorphic pre-quantum orbifold line bundle over M. Assume that a torus 7" acts on M effectively
and in 2 Hamiltonian way with corresponding moment map x : M — t*, and assume that M7
consists of finitely-many isolated fixed points.

Denote by M and P the inertia orbifolds of M and {p} respectively, defined in the Appendix@,
andlet 7 : M — M be the corresponding immersion. We can lift the action of 7" on M up to one on

M via its fundamental vector fields [Duirs, §15.4]. From the inclusion {p} < M, we get the normal
bundle v, and we assume that it splits 7-equivariantly as:

2V e... eV,

Denote the pull-backs of each V), ; via 7 by ‘7;” = T'pforeach j = 1,...,n, in addition to the
pull-back of the fibre £, via T as £,, := 77 L,,.

The components of the inertia orbifold p are indexed by the conjugacy classes v € Conj(I',).
Denote the canonical automorphisms of /3 and of Vp i by A(L) and A(V, ), induced by the action
of I', on p,,. As I}, is a finite abelian group and since each E and V ».; is aline bundle, when restricted

to the component P, the automorphisms A(L) and A(V}D’J) can be identified with elements of Uy,
see [Silo6, Remark 10.10]. That s to say, they give us the following characters for the I',-representation

for Ep as:
Xpo(7) = A(Ly) |, € Un,

and for ‘7]3’]' as:
Xp.i (V) = A(Vp )z, € Ui,
wherej =1,...,n

Fix an element £ € t. From Definition restricting the T-equivariant twisted Chern class
ChL (,C ) to p,, we have:

T .
ChL (L ( D5, = Xpo(7) - € EE) =y, o(v) - W @8,
Similarly, we get for 1//\;,7 jt
> TV o s
CHL (T )5, = xps (1) - €4 559 = x5 (1) - el
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where each oy, ; € t* denotes the isotropy weight for the T-actionon V,, j forj = 1,... ,n.

For the associated characteristic class D, defined in using the immersion 7|5, : {py} —
{p}, since dimg{p, } = dimgr{p} = 0 we have that D; (Nj, ) = 1. Furthermore, using Frobenius

formula [GGKo2, Appendix I], for any class function x, we have that:

> =5 2 #lo)

~v€Conj(T'p) mp gely

Here, it is the characters X, o and X, ; that we consider as class functions. Then, by applylng the
Atiyah-Bott-Berline-Vergne localisation formula (5.48) to the Kawasaki-Riemann-Roch formula (4.23),

we get:
Theorem s.47 (Equivariant Kawasaki-Riemann-Roch formula). Suppose that M7 consists of

finitely-many isolated fixed points. Given an element & € tsuch that (o, ; €) # 0 foreach j =1
the equivariant character x : T — H*(BT) of H*(M; L) is given by the formula:

elnp), €)
(xoexp)() = Y = > i ff“_xp Y (s.51)

pGMT | p| ger
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Chapter 6

Isotropy Data of the Cut Spaces

In order to apply the equivariant localisation formulae (5.48) of Atiyah-Bott-Berline-Vergne from
Theorem to a cut space M, one must first know the prerequisite isotropy data. Namely, we
need to know what points make up the fixed-point locus (M*)7 for the residual T-action on M3?,

in addition to the isotropy data associated to each connected fixed-point component F' C (M:°)7.
If applicable, orbifold data will also have to be ascertained if M is an orbifold, so that we can then

apply the Kawasaki-Riemann-Roch formula from Theorem

6.1 Fixed-Point Data of the Cut Spaces

Given a regular value v € €%, let M, be a hypertoric variety and A = {Hy, ..., Hx} be its a simple
hyperplane arrangement in t*. Given a suitable value of 6 € R so that the cut space M’ is at
least an orbifold, and denote by A5’ = pgr(M°) its moment polyptych. Given a pointv € A3’
of the polyptych, recall that Z, C {1,..., N} is the subset defined by Z, = {i | v € H; }, and
determines the flat Hz, € L(A). If tk H7, = k then, as the arrangement A is simple, we have
dimg Hz, = n — kand so if tk Hz, = n, then v = H, is an interior vertex of A5°. On the other
hand, if v € II!, is a vertex of the polyptych boundary, then rk Hz, = n — 1 and the flat H7, is the
affine line passing through v in addition to another single boundary vertex on the opposite side of the

polyptych boundary IT),.

Lemma 6.1. A pointp € M is a fixed point for the T-action on M3° if, and only if, v = pr(p) isa
vertex of the moment polyptych A5°. Furthermore, the fixed points of M3 come in one of two types:

(i) pointsp € M that belong to the interior of the cut space M3, cach of which is mapped onto a
vertex v = Hry, in the polyptych interior A3°;

(i1) pointsp € Z2 that belong to the boundary of the cut space M3°, each of which is mapped onto
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vertex v € 115 on the polyptych boundary 112,

Proof. For from [BDoo), Theorem 3.1], if a point p € M, lies in the interior of the cut space
M3’ whose image is in the moment polyptych A3’ isv = pr(p) € AZ?, then p will be fixed by 7' if,
and only if, v = Hz, withrk Hz, = nsince A is simple.

Then for suppose that p € Z2 is a point on the boundary of M=° and thatv = ug(p) € I1°.
Then p is fixed by the residual U;-action on M;’, since ZS = o 1(0)/U, by the definition of the
symplectic cut. So, for p to be fixed by the residual torus 7" as well, it is necessary for v to belong to
n — 1 hyperplanes. That is to say, with v € Hi N Hz, where Hz, = Njez, H; with Hz, € L(A)a
flat of rank vk Hz, =n — 1.

To prove the sufficiency, consider the four-dimensional hypertoric subvariety M, of M, that
is determined by the flat H7,. From Proposition M:? is a closed Kihler subvariety of the cut
space M and, since v € Hz,, the boundary point p € Zl‘f is also a point belonging to the boundary
Z of the cut subspace M=°. Since Mz° C M, the moment polyptych Az’ coincides with the
intersection A3’ = A3 N Hz, , and similarly for its polyptych boundary IT5* = 1% N H, .

Aswv € II), N Hz,, from the end of the last paragraph, it is also a boundary vertex of AZ’, hence

p E ng from Proposition However, as tk H7, = n — 1, the residual torus 7% Zv that acts
on M:* is one-dimensional, and thus TekTv 2 [, from Proposition It follows then that the
one-dimensional residual torus 7°"%Z and the residual circle U; have the same fixed-point set, thus
TkLo fixes p € Z%J. Finally, as the embedding 7 : M=’ < M3’ is Terk Lo -equivariant, the point
pE ng C 29 is fixed by the T-action. O]

With the T-fixed-point locus (M:°)7 of the cut space M:° determined, the next step is to
determine the isotropy representation of 7" on the tangent space 7, M’ to each fixed pointp €
(M:z°)T. Let v = pr(p) denote its corresponding point in the moment polyptych A3’ so that, from
Lemma [6.1, v must be either an interior vertex or a boundary vertex. Let H; € A be one of the
hyperplanes that contains v, which implies that j € Z,.

We will denote the edge emanating out from v by &, j, whose edge vector we will denote by
0p,; € t*, and orient it by the condition that (g, ;, u;) = 1. Similarly, we will denote the “opposite”
edge emanating out from v by ¢, j, whose edge vector we will denote by ¢, ; € t*, and orient it by the
condition that (¢, ;, u;) = —1. Note that these two conditions imply that the edges, ¢, ; and ¢, j,
do not lie along the hyperplane H; in the polyptych A>°.

If Hy, € L(A)isarankrk Hz, = n flat, then v = Hz, is an interior vertex. In this case, for
each j € Z,, the corresponding hyperplane H; determines the edge pair {¢,, ;, ¢, ; } emanating out
from v asin Figure since A is a simple hyperplane arrangement.

On the other hand, if Hz, is a rank tk Hz, = n — 1 flat, thenv € Hz, N Hi is a boundary
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Figure 6.1: An edge pair {¢, ;, ¢v,; } emanating out from an interior vertex v, corresponding to the

hyperplane H;.

vertex. For each j € 7, we shall continue to denote by {¢,, ;, ¢, ;} the edge pair corresponding to
the hyperplane H; as before. Additionally however, we denote the edge emanating inwards from v
by s,, whose edge vector we will denote by 9, € t* and, for any subset A C {1, ..., N} such that
v € II%, orient it by the condition that (¢, u4) = 1. Despite there being several possible choices for
the subset A, the pairing between the edge vector ¥, and the residual Uy -action generator w4 € tis
well-defined, since:

us = up mod Spang{u;|j € Z,},foreach A, B C {1,..., N} such thatv € TI%, N 1%,

and, as >, C Hy,:

v, € ﬂ Anne{u;},

JE€Ly
which can be seen in Figure
H;
5 .
II B Up Uj
I
19;0 UA
AN
Sp.j
>
v Op,j I1°

A

Figure 6.2: An edge triple {0,, €, j, ¥, j} emanating out from a boundary vertex v. Since up =
ua + uj, and as ¥, annihilates u;, we have that (9, ua) = (J,, ug).

Theorem 6.2. Let M, be a hypertoric variety with 2n = dime M,, and let A be its simple byperplane
arrangement in t*. Denote by M 3° its cut space with corresponding moment polyptych A5°. Then:
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(z) if v = Hy, is an interior vertex, where L, € L(A) is a rank vk Hz, = n flat, then there exist
2n distinct edges, {¢;, ¢ }jet,, emanating out from v;

(ii) ifv € % N Hz, is a boundary vertex, where I, € L(A) isa rank vk Hz, = n — 1 flat and
for some subset A C {1, ..., N}, then there exist 2n — 1 distinct edges, {5¢,, €y j, Vv j }jeTsr
emanating out from .

Proof. For[(i)} this is proven in [HHos} Proposition]. For[(ii); the result is clear when n = 1, since
then t* = R and so the moment polyptych A3’ is equal to a finite union of closed line intervals
in R. Therefore, one of the two endpoints of A is the vertex v, and the edge sz, is the polyptych
component A%’ for which v € II%,.

Y

When n = 2, so that now t* = R2, we can write the boundary vertex as the intersection
v = II% N I3 for some pair of subsets A, B C {1,..., N} such that B = A U {j}, where
j € B\ A. This implies that the hyperplane H; contains v and that H; separates the two regions,
A 4 and Apg, from each other as in Figure

Figure 6.3: The vertex v = 1% N 1% belongs to the hyperplane H;, which separates A5’ from A3,

Theedge €, ; emanates out from v along the boundary component IT9, since I1%, is also cooriented
positively with respect to the half-space H since, forany o € IT%,, we have that (av, u;) > 0. Similarly,
the edge 0, ; emanates out from v along the boundary component I1%;, albeit now with I1% cooriented
negatively with respect to the half-space ;r since, for any 3 € I19,, we have that (B, u;) <O0.

Therefore, we have the two edges, €, j and ,, ;. The third and final edge &, is, of course, the edge
emanating out from v along the interface A5’ N A3’ between the polyptych components. That is to
say, forany v € A5° N AF’, we have that (7, u;) = 0. We therefore have 3 = 2n — 1 edges, namely
{5y, €05, Puvj}>whenn = 2.

Now, for the general n > 3 case, fix a boundary vertex v € 112 N Hz, where the flat Hz, € L(.A)
has rank rk Hz, = n — 1. Let y be the interior vertex that is adjacent to v, so that y = Hz,, where
Z, € L(A)isaflat of rank rk H- 7, = n. Observe that the edge s¢, connects v to y along the affine
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subspace Hz, sincetk Hz, = n —1 < n = rtkHz,andasy = Hz, C Hz,, we have that
T, =1,U{j}, for someelement j € Z, since A is a simple arrangement.

Now, let us fix another element & € Z,,, and define a new flat H Towi € L(.A) using the subset:
Tok =Ty \ {k} =L, \ {j, k}.
Then clearly, J, 1, has cardinality |7, x| =tk Hz, , = n — 2as Ajis simple, and also:
Toyik &Ly Iy, which implies that Hz, C Hz, CHg, .- (6.1)

Astk Hgz, . =mn—2andasan affinespacein t*, Hz, , is two-dimensional and contains the flat
‘Hz, as an affine line, as WeH as the two vertices v and y from 1) The intersection of H ook with
the moment polyptych A3 is the subpolyptych AZ’ = AS N Hy, ... Which contains the vertices
vand y, since v,y € Hr, C Hy, .as demonstrated in Flgure

A NHg,,,
AS N Hy,

v v
v
)

Figure 6.4: A moment polyptych A3’ and two of its subpolyptychs A<5 . and AZ°, with each
corresponding to the intersection of A3’ with the flats, respectively H 7, . and Hrz,, of A.

The subpolyptych A . is the moment polyptych of the closed Kihler subvariety by Proposition
- v,
Mz ={[e,w] € M| 5 =w =O0foreachl € Joyp }.
Astk Hy, . = 2,thendimg M;fyk = 4n — 4(n — 2) = 8. Therefore, the cut subspace Mz, ,
satisfies the hypotheses for the case when n = 2, since v € I1% is a boundary vertex of the
subpolyptych A%’ andy € A7 . is an interior vertex of the suﬁpolyptych AT . as both are

connected via the edge 2, that hes along the flat Hz, which itself is a subspace of the flat Hy,  ,,s0
HZ’U g va,y,k

The edge ¢, emanates out from v along Hz, with edge vector ¥, € t*, whereas the edge ¢, ;
emanates out from v along I1% N Hz, , with edge vector g, ; € t*, and lastly the edge ,, ; emanates
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out from v along 1% N Hy, withedgevectorg, ; € t*. Finally,as Z, = 7, U{j} = Juyx U{Jj, k},
we see that Hz, C Hgz, , foreach k € Z,. Thereare n — 1 choices of element for k € Z, since
rk Hz, = n — 1, with each choice producing an additional edge pair {¢, ;, ¢, ;} towards the final
edge count, contributing 2n — 2 edges in total. As ¢, is a common subset in each affine plane Hz, .,
we only count », once to get us 2n — 1 edges, {54, €., ¥u.j } jez, » Overall. O

Asargued in [HHos|, let ,, j be an edge in t* emanating out from a vertex v € A3°, for any given
J € Z,. Then ¢, lies entirely outside of one of the hyperplanes /; that contains v, and moreover
€y,; determines an edge of a polyptych component A%’ in t*, which is equal to the image of a cut
component A5’ = pr(E5%). Letp € (5°) denote the fixed point in £5° that corresponds to
the vertex, i.c., such that v = pr(p). As each cut component £5° is itself a compact toric Kihler
variety then, by the equivariant Darboux-Weinstein theorem [Wei77, Lecture s], there exists a one-
dimensional T-weight space T,,E5° of T),M° corresponding to the edge €, ;, whose isotropy weight
0p.; € V¥ satisfies (0,, u;) = 1.

When v = Hz, is an interior vertex of A5’ so that tk Hz, = n then, from Theorem to
each hyperplane H; for which j € Z,, we can associate to it the edge pair, {€, j, ¢, ;}. From the
discussion in the previous paragraph, each edge has a corresponding T'-weight which coincides with
the corresponding edge vector, so g, ; € t* fore, j,and g, ; € t* for ¢, ;. On the other hand, when
v € I13 N Hz, is a boundary vertex, then it is not quite so obvious as to which edge should correspond
to which T-weight. This is because, from Theorem there exist only 2n — 2 edges that correspond
to the n — 1 hyperplanes ; with j € Z,. However, we expect there to be 2n T'-weights in total since
dimc M° = 2n, and the irreducible weight spaces of T}, M >* are all complex lines, i.e., of complex
dimension one. So we have 2n — 2(n — 1) = 2 complex dimensions yet to be accounted for, and yet
only one edge left, namely sz, with edge vector 9, € t*.

Proposition 6.3. Let M, be a hypertoric variety with dimec M,, = 2n, and let A be its simple by-
perplane arrangement in . Denote by M° its cut space with corresponding moment polyptych A5°.
Then:

(i) ifp € (M) is an interior fixed point and v = pr(p) is its interior vertex in N3°, then the
isotropy representation of T on T, M >° splits as:

TPMVS(S = @ ( Op,j @ ‘/%,j) : (62)

Here, each summand V,, . and V,, , in is a weight space of the isotropy representation of T
on T, M3°, with isotropy weights oy, j and <, ; in t*, respectively;

(i) ifp € (Z5)T is a boundary fixed point and v = ur(q) is its boundary vertex point in 112, then
the isotropy representation of T on T, M 3° splits as:

T,M; = (Vo, & Va,) ®EP (V,,, ®Vi,,) (6.3)

.
J€Ly
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Here, each summand Vy, V,

o0 and Ve, in is a weight space of the isotropy representation
of T on T, M 3°, with isotropy weights 0, 0y j, and <, j in t*, respectively.

Proof. For((i)} this comes from the proof of [HHos} Proposition 3.2]. For((ii)} fix a boundary vertex
v € 11> N Hz,. From Lemma there exist 2n — 1 edges, {3, €45, Pv,; } jez,» which emanate
out from v where 2n — 2 of the edges, {€, j, ¥y j } jez,, correspond to the n — 1 hyperplanes H; for
which j € Z,. These contribute 2n — 2 of the isotropy weights in total, namely g, ; and ¢, ; for each
Jj €L,

Now, for the remaining edge sz, consider the hypertoric subvariety Mz, of M, where
dimc Mz, = 2, along with its cut subspace, M3’. Since v € Hi N Hz, C H,‘i, from Proposi-
tionwe see that v is a boundary vertex of the subpolyptych A7’ = A5° N Hz,. The subpolyptych
AZ’ is a subset of the real line as (trkdv)* 22 R, so the edge 3¢, is the only possible edge which can em-
anate out from v. Hence, 5, has at least one isotropy weight given by the edge vector ¥, € (terk Zb)*.
However, since dim¢ M3’, then T, M>* = C2. Furthermore, as MISb is a compact Kihler toric
variety, by a dimensionality argument we must have that T, M=° = Vi @ V. Hence the last two

isotropy weights come from the edge vector ¥, counted multiplicity two. L]

To represent the isotropy data for a fixed point p € M=, we superpose each corresponding
isotropy weight as a vector pointing along its respective edge as in Figure[6.s} For the isotropy weights
0p,j and g, ; corresponding to the hyperplane H, recall that they are cooriented via the condition
that (0, ;, u;) = land (s, ;, uj) = —1,foreach j € Z,, and also recall that g, j and ¢, ; are the two
weights in t* which do not lie along H;.

Relative to the moment polyptych A>°, one sees that g, ; points inwards towards Aga, whereas
Sp,j points outwards and away from the distinguished base region, AE‘S. Furthermore, g, ; and g, ;
are in some sense opposites to one another, since g, ; = —¢, j when p € (M3*)7 is an interior fixed
point, and since g, ; = —¢, ; mod Anne{uy, |k € Z,} when p € (Z2)7 is a boundary fixed point.
Finally, for the isotropy weight 1, of multiplicity two that points along the flat Hz,, we represent it
using a double-headed arrow for purely illustrative purposes as in Figure

i ¥ U
—
My
1\19
Sp.j 7
Op,j

\ £

v !

(a) Isotropy weights of an interior fixed point. (b) Isotropy weights of an interior fixed point.

Figure 6.5: Isotropy weights of a fixed point p € M, represented as edge vectors emanating out
from its corresponding vertex v = pr(p) € A’
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6.2 The Finite Subgroup associated to a Flat

There is additional isotropy data yet to be specified in the case when the cut space M is an orbifold.
To start, let A = {H, ..., Hy} be the simple hyperplane arrangement in t* that corresponds to
the hypertoric variety M, and let Hr € L(A) be aflat of A with F C {1,..., N}. Recall from
Sectiono.4]the sublattices, Ur = ®;c#R - uj and Vr = (F) N 13, of t3 in (2.8). Furthermore in
, we obtained the quotient tori, T7<7 = (F) /Ur and T{*7 = (F)/V. Finally, these lattices
can be used to define the finite abelian group I's = V/Uz, which is trivial if and only if only Ur is
a saturated sublattice of V.

Let us focus on the instance where the flat H r corresponds to an interior vertex v € A5’ of the
moment polyptych A>’. Then we have that ' = 7, with rk Hz, = n, that V7, = {7, and also that
v= Hz, Ifp € (M;°)"" denotes the interior fixed point such that v = ugr(p) then, from [LT97,
Lemma 6.6], its orbifold structure group is:

FP g FIv - VI‘L}/UI’U g ;/ Spa’nz { u] | j E IU } ° (6'4)

The same discussion essentially applies when v is a boundary vertex of A3°, with the only difference
now being that F = Z, will haverank Z, = n — 1. Let A C {1,..., N} be a subset for which
v € 119 In this case, introduce the following sublattice:

Uf; = Spanz{uj,uA !jEIUandv EH‘sA},

and denote:
VI‘;‘ := Spang { uj, us ! j € T,andv € 11 b=

Since, for any other subset B C {1, ..., N} for which v € I1%, the set difference between A and
B consists only of elements in Z,,, we have that Ug) = Uf}} . Hence the sublattice Uﬁ is well-defined,
regardless which subset A C {1,..., N} we choose to specify the boundary vertex v € II%. If
p € (Z5)T" is aboundary fixed point such that v = pr(p) € Hz, NI, then it follows from [LT97,
Lemma 6.6] again that its orbifold structure group is given by:

T, ~T7 = VA /U7 =t/ Spany { u;, ua | j €Z,andv € I }. (6.5)

To summarise:

Lemma 6.4. Let M, be a hypertoric variety and let A = {H, ..., H,} be its corresponding simple
byperplane arrangement. If p € (M) is a fixed point in the cut space M3’ for the residual T"-
action, and if v = pr(p) € A3’ is its corresponding vertex of the moment polyptych N3°, then the
orbifold structure group I, is given by:

r o )iz =1t/Spanz{v; [j €T, }, ifv e A,
"\T2 =t/ Spang {uj,ua | j € Lyandv €11, },  ifv €T,
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Observe that either specification of the orbifold structure group in (6.4) or in implies that
I", is a finite subgroup of the residual torus 7. Indeed, since both Uz, and Uft are sublattices of t3,

we see that:

Tz, & t3/U
" 2/ Tl T (6.6)
FZU = t%/UZv

Furthermore, if we denote the multiplicity of an orbifold point p € M by m,,, then it coincides
with the order of the orbifold structure group I':

(6.7)

mz, = ’FL;‘ = [VL; : UL,]a ifv € A;‘s,
m., =
P mi = T4 | =[VA U7, ifvell,

and henceI'), = Z/m,,Z.

6.3 Canonical Automorphisms of the Cut Line Bundle £’

For this section, assume that a holomorphic 7"-equivariant pre-quantum orbifold line bundle £ exists
over the cut space M. For a fixed point p € (M3°)"", we wish to determine what the characters:

Aut(Ep) e U, forj=0;
Xp,j - Fp — ~ .
Aut(VpJ) € Ul, fOI‘j = 1,...,271,

are, for the representations Ep and ‘A/p,j of I, that make an appearance in the equivariant Kawasaki-
Riemann-Roch formula (s.51) of Theorem Asin Sectionbefore, regardless of whether p
belongs to the interior M5 or the boundary Z of the cut space, for clarity we shall denote:

. dSpanz{u;|j €L}, ifp € M;*; (6.8)
- Spanz{uj,uA‘jerandpEZf‘}, iftpe Z°, '
so that we can write its orbifold structure group I', and multiplicity m,, respectively as:
Iy =1t7/U,, and my = |Ip| = [tz : Up.
By definition, the dual lattice U, to Uj, is then isomorphic to:
U* =~ {Qp7j|j€Iv}v ifpeMl/Sé; (69)
P {QpJ,z?p’jEIvandper}, iprZl‘f, '

since (0, j, uj) = lforeach j =1,...,n whenever ur(p) € H;, and also because (9,,, ua) = 1if
additionally p € Z¢. Since U, C %, we therefore see that (t3)* C U, If we set:

L= U,/(2),
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and if v € t7 represents the element g € I', and similarly if o € U}; represents the element a € T,
then from [[CLSa, Proposition 1.3.18], the pairing:

) x Ty :— Uy, where (a,g) — 2™Vl (6.10)

is well-defined and induces an isomorphism I, = Homz (I';; Uy). From [KSWo7], we can use (6.10)

to express the character of the representation £, of I', as:

XpU(’Y) — 2™V =Hur(P),7) ¢ Ui,

and also: ~
ppi(7) = eV onV,
Xpi (V) = 4 0p(7) = V0V on ¥ (6.11)
0,(7) := 2™V on Vy,.
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Chapter 7

Equivariant Quantisation of Hypertoric
Varieties

Let us discuss our strategy; for a hypertoric variety M,,, we formed its compact cut space M ;* and
determined the isotropy data for the 7™"-action. Using the results of Chapter |6} this isotropy data
can be superposed over the moment polyptych A5’ given by the image of the real moment map,
AZ? = pr(M:°) in (t")*. We now turn to deriving a formula for the subspace H°(M,; L, )4 of
weight-d holomorphic sections on the hypertoric variety M,,, where d € Z is some suitable non-
negative integer. We accomplish this by first calculating the equivariant character x : 7" — H*(BT")
for the T™"-representation, H°(M3s?; £5?), in Theorem We then derive an expression for the
weight-d subspace H°(M,; L,),4 as a quotient of the spaces H(M3%; L) in Theorem [7.8 and
Corollary[7.9} and consequently its sought-after dimension formula.

7.1 Pre-Quantum Line Bundles on the Cut Spaces

To start, denote:

Fr:=TC" xCy — T*C"
the TN -equivariant line bundle over T*CN, which we consider to be holomorphic with respect to
the complex-structure I; on T*CY. Here, TV acts on F,, with weight A € (t)*. We can make
JF) into an /;-holomorphic ™ -equivariant pre-quantum line bundle over T*CN by equipping F
with the Hermitian metric from (1.32), with Chern connection V; whose curvature is R(F)) =
(27 /+/—1)wg, similar to what was done before in Sectionfollowing [Konoo] and [DGMW, §3].

Let v € £ be the image of A under¢* : (t)* — & from (L.11), and restrict F to the level-set
bk (v, 0). By an abuse of notation, relabel:

F, = qﬁﬁll((y, 0)xC, — (bﬁ}l((l/, 0)

97



to denote the resulting /;-holomorphic TV -equivariant pre-quantum line bundle over ¢y (v, 0).
The subtorus K < TN preserves the I;-holomorphic pre-quantum structure on F,, and so, if
(,0) € € ® Im(H) is a regular value of the hyperkihler moment map ¢nk, then F,, descends to
the I;-holomorphic pre-quantum line bundle:

L, =F,/K = ¢g(v,0) x5 C, — M,

over the hypertoric variety M,,. Since F, is ™ -equivariant, it follows then that the I;-holomorphic
pre-quantum line bundle £, is furthermore 7™-equivariant.

Similarly, we let:

Lc=CxC—C

be the trivial holomorphic line bundle over C with respect to the standard complex structure, I¢ say,
and equip it with the Hermitian metric:

€. = ¢l

thus inducing the Chern connection V¢ on L, whose curvature is R(Lc) = (2m/+/—1)d€ A d{
similar to before. Hence L is also pre-quantisable in essentially the same way that F) is, though one
can consult [DGMW, §3] for more details.

Now, let us consider the product orbifold M, x C, along with the diagram:

L, X Lc

g L

L,

T o]

v

where:

L, R Lc:=pr] L, ®pry Lc — M, xC

is the external tensor product of £, and L¢. Then £, X L¢ isan (/; X /¢ )-holomorphic pre-quantum
line bundle over M,, x C via its product structure, namely that of the product Chern connection
V. XV, see [DGMW, §3]. From Section 3.2} recall that the Hamiltonian actions of U; on M,, and

on the product M, x C gave rise to the following moment maps:
® : M, — Rso, Pz, w] = [Jw]?,

and:
p: M, x C— Rx, p([z,w], &) = ®[z,w] + |€?,
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respectively. Provided that we choose a “suitable”, i.e. large enough and integral, d € Z>, then
we can lift the diagonal U;-action on M, x C up to an action on £, X Lc¢, thus obtaining an
(11 X I¢)-holomorphic (1™ x Uy )-equivariant pre-quantum line bundle over M, x C.

After taking the quotient with respect to the U;-action to form the cut space M;;?, then £, X
Lc descends M ;¢ to become a T™-equivariant pre-quantum line bundle over M ¢, which is now
holomorphic with respect to the complex structure I; that descends to M ;¢ [Meig8, Theorem 4.5],
that we denote by:
Esd = ((EV X ,Cc) ’p—l(d)>/U1 — MVSd. (7.1)
Over the suborbifold {® < d} of p~!(d), there exist two candidate line bundles; one arising
from the embedding {® < d} — M, and one arising from the embedding {® < d} — M “.
Fortunately there is no cause of confusion between these line bundles, since they can be identified
with one another thanks to the following lemma, proven in [Meig8, Theorem 4.5].

Lemma 7.x. There exists the canonical isomorphisms of holomorphic 1" -equivariant pre-quantum line
bundles over the cut space M ;*:

£§d|MV<d = £y|{<b<d}7 ﬂi’ld £§d|glz/1 = (£V|<I>*1(d)) /U1

Since £ is a Hermitian pre-quantum line bundle that is holomorphic with respect to the
complex structure I, from Sectionthe L5 *-twisted Dolbeault operator 0, can be defined in this
case. Therefore we can consider the £ -twisted Dolbeault cohomology groups:

H(O’j)(MVSd;,C;d) _ HO(MVSd; Qj(Ml,Sd;,Cfd))7 forj > 0,

for the sheaf of £ “-twisted differential forms over the cut space M >¢. However, since £ is both
holomorphic and Hermitian however, by Kodaira’s vanishing theorem, only the j = 0 cohomology
group is non-trivial, and therefore:

HO (M L50) = HY (M7 T(M" £51) = Indy, (M £57).

7.2 U;-Equivariant Quantisation of Hypertoric Varieties

Our aim now is to determine the dimension of HY(M3%; £5%), which is finite dimensional since M=

is compact [CSs3]. By Kodaira’s vanishing theorem, the Riemann-Roch number x (M, £5?) from

is equal to the index, H* (M L") = Indy _ (M;*; L;?). We therefore could theoretically
o<

calculate the dimension dime H(M 5% £57) either the Riemann-Roch theorem from Theorem 4.8
or the Kawasaki-Riemann-Roch theorem from Theorem [4.14}

In practice, using the non-equivariant formulae would be difficult. However, if we apply the
Atiyah-Bott-Berline-Vergne localisation formula from Theorem to the index formula instead,
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then we get an expression for the equivariant character, denoted by x : 7" — H*(BT"), for the
C-vector space H?(M3%; L£5%), considering it now as a representation of 7. To obtain an expression
for the dimension by means of the equivariant character, the following definition is required.

Definition 7.2. Consider a simple hyperplane arrangement A = {H;,..., Hy} in (t")* where,
foreachj = 1,..., N, the hyperplane H; € A has the corresponding normal vector u; € t". Let
a; € (") be such that (o, uy) = 0,1, where 5, is the Kronecker delta function. Then we say that
anelement £ € t" is genericif (o, ) # 0,foreach j =1,..., N.

In particular, if £ € t" is a generic element then, by definition [FHox, §2.1]:

x(ef) = Tr(e), (7.2)

where € on the right-hand of should be thought of as the respective automorphism of
HO(M=% £5). Therefore, if we take the limit as £ tends towards 0:
Hm x(€8) = Tr(e®) = Tr(1) = dime HO(M=%; LY,

then we recover the dimension dime H°(M3%; £5%), thus circumventing any difficult evaluation of
the non-equivariant index formulae.

Our plan therefore is to apply the localisation formula to either the Hirzebruch-Riemann-
Roch formula if M is smooth, or the Kawasaki-Riemann-Roch formula it M>*isan
orbifold. Since the fixed-point locus (M:?)T" consists of finitely-many isolated fixed points from
Lemma it will actually be feasible to obtain a formula for the equivariant character x(e) from

either Corollary or from Theorem before setting limg_q x(e°) = dime H°(MZ%; L57).

This gets us an expression for the dimension of the zeroth cohomology of the sheaf of holomorphic
section over the cut space M;¢, but nothing so far regarding the original hypertoric variety M,,. We

shall deal with this last part in Section

Theorem 7.3. Given a regular integral value v € €, let M, be a hypertoric variety with corresponding
simple byperplane arrangement A in (*)*. Denote by M3 its cut space with moment polyprych A5*.
For each fixed pointp € (MZ*)T, denote its orbifold structure group by T, Given a generic element
& € t", define a the equivariant character x : T™ — H*(BT") for the representation HY(Mz%; L59)
of T™ is given by the formula:

1
x(ef) = Z mz

pe(MsHT 9€lp

2V =1{ur(p), ) o (R (P), €)

[Hjez.(l — 2V Tleps M elers€))(1 — 627rﬁ<<p,.7ﬁ>@<<p.y€>)}

20V TR (P), ) (R (0), €) 7:3)

)

|:(1 _ 6271'\/?1<’19Pa7>€<19p’£>)2 (H]’EI (1 — 627T\/j<9p~7»'7>€<pr.7>§>)(1 — 62”\/j1<§17._717>6(<p,,715})):|

where 0y, j, Sp.j» and O, are the T"-weights defined in Section
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Proof. The components that go into proving this theorem have essentially been proven already. From
Lemma the fixed point (M:?)™" set of the cut space has been shown to consist of finitely-many
isolated fixed points, and can be dichotomised into either fixed points in the cut space interior M
that correspond to interior vertices of the moment polyptych A>¢, or those on the boundary ZS that
correspond to boundary vertices of A5?. Hence by combining the equivariant Kawasaki-Riemann-
Roch formula from Theorem|[4.14) with Lemmal6.1}, we can split the localisation formula into

two sums; one over the interior fixed points, and the other over the boundary ones.

First though, if p € (M5*)™" and for a generic element £ € t" then, for brevity, let us introduce
the “local trace” ,, [SG99], as:

Xp, elur(p), €)

T 21T ( ek clen )’

Xo(

which is the contribution towards x from each fixed point p. Then, since M;* = M;* LI Z7, the
equivariant Kawasaki-Riemann-Roch formula (5.51) can be decomposed as:

x(ef) = Z Xp(€*) + Z Xp(€%). (7-4)

pE(MsH)T" pE(ZHT"

Let us first deal with the first term on the right-hand side of (7.4)). So consider an interior fixed
point p € (M), and letv = pr(p) € As? be its corresponding interior vertex, which is equal to
the rank n flat {v} = Hz,,withZ, C {1,..., N}. In (6.2) from Proposition[6.3} its tangent space

decomposes as:

TM<dN@ Qp]@‘/; )

JETL,

with g, ; € (t")* theisotropy weight for the representation V,, , of 7™, and similarly with g, ; € (")
for V. . To summarise so far, the local trace x,, for the interior fixed point p € (M *)™" is given by:

1 Yoolg) - U@
Tyl g€l |:HjeL,(1 — Xp,j(9) - €)1 = x,5(g) - elr)

Xp(eg) = | (7-5)

If the interior fixed point p is an orbifold point so that its orbifold structure group I'y, is non-trivial,
then we have to take the orbifold structure of the cut space M;? into account, though this was covered
in Section From , if we let v € t5 represent the element g € I, we see that:

Xpo(g) — 627r\/j1<uR(p),'y)7 on 2}?7

Xpi(9) = { ppilg) = eV Hei ) on nga (7.6)
0p(9) = 2V~ Lsp.3:7) on chy
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Substituting the characters into the expression for the local trace x,, (%) finally yields the
first term on the right-hand side of (7.4).

As for the other case when p € (Z¢)T" is a boundary fixed point, the reasoning is essentially the
same as that for interior fixed points and so, given this, we shall cover it more quickly. Denote the
corresponding boundary vertex by v = pr(p) € 119N Hz,, where Hz, is the rank (n — 1) flat. From
Lemmal6.1}, we have the decomposition:

TYPJ\4VS5 = (Vﬁp b Vﬁp) D @ (VQ D ‘/;p,j) ?

D, J
J€Ly

with T™ acting on Vj, with weight J,, € (t")*,andon V,,, ; and V_, asin the interior point case. For
the boundary fixed point p, we thus have the following local trace:

eg f— L vao(g).eOJR(p)v &) ‘ ’
Xp( ) s ggp [(1—xp7j(g)e<ﬂpv5>)2(HJ_€IU (1_Xp,j(9)e<gp’j7€>)(I_Xp,j(9)6<§p’j7g>))] (7 7)

If p is additionally an orbifold point then, from (6.11) and via the same discussion as in the interior
fixed-point case, we have:

0,(g) = 2™V =107 on Vj :
pi(9) = { »(9) v (7.8)

Interior point case, (7.6), otherwise.

Thus, by substituting into (7.7) the characters from (7.6)) and (7.8)), we obtain the second term on the
right-hand side of (7.4)), and hence the equivariant Kawasaki-Riemann-Roch formula (7.3) for the cut
space M. O

7.3 Algebraic Cutting

Recall, from Definition that a complex normal quasi-projective variety M is said to be semi-
projective if it is projective over an affine variety M. In this section, we will introduce an algebraic
analogue to Lerman’s symplectic cut M <@ in the instance when M is semi-projective. An algebraic
analogue to the symplectic cut was introduced by Edidin and William in [EG98], called the “algebraic
cut”, and considered projective algebraic varieties with a linearised action of the one-dimensional split
torus G,,, & C*. Our method here is different to that presented in [EG98]], since our method forms
the algebraic cut by the means of the Proj-construction being applied to semi-projective varieties, as

described in Section

Since M is semi-projective, there exist the isomorphisms, M/ = Proj R and M, = Spec R,
where 1% is a Z-graded C-algebra, that is furthermore finitely-generated by I?; as an [?y-algebra. More-
over, from the projective structure morphism 7 : M — M, we get an ample line bundle £ over
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M that is very ample relative to 7. Now suppose that M is acted upon by the algebraic circle C*, and
that this C*-action lifts to £ a C*-linearised ample line bundle.

Similarly, consider the linear C*-action on C. Then, on the one hand, as a C*-action on an affine
variety is equivalent to a Z-grading on its ring of regular functions, we obtain a Z-grading on the
affine coordinate ring Oc(C) of C, where the grading is given by the degree of the homogeneous
polynomials. However, on the other hand, we can define another Z>-grading on the coordinate ring
Oc(C) = C[¢] by adjoining a dummy variable as C[{][Y], and asserting that deg(£) = 0 and that
deg(Y) = 1. With respect to this Z>(-grading, C becomes a semi-projective variety as follows: for
each ¢ € Z>, define the following C-algebras, S, := C[{] - Y9, where deg(§) = Oand deg(Y') = 1.

Then:
S =P s, =Pl -y =Cly]

q=>0 q=>0

is a Z>-graded C-algebra, graded with respect to the variable Y, and is finitely-generated as an Sp-
algebra by 5. Therefore, the structure morphism is:

C = Proj S = Proj C[¢][Y] — Spec Sy = C[¢] = C,
showing, in particular, that C is projective over itself.

Given now that M = Proj Rand C = Proj S, where R and S are both C-algebras, then define
the Segre product of ? and S to be:

Rxc S =D Rm ®c S (7.9)
meZ

The following lemma is from [Hary7, Exercise s.11].

Lemma 7.4. Let A be a ring, and let R and S be two Z-graded A-algebras. If R is finitely-generated
as an Ro-algebra by Ry, and if S is finitely-generated as an Sy-algebra by Sy, then R X 4 S is finitely-
generated by (R ®4 S)1 asan (R ® 4 S)o-algebra.

From Lernrna we see that R X ¢ S is again a Z-graded C-algebra, finitely-generated by (R ®c
S1)asan (Ry ® Sp)-algebra. Hence the product M x¢ C is isomorphic to the projective spectrum
of the respective Segre product:

M xc C =ProjR xc ProjS = Proj (R x¢c 5).

The exterior tensor product £ = Ly; X L is also ample over M X ¢ C, and the C*-action makes £
into an ample C*-linearised line bundle.

Definition 7.5. Let M = R be a normal semi-projective variety, where R = @©,> [, is a C-algebra,
finitely-generated as an [?y-module by R;. Let £5; — M be the ample line bundle over M that is
very ample relative to the structure morphism, 7 : M — Spec Ry. Further suppose that C* acts
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linearly on M. Then, for an integer d € Z, we define the algebraic cut of M at the level d, to be the
projective GIT quotient:

M= := (M x¢c C) [4C* = Proj @ H(M x¢ C; L&, (7.10)

m>0
where £ = L X L is the external tensor product over the Cartesian product M x¢ C.

The Proj-construction approach makes it particularly straightforward to come up with some
examples of algebraic cuts.

Example 7.6. Consider the Z>(-graded rings, R and S, given by:
R = Ry[X], where Ry =Clz1,. .., 2n],
with deg(z;) = 0, foreachi = 1,..., N, and deg(X) = 1, and also:
S = So[Y], where So = C[¢],

with deg(¢) = 0 and deg(Y) = 1. Then CV = Spec Ry = Proj R, and C = Spec Sy = Proj R.
Their Segre product R X¢ S is then:

R xc S =Clz,..., 20, &]Z], where Z=XQ®Y.

To construct the algebraic cut of CV,let C* act on Ry and on Sy as:
T-zi=71 "2, and 7-&=7171,
respectively, which carries over to R X ¢ S. Furthermore, for some integer d € Z, set:
-7 =12
Hence the Cartesian product CV x¢ Cof CV with Cis:
CY xc C = ProjR ®c S = ProjClzy, ..., 2n, & 7).

There are various different outcomes for the algebraic cut M=% = (C" x¢ C) /4 C*, depending on
which value for d is chosen.

Case1: (d < 0). In this case, (R Xc S)C* = C, and so:

(C" x¢ C) /4 C* = Proj(R x¢ S)¢ = ProjC = .
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Case 2: (d = 1). Now in this case:
(R Xc S>C* = C[lea s )ZNZ7£Z} = C[X07 s 7Xn]7

after relabelling the indeterminates as Zy := {X and X := z;Z,fori = 1,..., N. Aseach
X, has degree one, they are all homogeneous; hence the algebraic cut is:

(CN xc C) /1 C* = Proj(R ®c S)¢" = ProjC[Xy, ..., X,] = CP",
and equipped with the line bundle: Ocpn (1).

Case 3: (d > 2). In this case, we still get:
(C" xcC) JqaC" = CP",
but now it comes with the d-twisted line bundle Ocpn (d).
Example 7.7. Let I? and S be the same as in Example so that:
R xc S =Clz, ...,z 7]
However, now let C* acton R X¢ S as:
T 2i=7 "%, and T -&=7E,

and again with:
- Z =12,

for some d € Z. Let us see what happens when we let the value of d vary:

Case1: (d < 0). In this case:
(Rxc8) =2 Clz, ..., 2867 2] = Clay, ..., m,) [X],
after relabelling z; := 2z;§,fort =1,...,N,and X := €47 Hence:
(C" xcC) JJ4C* = ProjClxy, ..., z,][X] = SpecClxy, ..., z,] = C".

Case 2: (d = 1). Now we have that:
(RxcS) =Clzig,...,zl[aZ,. .., 20 7]
~ C[ylﬂ"'yyn][le"an]

where z; := z;§ and X; = 21 Z,fori = 1, ..., n. Hence, in this case, the algebraic cut of C"
is the blow-up of C" at the origin:
(C" xc C) /1 C* = Proj(R x¢ S)©
C[Il,...,LL’N;Yi,...,YN]
<szJ _y]X’L‘Zaj = 177N>
=~ Bl, C".

= Proj
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Case 3: (d > 2). In the last case, we still get that (C" x¢ C) /4 C* = Bl; C", but CPN~1 should be considered
as being in its d-th Veronese embedding.

Consider a normal semi-projective variety M with an ample line bundle £, — M over it. If the
ample line bundle £ is not very ample, then we may replace it with the very ample line bundle £,
where m; € Z> is sufficiently large. For each p € Z>, set:

R,:=H(M;L5?) and R:=EPR, (7.11)
p=0
Then R is a Z>-graded C-algebra. By replacing £, with E%m for some sufficiently large mo € Z>¢

in 1} if necessary, we may assume that 2 is finitely-generated by Ry = H O(M; L) asan Ry-algebra
[Har77, Exercise 5.9, Exercise 5.13, & Exercise 5.14].

7.4 Uj-Equivariant Quantisation

Theorem[7.3]yields a formulae for the equivariant character x : 7" — H*(BT") for the representa-
tion of 7™ on HO(M3z%; L), and thus a way to obtain its dimension. We shall now use the finite-
dimensional spaces H°(M>; L) to find an expression for the weight d subspace H°(M,; L,,) 4,
and consequently a formula for its dimension too. We first begin by proving a theorem that can be
applied more general varieties than just hypertoric ones.

Theorem 7.8. Let M be a complex semi-projective normal variety, and let Ly be an ample line bundle
over M, that is very ample relative to the structure morphism m : M — Spec Ro. Suppose that C* acts
on M, and that this action lifts to make Ly into a C*-linearised ample line bundle.

Ford € Zsq large enough, let HY(M; L) q represent the weight d subspace of H°(M; L) for

the C*-action. Then we have the isomorphism.:
H(M; Lag)g = HO(M=* L5)) /HO (M= L5771, (7.12)

of C-vector spaces.

Proof. Recall from Definition [7.5| that the the algebraic cut of M is the projective GIT quotient,
M=?= (M x¢cC) J/4C*, with the ample line bundle £L3; = (L3 X L¢) /4 C* overit. The C-vector

space of holomorphic sections on M <d is then:

H (M= L5]) = H*((M xc C) /s C* (Lar ® Lc) Ja CY). (7.13)

Denote by (L3 X L¢)(d) the twist of £y X L¢ by the C*-character, x4(7) = 7¢. A section
o € H'(M xc C; Ly X Lc) descends to a section ¢ € H°(M=%; £L=?) if, and only if, o is C*-
invariant with respect to the action induced by x4. In other words, there exists a bijection:

H°((M xcC) flaC* (Lar B Lc) faC*) = HO(M xc C; (Lyy B L) (). (7.14)
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The term on the right-hand side of is the space of x4-twisted C*-invariant global sections,
which is the same as the space global sections of C*-weight d. That is:

HO(M x¢ C; (Lo R L)(d))S 22 HO(M xc C; Ly K Le),,
which, by the Kiinneth formula [Kemo3} Proposition 9.2.4], is isomorphic to:
HO(M xc C; Ly W Le), = [H(M; Lar) ®c H°(C; Lc)] -
As M and C are both normal varieties, the line bundles £;; and L¢ both admit C*-linearisations.

Their individual spaces of global sections then decompose into their respective direct sums of C*-weight
spaces:

[H°(M; Las) ®c H'(C; Le)] , = [(@ HO(M;£M>1'> ®c <@ H°(C; Ec)j)

i€eZ Jj=0

~ P (H(M; Ly); ®c H'(C: Le),) -

i+j=d
>0

Since H%(C; L¢) = C[¢] where deg(§) = 0, each C*-weight space has complex dimension one.

Hence, as C-vector spaces:
H°(C;Lc); = C, foreachj > 0.

Therefore:
P (H(M; Lyr); ©@c H(C; Le);) = @D HO(M; L),

i+j=d i<d
720

and so, after tracing back through the isomorphisms:

HO(MSd;,C]%;) o @HO(M;»CM)i

1<d

as C-vector spaces. Thus we may extract the subspace of C*-weight dfrom H°(M; L) by taking the
quotient:

HO(MSd;EJS\;)/HO(MS%E]SV}Fl) = @HO(M§ L) @ H(M; L)

i<d i<d—1
=~ HO(M; Lar)a,
which strips away the lower C*-weight subspaces, yielding the desired result. O]
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Whilst Theorem applies to any normal semi-projective variety, we are interested in applying
it to a hypertoric variety M,,. From Theorern we can calculate the equivariant character x(e®),
where { € tis generic relative to each hyperplane of the arrangement A, for the 7" -action on the
space H°(M:?; L£5*) of holomorphic sections over M =? and whose dimension we calculate by taking
the limit, lim¢_q x(e¢) = dime H°(M;:%; £5%). Then, from Theoreml;.8] we see that:

HO(M,; £,)q =2 HO(ME® L5%) ) HO(ME@D; £5@D),
and so by considering their dimensions:

dime (M3 £,)a = dime HO(M; s £) — dime HY (M £5°),

Therefore, despite the dimension of O(M,; L) being 7nfinite, the residual C*-action on the

hypertoric variety M,, causes H O(M,; L,)to decompose into its finite-dimensional C*-weights spaces,
H°(M,; L,)g, foreach d € Z>y, as:

H(M,;L,) = @ H(M,; L,)a.
d>0

Let us summarise this result.

Corollary 7.9. For a regular value v € €3, let M,, be the corvesponding hypertoric variety, and let
L, = ¢ux(v,0) X i C, — M, be the holomorphic pre-quantum ample line bundle over M,,. For an
integerd € Zx, let H(M,; L) denote the subspace of the C-vector space H(M,; L,) of C*-weight
d, induced from the residual C*-action on M,,. Then the complex dimension of H O(M,; L,)ais given
by the formula:

dimc H°(M,; £,)4 = dime H° (M3 £57) — dime HO(MF; £5067D), (7.15)

where M3 is the cut space of M, at the level d, and where L5 is the I,-holomorphic T"-linearised
ample line bundle over M,, defined in @)

7.5 Examples of U;-Equivariant Quantisations

Despite looking imposing, it is not too difficult to see how to put the formulae presented in Theorem
and Corollary to use, once we have seen them in action with some examples. The calcula-
tions involving manifolds can be done by hand, whereas those involving orbifolds were calculated
numerically using SymPy, [SymPy].

7.5.1 Equivariant Quantisation of T’ *CP!

Here, wesetm = v € €, = Zand d = § € Z>. Then, continuing on from Examples2.4/and[3.9)}
the cut space is now denoted by M=% = (T*CP')=¢ with moment polyptych A5

108



The required isotropy data to calculate the character X, 4 for the representation of T! on
HO(Mz*; £5°) is displayed in Figure 7.1, which the isotropy data presented below. Here, we let
v; = pr(p;) and b; = pr(q;) fori = 1,2, where p; € (M;°) are the two interior fixed points, and
i € (2?) are the two boundary fixed points.

H1 H2
3 19(11 Spi,1 3 Opy,1 Sp2,2 3 Op,,2 79(12 3
‘—>} mananay IR TEEECIPEE T ‘ é<_‘
1 2
p, U o v @

Figure 7.1: Labelling of the moment polyptych A3’ for M, = T*CP*.

v = 0 Op1,1 + y vy = m Ops,2 )
gpl,l — _17 gp2,2 - +1
h=-d {0, =+, b=m+d {9, =-1

Now let¢¢ =t € T, Then, from 1 , we obtain the following expression for the equivariant
character:

o 1 pm t+—a mtd
Xm,a(t) = I—t)(1—t) + (1—t)(1—t1) T (1—1)2 + (1 —t1)2

1 gt 1 te
- [1—t+1—t—1] ' [1—75—1 +1—t1
m+d d
geuiR
k=0 =0

By taking the limit § — 0 so thatt — 1, we obtain:

dime HO (M=% L3%) = (m +d + 1)(d + 1),
and hence, from Corollary[7.9} we finally get:

dime H°(M,; £,)a = dime H*(MS% £57) — dime HO(MzD; £507D)

16
—m+2d+1. (7.16)
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7.s.2  Equivariant Quantisation of 7*CP?

Again, letm, d € Z>, and now consider M,, = T*CP? from Example The cut space M%d =
(T*CP?)=% has the moment polyptych A3® that was presented in Figure3.3/and which we reproduce
below in Figure along with the superposed isotropy weights.

N

/\ — U
N s3  S1 !

\ yi

7 N

Us 9 1 o1
e3Y sY
A3
1
v23
e1
e3Y
09 02 Uz
92 I~ 92 I~
H2 Ul v12 v23 T
—— — — AN Vi \ Vi \ L — -
77 N 4 N 4 )}
S1 Q1 e3 S3 99
Y s2 Y s2
S2 S2
9 S,
. ES A8
1 9
\ Vi
7 )
I Q1 e3 N
| AN
| \\
|
H, Hj»

Figure 7.2: Moment polyptych A= of the cut space M= = (T*CP?)=4,

Below, we list the vertices of the polyptych A>? and the corresponding isotropy weights. Here,

) (k)

vi; = Hr(pij) € Aj? represent the interior vertices whereas bz(j = ,uR(qij ) € I1¢ represent the

boundary vertices.

Op12,1 (170)7 Opa3,2 = (_171)7

=(—1,0 . 1, -1
Vo = (O, 0) Sp12,1 ( ) )7 Vg = (m’ O) Sp23,2 ( 5 )7
Op12,2 = (07 1)7 Op2s,3 = (_17 0)7

Spi2,2 = (07 _1>7 Sp23,3 (17 0)7
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Opiz3 = (0, )7
Spi3,3 = 0, _1)7
o,m 4 (17 0)7 qu)’Q = (07 1)a
MY = (0,-d) S, = (=11, b =(-d,0){qe, =(1,-1),
do  =(0,1), do = (1,0,
(qu?g = (=1,1), (qu)g = (-1,0),
by = (m+d,0) e, =(0,-1), by = (m+d,0) ey =(0,1),
Vg = (=L0), [Py = (L),
(Qq%),l - (17 _1)7 qu)73 - (07 _1)7
by =(0,m+d) {qm, =(-10), b = (=d,m + d) s =(L0)
Py =01, (Oyp ==,
Let us set e = (t1,12). Then, by using , we obtain:
1 tm+d tm+d :|
€y _ 1 2
x(e>) = + - - + - -
R It Ty R ) R T I TR TR
[ 1 e ty?
: 1 1 T — -1
((I=t7)(1=t7)  (I=t)A—=tty)  (1—t)(1 -1 1)
o > t’ftl;] : [ > t;dlt;d2] .
L1 +lo<m+d di+d2<d
As before, letting (¢1,t2) — (1,1), we obtain the dimension of H°(M34; L5?), yielding:
d+1 d+2)(d+1)(d+2
Hence, from Corollary[7.o}
dime HO(M,; £,)a = (m +2d + 1)(m +d + 1)(d + 1). (7.17)
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7.5.3 Equivariant Quantisation of 7*(CP! x CP!)

The hypertoric manifold M,

v = (m,n) =

(k)
data.

4
bg4>

o4

Q22 4

2
bg2>

T*(CP' x CP') and its hyperplane arrangement A
{Hy, Hy, H3, H,} were introduced in Example Weset A = (0,0,m,n) € (t2)* so that
1*(A), and also set d = 0 € Z>o. We have denoted v;; = H; N H, for the in-
terior vertices, and bgf) for the boundary vertex, whose adjacent interior vertex is v;; and satisfies

€ Hj,. The moment polyptych A3’ is recreated in Figurewith the corresponding isotropy

(1) (3)
b1y 01 3 b3y
\ Vi
4 N
<1 <3
¥, J¥
<4 <4
§4 AN AN §4
,(0)
9 01 3 9 34
A\ \ Vi \ L
77 N 7 N 4 )}
S1 V14 l v34 <3
Y o4 Uy o1y Y o4
Uq Uus
A22 U9 02 A A22
9 Sl v12 T vo3 39
A\ Vi \ Vi \ yyi
77 4 N 4 )}
01 o3 »(2)
23
Y Yo
S2 2
9 9
AN AN
Ql N N <3
\ Vi
n e o3 3)
b1y b33

Figure 7.3: Moment polyptych for M3° when M, = T*(CP* x CP!).

V12 = (O, O)

V34 = (m7 m)

( Opi2,1
Spi2,1
Opi2,2

\ Sp12,2

( Ops4,3

Spsa,3

Opsa,4

\ Sp34.4

| =
— = o
SN—
o S
=

~—

(==
I
—_
~—

|
—_
(=
~—

|
e e I N e N N
o o =
= (=}
~— ~—
- —_
~—
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V23 = (ma 0)

vig = (0,m)

(0pss2 = (0, 1),
Spes,2 = (0,-1),
Op23,3 = (=1,0),

(Spag.s = (1,0),

(Qp14,1 = (1,0),
Spias,l = (=1,0),
Opisd = (0,-1),

(Spiad = (07 1)7



b2 = (m+d,0)

b(3) _

54 = (m,m+d)

by = (m,m+d)

12*

(=d,0)

Setting et = (t1,t2) € T?, we then can calculate the equivariant character x(¢1, t2) using :
1 e ty?
vdll 7t = —~ T —< T —
vttt = = [ im0 e e
tm 1 td ty?
+ 1 -\ T 1 e e 1
(I=t7)A—t) LA-t)(I—ty7) (A=t )X -ty t) (1I—tt)(1—t)]
ty 1 e ty? ]
+ T I + 1 T 1,1 1
(I—=t)(1=87) LA=t)A—t) (A-t)A—-taty") (11—t 6 )(1—1t57)]
tmen 1 td td ]
+ - - + ) T, T ) 1
(1_t11)(1_t21) (1_t1><1_t2) (1—751 )(1_751 t2) (1_t2 )(1_t1t2 )

(1—151 1 —t5) L1+d2<d (1_t 1_t2 di+d2<d J
B 7'ty di 4d
+ >4 dltd2 - 2 [ >y
(1 - tl 1 - t2 [d1+d2<d (1 —t )(1 — 1t ) dy+d2<d .
_ Z pdip—de 1 1 + tTHdl + t3+2d2 1 t71n+2d1
B N e R T e B T B R

di+d2<d

3




B t_dlt_dQ B 1 N t71n+2d1 . 1 N t§+2d2
- 1 . -1 . 41
2. Tt 1-6 |1-6 14

d1+do<d
m-+2d1 n+2ds T
_ E —dy1—d2 § 15 § : lo
- tl t2 tl : t2
di+d2<d L 11=0 l2=0 J
d—dy
_ E d1 E do E l1 412
- tl t2 tl t2
0<l1<m+2d;
0<la<n+2ds

In taking the limit (1, t2) — (1,1), we get:

d d—dy
dim HO(M=4; £54) = Z (Z m + 2d; + 1)(n + 2d, + 1))

do=0

ISH

=Y (d—di+1)(2dy + m+1)(d—dy +n+1)
d1=
(d+1)(d+ 2)(d* + 2dm + 2dn + 3d + 3mn + 3m + 3n + 3)

6 Y

o

so that by , the dimension of H°(M,; L,) 4 is:

dime H°(M,; £,)a = dime HO(M% L57) — dime HO (M @D; L347)
~ (d+1)(2d* 4 3dm + 3dn 4 4d 4 3mn + 3m + 3n + 3)
— - ‘

7.5.4 Equivariant Quantisation of )/, with a Reducible Core

The previous examples have all involved a hypertoric variety whose cut space ended up being a manifold,
or equivalently, that its core was irreducible. But from Theorem any hypertoric variety whose core
is reducible will have an orbifold for its cut space, thus requiring the equivariant Kawasaki-Riemann-
Roch formula to express the equivariant character.

Let us continue with the tradition of going through the examples from Section by continuing
onto Example in which the core C of the hypertoric variety M, consisted of the first Hirzebruch
surface and the complex projective plane, C = H; U CP2. There are two cases depending on
whether the Kihler quotient X, is H; or CP?2. For both cases however, let us fix an integral element
(m+n,n) =v € £,andletd = § € 2Z> be an even positive integer since, otherwise, no
pre-quantum line bundle £5* — M ¢ over M, that would additionally be compatible with the
orbifold structure, would exist. This is due to the presence of orbifold points appearing along the
boundaries Z; of the cut spaces in both examples, whose orbifold structure groups are isomorphic to
Z/2Z. See [Silo6, §11] for a more explicit example of this phenomenon.
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Case: X, & H;

In this case, the moment polyptych A5 of the cut space M is presented in Figure[7.4} with its
interior and boundary vertices labelled using v’s and b’s, respectively. Also labelled are the polyptych
boundary components I1% for the corresponding subset A C {1,2,3,4}.

N e
(3)\ Hllidél ! bgd)
b13
Hf4 V13 Hg4
4 4
b T N b
H, e
¢ AV ’
Hy b
by
H, 113,
11, H;
3
oSy
1) d AN
b§2> ! H2

Figure 7.4: Moment polyptych A>? when X, = H;.

One can see that for the subset A = {1, 3,4}, the U;-action generator w134y = U1 + ug + ug =
(0, —2) is non-primitive relative to (*)* = Z?, and therefore the two boundary vertices, denoted

b%) and b%) here, of the component 1113, correspond to two orbifold points which we denote by

1) 3)

0\, 4\y € 24, The isotropy data for qg) is:

Qq,l = (17 _%) 9
b = (0,m+n+2) ¢ =(-1,0),
vy = (0’ %) ;

and, since b%) € Hy N1I4,,, the orbifold structure group Fg?ﬁ} of q%) is:
DS = €/ Spang { uy = (1,0), upusgy = wy + us +us = (0, -2) } = {0} & Z/22Z.
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Note that we could have also used 113, instead of T1{5,, since ugsay = ug + us = (—1, —2) and thus:
Span. { uy = (1,0), ugay = (—1,-2) } > Span, { uy = (1,0), uqzey = (0,-2) } ,

34 134} . .
and therefore F‘1{2(1}) = Fi2(1>}, so it does not matter which polyptych boundary component I1% that
we use, just as long as the vertex does indeed belong to it.

Similarly, the isotropy data for qg) € 2y, is:

0¢3 = <_%7 _%) )
9= (g g -0,
9y =(33)

. . {134} .
and so its orbifold structure group I' ()" is:

IS = 2/ Spang { us = (—1,—1), upzy = (0,-2) } = {0} & Z/2Z.

The remaining vertices are not orbifold points, and the isotropy data regarding their corresponding
fixed points is listed below:

Op1 = (170)7 Op2 = (_1a ]-)7
= (=1,0 = (1,1
V12 = (070) ot ( ’ >7 V23 = (m +n, 0) 2 ( 7 )7
Op,2 (07 1)7 Op3 = (_170 )
Sp2 = (07 _1)7 Sp3 = (170)7
Op3 = (_170)7 Op1 = (170)7
= (1,0 —(~1,0
U3y = (m7 n) gp,3 ( ) )7 Vi = (O,n) gp,l ( 9 )7
Qp,4 = (]-7 _]->a Qp,4 = (07 _1)7
Ga = (—1,1), pa = (0,1),
Op1 = (17 _1)7
gpl — (_1 1) qu - (1)0)7
v = (0,m+n) {7 T =0, -m=2) { g =(-1,1),
Op3 = (07_1)7 9
q = (071)7
Sp,3 = (07 )a
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b = 2m+n+d,—m—d) {5 =(0,1),

002 = (=1,1),
b = (2m+n+d,0) { oo = (0,—1),
vy =(=1,0),
0q,4 (07 )7
B = (—m—d,n) {qu =(1,1),
9, (1,0)

With all of the isotropy data listed, we consider & = (¢, 3t) € %, where ¢ € R~ is some positive
real variable, such that £ is a generic element. Then by using , we have the following expression
for the equivariant character y(€):

x(e°) = Z Xp(eg) + Z Xp(eg) + Z Xp(6£>7
pe(Ms 4T pe(Z5H)T? pe(Z5HT?
{1} T2 {1}

where the contribution from the smooth interior fixed points is:

et(m+n) emi+3nt
ef) =
pe(l\%)m Xp( ) (I—e2)(1—et)(1—et)(1—e?) * (I—e2)(1—et)(1—¢€')(1—e?)
e3nt 1
T e ) (I —e (1 —e) (1—e®)  (1—e ) (1—e)(1—ef) (1—e¥)
(3t(m+n)

T e el o)1)

the contribution from the smooth boundary fixed points is:

e3t(—d—m) €3t(—d—m)+t(d+2m+n)

B P e T e (e T e e
r,={1}
et(—d—m) e3m€+t(d-|—2m)
+ 5 + 5
(I—e?2)(1—et)”-(1—e3) (1—e2)(1l—et)"-(1—¢e)
6i’mtth(fdfm) et(d+2m+n)

+

(1—e3)(1—et)? (1 —ett) " (I—e3)(1—et)? (1—e2)
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and the contributions from each orbifold boundary fixed point:

q%):((),m—l—n—i—g), and qg):(—g,m—l—n—l—g)
respectively, are:
. 3t(§+mtn) 3t(§+mtn)
quzla)(e ) - 3t 2 t T 3t 2 t
2 (1 + e—5> (1—et) (1 + 6_5> 2 (1 - 6_7) (1) (1 - 6_5>
and:
‘ e—%+3t(g+m+n) e—%+3t(g+m+n)
Xq(g)(6 )= —2t —t)2 ¢ T —2t —t)\2 )’
13 2-(I+e?)(I+et) - (1—¢€t) 2-1—e2)(1—et)"-(1—¢)

Letting t — 0, so that ¢ — 1, we obtain the following formula for the dimension of

HO(M £5)

dimc H° (M=% L57) = éin(l] x(e®)

17d4 17d3
_ Lrd + 843m + 4d®n + 77 + 8d*m? + 8d*mn + 18d*m

6
292 10dm?
+ d*n? + 9d*n + 3 + 3m + 5dm®n + 12dm? + dmn?
41d 3dn? 13d 4 5m?>
+12dmn + 0 2T 2 g b T e 2
3 2 2 2 2
m2n? N 15m2n N 9m? N 3mn? N 17mn  Tm n?> 3n
4 4 2 4 4 2 2 2

+ =+ = +=+1,
and so from Corollary recalling that d € 2Z, we calculate:

dime HO(M,: £,)a = dime HO(M;* £5*) — dime HO(MZ“2; £52)

17d3 17d2
=7—d+6d2m+3d2n+ rd

12
31d ~ 10m3 (7.18)
+3dn+ﬁ+ ;n + 5m2n + 4m? + mn® + 4mn

+11m+n2+3n+1
3 2 2 ’

+ 8dm? + 8dmn + 6dm + dn?

Case: X, = CP,

Recall from Example[o.8]that this case is obtained by inverting the sign of the normal vector to the
hyperplane Hy as uy = —es +— ey = (0, 1). This changes the poset P(A) of regions of A, so
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that now the hypertoric variety M, is the hyperkihler analogue to the complex projective plane,
X, = CP2.

As before in the previous case, we form the cut space M relative to a positive even integer

d € 2Z >0, and we present the resulting moment polyptych AS? in Figure

e e
AN bgs) Hii:; ‘b§3)
H it
3
14 Hg
1
V13
4 4
W ) G NG b
H,
) A, I,
119, et b(2)
S 2 V23 723
b(122) V12
11,4 1EW
0y 113, b

Figure 7.5: Moment polyptych A>¢ when X, = CP2.

For the subset A = {2, 4} now, it is the Uy-action generator Ufogy = Up + Uy = (0,2) that
is non-primitive relative to Z2. Hence the boundary vertices b%) and bg? that lie on the boundary

component I3, are the ones corresponding to the orbifold points, qg) , qég) € Z3,. The isotropy

(1)

1) .
data for ¢4’ is:

O¢1 = (17 O)a
1
by = (0.-4) {a = (-L3).
Iy =(0,3),
and from Lemma the orbifold structure group Fg?f‘)} of qg) is:

P20 =~ 2/ Spang { ur = (1,0), ugon = us +us = (0,2) } = {0} & 2/2Z,
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since b%) € H,NTI4,.

)

Similarly for qé‘; € Z3,, we have:

by = (m+n+4,-9) {as = (5

as bg‘? € Hz N1I4,, and so from Lemma its orbifold structure group Fgé}) is:

T2 =/ Spany { us = (=1, 1), uy = (0,2) } = {0} ® 2/2Z,

and the other vertices do not correspond to orbifold points, just like before. The isotropy data of their
corresponding fixed points is listed below:

Op1 = (1’0)7 Op2 = (_17 1)’
= (=1,0 =(1,-1
V1 = (0,0) Sp,1 ( ) )a Vg3 = (m + n, 0) Sp,2 ( ) )a
Op,2 (Oa 1)7 0p3 = (_LO )
Sp2 = (07 _1)7 p3 = (17 O)?
Op3 = (_170)7 Op1 = (170)7
= (1,0 =(-1,0
V3q = (m’n> gp,3 ( ) )7 Vi = (07n) gp,l ( 3 )7
Qp,4 - (17 _]-)7 Qp,4 - (07 _]->)
Gu = (—1,1), Ga = (0,1),
0 ,1 - (17 _1>7
§p1 = (=11 2 22 =(=11).
vig = (0,m +n) {7 U b = (—d0) S = (1,-1),
Op3 = (07_1)7 9 .
«  =(1,0),
Sp,3 = (071)7
Qq4 - (071)7 Qq4 = (_1a1)7
B = (—n—dn) Qe =(1,-1), b =m+n+dn){cqs =(0-1),
19(1 = (170)7 19(1 = <_170>7
Oq1 = (1a _1)7
by = (0,m+2n+d) {1 =(—1,0),
v, =(0,-1),

120



0¢,3 :(07_1)7
B = (—n—dm+2n+d) {5 =(1,0),

v, =(1,-1),

As in the first case, we express the equivariant character £ (€%) using by choosing the generic
element § = (¢, 3t) € t%, and writing:

X = > @+ Y )+ Y (),

pe(MsHT? pe(Z54)T? pe(Z5HT?
Ip={1} Ip2{1}
where the contribution from the smooth interior fixed points is:
Z y <€£> B et(m+n) N emi+3nt
P - _ _ _ _
it (I—e2)(1—et)(1—e)(l—e?) (1—e2)(1—et)(1l—e)(l—e?)
€3nt 1
+ — — + — —
T A= (I-e) (- ' 1—e™) 1 - (1—e) (-
e3t(m+n)
T (1=
the contribution from the smooth boundary fixed points is:
Z . <€£> B ot . p3nt+t(—d—n)
P - - . 2 . 2 -2 o 2 X !
e (I—e®)(1T—e) - (I—e*) (I-e?)(1—e)"-(1—e%)

r,~{1}

63nt+t(d+m+n) et(—d—n)+3t(d+m+2n)

+
(T—e3)(1—et)? - (1—e) (1—e3t)(1—e2)”(1—et)
e3t(d+m+2n)

_|_

et(d+m+n)
(1—e 3. (1 —e2)(1—et) " (1—e4)(1—et)? (1—e3t)

and the contributions from each orbifold boundary fixed point:

+

@ =(0,-9), ad @ =(m+n+

N

d
,—5)
respectively, are:

_3dt _3dt
e 2

2= () (Fen) 2 (1m0 (1)

I21

Xp(ef) =



and:

o Attt (+mtn) — 34t 4 (d4m+n)

2-(1—et) (et +1)% (e + 1) iy (I—et)(1—et)?-(1—e2t)

e
X0 (¢) =
23

Taking the limit ¢ — 0 so that e — 1, we get:
dime HY (M2 L57) = ?né x(e®)
_17d N 5d°m N 11d3n N 1743 N d*>m? N 3d*mn N 15d%m
96 12 12 16 4 2 8
n 3d*n? n 33d*n n 292 n dm?®n n 3dm? n 3dmn? n 9dmn
2 8 12 2 4 2 2
17dm +dnd + 9dn? N 73dn n 5d n m2n? n 3m?n n m?
[ —— n —_— R R
6 2 12 2 4 4 2
2 13mn  3m n* 3n? 13n2

+ 5 + 1 + 1 +7+Z+

which, recalling again that d € 2Z, leads to:

o Ty

+3n + 1,

dime HY(M,; £,)q = dimc HY(M=; £57) — dime H°(M=1“2; £517)
B 17d®  5d°m  11d*n  17d?
T T2 T TR
11dn = 31d 9 m? 9 3m
T%—ﬁ—l—m n+7+3mn +3mn—|—7
+2n® +3n* +3n+1.

+ dm? + 6dmn + E)cle + 6dn?

(7.19)
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Chapter 8

Conclusion

In this thesis, we have provided a formula in Corollary[7.9|that calculates the U;-weight subspaces
of the space of holomorphic sections H°(M,; L,)), when M, is a hypertoric variety and when £, is
a T"-equivariant pre-quantum line bundle, holomorphic with respect to the complex structure I
on M,,. We accomplished this by applying Lerman’s symplectic cut to M,, with respect to a residual
Uy -action, which every hypertoric variety possesses. Doing so resulted in a cut space M >* which in
particular was compact, since the moment map for the U;-action was proper, and furthermore was
Kihler with respect to the complex structure Iy inherited from M,,.

Inasense, these cutspaces M * acted as auxiliary objects when it came to calculating the dimension
of H°(M,; L,), but their importance here should not be understated. To each cut space M3’ there
was a so-called “moment polyptych”, which was denoted A3, that can be seen combinatorially as
coming the hyperplane arrangement A corresponding to M, by truncating A in a prescribed way
that depended on the coorientation of \A. The moment polyptych A3’ allowed us to read off the
necessary isotropy data for M °, allowing us then to use Theorem that is the Atiyah-Bott-
Berline-Vergne localisation theorem, and hence obtain an expression for the equivariant character
x : T — H*(BT") for the representation of 7™ on H°(M3’; L5°). Provided that we chose suitable
integral values v € € and d € Z>, then the subspace H°(M,; L,))4 of U;-weight d was given by
the formula:

HO(My; £,)q = HO (M3 L5%) ) HO (M L50),

whose derivation formed the content of Corollary for hypertoric variety M,,, though we proved a
more general result for normal semi-projective varieties in Theorem Finally, we then went through
some examples of calculating 1 O(M,; L))

It would be very interesting if one could simply read off the dimension dim¢ H%(M,; £,), from
the moment polyptych A3’ of the cut space M°. For example, a combinatorial method such as a
lattice-point count analogous to the case of a toric variety X, say, since the dimension of its space
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HO(X; LGF) of holomorphic sections coincides with the number of lattice points that are inscribed
within its moment polytope Ax = u(X), ie.,dime H(X; L$F) = #{(k - A) N R"}. However,
since the moment polyptych AZ? consists of several polytopes all fitted together, their contributions
appear to be conflated and it is not quite so straightforward to identify what counting algorithm
should be implemented here, if at all. Furthermore, the asymptotic result that links the continuous
volume of a lattice polytope A in R™ with its lattice-point count [BRis, §3.6], namely that of:

A AL 3 HO X ®d
VOI(A) — lim # (d )ﬂ — lim dlmc ( 7‘CX )’
d—o0 dr d— 00 dn

yields, for example using the dimension of dim¢ H O(M,; L,)qfrom :

dimec HY(M,; L,)q
a2

~ O(d) — oo, asd — 00.

In fact, each of the two-dimensional examples (i.e., with n = 2) exhibit this phenomenon with
dimec HY(M,; L,)q behaving cubically with respect to d. On the other hand, for the one-dimensional
example of M, = T*CP! (i.e., with n = 1), we see from that:

dimc HO(T*CPI; Ey)d
d

=2.

On the other hand, the moment polyptych in Section&lwith M, = T*CP! is made up of three
closed intervals; Ag = [0, m], AT® = [—d, 0],and A3* = [m, m + d]. Then:

# (A5 N (1)) = #([0,m N Z) +# ([~d, 0] N Z) + # ([m,m +d|NZ)
=(m+1)+d+d
=m+2d+1,

which does actually coincide with the dimension of H O(M,; L,)4in 1} Therefore, some hope
for a combinatorial description of dim¢ H"(M,; £,)) does persist.
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Appendix A

Orbifolds

We have delegated this appendix to be a brief introduction to orbifolds, hopefully so that this thesis
is more self-contained. The notion of an orbifold was first introduced by Satake in [Sats6] when
he first introduced them as “V'-manifolds”. More general and sophisticated references for orbifolds

include [Duirr, Chapter 14] and [BGo8, Chapter 4], and this appendix is heavily influenced by [Sil96,
Appendix A].

A.1 Orbifolds and their Charts

Let | M| be a Hausdorff topological space.
Definition A.1. An orbifold chart for M is a triple (U, T', ¢) that consists of:
(i) aconnected and open subset U of R"
(ii) afinite group I acting linearly on U;
(iii) a continuous I'-invariant map ¢ : U — | M|, thatinduces a homeomorphism:

¢:U/T = U:=¢U)C M|

Definition A.2. An orbifold atlas for M is a collection of orbifold charts (UZ, [';, ¢i), such that:
(i) the collection of open subsets U; forms a basis of | M |;

(ii) the collection of charts (U;, I';, ¢;) satisfy the following compatibility criteria: if U, CU J» then
there exists a diffeomorphism ¢ : U; — Uj and an isomorphism J : I'; — I'y, such that
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®1 = ¢ 01, and that ¢ is J-equivariant:

toy=J(y)oi, forally € I'y.

Definition A.3. An n-dimensional orbifold )/ is a Hausdorft topological space | M | along with an
atlas of orbifold charts, (U;, I';, ¢;).

Example A.4. Every ordinary manifold is a special case of an orbifold, obtained by considering each
manifold chart as an orbifold chart with the trivial group for I'.

Proposition A.s. Let G be a compact Lie group that acts locally freely on a smooth manifold M. Then
the orbit space M |G has a natural orbifold structure.

Proof. This proof is from [Duir, §14.1]. For any point p € M, the stabiliser subgroup G, of pin G
is finite. The linearisation of the local G,-action implies the existence of a “s/zce” through p for the
G-action, i.e., a smooth G-invariant manifold S through p, such that T,M = T,5S & T),(G - p), and
such that each nearby G-orbit in M intersects S in a G,-orbit in S. From this, the neighbourhoods

U in M /G of the orbits O, = G - p are identified with the quotients S/ G, of smooth manifolds by
finite groups G, thus yielding the sought-after orbifold charts. O

Let M be an n-dimensional orbifold, p € M a point, and ([7 , I, ¢) an orbifold chart for a
neighbourhood U of p.

Definition A.6. The orbifold structure group, I, of p, is the isotropy group of a pre-image of p
under ¢.

The orbifold structure group I', is well-defined up to isomorphism, and one may choose an
orbifold chart (U, T, ¢) for which ¢~ (p) is a single point fixed by I'. In this case, I' = T, and
(U,T'p, ¢) is called a structure chart for the point p.

There is a natural stratification of the orbifold M into suborbifolds, according to their orbifold
structure group types, which is called the orbifold stratification. On each connected component of
M, there is an open and dense set of regular points in M, for which the order of the structure group
is minimal. This is called the principal stratum of M. On each connected component of M, the
abstract isotropy group of its principal stratum is called the structure group of that component, and
its order of the group is said to be multiplicity of that component. By varying over each connected
component of M, the multiplicities of each define a locally constant function my; : M — N, called
the multiplicity function.

In contrast to manifolds, orbifolds are allowed to have quotient-singularities, which fortunately
are only mild ones.
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Proposition A.7. Let M be an orbifold. Then M is normal, Coben-Macaulay, with only rational
singularities.

Proof. For the proof that M is normal, see [Cars7, Théoreme 4]; that M has only rational singularities,
see [Vie77, Proposition 1]; and that M is Cohen-Macaulay, see [Stay9, Proposition 3.2]. O]

A.2  Suborbifolds

Suppose that M and N are two orbifolds with a continuous inclusion [2] : | M| < | N| between their
underlying topological spaces. Assume that there exists an atlas of orbifold charts ((7 I, ¢) for N
such that, for each chart (U, T, ¢) which intersects M, by which we mean that o(U) N |2|(|M]) # 0,
then the pre-image of N is given by the intersection of U with a linear subspace V' of R"™. Let I'y be
the subgroup of I" that consists of the elements whose action preserves V.

Definition A.8. We say that M is a suborbifold of N if the collection (U NV, T'y, ¢|5y) of triples,

along with their induced injections, forms an atlas of orbifold charts for V.

For each orbifold chart (U, T, ¢), we can find the subgroup of transformations in I" which
becomes the identity when restricted to U N V. The subgroup is well-defined as an abstract group for
each connected component of [V, since it is just the isotropy group of the respective principal stratum.
In particular, when N is a connected component, then it is just the structure group of N.

A.3 Maps & Group Actions on Orbifolds

Definition A.9. We say that a smooth map between orbifolds, f : M — N, isa continuous map
between the underlying topological spaces that satisfies the following condition: given p € M, let
(V,T f(»), V) be astructure chart for f(p). Then there exists a structure chart (U, L'y, ¢) for p, in
addition to a smooth map f:U—V,suchthat fop =t o f.

Definition A.10. A smooth function on M is a collection of smooth invariant functions on each

orbifold chart (U, T, ¢) that agree on the overlaps of the images ¢(U).

Definition A.xxr. A smooth action 7 of a Lie group G on an orbifold M is a smooth orbifold map
T : GX — M that satisfies the ordinary group action axioms: for every g,h € G andp € M, we
have that:

T(g, T(h,p)) = 7(gh,p), and T(eq,p) = p.
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A.4 Fibre & Vector Orbibundles

Definition A.r2. An orbifold fibre bundle 7 : £/ — M is a collection of I'-equivariant fibre
bundles:
J — EU

|0

U

over each chart ( U,T, ¢), together with suitable compatibility criteria.

For each p € M, in general the fibres 7! (p) are not diffeomorphic to Z. Rather they are only
diffeomorphic to some quotient of Z by an action of the structure group I',,. If V' is a vector space
and I" C GL(V) is a finite subgroup, quotients of the form V/I are called vector orbispaces. If
each fibre 771 (p) is a vector orbispace, then 7 : E — M is a orbifold vector bundle. Denoting by
N(I") the normaliser group of I' in GL(V), then the group GL(V//I) acts on the orbifold V/T".

A Riemannian metric on an orbifold vector bundle E is a I'-invariant smooth type (2, 0) tensor
field of inner product:
(—, =) € H'(M; E* ® E*)

on the fibres of Ej, for each orbifold chart ( U, I'y, ¢) and agreeing on their overlaps. A complex
orbifold vector bundle is an orbifold vector bundle equipped with an almost-complex structure. A
complex structure on an orbifold vector bundle E is a I'-invariant smooth type (1, 1) tensor field of
linear operators:

J e H'(M; E® E*)
with J o J = — Idg, on the fibres of E; for each orbifold chart (U, 'y, ¢) and agreeing on their

overlaps.

A Hermitian orbifold vector bundle is a complex orbifold vector bundle 7 : £ — M equipped
with a Hermitian structure, which is a smooth type (2, 0) tensor field:

(—, =) € H(M; E* ® E¥)

of positive-definite Hermitian structures on the fibres of F. That is to say, for any smooth sections,
01,09,0 € HY(M; E), the inner-product (o1, 02) is a C-valued smooth function that is complex
linear in its first argument, complex anti-linear in its second argument, and satisfies:

(01, 09) = (02, 01), and (o,0) >0, if o#0.
One may extend the familiar notions of duals, tensor products, exterior products, etc., to orbifold

vector bundles too by forming these constructions over each orbifold chart and enforcing suitable
compatibility criteria on their overlaps.
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An orbifold section~of an orbifold fibre bundle 77 : £ — M is defined by a I'-invariant section
on the orbifold charts (U, T, ¢) of M, that agrees on overlaps. If E is a complex orbifold vector
bundle, then an orbifold connection on F is a differential operator:

V:HM;FE) — H(M:;T*M & E)
that satisfies the condition:
V(fo)=df ® o + fVo, forall f € C*(M), o € H*(M; E).

Given a Hermitian orbifold vector bundle 7 : & — M and orbifold connection V on E, we say that
V is a Hermitian connection if, for any vector field v € H°(M; T M) on M, we have that:

v(oy, 09) = (Vyo1, 03) + (01, Vy02), forall oy, 09 € HO(M; E).

A.s Orbifold Characteristic Classes

If 7 : E — M is a Hermitian orbifold vector bundle with Hermitian connection V, then one may
define the orbifold versions of the curvature, characteristic classes, and so on. If F' € Q2( M) is the
curvature two-form with respect to V, then R(E) = (v/—1/27)F is a real-valued closed two-form
on M. The first Chern class of £ is then the cohomology class:

c(E) :=[TrR(E)].
Similarly, the Chern character of F is:
Ch(E) = [Tr eR(E)} .

There also is an orbifold version of the splitting principle from Theorem so a complex orbifold

vector bundle F with dim¢ F = n, decomposes as the formal direct sum:
E=ViaV,,
where V; = Cfor j = 1,...,n. Then the orbifold Todd class of F is given by:
Ta(E) =[] %)

j=1 [1 o eicl(vj)} .

Given a point p of M and a structure chart (U, I, ¢) for p, the orbifold tangent space to p is

the quotient of the tangent space to p := ¢~ !(p) in U by the induced action of I';

T,M = T;U/T,.
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Taking the union of the orbifold tangent spaces as p ranges through M, along with the transition
functions defined by the compatibility criteria, allows us to construct the orbifold tangent bundle
m: TM — M of M. A vector field on M is a section v of the orbifold tangent bundle 7'M, so
v € HY(M;TM). A similar argument can be applied to define orbifold differential forms as
sections of the exterior algebra of the orbifold cotangent bundle. A Riemannian orbifold is an
orbifold equipped with a Riemannian metric on its orbifold tangent bundle. An almost-complex
orbifold is an orbifold with an almost-complex structure on its tangent bundle. The Todd class of
an almost-complex orbifold is just the Todd class of its orbifold tangent bundle. One may successively
progress this way to define the orbifold analogues to de Rham theory and Dolbeault theory.

_ Anorbifold M is orientable if we can assign an orientation to the subset U of each orbifold chart
(U, T, ¢), and which agrees on their overlaps. If M is an n-dimensional orientable orbifold and if
w € Q"(M) is a differential top form of compact support on an open and connected set U, trivialised

by an orbifold chart (U, T, ¢), then the integral of w is:

/ my -
w=— w
M |F| U 7

where my is the multiplicity of the connected component of M containing U, and & is the I'-invariant
form on U that represents w. The integral of an arbitrary top-degree form on M is then defined via
partitions of unity.

A.6 Connections on Line Bundles

Let L — M be a holomorphic orbifold line bundle over A/, and denote £L* := £ — {zero section}.
Given a connection V on L, there exists a unique one-form 6 € Q' (L£*) such that:

¢ @ isinvariant under the C*-action;

e forany p € M, we have that ¢ £y = Oy, where 0, is the unique one-form on E; such that
s*(ap) = dz/z forany map s : C* — L7;

* givenalocal section o : U — L*|y for each open subset U C M, we have that Vo /o = s*6.

The one-form 6 € Q'(L*) is called the connection one-form of (£, V). Given a vector field
X 5y on M, there exists a unique horizontal vector field X - on £ such that 7. X, = X, called the
horizontal lift of X', by V, and a horizontal section is a section o : U — M such that Vo = 0.

The exterior derivative df € Q*(L*) of the connection one-form 6 is a C*-invariant horizontal
two-form. Hence there exists a unique closed two-form © € Q?(M) on M, called the curvature
two-form of (£, V), such that 7O = df, where 7 : L* — M. Since any two connection one-forms
on M differ by a one-form, the cohomology class [O] of © is independent of the choice of connection

Von/L.
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Lemma A.x3. When NV is a Hermitian connection on L and (o, o) = 1, then V satisfies:
0"+ 0%0 = 0.
Proof. Forany X € T'M:
0= X(o, 0) = (1xVo, o) + (0, 1xVo) =1x ((VJ, o) +(<7,—V(7>) =1x (070 + 070) .
O

We therefore have © + © = 0, hence (v/—1/27)© is a real-valued integral closed two-form on
M, and hence w := (1/—1/27)O is a Chern form for £, and the cohomology class that it represents
is the Chern class ¢; (£) = [(v/—1/27)0] of L.

A Hermitian orbifold line bundle £ with a Hermitian connection V is equivalent to a orbifold
principal U;-fibre bundle P — M with connection one-form 6 € Q'(P), such that £ = P xy, C,
such that the connection V on £ is induced by a connection one-form on P. The corresponding
connection one-form 6 on P satisfies 0(0/0¢) = 1, where 0/0¢ is the vector field generating the
principal U;-action on P.

A.7 Symplectic Orbifolds

A symplectic orbifold is an orbifold M equipped with a closed non-degenerate two-form w €
Q?(M). An orbifold almost-complex structure JJ on M is compatible with w if, for every p € M,
the bilinear form:

Gp(v1, v2) 1= wy(Jpv, w), where vy, vy € T, M,

is symmetric and positive-definite. A group G acts symplectically on M if the G-action preserves w.
A moment map for a symplectic G-action is a G-equivariant map p : M — g* such that:

ixw = dp’, forall X € g.
If a moment map exists for a G-action on M, then we say that the action is Hamiltonian.

For a symplectic action of a connected Lie group G on a symplectic orbifold (M, w), the fixed-point
locus M ¢ is a suborbifold of M. For a fixed point p € M¢ with structure chart ((7 . I'p, ¢), then
there is a local action of G on U. If G is furthermore compact, then this local action gives rise to an
action of some finite cover G of the identity component G° of G, commuting with the action of .
The group G is an extension of G of degree no larger than the order of I',, [Duir, Proposition 15.4].

The G-action induces a linear representation of G on Ty-1()U via its derivative, with weight
apj € g-foreach j = 1,...,n. The oy ; are called the isotropy weights of the G-action on the
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fixed point p. Note that, unlike in the manifold case, only each || - v, ; needs to lie in the integral
weight lattice g7 of G, whereas the weights «, ; themselves may be rational. The weights o, ; are
well-defined since they are independent of the choice of orbifold chart, and of the choice of compatible
almost-complex structure.

A.8 Equivariant Pre-Quantisation

When (£, V) is a Hermitian orbifold line bundle over M with Hermitian connection V, let 6 be the
corresponding connection one-form and © the curvature two-form. Suppose that an n-dimensional
torus 1" acts on M, and that this T-action lifts to £. We can assume that  is a T-invariant one-form,
since we can take its average over M if necessary, so that V is a T'-invariant connection.

Denote by X /- the vector field on £* that is generated by an element X € t. Then 0(X) is
constant along the fibres, and we can therefore define a map p : M — t* by:

™ (n, X) = (V=1/2m)0(X),
and p is T-invariant since 6 is. We then have that:
(d, X) = (V=1/2)y, 6.
Hence p is a moment map for the T-action on M with respect to (v/—1/27)©.

The vector field X, — X, is a vertical vector field on £, where X, is the horizontal lift of the
vector field on M that is generated by X € t. For some value a € t*, on the level-set 11! () we have:

Xe =Xy —2mv—=Ya, X)(9/0¢),
where 0/0¢ is the vector field generating the principal U;-action on P from[A.q|
Ifp € M7 is afixed point, then X ;; = 0, the vector field X is vertical for every X € t, and

the fibre £, is a linear orbifold representation of I" given by some character x : 7" — Uj, where

eX — el X) for every X € tand a fixed rational weight a, € Q. Then we have:

Xe(Q) = (ap, X)(0/99),

where ¢ € L), is the fibre coordinate.

Proof. The Lie algebra representation (dx). : t — Risgiven by £ — (v, &), so we have:

=0 (L) =) ().
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Hence:

and so:

A.9 Inertia Orbifolds

Definition A.14. Given an orbifold M, the inertia, or the associated, orbifold M to M is defined
using the orbifold charts (V, I', ) that are defined as follows: for each orbifold chart (U, T', ¢) for
M, define:

V::{(u,v)eﬁxF)y-u:u}, (A1)
and let T act on each subset V by:
g- (u7fY> = (g : u?.g_lfyg)? for all (u77) € U‘ X F7 g &€ I

Lastly, we set:

vV :=V/I.

The orbifold charts (V, T, ¥) inherit the compatibility criteria from the orbifold charts (U,T, )

for M. In general, the inertia orbifold M has several connected components of varying dimension
which can be described as follows: recall that for any point p € M there exists a structure chart
(Up, Iy, ¢) withp € U, := ¢(Up). If g € U, then, up to conjugation, there exists an injective
homomorphism I'; < I',. Also forany v € Iy, the conjugacy class (7)r, € Conj(I’,) is well-
defined and lets us define an equivalence relation (y)r, ~ (¥)r,. We shall use () to denote the
equivalence class that (), belongs to, and I'/ ~ to refer to the set of all equivalence classes in I".

Then underlying topological set ]]\/4\ | is given by the disjoint union of connected components:

|M| = |_| M),
(y)er/~

where:

My = { (p,(¥)r,) € M x Conj(T',) |y €T, (7)r, € () }-

Definition A.xs. The component M.y = |M]| is called the non-twisted sector of M, whereas we
call its complement suborbifold M,y with v # e the twisted sector of M.
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An intuitive geometric description of an inertia orbifold M is that they provide a method of
parametrising the points p of an orbifold M along with their automorphisms in the form of the
isotropy groups I';,. The non-twisted sector M, is just the original orbifold M, whereas the twisted
sector M. consists of the points p € M and thelr non-trivial structure groups I'y.

On each orbifold chart (V, ', ¥) of M associated to the orbifold chart (U,T gf)) of M, there
exists a [-equivariant immersion V- U. By considering each orbifold chart for M and for M, we
may glue them together to give a ['-equivariant immersion, p : M — M. Let Vi — M denote the
normal bundle to M in T'M that is induced by this immersion p. Locally, v/ is obtained from each

normal bundle vy, — V to the immersion V — U over the orbifold chart (V, T, ¥), and then by
dividing out the I'-action.

A.xo Canonical Automorphisms

For any orbifold vector bundle 7 : E — M over the inertia orbifold M , there exists a canonical
automorphism, A(F) € Aut F, which can be described as follows: given an orbifold chart (U, T, ¢)
of M, let (V,T', W) be the the associated chart of M. If (p, ) € V, then 7y acts on this point as:

v (7)) = (v-p,Ad (7)) = (p,7), (A.2)

and therefore (p, 7) is fixed by 7. However, we may lift the action of v on (p, v) 7) up to the fibre
7 (p,y) = E(p 5 V of the local T- -equivariant orbifold vector bundle E — V. This liftting
defines an automorphism Ay € Aut( V). Gluing the automorphisms Ay together over the orbifold
charts (V, T, ¥) then gives rise to a canonical section A of the automorphism bundle Aut(E) of E.
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