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Abstract

Accurate multiphase flow measurement is crucial in the energy industry. Over

the past decades, separation of the multiphase flow into single-phase flows has

been a standard method for measuring multiphase flowrate. However, in-situ, non-

invasive, and real-time imaging and measuring the key parameters of multiphase

flows remain a long-standing challenge. To tackle the challenge, this thesis first

explores the feasibility of performing time-difference and frequency-difference imaging

of multiphase flows with complex-valued electrical capacitance tomography (CVECT).

The multiple measurement vector (MMV) model-based CVECT imaging algorithm

is proposed to reconstruct conductivity and permittivity distribution simultaneously,

and the alternating direction method of multipliers (ADMM) is applied to solve

the multi-frequency image reconstruction problem. The proposed multiphase flow

imaging approach is verified and benchmarked with widely adopted tomographic

image reconstruction algorithms. Another focus of this thesis is multiphase flowrate

estimation based on low-cost, multi-modal sensors. Machine learning (ML) has

recently emerged as a powerful tool to deal with time series sensing data from multi-

modal sensors. This thesis investigates three prevailing machine learning methods,

i.e., deep neural network (DNN), support vector machine (SVM), and convolutional

neural network (CNN), to estimate the flowrate of oil/gas/water three-phase flows

based on the Venturi tube. The improvement of CNN with the combination of long-

short term memory machine (LSTM) is made and a temporal convolution network

(TCN) model is introduced to analyse the collected time series sensing data from the

Venturi tube installed in a pilot-scale multiphase flow facility. Furthermore, a multi-

modal approach for multiphase flowrate measurement is developed by combining

the Venturi tube and a dual-plane ECT sensor. An improved TCN model is built

to predict the multiphase flowrate with various data pre-processing methods. The

results provide guidance on data pre-processing methods for multiphase flowrate

measurement and suggest that the proposed combination of low-cost flow sensing

techniques and machine learning can effectively translate the time series sensing

data to achieve satisfactory flowrate measurement under various flow conditions.
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Lay Summary

Multiphase flow can be extensively observed in various energy, biomedical and chem-

ical engineering processes, e.g.，oil and gas conduits, fluidised beds and microfluidic

systems. The phenomenon of multiphase flow is difficult to understand, predict, model

and measure accurately due to its complicated nature. Specifically, the accuracy of

traditional physical-model-based multiphase flow measurement techniques, such as

dual-modality electrical tomography, is highly dependent on flow conditions, which will

be subject to accuracy loss if any hypothesis is not met.

This thesis aims to develop an accurate and universal multiphase flow sensing plat-

form to efficiently and accurately perform multiphase visualisation and flowrate meas-

urement. Traditional electrical sensors can only achieve permittivity or conductivity

distribution separately, which is a challenge in real applications considering the time

consumption and financial expenditure. Therefore, one of the objectives of this thesis

is to develop an enhanced electrical tomography system for simultaneous permittivity

and conductivity imaging. Meanwhile, in the oil and gas industry, in-situ and real-time

flowrate characterisation of gas/oil/water flow during the oil transportation process has

remained a research challenge. Focusing on this problem, this thesis demonstrates

innovative machine learning-based multiphase flowrate measurement techniques,

investigates multiple sensor data fusion models, explores intelligent flow sensing

data analysing with various data preprocessing methods, and ultimately tests and

benchmarks the platform and algorithms.
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既然行笔至此，便也想说一些家国情怀的事。出国近十年，感慨万千。亲眼看

到过国外分裂势力的阵仗，也曾和有反动思想的人激烈地争论过，和志同道合

的朋友连夜做过国旗声援过国家，也和朋友深夜聊到爱国而热泪盈眶。同时我
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士牺牲的新闻，想到他又是谁家的儿子，又凭什么就这样为了保护我们而牺

牲，就忍不出流出泪。所以我要感谢的，还有他们。虽素不相识平生未见，但

我清醒地知道头顶的这片天是谁为我撑起来的。

最后，我是一个情感细腻的人，以至于给很多人的第一印象并不是一位理工科

的博士生。有一个人我安静地等了很久。久到时不时开始怀疑她还会不会出

现，久到自己一个人并没有察觉到生活里慢慢暗淡下来的环境。我曾无数次以

为自己真的并不需要爱情了，因为一个人也可以精彩地活着。直到她的出现，

远赴人间惊鸿宴，一睹人间盛世颜。像一束光一样，照进了我的生活。那一刹

那，我便将全部过往，或平坦，或荆棘，或美好，或凶恶都毫不犹豫地注入了

心炉融成了现在勇敢站在她面前的自己。带着过往无数次独自看过的那穿越了

亿万光年的光束，在汹涌的人群中用荆棘铺路，以凶恶为甲，坚定的走向她只

想带她看尽人间繁华将后路都铺平坦。当灵魂被点亮，我才知道原来放开手脚

敞开心扉地爱一个人，是如此惬意和开心。张轶，你的出现，让我一瞬间有了

铠甲和软肋。如果说我见过的最美的星辰河海是你的眼眸，那我这一辈子最幸

运的事就是在这星辰河海中，看到了自己。

我未来的孩子，虽然你此时并没有出现在爸爸人生中最重要的时刻之一，但你

要相信爸爸在他的人生规划中从你还未来人世时便已经开始期待与你的相见。

你和妈妈，永远是他心里最柔软的存在。

2013年出国前夕，写下了一句话，那时候想的是，如果真有博士毕业这一天，

就用它作结尾:

让我们在青春这巨大而灿烂的舞台上，尽情的演出，完美的谢幕。
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Chapter 1

Introduction

1.1 Background and motivation

Multiphase flow exists in a wide range of industrial processes and various energy,

biomedical, and chemical industries, e.g., oil and gas conduits, fluidised beds, and

microfluidic systems (Kreutzer, Kapteijn, Moulijn, and Heiszwolf (2005); Olivella,

Carrera, Gens, and Alonso (1994); Yao and Takei (2017)). For example, a typical

hydrocarbon production facility would have multiple wells (typically subsea) linked

to a single platform on land. In general, hydrocarbons are usually not produced

as a single phase but instead appear as a mixture of oil, water, and gas. The

traditional approach uses a small-scale test separator, and the separated phases are

measured by single-phase flow meters (Frank et al. (2019)). However, the separator,

test lines, and associated infrastructure are costly and not economically viable for

small or marginal fields. Furthermore, the separation and test durations can be

lengthy because of the time required to re-route the flow from different facilities to

the separator, followed by the purging and re-stabilisation processes, among others

(Huang, He, and Liang (2007)). With the low separation efficiency, due to the level-

control problems and emulsion formation, for example, the testing separators are not

as accurate as commonly believed. Therefore, multiphase flow measurement has

long been a challenge in the energy industry due to its complicated nature (Hansen,

Pedersen, and Durdevic (2019)). The accurate, in-situ, and real-time measurement

and visualisation of oil-water-gas three-phase flow are key factors for achieving

efficient, safe, and economical production. Various multiphase flow measurement

techniques can be summarised into four major categories: flow pattern recognition (Ye

and Guo (2013)), flow visualisation (Yao and Takei (2017)), void fraction measurement

(Xue, Li, Hao, and Yao (2016)), and flowrate measurement (Hu, Li, Liu, and Li (2019)).
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Various tomography techniques, such as gamma-ray (Yates and Simons (1994))

and ultrasonic-based tomography (Brown, Reilly, and Mills (1996)), have been

successfully applied in multiphase flow visualisation. However, sensing principle, the

difficulty of operation, environmental friendliness, and cost are several parameters

that constrain the industrial applications of these techniques. Recently, electrical ca-

pacitance tomography (ECT), a non-invasive, easy-to-deploy, non-radiation, low cost,

and fast (∼ 1000 frames/s) (W. Yang (2010)) imaging technique, has demonstrated

great potential in multiphase flow visualisation and flowrate measurement.

Conventional ECT can reconstruct the variation of permittivity distribution within

the region of interest by subsequently applying an excitation voltage on selected

electrodes and measuring the corresponding capacitance between other electrode

pairs. A recent improvement of conventional ECT is the complex-valued ECT

system (M. Zhang and Soleimani (2016)), which can reconstruct the permittivity

and conductivity distribution simultaneously within the region of interest by meas-

uring complex capacitance. It extends the capability of conventional ECT to detect

the conductive objectives, and, therefore, a more comprehensive measurement is

achieved. Currently, complex-valued ECT has been validated with a time-difference

(TD) imaging method and the conventional Tikhonov regularisation algorithm using

simulation data (M. Zhang et al. (2020)).

In addition to flow visualisation, multiphase flowrate measurement is another open

challenge in many industrial processes. Traditional flowrate measurement methods

require the component separation of multiphase flows using separators, and then

single-phase meters can be applied to measure the flowrate of each phase (Falcone,

Hewitt, Alimonti, and Harrison (2001)). To reduce the cost of the separators and

save operation space in energy industry applications, researchers have attempted

to develop more advanced techniques for multiphase flowrate measurement, i.e.,

multiphase flow meters. Based on the excellent performance in single-phase flowrate

measurement, differential pressure devices, such as Venturi tubes, have been studied

in types of multiphase flowrate measurement, like gas-liquid (J. Han and Dong

(2009); L. Xu, Zhou, Li, and Tang (2010)). However, the Venturi tube suffers from

the overreading issue in multiphase flowrate measurement scenarios, becoming a

significant source of uncertainty.
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Recently, machine learning has become a prevailing technique to overcome over-

reading restrictions, demonstrating great potential to analyse the differential pressure

data generated by the Venturi tube effectively. For instance, convolutional neural

networks (CNNs) and flow adversarial networks (FANs) for predicting gas-liquid

multiphase flows have been designed, of which Hu et al. evaluated the behaviours

(Hu et al. (2019)). Their experimental results revealed that the FAN performed better

on multiphase flowrate prediction than the CNN. In addition, a multi-layer back

propagation network (MBPN) was used to estimate the flowrate of air-water two-

phase flow with a measurement error of less than 10% (Cai and Toral (1993)).

Independent component and principal component analysis were employed to reduce

the feature dimensionality and improve the efficiency of the neural network (NN)

(Shaban and Tavoularis (2014b)). However, the NN model needs to be precisely tuned

to handle different flow regimes, which is inconvenient in practical applications. In

addition, support vector machine (SVM) was also applied in multiphase flow pattern

recognition (X. Li, Miskimins, Sutton, and Hoffman (2014); Trafalis, Oladunni, and

Papavassiliou (2005)), indicating the possibility of training a more adaptive network to

fit the comprehensive flow regimes and predict instantaneous flowrates.

This thesis examines the hypothesis that combining multi-modal flow sensing tech-

niques with data science can tackle the multiphase flow measurement challenges

by accurately estimating key flow parameters, e.g., water–liquid ratio, gas–volume

fraction, and mass flowrate, under various flow conditions. This approach will facilitate

the construction of digital oil fields based on the Internet of Things and fulfil the

increasing demand for the accurate monitoring of the health and production of the

entire oil field down to individual wells in real time.

1.2 Aims and objectives

This thesis aims to establish a multi-modal sensing platform combined with machine

learning techniques to predict flowrate and visualise multiphase flow accurately and

efficiently. Moreover, the main goal is to improve the multi-modal sensing platform

for multiphase flowrate detection and visualisation. The improved platform includes a

wider range of key flow parameter extraction and more robust image reconstruction
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algorithms. In addition, several machine learning models are developed to predict

multiphase flowrate based on the time series differential pressure data collected from

the Venturi tube. Finally, a multi-modal data fusion model is established and evaluated

on the raw data level. The following objectives were set to accomplish the targets:

1. Improve the multi-modal flow sensing platform by investigating multi-frequency

complex capacitance measurement schemes and advanced image reconstruc-

tion algorithms.

2. Develop machine learning approaches for multi-modal flow sensing data

translation, such as differential pressure and complex capacitance data, and

estimate key flow parameters.

3. Investigate data fusion models to improve the robustness and reliability of multi-

modal flow measurement.

4. Perform experimental validation on the developed methods under various flow

conditions.

1.3 Main contribution

The main contributions of this thesis can be summarised as follows:

1. Frequency-difference (FD) voltage excitation strategy for complex-valued ECT

was investigated and validated to extract information of different flow phases,

e.g., gas and liquid, simultaneously. Advanced image reconstruction algorithms,

i.e., the multiple measurement vector (MMV) model, were investigated to

achieve better image quality.

2. State-of-the-art machine learning algorithms were comprehensively studied

based on multi-modal time series sensing data collected from differential

pressure sensors. As a result, machine learning methods, such as deep neural

networks (DNNs), SVMs, and CNNs, were improved and implemented to

generate accurate predictions of flow parameters.

3. A novel CNN combined with a long-short term memory (LSTM) model was

designed and established to predict the liquid volumetric flowrate. Meanwhile,

the liquid volumetric flowrate of oil/gas/water three-phase flow was predicted

by implementing a temporal convolutional network (TCN). The performance of

the proposed TCN model was evaluated, validating its feasibility in predicting

multiphase flowrate.
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4. A multi-modal sensor and TCN-based approach were proposed to predict the

volumetric flowrate of multiphase flow. Two data pre-processing methods were

employed to manipulate the collected instantaneous time series multi-modal

sensing data.

The above work examines the hypothesis that combining multi-modal flow sensing

techniques with data science can tackle the multiphase flow measurement challenges

by accurately estimating key flow parameters, e.g., flowrate and flow visualisation,

under various flow conditions. Relative research outcomes have been published in

or submitted to renowned journals and presented at international conferences, as

indicated in the publication list.

1.4 Overview of the thesis

The thesis contains seven chapters, and the remainder of this thesis is organised as

follows. Chapter 2 reviews the fundamental theory of multiphase flow, existing flow

patterns under different flow conditions, key factors in multiphase flow measurement,

traditional and modern methods of multiphase flowrate measurement, and state-of-

the-art learning-based multiphase flow sensing data techniques.

Chapter 3 presents the design and evaluation of complex-valued electrical capacit-

ance tomography for multiphase flow imaging. FD excitation strategy and MMV image

reconstruction methods are illustrated, and the experimental results demonstrate the

feasibility of performing FD imaging of multi-frequency complex valued ECT (CVECT).

Chapter 4 describes the estimations of the instantaneous flowrate of gas/oil/water

three-phase flow by combing the Venturi tube with various machine learning methods.

The investigation of the input datasets shows that the performance of machine

learning models on multiphase flowrate estimation can be improved by using modified

data. Furthermore, the experimental results demonstrate that the proposed machine

learning models effectively estimate the liquid and gas phase flowrates.

Chapter 5 develops state-of-the-art learning-based models for analysing time series

signals collected from a Venturi tube and other sensors. The proposed CNN-LSTM

and TCN models are trained, validated, and tested with multiple time series sensing

data obtained from the Venturi tube. The evaluation results indicate that TCN can

estimate more accurate multiphase flowrates of liquid and gas phases.

5
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Chapter 6 investigates a multi-modal sensor and TCN-based method to predict the

volumetric flowrate of oil/gas two-phase flows. To manipulate the time series of multi-

modal sensor data collected at instantaneous intervals, various data pre-processing

methods are employed. Experimental results reveal that the proposed model can

accurately predict multiphase flowrates when using multi-modal sensing data as input

to the TCN model.

Chapter 7 summarises the scientific contribution of this thesis and discusses potential

future work with an emphasis on the further advancement of image reconstruction

algorithms and time series data processing based on modern machine learning

techniques and multi-modal platforms.
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Chapter 2

Literature review

2.1 Introduction

This chapter briefly reviews the development of multiphase flow measurement,

including recent progress in flow visualisation and flowrate measurement. Emerging

machine learning approaches for multiphase flow measurement are comprehensively

discussed, and recent developments in flow imaging algorithms and learning-based

multiphase flow measurement models are reviewed.

2.2 Multiphase flow

In the hydrocarbon production industry, multiphase flow is the simultaneous flow of

oil, water, and gas mixtures within the same conduit. It is also defined as the flow of

materials with more than one phase, referred to as multiphase flow in fluid mechanics

(Crowe (2005)). These flows can consist of more than one phase of one component

(e.g., water and water vapour) or different components (e.g., oil and water) (Brennen

and Brennen (2005); Chhabra and Shankar (2017)).

Continuous fluids are commonly observed phenomena, and any substance that flows

can be considered a fluid (Munson, Okiishi, Huebsch, and Rothmayer (2013)). The

fluids in a container are usually classified as either liquid, which is difficult to compress

but can move around easily, or gas, which has no boundaries and are confined only

by the container (Chiolerio and Quadrelli (2017)). As a result, from a conventional

perspective, fluid dynamics relies on the concept that a fluid, whether liquid or gas, is

a continuous medium and holds continuous flow.
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It is essential to understand the nature of multiphase flows since this determines the

most appropriate methods for their metering, the accuracy of that metering, and any

modelling or calculations performed on the flow behaviour. For instance, shearing

forces between fluid layers are generated by fluid movement (Klein (1996)). A fluid

flowing through a pipe should flow at zero velocity at the wall and with the velocity

increasing with distance from the wall. It is vital to comprehend phenomena such as

slug flows to effectively operate pipelines and process systems, which also affect flow

metering.

Multiphase flow of oil, water, and gas potentially encompasses the full ranges of

the flowrates of all three phases, i.e., gas volume fractions and water cuts from

0% to 100%, as well as a wide range of total liquid velocities. In these ranges, the

flow characteristics are subject to considerable variation due to differences between

the gas and liquid in terms of velocity, viscosity, and density. The line pressure and

temperature may also affect these variables.

Various configurations or flow patterns were studied and are reviewed in subsequent

sections. Flow patterns are often unsteady or intermittent, and it is common for the

interface between a liquid and a gas to be deformable, irregular, and thus difficult

to quantify, except for a few simple cases. One of the most common classes of

multiphase flow is two-phase flow. Depending on factors such as the flow velocity

and the pipe diameter, two-phase continuous liquid–gas flow may exhibit different

flow patterns, known as flow regimes (Falcone (2009)).

2.2.1 Horizontal flow

Two-phase flow patterns in horizontal pipes fall into several broad categories: segreg-

ated flow regimes (such as stratified, stratified-wavy, and annular flow), intermittent

flow regimes (plug and slug), and distributed flow regimes (bubble and mist). Between

any two regimes are transition regions. The transition from one flow regime to another

is typically fairly indistinct, and various intermediate flow patterns can be observed.

However, the change can be quite abrupt in a few cases (e.g. from stratified to slug

flow). The following patterns tend to dominate in horizontal two-phase flow:
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2.2.1.1 Stratified flow

As shown in Figure 2.1, in the stratified flow regime, there are distinct layers of gas

and liquid flowing through the pipe conduit. During the pipeline’s construction, the

liquid phase occupied the lower part, and the gas, the upper. With this flow type, the

interface area between the liquid and gas is the smallest, regardless of the liquid

content (Awad, Calay, Badran, and Holdo (2008)). The gas and liquid have a smooth

interface when the flowrates of both phases are low. As the flowrate increases, the

stratified layers may become irregular, resulting in stratified waves (Kennett and Kerry

(1979)).

Figure 2.1: Schematic diagram of stratified flow regimes in horizontal two-phase flow.

2.2.1.2 Intermittent flow

As shown in Figure 2.2 in the intermittent flow case, alternating regions of high liquid

hold-up and low liquid hold-up characterise this flow regime (Svendsen, Bushnell,

and Steffensen (2016)). Two main classes of intermittent flow regimes can be

distinguished: slug flow and plug flow.

Figure 2.2: Schematic diagram of intermittent flow regimes in horizontal two-phase flow.

A slug flow regime is characterised by a series of liquid slugs separated by relatively

large gas pockets (Griffith and Wallis (1961)). Such gas pockets nearly completely fill

the cross section of the pipe, and a considerable amount of gas may be present in

the slug itself.
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The liquid phase tends to dominate intermittent flow as the flowrate increases, with

gas bubbles that are asymmetrically distributed throughout the flow (Moys (1978)).

Most of the gas in a so-called ‘plug’ flow regime moves as large bubbles (or plugs)

along the top of the pipe, which is otherwise liquid-filled. There may still be a few tiny

bubbles in the continuous liquid phase, but they tend to coalesce into bigger ones

(Alvarez and Myerson (2010)). Plug flow differs from slug flow in that it has small,

slower-moving gas bubbles (Rau et al. (2016)).

2.2.1.3 Bubble flow

As Figure 2.3 shows, the bubble flow phenomenon occurs when the liquid velocity

remains higher than the stratified flow velocity. Such a flow pattern is also called

‘distributed flow’ in industry. In bubble flow, gas bubbles are suspended in a

continuous liquid phase. The liquid sinks under the force of gravity, resulting in the

bubbles becoming concentrated in the upper section of the pipe (Nicklin (1962)).

Figure 2.3: Schematic diagram of bubble flow regime in horizontal two-phase flow.

2.2.1.4 Annular flow

As Figure 2.4 illustrates, another example of segregated flow, namely, annular flow, in

which the fluid and gas phases are continuous and largely separated from each other.

Gas velocity is high when this flow regime develops, and in annular flow, liquid forms

a film on the pipe wall as the lighter phase (i.e., gas phase) flows towards the centre

of the pipe (Alves, Caetano, Minami, and Shoham (1991)). Similar to the bubble flow,

gravity leads to more liquid can be observed at the bottom of the pipe than at the top.

There may be a significant amount of liquid entrapped in the gas core as droplets

travel at velocities close to the velocity of the gas. At high gas velocities, the film on

the pipe wall may completely disappear, resulting in the liquid becoming incorporated

completely into the gas and the combined phases flowing as a mist (H. Han, Zhu, and

Gabriel (2006)).
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Figure 2.4: Schematic diagram of annular flow regime in horizontal two-phase flow.

2.2.1.5 Transition regions and flow pattern maps

The flow patterns mentioned can be observed transitioning between one another.

Only the transition between stratified flow and slug flow can be discriminated sharply.

The other transitions occur at a variety of velocities. Sufficiently high velocities

may lead to stratified–annular (Barnea (1986)) and bubble-slug flows (Radovcich

(1962)). Meanwhile, the study also reveals that slug-annular flow occurs when the

flow is intermittent, as in the definition of slug flow with a continuous gas core may

be possible in the slug body because of the degree of gas flow (Zhao and Hu

(2000)). Slug–annular flow occurs when the flow appears annular but the liquid flows

sufficiently intermittently to eliminate the possibility of developing a continuous gas

core (Zhao and Hu (2000)).

In industry, a flow pattern map is often used to facilitate the presentation of

information about multiphase flow regimes. A flow pattern map based on experimental

investigation visualises an observed flow pattern for a given set of flow conditions.

Various flow conditions are gradually accumulated in a matrix of points. A plotted

flow pattern map shows where specific flow patterns occur within specific regions.

In two-phase horizontal flow, a Mandhane map, shown in Figure 2.5, is commonly

used (Mandhane, Gregory, and Aziz (1974)). These data are plotted according to

their superficial velocities of liquid and gas.

2.2.2 Vertical flow

Fluids flowing vertically upwards must be able to overcome gravity, so they exhibit

flow patterns different from those observed in horizontal flow. Under vertical flow,

the ‘bubble’ flow regime changes to ‘slug’ and ‘churn’ flow and eventually becomes

annular flow (Oshinowo and Charles (1974)). It should be noted that there are

relatively fuzzy transition zones between these regimes.
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Figure 2.5: Horizontal multiphase flow pattern map with the superficial gas and liquid
velocities as x and y-axis, respectively.

(a) (b) (c) (d)

Figure 2.6: Schematic diagram of multiphase flow under vertical flow scenario with the flow
pattern of (a) bubble flow (b) slug flow (c) churn flow (d) annular flow.
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2.2.2.1 Bubble flow

Figure 2.6a shows that the bubble flow is characterised by a continuous liquid phase

accompanied by small bubbles of gas under a vertical flow scenario. This regime is

observed at low ratios of the gas flowrate to the liquid flowrate (Krepper, Lucas, and

Prasser (2005)).

2.2.2.2 Slug flow

Figure 2.6b shows that as the flowrate increases, small bubbles in the bubble flow

begin to coalesce into long, bullet-shaped ‘Taylor bubbles’, which can be observed as

gas slugs. During the vertical slug flow, Taylor bubbles dominate almost the entire

cross-section of the pipe in the upward direction (Kawaji, DeJesus, and Tudose

(1997)). Meanwhile, a falling film of liquid surrounds these bubbles, occupying the

space between successive gas slugs (Mi, Ishii, and Tsoukalas (2001)). Both phases,

however, exhibit a positive net flow. Although the nose of each gas slug is typically

quite stable, the area between successive slugs can become highly agitated and

contain a large number of smaller bubbles (DeJesus, Ahmad, and Kawaji (2012)).

2.2.2.3 Churn flow

Figure 2.6c shows that a highly turbulent regime known as churn flow arises when

the gas velocity exceeds that of slug flow. The main characteristic of churn flow is

that irregularly shaped slugs of gas are carried along the centre of the pipe by small

droplets of liquid (Govan, Hewitt, Richter, and Scott (1991)). During churn flow, the

liquid does not always move in the same direction as the net flow. In other words,

the liquid phase exhibits oscillatory behaviour (rising and falling), but the net flow

continues to rise (Barbosa Jr, Govan, and Hewitt (2001)). Additionally, no continuous

phase of either gas or liquid can be observed through churn flow.

2.2.2.4 Annular flow

Figure 2.6d shows that at extremely high gas velocity, liquid forms a film (or annulus)

around the pipe wall as the gas flows near the centre of the pipe. Some of the

liquid phases may become entrained in the gas core (Asali, Hanratty, and Andreussi

(1985)). Additionally, at extremely high gas flowrates, the film on the pipe wall can

disappear completely, resulting in a mist of combined gas and liquid (Wolf, Jayanti,

and Hewitt (2001)).
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Figure 2.7: Vertical multiphase flow pattern map with the superficial gas and liquid velocities
as x and y-axis, respectively.

2.2.2.5 Transition regions and flow pattern maps

It is possible to observe the transitions between slug and churn, churn and annular

flow, and bubble and annular flow because the flow pattern boundaries are not

particularly sharp. As in the case of horizontal flow, all transition regions have

properties that lie between those of the adjacent flow patterns. In addition, vertical

flow can be visualised using flow pattern maps of the locations of slugs, churns,

bubbles, and annular flow and the transitions between these regions. Studies have

produced various flow pattern maps. Figure 2.7 (Barnea, Shoham, and Taitel (1982))

shows the flow pattern map most commonly used in the energy industry.
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2.3 Multiphase flow measurement

Fluid mechanics and thermodynamics are closely related to the study of multiphase

flow. The earliest study of multiphase flow may be traced back to the Archimedes’

principle (c. 250 BCE), which describes the laws of buoyancy (Huerta, Sosa, Vargas,

and Ruiz-Suárez (2005)). In recent decades, the study of multiphase flow began

with the development of the two-phase pressure drop model in the chemical industry

(Schmidt and Friedel (1997)). Remarkably, the frictional pressure drop between gas

and liquid in multiphase flow has been systematically analysed and modelled based

on volumetric flow parameters by Lockhart and Martinelli (Lockhart (1949)). The two-

phase pressure drop model was improved by Chisholm, who identified specific values

of associated parameters for various flow patterns (Chisholm (1967)). Even though

multiphase flows are common throughout many industries, there has not been an

overwhelming demand for real-time flow measurement until recently. In-situ and real-

time multiphase flow measurement has been primarily driven by the hydrocarbon

production industry (Rajan, Ridley, and Rafa (1993)).

2.3.1 Key parameters in multiphase flow

2.3.1.1 Volume fraction

In multiphase flow measurement, each phase’s volumetric flowrate is taken as the

volumetric flowrate relative to the total volumetric flowrate. Particularly, gas volume

fraction (GVF) is used frequently in multiphase metering, which describes the relative

gas content of the multiphase flow (Colombet, Legendre, Risso, Cockx, and Guiraud

(2015)). It can be expressed as:

GV F =
Qgas

v

Qtotal
v
×100% (2.1)

where Qgas
v and Qtotal

v represent the gas volumetric flowrate and total volumetric

flowrate, respectively. It is worth noting that the GVF may change significantly with

pressure changing, due to the compressible characteristic of gas (Pan et al. (2018)).

Similarly, the mass fraction of any given phase is defined as the mass flowrate of that

phase relative to the total mass flowrate. It is not as common to use mass fractions

as volume fractions. Nonetheless, in some cases, when radiation methods are

implemented to perform multiphase flow measurement, mass fractions are adopted.
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For instance, gas mass fraction (GMF) was chosen as one of the most important

indexes in a series of studies that performed the multiphase flow measurement with

X-ray in past decades (Ettori et al. (2009); LaRoque et al. (2006); Pratt et al. (2010)).

The GMF can be formulated as:

GMF =
Qgas

m

Qtotal
m
×100% (2.2)

where the subscript “m” represents the mass flowrate. In contrast to the GVF, the

GMF is not affected by pressure when assuming no phase mass transfer between

liquid and gas phases (Kırmacı and Uluer (2009)).

2.3.1.2 Area fraction

A phase’s area fraction is obtained by calculating the portion of the cross-sectional

area it occupies relative to the total area at a given point within a pipe (Fossa,

Guglielmini, and Marchitto (2003)). In common usage, it is also known as the void

fraction or hold-up for the gas or liquid phase, respectively. A distinction should be

made between the gas volume fraction and gas void fraction, especially since they

share the same abbreviation of ‘GVF’ 1. When there are two phases in a flow, the gas

travels faster than the liquid, causing the slower liquid to occupy a greater area within

the pipe than its volume fraction would indicate (Lucas, Mishra, and Panayotopoulos

(2004)). To demonstrate the point more clearly, Figure 2.8 illustrates the possibility of

a flow with a gas volume fraction of 95% but a gas void fraction of approximately 75%.

Because of the lower velocity of the liquid phase, it occupies a considerable amount

of space in the pipe.

2.3.1.3 Water cut

In addition to liquid flowrate and GVF, water cut is one of the most common

parameters to describe multiphase flows. It is defined as the flowrate of the water

phase relative to the total liquid flowrate, which can be expressed as (Scott, Cregger,

and Shortes (1993)):

Water cut =
Qwater

v

Qtotal liquid
v

∗100% (2.3)

1. Unless specified otherwise, all mentions of ‘GVF’ in this thesis refer to the gas volume fraction.
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Figure 2.8: Schematic diagram of void fraction.

The water cut indicates whether the liquid phase consists of mostly oil, mostly water,

or a mixture of approximately equal volumes of the two. The first case is referred to as

oil-continuous flow, characterised by the dispersion of water as droplets throughout

the oil phase (Chakrabarti, Das, and Das (2006)). The second case is referred to

as water-continuous flow, characterised by the dispersion of oil droplets throughout

the water phase (Fu, Wang, Yue, Zhang, and Sun (2019)). The liquid is described

as being in the inversion region when it consists of approximately equal amounts

of oil and water. Within the inversion region, the fluid mixture is unstable, oscillating

between oil-continuous and water-continuous states (Falcone (2009)).

2.3.2 Traditional methods of measuring multiphase flow

Traditionally, the problem of metering the multiphase flow in the energy industry, such

as typical hydrocarbon production, has been circumvented by separating the mixture

into its constituent components. Therefore, single-phase metering techniques are

implemented on each separated stream (as shown in Figure 2.9).

Typically, offshore production platforms are equipped with two types of separators:

production separators and test separators. Production is collected from all wells and

transferred into the platform using large-scale multiple-stage production separators.

Another objective of a separator is to separate bulk fluids that have been commingled.

Following separation, the gas and oil are piped to a terminal, usually on land. The

wastewater is disposed of at a treatment facility or injected into the ground. The total

oil and total gas volumes produced are measured by single-phase flow meters.
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Figure 2.9: Schematic diagram of a three-phase separator.

Multiphase metering is almost always regarded as measuring the flowrates of

oil, water, and gas, which make up the multiphase mixture. In practice, however,

direct measurement of each phase’s flowrate has yet to be achieved. Alternatively,

measurement of the bulk flowrate of the mixture may be combined with measurement

of phase volume fractions. Several studies discussed the common methods for

deriving the bulk flowrate of the mixture, which include differential pressure (Shaban

and Tavoularis (2014b)), positive displacement (Baker and Morris (1985)) and cross-

correlation based approaches (Weathered, Rein, Anderson, Brooks, and Coddington

(2017)). Meanwhile, the radiation absorption methods (Nazemi, Feghhi, Roshani,

Setayeshi, and Peyvandi (2015)), electrical property measurements (Wajman et al.

(2013)) and microwave resonance (or attenuation) methods (Al-Kizwini, Wylie, Al-

Khafaji, and Al-Shamma’a (2013)) are implemented to measure the oil/water/gas

phase fractions. The relationship between single phase flowrates (Qsp), phase fraction

(αphase), and the average mixture flowrate (Qmix) can be described as follows:

Qsp = αphase ∗Qmix (2.4)

In reality, some corrections must be made to these primary measurements to account

for the effects of flow regimes and velocity slips. Bulk flowrate (velocity) and phase

fraction techniques are discussed in the following sections.
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Figure 2.10: Schematic diagram of traditional throat Venturi with the flow direction from left
to right.

2.3.2.1 Venturi Method

Differential pressure (DP) approaches are commonly used to measure multiphase

flow. These approaches typically involve the use of a Venturi element, although

mixers, V-cones, and other restricting devices may also be used (Matsui (1986)). The

typical structure of the Venturi meter is shown in Figure 2.10, which measures the

differential pressure produced by accelerating the flow through a restriction in order

to create measurable pressure drops (Zeghloul et al. (2021)).

The mass flowrate is related to the pressure drop (∆P) (and the fluid density ρ)

through the following equation:

Qtotal
m =CdEεAt

√
2ρ∆P (2.5)

where Cd stands for the discharge coefficient, which is usually a given parameter

(Hollingshead, Johnson, Barfuss, and Spall (2011)), ε represents the gas expansibility

(Pan, Hong, et al. (2019)), ∆P represents the frontier pressure (which is ∆P1 shown in

Figure 2.10), At represents the throat cross-sectional area of the Venturi meter with

the throat diameter of d, which can be calculated as:

At =
πd2

4
(2.6)

the parameter E in (2.5) represents the velocity-of-approach factor, which can be

expressed as:

E = (1−β
4)−

1
2 (2.7)
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where β is the beta ratio, and it varies with different sizes of the Venturi meter

(Rahman, Biswas, and Mahfuz (2009)).

The calculated mass flowrate is corrected for the effects of the Reynolds number,

energy loss, and pressure tap location using the discharge coefficient. A wide range of

flow conditions is encountered in multiphase flow, requiring extensive flow calibrations

to characterise the discharge coefficient. During the calibration process, it is shown

that the discharge coefficient can vary significantly with GVF and to a lesser extent

with WC (Hall and Reader-Harris (1999)). Such phenomenon appears particularly

near the inversion point from oil-continuous to water-continuous flow. In the latter

boundary region there is a greater effective viscosity of fluid, which in turn contributes

to higher frictional pressure losses.

In multiphase flow, the Venturi is usually installed so that fluid passes vertically

upwards through the meter, typically following a blinded-tee (Hall and Reader-Harris

(1999)). A more uniform flow with a more homogenised flow is expected to result

from utilising a vertical installation arrangement. Slip between the liquid and gas

phases is reduced, although it is difficult to eliminate. Consequently, some form of

slip model is typically programmed into the meter software to correct the calculation

of the individual phase flowrates.

2.3.2.2 Other bulk flowrate measurement techniques

Positive displacement (PD) meters measure the volumetric flowrate of a flowstream

by repeatedly filling and emptying compartments of known volume with fluid. The

different types of PD meters have three common components can be obtained:

1. A discrete and well-defined volume.

2. A device that allows the chamber to be filled and emptied to transfer fluid from

one end to the other.

3. A counter connected to the displacer that counts each time the displacer passes

across the working chamber.

Through the simulation, it can be shown that at very low flowrates the fluid may not

have the kinetic energy to turn the rotor against this friction, and the fluid can slip

between the displacement component and the casing without moving the piston or

rotor (Nguyen, Al-Safran, and Nguyen (2018)). Therefore, a PD meter that is driven

by the fluid itself may suffer significant pressure losses in the pipe. Overall, PD meters

are reasonably accurate, offer a high turndown, and are particularly suitable for high-

viscosity fluids (Series (n.d.)).
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The cross-correlation technique is also commonly implemented for bulk flowrate

measurement, where there is a requirement to measure some property of the flow

at two points separated along the flow direction (Avilán, Reis, Barreira, and Salgado

(2013)). Typical properties measured in this manner are the response of a gamma-

densitometer, pressure, microwave, or capacitance sensor to some transient effect

in the flow, such as the passage of a gas bubble or slug (Hua and Dong (2006);

W. L. Salgado and Brandão (2013); Taha, Haryono, ur Rahman, and Abou-Khousa

(2018)). By comparing the correlated sensor signals at the two points, it is possible to

determine the mean velocity of the flow.

2.3.2.3 Radiation method for phase fraction measurement

The radiation method for multiphase flow measurement is not only mainly applied

to phase fraction measurement but is also widely implemented in multiphase flow

imaging (Bieberle, Härting, Rabha, Schubert, and Hampel (2013); C. M. Salgado,

Pereira, Schirru, and Brandão (2010)). The fundamental principle of the radiation

method is illustrated in Figure 2.11. For example, gamma rays from a radio-isotope

source travel in a collimated beam through a multiphase fluid. Some gamma rays

will interact with atoms in the fluid and be removed from the beam. On the opposite

side of the pipe, a detector counts gamma rays that have no interaction, and the

number of gamma rays that are removed depends on the nature of the fluid (Nazemi,

Feghhi, Roshani, Peyvandi, and Setayeshi (2016); Tjugum, Hjertaker, and Johansen

(2002)). Beer-Lambert’s law describes the linear attenuation coefficient (µ), and the

mathematical statement of the attenuation can be expressed as:

P = P0e−µρL (2.8)

where P is the intensity of uncollided photons, P0 is the intensity of primary photons,

ρ stands for the density of the absorber (mixture) material and L is the penetration

depth.

Studies also reveal that the degree of absorption depends on the gamma-ray energy.

More specifically, gamma rays with high energy are sensitive only to the mass of the

material through which they pass (Scheers and Slijkerman (1996)). In a fixed conduit,

the described phenomenon can be exhibited as it is simply proportional to the density

of the contained fluid. Gamma-ray absorption at a single (high) energy can therefore

be used as the basis for a simple densitometer (Sattari, Roshani, Hanus, and Nazemi

(2021)).
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Figure 2.11: Schematic diagram of a gamma-ray absorption technique.

However, although the radiation methods usually approach high accuracy in mul-

tiphase imaging and flowrate measurement, their drawbacks are significant. In

addition to the high operating and maintenance costs involved, it is impossible to

ensure that the radioactive material used will not harm the environment.

2.3.3 Electrical meters

Electrical meters measure the bulk electrical properties of multiphase flow to determ-

ine its phase composition (primarily the water cut of the liquid phase) since they

are sensitive to the nature of the continuous phase. An impedance camera with 12

electrodes was first used in 1978 for spatially specific thorax measurements. The

images were reconstructed with 144 current data elements, the image had 100 pixels,

and the tomography speed was 32 frames/s (Henderson and Webster (1978)). In

the decades since, many studies have been conducted to examine the mathematical

model of electrical tomography, including an investigation of the inverse boundary

value problem (Calderón (2006)); an improvement to the electrodes arrangement

and resolution (A. Seagar, Barber, and Brown (1987); A. D. Seagar (1983)); and

the development of image reconstruction algorithms, including the back projection

algorithm (Santosa and Vogelius (1990)), the D-bar algorithm (Siltanen, Mueller, and

Isaacson (2000); Siltanen, Mueller, Isaacson, et al. (2001)), the Newton-Raphson

iteration algorithm (Yorkey, Webster, and Tompkins (1987)), and the improved

Landweber algorithm (W. Yang, Spink, York, and McCann (1999)). Prevailing electrical
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Figure 2.12: Schematic diagram of traditional ECT sensor and ECT system.

tomography modalities mainly include ECT, ERT (electrical resistance tomography),

and EMT (electromagnetic tomography). In real applications, more than one type of

sensor (e.g., multi-modal tomography) is often used to cover the full range of water

cuts. Some other typical sensor types are reviewed in the following sections.

2.3.3.1 ECT sensor

The ECT sensors measure the relative permittivity distribution of the multiphase flow.

The basic structure of ECT includes the sensing electrodes, insulating frame, display

screens, and connectors, as shown in Figure 2.12. Electrodes are usually embedded

within the inner walls of the pipe conduit on either side of the flow path. Based on the

boundary potential measurements, which are relative to the excitation voltage signal,

ECT is to measure the capacitance value and reconstruct the permittivity distribution

within the region of interest (RoI). In ECT, the divergence of the electric flux density is

zero everywhere, and it can be written as the Laplace equation (Xie, Stott, Plaskowski,

and Beck (1990)):

∇ · [ε(x,y)∇Ψ(x,y)] = 0 (2.9)

where Ψ(x,y) represents the spatial electric potential distribution 2, ε(x,y) is the

permittivity distribution within the RoI due to the detected material and ∇ is a gradient

operator. Based on eq. (2.9), the capacitance detection and permittivity reconstruction

processes can be summarised as two parts of the mathematics model: the forward

and inverse problems.

2. In electrical capacitance tomography (ECT), the x-y plane refers to the plane of the electrodes that
are used to apply the AC signal and measure the capacitance. The x-y plane is typically parallel to the
surface of the material being imaged, and the electrodes are arranged in a 2D array on this plane.
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The forward problem predicts the boundary capacitance distribution when the per-

mittivity distribution and the excitation voltage are known. The relationship between

the inter-electrode capacitance C (Q) and the permittivity distribution ε (F/m) can be

established by solving the forward problem W. Yang (2010):

C =−ε0

∫∫
(x,y)⊆Ξd

ε(x,y) ·∇Ψ((x,y),ε(x,y);B) ·ds

Ψ(Ξe)−Ψ(Ξd)
(2.10)

where B is the boundary potential distribution on the voltage source and detecting

electrodes, Ψ(Ξe) and Ψ(Ξd) are the potentials on exciting and detecting electrodes

and ε0 is a constant number whose value is 8.854 ∗ 10−12 with unit of F/m.

Mathematical manipulation of eq. (2.10) yields its simplification as follows (W. Yang

and Peng (2002)):

C =
Q
V

=−( 1
V
)
∮
Ξ

ε(x,y) ·∇Ψ(x,y)dΞ (2.11)

where Q is the total charge, and V is the potential difference between the excitation

and detection electrode sensors 3. The linearised relationship between the measured

capacitance and permittivity distribution can be written as:

∆C = J∆ε (2.12)

where ∆C is a m× 1 vector that represents the measured capacitance, J is a m× n

sensitivity matrix, which is also known as the Jacobian matrix, and relatively, ∆ε is a

n×1 vector that represents the variation of the permittivity.

The traditional ECT technique applies only to oil-continuous flow (i.e., low water-cut).

The multiphase fluid becomes water-continuous as the water cut increases beyond

the inversion region (approximately 40–60% WC) (Chakrabarti et al. (2006)). The

direct conductive path across the pipe might result in a non-linear response from the

sensor. Therefore, capacitance sensors are typically used together with conductivity

sensors to facilitate measurement over the full WC range.

3. According to the working principle of ECT, excitation voltage must be applied on two electrodes
during the measurement. In the case of one of the electrodes being fixed, voltage may be sequentially
applied on the remaining electrodes. In convenience, the fixed electrode is named excitation electrode
and the flexible electrode is named detection electrode.
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2.3.3.2 ERT sensors

The electrical conductivity of multiphase mixtures can be measured by conductance

or inductance sensors in water-continuous flow regimes (Daily, Ramirez, Binley, and

LeBrecque (2004)). The governing equation of ERT can be expressed by the Laplace

equation (Daily, Ramirez, Binley, and LaBrecque (2005)):

∇
2
Ψ(x,y) = 0 (2.13)

where the spatial electric potential distribution satisfies the following conditions:

∇ · (σΨ(x,y)) = 0 (2.14)

∇σ ·∇Ψ(x,y)+σ∇
2
Ψ(x,y) = 0 (2.15)

where σ is the conductivity distribution within the RoI. Similarly, the significant

difference in electrical properties of the component phases is used to determine the

relative contribution of each.

Some studies suggest that combining ERT and ECT sensors can address the high

conductivity scenarios in multiphase flow measurement (Hoyle et al. (2001); Qiu,

Hoyle, and Podd (2007)). However, the limitations of the ECT and ERT dual-modal

approach are also obvious. ERT is inherently restricted by its sensing principle that

the sensors must be in direct contact with the testing material. The wax and sediment

may block the conductive path between sensors, and the sensors may be corroded,

leading to ERT failure. Additionally, in measuring dynamic flows, the flow pattern

may dramatically change when the flow passes one sensor to another, leading to

challenges in data fusion (Cui, Wang, Xu, Zhang, and Yan (2009)).

2.3.3.3 Other electrical meters

ECT and ERT have been improved in recent decades to extend the capacity of

traditional tomography modalities and achieve contactless detection. For instance,

the first capacitively coupled contactless conductivity detection (C4D) system for

contactless conductivity detection was developed in 1980 by Gas et al. (Kubáň and

Hauser (2008)). The system implements two mental electrodes: excitation and pick-

up electrodes. Measurements were performed to detect the conductivity distribution

by applying an AC voltage signal. A newer generation of the C4D system, capacitively

coupled electrical resistance tomography (CCERT), was proposed in 2013 (B. Wang,
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Zhang, Huang, Ji, and Li (2013)). It uses 12 electrodes. Different excitation strategies

have been investigated and evaluated. The results reveal that CCERT can measure

the conductivity distribution within the RoI without contacting the tested material (Z. Xu

et al. (2017)).

Measurement of two-phase flows with high-frequency magnetic methods was pro-

posed by Hammer et al. to avoid direct contact with the flow (Hammer and Fossdal

(2002); Hammer, Pettersen, and Nødseth (2003)). Zhang et al. introduced an

additional contactless tomography modality, magnetic induction tomography (MIT),

that allowed ECT to distinguish the non-conductive objectives from the background

of conductive liquids (M. Zhang, Ma, and Soleimani (2015)). MIT is an imaging

technique that uses coils to sense the eddy currents generated by the secondary

magnetic field within a conductive liquid, where there needs to be a high enough

conductivity of the liquid to achieve a decent level of the secondary magnetic field.

Gunes introduced the concept of displacement-current phase tomography (DCPT),

which applies the phase information obtained from ECT measurements to reconstruct

the loss factor distribution of the detected material (Gunes, Marashdeh, and Teixeira

(2017); Marashdeh et al. (2019)). The C4D, CCERT, and MIT all aim to achieve

multi-frequency time-difference imaging by detecting the conductivity distribution in

a contactless way.

2.4 Learning-based multiphase flow sensing data

analysis

Recent breakthroughs have made it possible to use artificial intelligence technologies

such as machine learning/deep learning and other advanced algorithms to process

sensing data (Tian and Horne (2019)). For instance, the artificial neural networks

(ANNs) have been widely applied to predicting oil production and oil flowrate by Liu

(Pavlatos and Vita (2016)) and Berneti (Berneti and Shahbazian (2011)), respectively.

A higher-order neural network was used by Chithra et al. to forecast oil production

and was found to be effective even in the case of a limited number of available

parameters (Chakra, Song, Gupta, and Saraf (2013)). Also, the multilayer neural

network with multivalued neurons was utilised to predict monthly oil production
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(Aizenberg, Sheremetov, and Villa-Vargas (2014)). Based on Kamari’s evaluation of

different models for predicting natural gas production, it has been discovered that the

least squares SVM performed better than the other models (Kamari, Mohammadi,

Lee, and Bahadori (2017)).

Multiphase flow meters (MFMs), which can measure the flowrates of two-phase gas-

liquid fluids directly, must be developed to improve production efficiency and reduce

costs. (ISO et al. (2015)). In recent years, there have been attempts to develop

methods to provide reliable flowrate predictions using machine learning techniques.

Machine learning models are expected to broaden the application range of multiphase

flowrate measurement methods and increase flowrate prediction accuracy. As an

example, to characterize the gas-liquid two-phase flow, the probability density function

(PDF) and power spectral density (PSD) of differential pressure signals were selected

(Shaban and Tavoularis (2014b)). Then, to reduce the dimensionality of the features,

the authors used independent component analysis (ICA) and principal component

analysis (PCA) (Hyvärinen and Oja (2000)). Meanwhile, a variety of neural networks

(NNs) have been trained to represent different flow regimes. It has been found

that under different flow regimes, these networks are able to predict water and

air superficial velocities (Shaban and Tavoularis (2014a)). In Xu’s study, the wet

gas flowrate was predicted using NNs and SVMs with statistical characteristics

derived from pressure signals (L. Xu and Tang (2009); L. Xu et al. (2010)). Another

study states that artificial neural network (ANN) was used to estimate flowrate of

air-water two-phase flow with the measurement error of less than 10% (Cai and

Toral (1993)). However, the ANN model needs to be specifically tuned for different

flow regimes, which is inconvenient in practical applications. Besides the NNs and

ANN, convolutional neural networks (CNN) and flow adversarial networks (FAN) for

predicting gas-liquid multiphase flows have been performed, and the behaviour of the

two models was evaluated by Hu (Hu et al. (2019)).

These studies illustrate the ability of machine/deep learning techniques to per-

form multiphase flow measurement, including flow regime recognition and flowrate

measurement. However, various limitations apply to the networks used to perform

multiphase flow measurement. For example, although ANN exhibits satisfactory

performance with respect to noise and strong robustness, it requires a large number
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of parameters to obtain accurate estimation results. Furthermore, it can be difficult to

explain the output of ANN because its learning process is not transparent. Similarly,

2D CNN, which is mainly applied to computer version problems, has rarely been

applied to multiphase flow measurement.

2.5 Summary

This chapter briefly reviewed multiphase flow measurement from the perspectives of

the foundation of multiphase flow, various flow patterns, traditional flow measurement

methods, existing prevailing multiphase flow meters based on various principles, elec-

trical tomography, and state-of-the-art learning-based multiphase flow measurement

approaches.
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Complex-valued ECT for multiphase

flow imaging

3.1 Introduction

Multi-frequency complex-valued ECT (CVECT) is a recently developed tomographic

concept that is capable of simultaneously reconstructing spectral permittivity and

conductivity properties of target objects within the region of interest. To date, this

concept has been limited to simulation, and another key issue restricting its wide

adoption lies in its low image quality. Additionally, one of the open challenges

of CVECT is to achieve reference-free imaging with high image quality and high

efficiency since reference capacitance measurement was reported as a compulsory

procedure in the previous study when the time-difference (TD) imaging method was

employed.

This chapter investigated the frequency-difference (FD) imaging method to achieve

the reference-free estimation of complex permittivity distribution of CVECT and intro-

duced the multiple measurement vector (MMV) model to reconstruct the permittivity

and conductivity images with high quality and high efficiency. Group sparse recovery

problem has been addressed by using the correlations between the pixels at the same

position in different images under different excitation frequencies as prior knowledge

during the image reconstruction process.
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3.2 Principle of ECT

The basic elements of ECT include sensing electrodes, capacitance measurement

electronics and image reconstruction unit (W. Yang and Peng (2002)). Based on

the boundary potential measurements, ECT is to measure the capacitance and

reconstruct the permittivity distribution within the ROI. The governing equation has

been introduced in Chap. 2.3.3.1.

In TD ECT, the excitation voltage with a specific frequency is applied, and the meas-

ured capacitance (Ct0) at time t0 is recorded as the reference. Typically, a reference is

measured on a homogenous permittivity distribution. Then, the capacitance change

is obtained by subtracting Ct0 from the capacitance measured at another time point

t1, which is associated with the permittivity perturbation. It can be expressed as:

∆C =Ct1−Ct0 (3.1)

This chapter focuses on FD imaging of ECT. The principle is to apply an excitation

voltage containing multiple frequency components, i.e. f1, f2... fl on the electrodes.

Each frequency component is related to a measured capacitance. Capacitance

change is obtained by calculating the difference under two different frequencies. This

way the reconstructed image indicates the frequency characteristics of the multiphase

flow under test. It can be expressed as:

∆C =C f 1−C f 0 (3.2)

The major difference between the TD and FD methods is the calibration process in

acquiring ∆C. According to (3.1), a standard reference of the measured capacitance

is required (i.e. Ct0), which is usually measured under a homogenous distribution.

Whilst by taking the difference of measurements under two distinct frequencies, FD

method achieves calibration-free measurement.

Once the capacitance change ∆C is obtained, the permittivity distribution can

be reconstructed by solving the inverse problem of ECT. To date, many image

reconstruction algorithms have been proposed to solve the inverse problem of ECT.

Prevailing ones include Tikhonov regularization (Peng, Merkus, and Scarlett (2000))

and Landweber iteration (W. Yang and Peng (2002)).Theoretically, these algorithms

can be applied in both TD and FD imaging.
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3.2.1 Multi-frequency complex-valued ECT

The concept of complex-valued ECT (CVECT) was firstly reported by Zhang et

al. in 2015 (M. Zhang, Xu, and Soleimani (2015)). CVECT is extended based on

typical ECT model, which can simultaneously reconstruct both the permittivity and

conductivity distribution within the ROI by measuring the complex capacitance under

multiple excitation frequencies.

The Jacobian matrix of CVECT can be calculated through the change of complex

capacitance, which is caused by the perturbation of permittivity and conductivity, as

expressed by (M. Zhang, Xu, and Soleimani (2015)):

J =
∂Cm

∂εreal
or

∂Cm

∂εimaginary
(3.3)

where Cm denotes the measured complex capacitance; εreal and εimaginary denotes

the real part and imaginary part of the complex permittivity, respectively.

The linearized model of CVECT can be expressed as:

∆Cm = Jcomplex∆εcomplex (3.4)

where the complex capacitance Cm is derived from the complex admittance Y as Y
iω .

ω is the angular frequency.

According to (3.4), it can be further written as:[
∆Cr

∆Ci

]
=

[
Jr,ε Jr,σ

Ji,ε Ji,σ

][
∆εr

∆εi

]
(3.5)

where ∆Cr and ∆Ci are the real and imaginary part of the complex capacitance,

respectively; ∆εr and ∆εi represent the perturbation of permittivity and conductivity

within ROI, respectively; [Jr,ε Jr,σ ] denotes the sensitivity map which builds a

relationship between the real part of the complex capacitance and the perturbation

of complex permittivity; similarly, [Ji,ε Ji,σ ] links the imaginary part of the complex

capacitance with the perturbation of the complex permittivity.

For simplicity, we rewrite (3.5) as:

C
M×1

= J
M×N

G
N×1

(3.6)
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where C =

[
∆Cr

∆Ci

]
∈ R2m , J =

[
Jr,ε Jr,σ

Ji,ε Ji,σ

]
∈ R2m×2n and G =

[
∆εr

∆εi

]
∈ R2n.

By utilizing the FD setup, it is possible to perform the image reconstruction by im-

plementing ECT in a calibration-free scenario. Meanwhile, each excitation frequency

will correspond to a unique measured capacitance value, which is demonstrated in

(3.2). With the knowledge of the measured capacitance and sensitivity matrix, the

permittivity and conductivity distribution can be reconstructed by solving the inverse

problem.

3.2.2 The inverse problem of CVECT

The inverse problem of CVECT is to determine the permittivity and conductivity

distribution G based on the acquired complex capacitance C and J. The complex

permittivity distribution G can be estimated by solving the following optimization

problem: min︸︷︷︸
G

R(G)

s.t. C = JG
(3.7)

where R is the regularization function that encodes the a priori knowledge.

Tikhonov regularization was adopted in the previous study to estimate the permit-

tivity and conductivity distribution of CVECT (M. Zhang and Soleimani (2016)), as

expressed by:

G = (JTJ+β I)−1J
T

C (3.8)

where β and I indicates the regularization parameter and identity matrix, respectively.

Symbol T stands for the transpose operation.

Previous work has demonstrated that Tikhonov regularization could successfully

reconstruct the permittivity and conductivity distribution under TD imaging scheme

for CVECT (M. Zhang and Soleimani (2016)).
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3.3 MMV-based FD imaging for CVECT

In this chapter, we investigate the feasibility of performing frequency-difference

imaging with CVECT to achieve the calibration-free flow imaging. We consider the

simultaneous reconstruction of multi-frequency images by introducing the multiple

measurement vector (MMV) model (M. Zhang et al. (2020)). For multi-frequency

imaging of CVECT, we naturally have the a priori knowledge that those multi-

frequency images of the same object possess strong pixel-wise correlations. That is,

the magnitude levels of pixels at the same spatial location of multi-frequency images

correlate with each other. To take advantage of the prior, we first extend the CVECT

model in (3.6) to a multi-frequency setup, which can be formulated as:
Cf1

Cf2
...

Cfk

=


Jf1

Jf2
. . .

Jfk




Gf1

Gf2
...

Gfk

 (3.9)

where Cf1,2,3...k denotes the collection of the measured complex capacitance under k

different excitation frequencies, Jf1,2,3...k represents the sensitivity matrix corresponding

to k frequencies and Gf1,2,3...k denotes the collection of complex permittivity distribution.

For simplicity, we denote (3.9) by:

C̃ = J̃ G̃ (3.10)

where J̃ ∈ RMk×Nk, C̃ ∈ RMk and G̃ ∈ RNk.

To encode the pixel-wise correlation prior, we first group multi-frequency image pixels.

The pixel grouping idea is illustrated in Figure 3.1. We divide the pixels of multi-

frequency complex permittivity vectors into N groups and let {G̃gi ∈Rk : i = 1,2...,N}
denote the collection of the i-th group, where gi indicates the index vector of the i-th

group, and G̃gi denotes the subvector of G̃ indexed by gi. Then, the FD CVECT image

reconstruction problem can be addressed by solving the weighted `2,1-norm problem,

as formulated by: min
G̃

∥∥∥G̃
∥∥∥

w,2,1
:= ∑

N
i=1 wi

∥∥∥G̃gi

∥∥∥
2

s.t. C̃ = J̃G̃
(3.11)

where wi ≥ 0 with i = 1, ...,N are weights associated with each group; gi represents

the row-wise grouping vector, as illustrated in Figure 3.1.
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Figure 3.1: Principle of pixel grouping of MMV method for CVECT under multi-frequency
excitation.

Meanwhile, (3.11) can be regarded as a group sparse optimization problem. We

adopt the alternating direction method of multipliers (ADMM) to solve this problem

by decomposing it into two sub-problems (Deng, Yin, and Zhang (2013)). Generally,

ADMM solves the optimization problem with the following format:min
x,q

f (x)+g(q)

s.t. Ax+Bq = C
(3.12)

To solve (3.11), we further introduce an auxiliary variable z and transform it into an

equivalent problem as expressed by:min
G̃,z

∥∥∥G̃
∥∥∥

w,2,1
:= ∑

N
i=1 wi

∥∥∥G̃gi

∥∥∥
2

s.t. z = G̃, J̃G̃ = C̃
(3.13)

34



Complex-valued ECT for multiphase flow imaging

Consequently, the problem in (3.13) is separable. We further use the unconstrained

form of (3.13), which is also known as the augmented Lagrangian problem:

min
z,G̃

N

∑
i=1

wi‖G̃gi‖2−γT
1 (z− G̃)+

ρ1

2
‖z− G̃‖2

2−γT
2 ( ˜JG− C̃)+

ρ2

2
‖ ˜JG− C̃‖2

2 (3.14)

where γ1 and γ2 are multipliers and ρ1 and ρ2 are penalty parameters. Previous

study has demonstrated that the augmented Lagrangian problem will converge to the

solution of (3.13) (Fukushima (1992)) and ADMM can be implemented. The principle

of the ADMM algorithm is to divide the original problem into two subproblems: the G̃
and z subproblem.

The original optimization problem is broken into two sub-problems, i.e. the G̃ sub-

problem and z sub-problem. The former one is a convex quadratic problem and equals

to the following linear equation, which can be directly solved:

(ρ1I +ρ2J̃T J̃)G̃ = ρ1z−γ1 +ρ2J̃TC̃+ J̃Tγ2 (3.15)

where I is the identity matrix.

Therefore, the G̃ - subproblem can be expressed as:

G̃n+1 = argmin
G̃

γT
1 G̃n +

ρ1

2
‖z− G̃n‖2

2−

γT
2 J̃G̃n +

ρ2

2
‖J̃G̃n− C̃‖2

2

(3.16)

By simple manipulation, the z sub-problem can be expressed as:

min
z

N

∑
i=1

[
wi‖z̃gi‖2 +

ρ1

2
‖zgi− G̃gi−

1
ρ1

(γ1)gi‖
2
2

]
(3.17)

which can be solved by implementing the group-wise soft thresholding (Deng et al.

(2013)), i.e.

z̃n+1 = argmin
z

N

∑
i=1

wi‖zgi‖2−γT
1 z+

ρ1

2
‖z− G̃‖2

2 (3.18)

The detailed implementation of the algorithm is summarized in Algorithm 1. The

features of the proposed FD imaging method include: 1) correlations of multi-

frequency CVECT images are employed to improve the image quality, and 2) ADMM

was introduced to efficiently solve the optimization problem.
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Algorithm 1 Frequency-difference imaging algorithm for CVECT

Initialise:
The auxiliary variable z, the complex permittivity distribution G̃, the multipliers γT

1
and γT

2 , the penalty parameters ρ1 and ρ2 and the step lengths β1 and β2;
Iteration:
1: Define parameter values: tolerance = 10−6, γ = 1.618, ρ = 10−11, noise level =

10−9

2: Solve the G̃ sub-problem:

G̃n+1 = argmin
G̃

γT
1 G̃n +

ρ1

2
‖z− G̃n‖2

2−

γT
2 J̃G̃n +

ρ2

2
‖J̃G̃n− C̃‖2

2

(3.19)

3: Solve the z sub-problem:

z̃n+1 = argmin
z

N

∑
i=1

wi‖zgi‖2−γT
1 z+

ρ1

2
‖z− G̃‖2

2 (3.20)

4: Update the multipliers:
γ1 = γ1−β1ρ1(z− G̃) (3.21)

γ2 = γ2−β2ρ2(J̃G̃n− C̃) (3.22)

5: Stop when meets the criterion: 800 (maximum iteration number) or 10−10

(stopping tolerance).

3.4 Results and discussion

We evaluate numerically the proposed FD imaging framework of mfCVECT. We also

compare the results with the other prevailing ECT image reconstruction algorithms.

3.4.1 Phantoms

Two simulation phantoms of CVECT consisting of one and two non-conductive

inclusions in a conductive background are established (see Figure 3.2). The outer

and inner diameters of the CVECT sensor are 60 mm and 56 mm, respectively. The

background material is saline and its conductivity varies from 0.2 S/m to 0.4 S/m.

The diameter of the inclusions is 15 mm. The structure of the CVECT sensor is
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(a)

15m
m

56m
m

60m
m

Saline Non-conductive 
inclusion

(b)

Figure 3.2: CVECT phantoms. (a) Phantom 1 with one non-conductive inclusion with a
diameter of 15 mm. (b) Phantom 2 with two non-conductive inclusions with diameters of 15
mm.

Figure 3.3: Schematic illustration of the 8-electrode ECT sensor.

illustrated in Figure 3.3. It consists of 8-electrodes and adopts the same structure

as the traditional circular ECT sensor (W. Yang (2010)). For both phantoms, we

investigate three different background conductivity values, i.e., 0.2 S/m, 0.3 S/m and

0.4 S/m, and the excitation frequency ranges from 1MHz to 10MHz.
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Table 3.1: Algorithm parameters for FD imaging of CVECT

Frequency
range (MHz)

Background
conductivity (S/m)

Proposed Algorithm 1 Tikhonov regularization

ρ Stopping tolerance Maximum iteration Regularization parameter

1 -10 0.2 1.9611 e -15 1 e -10 800 1 e -15
1 -10 0.3 1.9611 e -15 1 e -10 800 1 e -15
1- 10 0.4 1.9611 e -15 1 e -10 800 1 e -15

3.4.2 Algorithm and evaluation index

We demonstrate the image reconstruction results using Tikhonov regularization

(as suggested by the previous study in (M. Zhang and Soleimani (2016)) and

the proposed Algorithm 1. The iteration of Algorithm 1 will terminate if it meets

the maximum iteration number, i.e. 800 in this work, or the stopping tolerance,

i.e. 1e-10, is reached. The maximum iteration number and stopping tolerance are

selected considering the reconstructed image quality and efficiency. It has been

found that when the iteration number is less than 800, the convergence is fast,

but the reconstructed images had relatively high relative image error; when the

iteration number exceeds 800, vice versa. The stopping tolerance was chosen as

the maximum value of the 0.1* noise level or 1e-12. The iteration will be terminated

when either condition is met. The specific algorithm parameters such as regularization

parameter, step length and other step factors are given in Table 3.1.

To comprehensively evaluate the performance of FD imaging with CVECT and the

proposed image reconstruction algorithm, two indicators, i.e. relative image error

(ςimage) and correlation coefficient (ςcorr) between the estimated complex permittivity

distribution and the ground truth are calculated.

The ςimage of the permittivity distribution is defined as:

ς
Re
image =

‖Re(G̃)−Re(G̃∗)‖
‖Re(G̃∗)‖

×100% (3.23)

where G̃∗ is the true complex permittivity distribution and G̃ is the estimated complex

permittivity.

The ςimage of the conductivity distribution is defined as:

ς
Im
image =

‖Im(G̃)− Im(G̃∗)‖
‖Im(G̃∗)‖

×100% (3.24)
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Similarly, the ςRe
corr for the permittivity distribution is defined as:

ςRe
corr =

∑
N
i=1(Re(G̃i)−Re( ¯̃G))(Re(G̃∗i )−Re( ¯̃G∗))√

∑
N
i=1(Re(G̃i)−Re( ¯̃G))2 ∑

N
i=1(Re(G̃∗i )−Re( ¯̃G∗))2

(3.25)

where ¯̃G and ¯̃G∗ is the average value of G̃ and G̃∗, respectively.

Similarly, the ς Im
corr for the conductivity distribution is defined as:

ς Im
corr =

∑
N
i=1(Im(G̃i)−Im( ¯̃G))(Im(G̃∗i )−Im( ¯̃G∗))√

∑
N
i=1(Im(G̃i)−Im( ¯̃G))2 ∑

N
i=1(Im(G̃∗i )−Im( ¯̃G∗))2

(3.26)

Additionally, the computational time of each algorithm is recorded and compared to

evaluate the efficiency in another aspect.

3.4.3 Results and evaluation

Table 3.2 gives the reconstructed complex permittivity of the phantom with one

acrylic bar based on Tikhonov regularization and MMV. Three groups of simulation

were performed with the background conductivity varying from 0.2 S/m to 0.4 S/m

and each group contains two different excitation frequency ranges with different

reference frequencies. In detail, the second column of Table 3.2 and Table 3.3

contains the excitation frequency (the former one) and the reference frequency

(the latter one); one critical characteristic of the FD method is that no specific

reference frequency is required. Phantom 1 is designed to study the feasibility of

the MMV in FD imaging of CVECT. The image reconstruction results at the reference

frequency are not shown since according to (3.2), there is no information provided

at the reference frequency in FD imaging. Observing the permittivity estimation

results, it is hard for Tikhonov regularization algorithm to successfully reconstruct

the permittivity distribution in a wide range of background conductivity and excitation

frequencies. In contrast, the proposed MMV method shows the feasibility to stably

estimate the permittivity distribution. Note that the conventional algorithm even fails to

reconstruct the permittivity distribution when the reference frequency is 1 MHz. The

conductivity results reveal that a better reconstructed image quality can be obtained

by implementing the MMV method.
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Table 3.2: FD Image Reconstruction of phanton 1 with frequency range 1-10 MHz

Background
Conductivity (S/m)

Frequency (MHz)
Tikhonov Regularization MMV

Real (ε) Im (σ ) Real (ε) Im (σ )

0.2

7.8 - 7

9 - 1

0.3

7 - 1

7.9 - 7

0.4

8.6 - 8

9 - 1

Color bar

For Phantom 2 with two acrylic bars, the complex permittivity image reconstruction

results are shown in Table 3.3. In simulation, it is found that the reconstructed image

quality is not ideal for both algorithms when the excitation frequency range is low, i.e.,

below 5 MHz. It may due to the excitation signal with higher frequency is required

when the background conductivity is relatively high for the conventional ECT (Y. Li

and Soleimani (2013)) and it still applies to the CVECT. Failure of the permittivity

image reconstruction still occurs (first result column of Table 3.3) for conventional

algorithms whereas the MMV methods demonstrate a much more stable performance

on complex permittivity reconstruction.
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Table 3.3: FD Image Reconstruction of phanton 2 with frequency range 1-10 MHz

Background
Conductivity (S/m)

Frequency (MHz)
Tikhonov Regularization MMV

Real (ε) Im (σ ) Real (ε) Im (σ )

0.2

7.14 - 7.11

8.14 - 8.11

0.3

7.14 - 7.11

9.3 - 9

0.4

7.8 - 7

9.5 - 9

Color bar

The quantitative evaluation results , i.e., ςimage and ςcorr, are given in Figures 3.4a,

3.4b, 3.5a and 3.5b to quantitatively evaluate the performance of both algorithms.

Also, to investigate the influence of the background conductivity and number of ob-

jects to be imaged, comparisons of the evaluation results between the reconstructed

images of Phantom 1 and 2 are expected.
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Figure 3.4: Line chart of the relative image error of the Tikhonov regularization and MMV
algorithm for Phantom 1 and 2.
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Figure 3.5: Line chart of the correlation coefficient of the Tikhonov regularization and MMV
algorithm for Phantom 1 and 2.

In the relative image error and the correlation coefficient figures, to clearly indicate

each element, Phantom 1 and Phantom 2 are represented in Figures 3.4a, 3.4b,

3.5a and 3.5b. The results related to Tikhonov regularization and MMV algorithm are

represented in blue and red, respectively; the estimated permittivity and conductivity

distribution are represented as circle and diamond, respectively. It is apparent that

from Figures 3.4a and 3.4b, for both phantoms, the reconstructed permittivity of

Tikhonov regularization has the largest relative image error. Though the blue and red
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dot lines have lower relative image errors, they are still larger than the MMV method.

Additionally, Figure 3.4a and 3.4b also show that when there are two acrylic bars to

be imaged by using the MMV method, the relative image error is slightly higher than

that of one acrylic bar.

In Figures 3.5a and 3.5b, a similar observation can be obtained, where for both

phantoms, the ςcorr of MMV is higher than that of Tikhonov regularization. It indicates

that for FD CVECT, the image reconstructed by implementing MMV is more close

to the phantom than the conventional algorithm. Line chart from this figure can be

associated with the line chart in Figures 3.5a and 3.5b which proves that the MMV

method has a more stable performance than the conventional image reconstruction

algorithm on the estimation of complex permittivity distribution with ςimage below 55%

and ςcorr above 0.73 for FD CVECT.

Efficiency of the two algorithms is compared through the elapsed time. The bar chart

in Figure 3.6 shows that the elapsed time of the MMV method is roughly half of the

Tikhonov regularization.

Overall, together these evaluation results provide important insights into the stable

and high efficiency performance for MMV method in FD CVECT. The feasibility of FD

CVECT is confirmed as an reference-free imaging method. Reliable complex permit-

tivity distribution reconstruction results are expected to be generated by implementing

the MMV method, which has superior image quality and higher efficiency compared

to the conventional algorithm. Additionally, the FD CVECT with MMV model is able to

fit a wide range of background conductivity and has satisfactory performance under

high excitation frequencies.

3.5 Summary

This chapter demonstrates the feasibility of performing frequency-difference imaging

of mfCVECT. This study identified that FD as a novel data collection scheme

for mfCVECT showed great potential for multiphase flow imaging in scenarios

where taking reference is impossible. The research also showed that by taking the

correlations between different mfCVECT images, the proposed MMV method could

simultaneously reconstruct the complex permittivity distribution of CVECT over a wide
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Figure 3.6: Bar chart of the elapsed time of the Tikhonov regularization and MMV algorithm
for Phantom 1 and Phantom 2.

range of excitation frequencies up to 10MHz and various background conductivity

from 0.2 S/m to 0.4 S/m. Performance comparison with the conventional algorithm

reveals that higher image quality can be expected from the MMV method with higher

efficiency.

44



Chapter 4

Learning-based multiphase flowrate

prediction

4.1 Introduction

In addition to flow visualisation, flowrate is another key parameter of interest in

multiphase flow measurement. Over the past decades, seperating the multiphase flow

into single-phase flow has been a standard method to perform the multiphase flowrate

measurement in the petroleum industry (Falcone et al. (2001)). Many single-phase

flow meters are able to provide accurate flowrate measurements in both laboratory

and real-world applications. However, in modern petroleum and energy industries,

the separation process has its inherent obstacle, which requires bulky and expensive

separators, is highly intrusive, and lacks real-time measurement capability (Shaban

and Tavoularis (2014b)). Such restrictions are more evident in offshore oil and gas

production processes, where the space for the transmission pipeline is limited, and

the occupation of extra space usually causes high economic expenditure.

In recent years, multiphase flow measurement apparatus and data processing

methods have been emerging, targeting at directly measuring key flow parameters

without phase separation. Such techniques usually combine various single-phase

flow measurement techniques and data analytic methods. Examples include radiation

based flow meters (Abouelwafa and Kendall (1980); Hussein and Han (1995)),

electromagnetic flow meters (Thorn, Johansen, and Hammer (1997)), differential

pressure meters (Matsui (1984)), ultrasonic meters (Brown et al. (1996)), and

terahertz meters (Saied, Meribout, Kato, and Zhao (2017)). However, it is limited to a

narrow range of flow patterns. Another approach is to modify the multiphase flow to

generate a more homogeneous mixture, making it easier to measure flow parameters

(Falcone et al. (2001)).
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The continuing advancement of machine learning has made it a promising data

analytic/fusion method for multiphase flowrate estimation (Brunton, Noack, and

Koumoutsakos (2020)). Machine learning exhibits powerful capability in dealing with

multiple input parameters and large amounts of sample data, which can be imple-

mented to analyze the differential pressure data collected from differential pressure

instruments (DPI). Recently, several attempts have been made to apply machine

learning to estimate the multiphase flowrate, e.g., convolutional neural networks

(CNNs) and flow adversarial networks (FANs) on gas-liquid flowrate estimation (Hu et

al. (2019)).

This chapter investigates the machine learning-based multiphase flowrate estimation

using multi-modal time series sensing data from conventional flow meters. The time-

series differential pressure data generated from the Venturi tube and pressure and

temperature data are employed as network input 1. We implement and compare the

performance of three machine learning methods, i.e., deep neural network (DNN),

support vector machine (SVM), and convolutional neural network (CNN). The multi-

modal multiphase flow sensing data are collected under various flow conditions in

a laboratory-scale flow facility. The moving average of the collected instantaneous

sensing data is applied to train the developed DNN, SVM, and CNN.

4.2 Methodology

4.2.1 Multiphase flow facility and data acquisition

A laboratory-scale multiphase flow experiment facility (see Figure 4.1) at Tsinghua

Shenzhen International Graduate School was utilized for flow sensing data collection.

The experiment facility contains four main sections, i.e., three single-phase pipelines

supplying the liquid (oil and water) and gas single-phase flows, a multiphase flow

mixing and testing part installed with multi-modal flow sensors, a multiphase flow

separator, and storage tank, and control units for actuators, e.g., electro-valves.

Before multiphase flow experiments, the pressure controller adjusts the experiment

facility to a fixed pressure, and two oil and water suppliers’ pumps then produce

respectively water and oil single-phase flows from the separator. To simulate the

multiphase mixture transportation process in oil and gas field, the cycling compressor

1. The temperature and pressure sensors are installed as close as possible near the Venturi tube.
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Figure 4.1: Schematic illustration of the multiphase flow testing facility.

transmits varying amount of gas to the testing part according to different GVF

settings, which can be controlled by the electro-valves. The instantaneous flowrate

of each single-phase flow is recorded as the reference by single-phase flow meters.

Afterward, the three single-phase flows are blended in the testing section and passed

through various flow sensors, e.g., the Venturi tube, temperature, and pressure

sensors. The schematic of the Venturi tube is illustrated in Figure 4.2 2. When

multiphase flow travels through the Venturi tube’s throat, the cross-sectional diameter

change will lead to a pressure change related to the flowrate. In this work, we collect

three types of sensing data in real-time, i.e., standard pressure (P), former differential

pressure (∆P1) and posterior differential pressure (∆P2), and temperature (T).

2. The detailed structure of the Venturi tube will not be repeated in the following chapters to avoid
redundant description.
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Figure 4.2: Schematic of Venturi tube with key sensing parameters.

4.2.2 DNN-based flowrate prediction

Deep Neural Network (DNN) as a prevailing supervised machine learning method has

been widely applied in solving various regression problems. In this Section, we first

develop a DNN model (see Figure 4.3) for multiphase flowrate prediction based on

the given inputs.

As stated in Section 4.2.1, two differential pressure data from the Venturi tube,

temperature, and standard pressure data are utilized as network input. In Figure

4.3, the "+1" cell represents the bias layer, which stores the value of 1 and has free

connection with previous layers, which means that the bias layer will not influence the

output from the previous layer. The input parameters will propagate through the fully

connected hidden layers, and the output is the predicted flowrate of the liquid/gas

phase. This is also known as the forward propagation process of DNN, where the

vector expression of the ith cell’s value at the lth layer can be written as (Katz et al.

(2019)):

zl
i =

Nl−1

∑
k=1

W l
ikal−1

ik +bl
i (4.1)

where W and b are the weights and bias at the lth layer, respectively; a is the output

from the (l− 1) layer; Nl−1 represents the total cell number at the (l− 1) layer; i is

the ith cell at the lth layer; k is the kth cell at the (l−1)th layer and W l
ik corresponds to

the weight of the ith and kth cell.
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Figure 4.3: DNN with four input parameters.

The eq. 4.1 can also be written as matrix form, i.e.
zl

1

zl
2
...

zl
Nl

=


W l

11 W l
12 . . . W l

1Nl−1

W l
21 W l

22 . . . W l
2Nl−1

...
... . . .

...

W l
Nl1 W l

Nl2 . . . W l
NlNl−1




al−1
1

al−1
2
...

al−1
Nl−1

+


bl
1

bl
2
...

bl
Nl

 (4.2)

To calculate the output of the lth layer, simple mathematical manipulation can be

performed, which gives:

a = f

(W1,W2...Wn)


zl

1

zl
2
...

zl
(Nl)

+bl

 (4.3)
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Furthermore, (4.3) can be simplified as:

al = f (zl) = f (W la(l−1)+bl) (4.4)

where f (.) is the activation function. In this work, we choose the Exponential Linear

Unit (ELU) function as the activation function for efficiency and to avoid over-fitting.

Suppose the actual liquid/gas flowrate is y, then the square loss function (Γ) is

calculated by finding the mean square subtraction value between the output of DNN

and y, which is:

Γ =
1
2

∥∥∥al− y
∥∥∥2

=
1
2

∥∥∥ f (zl)− y
∥∥∥2

(4.5)

Based on eq. 4.5, we could obtain the gradient of the weights, which is calculated as:

∂Γ

∂W l =
∂Γ

∂al ·
∂al

∂ zl ·
∂ zl

∂W l (4.6)

Similarly, the sensitivity degree of DNN is defined as:

∂
l =

∂Γ

∂ zl =
∂Γ

∂ zl+1 ·
∂ zl+1

∂ zl (4.7)

Such a process of determining and updating the gradient of weights and sensitivity

degree is also known as the Back Propagation (BP) process. If all the updated

parameters during the BP process are denoted as Θ, then the training process on

predicting the gas/liquid flowrate can be formulated by:

Θl,g = arg min︸ ︷︷ ︸
Θl,g

Jl,g(P,∆P1,∆P2,T ;Θl,g) (4.8)

Meanwhile, the Levenberg-Marquardt (L-M) method (Moré (1978)) was used to

competently optimise the best solution for the liquid/gas flowrate prediction problem

during the DNN training process. As an improvement of Newton method on finding

the best solution of the gradient, L-M method exhibits more flexibility and reliability in

solving non-linear least squares problems.
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4.2.3 SVM-based flowrate prediction

Support Vector Machine (SVM) as a typical supervised machine learning model has

been broadly applied to deal with classification problems. Previous work reported

the utilization of SVM for multiphase flow regime recognition based on electrical

capacitance tomography (H. Wang and Zhang (2009)). However, there is a lack of

study on using SVM to predict multiphase flowrate. This may be due to that SVM is not

a conventional method for solving regression problems and the multiphase flowrate

prediction is also complicated, which cannot be simply regarded as a linear regression

problem. This chapter improves the traditional SVM classifier by manipulating the

input parameters and implementing a Gaussian kernel during the data analysis

process.

Principle component analysis (PCA) is first utilised to handle the variance-covariance

characteristic of the input parameters so that they can be analyzed by SVM. The

fundamental idea of PCA is to map the original n-dimension input to the reconstructed

k-dimension data. In detail, PCA can be performed in two different ways, i.e. based

on the minimum mapping distance or the maximum mapping variance. We perform

the input data reformation by utilising PCA based on the latter idea. The initial step

is to properly express the n-dimension data set (X ) with m data input into vector

form X = (x1,x2, ...,xm) and perform centralisation on the input data, which can be

mathematically expressed as:

xi = xi−
1
m

m

∑
j=1

x j (4.9)

where xi indicates the data included in D. Then, we calculate the covariance matrix

of X , which can be expressed as:

σcov =
1
n

XXT (4.10)

The eigenvalue of the covariance matrix can be obtained and the corresponding

eigenvectors can also be calculated by using the Lagrange multiplier method. Then,

a new matrix W can be obtained by subtracting the kth maximum value of the

eigenvectors. An alternative way to calculate W is to set a threshold, which is defined

as:

η =
∑

k
i=1 λi

∑
n
i=1 λi

(4.11)
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where λi is the eigenvector, n and k are the original and reconstructed dimensions

of the data set, respectively. It is obvious that η ranges between 0 and 1. The

eigenvector matrix W is usually determined when η is greater than 85% (H. Wang

and Zhang (2009)).

Once the eigenvectors matrix W is obtained, then the new sample zi, which is also

the output of the PCA, can be deducted as:

zi =W T xi (4.12)

Therefore, the new data set (D′) we obtained by performing PCA can be expressed

as D′ = (z1,z2, ...,zm). SVM is then applied to the reformed data zi. By combining with

the Gaussian kernel, the improved model is able to achieve the regression function,

where the decision function can be formulated as:

DSV M(z) = sign(∑
ζ

ωnynK(zn,z)+b) (4.13)

where sign(.) denotes the signum function; the support vector and weight factor

are represented by ζ and ω , respectively. y is the flowrate of the liquid/gas phase;

constant b is bias and K denotes the normal form of Gaussian kernel.

4.2.4 CNN-based flowrate prediction

A comprehensive CNN model contains input layer X , where X = [x1,x2, ...,xm]
T , the

convolutional layer which contains the convolution core with a customised size and

followed by pooling layer, fully connected layer and the output layer Y , where Y =

[y1,y2, ...,yn]
T . The forward propagation in CNN can be concluded into four steps:

1. From the input layer to the convolution layer.

2. From the hidden layer to the convolution layer.

3. From the hidden layer to the pooling layer.

4. From the hidden layer to the fully connected layer.

The first step can be expressed as:

cl = f (X l−1 ∗C l +bl) (4.14)
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where c represents the second layer of CNN; C is the convolution kernel; ∗ stands

for the convolution operation; b is the bias; f (.) is the excitation function and the

superscript is the layer index. Since (4.14) describes the initial propagation process,

hence l=2.

The mathematical expression of the second step can be written as:

cl = f (
M

∑
k=1

al−1
k ∗C l

k +bl) (4.15)

where M is the matrix obtained from the output of the hidden layer and k is the number

of the convolution kernel. It is actually the same as (4.14) while the only difference is

the input, where the input of (4.15) is the output from the previous hidden layer rather

than the initial input.

The third connection between the hidden and pooling layer can be regarded as the

information extraction step. In other words, the size of the input matrix is reduced by

extracting and storing useful information into a new matrix. If the size of the input

matrix is N×N and followed by k× k pooling area, then the output will have a size of
N
k ×

N
k . Two frequently used pooling methods are maximum and average pooling (Yu,

Wang, Chen, and Wei (2014)).

The last connection occurs between the hidden layer and the fully connected layer.

Considering that the fully connected layer actually follows the normal DNN structure,

the forward propagation can then be defined in (4.4).

Once the forward propagation is finished, CNN will update all the corresponding

parameters such as bias and weights to generate more accurate prediction results.

The parameter updating process is also known as BP. For a given CNN model, the

calculation of the loss function of the previous hidden layer (Ll) depends on the

property of the current layer. If the deduction starts from the fully connected layer,

then Ll can be calculated as:

Ll = (C(l+1))T L(l+1)� f (.)′(zl) (4.16)

where zl is the unexcited output of the current layer l and � denotes the XNOR

operation.
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Figure 4.4: Schematic of CNN structure for multiphase flowrate prediction.

If we are currently at a convolution layer, then Ll can be calculated as3:

Ll = L(l+1) ∗ rot180(C l+1)� f (.)′(zl) (4.17)

When the current layer is a pooling layer, then Ll can be obtained from eq. 4.184:

L(l−1) = upsample(Ll+1)� f (.)′(zl) (4.18)

Based on the obtained loss function, the weight and bias parameters could be

updated as well. The refreshing process for W can be described as:

∂J(C,b)
∂W l = al−1 ∗Ll (4.19)

Figure 4.4 illustrates the network structure of CNN in this work. The CNN implemented

contains 13 layers with three convolution layers and two max pooling layers.

The input includes the measured multiphase flow parameters (P,∆P1,∆P2,T ), which

are pre-processed by using the moving average method. Details of the moving

average method is stated in Section 4.3.1. Further pre-processing on the input data

sets is performed to fit the unique structure of CNN. In this work, every 100 sensing

parameters are selected to form a 3D batch with a size of 10 × 10 × 4. The new

reference data corresponding to the batch is calculated by taking the average of the

original 100 reference data.

3. The symbol ‘rot’ means rotation operation of the matrix
4. The ‘upsample’ is an operation for mapping images from small to large resolutions. It is meant to
restore the image to its original size for further calculations.
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The size of the Kernel function is chosen as 2× 2 due to the restriction of the

input data, which only contains four different types of parameters. The depth of

the convolution layer increases from 8 and ends up at 32. The weights of the first

twelve layers were fixed to avoid overfitting. As the multiphase flowrate estimation

is a regression problem, a regression layer has been connected behind the fully

connected layer as the last output layer of the CNN and the final output is the predicted

liquid/gas flowrate.

4.3 Results and discussion

Experimental setup and performance evaluation of the given machine learning

methods are demonstrated and discussed in this Section. Additionally, it has also

been discussed the pre-processing of time series sensing data collected from Venturi

tube, temperature and pressure sensors. The validation error of DNN, SVM and CNN

methods are carefully considered, and minimum validation error is regarded as the

main index during the training and model selection process to ensure that the optimal

results can be obtained of different methods. The best flowrate prediction results were

presented in the following sections to effectively compare the performance of different

machine learning models.

4.3.1 Experimental setup and data pre-processing

We conducted a series of multiphase flow experiments with various gas and liquid

flowrates and water in liquid ratios (WLR) on the multiphase flow testing facility (see

Figure 4.5).

Specifically, we study the oil, gas and water three-phase flow. The details of the

test matrix are shown in Table 4.15. The gauged flowrate of each single phase

was measured and calculated as the reference in the supervised machine learning

process. The volumetric flowrate of liquid (water+oil) ranges from 1 to 6 m3/h, and the

WLR changes from 0 to 100% with a step of 10%. Meanwhile, the volumetric flowrate

of the pumped gas ranges from 0 to 60 m3/h, which is changed in accordance with

the variation of the liquid flowrate.

5. The flow regimes covers a wide range of the regmines that mentioned in Chapter 2. The flow
regimes are allowed to changed freely to simulate the real phenomenon as real as possible.
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Figure 4.5: The laboratory scale multiphase flow testing facility.

Table 4.1: Multiphase flow (water/oil/gas) experimental test matrix for DNN, SVM and CNN
models

Liquid flowrate
(m3/h)

WLR
Gas flowrate

(m3/h)
Gas volume

fraction

1 0–100% 0–20 0–95%
2 0–100% 0–40 0–95%
3 0–100% 0–60 0–95%
4 0–100% 0–30 0–90%
6 0–100% 0–60 0–90%

The time series of four multiphase flow parameters, i.e., P, ∆P1, ∆P2 and T are

acquired by Venturi tube, temperature and pressure sensors, which are placed

within the multiphase flow testing section. Each of these parameters contains 39990

instantaneous sensing data in total. We applied the moving average (Akaike (1973))

to the data, which takes the average of every 300 data points with a gap of 10. Figure

4.6 demonstrates the moving average process of one parameter vector, where the

process ends when the maximum value of the ‘window’ reaches 39990. Thus, the
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Input matrix

Instantaneous
data

1

1 2 11 12 300 310... ... ... 39990...

...2 3970

Figure 4.6: Example of moving average of one input parameter with window length of 300
and gap of 10.

amount of input samples to DNN and SVM are 3970. In this work, we randomly select

75% data from the whole pre-processed data set as training subset, 15% as validation

subset and the remaining 15% as a testing subset, respectively. The epoch number

for both DNN and SVM was selected as 100, at which point the training error will not

further reduce. As mentioned in Section 4.2.4, further pre-processing of the input data

is required for CNN. After pre-processing, the amount of samples for CNN is 3871,

where we randomly select 75% as training data, 15% as validation data and 15% as

test data. The epoch number of CNN was chosen as 12.

In addition to absolute error, we also calculate the relative error of the predicted liquid

and gas flowrates, in order to evaluate the performance of each machine learning

method. The relative error is obtained by:

δ =

∣∣∣∣υp−υr

υr

∣∣∣∣×100% (4.20)

where υp and υr are the predicted and reference flowrate, respectively.

4.3.2 Results from DNN

Figure 4.7a and Figure 4.7b show respectively the predicted liquid and gas flowrates

by using DNN. The liquid and gas flowrate was separately estimated by training the

network with the same input but different target data.

The results demonstrate that the proposed DNN is able to generate satisfactory

multiphase flowrate prediction without requiring flow patterns as prior information.

Liquid flowrate results in Figure 4.7a show that most liquid phase flowrate prediction

results are located around the standard line and all the predicted results are bounded

within the ±0.5 m3/h absolute error range. Comparable performance can be found
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Figure 4.7: Multiphase flowrate prediction results of (a) liquid phase and (b) gas phase by
using DNN.
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Figure 4.8: Relative error of flowrate prediction results for (a) liquid phase and (b) gas phase
by using DNN.

in the gas flow rate prediction results in Figure 4.7b but with wider absolute error

range, which is ±5 m3/h, as the gas flowrate is much higher than the liquid flowrate

(see Table 4.1). The relative error of predictions reflects this phenomenon in a more

straightforward way, which is shown in Figure 4.8.
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Figure 4.9: Multiphase flowrate prediction results of (a) liquid phase and (b) gas phase by
using SVM.

The relative error of the liquid phase indicates that most predictions are within the

acceptable range except for a few glitches. Whereas the relative error of the gas

phase fluctuates obviously at lower flowrates, but most of the larger gas flowrate

predictions still fall in an acceptable range. The phenomenon is normal as it is

extremely challenging to predict small flowrates of both phases accurately. In such

cases, small fluctuation could incur significant relative errors.

4.3.3 Results from SVM

Thus far, SVM has not yet been applied in multiphase flowrate estimation without

acquiring flow patterns as prior information. Figure 4.9 shows the liquid and gas

flowrate prediction results based on SVM on the same data set. When implementing

SVM, it was found that the liquid and gas flowrate estimation results still have plenty of

potentials to be improved with relative large deviation. Therefore, based on empirical

trials, we reduce the moving average length to 25 with the same gap of 10.

The results shown in Figure 4.9a and 4.9b demonstrate the optimistic potential of SVM

on multiphase flowrate prediction based on the multi-modal sensing data. Figure 4.9a

shows that only five predicted results do not fall into the acceptable range, while all

the other results are close to the standard line. Comparable outcomes are obtained

for gas flowrate prediction in Figure 4.9b. The results demonstrate excellent linearity

near the standard line, with most points located within the acceptable range.
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Figure 4.10: Relative error of flowrate prediction results for (a) liquid phase and (b) gas
phase by using SVM.

Figure 4.10 illustrates the relative error, which shows similar trends of both liquid and

gas phases as the DNN results. This further confirms that SVM can be regarded

as a satisfactory multiphase flowrate prediction method with the given input training

parameters.

4.3.4 Results from CNN

In this subsection, we introduce CNN in multiphase flowrate prediction in view of its

robustness in dealing with regression problems. The predicted liquid and gas flowrate

results are illustrated in Figure 4.11.

Observing Figure 4.11a and Figure 4.11b, it is explicit that the results exhibit general

linear relationships between the predictions and reference data for both liquid and

gas phases. However, compared with DNN and SVM, the amount of results outside

of the acceptable range in Figure 4.11 increases significantly. This indicates that non-

negligible prediction error occurs when implementing CNN for multiphase flowrate

prediction, and such phenomenon becomes more evident for the liquid phase. It may

be due to the limitation of training data. Since the input of the CNN is calculated

by taking every 100 data sets as a batch, where each of these 100 data has a

corresponding target data. The challenge is to find representative target data from
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Figure 4.11: Multiphase flowrate prediction results of (a) liquid phase and (b) gas phase by
using CNN.

the 100 target data as a matched target of the CNN input sample batch. We took

the average value of the corresponding target data to match the corresponding input

sample batch. Therefore, one possible reason is that the averaged target cannot

perfectly fit the input sample batch.

The relative error shown in Figure 4.12 further supports the above discussion. It is

worth noting that the relative error shows that gas flowrate prediction results are

relatively more stable than the liquid ones, except for small gas flowrates. Both relative

error results in Figure 4.12a and Figure 4.12b indicate the association between

the input parameters and the predicted flowrate. It suggests that employing CNN

to predict the multiphase flowrate is feasible given proper flow sensing data with a

relatively large training data set.

4.3.5 Comparison between DNN, SVM and CNN

In this subsection, we calculate the mean square error (MSE) to compare quantit-

atively the performance of each method in multiphase flowrate prediction. MSE is

defined by:

MSE =
1
n

n

∑
i=1

(ỹ− y)2 (4.21)

where n is the number of the test samples; ỹ is the predicted flowrate and y is the

reference flowrate.
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Figure 4.12: Relative error of flowrate prediction results for (a) liquid phase and (b) gas
phase by using CNN.

Table 4.2: MSE of flowrate prediction using DNN, SVM and CNN

Method
MSE of flowrate prediction

Liquid Gas

DNN 0.0081 2.8454
SVM 0.0079 1.8139
CNN 0.5947 9.211

Table 4.2 compares the MSE of liquid and gas flowrate prediction results by using

DNN, SVM and CNN. The MSE of liquid flowrate prediction is overall smaller than

gas. DNN and SVM could achieve much smaller MSE for both liquid and gas flowrate

prediction than CNN. Therefore, we may conclude that DNN and SVM are more

suitable methods for multiphase flowrate with differential pressure, pressure and

temperature as input parameters, in comparison with CNN.

Further analysis showed that SVM has the lowest MSE value on both liquid and

gas groups, which means that SVM is able to provide accurate multiphase flowrate

prediction with the given input parameters. Moreover, DNN also evinces potential

in dealing with multiphase flow regression problems. In practice, the determination

of a machine learning method depends on prediction accuracy, model complexity,

training time, input data preprocessing requirements, etc. CNN for multiphase flowrate

prediction requires further manipulation of the input data based on the moving

average method. DNN and SVM are, in contrast, more straightforward to implement.
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4.4 Summary

This chapter investigates the performance of three machine learning methods, i.e.,

DNN, SVM, and CNN, in oil/gas/water three-phase flowrate prediction based on

time series sensing data. The proposed methods do not require flow patterns as

prior information. We adopted the combination of four sensing parameters, i.e., two

differential pressures, standard pressure, and temperature, which are obtained in real

time on a pilot-scale multiphase flow facility under various flow conditions, to train the

networks. The results suggest that all methods could generate reasonable liquid and

gas flowrate predictions. Quantitative analysis shows SVM gives the best estimation

results compared with DNN and CNN. The performance of DNN is similar to SVM,

with slightly degraded performance. DNN and SVM outperform CNN on both liquid

and gas flowrate prediction, and potential underlying reasons are discussed.
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Chapter 5

Sequential model for multiphase

flowrate measurement

5.1 Introduction

Chapter 4 predicted the multiphase flowrate by implementing various conventional

machine learning techniques. In recent years, the emerging machine learning tech-

nique has become prevailing in assisting multiphase flow characterization, especially

in identifying flow patterns and extracting flow features (Barbariol, Feltresi, Susto,

Tescaro, and Galvanin (2020); Dang et al. (2019); Kanin, Osiptsov, Vainshtein, and

Burnaev (2019)). The prosperity of data-driven methods has also introduced new

alternatives for multiphase flowrate measurement. Although the recent progress for

multiphase flowrate measurement is substantial, accurate and simultaneous flowrate

measurement of different phases under complicated flow conditions (e.g., dynamic

three-phase flow) in real time remains challenging.

This chapter proposes a method for estimating the liquid and gas volumetric flowrate

of oil/gas/water three-phase flows by combining a differential pressure-based flow

meter (i.e., the Venturi tube) with advanced machine learning techniques (i.e.,

temporal convolution networks (TCN (Bai, Kolter, and Koltun (2018))), and the

combination of the conventional neural network (CNN) and the long-short term

memory (LSTM) model). We consider the characteristics of the multi-modal time-

series sensing data obtained from the Venturi tube, i.e., the differential-pressure data,

pressure data, and temperature data. To overcome the limitations of convolutional

architecture in dealing with the time-sequence data, the LSTM, which is a modified

structure of the recursive neural network (RNN) (Dang et al. (2019)), is introduced

to avoid the influence of short-term memory. Then, TCN, as a specifically designed

model for solving time-series data forecast problems, is firstly applied to multiphase
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flowrate prediction in this study. We train, validate and test the proposed CNN-LSTM

and TCN model based on real-world multiphase flow sensing data collected from a

pilot-scale multiphase flow facility and demonstrate its effectiveness and potential for

accurate liquid and gas flowrate prediction. Evaluations of the estimated results are

performed, and the performance of TCN and the combination of convolutional and

recurrent architectures (i.e., CNN-LSTM) is compared under various multiphase flow

scenarios.

5.2 Methodology

5.2.1 Pilot-scale multiphase flow facility

The multiphase flow experiments were still conducted in the Multiphase Flow Labor-

atory at Tsinghua Shenzhen International Graduate School. The flow sensing data

were collected from the pilot-scale multiphase flow testing facility (see the schematic

in Figure 4.1. The pilot-scale multiphase flow facility comprises a multiphase flow

separator tank, oil, water and gas single-phase flow sections and the mixing sections,

and control units. At the commencement of the experiment, three single-phase flows

(i.e., oil, water, and gas flows) were separately supplied and pumped into the single-

phase flow pipes. The oil and water were first commingled and then blended with gas.

The final admixture was transported through the multiphase flow testing section and

returned to the separator for circulating utilization.

Single phase flow meters (SPMFs) were installed on oil, water, and gas pipes to

measure the flowrate of each phase, which was utilized to calculate the mixture

flowrate reference values for training, validating and testing of the proposed machine

learning models.

A Venturi tube having a transport diameter D of 50 mm and a throat diameter d of

25 mm was installed in the mixture conveyance pipe to measure the flowrate. The

diameter ratio of the Venturi tube is 0.5 and the sampling frequency is 10Hz. The

selection of the Venturi tube is mainly based on the consideration of the maximum

multiphase flowrate range to be measured, the working condition pressure during

the experiment and the specification of the multiphase flow facility in the laboratory.
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In more detail, the volumetric flowrates of the liquid and gas phase vary from 0.1 -

10 m3/h and 7.6137 - 86.7506 m3/h, respectively. We collected time series sensing

data from a Venturi tube installed in a pilot-scale multiphase flow facility and utilized

single-phase flowmeters to acquire reference data before mixing.

The Venturi tube generates three pressure signals that are associated with the oil,

water and gas flow dynamics, namely the dynamic pressure P and the former (∆P1)

and posterior (∆P2) differential pressures. In addition, we collected the temperature T,

which is employed as the fourth input parameter of the learning models for multiphase

flowrate prediction.

5.2.2 Flow data acquisition

The reference data, i.e. the ground truth of the volumetric flowrate of the liquid phase,

were the sum of the oil and water volumetric flowrate. Based on the volumetric flowrate

obtained from single-phase flowmeters, the flowrate of the liquid mixture could be

calculated by adding the volumetric flowrate of the oil and water phase. The Venturi

tube measures the instantaneous flowrate two to five times every second. Considering

the difference in flow conditions at the location of the SPFMs before mixing and

the Venturi tube (see Figure 4.2), instead of directly using the instantaneous sensor

measurements, the reference, pressure and temperature data were averaged over

a period of time. The averaged flowrate could more accurately approach the true

flowrate of the oil/water mixture.

Table 5.1 presents the experimental matrix. To mimic multiphase flows in real

industrial scenarios, the dynamic flows of water, oil and gas were separately controlled

to cover a large diversity of flowrate ranges. The volumetric flowrate of water changed

from 0.9978 to 4.9650 m3/h and the water-in-liquid ratio (WLR) varied from 0 to

94.5%. The volumetric flowrate of gas was 7.6134 - 86.7506 m3/h. The GVF was

settled start from 0% and increases by 10% each time until it reaches 90%. For each

GVF settlement, WLR was controlled varying from 0% to 100%. The moving average

window size was performed as 100 (20 seconds).

Interpolation was employed to pre-process the measurement data to compensate for

the difference between the sampling rates of the Venturi tube and the SPFMs. To

improve the training efficiency, for the data collected from the Venturi tube, five data

points at equal time intervals of every second, which represented 0, 0.2, 0.4, 0.6

and 0.8s, were selected to achieve uniform distribution. The nearest interpolation
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Table 5.1: Multiphase flow (oil/water/gas) experiment matrix for CNN-LSTM and TCN models

Objects
Liquid volumetric flowrate

(m3 /h)
Gas volumetric flowrate

(m3 /h)
WLR / GVF

Water 0.9978 – 4.9650 - 0 – 94.5%
Oil 0.0216 – 7.0367 - -

Gas - 7.6134–86.7506 0 – 90%

0.167 0.20 0.8330.80.333 0.4990.4 0.6670.6

 Processed data

 Raw data

Figure 5.1: The principle of nearest interpolation method applied on data collected from
Venturi tube.

method was applied to estimate the value at the fixed time points. In detail, the

value of the five data points could be estimated by the nearest actual value that we

obtained from the Venturi tube during the experiments, and the detailed procedure is

shown in Figure 5.1. As the Venturi tube generates three kinds of pressure data, after

interpolation, a 5×3 matrix, which contains P, ∆P1 and ∆P2 three parameters with five

data points for each parameter, was obtained every second. Therefore, each pressure

parameter contains 98,570 pre-processed data for a duration of 328.57 minutes. By

implementing the same procedure on the temperature data, we finally obtain the

sequential data in the format of a 98,570 × 4 matrix, which is shown in Figure 5.2.

The final step is to calculate the average value of the interpolated sequential data

every five points to match with the reference obtained from the SPFMs, the sampling

rate of which is 1 Hz. Eventually, a 19,714 × 4 matrix is created.

5.2.3 Moving average on the acquired flow data

Pursuant to the previous study, it is found that by taking the moving average of the

obtained instantaneous data, both the liquid and gas flowrates demonstrate more

accurate prediction results with a smaller absolute error and deviation than the

prediction results based on instantaneous data (H. Wang, Zhang, and Yang (2020)).

The reason is that errors and non-alignment phenomena occur between the sensory

data (differential pressure and temperature data) and the reference (real liquid and

gas flowrate measured using the SPFMs). The different spatial positions of the Venturi
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Figure 5.2: Visualization of the pre-processed training data.

tube and SPFMs (see Figure 4.1) and the highly dynamic flow status of the mixture

when passing through the Venturi tube can cause and strengthen such errors and

non-alignment. The moving average was introduced to harmonize the training and

target data to limit and inhibit such occurrences.

In contrast to the previous study (H. Wang et al. (2020)), rather than performing a

simple moving average with an identical length “window” from the beginning to the end

of the sequential data, this study employed a varying window length for the first 100

data points. In other words, the window length gradually increases from the beginning

of the sequential data, and the average of the first ’n’ data observations (n ≤ 100)

was calculated. Then, the traditional moving average method with a window length

of 100 was applied to the remaining data until the end, which is shown in Figure 5.3.

The purpose of adapting the stated moving average strategy was to retain as much

information from the raw data as possible during the training process. In detail, there

were 100 average calculations by performing varying window length whereas only

1 average calculation by performing simple moving average for the first 100 data.

The window length was selected as 100 mainly based on the training and testing
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Figure 5.3: Visualization of the pre-processed training data after moving average operation.

experience in previous work (H. Wang et al. (2020)). Different window lengths (0,

50, 100, 150, 200) were also attempted in this study and the minimum training error

occurs when the window length equals 100 for both CNN-LSTM and TCN models with

the value of 0.415 and 0.218, respectively.

5.2.4 Reference calculation

Three single-phase flowmeters were implemented to measure the volumetric flowrate

of oil, gas and water before they were mixed, respectively (see Figure 4.1). The

reference liquid phase volumetric flowrate (Qliquid
v ) could then be deducted by adding

the volumetric flowrate of oil (Vo) and water (Vw), which can be formulated as:

Qliquid
v =Vo +Vw (5.1)
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Figure 5.4: Schematic of the CNN-LSTM model.

The calculated liquid volumetric flowrate is taken as the reference during network

training and testing. The single-phase flows were then mixed and passed through the

Venturi tube, and the corresponding differential pressure and temperature data were

measured and recorded as the input of the network.

5.2.5 CNN-LSTM for flowrate estimation

Convolutional Neural Network (CNN) has been widely applied to deal with image

processing problems (Vinayakumar, Soman, and Poornachandran (2017)). Attempts

have also been made to adapt CNN for multiphase flowrate estimation (Hu et al.

(2019)). We here first propose a network (named CNN-LSTM) that combines the one-

dimensional CNN (1D CNN) and LSTM model for multiphase flowrate estimation.

5.2.5.1 Network structure

The proposed CNN-LSTM model is a combination of a 1D CNN and a three-layer

stacked LSTM model (see Figure 5.4). In Figure 5.4, parameters k, s and p stand for

the kernel size, stride 1 and padding, respectively. The input of the CNN-LSTM model

was obtained from the Venturi tube, which contained four multiphase flow parameters:

P, ∆P1, ∆P2 and T. Each flow parameter was manipulated by using the interpolation

method and comprises 33,198 data. The reference flowrate was calculated based

on SPFMs measurements before mixing. The reference of the liquid phase was the

summation of the volumetric flowrate of water and oil. The output of the CNN-LSTM

model is the estimated volumetric flowrate of the liquid phase.

1. Stride is the number of pixels shifts over the input matrix.
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The input layer contains four measured multiphase flow parameters and the length of

one sample is set to be 50 s, which includes 250 instantaneous sensory data. The

sequential data reflect the variation in the multiphase flow parameters within a specific

period. Instead of using instantaneous measurement data as input, this kind of input

reduces the mismatch with the reference caused by the highly dynamic flows after

mixing. The padding layer is designed to follow the input layer to avoid information

loss with a kernel size of 3 and stride of 1. A zero padding strategy was adopted to

ensure that the central Kernel was located on the data points as much as possible.

The batch norm layer was designed to be followed by the convolution layer to prevent

the vanishing or exploding gradient problem.

The function of the pooling layer is to downsample and reduce the dimensionality of

the data. It is designed to run in parallel with the conv1D, batch norm and ReLU layers.

Such a two-channel sub-sampling structure is designed to extract more advanced

features of the multiphase flow parameters while retaining the main features. The

concatenation layer plays a role in combining the outputs of the two channels in the

previous layer, and it is supposed to connect two or more feature maps with the same

dimensionality together. It is a utility layer that links the multiple input blob onto an

output blob.

Once the feature extraction process of differential pressure and temperature signals

is complete, the transpose convolution layer is connected. It is referred to as the

fractionally strided convolution layer, and it reverts the size of the output map back

to the size of the input map while keeping the connection status unchanged. Together

with the convolution process, they are regarded as a complete symmetrical process

in the 1D CNN-LSTM model. The fully connected layer ordinarily appears at the end

of the CNN and plays the role of regression, which is the predicted flowrate of the

liquid phase. The core operation of the fully connected layer is the production of the

matrix. To improve the performance of the CNN network, the activation function of

each neuron in the fully connected layer is set as the ReLU function in this chapter.

The stacked LSTM has been cascaded before the fully connected layer. The LSTM,

as a special RNN model, is designed to resolve the long-term dependencies problem.

The structure of LSTM is shown in Figure 5.5. The dimension of the input (Xt ) from the

transpose layer is 16×256, which contains 16 LSTM units with an input dimension (Xi)

of = 1×256 (1 ≤ i ≤ 16). The output hi,h
′
i and h

′′
i (1 ≤ i ≤ 16) represents the output

of the LSTM in each layer with the dimension of 1×64, 1×64 and 1×16, respectively.

Layer 3 is also known as the output layer of the stack LSTM, where the set of each
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Figure 5.5: Schematic of the stack LSTM model.

single unit’s output from Layer 3 (h
′′
i ) has the dimension of 16*64. Meanwhile, the

last-moment output of stack LSTM (hn) can be obtained from the combination of the

final output of each layer, which is the set of {h16,h
′
16,h

′′
16} with the dimension of 3*64.

Therefore, the final output of the stack LSTM is obtained by extracting the last element

from the set hn, which is h
′′
16 with the dimension of 1*64. It is also consistent with the

dimension of the input to the full connection layer in Figure 5.4 during the forward

propagation process. In this study, different layers of LSTM were attempted, and the

minimum training error was obtained for the CNN-LSTM model when LSTM had three

layers. Meanwhile, the computation time significantly increased when the LSTM layer

increased, which is not efficient in real applications.
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Figure 5.6: Schematic of the TCN model.

5.2.6 TCN for multiphase flowrate estimation

An enhanced temporal convolutional network (TCN) was designed to solve the

sequential data prediction problem by combining the generic convolutional and

causal convolutional architecture in 2018 (Bai et al. (2018)). To overcome the

vanishing/exploration gradient drawbacks of the traditional recurrent networks (such

as recurrent neural network (RNN) and LSTM) in the sequential model, a generic

convolutional architecture was considered as the starting point for building the TCN

model.

The structure of the TCN-based multiphase flowrate estimation model is illustrated

in Figure 5.6. From the input layer, the input data length was set to 128, containing

four training parameters with a batch size ‘b’ of 64. Therefore, the input dimension

of the network is defined as 64×128×4. Before the input data propagate through

the temporal block, it is initially modified by 1D convolutional and chomp 1D section

to ensure that the network will only analyze the past and current data and that the

predictions are not influenced by ‘future’ sequential data.

The temporal block with its input dimension of (batch*in-channel*sequence length)

from the previous layer was then connected into the network. It consisted of seven

semi-blocks with the same architecture but different parameter settings. Details of the

architecture of the semi-block are shown in Figure 5.7.

All the parameter settings are the same for the seven semi-blocks except the out-

channel, dilation ratio (d) and the void rate. These three parameters of each semi-

block are sequentially shown in the ‘temporal block’ in Figure 5.6, which will not be

stated again in the remainder of this paper. According to Figure 5.7, the input (x) in

layer 1© has the dimension of 1×128×128, which indicates that the batch number is

set to 1. The in-channel and sequence length are both consistent with the previous

layer of the entire network, which is 128. After the input layer, the sequential data

passes through a residual block for the designed TCN, which contains layers 2© to

12©. The residual contains two dilated causal convolution layers with the parameter
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Figure 5.7: Schematic of the temporal block in TCN.

settings of kernel number k=3, zero padding p=2 and stride number s=1, and a dilation

ratio d = 2i, where i indicates the position of the semi-block. Weight normalization

was applied to the convolutional filters in Bai’s work (Bai et al. (2018)). During the

training process, we compared the performance of the weight and batch normalization

methods. The results indicated that weight normalization has a lower computational

cost and can be immune to the influence of the noise that is caused by the random

property of the mini-batch. However, the robustness of the weight normalization

method for parameter initialization was not sufficiently strong. This issue was solved

by adding a spatial dropout layer for regularization. Specifically, the initialization was

achieved by ensuring that the entire channel was zeroed out at each training step.
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There is an optional route (layer 12© & 13©) in the residual block, that performs the

judgement operation. For the conventional residual block structure, the summarization

operation can be directly performed between the input and output of the residual

function. Nonetheless, the input to the TCN can have a different width than its output;

addition cannot be performed if the element width is not matched. Therefore, a

convolution layer with a kernel size of 1 was utilized to ensure that the widths of

the in- and out-channels were aligned. In our designed residual block, the output of

layer 1© is added to the output of the layer 11© or 13©, depending on the output channel

width.

The dimension of the final output of the TCN model is 1*128, which has the same

length as the input data. It is one of the clearly different characteristics of the TCN

compared with CNN, which has an output dimension of 1*1. In other words, the output

data length of the TCN can be adjusted by controlling the input data length and it

represents the sequential forecasting results. In this study, the last digit of the output

sequential data was selected as the final result because it represents the most current

estimation. Therefore, for the 1971 test sequential data group (each sequential data

group contains 128 sequential data), we are able to obtain 1971 estimation results.

5.2.7 Network parameters

In Figure 5.4 and Figure 5.6, the kernel size of the CNN-LSTM and TCN network is

noted as ‘k’; ‘p’ stands for the padding process, and zero padding was chosen in this

study. The stride, which indicates the length of the convolution step, was noted as

‘s’. The correct size of ‘s’ is crucial because repeated calculations will occur, and the

training efficiency of the network is reduced with a smaller stride number; however,

key information may be lost, and the data features may not be extracted with a large

stride. Therefore, in this study, the stride was set to 2 for the CNN-LSTM model and 1

for the TCN model.

The rectified linear unit (ReLU) function was chosen as the excitation function

to prevent the vanishing gradient problem during the training process. It can be

expressed as:

ReLU(x) =

{
x (x > 0)
0 (x≤ 0)

(5.2)
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The loss function was chosen to be the MSE during the training process, which

is a commonly used regression loss function in machine learning. It calculates the

MSE between the estimated and the target values, which has been mathematically

expressed in (4.21).

5.3 Results and discussion

This Section presents the liquid- and gas-phase flowrate estimation results based on

the proposed CNN-LSTM and TCN models. A comparison was also made between

the two models.

5.3.1 Network training

As stated in Section 5.2.2, the differential pressure, standard pressure and tem-

perature data were pre-processed to facilitate the training process. Specifically, the

number of measurements per second was unified by using linear interpolation, after

which a uniform sampling rate of 5 Hz was obtained. Since the summation of the

instantaneous flowrate of single-phase flows before mixing did not comprehensively

correspond to the instantaneous measurement data obtained from the Venturi tube

due to spatial differences and the inherent characteristics of multiphase flow (such as

the rapid change of flow pattern and flowrate). Therefore, predicting the average flow

rate over a period is more meaningful in mitigating the influence of such phenomena.

Hence, in training, we adopted 50 seconds, and the average flowrate was calculated

every 50 s as a reference. After pre-processing, 19,714 samples were obtained. The

experimental samples were randomly divided into the training, validation and testing

data set in the proportions of 80%, 10% and 10%, respectively. The epoch number

was set as 230 for the CNN-LSTM model and 400 for the TCN model for the best

prediction results (minimum validation error occurs), respectively. The learning rate

was 0.001 for both models.
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Figure 5.8: Multiphase flowrate estimation results of (a) liquid phase and (b) gas phase by
using CNN-LSTM with un-smoothed training data.
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Figure 5.9: Multiphase flowrate estimation results of (a) liquid phase and (b) gas phase by
using CNN-LSTM with smoothed training data.

5.3.2 Results of CNN-LSTM

Figure 5.8 presents the estimated liquid and gas phase volumetric flowrate by

using the proposed CNN-LSTM model. The instantaneous (un-smoothed) and pre-

processed (smoothed) data were separately utilized during the multiphase flowrate

estimation process, which corresponds to the results shown in Figures.5.8 and 5.9,

respectively.
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By comparing the flowrate estimation results for different flow phases, it is clear that

a positive correlation is found between the predicted volumetric flowrate of the liquid

phase and the reference flowrate in Figures. 5.8a and 5.9a. In detail, the majority of

the estimation results (88.3% for smoothed data and 79.1% for un-smoothed data)

are within an acceptable error range (i.e. the ±10% of the regression line), with only

a few points outside the boundary. This suggests the effectiveness of utilizing CNN-

LSTM to manage the time-series sensing data to estimate the multiphase flowrate

under more complex scenarios. A similar trend can also be obtained in the volumetric

flowrate estimation of the gas phase when the gas flowrate is less than 40 m3/h in

Figure 5.9b. However, when the gas flowrate exceeds 40 m3/h, no obvious correlation

appears, and the estimation results seem to be randomly distributed. Although most

of the estimation results (80.3% for smoothed and 80.5% for un-smoothed) for the gas

phase are still located within the±10% of the regression line, we cannot conclude that

the results are acceptable due to the non-linear distribution of the estimation results.

In this study, we employ absolute error instead of relative error as a performance

indicator, because it is a common practice in this field, and it is extremely challenging

to accurately predict the small flowrates. The deviation of the estimated liquid flowrate

is presented in Figure 5.10a. Most estimation errors fall inside the acceptable range,

and several points exceed the plus or minus ten percent line. It further confirms that

the CNN-LSTM model can be considered an effective liquid phase flowrate estimation

method with time-series sensing data as the input. Meanwhile, the limitation on gas

phase flowrate estimation is also non-negligible in the 1D CNN-LSTM model, which

is shown in Figure 5.10b. Therefore, the TCN model is developed to further deal with

such issues and as a comparison to the CNN-LSTM model.

5.3.3 Results of TCN

The proposed TCN model was also separately trained by un-smoothed and smoothed

parameters and the multiphase flowrate estimation results were shown in Figure 5.11

and Figure 5.12, respectively. Figure 5.11 presents the multiphase flowrate estimation

results obtained from the instantaneous training data of the TCN model. In Figure

5.11a, a rough linear relationship can be observed between the estimated liquid

flowrate and the reference. Still, 5.9% of the estimation results are not located in

the ±10 range with obvious deviations. From analyzing only Figure 5.11a, it could be

argued that such a phenomenon is probably caused by the mismatch between the

training and the target data, which is unavoidable when implementing instantaneous
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Figure 5.10: Deviation of (a) liquid phase and (b) gas phase by using CNN-LSTM with
smoothed and un-smoothed training data by implementing CNN-LSTM model.
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Figure 5.11: Multiphase flowrate estimation results of (a) liquid phase and (b) gas phase by
using TCN with un-smoothed training data.

training data as input. From the data in Figure 5.11b, it is apparent that the linear

regression of the predicted gas flowrate is observed from the TCN model. Even the

input training data is instantaneous data without any pre-processing procedure. Such

a regression phenomenon on the estimated gas results initially confirms that the

TCN model can resolve time-series data from multiphase flow area. In other words,

the non-perfect linearity of the predicted liquid phase flowrate may be due to the

characteristics of the training data rather than the inherent limitations of the TCN

model. To further investigate the inherent ability of the TCN model, smoothed training
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Figure 5.12: Multiphase flowrate estimation results of (a) liquid phase and (b) gas phase by
using TCN with smoothed training data.

data were applied, and the multiphase flowrate estimation results are presented in

Figure 5.12. A perfect linear regression phenomenon appears for both liquid and

gas phase estimation results. Nearly all the forecasting points are located within an

acceptable range (±10) with only one exception in the gas estimation results. Figure

5.12 indicates that TCN model can manage the pre-processed sequential differential

pressure and temperature data for the multiphase flowrate estimation problem.

The more accurate flowrate estimation results obtained using smoothed data further

confirms that the characteristic (or the smoothness process) of the input data plays a

non-negligible role in the multiphase flowrate prediction problem. In particular, the

alignment between the training and the reference data is more accurate with the

smoothed data according to the comparison between estimation results in Figures.

5.11 and 5.12. It could be expounded that the flow status of the three-phase

mixture rapidly varies when it passes through the Venturi tube, which causes the

instantaneous recording of the training parameters to be misaligned with the reference

data, which are recorded under a more stable flow status in a single-phase flow

pipe. The moving average method overcomes inherent drawbacks of the multiphase

flowrate measurement by aligning the training and reference data within a period. The

estimation results demonstrate that the pre-process is considerable when dealing with

multiphase flowrate estimation problems.
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Figure 5.13: Deviation of (a) liquid phase and (b) gas phase by using TCN with smoothed
and un-smoothed training data by implementing TCN model.

The deviation demonstrated in Figure 5.13 further confirms the conclusion that the

relatively large estimation deviation is caused by the characteristic of the instantan-

eous multiphase flow parameters rather than the inherent ability of the TCN model.

Both the liquid and gas estimation results demonstrate smaller deviations with the

pre-processed training and reference data in Figure 5.13. Larger deviations and more

outside-range points are observed in Figure 5.13 with the instantaneous (un-smooth)

data, which indicates that non-alignment phenomena occur during the multiphase

flowrate estimation process. We can further conclude that the pre-processing of

instantaneous data plays a vital role in multiphase flowrate estimation by reducing

the effect caused by the non-alignment between the training and reference data.

In industry applications, different Venturi structures may provide various differential

pressure signals. The TCN model can still be applied to multiphase flowrate estim-

ation when differential pressure signal changes but re-training and parameter tuning

of the TCN are possibly required to achieve the best prediction results for different

scenarios.
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Table 5.2: Correlation index and MSE of flowrate estimation using CNN-LSTM and TCN.

Index
CNN-LSTM TCN

Liquid Gas Liquid Gas

ρun 0.9190 (Fig. 5.8a) 0.9340 (Fig. 5.8b) 0.9476 (Fig. 5.11a) 0.9980 (Fig. 5.11b)
ρs 0.9688 (Fig. 5.9a) 0.9033 (Fig. 5.9b) 0.9934 (Fig. 5.12a) 0.9986 (Fig. 5.12b)

MSEun 0.9586 (Fig. 5.8a) 109.6736 (Fig. 5.8b) 0.3121 (Fig. 5.11a) 3.1700 (Fig. 5.11b)
MSEs 0.4003 (Fig. 5.9a) 126.2088 (Fig. 5.9b) 0.0363 (Fig. 5.12a) 2.6969 (Fig. 5.12b)

5.3.4 Comparison between CNN-LSTM and TCN

To acquire comprehensive knowledge of the performance of the proposed machine

learning methods on multiphase flowrate estimation, the MSE and the correlation

between the reference and estimated multiphase flowrate were also considered as

complementary metrics for evaluating the performance of the CNN-LSTM and TCN.

The correlation index can be calculated by:

ρx,y =
Cov(x,y)
√
σxσy

(5.3)

where x and y represent the estimated and reference multiphase flowrate, respect-

ively; σ stands for the standard deviation. The calculated MSE and correlation

index for the estimated multiphase flowrate of CNN-LSTM and TCN under different

scenarios are shown in Table 5.2, where the subscript un and s stands for the ‘un-

smoothed’ and ‘smoothed’ data, respectively.

TCN results have larger correlation index and smaller MSE for liquid and gas flowrate

estimation with un-smoothed and smoothed data compared with the CNN-LSTM

results. This observation indicates that TCN has an increased ability for multiphase

flowrate prediction under various flow conditions. The effect of the pre-processing of

the training data on prediction accuracy can be evaluated by comparing the same

evaluation index of the same method but with different types of data. In detail, using

CNN-LSTM as an example, ρCNN−LST M
un and ρCNN−LST M

s are 0.9190 and 0.9688

for the liquid phase flowrate estimation, respectively. Hence, the moving average

pre-processing improves the liquid phase prediction accuracy when the CNN-LSTM

model is implemented.
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Similarly, by performing such a comparison between the remaining groups in

Table 5.2, we can conclude that by using a moving average manipulation on the

instantaneous flow parameters, higher accuracy for the predicted multiphase flowrate

can be expected. The only exception is when predicting the gas phase flowrate by

implementing the CNN-LSTM model. It could be explained that the CNN-LSTM model

is not sufficiently sensitive to the input data for the multiphase flowrate estimation

application. Specifically, although the CNN-LSTM model has the information storage

ability during the decision-making process, it still cannot memorize all the past inform-

ation, and the final decision may also partially depend on the future information. The

latter process is not achievable in an actual application because future information

is unavailable under a time-series forecasting scenario. Meanwhile, the structure of

the TCN can be summarized as the addition of a 1D fully-convolutional network

(FCN) and the causal convolutions. Such a structure affords the TCN model two

unique characteristics for the time-series data forecasting problem. The first is that

the causal convolution block ensures that the output of the TCN model relies on the

past information only, and in contrast to the CNN-LSTM model, all the past information

contributes to the output of the TCN model. The second characteristic of the TCN

model is that the output layer has the same length and width as the input layer,

which is achieved by using the zero-padding method in the 1D FCN block. Therefore,

the manipulation of the input data influences the output when the TCN model is

implemented for the multiphase flowrate estimation problem.

According to Table 5.2, TCN achieves the highest correlation index and smallest

MSE for both liquid and gas phases when accepting smoothed data as input. This

demonstrates the strong ability of the TCN for multiphase flowrate estimation and

the necessity for manipulating the raw multiphase flow parameters to obtain more

accurate estimated flowrates.

5.4 Summary

This chapter proposed CNN-LSTM and TCN models for multiphase flowrate estim-

ation of dynamic three-phase flows with multiple time-series sensing data obtained

from a Venturi tube. We trained, validated, and tested the proposed CNN-LSTM and

TCN models using real-world flow sensing data acquired from a pilot-scale multiphase

flow facility. The results validated the feasibility and effectiveness of the TCN model

to estimate multiphase flowrate and the CNN-LSTM model to predict liquid phase
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flowrate with times-series sensing data collected from the Venturi tube. Estimation

performance evaluation revealed that compared with CNN-LSTM, TCN demonstrates

a stronger ability for multiphase flowrate estimation on both liquid and gas phases,

and achieves more accurate estimation results. The characteristics of the input data

(instantaneous or moving averaged data) also play a non-negligible role in multiphase

flowrate estimation. A pre-processing procedure is proposed to overcome the problem

caused by the misalignment between the training and reference data. The comparison

of the liquid and gas phase flowrate estimation results revealed that TCN performs

better than CNN-LSTM on time-series data in a multiphase flow area.

Experimental results suggest that the proposed CNN-LSTM and TCN models can

effectively deal with the time series sensing data from the Venturi tube and achieve a

good accuracy of multiphase flowrate estimation under different flow conditions. TCN

achieves a better accuracy for both liquid and phase flowrate estimation than CNN-

LSTM. The results indicate the possibility of leveraging conventional flow meters for

multiphase flowrate estimation under various flow conditions.
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Chapter 6

Multi-modal learning based

multiphase flowrate measurement

6.1 Introduction

In Chapter 5, the feasibility of the learning-based model for predicting multiphase

flowrate is validated and evaluated. The state-of-art method, such as the TCN

model, provides acceptable flowrate prediction results under complex flow scenarios.

Previous work relies on single-phase flow meters, while multi-modal sensors start

to attract the researcher’s interest in in-situ and accurate flowrate measurement.

There have been attempts to utilize multi-modal approaches to tackle the flowrate

measurement challenge, whilst there are still remaining issues. A drawback of

combining the Venturi tube with the radioactive approaches lies in the expensive

maintenance and potential radiation hazards (Pan, Li, Ma, Huang, and Wang (2019)).

Integrating with sensors with direct contact with the flow (e.g., ERT) is sensitive to the

impurity in the flow (Chen, Li, Li, Zhang, and Peng (2021)). The combination of ECT

and Venturi tube has been initially investigated in (Huang, Xie, Zhang, and Li (2005)).

However, the mass flowrate was predicted based on simplified physical models.

The flourishing of data-driven methods has likewise presented new options for

multiphase flowrate estimation by empowering more correlated sensing data analysis

(Hu et al. (2019); Lin, Wang, Chen, Zhang, and Li (2020)). By employing the Venturi

meter as the primary sensor to extract the flow characteristics, our previous work

successfully predicted the flowrate of gas-liquid flow using DNN, CNN-LSTM and

TCN (H. Wang, Hu, Zhang, and Yang (2022); H. Wang et al. (2020)). However, the

flowrate measurement accuracy still has the potential to be improved by combining

multi-modal sensors with advanced learning algorithms.
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This chapter proposes an approach for estimating the fluid and gas volumetric

flowrate of oil-gas two-phase flow by combining multi-modal sensors, i.e., dual-plane

ECT sensor and the Venturi tube, with TCN. The multiphase flow is characterized

by multi-modal sequential sensing data collected from the dual-plane ECT and

Venturi tube. Then, TCN is firstly introduced to fuse the time series sensing data

and estimate the flowrate. The volumetric flowrates of the liquid and gas phase

vary from 0.96 - 6.13 m3/h and 5.5 - 121.2 m3/h, respectively. The multi-modal

sequential sensing data are simultaneously collected from a Venturi tube and a dual-

plane ECT sensor in a pilot-scale multiphase phase flow facility. The reference data

are derived from the single-phase flowmeters. Z-score and first-difference data pre-

processing methods are employed to manipulate the collected instantaneous time

series multi-modal sensing data. The pre-processed data are utilized for training

the TCN model. The TCN model is trained, validated, and tested using in-situ

flow measurement data collected from a pilot-scale multiphase flow facility. The

performance of TCN is comprehensively evaluated, and the effect of different data

pre-processing approaches is also discussed.

6.2 Methodology

6.2.1 Multiphase flow facility and data collection

The oil-gas two-phase flowrate measurement experiments were conducted on a

pilot-scale multiphase flow facility (see Figure 6.1 for schematic illustration). The

multiphase flow facility comprises of an air storage tank, a separator to separate

the mixture and supply the single-phase flow of liquid, transport pipes, single phase

flowmeters to provide reference flowrate of each phase, a Venturi tube to provide

differential pressure data and a dual-plane 8-electrode ECT sensor to produce

capacitance measurements. In the experiment, the flowrate of the oil and gas single

phase flows is adjusted by solenoid valves to create an oil-gas mixture with various

flow conditions. Meanwhile, the volumetric flowrate of each phase is measured

through the SPFMs before mixing, which is adopted as the reference flowrate for

the training of the machine learning model.
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Figure 6.1: Diagrammatic illustration of the multiphase flow facility for data collection.

The oil and gas mixture is transported through the dual-plane ECT sensor and Venturi

tube (see Figure 4.2). The dual-plane ECT sensor consists of two layers of 8-electrode

sensors. Each layer can provide 28 independent capacitance measurements, and in

each measurement frame, it can produce 28 * 2 capacitance readouts. The frame

rate of the dual-plane ECT system is 714 fps (Y. Yang, Peng, and Jia (2017)). Previous

studies have demonstrated that the dual-plane sensor could capture the velocity of the

dispersed phase, which we expect will benefit flowrate estimation (Sun et al. (2021)).

The mixture will then flow through the Venturi tube (see Figure 6.2 (a)), which

produces the differential pressure signal that correlates to the flowrate of the

multiphase flow. The structural design of the Venturi tube is based on several factors,

such as the expected measurement range of multiphase flowrate and the working

pressure of the facility. The throat diameter d is 25 mm and the diameter ratio is

0.5. The sampling frequency is 60 Hz and the resolution is 0.01 kPa. As illustrated

in Figure 6.1, three pressure signals namely the former (∆P1), posterior (∆P2) and

dynamic pressure (P) are collected when the mixture flows through it. Additionally, we

measure the temperature (T) as an extra indication parameter for flowrate estimation.
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Figure 6.2: Structural schematic of (a). the Venturi tube and (b). the dual-plane ECT sensor.

6.2.2 Flow parameters measurement

We measure the real-time capacitance from the dual-plane ECT sensor, differential

pressure and temperature data from the Venturi tube according to the experimental

matrix in Table 6.1. Considering the dynamic nature of the flow after mixing, we

average the measured reference data from the SPFMs to more precisely approach

the averaged multiphase flowrate in each second. To simulate the flow conditions in

real industrial applications, we perform a wide range control of each single phase

flowrate during the experiment to cover the real situation in the production process as

much as possible. The flowrate of the oil and gas phase ranges from 0.96 - 6.13
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Table 6.1: Multiphase flow (oil/gas) experiment matrix for TCN with dual ECT models

Objects
Liquid volumetric flowrate

(m3 /h)
Gas volumetric flowrate

(m3 /h)
GVF

Oil 0.96 – 6.13 - -
Gas - 5.5–121.2 0 – 96.64%

m3/h and 5.5 - 121.2 m3/h, respectively. The GVF varies from 0 to 96.94%. The

differential pressure, temperature and ECT data were considered in this study since

the Venturi tube has been widely investigated for single-phase flowrate measurement,

and the dual-plane ECT sensor has been proved effective in measuring the velocity

of dispersed phases. The combination of the Venturi tube and dual-plane ECT sensor

is expected to improve the flowrate estimation accuracy for multiphase flows.

With the sampling rate of 10 Hz, two differential pressure ∆P1 and ∆P2, standard

pressure and temperature data were simultaneously measured through the Venturi

tube and temperature sensors. Meanwhile, the dual ECT system with 8 electrodes

on each plane concurrently acquires 56 capacitance measurements with 714 × 56

readings per second 1. Therefore, for a roughly half-hour measurement duration,

we initially obtain two 28*1285200 matrices for electrical parameters and four 1 ×
15204 matrices for differential pressure and temperature parameters, which contain

the instantaneous multiphase flow feature measurement results. In consideration of

the consistency of the input training data feature to the proposed TCN model, the

measured electrical parameters were averaged in each second to reflect the flow

status during the one-second period. Therefore, two 28 × 15204 electrical parameter

matrices are obtained and considered as part of the final training data for the TCN

model. An overview of the instantaneous sequential pressure and temperature data

is shown in Figure 6.3. The temperature parameter stays at around 35◦C and is

represented by the purple colour. Meanwhile, the orange, yellow and blue dash lines

indicate the measured pressure data to reflect the change in flow status.

1. The sampling rate of the implement dual ECT sensor is 714 frames/second.
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Figure 6.3: Overview of the instantaneous pressure and temperature data.

6.2.3 Multi-modal data pre-processing

Data pre-processing on the instantaneous flow measurement data is essential to facil-

itate network training. It could eliminate to some extent the influence of measurement

noise and achieve better alignment between the measurement and reference data.

The difference in spatial locations of the sensors can cause a mismatch between the

real instantaneous flowrate in the testing section and the flowrate calculated based on

SPFM measurements, due to the dynamic nature of the multiphase flow. Our previous

studies have proven that moving average is effective to mitigate this issue (H. Wang et

al. (2022, 2020)). On this basis, we further introduce two approaches for multi-modal

data pre-processing.
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6.2.3.1 Z-score method

Z-score, also known as zero-normalization, is one of the most popular data pre-

processing (normalisation) methods in deep learning (Patro and Sahu (2015)). It is

commonly applied to deal with features which have different scales to ensure the

features are comparable with each other. The differential pressure, temperature and

capacitance data are z-scored separately, and the z-score for each measurement is

calculated by:

Z =
x−µ

σ
(6.1)

where µ is the mean value; σ is the standard deviation and x is the measurement.

6.2.3.2 First-difference method

First-difference method is widely applied in dealing with sequential data in deep

learning (J. Wang, Tu, Hui, Yiu, and Wang (2017)). When the measurement data

is sequentially collected and may be randomly varying, the first-difference method is

recommended for data pre-processing. Meanwhile, implementing the first-difference

method to initially manipulate the raw data can avoid the stochastic trend problem

(Stadnytska (2010)). The first difference method at time t can be defined as:

∆xt = xt− x(t−1) (6.2)

In this chapter, the first-difference method was individually applied to each multiphase

flow measurement and the pre-processed data is shown in Figure 6.4. The more

smooth trend of both pressure and temperature data can be obtained after the first-

difference process.

6.2.4 TCN-based multiphase flowrate estimation

Notable progress has been made in the analysis and prediction of sequential data

since the TCN model was proposed (Bai et al. (2018)). Previous study demonstrated

in Chapter 5 implements an enhanced TCN to predict the multiphase flowrate using

only the Venturi tube (H. Wang et al. (2022)). Additionally, other learning-based

methods such as 1D CNN (H. Zhang et al. (2020)), DNN and SVM (H. Wang et
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Figure 6.4: Visualization of the first-difference pre-processed pressure and temperature
training data.
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Figure 6.5: Schematic of TCN.

al. (2020)) were attempted in Chapter 4. The vanishing/exploration gradient issue is

evident, which could be addressed by TCN. This chapter further introduces a multi-

modal setup and an improved TCN model to predict the multiphase flowrate based on

multi-modal data.

The TCN model in this work is established based on the Keras library (Arnold (2017))

and the main structure is illustrated in Figure 6.5. Starting with the first layer, the

batch size and input data length are respectively set to 32 and 128 for all six measured

multiphase flow features. The measured P, ∆P1, ∆P2 and T are 1D time-series signals.
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Figure 6.6: Schematic of the temporal block in TCN.

Therefore, an input format of 32*128*4 is adopted for the Venturi tube-only case.

Additionally, a 32*128*60 input configuration is created for the multi-modal setup

integrating the Venturi tube with the dual-plane ECT sensor, which introduces another

56 capacitance measurements.

A temporal block is directly connected to the input layer with its input dimension of

(batch size * sequence length * channel), where the channel size is consistent with

the input layer. It comprises eight independent TCNs with the same structure yet

different parameter settings. A diagrammatic sketch of the temporal block is shown in

Figure 6.6.

The eight temporal blocks have the same parameter settings with the exception of

the dilation ratio (d) and void rate (v), which are sequentially stated in the second

block in Figure 6.5. In detail, the parameter settings of the first temporal block

on d and v are 1 and 0, respectively. With no special circumstances, it will not

be repeated in the following text of this chapter. The input data dimension of the

temporal convolution block in Figure 6.6 is consistent with previous network settings,

where the channel size is selected as four for differential pressure and temperature

features and 60 for electrical features obtained from a dual ECT system. A convolution

kernel is created in the 1D convolutional layer, which has the kernel size (k) of 2,

zero padding size (p) of 2 and stride setting (s) of 1. The main function of the
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1D convolutional layer is to perform the convolution operation with the input over a

temporal dimension to generate outputs that contain a tensor. A normalization layer

is followed with the conv 1D layer to perform the normalisation operation to avoid the

internal covariate shift problem (Arpit, Zhou, Kota, and Govindaraju (2016)). Layer

normalisation (LN) is then connected since it can analyze the input data of the same

layer with different dimensions. As an improvement of the batch normalisation (BN)

method, the influence caused by the distribution of the mini-batch can be mitigated

by implementing the LN method. Meanwhile, compared to the BN method, there is

no need for LN to memorise the average and variance value of the mini-batch, which

saves storage space during calculation. Due to the intrinsic characteristic of TCN,

it can only “look forward” but not backward, zero padding operation will extend the

size of the back. Therefore, a Chomp1D layer is connected to perform the “cutting”

operation. In other words, the extended size of the back as the length of zero padding

will be erased by the Chomp1d layer. ReLU function is selected as the activation

function to eliminate the vanishing gradient problem in this study. For the temporal

block, the structure of Conv 1D to Relu layer was repeated twice and the final dropout

layer of a single TCN block provides an output (Xi) with the size of batch * 256.

The final dropout of the second block in Figure 6.5 is achieved by performing the skip-

layer connection operation of the eight TCNs’ last layer of the temporal convolution

block in Figure 6.6. For eight temporal convolution blocks with the same structure,

the output Xi is sequentially summarised, which can be noted as (sum Xi, where

i = 1, 2 ... 8). Once the output of the temporal convolution block is obtained, two

dense layers with 128 and 1 neurons are connected, which are the third and fifth

layer in Figure 6.6. The dense layer is essentially a fully connected layer, extracting

the features obtained in the temporal convolution layer and finding the relationships

between these features. Adam (Ketkar (2017)) with the minimum training error was

chosen as the proper optimizer for the current TCN model for solving the multiphase

flowrate estimation problem.

The element of the TCN output (in Figure 6.5) has the size of batch * 1, which

is consistent with the format of the input data. It is one of the most obvious

characteristics of the TCN model that it generates the same length of the output data

as the input data. Data length consistency is achieved by implementing a 1D FCN

architecture with zero padding operation. Another main characteristic of TCN is that

there is no leakage of the information from the future to the past when implementing
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TCN to perform prediction objectives. It is benefited from the causal convolution

architecture in the TCN model, which only conducts the convolution action with the

elements at the current moment t and previous layers. Such capabilities enable us to

flexibly control the output data length by adjusting the input data length.

6.2.5 Network parameters

For the TCN model in Figure 6.5 and 6.6, the parameters “k”, “p”, “s”, “d” and

“v” denote the kernel size, zero padding, stride setting, dilation ratio and void rate,

respectively. The kernel size was chosen as 2 according to (Bai et al. (2018)); the zero

padding size is selected as 2 to ensure that the feature size remains unchanged after

convolution operation; the trade-off of the stride size needs to be carefully considered,

where small stride size enables avoiding repeat calculation and low training efficiency

but large size may lead the lost of information and missing of key features of the

training data. Therefore, the stride was set to 1 for best prediction results. The dilation

ratio and void rate settings of each layer have been sequentially demonstrated.

The ReLU (Agarap (2018)) was chosen as the activation function to eliminate and

overcome the vanishing gradient problem.

Still, in this chapter, we adopt the MSE as the loss function, which calculates the

squared difference between the estimated and reference results, which has been

expressed in (4.21).

6.3 Results and discussion

In this Section, the TCN predicted multiphase flow results by implementing different

data pre-processing methods have been demonstrated. Comparisons are made

between the influence of the different data pre-processing methods. Also, the

discussion on the improvements brought by the dual ECT system on the accuracy

of the prediction results has been performed.
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6.3.1 Network training

Section 6.2.2 states the collected training features. The multi-modal setup, i.e., the

Venturi tube and dual-plane ECT system, generates differential pressure, temperature

and capacitance data as training features. The flowrate measured by SPFMs before

mixing is adopted to derive the true flowrate for network training. Two different data

pre-processing methods are considered which are presented in Section 6.2.3. In

detail, the Z-score method is firstly implemented in the multiphase flowrate prediction

scenario. As a feasibility attempt, the z-score method analysing the data mainly

from the perspective of the data itself rather than the physical meaning behind the

data since the normalisation process eliminates the substantial meaning of the data.

First-difference method is then attempted mainly based on its ability to stabilise the

sequential data. According to its application experience in analysing the financial

unstable sequential data, we found that the dramatical change of the multiphase

flow regime also brings rapid and unstable change to the measured flow features.

Similar training data characteristic indicates an optimistic potential of the forward first-

difference method to be initially applied to multiphase flowrate estimation. Both pre-

processing methods generate 15204 * 60 sequential samples, which contain 56 ECT

features, 3 pressure features and 1 temperature feature. The training, validation and

testing data sets were randomly chosen from the sequential samples obtained with

the ratio of 8:1:1. The epoch number was selected as 30 for TCN models, which has

the lowest validation error. For Keras library, the value of the parameter Adam was set

as 1e-3.

6.3.2 Results using Z-score pre-processing

Figure 6.7 first shows the results based on z-score pre-processed features without

including measurements from dual-plane ECT for comparison. Figure 6.8 presents

the results under the multi-modal setup, i.e., the instantaneous dual-plane ECT

signals with the pressure and temperature features are utilised for the training of the

proposed TCN model.

By contrasting various multiphase flow feature combinations for flowrate estimation,

the results demonstrate a strong correlation between the estimated volumetric

flowrate of the liquid/gas phase and the reference flowrate (see Figure 6.7 and 6.8).

Such phenomenon initially indicates that the collected multiphase flow features can

reflect the multiphase flow status and that the proposed TCN model is properly
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Figure 6.7: Multiphase flowrate estimation results of (a) liquid phase and (b) gas phase by
using TCN and Z-score pre-processing without dual-plane ECT data.
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Figure 6.8: Multiphase flowrate estimation results of (a) liquid phase and (b) gas phase by
using TCN with Z-score pre-processing and dual-plane ECT data.

trained. In detail, by directly reading the prediction results, most liquid and gas phase

estimation results are located within the acceptable accuracy range. Statistically,

when ECT data were not included in the training, there are 86.49% and 75.55%

estimation results are in the tolerable scope for the liquid and gas phase, respectively,

suggesting the effectiveness of TCN on multiphase flowrate prediction. By further

including ECT data, the TCN model demonstrates more precise results in Figure 6.8.
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Figure 6.9: Deviation of (a) liquid phase and (b) gas phase estimations with and without
dual-plane ECT data by implementing Z-score pre-processing method.

There are 89.68% and 93.83% results sitting within the tolerance range, indicating a

considerable improvement. Especially for the gas phase, including ECT data leads

to 24.2% improvement. Compared with Figure 6.7, it shows that adding more proper

multiphase flow features can increase the flowrate measurement accuracy.

In addition to the difference caused by training features, the estimated multiphase

flowrate may also be influenced by different phases (i.e. liquid and gas phase). Several

outliers appear in the liquid phase in both Figure 6.7a and 6.8a. There are three

possible underlying reasons for fewer outliers in the gas phase shown in Figure 6.7b

and 6.8b. A possible explanation might be that the Venturi tube is more sensitive

to wet gas measurement, leading to stronger linearity for the predicted gas flowrate.

Another potential reason is that the TCN model has intrinsic limitations on liquid phase

flowrate prediction. In other words, the TCN model may not be able to extract high

dimension features in estimating the flowrate of the liquid phase

The deviation of the estimation results (see Figure 6.9) also echoes the previous

analysis. Most liquid and gas flowrates are within an acceptable range, while results

based on four multiphase flow features demonstrate a relatively larger deviation.

Meanwhile, more outliers also appear in results using fewer features. The deviation

plots further confirm the ability of TCN on multiphase flowrate estimation with proper

training data. Additionally, the benefit of introducing dual-plane ECT data is also

validated.
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Figure 6.10: Multiphase flowrate estimation results of (a) liquid phase and (b) gas phase
using TCN with first-difference pre-processing without dual-plane ECT data.
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Figure 6.11: Multiphase flowrate estimation results of (a) liquid phase and (b) gas phase
using TCN with first-difference pre-processing with dual-plane ECT data.

6.3.3 Results using first-difference pre-processing

The first-difference pre-processing method was also applied to the collected mul-

tiphase flow features and the TCN model was trained separately by different feature

combinations. The flowrate estimation results are shown in Figure 6.10 and 6.11.

Observing both figures, the number of outliers is reduced considerably. The stronger

linearity between the estimated and reference flowrate could be attributed to the

characteristic of the first-difference pre-processing method, which has been widely

applied in dealing with unstable sequential data. The effect of the dual-plane ECT data
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Figure 6.12: Deviation of (a) liquid phase and (b) gas phase using TCN with and without
dual-plane ECT data by implementing first-difference pre-processing.

on estimation accuracy is also reflected in both figures. When electrical signals are not

included in the training, there are 90.64% and 85.14% of the predicted flowrates within

the 10% range for liquid and gas phases, respectively. A comprehensive training data

set which contains 56 groups of ECT data increases the valid predicted flowrate to

95.84% and 98.3% for liquid and gas phases, respectively. This corroborates the

earlier findings that the prediction accuracy can be significantly improved by including

extra multiphase flow characteristics in the training process.

Figure 6.12 shows the corresponding deviation distribution of the estimated flowrates.

The improvement of the estimation accuracy is apparent when comprehensive

training data is utilized. Clearer linearity between the estimated and reference

flowrates exists when the dual-plane ECT data is used as extra training data.

6.3.4 Comparison between Z-score and FD methods

Based on the predicted flowrate shown in Section 6.3.2 and 6.3.3, the performance

of the TCN model and the influence of different data pre-processing methods will be

qualitatively and quantitatively evaluated in horizontal (comparison of the calculated

MSE and ρỹ,y) and longitudinal (different data pre-processing) perspective. The

quantitative evaluation of the predicted flowrate is mainly based on MSE and linear

correlation index (ρỹ,y). The latter describes the correlation between the dependent

and independent variables, which is expressed as:
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Table 6.2: Correlation index and MSE of estimated flowrate using TCN with different data
pre-processing methods

Index1
Z-score First difference

Liquid Gas Liquid Gas

ρ−E 0.9977 (Fig. 6.7a) 0.9992 (Fig. 6.7b) 0.9992 (Fig. 6.10a) 0.9994 (Fig. 6.10b)
ρ+E 0.9990 (Fig. 6.8a) 0.9997 (Fig. 6.8b) 0.9997 (Fig. 6.11a) 0.9999 (Fig. 6.11b)

MSE−E 0.0209 (Fig. 6.7a) 1.5369 (Fig. 6.7b) 0.0049 (Fig. 6.10a) 1.1625 (Fig. 6.10b)
MSE+E 0.0064 (Fig. 6.8a) 0.5503 (Fig. 6.8b) 0.0024 (Fig. 6.11a) 0.2079 (Fig. 6.11b)

1 The subscript “−E” and “+E” stands for the training data sets excluding and including dual-plane ECT data,
respectively.

ρỹ,y =
E[(ỹ−E(ỹ))(y−E(y))]√

E[ỹ−E(ỹ)]2
√

E[y−E(y)]2
(6.3)

where E stands for expectation operation, ỹ and y represents the estimated and

reference multiphase flowrate, respectively. The plus or minus sign of the calculated

correlation index indicates the positive or negative relationship between two variables.

The closer the absolute value of ρỹ,y is to 1, the stronger the linear relationship.

Table 6.2 provides the MSE and ρỹ,y obtained from the preliminary analysis of the

estimated multiphase flowrate. What stands out in the “Z-score” columns is that the

smallest MSE and highest correlation index appear in Figure 6.8a and 6.8b for the

liquid and gas phase, respectively. A similar phenomenon can be observed in Figure

6.11a and 6.11b when implementing first-difference method. This indicates that the

estimation accuracy of the liquid and gas flowrates can be improved by including ECT

data when training the TCN model. Meanwhile, for both data pre-processing methods,

the estimated gas flowrate commonly has a greater ρỹ,y and MSE value compared to

the same group of the results in the liquid phase. It is aware that stronger linearity

does not necessarily correspond to a smaller MSE. Compared with the liquid phase,

a higher MSE of the estimated gas flowrate is due to a wider acceptable range since

it is still a challenge to accurately measure gas flowrate in the energy industry.

Comparing each row, the TCN trained with first-difference pre-processed data is

better than that with Z-score data with a higher linear correlation index value and

lower MSE. It could be due to that the intrinsic characteristic of the Z-score method,

which excludes the consideration of the physical meaning of the multiphase flow

characteristics rather than executing the data manipulation only from the perspective

view of the data structure. Additionally, Figure 6.11a and 6.11b reveal the best

performance of the predicted liquid and gas flow of TCN model by including ECT

data in training and implementing the first-difference data pre-processing method. For
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the same training set and TCN model, we can also conclude that the first-difference

method outperforms the Z-score method as the worst predicted results of the first-

difference method (Figure 6.10a and 6.10b) is still better than the best of Z-score

(Figure 6.8a and 6.8b) with lower MSE and higher correlation index value.

6.4 Summary

This chapter first introduced TCN for multiphase flowrate estimation based on the

multi-modal setup and investigated the influence of different data pre-processing

methods on estimation accuracy. The dual-plane ECT sensor was combined with

the Venturi tube to obtain the multiphase flowrate features. Two different data pre-

processing methods (Z-score and first-difference) were implemented to manipulate

the obtained instantaneous time-series signals.

Experimental results reveal that the TCN model can effectively predict the multiphase

flowrate based on the multi-modal sensing data. The results provide guidance on

data pre-processing methods for multiphase flowrate estimation and demonstrate

the effectiveness of combining multi-modal sensors and TCN for multiphase flowrate

prediction under complex flow conditions. The experiment results confirm the superior

performance of TCN in estimating the multiphase flowrate. We also show that the

dual-plane ECT data play a vital role in obtaining more accurate flowrates under the

multi-modal setup. Another finding is that the first-difference approach can provide

more accurate flowrate estimation for both liquid and gas phases.
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Chapter 7

Conclusions and future work

7.1 Conclusions

Understanding the behaviour of multiphase flows is essential across many research

domains and various industrial sectors since it is crucial for the modelling, metering,

and controlling of complex phenomena. This thesis has explored the combination

of emerging tomography and flow measurement techniques with advanced model-

based algorithms and machine learning approaches to enhance multiphase flow

imaging and flowrate measurement. A systematic study was carried out on improving

complex-value ECT for potential reference-free multiphase flow imaging, investigating

conventional machine learning models for multiphase flowrate estimation using time-

series sensing data and developing advanced learning-based models for multiphase

flowrate measurement using multi-modal sensors. The contributions of this thesis are

summarised as follows.

The fundamental theory of multiphase flow, the different flow patterns under horizontal

and vertical flow scenarios, critical parameters in multiphase flow measurement,

conventional multiphase flow measurement methods, and state-of-the-art flow meas-

urement techniques were reviewed. The review provides a context for understanding

recent advances in multiphase flowrate measurement techniques and the context for

the innovative work presented in this thesis.

This thesis first addressed the challenge of providing reference-free multiphase flow

imaging with enhanced electrical tomography. A new complex-valued ECT-based

flow imaging approach was developed, targeted at simultaneous permittivity and

conductivity distribution reconstruction. Frequency difference imaging as a novel data

collection scheme and an MMV image reconstruction framework were developed for

multi-frequency CVECT. The FD-CVECT image reconstruction problem is expressed

as a weighted l2,1 norm minimisation problem and solved by the ADMM method. This
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part of the work validated the feasibility of FD-CVECT and evaluated its performance

based on simulation data. Unlike the conventional TD imaging method, FD-CVECT

does not require a reference. It can simultaneously image conductivity and permittivity

distributions and thus holds more promise for use in complicated real-world scenarios.

The proposed MMV model can reconstruct multi-frequency images simultaneously

by considering that images obtained at different frequencies are strongly correlated.

Such correlations can be used as a priori information for enhancing image quality.

The results of this research indicate that the MMV model can reconstruct images with

higher image quality than the conventional algorithm. The combination of FD imaging

and the MMV model in CVECT has demonstrated enormous potential for multiphase

flow measurement, especially for highly conductive flows.

The thesis then examined machine learning based flowrate measurement methods

for dealing with time-series sensing data collected from conventional flow meters. The

experiment was conducted at a pilot-scale multiphase flow facility under various flow

conditions. The time-series differential pressure signals collected from the Venturi

tube and pressure and temperature measurements were utilised as network input.

Three prevailing machine learning methods, i.e., the DNN, SVM, and CNN models,

were compared to assess their ability to estimate the oil/gas/water three-phase

flowrate. The results suggest that all these methods can predict liquid and gas

flowrates with reasonable accuracy. The results also suggest that, compared to DNN

and CNN, SVM yields superior estimation results.

Thereafter, this thesis proceeded to develop state-of-the-art learning-based models

to predict multiphase flowrates. The interpolation data pre-processing method was

initially applied to multiphase flowrate measurement from instantaneous pressure and

temperature signals. Multiphase flowrates were successfully estimated by leveraging

single-phase flow meters. In addition to the 1D CNN, combining CNN and stacked

LSTM solves the ‘no memory’ limitation using only CNN. TCN, one of the most reliable

time series data forecasting models, was applied to multiphase flowrate for the first

time. The results show that volumetric gas and liquid flowrates can be estimated

simultaneously with satisfactory accuracy, which has been a long-standing challenge

in the energy industry.

Finally, based on the methodologies described in the previous chapters, this thesis

research further explored multiphase flowrate measurement based on multi-modal

sensors, e.g., the dual-plane ECT sensor and the Venturi tube. First, the dual-plane

ECT sensor was used to collect dispersed-phase velocity information about mul-

104



Conclusions and future work

tiphase flows. Then, the dual-plane ECT sensor and Venturi tube were used together

to attempt to develop a multi-modal method for multiphase flowrate measurement. Z-

score and first-difference data pre-processing methods were utilised to manipulate the

fused multi-modal data for the first time. A revised TCN model was further developed

to fuse multi-modal time series data and predict the flowrate. The results indicate that

the proposed data fusion model was robust and reliable in solving the multiphase

flowrate prediction problem.

In conclusion, the study of multiphase flow imaging based on FD-CVECT presented

in this thesis has provided a new route to perform efficient and high-performance per-

mittivity and conductivity distribution reconstruction as a frequency-difference-based

calibration-free multiphase-flow visualisation method. Advanced machine learning

algorithms have been developed to accurately predict multiphase flowrates based

on time-series differential pressure and other sensing data, e.g., dual-plane ECT

sensor data. An effective data fusion model with high robustness and reliability has

been established by adopting multi-modality flow sensing data from existing sensing

modalities.

7.2 Future work

Though the thesis has demonstrated the potential of a new multiphase flow imaging

technique with the FD-CVECT and the proposed machine learning based multiphase

flowrate measurement approaches, the following aspects still need to be investigated

further to promote the research:

1. Extending the working frequency range is preferable to obtaining better mul-

tiphase flow images using the FD-CVECT technique developed. Meanwhile,

developing a customised complex-valued ECT hardware system and exploring

and validating the real-time and in-situ application of the frequency-difference

imaging method in real-world facilities are required.

2. Future work on multiphase flowrate measurement with conventional machine

learning-based models could be conducted to consider wider ranges of working

conditions and complex flow conditions to validate the performance of the

proposed models. Further study and development of the proposed DNN, SVM,

and CNN models are also necessary. Studies can focus on the improvement of

the CNN memory ability by connecting it with other robust networks.
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3. Future studies of time series flow sensing data could investigate other models,

such as statistical models and the hidden Markov model, without restriction

to machine/deep learning models. Combing physics model-based and deep

learning methods to develop physics-informed approaches could be a prom-

ising direction.

4. Finally, the reliability and generalisation ability of the proposed learning-based

methods should be further evaluated by performing extensive, repeated cross-

validation experiments, ideally over a range of flow facilities and conditions.

Transfer-learning could be introduced to enhance the generalisation of data-

driven approaches from the laboratory environment to real-world scenarios.
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