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We present results of calculations of several processes resulting from positronium (Ps) collisions
with antiprotons: antihydrogen formation, Ps breakup and nPs-changing collisions. Calculations
utilize the quantum convergent close-coupling (CCC) method and the Classical Trajectory Monte
Carlo (CTMC) method. We identify a region of Ps principal quantum numbers nPs and Ps energies
where the classical description is valid and where the CCC calculations become computationally
too expensive. This allows us to present the most complete and reliable set of cross sections in
a broad range of nPs and initial orbital momentum quantum numbers lPs which are necessary for
experiments with antihydrogen at CERN.

PACS numbers: 34.80.-i

I. INTRODUCTION

For the last decade or so it has become possible to
trap and accumulate atoms of antihydrogen (H), the
antiproton-positron (p-e+) bound state: see e.g., [1–3].
This has facilitated studies of some of the properties of
the anti-atom, notably measurement of the ground-state
hyperfine splitting [4], determination of the two-photon
1s-2s transition at a level of a few parts in 1012 [5], ob-
servation of the 1s-2p Lyman-α line [6] and its use to
demonstrate laser cooling of a trapped sample of the anti-
atoms [7]. The motivation for undertaking these difficult
experiments has been expounded at length elsewhere [8],
and includes tests of symmetry as searches for depar-
tures from the Standard Model of Particle Physics, and
antimatter tests of the Weak Equivalence Principle of
General Relativity.
With respect to the latter, three experiments located

at CERN’s “Antimatter Factory” [9, 10] intend to study
the gravitational behaviour of H. The ALPHA Collab-
oration plans to analyze the trajectories of anti-atoms
on escape from a vertical trapping apparatus [11], whilst
both AEgIS [12] and GBAR [13] aim to use (albeit in
quite different ways) excited states of positronium (Ps,
the e+-e− bound state) to create H, as an intermediary
in their respective experimental approaches, via the re-
action

Ps(nPs, lPs) + p → H(n
H
, l

H
) + e−. (1)

AEgIS plan to use Stark acceleration of Rydberg H to cre-
ate an anti-atom beam for an interferometry approach to

measuring antimatter gravitation, whilst GBAR intend
to use a further charge-exchange reaction involving Ps to

form the antihydrogen anion, H
+
, which will be captured

and cooled in an ion trap before the excess positron is
removed by photoionization to leave the remnant H free
to fall in the Earth’s gravitational field. These experi-
ments have been made possible by the development of
the ELENA facility [10] at CERN, which has enhanced
the yield of trapped antiprotons for antimatter exper-
iments, as well as the capability to routinely produce
clouds of excited Ps atoms in the laboratory: see [14] for
an authoritative review of the latter.

For GBAR and AEgIS, the (respective) yields of H
+

and H are low, and it is prudent to estimate reaction
rates/probabilities using the most accurate cross section
data available for reaction 1. Experimental observations
of this reaction [15] and its charge conjugate involving
proton impact [16] are sparse, such that we are almost
completely reliant upon accurate theory to support fun-
damental experimental development and to assess the
feasibility of proposed reaction schemes. Thus, there
is an urgent need for detailed, benchmarked theoretical
data over as wide a range of initial Ps states as possible,
and in the low (sub-eV) kinetic-energy range of most in-
terest to experiment.

In response to these experimental requirements, we
present the results of calculations involving quantum con-
vergent close-coupling (CCC) [17]) and Classical Trajec-
tory Monte Carlo (CTMC) [18, 19] techniques. Our work
builds upon, and enhances, our previous studies [19–24],
for reaction 1, as well as for Ps breakup and collisions in-
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volving Ps state-change: reactions 2 and 3, respectively,
as

Ps(nPs, lPs) + p → p+ e+ + e−, (2)

and

Ps(nPs, lPs) + p → Ps(n′

Ps, l
′

Ps) + p. (3)

We note that though our focus here is on H formation,
our data have implications for Ps-ion reactions in general,
which have been suggested as a possible source of cold
atoms [25].
The remainder of the article is organised as follows.

Section II contains a brief description of the CCC and
CTMC methodologies, with the results for reactions 1-3
presented in section III, along with a discussion of their
relevance for experiment.

II. THEORY

A. Convergent close-coupling

The details of the CCC theory for application to the
two-center problem of e+-H scattering have been given
by Kadyrov and Bray [17], with a wide range of applica-
tions reviewed more recently [26]. Due to time-reversal
invariance, this is equivalent to Ps− p scattering, which
in turn is equivalent to the Ps− p̄ collision system, which
has H̄ formation as one of the channels. Briefly, the total
wave function is expanded utilising states, obtained in
both the H and Ps centers, by diagonalizing the corre-
sponding Hamiltonians in the Laguerre basis

ξkl(r) =

√

λl(k − 1)!

(2l + 1 + k)!
(λlr)

l+1 exp(−λlr/2)L
2l+2

k−1
(λlr),

(4)

where L2l+2

k−1
(λlr) are the associated Laguerre polynomi-

als, and k ranges from 1 to the basis size Nl.
Upon the expansion, the close-coupling equations are

formed and solved in momentum space. The CCC cal-
culations depend on several parameters of the Laguerre
basis for their convergence. These are the maximum or-
bital angular momentum of the expansion states lmax,
the number of Laguerre basis functions Nl, and the cor-
responding exponential fall-offs λl. These are indepen-
dent for both centers of the problem. In the presenta-
tion by Charlton et al. [24] the CCC calculations had
lPs
max = 6 and lHmax = 8, λPs

l = 0.25 and λH
l = 0.5, and

Nl = 30 − l for both the H and Ps states. Such calcu-
lations may be denoted as CCC(308, 306). It was noted
that while most of the presented transitions were indeed
convergent, the breakup cross sections for Ps(nPs, lPs),
for the larger values of nPs were not. Following extensive
computer code optimisation, here we present the results

of CCC(309, 309) calculations, i.e. the lmax = 9 for both
centers. In that context the present CCC results super-
sede those of Charlton et al. [24]. Furthermore, the ear-
lier presented results were aggregated over the initial and
final states, whereas here we present far more detail.
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FIG. 1. Energies of the H and Ps states used in the
CCC(309, 309) calculations, where the number of Laguerre-
based states on both the H and Ps centers is 30 − l for
0 ≤ l ≤ 9, for a total of 255 states for each center.

The energy levels in the CCC(309, 309) calculations are
given in Fig. 1. The negative-energy states correspond to
bound atomic and Ps states. The positive-energy states
correspond to the atomic and Ps continuum. As the ex-
pansion states on the two centers are not orthogonal, it
may appear that there is double-counting of the contin-
uum. This issue has been studied extensively [27, 28].
The essential conclusion is that there is no formal double-
counting due to cross sections being defined at infinite
separations of the two centers, with both sets of the ex-
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pansion states having exponential fall-offs λl, see Eq. (4).
However, the rate of convergence and the ill-conditioning
of the close-coupling equations can be substantially af-
fected by the way the continuum is treated. This is par-
ticularly an issue presently as such large expansions have
not been previously undertaken for the collision problem
of interest.

B. CTMC

The theory of CTMC for a three-body system consist-
ing of charged particles where two of them are bound
is described in refs. [29, 30]. The CTMC approach has
been applied before in the case of a Ps atom interacting
with a proton [18, 19, 24, 31], and recently extended
to the laser-assisted case [32]. The theory is described
in brief as follows. For a given impact parameter and
the principal quantum number nPs of the projectile Ps
atom, an ensemble of initial states is prepared by a ran-
dom selection of the eccentricity, the orientation of the
mutual motion (Kepler orbits) of the e− − e+ pair, and
the position of e− on the orbit. A classical trajectory for
each random state is then propagated towards the pro-
ton which is stationary at the origin of the configuration
space.
The Hamiltonian equations are solved using the reg-

ularization method described in [33, 34]. The solutions
are propagated giving sufficient time for the interaction
with the target. At the end of the propagation, the final
energies and the angular momenta of the trajectories are
checked to generate the statistics in different final chan-
nels to calculate the probabilities and cross sections. For
example, the charge-transfer probability P (b) as a func-
tion of the impact parameter b is computed as a ratio be-
tween the number of trajectories leading to the formation
of the final atom and the total number of sampled tra-
jectories. The charge-transfer cross section σCT is then
given by the integral

∫

2πP (b)bdb. The total number
of trajectories for each energy point was varied between
6×104 and 106 to make sure that the statistical error for
the cross section is less than 1%.

III. RESULTS AND DISCUSSION

Cross sections for H formation and Ps breakup (reac-
tions 1 and 2), disaggregated by Ps state up to nPs = 7
and lPs = 6, and with appropriately (see Eq. (6)) scaled
magnitude and Ps kinetic energy scales, are shown in
Figs. 2-8 for both the CCC and CTMC approaches.
We note a few general features: first, at low Ps kinetic

energies and for nPs ≤ 2 the CTMC H formation results
are very different from the CCC data, which are certainly
the more accurate of the two. (Recall that the CCC
data for nPs = 1 have previously been validated [20, 21]
against the very accurate variational work of Humberston
and co-workers [35].) For nPs > 2, and independent of
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FIG. 2. Integrated cross sections of total H̄ formation and
breakup for Ps(nPs, lPs)− p̄ scattering for lPs = 0.

the Ps angular momentum, there is good accord between
the CCC and CTMC data for reaction 1 across the Ps ki-
netic energy range, except at the highest energies (where
the cross sections are falling rapidly) where the CTMC
data seem to fall faster than those for CCC. The behavior
of the exothermic H formation reaction at low energies
has been discussed elsewhere [20, 21] and the data show
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little dependence on lPs, certainly for nPs > 2.
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FIG. 3. Integrated cross sections of total H̄ formation and
breakup for Ps(nPs, lPs)− p̄ scattering for lPs = 1.

Turning next to reaction 2, breakup, it is notable that
there are significant differences near the threshold (which
occurs at the scaled Ps kinetic energy of 6.8 eV = 0.25
a.u.) between the CCC and CTMC results, with the
latter falling markedly below the former. This effect ap-
pears to increase with the higher values of nPs. At the
higher kinetic energies, and above the maximum in the
cross section which occurs at the scaled energy of around
1 a.u., the two calculations are in excellent accord. We
note that the results for reactions 1 and 2 cross just below
the maximum in the latter in all cases, and in this energy
range the H̄ formation cross section is falling rapidly and
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FIG. 4. Integrated cross sections of total H̄ formation and
breakup for Ps(nPs, lPs)− p̄ scattering for lPs = 2.

becomes negligible by a scaled kinetic energy of 10/n2
Ps

a.u..
Investigations have found that the classical Ps(1s)

breakup cross section can be fit in the near-threshold
region by the Wannier law [36] with Klar’s [37] exponent
µ = 2.65

σ1(E) = CEµ, (5)

where E ≥ 0 is the total energy, and the coefficient C de-
pends on the choice of energy units. For the energy units
of eV, using the CTMC cross sections we find C = 0.020
to yield the cross section in a.u.. If energy is measured
in a.u., then C = 126.8. Although the Klar’s deriva-
tion was carried out for positron-impact ionization of H
it was based on the analysis of the quasiclassical wave-
function of the final-state three-body system, therefore it
is equally applicable to the Ps breakup process.
According to the classical scaling laws [29, 38, 39] the

cross section for a process involving a hydrogenlike sys-
tem in the initial state (nl) and relative collision energy
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FIG. 5. Integrated cross sections of total H̄ formation and
breakup for Ps(nPs, lPs)− p̄ scattering for lPs = 3.

ǫ can be calculated as

σnl(E) = n4σ1,l/n(n
2ǫ), (6)

where principal quantum number n and orbital angular
momentum quantum number l are treated as continuum
variables. For the cross section averaged over initial an-
gular momentum states we obtain

σn =
1

n2

∑

l

(2l + 1)σnl(ǫ) = n2
∑

l

(2l + 1)σ1,l/n(n
2ǫ),

which can be approximately written as

σn = n4σ1(n
2ǫ) (7)

for some average value of l/n between 0 and 1. Since l/n
is related to the eccentricity of the orbit, this averaging
occurs naturally in CTMC calculations for n = 1 when
initial conditions are chosen from the microcanonical dis-
tribution.
Apply now the classical scaling to the Wannier law,

Eq. (5), where E = ǫ − ǫt. For the Ps(n = 1) breakup
process ǫt = 0.25 a.u. For an arbitrary n = nPs we obtain

σn = Cn4+2µEµ, (8)

where E = ǫ− ǫt
n2 .

10+0

10+1

10+2

10+3

10+4

       

 

 

H
_

 formation

Ps(5g) - p
_

CTMC
CCC

10+0

10+1

10+2

10+3

10+4

       

cr
os

s 
se

ct
io

n 
(a

.u
.)

 / 
n

4

 

Ps(6g) - p
_

CTMC
CCC

10+0

10+1

10+2

10+3

10+4

10-4 10-3 10-2 10-1 10+0 10+1 10+2

 

 

Ps(7g) - p
_

CTMC
CCC

0

5

10

15

20

25

30

    

 

 

breakup

Ps(5g) - p
_

CTMC
CCC
H
_

-form

0

5

10

15

20

25

30

    

 

 

Ps(6g) - p
_

CTMC
CCC
H
_

-form

0

5

10

15

20

25

30

10-1 10+0 10+1 10+2

 

Ps(nl) energy (a.u.) × n2

Ps(7g) - p
_

CTMC
CCC
H
_

-form

FIG. 6. Integrated cross sections of total H̄ formation and
breakup for Ps(nPs, lPs)− p̄ scattering for lPs = 4.
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FIG. 7. Integrated cross sections of total H̄ formation and
breakup for Ps(nPs, lPs)− p̄ scattering for lPs = 5.

The computed l-averaged cross sections can be fit with
a high precision by Eqs. (5) and (8). For l-specific cross
sections the proportionality constant depends on l, and
a more sophisticated parametrization [39] can be intro-
duced for these. Though for breakup the Wannier thresh-
old law has been confirmed over a small energy range by
most quantum calculations, including CCC [40], it is ap-
parent that the CCC and CTMC cross section behavior
is rather different, particularly with increasing nPs. Un-
fortunately, the size of the CCC calculations prohibit a
very detailed examination of this region. However, what
is particularly important from the experimental perspec-
tive is the region where there is the transition from H
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FIG. 8. Integrated cross sections of total H̄ formation and
breakup for Ps(nPs, lPs)− p̄ scattering for lPs = 6.

formation dominance to the breakup dominance. This is
shown on the r.h.s. panels of Figs. 2-8, where we see good
agreement between the CCC and CTMC cross sections.
The transition between the dominance of H formation

and Ps breakup occurs at a Ps kinetic energy of around
1/n2

Ps a.u., or if the anti-atom is to be formed in a beam
directly via reaction 1, an equivalent antiproton kinetic
energy in the keV region. In particular, this may have
implications for the experimental scenario of the GBAR
collaboration, which will use a keV antiproton beam to
cross a cloud of Ps atoms to produce the anti-atoms.
The CCC data for H formation are shown in more de-

tail in Figs. 9-14, with the final anti-atom state explicit,
for the initial Ps ground state and the first few excited
states up to, and including, nPs = 3. The behavior is
complex and changes as the Ps principal quantum num-
ber increases. The threshold, Eth, for H formation is
given by

Eth =
1

2

(

1

2n2
Ps

−
1

n2

H

)

a.u., (9)

such that the reaction is exothermic when
√
2nPs > n

H
.

At the lowest kinetic energies the exothermic reactions
dominate, with the most likely states being those clos-
est to the energy resonance condition, n

H
=

√
2nPs, as

pointed out in this context some time ago [41]. For these
reactions all H angular momentum states contribute, and
with increasing values of (nPs, lPs), it is found that higher
values of l

H
are the most important, particularly in the

dominant n
H
manifold.

The behavior of the cross sections for the endother-
mic states of reaction 1 again shows that all H angu-
lar momentum states are populated, and they can make
a significant contribution to the overall H yield in the
Ps kinetic-energy range over which they are important
(from 10−1-1 a.u. for nPs ≤ 2 and for 10−2-10−1 a.u. for
nPs = 3). In general, the cross sections rise sharply from
threshold to a peak, before falling to close to zero by a
Ps kinetic energy of around 1 a.u..
We now consider the Ps ground (1s) state and the

nPs = 2 and 3 states in more detail, given that the Ps is
typically produced in the 1s state following positron im-
pact onto a prepared target, and since most of the lower

excited states can be readily reached from the ground
state (see e.g., [42–45]). These states are also those of
most relevance for the GBAR experiment for the promo-

tion of H
+
formation, for which the anti-atom should be

in the ground state, though the Ps can be in its ground
state, or a low excited state [46–49].
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FIG. 9. CCC-calculated integrated cross sections of H̄ forma-
tion in specified states for Ps(1s)− p̄ scattering. The vertical
dotted line indicates the excitation threshold.
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FIG. 10. As for Fig. 9, except for Ps(2s)− p̄ scattering.

For the 1s state shown in Fig. 9 only formation of
H(1s) is exothermic, and it is the only channel available
below formation into the n

H
= 2 states, which open (from

equation 9) at a Ps kinetic energy threshold of 0.125 a.u..
At low energies the cross section behaves as E−1/2, ac-
cording to the Bethe-Wigner threshold law. The data
for the endothermic reactions (i.e., formation into ex-
cited states up to n

H
= 7) share a number of features:

(i) the cross section is finite at the threshold, accord-
ing to the Gailitis-Damburg threshold law [50, 51] and
typically rises sharply, peaking after a few eV; (ii) in all
cases, formation into the p-states dominates, with signif-
icant contributions also from the s- and d- (where ap-
plicable) states and (iii) for the higher values of n

H
, the

contribution from the higher angular momentum states
is small. It is notable that formation into the n

H
= 2

manifold has the highest cross section, and indeed, at its
maximum, the 2p-state yield exceeds the sum of all the
other possible states combined.
Data for the nPs = 2 states are shown in Figs. 10 and

11, where it is clear that anti-atom formation into the
n
H
= 2 states is now an exothermic process. Note that

low-energy behavior of the exothermic process is now dif-
ferent: the cross section behaves as 1/E [50, 51]. Below
the n

H
= 3 threshold at 0.00694 a.u., formation into

the n
H

= 2 states dominates, with cross sections for
the Ps(2s) target roughly three times those for Ps(2p)
at equal Ps kinetic energies, and with the final anti-atom
s- and p-states contributing roughly equally.
Once the endothermic channels open, they quickly

dominate the H yield with, as expected, formation into
the n

H
= 3 states having the largest cross sections; and

now the contribution from the Ps(2p) states are greater
than those from 2s. In general, cross sections for forma-
tion into the H d-state are larger than those for other
angular momenta across the raft of anti-atom principal
quantum numbers. The H s-state typically has a minor
role, and there are important contributions from higher
angular momenta, but overall, the dominant yield is due
to the (3d + 3p) combination, for both Ps states.
The results for nPs = 3 are given in Figs. 12 to 14.

All anti-atom states with n
H

≤ 4 are exothermic with
n
H
= 4 having the highest cross section for all Ps states.

For these reactions, formation into the p-state of the anti-
atom is dominant in most cases, but there are significant
contributions from all l

H
states. As expected from earlier

work [24], the magnitude of the cross section is much
increased over those for nPs = 2. Although the results
fall dramatically with increased Ps kinetic energy, they
are large enough to be significant when the endothermic
reactions open at 0.007 a.u., in marked contrast to the
situation for the nPs = 1, 2 states.

The cross sections for the endothermic reactions dis-
play peaked structures that are similar to those found for
the lower Ps states, but with much larger contributions
from the higher anti-atom angular momentum states.
Finally, data for Ps state-changing (nPs → n′

Ps) col-
lisions (reaction 3) of relevance to the GBAR effort are
shown in Figs. 15-20. Overall, the cross sections display
complex dependencies on the final H state, but are gener-
ally smaller than, or comparable to, those for anti-atom
formation. As a result, they should have only a minor ef-
fect on the overall H formation, and in the case of GBAR,

H
+
yields.

We should note, though, that l-mixing collisions with-
out change of the nPs quantum number have much higher
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FIG. 11. As for Fig. 9, except for Ps(2p)− p̄ scattering.

cross sections, which were investigated in Refs. [52, 53].
In the region between 0.003 and 1 eV elastic cross sec-
tions behave as A/E, where A is a slowly varying func-
tion of energy whose typical values, say, at E = 0.01 eV,
are 6707a20 eV for 2s → 2s scattering, and 11219a20 eV
for 2p → 2p scattering. The nl → nl′ transitions have
infinite cross sections if the nl and nl′ levels have op-
posite parity and the relativistic splitting between them
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FIG. 12. As for Fig. 9, except for Ps(3s)− p̄ scattering.

is ignored [54]. The inclusion of the relativistic split-
ting into the Ps(2s) → Ps(2p) transition leads to a finite
cross section which at low energies behaves as B lnE/E,
where B is another slowly varying function of E, with
B lnE = 55173a20 eV at E = 0.01 eV. A treatment sim-
ilar to one given by Fabrikant et al. [52] can be applied
to l-mixing collisions with a higher nPs.

The Ps(1s) data are presented in Fig. 15, where the
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FIG. 13. As for Fig. 9, except for Ps(3p)− p̄ scattering.

1s-1s cross section is obviously dominant. For the
endothermic reactions (which open at EPs

th = (n∗2
Ps −

n2
Ps)/4n

2
Psn

∗2
Ps)) the Ps p- and d-states tend to be the

most important across the nPs manifold, but overall with
low probability.

The Ps(2s) and Ps(2p) results are given in Figs. 16 and
17, where they can be seen to be comparable in size to
the cross sections for H formation (Figs. 10 and 11) in the
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FIG. 14. As for Fig. 9, except for Ps(3d)− p̄ scattering.

same Ps kinetic energy range. The exothermic nPs = 2-
1 channel has a high cross section below the threshold
for Ps excitation, but above that transfer to nPs = 3
states dominates, and in particular to the 3d state. It is
notable, though that whilst the cross sections for some
states peak and turn over not far above threshold, others
level off, or keep rising with Ps kinetic energy: this is
particularly notable for the final d-states in the 2p data
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FIG. 15. CCC-calculated integrated cross sections of Ps(1s)-
Ps(nPs, lPs) transitions for Ps(1s)− p̄ scattering. The vertical
dotted line indicates the excitation threshold.

set.

The Ps(nPs = 3) results are presented in Figs. 18-20.
As was the case with the nPs = 2 data, there are com-
plex dependencies on final state. The cross sections for
transfer into the respective s-states are typically small,
but there are important contributions to the overall cross
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FIG. 16. CCC-calculated integrated cross sections of Ps(2s)-
Ps(nPs, lPs), nPs 6= 2, transitions for Ps(2s) − p̄ scattering.

section from several angular momentum states.

Taken together, the data presented herein should allow
a detailed time-dependent Ps(nPs, lPs) population and
its interactions with antiprotons and antihydrogen to be
constructed for H formation, followed, if appropriate, by
in-flight spontaneous de-excitation to the ground state,
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FIG. 17. CCC-calculated integrated cross sections of Ps(2p)-
Ps(nPs, lPs), nPs 6= 2, transitions for Ps(2p) − p̄ scattering.

to allow the most accurate predictions of H
+

yields to
date (see e.g. [55]). This should enable optimisation of
the Ps conditions to achieve the best antihydrogen ion
yield.
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FIG. 18. CCC-calculated integrated cross sections of Ps(3s)-
Ps(nPs, lPs), nPs 6= 3, transitions for Ps(3s) − p̄ scattering.

IV. CONCLUDING REMARKS

Generally, quantum and classical results converge well
to each other for higher nPs. However, the breakup cross
sections exhibit some differences which grow with nPs, as
can be seen from Figs. 2-8. The small differences in the
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FIG. 19. CCC-calculated integrated cross sections of Ps(3p)-
Ps(nPs, lPs), nPs 6= 3, transitions for Ps(3p) − p̄ scattering.

region of the cross section maximum can be explained by
the slow convergence of the CCC results with increasing
orbital angular momentum l of both the H and Ps states
for the larger nPs. Even though we took l ≤ 9, examina-
tion of the individual l-contributions to breakup shows
that the l = 9 contribution can still be large, even for
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FIG. 20. CCC-calculated integrated cross sections of Ps(3d)-
Ps(nPs, lPs), nPs 6= 3, transitions for Ps(3d) − p̄ scattering.

the case of the Ps(7s) initial state. Nevertheless, due to
unitarity, the CCC method is able to achieve better con-
vergence in the total breakup cross section than in the
individual l-components [56]. Note that this problem is
of no consequence at the lower energies, or the smaller
nPs, considered.
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In the breakup threshold region the CTMC results can
be fit by the Wannier-Klar law, whereas the CCC results
are different, probably again due to computational diffi-
culties in calculation of very small cross sections in the
near-threshold regions. This will be a focus of study else-
where.
Due to the accuracy of the classical results for high-

enough nPs, it will be reliable to estimate cross sections
for even higher nPs (than those studied in the present
paper) using the classical method. Moreover, it is pos-
sible to generate these cross sections from the present
cross sections using the classical scaling laws as discussed
above. This should keep the uncertainties associated
with the scaled theoretical cross sections for nPs > 7
sufficiently small (of order 10%) for practical purposes.
Here we have glossed over any possible resonances

or oscillations that can be found in individual partial
waves for specific transitions. The degeneracy of the
energy levels for a given principal quantum number
n can lead to remarkable above-threshold oscillations
and below-threshold dipole-supported resonances, as has
been demonstrated by Fabrikant et al. [52]. However,
upon summation over all partial waves of total orbital
angular momentum such structures become indiscernible
in the total integrated cross sections presented here.
In this work we have provided the most complete and

accurate state-scaled data sets (up to the Ps principal
quantum number nPs = 7) for the modelling of experi-

ments seeking to form antihydrogen using Ps(nPslPs)− p
interactions, including results for the competing reactions
of Ps breakup and collision-induced state change. The Ps
kinetic energy region in which H formation is dominant
has been clearly outlined. By detailed comparison of data
from the CCC and CTMC approaches we have confirmed
scaling laws, and thus provided a means to derive accu-
rate cross section data for nPs > 7, which will be of great
value for the planning of experiments aiming to operate
in this range.
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