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Abstract 
This project investigates how integrated in silico approaches can be developed to advance precision 

medicine. A novel bioinformatics database was created and implemented. This database was able to 

output gene and variant information of all the known human protein drug targets, while also 

retrieving information on compounds, disorders and drugs associated with each protein. This 

database was created by writing code, in Linux, that was able to web-scrape multiple databases for 

information and store it in the pipeline database. The databases that were scraped were UniProt, 

ClinVar, PubChem, chEMBL, guide to pharmacology, MedGen and the therapeutic target database. 

These databases were selected as they provided the largest and most reliable data, that could be 

web-scraped, for each section they were scraped for. Once coded, the full pharmacology set (a set of 

720 pharmacologically relevant proteins, whose pharmacological mechanism is known) was added 

to the pipeline, meaning all their information was downloaded and stored in the pipeline. This 

bioinformatics pipeline proved to be very effective as an investigative tool for identifying new 

avenues for personalised medicine as it was able to retrieve and integrate all the requested 

information on proteins, variants, diseases, and compounds when called upon. In the proof-of-

concept study, the database was used to gather key information that allowed for an investigation 

into the effect of pathogenic variants on drug binding in proteins. This investigation was conducted 

by simulating the binding of a protein’s wild type to two of its known drug ligands. 10 benign 

variants and 10 pathogenic variants of the protein were also bound to 2 drug ligands associated with 

the protein; their relative binding energies were collected. This allowed for comparisons to be made 

between the effect of pathogenic variants and benign variants on a protein’s binding ability. Analysis 

from the docking simulations showed that in 3 of the 5 proteins studied (60%), more pathogenic 

mutations returned a binding energy with at least a 15% deviation from the wildtype binding energy 

than benign mutations. These results suggest that the binding interactions of a protein could be 

affected by polymorphic variation, especially pathogenic variation, although in this case study the 

difference between the two groups did not show statistical significance.  
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1) Introduction 
1.1)  Overview 

This project aimed to identify and develop a bioinformatics toolkit for research into precision 

medicine. Precision medicine is the specific tailoring of clinical treatments to individual patients 

based on particular genetic mutations and phenotypes. This project also looked to use in silico 

techniques to investigate the effect of single nucleotide variants, on a protein’s binding ability with 

its known drug compounds. The main hypothesis of this project was that the development of a 

bioinformatic tool that links existing databases associated with the pathogenicity of genetic 

variation, with existing databases associated with drug targets in humans, databases associated with 

drug therapies and databases associated with diseases, would allow for the integration of 

information automatically and efficiently. Allowing research into relevant connections between 

several large and important datasets to be conducted. By integrating drug, disorder, and variant 

datasets, simultaneously, advancements in precision medicine will occur. Another hypothesis was 

that single nucleotide variants in proteins have an adverse effect on the binding between proteins 

and drug compounds, and therefore single nucleotide polymorphisms carry a lot of danger, as they 

can severely hinder the effectiveness of drug treatments. This would highlight the requirement for 

extra research to be conducted into precision medicine. This project also looks at if the use of 

bioinformatics can advance medicine and drug therapy. To test these hypotheses, case studies using 

the database platform were performed on the disease Acute Myeloid Leukaemia, the KIT protein 

and the Ryanodine receptor and then docking case studies were performed for GAA, SCN2A BRAF, 

KIT, and PAH. 

1.2) Polymorphic Variants 

The earth is a vast and diverse ecosystem, with many different species of animals. It is predicted that 

there are approximately 8.7 million eukaryotic species globally. (Mora, Tittensor, Adl, Simpson, & 
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Worm, 2011). Each species differs both phenotypically and/or genotypically, with some possessing 

huge differences and some with very little between them, in terms of genetics. Also, within species, 

there are variations, these inter-species variations can arise in many different ways. These 

differences can occur via mutations; however, variations can also occur in general within 

populations, these are called polymorphic variants. There have been many tremendous 

advancements in the technique of DNA sequencing, and these advancements have allowed for the 

human genome to be analysed cheaper and faster than ever before. Modern DNA sequencing has 

allowed for the identification of complex variants, mutations, polymorphisms, and drug responses 

(Karki, Pandya, Elston, & Ferlini, 2015). There is a notable difference between a mutation and a 

polymorphic variant. When a genetic variation occurs at an allele frequency of below one per cent, 

then the variation is considered a mutation, however, if the allele frequency is above one per cent, it 

is considered a polymorphic variant (Karki, Pandya, Elston, & Ferlini, 2015). Therefore, each 

polymorphic variant affects at least 77 million people across the globe, with this often-reaching 

hundreds of millions, even billions. This shows the considerable effect that polymorphisms have on 

the population of the world. The Proto-oncogene c-KIT (KIT) is an example of how polymorphic 

variants can have adverse effects on the carrier’s health. The KIT plays a role  in intracellular 

signalling, and it is understood that the mutated form of c-Kit plays a crucial role in the occurrence of 

some cancers (Babaei, Kamalidehghan, Saleem, Huri, & Ahmadipour, 2016). It is thought that 

variants of KIT are accountable for cancer occurrence in subsets of Acute Myeloid Leukaemia and 

melanoma. Inhibition of KIT has shown potential as a viable cancer treatment (Babaei, 

Kamalidehghan, Saleem, Huri, & Ahmadipour, 2016). 

Currently, there is a lot of research being conducted on the human genome, this is essential as this 

can bring about a new era of clinical science. The progression of genomics has led to a greater 

understanding of DNA and the roles it plays in diseases and disorders. A key example of this occurs 

with polymorphic variants. A well-documented polymorphic variant occurs in the protein 

Serine/threonine-protein kinase B-RAF (BRAF), more specifically in the 600th residue. B-Raf proto-

oncogene (BRAF) encodes a cytoplasmic serine/threonine kinase, this protein plays an essential role 

in the regulation of the mitogen-activated protein kinase signal transduction pathway. Mutations in 

this gene can lead to the constitutive activation of key regulators in cellular processes, and thus, is 

one of the most important driving factors behind the accelerated growth of cancer cells. This 

mutation aids the growth and survival of cancer cell signals and is present in multiple different types 

of cancers (Lung et al., 2020). To investigate the prevalence of BRAF V600E mutations in lung cancer 

patients of southern Taiwan, a real-time quantitative PCR (RT-qPCR) method was used this 

technique is highly sensitive and specific. The RT-qPCR technique can detect single-digit copies of 

mutant DNA. Results showed that the BRAF V600E mutation was present at a low frequency (0.65%, 

2/306) in the studied patient group. The investigation concluded that Screening BRAF V600 

mutations with the RT-qPCR and V600E-specific immunohistochemistry could help improve 

detection accuracy (Lung et al., 2020). 

The homo sapiens wildtype of the BRAF protein has been sequenced to have a valine amino acid 

residue on the 600th residue on the amino acid sequence. An activating missense mutation within 

this residue has been documented to play a key role in the development of melanoma (Ascierto et 

al., 2012). The most common carcinogenic variant is when the valine residue is mutated to a 

glutamic acid residue, on the 600th amino acid in the sequence. Although first linked to the 

development of melanoma it has since been recognised as a key carcinogen in multiple types of 

tumours (Loo, Khalili, Beuhler, Siddiqi, & Vasef, 2018). In many experiments patients with BRAF 

V600E-mutated melanoma have been treated with FDA-approved BRAF inhibitors. The results of 

these trials showed that patients benefited from the use of BRAF inhibitor therapy. In this 
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experiment a BRAF V600E mutation-specific antibody was used for mutation analysis multiple 

different types of tumours were analysed, including melanoma, colorectal carcinoma, papillary 

thyroid cancer, hairy cell leukaemia, and Langerhans cell histiocytosis. Although the results showed 

positive effects of BRAF inhibitor therapy, the research had some limitations. Due to the use of 

V600E mutation-specific immunohistochemistry, other V600 mutations had been missed.  

Another protein with multiple disease-causing variants is the lysosomal acid α-glucosidase (GAA). 

GAA is a key enzyme in the breakdown of glycogen into glucose. Biological issues begin to arise when 

glycogen is not broken down properly as this causes it to build up in the body and can lead to many 

disorders (van der Ploeg & Reuser, 2008). One of the most common disorders associated with GAA 

deficiency is Pompe disease (also known as glycogen storage disease type 2 or acid maltase 

deficiency). This is an autosomal recessive disorder. Pompe disease is characterized by progressive 

muscle hypotonia and loss of motor, respiratory and cardiac functions which leads to respiratory 

failure (Roig-Zamboni et al., 2017). Due to the severity of GAA gene mutations, there has been much 

research conducted on the effects of mutation recognition for the gene. Mutation recognition in the 

GAA gene can provide very positive clinical effects, such as early disease diagnosis and a greater 

understanding of the genotype-phenotype relationship. In a study, blood samples were collected 

from patients with Pompe disease and healthy members of three families. The enzymatic activity of 

GAA was measured. Then, they performed a mutation detection, this was done by using a 

polymerase chain reaction, followed by direct sequencing of all exons in samples with decreased 

enzyme activity. Once identified the mutations were then investigated, using bioinformatics tools 

the possible side effects on the protein product were predicted. Three novel mutations (c.1966-

1968delGAG, c.2011-2012delAT and c.1475-1481dupACCCCAC) were identified in the GAA gene. The 

results of the investigation of these mutations showed that there was a possibility of harmful effects 

and significant alterations in the protein structure, caused by the identified novel mutations. The 

researchers concluded that the three novel GAA gene mutations detected in the study could help 

expand knowledge of the molecular genetic mechanisms of Pompe disease. It can also be used to 

help with diagnostics (Gharesouran et al., 2020).  

Another disease-causing variant that has been investigated is the c.158G>A variant in the PAH gene. 

A study was conducted to investigate the significance of the variant in patients with 

hyperphenylalaninemia (HPA). This mutation is known to cause decreased phenylalanine 

hydroxylase enzyme activity in HPA patients. In this study, seven unrelated Korean patients with HPA 

genotyped with the c.158G>A variant had their genetic data analysed and the researcher concluded 

that the variant should be classified as ‘Likely benign’ rather than ‘pathogenic’. The variant was 

observed to be homozygous in healthy subjects. The researchers also concluded that the variant 

causes a decreased enzyme activity without leading to the full pathology of phenylketonuria. (Choi 

et al., 2017). This is yet another example of how greater knowledge of the human genome can 

advance precision medicine and health care. As the c.158G>A variant in the PAH gene can be used as 

a genetic biomarker for hyperphenylalaninemia, allowing patients with the c.158G>A variant to be 

treated accordingly.  

There are many scenarios in which accounting for genetic variations can improve outcomes for 

patients. This is why precision medicine is a research area of immense importance and is expected to 

only increase in importance over the coming years (Kosorok & Laber, 2019). 
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1.3) Drug Development and the use of Bioinformatics in its Advancement 

Bioinformatics is a relatively new field of science. This interdisciplinary field of science involves 

molecular biology and genetics, computer science, mathematics, and statistics. Biological and clinical 

problems are addressed using the collection of large-scale data and statistics. In bioinformatics, 

biological processes are modelled, and the data from this modelling is then collected and analysed 

(Gauthier, Vincent, Charette and Derome, 2019). Due to biological modelling being computerised, 

large amounts of data can be processed at the same time, this means in many cases the use of 

bioinformatics is more effective and efficient than traditional research methods (Can, 2013). This is a 

reason why research into more reliable methods for bioinformatic approaches in medicine is 

essential, as it shows great potential and could revolutionise health care. The advancement of 

computer science has also aided the development of bioinformatics. This is one of the main 

concepts underpinning this project, as this project looks into the potential of bioinformatics in terms 

of advancing our knowledge and understanding of precision medicine.  

Drug Development is an integral part of medicine, the creation and production of new methods of 

combating diseases have been essential to human survival, for many centuries. Thus, the methods 

by which disease therapies are produced have been changed and improved, as our knowledge of 

usable tools and biology has increased. The current traditional method of drug discovery consists of 

a large amount of time-consuming research and intrusive experimentation. This includes target 

identification, target lead identification, lead optimization, drug characterization, drug formulation, 

preclinical research, clinical trials, new drug application and then if successful, approval (Deore, 

Dhumane, Wagh, & Sonawane 2019). Currently, most of this isn’t computerized. This has resulted in 

the pharmaceutical sector’s drug development process becoming slow, inefficient, risky, and 

expensive (Kaitin, 2010). In a study conducted on how long it takes to translate research findings into 

biological drugs for rheumatoid arthritis. It was found that the average time it took to get from 

clinical development to clinical use was 11.13 years. The phase of development that was found to be 

the longest was, moving from basic research to clinical research, this took around 5 years on average 

(de Oliveira Lupatini, Zimmermann, Barreto & da Silva, 2022). The addition of automated systems of 

research and bioinformatics to drug development would exponentially increase the speed of drug 

development and reduce the cost. Using bioinformatic analysis, the drug target identification and 

drug candidate screening stages can be expeditated, via the use of high-throughput data analysis. 

This allows for large sets of data to be analysis at the same time, which is much quicker than human 

data analysis. Bioinformatic analysis can also be used to facilitate the characterization of side effects 

and predict drug resistance. Our increased knowledge of protein and RNA structures allows us to 

accurately simulate protein interactions. This coupled with all the structural databases of small 

molecules and metabolites, currently at our disposal, has made protein-ligand docking simulations a 

very realistic and informative method of clinical drug target screening (Xia, 2017). 

Structural bioinformatics allows for three-dimensional protein structures to be constructed, and the 

data from these structures can be used to investigate protein disorders or predict secondary and 

tertiary structures of the protein. Studies have helped bring to light the interaction patterns and 

functions of proteins. Due to some proteins being very difficult to research clinically, protein 

modelling offers a more accessible approach for protein investigation in these situations. Currently, 

protein interaction prediction is not as accurate as experimental results. However, as more and 

more complex structures are being added to different protein databases, bioinformatic-driven 

approaches are becoming a good alternative (Sunny, & Jayaraj, 2022).  Analysis of protein structures 

can be aimed at the prediction of protein function and structural alignment. Protein-protein and 

protein-ligand interactions can also be studied using bioinformatics tools. Molecular docking is an 
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essential bioinformatics methodology. Many molecular docking tools allow for the simulated binding 

of proteins and ligands (or another protein), and the strength of the bonds formed can be calculated 

and then analysed. This is very important as the data collected from these programs help 

researchers answer many biomedical research queries. In recent years protein-protein docking has 

been used at high-frequency, in drug discovery research. The targeting of protein-protein 

interactions, in bioinformatics, has allowed for predicting protein-protein interactions and 

identifying ‘hot spot’ residues at the protein-protein interface (Huang, 2014). The relative lack of 

knowledge about binding sites means that the search algorithms and evaluation methods for 

protein-protein docking are different to the algorithms for protein-ligand docking and thus require 

more research strategies (Huang, 2014). 

Another use of bioinformatics approaches in biomolecular research is the simulation of side-chain 

substitutions. This is where 3D models of proteins can have certain residues changed. This mimics 

the effect of mutations on proteins. This is useful as it aids the research into mutations and their 

effect on protein structure and function. Advancements in computer technology have allowed for 

the substitution of amino acids in computer-modelled protein structures, to create very accurate 

protein structures and similar mutated proteins (Smith, Lovell, Burke, Montalvao & Blundell, 2007) 

(Malathi & Ramaiah, 2018). 

 

1.4) The Development and Advancements of Precision Medicine 

Precision Medicine has increasingly emerged over the last decade, due to advancements in 

technology and medicine, also due to our increased knowledge of the human genome. Precision 

medicine is the specific tailoring of clinical treatments to individual patients based on their 

characteristics. This is commonly done using large-scale patient data including lifestyle, genetic, 

clinical, and biomarker information. This takes a more in-depth look into each patient and therefore 

has the potential to produce more effective results than traditional medicine (König, Fuchs, Hansen, 

von Mutius & Kopp, 2017). Precision medicine has the ability to classify (or stratify) individuals into 

subpopulations that differ in their susceptibility to a particular disease, in the pathology of those 

diseases, or in the way they react to specific drug treatments (Maier, 2019). This means pre-emptive 

or reactive therapies can be used for patients for whom the therapies would be effective, and the 

patients who will see no benefits to the treatments can be directed to alternative treatments, thus 

reducing costs, avoiding side effects, or even reducing patient mortality (Maier, 2019).  

Many applications of precision medicine have been used in the health care system. A current 

example of this is genetic screening, where genetic screening tests may be conducted before 

conception to predict the risk of genetic disorders being passed down to the child. Genetic screening 

is becoming more efficient, this is largely due to advancements in bioinformatics and computational 

biology. Between weeks 8 and 12 of gestation, prenatal screening can be conducted on the foetus, 

to screen for trisomy in chromosomes 13, 18 and 21 (all these cause developmental abnormalities). 

Whole-genome sequencing of the foetus has been performed. At birth, DNA sequencing can be 

done, which aids in the detection of many disorders. This data can be analysed, using bioinformatics 

and with the aim of precision medicine, specific and effective treatment can be quickly 

implemented, which can lead to reduced morbidity and mortality (Ginsburg & Phillips, 2018). The 

sequencing data can also be stored and later in life, can be used to diagnose various diseases. 

With an increase in electronic medical records (EMRs) and bioinformatics systems’ ability to 

contribute to both research and health care, volunteers and patients who agree to provide biological 
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data and share their data have been able to further advance precision medicine research. The data 

derived from biological data has helped generate new findings (Aronson & Rehm, 2015). A recent 

example of this is in the COVID-19 pandemic, where researchers collected and analysed EMR data 

and concluded that there was an increased risk of COVID-19 infection and mortality in people with 

mental disorders (Wang, Xu, & Volkow, 2021). There have been findings that have been derived 

from the use of mobile and wearable devices, also family history, and environmental exposures. 

Clinicians are able to use this data to grow their knowledge base. The assembly of genomic, 

environmental, and patient-reported data from multiple sources has created a strong basis for 

precision medicine and its advancement. This combined with the data from other nationals and 

clinical networks allows for knowledge to be shared, enabling more effective precision medicine 

systems, worldwide (Ginsburg & Phillips, 2018). 

One of the biggest advancements in precision medicine in recent years is Implementing Genomics in 

Practice (IGNITE). IGNITE was formed in 2013, this was created to investigate the limitations of the 

clinical implementations of genomics, and to show its real-world application. IGNITE has been able 

to investigate the integration of EMR and genomic data and aid in the development of point-of-care 

decision-making tools.  IGNITE has also been able to aid in the creation of novel approaches, the 

projects include the use of genetic markers for disease risk prediction and prevention. An example of 

this is the use of the ApoLI genetic variant as a marker for kidney disease in African Americans 

(Sperber et al., 2017). It was also able to use pharmacogenetic data to guide the use of medications.  

Precision medicine has had a huge effect on drug development. The development of new drugs is a 

very long and complex process, it also comes with a high possibility that the drug might not succeed, 

the emergence of novel bioinformatics approaches has revolutionized methods to tackle the 

challenges of drug development (Qian, Zhu & Hoshida, 2019). The development of medicine is 

essential for humans to combat diseases and disorders from diabetes to cancer. Therefore, 

innovations within drug development are key in the fight against newly emerging diseases. After 

widespread use and genetic variance within pathogens, all drugs appear to be active for a short 

period against a particular disease platform (Swain, & Hussain, 2021). Thus, the production of newer 

drugs is very important. However, production within drug development is a complicated, time-

consuming, and resource-consuming process. The introduction of bioinformatics tools is one of the 

renovated platforms in current drug discovery. The use of cost-effective throughput screening, 

computerised target identification, and ligand optimization has shortened the drug development 

process. The growth in bioinformatics has pioneered the newer drug development platform (Swain, 

& Hussain, 2021). Due to an increase in the development of high-throughput technologies and the 

collection of biological data, the transition of research discoveries to clinical applications has been 

accelerated. An early and well-known example is aspirin. Aspirin was initially used as a treatment for 

analgesia, however, with the use of information from the EHRs of patients and pharmacological 

analysis, the researchers were able to find the potential of aspirin to treat colorectal cancer. In 

September 2015 the US Preventive Services Task Force released a recommendation for aspirin to be 

used in colorectal cancer prevention (Bibbins-Domingo, 2016). Currently, many therapeutics 

companies have started to integrate gene-expression analysis, and genetic screening systems with 

bioinformatics software, this has aided the identification of chemical structures with properties of 

interest for oncology drug discovery. This is one of the promising new approaches to drug 

development and has highlighted the potential of bioinformatics and its clinical applications (Cha et 

al., 2017). This also shows why more research into novel approaches for the use of bioinformatics in 

association with medicine should be conducted.  
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With more research, much larger and more complex datasets for precision medicine will be created 

such as individual and longitudinal multi-omics, and direct-to-consumer datasets (Zhou et al., 2019). 

Integration of multiple biological datasets generated for everyone along with tailored big-data 

analytic techniques can aid in us achieving an effective universal precision medicine system (Qian, 

Zhu & Hoshida, 2019). 

1.5)  The Role of Proteins in Disease 

Proteins are large macromolecules; they are made up of multiple long chains of amino acid residues. 

These chains of amino acids are called polypeptides, all proteins contain polypeptides. Proteins are 

one of the most important biological molecules in the body, they play an essential role in all the 

biochemical processes that occur. Proteins are key in processes such as DNA replication, energy 

conduction, regulating brain function and numerous other processes (Bonetta & Valentino, 2019). 

The functional and structural differences between proteins arise due to variations in the sequence of 

amino acids, as this can cause the proteins to fold differently, resulting in the creation of completely 

different proteins. This structure is dictated by the amino acid residue sequence which, itself is 

determined by the nucleotide sequence in the person’s DNA. Humans have the genetic code to 

construct 20 different specific amino acids. During or shortly after protein synthesis chemical 

modifications occur. The modification of these proteins can alter the properties both physically and 

chemically, this can affect the function of the protein (Arora & Katyal, 2019). Abnormal or incorrectly 

modified proteins degrade more rapidly than wild-type proteins, due to them being unstable. This 

can have an adverse effect on the body, as proteins are essential for all processes in the body 

(Bollong et al., 2018). Many proteins are enzymes, proteins that catalyse a number of biochemical 

reactions, they are also vital for cell signalling, immune responses, and cell adhesion (Bonetta & 

Valentino, 2019). Proteins can also bind together and function as a complex, by creating a protein 

complex they are able to work together to achieve a specific function. Due to variations and 

mutations in DNA, many people have different amino acid sequences, which can cause the proteins 

to be irregular and ineffective. Mutations within proteins affect their properties in many ways. A 

mutation affecting only a single amino acid residue is enough to drastically hinder the function of a 

protein. This occurs in the protein Ryanodine receptor 1 (RYR1). When specific signals are sent to the 

receptor, the RYR1 channel releases calcium ions from the sarcoplasmic reticulum into the cell fluid. 

This causes an increase in the calcium ion concentration in the muscle cells, which simulates muscle 

contraction (Hernández-Ochoa, Pratt, Lovering, & Schneider, 2016). However, when a mutation 

occurs in RYR1, it causes an increased susceptibility to hyperthermia and some skeletal muscle 

disorders. This is because RYR1 mutations can cause uncontrolled calcium ion production, which 

causes continuous muscle contraction, which increases core temperature and can lead to death 

(Zhang et al., 2018). 

A key example of protein malfunction leading to disease is Acute myeloid leukaemia (AML). AML is a 

bone marrow disease characterized by the uncontrolled proliferation of myeloid cells (Saultz & 

Garzon, 2016). In the innate immune system, the Toll-like receptors (TLRs), play a whole role. They 

are tasked with recognising pathogen-associated molecular patterns (Rybka et al., 2021). TLRs have 

also been known to play a role in autoimmune diseases and cancer, as they are supposed to 

recognise endogenous danger-associated molecular patterns. Multiple TLRs have been found to be 

expressed in AML cells, and their expression was found to affect growth, differentiation, and 

immunostimulatory capacity in AML (Rybka et al., 2021). When 90 AML patients were analysed, it 

was detected that there were seven single nucleotide polymorphisms, located across the genes 

coding for TLR3, TLR4 and TLR9, that were highly present in the patient, and it was concluded that 
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polymorphisms could be implicated in the clinical outcome of AML and is related with increased risk 

of infectious complications (Rybka et al., 2021). 

1.6) Objectives of the Project 

This project aimed to develop a bioinformatics tool that could have practical human biology uses, 

and that could also aid the advancement of precision medicine. This project also looked to explore 

the effects of mutations on protein structure and protein-ligand binding. This project attempted to 

highlight the influence that variations in genomics might have on precision medicine approaches, 

and how these variations that lead to disease‐related phenotypes can impact drug binding. The 

research aimed to show that data collection via bioinformatics tools can be used to identify 

opportunities for advancements or novel approaches to the uses of precision medicine. The 

completion of these objectives helped test the main hypothesis, that single nucleotide variants in 

proteins can have an adverse effect on the binding between proteins and drug compounds, and that 

when they occur, these differences can be captured and systematically evaluated using the database 

pipeline implemented. 

2) Methods 
2.1) Overview 

Proteins, variants, compounds, disorders, and treatment information was collected. This was done 

by searching many different databases, which made it possible to gauge the amount of 

bioinformatics data available and how the data would be able to be incorporated together. This 

aided the modelling of the structural effects of variations within proteins. This was conducted using 

structural modelling pipelines, such as those of the Genome and Structural Bioinformatics Group at 

Swansea University Medical School and visualised using numerous molecular visualisation tools, 

such as Chimera (Pettersen et al., 2004). Also, the protein-docking analysis program, Protein-Ligand 

ANT System (PLANTS) (Exner, Korb & ten Brink, 2009). Proteins from the Full Pharmacology Set have 

been studied. The full pharmacology set is a subset of the 720 known drug targets listed in DrugBank 

(Wishart et al., 2017) for which their pharmacological mechanism is known. Analysis was conducted 

on all the pharmacologically relevant proteins to identify disease-causing variants and situations 

where a variation has impacted the effectiveness of drug therapy. This allowed for a defined, more 

concise group of key proteins to be investigated in detail. The detailed investigation into these 

proteins involved structural modelling of the wild-type and variant forms of the protein. 

Subsequently, molecular docking of drugs had been carried out on the selected proteins. This has 

allowed for the exploration of the effects of protein variants on the efficacy of certain drugs to be 

done. 

2.2) Data Collection 

The first stage of this project involved manually gathering proteins, variants, compounds, disorders, 

and treatments information, this was done to gauge the amount of data available and to see how 

best to gather this information at scale. It also showed how all the data from the different databases 

could be integrated. In this phase of research, information was taken from many bioinformatics 

databases and the data was stored in various Excel spreadsheets. All 720 proteins from the Full 

Pharmacology were put into an excel spreadsheet and then numbered. Then using a random 

number generator 60 proteins were selected, and an in-depth look into these proteins was 

conducted. The criteria for which database, would be used to gather each section of data, was based 
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on how much data was present in the database, how reputable the source is and if it would be 

possible to web-scrape the database. The databases that were accessed were UniProt, ClinVar, 

PubChem, chEMBL, Guide to PHARMACOLOGY, therapeutic target database and MedGen. (Table 1).  

The first portion of data that was retrieved was the basic protein information, this included the gene 

name, protein length, protein mass and protein function. This information was taken from the 

UniProt database (Bateman et al., 2020). The next step was to gather variant information for each 

protein and this data was found in the ClinVar database (Landrum et al., 2017). The information 

gathered from ClinVar included the location of the variation, the length of the variant, the amino 

acids that change, the disorders associated with the variation, the pathogenicity of the variation and 

the global minor allele frequency (GMAF) of the variant. After these pieces of data were collected, 

the following step was to acquire information on the ligands of all the proteins. This information was 

taken from PubChem (Kim et al., 2015), ChEMBL (Mendez et al., 2018) and Guide to 

PHARMACOLOGY (Harding et al., 2017). These databases provided information such as the ligand 

name, the type of ligand Interaction and the affinity of the protein-ligand bond. The next stage of 

this element of the research was to find drug-binding information, this was found in both DrugBank 

and the therapeutic target database (Wang et al., 2019). The information in these databases was the 

name of the target drug(s), the phase of development in which the drug was in, the drug’s 

pharmacological effect, the action of the drug and the type of molecule the drug is. The following 

stage of data collection was to gather information on the protein-protein interaction of all the 

proteins. This data was found in the Search Tool for the Retrieval of Interacting Genes/Proteins 

(STRING). In searching STRING information on the functional partner probability of the protein and 

the predicted protein interaction (Jensen et al., 2009). The last phase of the preliminary research 

was to find the diseases and disorders associated with each protein. This was found in the gene card 

and MedGen databases (Louden, 2020) (Figure 1). Basic disorder information was provided by these 

databases. Next, the PDB of each of the proteins were downloaded. These were downloaded from 

the RCSB protein data bank (Zardecki et al., 2021).  

The following stage of the project was to implement a bioinformatics pipeline. This pipeline would 

gather and retrieve information in the same manner as the information was gathered in the data 

collection stage, but in a fully automated fashion - this is why the prior phase of research was of such 

importance. While creating the pipeline the first step was to structure a plan in which the different 

entities of the pipeline would interact with each other. An entity-relationship diagram was 

produced, this worked as a plan for the creation of the pipeline and how the different parts 

communicate. The entity-relationship diagram consisted of entities, associative entities, and 

attributes (Figure 2).     

Database Scraped 

Section of the database where 

the information is stored 

UniProt Protein 

ClinVar Variant 

PubChem Compound 

chEMBL Compound 

Guide to PHARMACOLOGY  Compound 

therapeutic target database  Treatment 
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MedGen Disorder 

Table 1, This table shows the databases were scraped, and what section of the database the information is stored in. 

 

 Figure 1, 

This figure shows the databases used in the data collection process and a basic overview of the data collected from each 
database 

  
Figure 2, The figure above is the entity-relationship diagram that was used to coordinate the implementation of the 

pipeline. The diagram consists of entities; Compound, Variant, Disorder, Protein, and associative entities; Treatment, 

Binding, Protein Association and Variant Association. The attributes of the Compound entity include Compound ID, 

PubChem ID, Compound name, SMILES (Simplified Molecular Input Line Entry System) code, Logp, Chemical formula, 

molecular weight, Hydrogen donor count, Hydrogen acceptor count, polar surface area, Rotatable bond count and heavy 

atom count (These were gathered from PubChem). The protein entity consists of the attributes; UniProt ID, Protein ID, 

protein description, protein name and gene name (These were gathered from UniProt). The variant entity consists of the 

attributes; variant ID, ClinVar ID, Residue number, Pathogenicity, Residue type and Protein ID (These were gathered from 

ClinVar). The attributes of the Disorder entity include Disorder ID, MedGen ID, Disorder Name and Disorder description 
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(These were gathered from MedGen). The associative entity Binding is used to link the Compound entity with the Variant 

entity. The associative entity treatment is used to link the Disorder entity with the Compound entity. The associative entity  

Protein association is used to link the Disorder entity with the protein entity. The associative entity Variant association is 
used to link the Disorder entity with the Variant entity. 

2.3) Bioinformatics Pipeline 

2.3.1) Proteins 

The next stage of research was to create tables in which the gathered information would be stored. 

These tables were coded in python, using the program PuTTY. This granted access to Linux. These 

coding programs were used as I am familiar with their coding language. Using the entity-relationship 

diagram as a plan, the different components of the tables were coded. Each table collected data 

from different databases and thus the method by which the tables were coded was essential. An 

error within the programming would severely hinder the interactions within the pipeline. Once this 

was complete, the tables served as an updated version of the pipeline plan. The first component of 

the pipeline was the protein section, the data for this section was gathered from UniProt. Therefore, 

a file had to be coded and produced, which was able to web scrape the UniProt site for the relevant 

data. The code prompted the input of a UniProt ID, when inputted this UniProt ID is used to locate a 

specific UniProt webpage. Once on this page, the code then retrieves the information stored under 

gene name, protein name and the protein description, text box in UniProt (Figure 3). This data is 

then stored in the protein table that was created earlier. 
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Figure 3, The figure 

above is the code and commands used to retrieve the data from the UniProt webpage. By entering the UniProt ID of the 

requested protein into the pipeline, it returns information, protein name, gene name and a functional description. This 

data is then stored in a table. 
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2.3.2) Variants 

The next component of the table that needed to be filled with data was the variant table. The 

information in the variant table was gathered from ClinVar. A file was also created to download 

information from ClinVar. The initial code in the file prompted an input of a gene when inputted the 

command, causing the pipeline to perform a search on the ClinVar database for the requested gene. 

The webpage of the result is converted into an HTML format and important information was 

gathered. The file command then filtered out all variants that were not single gene variants and 

were not single nucleotide variants. The code then retrieved the ClinVar ID, residue number, the 

variant residue type, and the pathogenicity of the variant. A command was then written to stop the 

duplicate proteins for each given variant, this was done so each protein was associated with all its 

variants, allowing all the variants of each protein to be investigated at once. In the HTML file, the 

global minor allele frequency (GMAF) of the variant was not available. This meant a separate file had 

to be coded to retrieve the GMAF for the variants. The code for this file used the ClinVar ID from the 

search to access the URL page. The coded command then retrieved the GMAF (if available) and 

stored it in the original variant file. The protein ID of the gene was then also stored in the table. This 

created a direct link between the protein data and the variant data, therefore a link between 

UniProt and ClinVar (Figure 4). 

Figure 4, 

The figure above is the code and commands used to retrieve the data from the ClinVar webpage. By entering the ClinVar ID 

of the requested variant into the pipeline, it returns information, residue number, the variant residue type, and the 

pathogenicity of the variant. This data is then stored in a table. 



19 

 

2.3.3) Disorders 

Coding the command to collect data for the Disorder component of the table was the next step. The 

data stored in the disorder section of the table was collected from MedGen. A code file was created, 

to instruct the pipeline on how to retrieve the disorder information required for the table. The code 

used the ClinVar ID, that has been inputted, to retrieve the ClinVar page of the variant, associated 

with the ClinVar ID. Next, the code searched for the condition tab, and the MedGen ID of these 

disorders is then retrieved. The MedGen ID is then used to enter the MedGen page for the 

associated disorders, then the command instructs the pipeline to retrieve the relevant information 

from the MedGen page. The disease name, description and MedGen ID are all retrieved and stored 

in the table. The ClinVar ID of the variant associated with the disorder was also stored in the table. 

This created an associative link between the variant data and the disorder data and thus linked the 

data of MedGen and ClinVar together. Due to the pre-existing association between protein and 

variants, the pipeline was able to simultaneously investigate proteins, single nucleotide 

polymorphisms and disorders. 

 

2.3.4) Compounds 

The compound section of the table was next to be coded. This section of the table had information 

collected from PubChem. A file containing the coded commands directing how the pipeline would 

retrieve the information from PubChem was created. The code used the PubChem ID inputted to 

access an HTML page file of the compound with the corresponding PubChem ID. The code then 

retrieved all the relevant information about the compound from its PubChem page. The 

compound’s; name, SMILES (Simplified Molecular Input Line Entry System) code, chemical formula, 

molecular weight, hydrogen bond donor count, hydrogen bond acceptor count, rotatable bond 

count, polar surface area, heavy atom count, Logp value and formal charge were all collected and 

then added to the compound table. This was the last entity in the table that had to be coded.  

2.3.5) Associative Entities 

Next, the associative entity components of the tables had to be coded, this was essential as 

associative entities allow for a connection to be made between multiple entities that otherwise 

would not be able to be connected. 4 associative entities had to be coded, protein association, 

variant association, treatment, and binding. The first associative entity to be coded was protein 

association. Each protein, compound, variant, and disorder were given a unique ID within the table. 

The protein association component consisted of protein IDs and disorder IDs allowing for an 

association to be made between disorders and proteins. The next associative entity to be coded was 

variant association. This associative entity consisted of variant IDs and disorder IDs allowing for an 

association to be made between disorders and variants. Then the next associative entity to be coded 

was the treatment associative entity, which consisted of compound IDs and disorder IDs allowing for 

an association to be made between disorders and compounds. The last associative entity to be 

coded was the binding associative entity which consisted of protein IDs and compound IDs allowing 

for an association to be made between protein and compound. The binding associative entity also 

contains information on the binding affinity between the protein and the compound, this data was 

gathered from PubChem. 
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2.4) Pipeline Testing 

Once all the coding had been completed the program was run. The UniProt code of all the 720 

proteins in the full pharmacology set was fed through the pipeline and it began retrieving all the 

relevant information that it had been coded to retrieve. Once all the information had been 

downloaded, the database was fully functioning. Once fully functioning, the pipeline was tested 

using hypothetical case studies. This was done to examine the effectiveness of the pipeline. Three 

different hypothetical case studies were constructed in a manner that would investigate the 

pipeline’s ability to gather multiple groups of information, starting from various parts of the pipeline. 

The first case study involved using the pipeline to gather enough information to investigate drug 

therapies for the disorder ‘Acute Myeloid Leukaemia’. The second case study was to have the 

pipeline gather enough relevant information on the ‘KIT’ protein to start an investigation into 

possible drug therapies for the disorders caused due to KIT protein. The third case study involved 

gathering information on the most polymorphic proteins and most pathogenic variants. This was 

constructed to imitate the data collection process that would be done in a research project aimed at 

investigating the most pathogenic variants individually and attempt to postulate feasible therapies 

for the variants in question. The fourth case study involved gathering information on compounds 

that bind to the Ryanodine receptor. This was constructed to show if the pipeline would be able to 

highlight the effects of the compound on a specific protein, for those investigating a specific 

compound or developing a structurally similar compound. The next stage of the research project was 

to use the newly created pipeline to assess the effect of polymorphisms on the disorders and 

currently used drugs.  

As a control for this pipeline testing, the databases from which the information was derived, were 

checked against the information returned by the pipeline to ensure that the information being 

returned by the pipeline was accurate and complete. 

2.5) Protein Docking 

Using the pipeline, highly polymorphic proteins were found, along with the variants, associated 

diseases, and drug therapies. The proteins selected were GAA, SCN2A BRAF, KIT, and PAH. The PDB 

structures of these proteins were retrieved. Then using Chimera, they were modelled. Using 

Chimera, side-chain substitutions were performed on the proteins. For each protein, 10 pathogenic 

variants of the proteins were modelled, and 10 non-pathogenic variants were modelled. The 10 non-

pathogenic variants were selected as a control. The pathogenicity of the variants was dictated by the 

variant’s pathogenicity rating on ClinVar. The selection of a control set was essential as it was 

important in the assessment of the complete effect of polymorphisms and any variations in drug 

binding. The pathogenic and non-pathogenic variants were chosen at random. For each of the side-

chain substitutions, an amino acid in the sequence was substituted with a different amino acid in 

accordance with the residue displayed on the ClinVar variant page. When assigning the rotamer for 

the residue, the position with the highest-scoring rotamer probability was selected, as long as the 

rotamer was feasible. The Dunbrack 2010 backbone dependant rotamer library was used during the 

side-chain substitutions (Shapovalov & Dunbrack, 2011). Once this process was completed for all 20 

variants of all 5 selected proteins, the next part of the research was to start binding the drug 

compounds for each protein, to the 20 different variants of each protein. 

The docking process involved various stages to ensure the results were as accurate as possible. Once 

the protein PDB was retrieved the structure had to be denuded, this involved removing all additional 

structures, such as oligosaccharides and ions, from the protein, unless the structure was a known 
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cofactor for the protein. Once denuded, the protein structure was prepared for docking using the 

DockPrep module in UCSF Chimera. This feature protonated the protein, which is essential as the 

addition of hydrogen atoms causes the addition of different forces, such as H bonds that will affect 

the docking of external molecules (Protein docking simulations are conducted in a vacuum and thus 

it is assumed that the pH of the surrounding does not affect the binding energy and the protein’s 

protonation state). Next, the DockPrep module calculated the relative charges of all the molecules in 

the structure. This process is also essential in making the results of protein docking as accurate as 

possible. The calculation of each molecule’s relative charge is important because it stimulates the 

electrostatic interactions that would occur during biological docking. Then the ligand had to be 

prepared for docking. The ligands were protonated using the OpenBabel tool (O'Boyle et al., 2011) 

and then had their relative charges calculated using Antechamber (Wang, Wang, Kollman & Case, 

2006). Protein docking simulations are conducted in a vacuum and thus it is assumed that the pH of 

the surrounding does not affect the binding 

The next step in the docking process was to select the volume within the protein in which the ligand 

would attempt to dock. The volume of the space in which the ligand could dock was kept as small as 

possible while still containing all parts of the protein’s active site/ or active sites. Once the docking 

was complete the configuration with the highest binding energy was selected and documented.  

The molecular docking was conducted on SSH using a program called PLANTS (Exner, Korb, & ten 

Brink, 2009). This program allowed for the mol2 coordinates file of a protein and ligand to be 

inputted. Then using the box method, the binding area in which the ligand is docked can be set. In 

the box method, 6 coordinates are given to the program, the first three coordinates are the x, y and 

z (respectively) coordinates of the binding site. The next three coordinates tell the program size of 

the x, y, and z (respectively) axis of the binding area. Inputting all this information into the program, 

allowed it to return information on the complex created by the protein-ligand binding. One of the 

pieces of information returned was the binding energy of the complex. The docking process was 

conducted on all the selected proteins of interest and their ligands. The results of this were 

documented in an Excel spreadsheet. The PLANTS system was then used again, as it allows for 

docking via another method. This second method works by using the location of a pre-bound ligand 

as an example to determine where the newly requested ligand would dock. For the selected proteins 

whose PDB’s already had a ligand-bound (3; KIT, PAH, BRAF) this method was also run. This was 

done by isolating and extracting the ligand bound to them in the PDB, saving the ligand as a mol2 file 

and then inputting this to the PLANTS program, which was able to use the coordinates of the ligand 

as a reference. Running this method provides an extra set of docking data points for the calculation 

of the binding energies of these proteins and ligands. The second method of docking (via reference) 

did not provide any viable results and thus the results were not added to the results of this project. 

Once these results were collected, statistical tests were then run on the data, to identify its 

relevance and significance. The statistical tests that were conducted were mean calculation, 

standard deviation calculation and an ANOVA (or Kruskal-Wallis H test if data is not normally 

distributed and therefore non-parametric(Table 2)) (Table 3). An ANOVA was conducted on the data 

that was normally distributed data, the input data was two independent categories (Wild-type and 

Variant), and the outcome data were quantitative (binding energy). 

When comparing the binding energies, differences between wildtype and variant energies, of more 

than 15% were considered notable. The 15% threshold was applied because it identified a discrete 

group of proteins that could be used for the comparative analysis. 
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Shapiro-Wilk Test for normality significance value 

  

GAA SCN2A BRAF KIT  PAH 

Acarbose Miglitol Tramadol Zonisamide Sorafenib Vemurafenib Fludiazepam Ergocalciferol Droxidopa Sapropterin 

Pathogenic 0.256 0.001 0.385 0.156 0.052 0.010 0.002 0.064 0.393 0.004 

Control 0.126 0.002 0.023 0.033 0.009 0.007 0.086 0.341 0.237 0.001 

Table 2, this table shows the significance value of all binding energies, when a Shapiro-Wilk Test for normality was 

conducted on it. The cells filled in red, signify data that were not normally distributed, and thus Kruskal-Wallis H tests were 

performed on their data sets as opposed to an ANOVA. 

ANOVA and Kruskal-Wallis H significance value 

  

GAA SCN2A BRAF KIT  PAH 

Acarbose Miglitol Tramadol Zonisamide Sorafenib Vemurafenib Fludiazepam Ergocalciferol Droxidopa Sapropterin 

Pathogenic 0.575 0.113* 0.527 0.940 0.065 0.114* 0.206* 0.920 0.314 0.112* 

Control 0.406 0.113* 0.752* 0.752* 0.114* 0.114* 0.509 0.820 0.460 0.113* 

Table 3, this table shows the significance value of all binding energies, when an ANOVA or Kruskal-Wallis H Test for 

significance was conducted on it. The test was conducted to see if there was any statistically significant difference in the 

binding energy of variants proteins and wild-type proteins. A score of below 0.05 would indicate statistical significance. The 

values returned from Kruskal-Wallis H are marked with an *. 

 

3) Results 
3.1) Overview 

The bioinformatic pipeline was coded, and then instructed to web-scrape multiple databases for key 

information on proteins, variants, compounds, disorders and drugs. The pipeline was able to identify 

which databases to examine, due to the in-depth analysis that was conducted on 60 proteins 

randomly selected from the Full Pharmacology Set. After this, the pipeline was put to use. Firstly, the 

full pharmacology set was added to the pipeline, this is a set of 720 pharmacologically relevant 

proteins. The pipeline retrieved and stored the data for all the proteins in the set. Then the pipeline 

was used to gather information to aid the data collection process of multiple hypothetical case 

studies such as research into Acute Myeloid Leukaemia, the KIT gene and the ryanodine receptor. 

The database was able to retrieve all the relevant data required for the case studies, it showed great 

potential as it was able to return a multitude of key information, which would have all been useful 

for the case studies. Protein docking was then conducted on 5 proteins (GAA, SCN2A, BRAF, KIT and 

PAH), for each protein, its wildtype, 10 of its pathogenic variants and 10 of its benign variants were 

bound to 2 different drug therapies associated with the protein. The binding energies of the 

dockings were collected and analysed. The results showed that there was no statistically significant 

difference between pathogenic and benign variants' binding energy, however, in most cases, more 

pathogenic variants had binding energies that differed from the wildtype binding energy by at least 

15%. 

3.2) Data Collections 

Prior to the construction of the bioinformatic database, 60 randomly selected proteins from the Full 

Pharmacology Set, were investigated in-depth. This was done so the best method of data collection 
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was understood, which allowed for the code written in the pipeline to mimic authentic data 

collection, accurately. The research into these proteins provided; information on the protein’s 

ligands (PubChem/chEMBL), key data about the genes that encode the protein (UniProt), the 

disorders associated with the protein (MedGen), the variants of the protein (ClinVar), the drugs that 

interact with the protein (Therapeutic Target Database) and the protein-protein interactions that the 

proteins undergo (STRING). These pieces of data were collected for all 60 proteins and the database 

from which these pieces of information were retrieved and stored. This provided all the key 

databases that needed to be searched, by the pipeline, in order to return the relevant information.  

 

3.3) Bioinformatics Database 

The first stage of this research project consisted of creating a bioinformatics database. This database 

was a collation of data from multiple pre-existent proteins, drug, and disease databases. The aim of 

this was to investigate the initial hypothesis. The hypothesis of this project is that by developing a 

bioinformatic tool that can link existing datasets associated with the pathogenicity of genetic 

variation in humans, with existing datasets associated with drug targets in humans, and existing 

datasets associated with drug therapies with diseases. This can allow for the integration of 

information from different types of datasets automatically. Therefore, allowing the automatic and 

rapid exploration of the relevant connections between several large and important datasets. Also, 

integrating drug, disorder and variant datasets, simultaneously, it can allow for advancements to be 

made in the field of precision medicine. In this project, the underlying contention is that single 

nucleotide polymorphic variants in proteins have an effect on the binding between proteins and 

drug therapies, and the use of bioinformatic tools can advance precision medicine by detecting 

these effects. Once created the bioinformatic pipeline was used in multiple hypothetical case 

studies. It proved to be very useful in the collection of data in all the scenarios tested. There were 

case studies created to test the database and, in all cases, the database was very effective in 

collecting data and incorporating multiple categories of data together.  

 

 
Figure 5, This figure shows, the results returned when the pipeline is asked to provide all proteins associated with Acute 

Myeloid Leukaemia. The pipeline was able to do this by inputting the MedGen code of Acute Myeloid Leukaemia, into 

ClinVar and then retrieving the proteins that are linked with the disorder. 
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Genes involved with Acute Myeloid Leukaemia 

Gene Disorder 

JAK2 Acute Myeloid Leukaemia 

PDGFRB Acute Myeloid Leukaemia 

KIT Acute Myeloid Leukaemia 

FLT3 Acute Myeloid Leukaemia 

Table 4 - This table shows, the results returned when the pipeline is asked to provide all proteins associated with Acute 
Myeloid Leukaemia. 

3.3.1) Acute Myeloid Leukaemia (Case Study) 

In the first case, information was gathered in a manner that would replicate an investigation into 

drug therapies to combat Acute Myeloid Leukaemia. The database was able to gather all the 

requested information, it gathered all the proteins associated with Acute Myeloid Leukaemia. It also 

retrieved all compounds that interact with each protein that was associated with Acute Myeloid 

Leukaemia. The full details of all the compounds were provided, including the type of interaction 

with the protein, the compound’s SMILES code and the relative polar charge of the compound. The 

information provided was very thorough, and with enough data to begin investigating drug therapies 

for Acute Myeloid Leukaemia (Figure 5). The use of the pipeline was considered successful in this 

case study. The results presented by the pipeline indicate that Acute Myeloid Leukaemia was 

associated with 4 genes (Janus kinase 2 (JAK2), Platelet-derived growth factor receptor beta 

(PDGFRB), Proto-oncogene c-KIT (KIT) and FMS-like tyrosine kinase 3 (FLT3) (Table 4). 

3.3.2) Proto-oncogene c-KIT (Case Study) 

The subsequent case study was an investigation into the Proto-oncogene c-KIT (KIT). In this case, 

study, the objective was to investigate the protein that the gene encodes, and then to research data 

into the drug therapies and disorders that are associated with the gene. The pipeline was also  used 

to great effect in this case study. A large amount of key information was returned using the pipeline. 

The database was able to return information, such as all the compounds that bind to the KIT protein, 

the biological activity of all the compounds and the development phase of all the compounds. The 

pipeline was then able to return information on the single nucleotide polymorphic variants that 

were present in the KIT protein, along with the residue number of the variant, the pathogenicity of 

the variant and the globe minor allele frequency (GMAF) of the variant (If the GMAF was available). 

This was evidence of the strong capability that the pipeline has, as the pipeline provided all the 

information required to start an in-depth research project into the KIT protein. The results displayed 

by the pipeline showed that the KIT gene; has 20 compound ligands; all of which were antagonists to 

the KIT protein and also were all approved compounds (Table 5)(Table 6) (Figure 6) (Figure 7). 
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Figure 6, This figure shows, the results returned when the pipeline is asked to provide all compounds associated with the 

KIT protein. It also returned the mechanism of action in which the compound and protein interact. It also provided the 

development phase of the compound. The pipeline was able  to do this by inputting the UniProt code of KIT protein, into 

PubChem and then retrieving the compounds and the requested key information.  

Gene Compound Compound Action Development Stage 

KIT Fludiazepam potentiator experimental; illicit 

KIT Ergocalciferol potentiator experimental; illicit 

KIT Enflurane potentiator experimental; illicit 

KIT Ranolazine potentiator experimental; illicit 

KIT Phenytoin potentiator experimental; illicit 

KIT Topiramate potentiator experimental; illicit 

KIT Nimodipine potentiator experimental; illicit 

KIT Spironolactone  potentiator experimental; illicit 

KIT Magnesium sulfate potentiator experimental; illicit 

KIT l-Menthol potentiator experimental; illicit 

KIT Miconazole potentiator experimental; illicit 

KIT Amiodarone potentiator experimental; illicit 

KIT Mibefradil potentiator experimental; illicit 

KIT Dronedarone potentiator experimental; illicit 

KIT Trimebutine potentiator experimental; illicit 

KIT Benidipine potentiator experimental; illicit 

KIT Cilnidipine potentiator experimental; illicit 

KIT Lacidipine potentiator experimental; illicit 
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KIT Manidipine potentiator experimental; illicit 

KIT Calcium citrate  potentiator experimental; illicit  

Table 5 - This table shows, the results returned when the pipeline is asked to provide all compounds associated with the 

KIT protein. It also returned the mechanism of action in which the compound and protein interact. It also provided the 

development phase of the compound. 

 

Figure 7, This figure shows the results returned when the pipeline is prompted to provide all single nucleotide polymorphic 

variants associated with the KIT protein. It also returned the residue number of all the polymorphic variants, the 

pathogenicity of the variant and the GMAF of the variant. The pipeline was able to do this by inputting the UniProt code of 

the KIT protein, into ClinVar and then retrieving the variant and the requested key information.  

Gene Residue Number Variant Pathogenicity GMAF 

KIT 84 Likely benign 0.0008 

KIT 168 Likely benign 0.0008 

KIT 190 Pathogenic - 

KIT 374 Likely benign 0.0016 

KIT 376 Pathogenic - 

KIT 400 Benign - 

KIT 427 Likely pathogenic - 

KIT 448 Likely benign - 

KIT 490 Pathogenic - 

KIT 504 Pathogenic - 

KIT 509 Pathogenic - 

KIT 533 Pathogenic - 

KIT 537 Likely benign - 

KIT 537 Likely benign 0.0645 

KIT 541 Likely benign 0.0645 

KIT 550 Pathogenic - 

KIT 553 Pathogenic - 

KIT 557 Pathogenic - 

KIT 557 Likely pathogenic - 

KIT 557 Likely pathogenic - 
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Table 6 - This table shows the results returned when the pipeline is prompted to provide all single nucleotide polymorphic 

variants associated with the KIT protein. It also returned the residue number of all the polymorphic variants, the 

pathogenicity of the variant and the GMAF of the variant 

3.3.3) Prevalent Polymorphisms (Case Study) 

In the third case study created to test the database, the pipeline was instructed to retrieve 

information on the most pathogenic and polymorphic variants. This case study was constructed to 

mimic a scenario where a researcher would like to investigate the most pathogenic variants 

individually and attempt to find therapies for the variants in question. The pipeline was able to 

present information on all the pathogenic (and likely pathogenic) single nucleotide polymorphic 

variants and rank them in descending order of GMAF. The pipeline also presented the variant 

number and residue number of all the variants. The database was able to handle this scenario very 

well. The results displayed by the pipeline indicate that the genes; Von Willebrand Factor (VWF), 

Potassium Voltage-Gated Channel Subfamily H Member 2 (KCNH2) and Calcium Voltage-Gated 

Channel Subunit Alpha1 S (CACNA1S), had the most polymorphisms, and had the greatest number of 

pathogenic variants. VWF has the pathogenic variant with the highest prevalence (38% minor allele 

frequency) (Table 7) (Figure 8). 

 

Figure 8, This figure shows the results returned when the pipeline is prompted to provide the most prevalent pathogenic 

variants. It also returned the residue number and ClinVar ID of all the polymorphic variants. It also provided the 

pathogenicity of the variant and the GMAF of the variant. The pipeline was able to do this by inputting the UniProt code of 

all proteins, into ClinVar and then retrieving the variant data for all the pathogenic variants.  

Gene Clinvar ID  Pathogenicity Residue Number GMAF 

VWF 619930 Pathogenic 516 0.377 

KCNH2 200402 Pathogenic 312 0.22784 

CACNA1S  143198 Pathogenic 916 0.05391 

ALDH2 18390 Pathogenic 504 0.03574 

KCNQ2 369806 Pathogenic 563 0.00539 

NTRK1 12303 Pathogenic 774 0.00379 

CSF3R 16005 Pathogenic 640 0.002 

F8 10248 Pathogenic 795 0.00185 
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SLC6A8 827674 Pathogenic 383 0.00185 

MMUT 222915 Pathogenic 189 0.0018 

VWF 31012 Pathogenic 1783 0.001 

GAA 4034 Pathogenic 854 0.001 

PAH 102758 Pathogenic 204 0.0008 

PAH 592 Pathogenic 413 0.0006 

PAH 92731 Pathogenic 403 0.0006 

CA2 914 Pathogenic 18 0.0006 

GNRHR 16024 Pathogenic 262 0.0006 

AR 9849 Pathogenic 195 0.00053 

AR 9817 Pathogenic 199 0.00053 

PAH 577 Pathogenic 408 0.0004 
Table 7 - This table shows the results returned when the pipeline is prompted to provide the most prevalent pathogenic 

variants. It also returned the residue number and ClinVar ID of all the polymorphic variants. It also provided the 

pathogenicity of the variant and the GMAF of the variant. 

3.3.4) Ryanodine receptor (Case Study) 

There was also a piece of data collection research that was conducted on the pipeline. The pipeline 

was instructed to collect information on the gene ryanodine receptor (RYR1). This includes 

information on the variants of RYR1, such as the ClinVar ID, pathogenicity, residue number and the 

GMAF. Then also information on all the compounds that are associated with RYR1 (Table 8) (Table 9) 

Gene ClinVar ID Pathogenicity Residue number MAF 

RYR1 

93279 benign 2060 0.05491 

93265 benign 1342 0.05411 

133011 benign 3751 0.03514 

133149 benign 1787 0.01697 

224403 benign 4501 0.01078 

133223 likely benign 2787 0.00899 

159846 benign 1352 0.00839 

256490 likely benign 1109 0.00719 

132999 benign 3578 0.00679 

29878 likely benign 3976 0.00599 

93275 likely benign 1878 0.00539 

93244 likely benign 3642 0.00339 

133157 likely pathogenic  2129 0.00319 
Table 8, This table shows all the variants of RYR1 with a known minor allele frequency (MAF). The variants are in 

descending order of MAF. This Figure also shows the pathogenicity of the variant, the ClinVar ID and the residue number of 

the variant. 
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Gene Drug Development Stage Action 

RYR1 Caffeine approved N/A 

RYR1 Dantrolene approved; investigational antagonist 

RYR1 Suramin investigational agonist 

RYR1 Tetracaine approved; vet approved modulator 

RYR1 Calcium Citrate approved; investigational substrate 

RYR1 Calcium phosphate approved substrate 
Table 9, This table shows, all compounds associated with the RYR1 protein. It also returned the mechanism of action in 

which the compound and protein interact. It also provided the development phase of the compound. This information was 

gathered using the pipeline. 

As a control measure, after all this information was returned by the bioinformatic pipeline, the 

results were then cross-referenced with databases from which the data was retrieved. To ensure the 

data retrieve is accurate. In all the case studies the data returned was complete and accurate when 

cross-referenced with the web-scraped database. 

3.4) Protein Binding Energy 

The second part of this research project consisted of using knowledge from the bioinformatics 

database to identify the effect of variants on protein-ligand binding. The aim of this was to 

investigate one of the project's hypothesises, that single nucleotide polymorphisms have a 

significant adverse effect on protein-ligand binding. This hypothesis was tested by calculating the 

protein-ligand binding energy of multiple protein-ligand complexes. The program used to perform 

this test was the PLANTS program, a bioinformatics tool that simulates protein-drug binding and 

calculates potential binding energies. The binding was conducted via two methods; the box method 

and also by using a reference ligand to determine the binding site. However, due to an error with the 

PLANTS program while using the reference method no viable results were retrieved. 5 proteins were 

docked using the box method, for each protein 2 drug therapies were selected as ligands. Each 

protein had 20 variants generated, 10 of the variants were benign and another 10 of the variants 

were pathogenic. The data from all these dockings were collected, analysed, and then stored in a 

table (Table 10). 

 

    GAA SCN2A BRAF KIT PAH 

    Acarbose Miglitol Tramadol Zonisamide Sorafenib Vemurafenib Fludiazepam Ergocalciferol Droxidopa Sapropterin 

Average 

binding 
energy 

Wildtype -89.4 -71.59 -66.13 -54.75 -76.63 -69.28 -67.38 -85.24 -74.75 -69.99 

Control -84.95 -67.92 -64.2 -54.43 -89.63 -89.18 -69.24 -85.56 -78 -76.84 

Pathogenic -80.79 -67.51 -64.15 -54.42 -91.95 -88.06 -71.18 -84.42 -77.41 -76.62 

Standard 
Deviation 

Control 7.3 5.42 2.8 3.97 5.9 5.5 3.95 2.93 2.91 0.34 

Pathogenic 9.41 5.61 4.26 3.82 4.69 5.41 5.27 3.33 3.28 0.6 

Table 10, The table above shows the average binding energies of all the proteins and the ligands, that were bound 

together. It also has the standard deviation of the binding energies. 
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3.4.1) GAA 

 

3.4.1.1) GAA and Acarbose 

 

 ((Figure 9, 

This Figure shows the protein structure of dock-prepped GAA wild-type protein and the docking volume, in which the 

ligands would be bound. The co-ordinate of this box is x = -12.28, y = -36.64, z = 95.29.  The size of the binding area is x = 

11.60, y = 23.14, and z = 16.00 (arbitrary units). 

The first protein-ligand complexes that were bound were the Lysosomal alpha-glucosidase (GAA, 

(5nn8 PDB)) and the compound acarbose. This was done via the box method, where the active site 

location of the GAA protein was set to the coordinates x = -12.28, y = -36.64, z = 95.29. The size of 

the binding area was set to x = 11.60, y = 23.14, and z = 16.00 (arbitrary units) (Figure 9). When 

acarbose was bound to the GAA wildtype with those volume parameters stated, the calculated 

binding energy was -89.40 kcal per mol. When acarbose was then bound to the benign variants of 

the GAA proteins, the average calculated binding energy was -84.95 kcal per mol (p=0.235), with a 

standard deviation of 7.30. In the benign cohort of variant-ligand binding, only one of the docking 

simulations provided a binding energy that was notably different from the wild-type binding energy. 

This was benign variant 7 (variant number: 92477), this complex had a binding energy of -76.41 kcal 

per mol. which was more than 15% weaker than the wild-type binding energy. The mutation of this 

variant was valine to isoleucine (residue number 816). The average root-mean-square deviation 

(RMSD) for the acarbose ligands bound to the benign group of GAA variants was 8.95, with a 

standard deviation of 6.20. When acarbose was then bound to the pathogenic variants of the GAA 

proteins, at the parameters stated the average calculated binding energy was -80.79 kcal per mol 
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(p=0.235), with a standard deviation of 9.41. In the pathogenic group of variant-ligand binding, (with 

the acarbose compound), 4 of the docked complexes had a binding energy that was considerably 

weaker than that of the wild type. These variants were pathogenic variants 1, 4, 5 and 8 (variant 

numbers: 92483, 189188, 956209 and 188797, respectively). The complex formed with the 

pathogenic variant 1 and acarbose had a binding energy of -67.17 kcal per mol. Pathogenic variant 4 

had a binding energy of -76.68 kcal per mol. The complex formed when the pathogenic variant 5 was 

bound to acarbose had a binding energy of -71.21 kcal per mol. Pathogenic variant 8 had binding 

energy of 69.18 kcal per mol. The mutation of pathogenic variant 1 was cysteine to glycine (residue 

number 103). The mutation of pathogenic variant 4 was arginine to tryptophan (residue number 

224). The mutation of pathogenic variant 5 was leucine to phenylalanine (residue number 291). The 

mutation of pathogenic variant 8 was Glycine to Arginine (residue number 309). All of these binding 

energies were at least 15% weaker than the wild-type binding energy. These complexes were also 

among those with the high RMSD values, of the pathogenic variant group (11.22, 15.52, 12.58 and 

13.12 respectively). The average root-mean-square deviation (RMSD) for the acarbose ligands bound 

to the pathogenic group of GAA variants was 9.27, with a standard deviation of 5.13. 

3.4.1.2) GAA and Miglitol 

The next protein-ligand complex that was bound was GAA and the compound miglitol. This was done 

via the box method. The binding site location for this docking simulation was set to the same 

coordinates as that of the acarbose binding simulation, x = -12.28, y = -36.64, z =95.29. The size of 

the binding area was set to x = 11.60, y = 23.14, and z = 16.00 (arbitrary units). When miglitol was 

bound to the GAA wildtype at the set parameters the calculated binding energy was -71.59 kcal per 

mol. When miglitol was then bound to the benign variants of the GAA proteins, at the parameters 

stated, the average calculated binding energy was -55.88 kcal per mol (p=0.869), with a standard 

deviation of 41.06. In the benign group of variant-ligand binding, two of the variants returned a 

binding energy that was substantially weaker than the wild-type binding energy. These variants were 

benign variants 4 and 8 (variant numbers: 92467 and 92482 respectively). The mutation of benign 

variant 4 was Glycine to Serine (residue number 576). The mutation of benign variant 8 was 

threonine to isoleucine (residue number 927). These complexes had a binding energy of -56.97 and -

60.20 kcal per mol respectively. These binding energies were at least 15% weaker than the wild-type 

binding energy. The average root-mean-square deviation (RMSD) for the miglitol ligands bound to 

the benign group of GAA variants was 4.55, with a standard deviation of 8.07.  When the pathogenic 

group of variants were bound to miglitol the average binding energy was -67.51 (p=0.869). This 

group of data had a standard deviation of 5.61. In the pathogenic group of variants, 3 docked 

complexes had binding energy that was 15% weaker than the binding energy of the wild-type 

complex. These variants were pathogenic variants 1, 6 and 9 (variant numbers: 92483, 4036 and 

972790 respectively). The pathogenic variant 1 complex had a binding energy of -61.18 kcal per mol. 

Pathogenic variant 6 had a binding energy of -61.03 kcal per mol. The complex formed when the 

pathogenic variant 9 was bound to miglitol, it had a binding energy of -56.98 kcal per mol. All of 

these binding energies were considerably weaker than the wild-type binding energy. The mutation 

of pathogenic variant 6 was Glycine to Arginine (residue number 293). The mutation of pathogenic 

variant 9 was Glycine to Arginine (residue number 335). The average root-mean-square deviation 

(RMSD) for the miglitol ligands bound to the pathogenic group of GAA variants was 4.51, with a 

standard deviation of 8.04 (Table 11). 
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GAA (5nn8) 

Variant 

Type 

Variant 

Number 

Variant Residue 

Number 

Acarbose Binding 

Energy Acarbose RMSD 

Miglitol Binding 

Energy Miglitol RMSD 

Wildtype -   -89.4 4.447 -71.59   

Control 1 281330 451 -81.41 15.488 -71.39 0.066 

Control 2 92488 223 -78.76 16.941 -71.26 0.093 

Control 3 284497 429 -94.03 2.031 -71.35 0.051 

Control 4 92467 576 -78.09 8.061 -56.97 24.058 

Control 5 4030 689 -97.57 1.681 -71.4 0.057 

Control 6 92476 780 -90.61 4.255 -71.37 0.055 

Control 7 92477 816 -76.41 5.53 -64.54 3.366 

Control 8 92482 927 -88.91 4.597 -60.2 4.046 

Control 9 283498 448 -81.78 15.451 -69.34 13.66 

Control 10 714463 449 -81.89 15.475 -71.39 0.07 

Pathogenic 1 92483 103 -67.17 11.221 -61.18 4.059 

Pathogenic 2 847865 108 -90.85 4.537 -71.41 0.066 

Pathogenic 3 189065 219 -88.53 4.982 -71.36 0.041 

Pathogenic 4 189188 224 -76.68 15.521 -67.55 3.281 

Pathogenic 5 956209 291 -71.21 12.575 -71.37 0.061 

Pathogenic 6 4036 293 -78.23 17.033 -61.03 13.384 

Pathogenic 7 180144 299 -88.76 4.37 -71.4 0.068 

Pathogenic 8 188797 309 -69.18 13.123 -71.38 0.068 

Pathogenic 9 972790 335 -91.24 4.211 -56.98 24.056 

Pathogenic 
10 284093 355 -86.09 5.114 -71.41 0.062 

Table 11, This table shows the binding energies of the GAA wildtype and 20 of its variants when they were bound to the 

ligands acarbose and miglitol. This table also shows the RMSD of the ligands in the complexes created. The ClinVar variant 

number and the variant residue number are also presented in this table. The figures highlighted in yellow are binding 

energies that are at least 15% lower than the wildtype binding energy. (Pathogenic Acarbose p= 0.575, Control Acarbose 

p= 0.406015138, Pathogenic Miglitol p= 0.113, Control Miglitol p= 0.113) 

 

5 variants had binding energies that were at least 15% weaker than the wild type when bound to the 

respective ligand. This means that 25% of the GAA dockings were affected by variants. Although 

there was no statically significant difference between pathogenic variant docking and benign variant 

docking, the fact that 25% of the variants had their docking ability considerably affected, would 

illustrate that variations, have a serious effect on the protein’s ability to bind to a ligand, and thus 

could mean that they would have an effect on the binding between drugs and proteins, which could 

lead to a drug being less effective.  

The control variant 4 and pathogenic variant 9 had the weakest binding energies when bound to 

miglitol, this is to be expected as the residue numbers of these mutations are close to the active site, 

pathogenic variants 5 and 6 are also located close to the active site and they caused the binding 

strength of the protein and the ligand to be reduced by more than 15%. From this, it can be inferred 

that the location of the variant plays a key role in the effect of a protein’s binding energy. 
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3.4.2) SCN2A 

3.4.2.1) SNC2A and Tramadol 

The next protein-ligand complexes that were simulated were the Sodium Voltage-Gated Channel 

Alpha Subunit 2 (SCN2A, (2kav PDB)) and the compound tramadol. This was done via the box 

method, where the binding location of the SCN2A protein was set to the coordinates x = 5.01, y = -

4.73, z = -0.12. The size of the binding area was set to x = 35.60, y = 35.35, and z = 29.48 (arbitrary 

units). When tramadol was bound to the SCN2A wildtype the calculated binding energy was -66.13 

kcal per mol. Tramadol was then bound to the benign variants of SCN2A, the average calculated 

binding energy for these complexes was -64.20 kcal per mol (p=0.975), with a standard deviation of 

2.79. In the benign cohort of variant-ligand complexes, none of the docking simulations returned a 

binding energy that was notably different to the wild-type binding energy. The average RMSD of the 

tramadol ligands bound to the benign group of SCN2A variants was 7.38, with a standard deviation 

of 4.85. Next tramadol was docked with the pathogenic variants of the SCN2A proteins, and the 

program returned an average binding energy of -64.15 kcal per mol (p=0.975) for these complexes, 

with a standard deviation of 4.26. In the pathogenic group of variant-ligand binding, there were also 

no docked complexes that had a binding energy that was notably different to that of the wild type. 

The average RMSD for the tramadol ligands bound to the pathogenic group of SCN2A variants was 

12.82, with a standard deviation of 7.12. 

3.4.2.2) SNC2A and Zonisamide 

SCN2A protein was then bound to the compound zonisamide. This was done using the box method. 

The binding site location for this docking simulation was set to the same coordinates as that of the 

tramadol binding simulation, x = 5.01, y = -4.73, z = -0.12. The size of the binding area was set to x = 

35.60, y = 35.35, and z = 29.48 (arbitrary units). When zonisamide was bound to the SCN2A wildtype 

the calculated binding energy was -54.75 kcal per mol. zonisamide was then bound to the benign 

variants of SCN2A, the average binding energy was -54.43 kcal per mol (p=0.998), this group of 

results had a standard deviation of 4.00. In the benign group of variant-ligand complexes, none of 

the docking simulations had a binding energy that was substantially lower than the wild-type binding 

energy. The average RMSD for the zonisamide ligands bound to the benign group of SCN2A variants 

was 12.09, this data had a standard deviation of 8.69. The pathogenic variants of the SCN2A were 

then bound to zonisamide. When the docking was conducted the average calculated binding energy 

was -54.42 kcal per mol (p=0.998), with a standard deviation of 3.82. In the pathogenic group of 

variant-ligand binding, there were also no docked complexes that had a binding energy that was 

substantially lower than that of the wild type. The average RMSD for the Zonisamide ligands, when 

bound to the pathogenic SNC2A variants was 10.15, with a standard deviation of 9.70 (Table 12).  

SCN2A 

Variant 

Type 

Variant 

Number 

Variant 
Residue 

Number 

Tramadol 

Binding Energy 

Tramadol 

RMSD 

Zonisamide 

Binding Energy Zonisamide RMSD 

Wildtype -   -66.13 - -54.75 - 

Control 1 207026 1812 -64.81 6.284 -51.71 11.705 

Control 2 916178 1813 -67.46 6.219 -55.83 11.434 

Control 3 431830 1831 -62.77 12.631 -55.05 1.571 

Control 4 1316180 1843 -66.04 3.361 -62.56 11.136 

Control 5 808853 1844 -65.88 3.504 -51.37 13.596 
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Control 6 493290 1849 -67.63 0.509 -51.28 22.751 

Control 7 493291 1850 -63.57 6.042 -58.88 3.56 

Control 8 1318870 1860 -59.67 15.063 -50.11 29.483 

Control 9 1176401 1855 -59.92 13.83 -55.62 3.404 

Control 10 452500 1780 -64.26 6.343 -51.86 12.298 

Pathogenic 1 801787 1778 -68.37 6.327 -56.53 11.459 

Pathogenic 2 207025 1780 -60.21 15.97 -57.24 5.052 

Pathogenic 3 495262 1851 -68.46 6.369 -50.62 27.692 

Pathogenic 4 813765 1872 -65.67 6.158 -50.48 2.481 

Pathogenic 5 207028 1882 -68.64 6.327 -49.17 27.134 

Pathogenic 6 207029 1882 -59.77 19.689 -50.12 11.97 

Pathogenic 7 934576 1781 -59.68 13.217 -56.16 3.841 

Pathogenic 8 654341 1804 -62.81 27.536 -57.95 4.942 

Pathogenic 9 533496 1809 -68.84 10.959 -57.03 5.028 

Pathogenic 
10 1320953 1819 -59.04 15.659 -58.93 1.883 

 Table 12, This table shows the binding energies of the SCN2A wildtype and 20 of its variants when they were bound to the 

ligands Tramadol and Zonisamide. This table also shows the RMSD of the ligands in the complexes created. The ClinVar 

variant number and the variant residue number are also presented in this table. (Pathogenic Tramadol p= 0.527, Control 

Tramadol p= 0.752, Pathogenic Zonisamide p= 0.940, Control Zonisamide p= 0.752) 

From these results (Table 12), we can infer that these variants of the SCN2A protein did not have any 

effect on the protein’s ability to bind to its ligands. This would mean that patients that possess these 

variants would likely not observe any differences in drug binding. Meaning a drug therapy designed 

to interact with SCN2A would not be any less effective on a patient with these variants. 

3.4.3) BRAF 

3.4.3.1) BRAF and Sorafenib 

Serine/threonine-protein kinase B-RAF (BRAF (2fb8 PDB)) was then docked with sorafenib, this 

docking simulation was conducted using the box method. The active site of this protein was 

determined to have the coordinates of x = -16.07, y = 6.56, and z = -4.39. The size of the binding area 

was set to x = 20.24, y = 18.74, and z = 13.48 (arbitrary units). When sorafenib was bound to the 

BRAF wildtype, the calculated binding energy was -76.63 kcal per mol. Next, the docking simulation 

between sorafenib and the benign variants of BRAF was conducted, the average binding energy of 

these complexes was -89.63 kcal per mol (p=0.343), and this group of results had a standard 

deviation of 5.90. In this docking simulation, the results returned were surprising, almost all the 

complexes returned a binding energy that was considerably stronger than the wildtype’s. The only 

docked complexes that provided a binding strength that was not considerably stronger than the 

wild-type binding energy was benign variant 8 (variant number: 40386). The mutation of this variant 

was Isoleucine to Threonine (residue number 632). All the other benign variants had binding 

strengths that were stronger than the wild-type binding energy by 15% or more. The average RMSD 

for the sorafenib ligands bound to the benign group of BRAF variants was 14.25, this data had a 

standard deviation of 1.10. Sorafenib was then bound to the pathogenic variants of BRAF, and the 

average calculated binding energy was -91.95 kcal per mol (p=0.343), with a standard deviation of 

4.69. Similar to the benign group, in the pathogenic group of variant-ligand binding, almost all the 

complexes returned binding energies that were considerably stronger than the wildtype’s. The only 

2 complexes that did not, were pathogenic variants 3 and 7 (variant numbers: 177844 and 666569, 
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respectively). The mutation of pathogenic variant 3 was Leucine to phenylalanine (residue number 

485). The mutation of pathogenic variant 7 was Tryptophan to Serine (residue number 531). All the 

other binding strengths were at least 15% higher than the wild-type binding energy. The average 

RMSD for the sorafenib ligands bound to the pathogenic BRAF variants was 13.77, with a standard 

deviation of 4.79. 

3.4.3.2) BRAF and Vemurafenib 

BRAF was then docked to the compound vemurafenib, this was carried out using the box method. 

The binding site location for this docking simulation was set to the same coordinates as that of the 

sorafenib docking, x = -16.07, y = 6.56, z = -4.39. The volume of the binding area was set to x = 20.24, 

y = 18.74, and z = 13.48 (arbitrary units). When vemurafenib was bound to the BRAF wildtype 

binding energy was -69.28 kcal per mol. The subsequent set of docking was vemurafenib and the 

benign variants of BRAF, the mean binding energy was -89.18 kcal per mol (p=0.651), with a 

standard deviation of 5.50. This result was unexpected as almost all the complexes returned a 

binding energy that was considerably stronger than the wildtype’s. The only variant that did not bind 

stronger with its ligand was benign variant 7 (variant numbers: 55794). This complex had a binding 

energy of -75.3 kcal per mol. This variant was Asparagine to Histidine (residue number 621). The rest 

of the benign variants had binding energies that were at least 15% more efficient than the wild-type 

binding energy. The RMSD for the vemurafenib ligands bound to the benign group of BRAF variants 

was 14.30, with a standard deviation of 1.37. Vemurafenib was then docked with the pathogenic 

group of BRAF variants. The average binding energy was -88.06 (p=0.651), and similar to the benign 

only 1 docked complex had a binding energy that was similar to the binding energy of the wild-type 

complex. This was pathogenic variant 8 (variant number: 44180). The pathogenic variant 8 

complexes had a binding energy of -76.33 kcal per mol. This mutation was Histidine to Tyrosine 

(residue number 574). The average root-mean-square deviation (RMSD) for the vemurafenib ligands 

bound to the pathogenic group of BRAF variants was 13.92, with a standard deviation of 1.14 (Table 

13). 

BRAF 

Variant Type 
Variant 
Number 

Variant Residue 
Number 

Sorafenib Binding 
Energy 

Sorafenib 
RMSD 

Vemurafenib Binding 
Energy Vemurafenib RMSD 

Wildtype -   -76.63 - -69.28 - 

Control 1 802375 477 -90.01 11.662 -94.3 15.177 

Control 2 1299096 705 -94.71 14.478 -87.58 12.937 

Control 3 547184 501 -94.23 16.058 -92.79 13.474 

Control 4 503530 536 -86.54 14.441 -89.27 14.643 

Control 5 864012 581 -94.35 14.49 -93.13 13.474 

Control 6 239870 594 -84.3 13.543 -86.71 14.101 

Control 7 55794 621 -93.94 14.576 -75.3 15.083 

Control 8 40386 632 -77.62 14.283 -88.82 12.383 

Control 9 1050479 637 -85.72 14.493 -92.32 17.191 

Control 10 960949 664 -94.87 14.484 -91.61 14.569 

Pathogenic 1 13962 462 -94.87 14.49 -87.38 12.324 

Pathogenic 2 44803 469 -94.73 14.502 -89.71 14.689 

Pathogenic 3 177844 485 -82.52 1.987 -91.65 14.546 

Pathogenic 4 40372 499 -92.7 14.628 -91.75 13.535 
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Pathogenic 5 40373 501 -96.04 13.551 -89.23 14.53 

Pathogenic 6 40375 505 -95.04 16.419 -91.24 14.365 

Pathogenic 7 666569 531 -85.48 14.464 -80.38 15.369 

Pathogenic 8 44810 574 -94.66 14.51 -76.33 11.761 

Pathogenic 9 13979 581 -94.58 14.491 -92.62 13.493 

Pathogenic 10 13961 600 -88.87 18.643 -90.31 14.56 

Table 13, This table shows the binding energies of the BRAF wildtype and 20 of its variants when they were bound to the 

ligands sorafenib and vemurafenib. This table also shows the RMSD of the ligands in the complexes created. The ClinVar 

variant number and variant residue number are also presented in this table. The figures highlighted in blue are binding 

energies that are within 15% of the wild-type binding energy. (Pathogenic sorafenib p= 0.065, Control sorafenib p= 0.114, 

Pathogenic Vemurafenib p= 0.114, Control Vemurafenib p= 0.114) 

When BRAF was docked with sorafenib and Vemurafenib, the average binding energies of both 

groups of variants were higher than the binding energy of the wild type, this was very surprising. A 

possible explanation for these results could be due to an incorrectly sequenced protein PDB or 

possibly an error in the PLANTS program. This is a possible limitation of bioinformatics as in some 

cases, it may be unreliable or produce abnormal results. 

3.4.4) KIT 

3.4.4.1) KIT and Fludiazepam 

  

 (Figure 10, This 

Figure shows the protein structure of dock-prepped KIT wild-type protein and the docking volume, in which the ligands 

would be bound. The co-ordinate of this box is x = 17.19, y = -16.07, z = 3.04. The size of the binding area is x = 11.44 y = 
19.60, and z = 13.36 (arbitrary units)). 

The protein Receptor Tyrosine Kinase (KIT (6mob PDB)) was then docked to the compound 

fludiazepam, using the box method. The active site of this protein was determined to have the 

coordinates x = 17.19, y = -16.07, and z = 3.04. The volume of the binding site was set to x = 11.44 y = 

19.60, and z = 13.36 (arbitrary units) (Figure 10). When bound to fludiazepam, the KIT wildtype had a 

binding energy of -67.38 kcal per mol. Fludiazepam was then docked onto the benign variants of KIT. 

The average binding energy of these complexes was -69.24 (p=0.364), this group of results had a 
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standard deviation of 3.95. In the benign cohort of variant-ligand binding, there was one of the 

docked complexes provided a binding energy that was considerably stronger than the wild-type 

binding energy. This was benign variant 7 (variant number: 953798). This mutation was Aspartic acid 

to Alanine (residue number 820). All the other benign variants had binding energies that were within 

15 % of the wild-type binding energy. The average RMSD of the fludiazepam ligands bound to the 

benign KIT variants was 20.18, this data had a standard deviation of 5.12. Fludiazepam was then 

bound to the pathogenic variants of the KIT proteins, at the same coordinates stated. The average 

binding energy for these complexes was -71.18 (p=0.364) and the standard deviation of this data 

was 5.27. In the pathogenic group of variant-ligand binding, 3 of the docked complexes returned 

surprising binding energies. The binding efficiency of these variants was more than 15% higher than 

the wild-type binding energy. These variants were pathogenic variants 2, 4 and 10 (variant numbers: 

13862, 375933 and 375928 respectively). The pathogenic variant 2 complex had a binding energy of 

-74.25 kcal per mol. Pathogenic variant 4 had a binding energy of -79.61 kcal per mol. The complex 

formed when the pathogenic variant 10 was bound to fludiazepam had a binding energy of -79.62 

kcal per mol. The mutation of pathogenic variant 2 was Glutamic Acid to Lysine (residue number 

839). The mutation of pathogenic variant 4 was Alanine to Proline (residue number 829). The 

mutation of pathogenic variant 10 was Aspartic acid to Tyrosine (residue number 820). The average 

RMSD of the fludiazepam ligands bound to the pathogenic group of KIT variants was 19.64, this data 

had a standard deviation of 6.93 

3.4.4.2) KIT and Ergocalciferol 

The KIT was then subsequently bound to the compound ergocalciferol. The binding site location for 

this docking simulation was set to the same coordinates as that of the fludiazepam docking 

simulation. When ergocalciferol was bound to the KIT wildtype the calculated binding energy was -

85.24 kcal per mol. Then Ergocalciferol was docked onto the benign variants of KIT, and the average 

binding energy returned was -85.56 kcal per mol (p=0.429), this group of results had a standard 

deviation of 2.93. In the benign group of docked complexes, none of the docking simulations had a 

binding energy that was considerably lower than the wild-type binding energy. The average RMSD 

for the ergocalciferol ligands bound to the benign group of KIT variants was 18.84, this data had a 

standard deviation of 6.58. Subsequently, ergocalciferol was bound to the pathogenic variants of 

KIT. When the docking was conducted the average calculated binding energy was -84.42 kcal per mol 

(p=0.429), with a standard deviation of 3.33. None of these docked complexes had a binding energy 

that was notably lower than that of the wild type. The average RMSD of the ergocalciferol ligands 

bound to the pathogenic variants of KIT was 16.59 with a standard deviation of 8.63 (Table 14). 

 

KIT 

Variant Type 
Variant 
Number 

Variant Residue 
Number 

Fludiazepam Binding 
Energy 

Fludiazepam 
RMSD 

Ergocalciferol Binding 
Energy Ergocalciferol RMSD 

Wildtype -   -67.38 - -85.24 - 

Control 1 1062801 869 -68.55 20.262 -87.9 20.269 

Control 2 237266 874 -69.34 20.254 -88.33 20.483 

Control 3 1061062 877 -67.61 22.948 -80.62 9.42 

Control 4 578876 891 -67.67 22.906 -82.12 10.036 

Control 5 838460 899 -69.14 20.247 -88.29 20.471 

Control 6 577278 804 -69.43 20.23 -84.75 25.813 
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Control 7 953798 820 -79.51 25.526 -86.45 25.738 

Control 8 528546 830 -64.06 6.272 -82.28 10.253 

Control 9 409781 844 -69.45 20.217 -88.27 20.488 

Control 10 1037520 867 -67.67 22.904 -86.57 25.442 

Pathogenic 1 13861 847 -69.39 20.211 -79.28 20.515 

Pathogenic 2 13862 839 -74.25 24.874 -83.06 2.685 

Pathogenic 3 13864 584 -69.42 20.198 -88.33 20.178 

Pathogenic 4 375933 829 -79.61 25.544 -88.08 20.366 

Pathogenic 5 13843 664 -69.31 20.259 -84.07 22.338 

Pathogenic 6 13863 816 -69.47 20.209 -86.65 25.826 

Pathogenic 7 13858 796 -68.23 10.979 -80.41 1.557 

Pathogenic 8 13866 642 -69.99 24.433 -88.38 20.24 

Pathogenic 9 375918 569 -62.52 4.262 -83.92 22.324 

Pathogenic 10 375928 820 -79.62 25.499 -82.06 9.913 

Table 14, This table shows the binding energies of the KIT wildtype and 20 of its variants when they were bound to the 

ligands Fludiazepam and Ergocalciferol. This table also shows the RMSD of the ligands in the complexes created. The 

ClinVar variant number and variant residue number are also presented in this table. The figures highlighted in green are 

binding energies that are more than 15% higher than the wildtype binding energy. (Pathogenic fludiazepam p= 0.206, 

Control fludiazepam p= 0.509, Pathogenic ergocalciferol p= 0.920, Control ergocalciferol p= 0.820) 

 

In this result when fludiazepam was bound to the variants of KIT, some complexes provided bindings 

that were more than 15% stronger than the wildtype, binding energy (Table 14). It is possible that 

this is due to the mutation causing an increased affinity to the ligand. In drug metabolism, an 

increased affinity can be more dangerous than a decreased affinity as the drug may be upregulated 

or unable to be metabolised, which can lead to death (Zhang & Tang, 2018). As there are no 

instances of increased binding energy when KIT is bound to ergocalciferol, it can be assumed that 

this increase in affinity to a ligand is ligand-dependent, thus supporting the argument for precision 

medicine. As patients would have different responses depending on the variants they possess and 

the type of drug therapy.  

The residue numbers of the 4 variants that had binding energies that were more than 15% stronger 

than the wildtype were all between 820-839, this infers that residues in that region may play a role 

in binding, even though these residues are not directly in the active site. 

 

3.4.5) PAH 

3.4.5.1) PAH and Droxidopa 

The next protein-ligand complexes that were produced were Phenylalanine Hydroxylase (PAH, (1j8u 

PDB)) and the compound droxidopa. This was done via the box method, where the binding site 

location of the PAH protein was set to the coordinates x = -5.47, y = 24.79, and z = 6.32. The volume 

of the binding site was set to x = 12.65, y = 14.00, and z = 7.09 (arbitrary units). When droxidopa was 

bound to the PAH wildtype the calculated binding energy was -74.75 kcal per mol. Droxidopa was 

then docked onto the benign variants of the PAH proteins, the average calculated binding energy 

was -78.03 kcal per mol (p=0.671), with a standard deviation of 2.91. In the benign cohort, none of 

the docking simulations provided a binding energy that was considerably weaker than the wild-type 

binding energy. The average RMSD of the droxidopa ligands bound to the benign variants of PAH 
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was 3.74, with a standard deviation of 1.16. droxidopa was then docked to the pathogenic variants 

of PAH, the average binding energy of these complexes was -77.41 kcal per mol (p=0.671), with a 

standard deviation of 3.28. Again, all the docked complexes had a binding energy that was within 

15% of the wild-type binding energy. The average RMSD of the droxidopa ligands bound to the 

pathogenic variants of PAH was 3.87, with a standard deviation of 0.99. 

3.4.5.2) PAH and Sapropterin 

The last protein-ligand complexes that were produced using the box method were the PAH- 

sapropterin complexes. The binding site location for this docking simulation was set to the same 

coordinates as the droxidopa binding simulation. The binding energy when sapropterin was bound 

to the PAH wildtype was -69.99 kcal per mol. Next, sapropterin bound to the benign variants of PAH, 

and the average binding energy was -76.84 kcal per mol (p=0.328), this group of results had a 

standard deviation of 0.35. All of the docking simulations had binding energies that were within 15% 

of the wild-type binding energy. The average RMSD for the sapropterin ligands bound to the benign 

variants of PAH was 2.63, this data had a standard deviation of 1.80. Sapropterin was then bound to 

the pathogenic variants of the PAH proteins. When the docking was conducted the average 

calculated binding energy was -76.62 kcal per mol (p=0.328), with a standard deviation of 0.60. In 

the pathogenic group of variant-ligand binding, there were also no docked complexes that had a 

binding energy that was considerably lower than that of the wild type. The average RMSD of the 

sapropterin ligands bound to the pathogenic group of PAH variants was 2.02, with a standard 

deviation of 0.72 (Table 15). 

PAH 

Variant 
Type 

Variant 
Number 

Variant Residue 
Number 

Droxidopa Binding 
Energy 

Droxidopa 
RMSD 

Sapropterin Binding 
Energy Sapropterin RMSD 

Wildtype -   -74.75 - -69.99 - 

Control 1 102851 274 -80.21 2.524 -77 6.036 

Control 2 975467 274 -79.61 3.836 -76.09 1.773 

Control 3 763076 337 -78.68 4.529 -77.25 6.021 

Control 4 120290 290 -74.68 3.096 -76.91 1.789 

Control 5 872846 356 -79.75 2.501 -76.95 1.81 

Control 6 102469 340 -81.8 2.501 -76.95 1.816 

Control 7 937913 418 -76.62 2.984 -76.94 1.814 

Control 8 932266 412 -79.84 5.059 -76.98 1.815 

Control 9 102544 392 -76.51 5.06 -76.36 1.538 

Control 10 99161 374 -72.33 5.3 -77 1.821 

Pathogenic 1 102579 417 -72.6 5.336 -76.11 1.776 

Pathogenic 2 552488 419 -79.79 4.721 -77.01 1.817 

Pathogenic 3 940659 413 -76.09 4.926 -76.96 1.792 

Pathogenic 4 853581 392 -79.66 3.841 -76.99 1.81 

Pathogenic 5 108515 225 -79.64 3.883 -76.95 1.818 

Pathogenic 6 102874 282 -79.81 4.359 -76 4.065 

Pathogenic 7 102866 280 -81.9 2.49 -76.96 1.805 

Pathogenic 8 556296 267 -76.61 2.988 -77.03 1.815 

Pathogenic 9 619150 263 -72.25 3.616 -75.31 1.686 
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Pathogenic 
10 619163 233 -75.7 2.534 -76.91 1.811 

Table 15, This table shows the binding energies of the PAH wildtype and 20 of its variants when they were bound to the 

ligands Droxidopa and Sapropterin. This table also shows the RMSD of the ligands in the complexes created. The ClinVar 

variant number is also presented in this table. (Pathogenic Droxidopa p= 0.314, Control Droxidopa p= 0.460, Pathogenic 
Sapropterin p= 0.112, Control Sapropterin p= 0.113) 

Similar to the results from the SCN2A protein, these results (Table 15), allow for an inference to be 

made that patients who possess these variants would likely not observe any differences in drug 

binding. As the results show that none of the docked variants, had a considerable effect on the 

binding ability of PAH. This would mean that drug therapies created to interact with PAH should 

work as designed, and would not face a decrease in effectiveness due to these variants 

 

4) Discussion and Future Works 
4.1) Discussion  

4.1.1) Bioinformatic Pipeline 

There is a lot to take away from the results produced in this research project as the project 

investigated many avenues within bioinformatics, precision medicine and polymorphic variation. 

This project hypothesised the development of a bioinformatic tool, that retrieves and integrates vast 

amounts of information from multiple databases and could be used to aid many clinical research 

investigations. This project also had a hypothesis that single nucleotide variants in proteins have an 

adverse effect on the binding between proteins and drug compounds, which can severely hinder 

how effective a drug is. In this project, the bioinformatic pipeline provided a lot of key information, 

that allowed for the investigation into the effect of protein docking to take place. This information 

included all the known variants of each protein, along with a large amount of information on each 

variant. It also provided all the compounds that are associated with each protein and an abundance 

of information on the compounds. This showed that bioinformatics tools are very useful. The 

pipeline was able to show its real potential to drive forward our use of precision medicine, during 

the case studies. This showed the pipeline was able to gather vast amounts of information, sort the 

information and incorporate multiple databases. The pipeline was able to gather enough 

information to find the most prevalent pathogenic variants, using one database of information and 

then it was able to find compounds that are associated with these variants, which incorporates 

another database. The pipeline also demonstrated its ability to start the data collection and flow of 

information from any part of the database. This means the user does not have to start from the 

same point and is able to start the collection of information from any point. An example of this was 

shown in the Acute Myeloid Leukaemia case study, where the pipeline was able to start with a 

disorder and then incorporate other databases involved to find, the proteins associated with the 

disorder and then the compounds associated with the proteins. The pipeline is able to retrieve every 

known variant for all the proteins input, and due to the pipeline’s ability to select and sort data, it is 

possible to display pathogenic variants of a protein, that occur in a select range of residue numbers. 

The sheer power of the pipeline serves as an example of the full potential of bioinformatics and the 

implications it can have for precision medicine.  

The process of manually gathering proteins, variants, compounds, disorders, and treatment 

information, was very effective and very useful. This allowed for the optimisation of the pipeline, 

allowing it to be as efficient as possible. Due to this, the pipeline can present all the key information 
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available from the databases that were scraped. All the entities present in the entity-relationship 

diagram, and later implemented in the pipeline were included as they proved a wholistic view of 

each protein, compound, and disorder. This makes the pipeline powerful and unique, as no other 

database is able to provide this combination of data simultaneously.    

There are no other databases, online, that possess the specific utility of this pipeline. Unlike, many 

other databases such as ClinVar and UniProt, the database produced in this project allows for the 

seamless integration of multiple different datasets of information. This means that when searching 

for variant information, the user can also be informed of drug compound information for drugs 

associated with the proteins. Subsequently, if a user was to investigate a specific disorder, the 

pipeline can provide information on protein and drug compounds associated with the disorder.  This 

is a feature currently unavailable in databases like ClinVar and MedGen, which is evidence of how 

powerful the database is.  

4.1.2) The difference between pathogenic and benign variants 

For all the groups of protein-ligand docking conducted, an ANOVA was undertaken on the data. The 

null hypothesis of this ANOVA was that there was no significant difference between the benign 

variants and pathogenic variants. When the ANOVAs were conducted on all the docked proteins 

none of them returned an ANOVA significance value that was lower than p=0.05, this meant that the 

null hypothesis had to be accepted. This result could be due to several reasons, one being that the 

pathogenicity of the variant is not related to the protein's binding ability, therefore meaning that the 

binding energy of the protein is not affected by the mutation but rather, its ability to carry out its 

function more widely. 

In the dockings with the GAA protein, there were more variants from the pathogenic cohort than the 

benign cohort that had binding energies that were at least 15% lower than the wild-type docking. 

When an ANOVA was conducted on this data, the p values were p=0.575 and p=0.113 (when bound 

to Acarbose and Miglitol, respectively) meaning there was no statistically significant difference 

between the benign variants and pathogenic variants. These results allowed for the conclusion to be 

made that although as a whole the difference between the pathogenic docking and the benign 

docking was not large, individually more pathogenic variants carry a greater risk of having a negative 

effect on the binding ability of a protein and its ligand. This shows that on some occasions these 

approaches might be useful to implement in precision medicine strategies, as a protein's ability to 

bind and dock with the drug treatments can be severely hampered by polymorphic variations. 

Precision medicine would be very useful in this scenario, as genetic screening techniques (such as 

quantitative PCR) can be used, this would mean patients with the variants, that are known to 

possess a variant associated with impaired binding of a specific ligand would be detected, allowing 

for a plan of treatment that consists of drug treatments that are more likely to be effective to be 

developed for them. It can also stop the wasteful use of drugs on patients who would not find them 

effective due to polymorphic variation, this can save a lot of money (Akhmetov & Bubnov, 2015).  

The results also showed that 25% of the GAA dockings were affected by variants, from this it was 

inferred that variations could have a serious effect on protein binding and therefore have an adverse 

effect on drug binding, which could lead to a drug being less effective. This finding is echoed in a 

research project conducted on Alpha-1-Acid Glycoprotein, where they stated age-related changes to 

drug binding, had caused Alpha-1-Acid Glycoprotein to bind less efficiently to drugs (Smith & Waters, 

2018). 
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4.1.3) The effect variant location has on binding 

In the GAA docking simulation, when bound to miglitol, control variant 4 and pathogenic variant 9 

had the lowest binding energy, the residue numbers of these mutations are close to the active site. 

Pathogenic variants 5 and 6 are also located close to the active site and they caused the binding 

energy of the protein to be reduced by more than 15%. This implies that the location of the 

mutation plays a role in how much the binding site is affected. This is what was expected of the 

results, as changes to the amino acid near the binding site could affect the bonds produced when a 

ligand is docked. This is similar to what was found in the bind site analysis of human carbonic 

anhydrases, where it was stated that moieties needed to form H-bonds with H64 for CAA to work 

(Petreni et al., 2021). 

In the docking simulation between the variants of KIT and fludiazepam, some complexes provided 

binding energies that were more than 15% higher than the wild-type (Table 14). The understanding 

of this is that the mutation could have caused an increased affinity to the ligand. This can be very 

dangerous as an increased affinity for a drug can cause its effects to be upregulated, which can cause 

serious problems, and sometimes even death (Zhang & Tang, 2018).  The results, when KIT was 

bound to Ergocalciferol, showed no variant with a binding energy that was considerably different to 

the wild-type binding energy. From this, it was gathered that the increase in affinity was dependent 

on the ligand thus reinforcing the case for consideration in precision medicine, as this shows patients 

would have different responses to the ligands depending on the variants they possess.  

The residue numbers of the four variants that had binding energies that were more than 15% higher 

than the wildtypes were all between 820-839. This was not a region next to the drug binding site 

however, this could mean, that region may play a role in binding, even though residues are not 

directly in the active site, as this is not unheard of. There have been some cases where outside active 

site mutations have increased enzyme activity, it is thought that this occurs due to changes in the 

enzyme’s secondary structure (Ali, Azam, & Khan, 2018).  

In the dockings conducted on SCN2A and PAH, none of the docked complexes returned a binding 

energy that was more than 15% lower than the binding energy of the wild type. From this result, it 

can be inferred that none of the variants studied appeared to have any effect on the protein-ligand 

binding. Of the 20 randomly chosen variants of PAH, only 3 of them were located near the PAH 

binding site, pathogenic variants 6, 7, and 10 (residue numbers: 282, 280 and 237 respectively). The 

lack of variant binding energies that were more than 15% lower than the wildtype binding energy 

could be attributed to there being, only a few variant residues located near the binding site. This 

supports the argument, that the location of a variant residue can heavily influence the protein’s 

ability to bind to a ligand and therefore, would affect drug binding ability. Contrastingly, all the 

variants of SCN2A were in the binding site, and none of the docked variant complexes returned a 

binding energy that was more than 15% lower than the wild-type binding energy. A reason for this 

could be due to the weak binding that was present. Of all the proteins docked, SCN2A had the 

lowest wild type, average benign variant and average pathogenic variant binding energy. From this, 

it can be inferred the bonds involved in the docking between the protein and its ligands were 

already weaker than in the other proteins. Therefore, the introduction of a variant, to the protein 

sequence, perhaps has a relatively lower effect on protein binding ability, than it would in a complex 

with strong protein-ligand binding forces. 

 On the contrary, it has been documented that mutations outside the active site may still have an 

impact on the proteins’ ability to binding to ligands. Structural studies on 45 HIV-1 protease 

mutants, showed that 35 of them were located outside the active site. These mutations were 
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considered secondary or accessory mutations and were thought to indirectly impact inhibitor 

binding while also affecting the enzyme’s fitness and stability (Ragland et al., 2014). In another 

study, random mutants of β-glycosidase were screened to investigate the effect it has on binding 

with the substrate glycone. Among the mutations selected eight occurred in the C-terminal half of β-

glycosidase and only two were at the active site. Enzyme kinetics confirmed that these mutations 

resulted in a change in the preference for glycone. (kcat/Km fucoside)/ (kcat/Km glucoside) ratios, 

showed that the mutations in the active site and the mutations outside the active site had similar 

effects on substrate specificity. Based on the data they collected they concluded that even 

mutations far from the active site affected the binding of glycosidase to its substrates (Mendonça & 

Marana, 2011). 

In some clinical scenarios, a weaker bond between the protein and its drug compound may be 

preferable. Such a situation would be when a patient has been treated with a drug compound of 

considerable strength or toxicity. In this scenario, if the proteins’ ability to bind to the compound 

had increased, they may encounter severe side effects and thus a weaker interaction between the 

protein and the compound would be preferable. Using molecular medicine techniques could, 

however, nullify this, as a complete understanding of a patient’s genome, would allow for the 

identification of specific proteins that would have weaker interactions, and thus their treatment 

could be modified to incorporate this difference. 

The results gathered from the use of molecular docking, suggest that there is a relationship between 

the location of a variant to the drug binding site and the impact on drug binding. This supports one 

of the main hypotheses of this study. This has been concluded because the results show most of the 

variants that have binding energies that considerably differed from the wildtype’s were found near 

the drug binding site. Also, SCN2A had no variant complexes with a binding energy that differed by 

at least 15% from the wild type, and a large majority of its variants were located away from the drug 

binding site. This conclusion was able to be reached by the use of bioinformatic tools, further 

illustrating that bioinformatic tools and approaches can aid the development of precision medicine 

approaches.  

4.1.4) The effect of amino acids mutations 

When the docking between GAA and acarbose was conducted, the variants that had a binding 

energy that was at least 15% lower than the wildtype had the mutations of cysteine to glycine 

(residue number 103), arginine to tryptophan (residue number 224), leucine to phenylalanine 

(residue number 291), glycine to arginine (residue number 309) and valine to isoleucine (residue 

number 816). In 3 out of 5 of these mutations, the polarity of the side chain of the amino acid had 

been altered (cysteine to glycine, arginine to tryptophan and glycine to arginine). From this, it can be 

inferred that the changes in the side chain polarity of specific residues play a role in a protein's 

ability to bind to drug therapies. This further demonstrates the hypothesis that polymorphic variants 

can adversely affect protein-drug binding, thus making the drug treatment less effective. This is 

because a change in polarity can affect the bonds involved in docking, thus affecting binding energy 

(Raschka, Wolf, Bemister-Buffington & Kuhn, 2018). This is further supported in the docking 

between GAA and Miglitol, where all the variants with binding energies more than 15% lower than 

the wildtype had mutations that cause an alteration to the polarity of the wildtype residue variants 

were glycine to arginine (residue number 293), glycine to arginine (residue number 335), glycine to 

serine (residue number 576), threonine to isoleucine (residue number 927) and cysteine to glycine 

(residue number 103). The substitutions of residue numbers 293, 335 and 576 are also located close 

to the binding site. This could be a reason why their binding energies are more than 15% lower than 
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the wild type's. In real-world terms, this could be dangerous, if a patient were to possess a 

polymorphic variant that caused a change to a side chain of one of the amino acid residues, this 

could heavily impact its ability to bind to drugs, that are used as treatment. In a study conducted on 

amino acid side chains, the affinity of 3 amino acids (with different side-chain polarity) to non-

stoichiometric hydroxyapatite nanoparticles was tested, and the study concluded glycine and lysine 

had a greater attachment to non-stoichiometric hydroxyapatite nanoparticles than aspartic acid, due 

to the polarity of its side chain (Comeau & Willett, 2018). This agrees with the findings that the 

polarity of the side chain can heavily influence its affinity for bound entities. 

4.2) Future Work 

There have been previous studies that have shown great promise in terms of predicting the 

pathogenicity of variants (Pejaver et al., 2020) (Carter, Douville, Stenson, Cooper & Karchin, 2013). 

However, for bioinformatics to truly have a lasting impact on clinical medicine, advancements in 

computer science driving the new approaches being developed are key. This will make 

bioinformatics tools more efficient and cost-effective. As computers get faster and datasets get 

larger, more complex studies can be conducted. An example of this already showing fruitful results, 

is in the development of the PathoSystems Resource Integration Center (PATRIC) (Davis et al., 2019). 

PATRIC offers web-based visualization and comparative analysis tools, for bacteria with a special 

emphasis on pathogens. PATRIC has been able to be achieved because of the increased cost-

effectiveness of genomic and other omics-related work over the past several years.  

Well-implemented pipelines can be powerful tools and, in this project, the pipeline has been shown 

to potentially have many real-world applications. However, as with many bioinformatic approaches, 

the translation of a practical scenario (in this case drug development) into a completely 

computerised system is very difficult and some scenarios cannot be accounted for. In this project, 

the pipeline is able to supplement the drug development process, especially the drug target 

identification phase, which can make data collection and analysis much quicker. By entering a 

disorder, the pipeline is able to identify proteins involved in the disorder and known compounds that 

bind to the specific proteins, however, the pipeline does not account for the effect of the compound 

on specific organs and organ systems. The pipeline also does not state the toxicity of the compounds 

and the level at which the compound is toxic. These are all aspects of drug development that would 

be investigated, either in vivo or in vitro. To further advance the pipeline and increase the pipeline’s 

ability to be applied in clinical situations, the addition of these as attributes within the compound 

entity should be considered. This would require the data to be present and readily available to be 

web-scraped and added to the database. This is one of the few disadvantages of bioinformatics, as it 

requires real-world practical experiments to be conducted first, in order to learn from the data and 

produce computed predictions and analysis. The donation of data and the development of  data 

warehouses; for data sharing and the definition of standards for sharing phenotypic data are 

essential for the advancement of bioinformatics (Bellazzi et al., 2012). 

Looking into the future of the pipeline, the aim would be to make constant advancements and 

improvements to the pipeline. The application of the pipeline into more complex clinical scenarios 

would require further development of the pipeline. The goal would be to expand and develop the 

pipeline to the stage in which it could analyse multi-variants or multi-point mutations simultaneously 

and then to a point where whole human genomes can be input into the pipeline. This would require 

upscaling of the pipeline from storing the data for 720 proteins from the full pharmacology set to 

over 20,000. Currently, the pipeline can be used to investigate single mutations of the proteins in the 

full pharmacology set. With the constant advancement in human genome sequencing, the hope for 
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the future would be to incorporate that heavily into the pipeline allowing for the genome of a 

patient to be entered into the pipeline. Then, using the pipeline’s capability to link variants to 

disorders and to treatments of the disorders, all the pathogenic variants the patient possesses would 

be highlighted and considered in light of treatments if necessary. As we advance into a world where 

genome sequencing may become standard, the aim of using such pipelines as generic screening 

tools looks feasible (Nurk et al., 2022). 

The field of bioinformatics has great potential and can advance our skills in precision medicine. 

Further research would need to be done. Looking onward from this project, a similar analysis could 

be conducted using the pipeline established, where a larger set of proteins, variants and ligands 

would be investigated. This would provide greater insight into the complete association between 

single nucleotide variations and drug binding. It would be favourable for the database to be able to 

encompass the whole human proteome, this would allow for a lot more inferences to be made and 

increase the pipelines’ capability for use as a research tool.  

4.3) Conclusion 

To conclude, the development of a bioinformatics pipeline showed that in silico approaches have 

great potential, both in clinical research and in precision medicine. The bioinformatics pipeline 

yielded very positive results as it was able to gather and integrate layers of relevant information, 

from multiple global sources, on a host of clinically relevant proteins and diseases. The 

bioinformatics pipeline is very powerful with great potential, its ability to be able to incorporate 

multiple databases altogether could result in it proving to be a very useful tool in research scenarios 

and precision medicine. The incorporation of polymorphic variants data with disorders and 

treatment information is one of the building blocks of precision medicine, and a tool that can 

seamlessly integrate databases containing a large amount of information from these fields will aid 

the advancement of precision medicine.  

This project concluded that although there was not a statistically significant difference between the 

protein-ligand binding energies of all the pathogenic variants and all the benign variants, there were 

many individual variants that provided striking results, in being much different to the wild-type. 

Several individual variants returned results that were completely different to the wildtype results, 

illustrating a possible association between variants and impaired drug binding ability. If patients 

carried these variants, there would be a sizeable number of them that would have reacted very 

differently to the ligands bound, and therefore a customised treatment would be required for them. 

This project also allowed for the conclusion that the effect of the variations on protein can be caused 

by a multitude of factors, such as the specific residues that are mutated in the variants and the 

location of the mutation. These can play a large role in a protein's ability to bind to its ligands, either 

by affecting the bonds that are formed when bound or by a separate effect on the structure of the 

protein. This can cause the protein to react differently to certain ligands and drug compounds. With 

advancements in precision medicine, the problems caused by this would be diminished, as the 

identification of functionally significant variants can be detected and then considered accordingly. 

This saves money, time and could even save lives. 
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