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a b s t r a c t

Depression is the leading cause of disability worldwide and its effects can be fatal, with

over 800,000 people dying by suicide each year. Neuromodulatory treatments such as

transcranial magnetic stimulation (TMS) are being used to treat depression. Despite its

endorsement by two regulatory bodies: NICE (2016) and the FDA (2008), there are major

questions about the treatment efficacy and biological mechanisms of TMS. Ahn et al.’s

(2013) justified the use of TMS in a clinical context in an important study indicating that

excitatory TMS increases reward responsiveness. A pseudo-replication of this study by

Duprat et al., (2016) also found a similar effect of active TMS, but only with the addition of

an exploratory covariate to the analysesetrait reward responsiveness. Here we replicate

Ahn et al.’s (2013) key study, and to test the reliability of the effects, and their dependency

on trait reward responsiveness as described by Duprat et al., (2016). Using excitatory and

sham TMS, we tested volunteers using the probabilistic learning task to measure their

reward responsiveness both before and after stimulation. We also examined affect (posi-

tive, negative) following stimulation. Irrespective of TMS, the task was shown to be sen-

sitive to reward responsiveness. However, we did not show TMS to be effective in

increasing reward responsiveness and we did not replicate Ahn et al., (2013) or Duprat

et al., (2016)'s key findings for TMS efficacy, where we provide evidence favouring the null.

Moreover, exploratory analyses suggested following active stimulation, positive affect was

reduced. Given our findings, we question the basic effects, which support the use of TMS

for depression, particularly considering potential deleterious effects of reduced positive

affect in patients with depression.
rst Stimulation; (r)TMS, (repetitive) Transcranial Magnetic Stimulation; DLPFC, Dorsolateral
h-frequency; PLT, Probabilistic learning task; RB, Response bias; TEPS, Temporal Experience
and Negative Affect Scale; NICE, National Institute for Health and Care Excellence; FDA,
affect; PA, Positive affect.
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1. Introduction

Depression is the leading cause of disability across the globe

(WHO, 2017), with over 300 million people estimated to suffer

from the disease (WHO, 2017). It is characterised by pervasive

low mood, loss of pleasure, sleep disturbance and reduced

libido, amongst other symptoms (see ICD-10; WHO, 1992).

These symptoms of depression impair daily functioning,

which can impact on employee retention, and quality of life

(Kessler, 2012). The effects of depression can be fatal, with as

many as 800,000 people globally dying by suicide (WHO, 2017).

It is apparent fromboth the economic and personal costs of

depression that effective evidence-based interventions are of

paramount importance. The recommended treatment for

moderate depression is psychological therapy with medica-

tion (NICE, 2009). However, the long-term effectiveness of

these treatments is subject to debate (Ali et al., 2017; Cuijpers

et al., 2013; Knekt et al., 2008). More recently the National

Institute for Health and Care Excellence (NICE, 2015) in the UK,

and the Food and Drug Administration (FDA, 2008) in the USA,

approved the use of repetitive transcranial magnetic stimu-

lation (rTMS) to treat depression. TMS has been repeatedly

shown to affect cortical excitability (Huang et al., 2011).

However, the precise neural mechanisms of action with

respect to depression are unclear (Aleman, 2013; Janicak &

Dokucu, 2015; Wassermann & Zimmermann, 2012). There

are also major and important questions around its efficacy as

a treatment (Chervyakov et al., 2015; Janicak & Dokucu, 2015;

Martin et al., 2003; Matheson et al., 2016; Wassermann &

Zimmermann, 2012).

The dorsolateral prefrontal cortex (DLPFC) is the region

most commonly targeted in the treatment of depression

(Lefaucheur et al., 2014), where TMS appears to reduce

symptoms of depression (Conelea et al., 2017; Fitzgerald et al.,

2009). In particular, a reduction in negative mood is observed,

as measured on the Hamilton depression scale (Chen et al.,

2013). However, improvement of symptoms is inconsistent

across studies and individuals (Fox et al., 2013; see review by

Loo & Mitchell, 2005). There is also little consensus amongst

studies regarding the most effective frontal region to target:

the left, bilateral, or right prefrontal cortex (Chen et al., 2017; Li

et al., 2014). The evidence base also shows considerable vari-

ation for the number of treatment sessions provided (George

et al., 2009) and the type of TMS protocols administered (e.g.,

Bakker et al., 2015; Chung et al., 2015; Duprat et al., 2016).

Further discrepancies between treatment protocols extend to

the frequencies of the rTMS applied, i.e. low-frequency TMS

(i.e. <1 Hz; Liu, Zhang, Zhang, & Li., 2014) versus higher-

frequency TMS (Fitzgerald et al., 2009; Liu et al., 2014). Addi-

tionally, multi-frequency protocols such as Theta Burst

Stimulation are increasingly being used due to their relative

efficiency and shorter duration (Bakker et al., 2015; Bulteau

et al., 2017; Chung et al., 2015; Duprat et al., 2017). Predomi-

nantly through demonstrations of effects upon motor cortical
excitability, low-frequency (LF; ~ <1 Hz) TMS has been asso-

ciated with reduced cortical excitability, whilst high-

frequency (HF; ~ >5 Hz) TMS is associated with excitation of

neural activity (Huang et al., 2005; Siebner & Rothwell, 2003).

However, despite these opposing effects on physiology, a

meta-analysis conducted by Chen et al. (2013) indicated both

high and low-frequency TMS yielded similar reductions in

depressive symptoms. Despite the similar efficacy of LF-TMS

and HF-TMS (see RCT by Eche et al., 2012) the majority of the

current protocols use HF-TMS over the left DLPFC to increase

excitability in the treatment of depression (Allan et al., 2012;

Wassermann & Zimmermann, 2012).

More recent rTMS protocols have begun using intermittent

Theta Burst Stimulation (iTBS) to stimulate the left DLPFC

(Duprat et al., 2016; Duprat et al., 2017). iTBS combines low and

high-frequency stimulation and has been shown to be rela-

tively effective in reducing the TMS intensity required to

produce a motor evoked response, indicating increased

excitability (Huang et al., 2005). However, the precise fre-

quency range of iTBS protocols used in depression treatment

is variable (cf. Blumberger et al., 2018; Bulteau et al., 2017;

Duprat et al., 2017; Fitzgerald et al., 2018; Huang et al., 2005).

The development of TMS protocols for treating depression is

promising, yet the variation between competing treatment

protocols has led to inconclusive results. Despite variation

between protocols (iTBS, low-frequency rTMS; high-

frequency rTMS) all competing treatment protocols are

endorsed by NICE (2015) and the FDA (2008).

Common symptoms of depression that have been linked to

the functioning of the DLPFC include reduced reward respon-

siveness and anhedonia (Ballard et al., 2011; Staudinger et al.,

2011). In particular, the DLPFC appears to be innervated via

dopaminergic pathways (Der-Avakian & Markou, 2012; Fidalgo

et al., 2014) and is thought to play a role in external reward

anticipation (Ballard et al., 2011). It has been suggested that

facilitatory rTMS applied to the left DLPFC stimulates the

mesolimbic reward pathway (Janicak&Dokucu, 2015), which is

hypoactive in depression (see review by Belujon & Grace, 2017;

Koenigs & Grafman, 2009). The probabilistic learning task (PLT;

Pizzagalli et al., 2005) has been robustly related to anhedonia

(Pizzagalli et al., 2008; Pizzagalli, et al., 2005) and reward pro-

cessing in healthy and depressed individuals (Huys et al., 2013).

It has also been associated with neural areas such as the left

DLPFC, which have been linked to reward responsiveness

using fMRI (Der-Avakian & Markou, 2012; Ott et al., 2011) and

electrophysiological approaches (e.g., Pizzagalli, et al., 2005).

More recently the probabilistic learning task has been used to

measure reward responsiveness following rTMS stimulation

(Ahn et al., 2013; Duprat et al., 2016; Duprat et al., 2017).

One of the most important pieces of evidence that has

contributed to the advancement of rTMS to treat depression is

the work of Ahn et al. (2013). The authors applied facilitatory

HF-TMS to the left DLPFC in a control population, leading to

heightened reward processing following rTMS compared to

sham. Duprat et al., (2016) attempted a partial replication of
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Ahn et al.’s (2013) study, also using the probabilistic learning

task, and did not find an increase in reward processing in

comparison to an alternative control condition. Nevertheless,

reward responsiveness appeared to be modulated by partici-

pants' trait hedonic capacity (Duprat et al., 2016), which was

taken as further support for the use of facilitatory TMS as a

treatment. If such an effect replicates, it might provide further

support for the recent suggestion of a personalised approach

in the use of rTMS as a treatment (Singh et al., 2019). However,

the inconsistency in the effect between Ahn et al., (2013) and

Duprat et al., (2016), and the post-hoc nature of the relation-

ship to trait capacity, challenges the reliability of this evi-

dence. Despite the inconsistency between these findings, both

of these studies have been used to justify the use of TMS on

patients as treatment for depression (e.g., Blumberger et al.,

2018; Duprat et al., 2017).

Taken together, the above evidence indicates that the

ability of TMS to alter neuronal functioning may impact key

markers of depression (anhedonia and reward sensitivity),

despite the mixed evidence. This promising avenue for

treatment comes at a time when both the efficacy and cost of

traditional treatments of depression are a concern (Ali et al.,

2017; Friborg & Johnsen, 2017; Johnsen & Friborg, 2015). For

example, the long-term effectiveness of low intensity Cogni-

tive Behavioural Therapy, once thought to be the gold stan-

dard (Layard& Clark, 2014), is now being questioned (Ali et al.,

2017). In addition, the efficacy of antidepressant medication

compared to placebo for depression is also mixed (cf. Cipriani

et al., 2018; Kirsch, 2014). There is a need for novel treatments

that show both clinical utility and long-term effectiveness,

which TMS may be able to answer.

Here, we examine the utility of TMS as a method to affect

reward sensitivity, a key component of depression, aiming to

reconcile the discrepant findings in the existing literature

(Ahn et al., 2013; Duprat et al., 2016) by conducting a replica-

tion of Ahn et al., (2013). We include additional measures of

trait hedonic capacity and apply the increasingly utilised

excitatory iTBS from Duprat et al., (2016), to redress the

discrepant findings (described further in the aims and

methods section). Additionally, neither study directly

measured whether low mood was modulated as a conse-

quence of TMS, as would be expected (e.g., Blumberger et al.,

2018; Bulteau et al., 2017; Duprat et al., 2017). This replica-

tion attempt is important for two reasons. First, the protocols

used in the studies had key differences that could impact the

efficacy of TMS as a treatment for depression. Secondly, in

light of the current replication crisis in psychological research

(Chambers et al., 2015; Nosek et al., 2015), which is com-

pounded in clinical trial research (Driessen et al., 2015),

reproducing effects that have clinical implications is essential.

1.1. Aims and hypotheses of the current study

Based on the current use of facilitatory TMS to treat depres-

sion (Blumberger et al., 2018; Bulteau et al., 2017) and the

inconsistent effects between Ahn et al., (2013) and Duprat et

al., (2016) replication, we conducted a replication of Ahn

et al.’s (2013) study. The study uses the probabilistic learning

task and extends it through the inclusion of measures of
mood. Any additional deviations from replication are

described in themethods and are only appliedwhere there are

substantial concerns over the original methods used (e.g., to

have a baseline measure of probabilistic learning task prior to

and post stimulation Ahn et al., 2013, see methods). As iTBS

(Duprat et al., 2016; Duprat et al., 2017) is starting to be more

commonly used in the treatment of depression than the HF-

TMS protocol used by Ahn et al., (2013), this replication ap-

plies iTBS (Blumberger, 2018; Bulteau et al., 2017; Duprat et al.,

2017). Comparisons are made to a sham control.

1.1.1. Primary hypothesis
We predicted an increase in response bias (RB), as a function

of active compared to sham stimulation, the basic expression

of which would be an elevation in RB in block one following

active stimulation compared to the equivalent sham stimu-

lation. This is our critical effect of interest and was demon-

strated by Ahn et al., (2013) in the first block of their

probabilistic learning task. Our prediction was theoretically

grounded in the multiple treatment studies that have found

that active stimulation decreases depressive symptom-

atology, such as anhedonia, compared to sham stimulation

(cf. Fitzgerald et al., 2009; George et al., 2009; Lam, Chan,

Wilkins-Ho, & Yatham, 2008; O’Reardon et al., 2007).

1.1.2. Secondary hypotheses
We expected scores from the secondary questionnaire, which

measures mood (Positive and Negative Affect Scale; PANAS;

Watson et al., 1988), to show a reduction in negativemood and

increase in positive mood respectively. In particular, we ex-

pected active compared to sham TMS will modulate mood

ratings, as measured on the PANAS (Watson et al., 1988). In

line with previous depression intervention studies measuring

mood (e.g., Chaves et al., 2017) and rTMS (Moulier et al., 2016)

we expect rTMS to decrease negative affect and increase

positive affect (see secondary analysis section for further

detail and justification).

1.1.3. Replication interactions of interest
In addition to the above hypotheses, Ahn et al., (2013) and

Duprat et al., (2016) demonstrated significant interactions and

secondary effects consistent with TMS having a positive effect

in reducing symptoms of depression, as measured using RB

from the probabilistic learning task. However, neither Ahn

et al.’s (2013) nor Duprat et al., (2016) significant interactions

are fully in line with the theoretical prediction that active

stimulation will increase RB in the probabilistic learning task,

compared with sham stimulation. Ahn et al., (2013) reported a

significant interaction between block and stimulation inwhich

RB increased for active stimulation in block 1, but interestingly

also increased following sham stimulation compared to active

for block 2 of the task. Similarly, Duprat et al., (2016) main

significant interaction of time (pre/post stimulation) � stimu-

lation (active/sham) � block (1,2,3) was only apparent when,

TEPS-CON measuring hedonic capacity, was added as covari-

ate (see Methods; Questionnaires). This indicated an increase

in RB as a pre-stimulation baseline for active compared to

sham stimulation when hedonic capacity was taken into ac-

count. For completeness of this replication, we test for the

exact replication of these secondary interactions.

https://doi.org/10.1016/j.cortex.2022.11.011
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Fig. 1 e Task procedure for participants entering the study. TEPS ¼ Temporal Experience Pleasure Scale questionnaire;

PANAS ¼ Positive and Negative Affect Scale; PLT ¼ Probabilistic Learning Task; TMS ¼ Transcranial Magnetic Stimulation.

1 This sentence was added for clarity and transparency during
the stage 2 review process to enhance precise information about
the timing of the PLT, and stimulation.

2 This sentence was edited during the stage 2 review to
enhance clarity.
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2. Method

2.1. Task overview & procedure

The iTBS protocol used by Duprat et al., (2016; 2017) was used to

stimulate the DLPFC (for more detailed explanation see ‘Trans-

cranialMagnetic Stimulation’ section, below). Participantswere

asked to attend two testing sessions (see Fig. 1 for precise pro-

cedure), and were assigned to either a sham or active iTBS

condition, determined through initially flipping a coin (see

Duprat et al., 2016). The respective sides of the coin were

assigned “sham”or “active” (e.g., heads¼ sham; tails¼ active). If

participants were assigned to the active condition during the

first session, they received sham stimulation during the second

session, and vice versa. To determine participants' reward

learning, participants completed a PLT (Pizzagalli et al., 2005)

prior to iTBS stimulation. Participantswere asked to complete a

further PLT following TMS stimulation (see Fig. 2).

During the first session, participants were asked to com-

plete the Temporal Experience of Pleasure Scale questionnaire

(TEPS; Gard, Gard, Kring, & John, 2006) prior to the TMS stim-

ulation, and the PLT task. In both sessions participants were

asked to complete a further questionnaire, to determine

whether mood ratings have changed before and after TMS

stimulation (PANAS; Watson et al., 1988; see ‘Questionnaire
section’ for more detailed information). The PANAS was un-

dertaken both before the PLT, before stimulation, and again

before the PLT following stimulation.1 This is a deviation from

the procedures of Ahn et al., (2013) and Duprat et al., (2016),

however, applying the PANAS before and after stimulation2

avoided the potential concern that the PLT might affect the

PANAS mood ratings.

Participants were paid £10 per hour, and amaximumof £12

on the reward-learning tasks. The ethics committee at Cardiff

University's School of Psychology has approved the study.

2.2. Study design

The study is a repeated measures design, with participants

undergoing all conditions; 2 (Stimulation: Active and Sham), 2

(Time: Pre and Post stimulation), 2 (Condition: Rich and Lean,

see section 2.2.1.) and 3 (Block: One, Two, Three). In accor-

dance with Duprat et al., (2016), we administered the hedonic

capacity questionnaire, TEPS (Gard et al., 2006) (see Primary

hypothesis 1.1.1).

https://doi.org/10.1016/j.cortex.2022.11.011
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Fig. 2 e Trial schematic in the probabilistic learning task (based on Pizzagalli et al., 2005).
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We also examined the effect of rTMS (sham, active) on

mood. Ratings from the PANAS (Watson et al., 1988) were

collected before and after stimulation (see secondary hy-

potheses, see the Secondary Analyses section).

2.2.1. Probabilistic learning task
The PLT is based on signal detection theory (McCarthy &

Davison, 1979) and measures an individual's decision to

choose stimuli A over stimuli B (Pizzagalli et al., 2008;

Pizzagalli et al., 2005) based on a prior reinforcement learning

schedule. Participants receive rewards that vary based on an

asymmetric reinforcement schedule (e.g., ‘rich’ or ‘lean’

stimuli; Pizzagalli et al., 2005). Previous literature has sug-

gested that reward learning is biased towards the most

rewarded stimuli (Pizzagalli et al., 2008; Pizzagalli et al., 2005).

Individuals with depression tend to display a lower RB tomore

frequently rewarded stimuli compared to non-depressed

controls, suggesting difficulty with reinforcement leaning

(Pizzagalli et al., 2008).

Each application of the task (four in total, two in session

one, and two in session two; see Fig. 1) comprised of three

blocks of 100 trials (Block 1, Block 2, Block 3). For each trial, a

fixation cross appeared on the screen for 500ms, followed by a

cartoon face without a mouth for 500 ms. Another cartoon

face was subsequently presented on the screen with either a

‘long’ (13 mm) or ‘short’ (11.5 mm) mouth for 100 ms. The
Fig. 3 e Counterbalancing procedure for sessions: pre and post

counterbalanced within a testing session and between particip

“lean” stimuli was counterbalanced within stimulation session

stimulation session and counterbalanced across each stimulati
participant provided a keyboard response to assign whether

the mouth was ‘long’ or short’. If correct, a feedback screen

was presented for 1750 ms, which was either blank or

announced that the participant had won five pence. For each

block of 100 trials, a pseudo random sequence of 50 long and

50 short mouths was presented.

One mouth type, the “rich” condition, was selected at

random to be rewarded three times as often as the other type

ofmouth, the “lean” condition. In total 40 trials were rewarded

per block, 30 of these were the “rich” condition and 10 of these

were the “lean” condition. The counterbalancing procedure is

described in detail below. Participants were asked to try and

win as much money as they can. Also, participants were told

that not all trials will be rewarded, but they were not told

about the rich versus lean stimulus.

The PLT was implemented in PsychoPy (Peirce 2007), and

was presented on a Microsoft PC with an Asus LCD monitor

(60 Hz refresh rate).

2.2.2. Counterbalancing
For the PLT, several parameters were counterbalanced. To

reduce order effects and to control for a laterality bias, the

response keys (“Z” or “M”) that participants press were coun-

terbalanced between stimulation sessions. This was con-

ducted through the assignment of odd and even numbered

participants receiving opposite keyboard presses. Each of the
stimulation. Keyboard presses “Z” and “M” were

ants. The main experimental manipulation of “rich” and

s. The pairing was determined randomly at the start of the

on session.

https://doi.org/10.1016/j.cortex.2022.11.011
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response keys were paired with a face with a “long” or “short”

mouth, which relates to the experimental manipulation of

“rich” versus “lean” reinforcement schedules. For the odd

numbered participants, the “Z” key was paired with a “long”

mouth and the “M” key with a “short” mouth pre-stimulation

and the reverse pairing post stimulation (“Z” with “short” and

“M” with “long”). The even participants received the opposite

pairings. Within each stimulation session, the face that was

rewarded richly or leanlyeshort or longwas chosen at random

(using Python's shuffle function) at each pre-stimulation ses-

sion. Then, at post-stimulation sessions, the ordering was

reversed. Participants were also asked to press “Z” key with

their left index finger and the “M” key with their right index

finger (see Fig. 3).

2.3. Transcranial magnetic stimulation

Following the iTBS protocol of Duprat et al., (2016), we applied

iTBS stimulation using aMagstim Rapid2 stimulator (Magstim

Company Limited, Wales, UK), which was connected to a

70 mm “figure eight” shaped cooled coil (P/N 3910e00). We

used the Brainsight neuronavigation system (Brainsight

Rogue Research, Inc.) to accurately target the left DLFPC. In

the instances of MRI scans not being available, we used the

default MNI average brain scan in Brainsight 2.3, (Rogue

Research, Inc.) to target the left DLPFC. The study that is the

target of our replication, Ahn et al. (2013), used a standard

location for the DLPFC for each participant, based on

anatomical landmarks and position relative to motor areas.3

We aimed to use participants' MRI scans, where available,

to take into account individual structural differences be-

tween participants. The target for the DLPFC was identified in

Montreal Neurological Institute (MNI) coordinates as x ¼ �27,

y ¼ 30, z ¼ 38, of which the mean of DPLFC co-ordinates were

reported as being active in a perceptual decision-making task

(Heekeren et al., 2004), and targeted in a TMS based cognitive

control intervention (Hayashi et al., 2013). As in Duprat et al.,

(2016) protocol, individual motor threshold was determined

using surface electromyography to produce a motor evoked

potential in the right abductor pollicis brevis muscle, during

the first testing session.

Participants were asked to take part in two testing ses-

sions, where they received either active or sham iTBS with an

interval of approximately oneweek between the sessions. The

active iTBS consisted of: 1620 pulses in 54 cycles of 10 bursts of

3 pulses with a train duration of 2s and inter-train interval of

8s with a power output of 110% of the restingmotor threshold.

For the sham stimulation, a sham coil was used (P/N

3950e00). The sham coil was manufactured to have the same

visual appearance and auditory artefact as the active coil but

did not deliver appreciable magnetic stimulation. Therefore,

sham stimulation followed the same procedure as the active

condition. Order of stimulation was counterbalanced between

participants and initial allocation to active and sham condi-

tions was randomised using a coin toss.
3 We have modified this sentence since the stage 1 registered
report, removing the sentence “but they do not give precise in-
formation about how they located this area” to highlight how Ahn
et al., (2013) identified the DLPFC.
2.4. Deviations from Ahn et al., (2013)

Table 1 below highlights the principle deviations from Ahn

et al.,’s (2013) protocol.4 We describe each major deviation

from Ahn et al., (2013) and justify alternative methods e.g. the

use of an iTBS protocol, as opposed to the HF-TMS protocol

used by Ahn et al., (2013). Note that iTBS is thought to be more

efficient than HF-TMS, involving fewer pulses for comparable

effects and both the HF-TMS and iTBS protocols, applied

respectively in Ahn et al., (2013) and Duprat et al., (2016), are

acknowledged as excitatory TMS protocols (Huang et al.,

2011). As the more recently developed iTBS is more efficient,

its use in treatment appears to be growing at a faster rate than

HF-rTMS and was, therefore, the focus of this replication

(Bakker et al., 2015; Grossheinrich et al., 2009).

We also used a Magstim Rapid2 stimulator as opposed to a

Magstim Rapid2 Plus1 used by Duprat et al., (2016), and Mag-

stim 200 used by Ahn et al., (2013) (see Table 1 and

Supplementary information https://osf.io/sep4g). The Rapid2

stimulator is the most popular repetitive TMS stimulator sold

by Magstim. iTBS comprises of 0.1 Hz, 5 Hz, and 50 Hz com-

ponents. However, over the course of the experiment it

became apparent that this stimulator builds in a small fre-

quency reduction at intensities greater than 50% of the

maximum stimulator output. The reduction involves a slight

reduction of the 50 Hz component at a rate of -1 Hz per 2%

greater than 50% of maximum. This resulted in the obtained

mean frequency of the prescribed 50 Hz component being,

M ¼ 45.967 Hz, SD ¼ 3.690 (full details are available is

supplementary information at https://osf.io/m2fsg/). As these

frequencies are all well above the putative cut of between

excitatory and inhibitory frequencies (5 Hz, Huang et al., 2005)

and the 10 Hz used by Ahn et al., (2013), we think it unlikely

that the reduction could have made a substantive or theo-

retical difference.

2.5. Questionnaires

2.5.1. Temporal Experience of Pleasure Scale (TEPS)
The TEPS consists of 18 self-report items, of which there are

two subscales: anticipatory (TEPS-ANT; ten items) and

consummatory (TEPS-CON; eight items) pleasure. Consum-

matory pleasure has been linked to immersive pleasurable

experiences (Gard et al., 2006; Gard, et al., 2007), and antici-

patory pleasure has been related to reward responsiveness

(Gard et al., 2006). The sum of these two scales provides a

measure of hedonic capacity. The higher the total score on

these scales, the greater the hedonic capacity. Conversely, the

lower the total score, the lower the hedonic capacity (anhe-

donia, e.g. Gard et al., 2007; Strauss et al., 2011). Internal con-

sistency for each subscale has good reliability, consummatory

(a ¼ .71) and anticipatory (a ¼ .74) (Gard et al., 2006). The TEPS

scale has been used with both non-clinical (the target of this
4 Due to the differences between Duprat et al., (2016) and Ahn
et al., (2013)'s protocols and our attempts to reconcile these dif-
ferences in the most clinically informative way, strictly speaking
this study should not be interpreted as a ‘direct’ or ‘exact’ repli-
cation of either study but an amalgamation of both studies.

https://osf.io/sep4g
https://osf.io/m2fsg/
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Table 1 e Major Deviations from Ahn et al. (2013) protocol, and justification of alternative methods.

Study Element Ahn et al., (2013) Duprat et al., (2016) Current study Justification

TMS protocol HFTMS iTBS iTBS in accordance with

Duprat et al., (2016)

In more recent treatment

protocols for depression, iTBS is

being used as a treatment (e.g.,

see Bulteau et al., 2017)

TMS Stimulator Magstim 200

Magnetic Stimulator

Magstim Rapid2 Plus1 Magstim Rapid2 Although a different stimulator

will be used, with the potential

of reduced frequency due to

capacitance of the system, the

frequencies are well within the

range (i.e., ~10 Hz) to generate

excitatory neural changes (e.g.,

Huang et al., 2005; Siebner &

Rothwell 2003).

Number of Probabilistic

Learning Tasks

2 (post active and

post sham

stimulation).

4 (pre and post active and

pre and post sham

stimulation).

4 probabilistic learning

tasks in accordancewith

Duprat et al., (2016).

A baseline measure of reward

bias allows for the exclusion of

the possibility that day-to-day

variance might explain

observations.

Hedonic Capacity

Questionnaire

No measures used to

assess hedonic

capacity.

Temporal Experience of

Pleasure Scale (Gard et al.,

2006).

Temporal Experience of

Pleasure Scale (Gard

et al., 2006).

Based on Duprat et al., (2016)'s
finding that hedonic capacity

interacts with reward

responsiveness.

Mood questionnaire No measures used to

assess mood.

No measures used to assess

mood.

Positive and Negative

Affect Schedule (Watson

et al., 1988).

To ensure effects of active

compared to sham TMS is

related to depressive

symptoms, e.g., low mood. See

secondary hypotheses section

for precise hypotheses.
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replication; Ahn et al., 2013; Duprat et al. 2016) and clinical

populations (e.g., Gard et al., 2006, 2007; Sherdell et al., 2012).

2.5.2. Positive and egative affect schedule (PANAS)
To determine participants' current mood, we used the PANAS

(Watson et al., 1988). This scale consists of ten positive (e.g.,

‘proud’) and ten negative (e.g., ‘jittery’) adjectives. Participants

will rate on a Likert scale (1e5), the extent to which they

currently feel that emotion. Scores on the PANAS range be-

tween 10 and 50, on both positive and negative subscales

separately. A relatively higher score on the positive affect

scale (PA) reflects a more positive mood, whereas a higher

score on the negative affect (NA) subscale reflects a more

negative mood (see Watson et al., 1988). Each subscale of the

PANAS has good internal reliability, PA (a ¼ .89) and NA

(a ¼ .85) (Crawford & Henry, 2004). The PANAS has been used

with both clinical populations (people diagnosed with

depression and anxiety) and in non-clinical populations

(Watson et al., 1988). Lower scores on the PA scale have been

related to anhedonia and depression (e.g., Crawford & Henry,

2004; Watson et al., 1988). Higher scores on the NA scale have

been related to depression and anxiety disorders (e.g.,

Crawford & Henry, 2004). The PANAS has good discriminant

and convergent validity (Crawford & Henry, 2004).

2.6. Primary dependent variableeprobabilistic learning
task: response bias

The RB relates to the participant's preference to the most

frequently rewarded stimulus (“rich”) when compared to the

least rewarded stimulus (“lean”). RB was calculated using the
formula below. The response rate will increase if the partici-

pant selects “rich” stimuli more frequently than “lean” stimuli,

regardless of accuracy. In accordance with previous studies, i.e.

Ahn et al. (2013), Duprat et al. (2016), Pizzagalli et al. (2005), RB is

likely to increase between blocks 1 & 2 as a consequence of

reinforcement learning. The number of trials presented in the

PLT are equal to those used in previous studies applying the PLT

(e.g., Ahn et al., 2013; Chevallier et al., 2016; Duprat et al., (2016);

Lancaster et al., 2012; Lancaster et al., 2015; Pizzagalli et al.,

2008; Pizzagalli et al., 2005). All analyses will be administered

according to Pizzagalli et al., (2005), Ahn et al., (2013), and

Duprat et al., (2016) manuscripts. Similar to Ahn et al., (2013),

effect sizes were reported using partial eta-squared (hp
2). In

accordance with Duprat et al., (2016), we also calculated

Cohen's d to evaluate effect sizes. In line with Duprat et al.,

(2016), if the assumption of sphericity was violated Green-

house Geiser correction was applied to the data.

RB¼
�
log b¼ 1

2
log

�
Rich correct*Lean incorrect
Rich incorrect*Lean correct

��

2.7. Analyses

2.7.1. Main analyses: primary hypothesis
Wedesigned our replication attempt to find an effect that uses

the same task (the PLT) and stimulation (active, sham) as the

target publications (Ahn et al., 2013; Duprat et al., 2016), and is

consistent with the evidence-base that RB will increase as a

function of active TMS. Therefore, our main critical one-

degree of freedom test of interest is based on that of Ahn

et al.’s (2013) direct comparison of the effects of active

compared to sham stimulation on RB for Block 1 of the PLT

https://doi.org/10.1016/j.cortex.2022.11.011
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(active block1 e sham block 1). As our primary analysis, we

calculated a Bayes Factor applied to our datamodelling H1 as a

t-distribution using the mean difference and SE equivalent to

those observed by Ahn et al., (2013) for their corresponding

one degree-of-freedom (1df) test of interest (M ¼ .14; SE¼ .063,

df¼ 17) (Dienes&Mclatchie, 2018). In addition, we computed a

complimentary frequentist paired t-test for active compared

to sham stimulation for RB in Block 1. The Bayesian statistic

was the primary decision statistic reported.

2.7.2. Secondary analyses: mood questionnaire
Our secondary hypothesis that active compared to sham TMS

will increase positive mood and decrease negative mood was

based on Chaves et al.’s (2017) clinical trial study. Amongst

other variables, Chaves et al., (2017) measuredmood using the

PA and NA subscales of the PANAS questionnaire, before and

after psychological therapies such as Cognitive Behaviour

Therapy (CBT).

For our secondary analyses, to assess the evidence that

active stimulation compared to shamwill (a) increase positive

affect, and (b) decrease negative affect, we calculated Bayes

Factors (Dienes &Mclatchie, 2018) modelling H1 t-distribution

as themean difference and SE observed by Chaves et al., (2017)

for treatment effects on (a) changes in positive affect

(M ¼ 4.91, SE ¼ .82, df ¼ 95) and (b) changes in negative affect

(M¼�5.92, SE¼ .94, df¼ 95) (Dienes, 2008; Dienes&Mclatchie,

2018). To obtain a value that could be used in a 1df test, we

subtracted the post PANAS PA score from the pre PANAS PA

stimulation ratings for both active and sham stimulation

separately, and subsequently subtracted stimulation type

(activeesham). More positive scores for this index relate to

higher positive mood. PANAS NA values were computed

similarly. More positive scores on the PANAS NA index indi-

cate negative mood had decreased. We also conducted two

paired sample t-tests as complimentary frequentist statistics

comparing post active and sham stimulation, one applied to

the positive affect measure and the other applied to the

negative affect measure.5

2.7.3. Replication interactions of interest
The previous critical effects of interest in both Ahn et al.,

(2013) and Duprat et al., (2016) were significant interactions.

Ahn et al., (2013) reported a significant 2 � 3 interaction be-

tween Stimulation (active, sham) and Block (1,2,3) for reward

learning. Duprat et al., (2016) reported a significant 2 � 2 � 3

interaction (with the presence of the TEPS-CON covariate) for

Time (pre, post) � Stimulation (active, sham) � Block (1,2,3 on

the reward learning task). While these are consistent with the

primary outcome of active TMS increasing reward respon-

siveness compared to sham (main analyses), these in-

teractions are not the basic effects one would expect of active

TMS having an effect on the PLT. Therefore, the interactions

reported by Ahn et al., (2013) and Duprat et al., (2016) are of

secondary interest.

To test for the interactions described by Ahn et al., (2013)

and Duprat et al., (2016), we computed a Bayes Factor for both

of their reported interactions. Following themethod outlined in
5 Clarification of the contrast was added after stage 1 following
a reviewer's comment.
Dienes (2014) for reducing interaction effects to a one-degree of

freedom test, for Ahn et al.’s (2013) primary finding of a

Stimulation � Block interaction, we computed the differences

between active and sham in each block, then subjected these

scores to a linear contrast (e.g., B1 þ �.5�B2 þ �.5�B3) to

reduce the interaction term to a one-degree of freedom test.We

subsequently used the Bayes Factor calculator (Dienes &

Mclatchie, 2018) to apply the parameters calculated from Ahn

et al.’s (2013) primary interaction: Mdiff ¼ .16, SE ¼ .08 and the

obtained Mdiff and SE for the interaction from our study,

reduced to a one-degree of freedom test as described above.

For Duprat et al., (2016) interaction (Time � Stimulation �
Block with the added covariate of hedonic capacity; TEPS-

CON), we used the same procedure as we described above to

reduce the significant interaction into its constituent one-

degree of freedom test, prior to using these parameters in

the Bayes Factor calculator (Dienes & Mclatchie, 2018). We

computed the linear contrast between active and sham in

each block, once for each level of the ‘Time’ factor, and then

computed the differences between these two scores, reducing

the comparison to a simple difference score. To account for

the presence of the covariate, we used the covariate-adjusted

means (as were reported for Duprat et al., (2016)'s interaction

term above), to calculate our one-degree of freedom values.

That is, we computed a repeated-measures ANCOVAwith the

factors (Time � Stimulation � Block with the covariate) to

obtain the resulting adjusted means to compute our mean

differences (similar to Dienes, 2014), and SE for calculating the

resulting Bayes Factor. These were integrated with a prior

based on the results obtained from reducing Duprat et al.,

(2016) results into a one-degree of freedom test; Mdiff ¼ .14,

SE¼ .07Wewill also report all frequentist equivalents of these

statistics, as well as a full exposition of the ANOVAs and

interactions.

2.7.4. Manipulation checks
We conducted an outcome neutral test, where we compared

participants’ RB scores from block three of the PLT to the value

of zero, using a one-sample t-test. At the group level, this was

achieved by computing the average RB in block three for the

post sham stimulation session, before submitting the scores

to a one-sample t-test. This test will reveal whether partici-

pants have a RB significantly larger than zero, indicating if

they are responding more to rich compared to lean stimuli,

after undergoing the first and second blocks of the study.

Taking the values from block 3 following sham stimulation

will provide a baseline measure of the propensity to acquire a

RB. We also computed the Bayesian equivalent of this one-

degree of freedom test, that is RB for block 3 of the PLT

compared to the numerical value of zero, applying priors

based on the mean of the effects and standard errors reported

for block three of post sham stimulation for both Ahn et al.,

(2013) (M ¼ .19, SE ¼ .061, SD ¼ .26, df ¼ 17) and Duprat et al.,

(2016) (M ¼ .26, SE ¼ .070, SD ¼ .32, df ¼ 20) respectively.

2.8. Bayes Factors and sample size estimates

2.8.1. Primary hypothesis
We used a Bayesian approach (Dienes, 2014) to estimate the

likely sample size needed to provide support for the null or

https://doi.org/10.1016/j.cortex.2022.11.011
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alternative hypothesis, related to our critical effect of interest.

Assuming a difference of zero and the same SE and sample

size reported in Ahn et al., (2013), and applying the R Code

(Dienes & Belfi, 2019) we were able to estimate the Bayes

Factor for our proposed sample size of 30 under the null as .14.

This was computed through scaling the SE (.063) in Ahn et al.,

(2013) by the square root of their sample size divided by our

proposed sample size (SEscaled ¼ .049) for use in the Bayes

Factor function. As we are closely replicating Ahn et al., (2013)

study, we have made the assumption that our testing pro-

cedures will be similar and should, therefore, yield no addi-

tional variance.

2.8.2. Secondary analysis
For our secondary analysis that active compared to sham

stimulationwill increase positive affect and decrease negative

affect, using the R Code (Dienes & Belfi, 2019), and assuming

no effect and the SE, and sample size reported in Chaves et al.,

(2017), we were able to estimate the Bayes Factor for our

proposed sample size of 30 under the null as .01 for negative

affect, measured on the PANAS-NA; and the Bayes Factor of

.02 for positive affect, as measured on the PANAS-PA.

2.8.3. Previous critical interactions of interest
We computed the Bayes Factor for the significant interactions

reported in Ahn et al. (2013) and Duprat et al. (2016) following

the method outlined in Dienes (2014) and detailed further in

our main analyses section above. Using the R Code (Dienes &

Belfi, 2019), sample size, and SEs calculated for Ahn et al.,

(2013) interaction (Stimulation � Block) we estimated a

Bayes factor of .17 under the null for our sample size of 30. The

Bayes Factor was computed through scaling the SE (.08) for

Ahn et al.’s (2013) interaction by the square root of their

sample size divided by our sample size (SEscaled ¼ .06). We

followed the same procedure for Duprat et al., (2016) signifi-

cant interaction (described further in our analysis section). For

Duprat et al., (2016), the Bayes Factor we obtained under the

null was .21, using their SE (.07; with a df ¼ 20), scaling to our

sample size of 30 (SEscaled ¼ .06).

2.8.4. Manipulation checks
Using the method described above in the corresponding

Analysis section, and R code produced by Dienes and Belfi

(2019) we estimated a Bayes Factor of .04 under the null for

our sample size of 30, using the sample size, SE and df for the

RB reported in block 3 for Ahn et al., (2013) post sham stimu-

lation (M ¼ .19, SD ¼ .26, SE ¼ .061). Similarly for Duprat et al.,

(2016), we used the reported mean for RB in block 3 post sham

stimulation (M ¼ .26, SD ¼ .32, SE ¼ .070) and obtained a Bayes

Factor of .02 under the null after scaling the SEs of the sample

to our maximum sample size of 30.

Given the Bayesian approach adopted we continued col-

lecting data until the resultant Bayes factors for primary and

secondary analyses were all greater than 6 or less than 1/6 or

we had collected data from 30 participants, due to feasibility

constraints and in line with the above calculations. Bayes

factors greater than 6were interpreted as substantial evidence

for the hypotheses and Bayes factors less than 1/6 were

interpreted as substantial evidence for the null (Dienes, 2011;

Jeffreys, 1998). This cut off aligns with Cortex's guidelines.
2.9. Exclusion criteria

If participants did not pass initial safetymeasures pertaining to

TMS approved by Cardiff University, they did not participate in

the experiment (Allen et al., 2018; Maizey et al., 2013). In line

with Duprat et al., (2016), should individuals not complete the

task appropriately (e.g., only pressing one key throughout the

experiment) they were not included in any analyses. In addi-

tion, should participants' reaction time be too quick (i.e., under

200ms) or too slow (i.e., over 2000ms) those responseswerenot

included in any analyses (Ahn et al., 2013), if this occurred on

greater than 10% of trials the participant's data was excluded.

Participants were free to withdraw for any reason. Unantici-

pated technical failings could also result in participant data

being excluded. If a participant only completed one testing

session, their data was not included in the analyses. We tested

further participants to replace any excluded.
3. Results

Data, materials, and pre-registration protocol are available at

https://osf.io/724gt/.

3.1. Participants

Forty-one participants were recruited from a TMS participant

database at Cardiff University Brain Research Imaging Centre

(CUBRIC) at Cardiff University. All participants had undergone

safety screening for contra-indications of TMS. Thirty partic-

ipants (Mage ¼ 23.333; SD ¼ 4.198; 20 Females/10 Males) were

included in the final TMS analyses, with eleven excluded. Of

the eleven excluded, five were excluded for technical

reasonseTMS internal cooling mechanism was not operating

correctly and the coil overheated, which was then repaired by

the manufacturer and did not affect the subsequent sessions.

When overheating occurred, the iTBS did not run to comple-

tion. As exposure to part of the iTBS protocol, or the learning

within the task, could have been affected by repeating the

session, the affected participants were excluded. Six partici-

pants withdrew voluntarily as they reported discomfort on

exposure to active iTBS protocol and did not wish to continue.

All participants were right-handed, spoke English fluently and

proficiently and had no history of mental health difficulties.

The assignment to stimulation ordering (active then sham

and the converse) was evenly split across the sample, with 15

participants in each group.

3.2. Primary hypothesis

The critical test was a direct comparison of the effects of

active and sham stimulation on the RB measure for Block 1 of

the PLT (active block1 e sham block 1, see also Fig. 4). We

computed a Bayes Factor applied to our observed data

(M ¼ �.253, SE ¼ .187) with a two-tailed prior based on the

mean difference and SE observed by Ahn et al., (2013) for their

corresponding one df test of interest (M¼ .14; SE¼ .063, df¼ 17,

SD ¼ .26). With a group mean in the opposite direction to that

predicted under the replication, the resultant BF was ¼ .696,

which indicates an insensitivity in terms of a strong

https://osf.io/724gt/
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Fig. 4 e Graph depicting the raw data and distributions of response bias across all conditions (time: pre, post; block: 1,2,3;

stimulation: active, sham).
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conclusion, but what evidence there is favours the null. Our

complimentary frequentist paired-sample t-test indicated a

non-significant difference between RB for block 1 of the PLT

for post active (M ¼ �.232, SE ¼ .124) compared to post sham

(M ¼ .021, SE ¼ .121) stimulation, t(29) ¼ �1.353, p ¼ .186,

d ¼ �.247. These results indicate no conclusive support for

either the alternative or null hypothesis.

3.2.1. Exploratory analysis
To explore the primary analysis we also applied a directional

one-tailed Bayesian 1df test, with the prior modeling an in-

crease in response bias following active TMS, resulting in a

BF ¼ .217, indicating an absence of effects in this direction.

Following data collection, we, and a reviewer, noticed that

the mean for response bias was below zero in the post active

condition in block one (M ¼ �.232, SE ¼ .124). This raised the

possibility that the TMS could have contributed to learning the

rewarded stimulus of the pre-TMS block, leading to a drop in

bias following stimulation when the rewarded pairing was

changed. However, the evidence for such a drop relative to

zero was inconclusive, BF ¼ 1.11 (evidence for the null hy-

pothesis, from an exploratory one-sampled Bayesian t-test

using a default Cauchy prior with scale set at .707), and non-

significant, t (29) ¼ 1.87, p ¼ .07. Furthermore, Duprat et al.,

(2016) noted a similar drop, but in their post sham condition,

collectively suggesting large sample to sample variability with

such measures.

3.3. Secondary hypothesis

3.3.1. Positive affect
The BF representing evidence for increased positive affect

relative to the null, with a prior based on Ahn et al.’s (2013)
report, was .222 (M ¼ �1.333 and SE of our sample ¼ 1.016),

indicating stimulation did not modulate positive mood.

The frequentist analysis, comprised of a paired t-test for

post PA for active compared to post sham PA ratings. There

was no significant difference following post active (M¼ 28.367;

SE ¼ 1.572) compared to post sham (M ¼ 28.200; SE ¼ 1.278)

stimulation, t(29) ¼ .171, p ¼ .865, d ¼ .031 (see Fig. 5, upper

panel).

3.3.1.1. EXPLORATORY ANALYSES. The Bayesian analysis above

(3.3.1) reduced the data into a 1 degree of freedom test, as pre-

specified subtracting both time and stimulation factors.

However, this effectively double-baselined the data, by sub-

tracting the factors of time and stimulation, and so changes of

interest could have been masked through these subtractions.

We therefore, broke down the 1df analysis and performed

exploratory analyses for PANAS PA, for active and sham

stimulation (post-pre stimulation) separately. Using the t-

distribution prior of Chaves et al., (2017) and a non-directional

test for PA, we calculated the BFs for positive affect for both

active (postepre stimulation) and sham stimulation sepa-

rately. For PA following active stimulation the BF¼ 3.694, with

our sample (M ¼ �2.900, SE ¼ .993), suggesting positive affect

reduced from pre to post active stimulation. For sham stim-

ulation (M ¼ �1.567, SE ¼ .898), a reduction was also present

but much smaller and the corresponding BF favoured the null,

BF ¼ .361. This suggests the small change in the sham con-

dition may have reduced the sensitivity of the 1df test to the

overall reduction in positive affect following the intervention,

but this exploratory demonstration, we emphasis, does

require further substantiation.

We also conducted the equivalent set of two one sample t-

tests for the BF analyses above (post minus pre stimulation)

https://doi.org/10.1016/j.cortex.2022.11.011
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Fig. 5 e Graph depicting Positive (top, PA) and Negative Affect (bottom, NA) pre and post active and sham stimulation

separately. In the exploratory analysis PA was significantly reduced post active stimulation, all other effects were non-

significant.
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for active and sham stimulation, separately. Congruent with

the BF analyses above, active stimulation reduced positive

affect, as rated on the PANAS PA, t(29) ¼ �2.919, p ¼ .007,

d ¼ �.533 but sham did so only marginally t(29) ¼ �1.745,

p ¼ .092, d ¼ �.319.

3.3.2. Negative affect
We computed a BF for the NA subscale of the PANAS. A BF

of ¼ .037 was calculated based upon the prior t-distribution

model of Chaves et al., (2017), and the observed data

(M ¼ .167, and SE ¼ .390). This result suggests substantial

support in favour of the null, indicating that TMS stimulation

does not reduce negative mood, as measured on the PANAS
NA. Similarly, for our complimentary paired-samples t-test

(post active NA compared to post sham NA), there were no

significant differences between conditions, t(29) ¼ 1.041,

p ¼ .307, d ¼ .190, following active (M ¼ 11.300; SE ¼ .292) or

sham (M ¼ 11.000; SE ¼ .307) stimulation for the NA subscale

of the PANAS (See Fig. 4).

3.3.2.1. EXPLORATORY ANALYSIS. Following visual inspection of

the data (see Fig. 5, lower panel), it became apparent that the

sensitivity of the NA scale is limited by floor effects. This was

confirmed on closer inspection where 45% of PANAS NA

measures where at the lowest possible value, thus surpassing

previously published criteria detection of floor effects on the

https://doi.org/10.1016/j.cortex.2022.11.011
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PANAS NA at 15% of responses at the lowest value (Dı́az-

Garcı́a et al., 2020). This suggests participants rarely associ-

ated the more negative terms of PANAS with their mood, as

has been previously reported for non-clinical populations

(Crawford & Henry, 2004; Mcallister, et al. 2017).

As with analysis 3.3.1 we explored analysis 3.3.2 separating

the constituent contrasts of the primary registered test. We

performed exploratory analyses for NA, as measured on the

NA for active and sham stimulation (post-pre stimulation)

separately. NA was not appreciably changed following stim-

ulation, for active BF ¼ .028 (M ¼ .033, SE ¼ .313) or sham,

BF ¼ .033 (M ¼ �.133, SE ¼ .338). These results suggest sub-

stantial support for the null, indicating an absence of effects

on the PANAS NA scale, although this result is tainted by the

floor effects. The equivalent one sample t-tests were non-

significant: active t(29) ¼ .107, p ¼ .916, d ¼ .019 and sham:

t(29) ¼ �.394, p ¼ .696, d ¼ �.072.

3.4. Replications of interest

As pre-specified, we reduced Ahn et al., (2013)'s primary

interaction (Simulation� Block), to a 1df test, by computing the

difference between active and sham for each block, then sub-

jecting these scores to a linear contrast (described in the

analysis section 2.7.3). The resultant BF was .243, which in-

dicates evidence towards the null hypothesis. Congruent with

Ahn et al., (2013)'s design andmain analysis, we also ran a 2� 3

frequentist Repeated Measures ANOVA, with post stimulation

(active, sham) and PLT Block (1,2,3) as the within subjects'
factors. No data violated the assumption of sphericity, all

ps > .605. As predicted, there was a main effect of block for the

PLT F(2, 58) ¼ 4.808, p ¼ .012, h2 ¼ .142, d ¼ .81. Post-hoc com-

parisons using Bonferroni correction indicated that response

bias for block 3 (M ¼ .208; SE ¼ .084) was larger than the

response bias in block 1 (M ¼ �.105; SE ¼ .079), p ¼ .019, sug-

gesting response bias had increased irrespective of stimulation

type across the blocks (see Fig. 5 post-stimulation values). This

indicates the task operated as intended,where the participant's
reward responsiveness bias increased over exposure to the

rewarded stimulus. There were no other significant main ef-

fects or interactions either for stimulation (active versus sham)

or for stimulation � block respectively, F(1, 29) ¼ 2.331, p ¼ .138,

h2 ¼ .074, d ¼ .57; F(2, 58) ¼ .433, p ¼ .650, h2 ¼ .015, d ¼ .25.

To test the replicability of Duprat et al., (2016) main inter-

action (Time � Stimulation � Block with the added covariate

of hedonic capacity; TEPS-CON) we computed the corre-

sponding one-degree of freedom test, using the values re-

ported by Duprat et al., (2016) (Mdiff¼ .14, SE¼ .07, SD¼ .33).We

obtainedMdiff¼ -.039, and SE¼ .052 from the interaction in our

study, resulting in a BF of .178, which provides strong evidence

towards the null, H0. For our complimentary pre-registered

frequentist statistics in line with Duprat et al., (2016)'s main

analyses, we conducted a 2 (time: pre, post) � 3 (block:

1,2,3) � 2 (Stimulation: active, sham) Repeated Measures

ANCOVA with TEPS-CON included as the covariate. There

were no significant main effects or significant interactions, all

Fs between .038 and .660, all P values between .423 and .963,

thus indicating the introduction of the covariate did not reveal

a positive effect of TMS on the outcome measures. The data

did not violate the assumption of sphericity, all P values> .259.
3.5. Pre-registered: manipulation checks

We conducted a frequentist one-sample t-test for the average

RB in block 3 of the post sham stimulation PLT. The test in-

dicates that RB has increased compared to zero, indicating the

task has been effective, with participants displaying a pro-

pensity to acquire a response bias, that is responding more to

rich compared to lean stimuli over the blocks t(29) ¼ 2.279,

p ¼ .030, h2 ¼ .042, d ¼ .416.

Similarly, when conducting the manipulation checks

modeled with the prior parameters of Ahn et al., (2013), with

our observed data (M ¼ .264, SE ¼ .116 for post sham stimu-

lation block 3, as pre-specified), we obtained a BF of 4.563. We

also obtained a BF of 3.958 for H1 modeled upon Duprat et al.,

(2016), and our observed data. These BFs suggest evidence in

favour of H1- that is participants acquired a RB over the

blocks.
4. Discussion

We examined whether active compared to sham rTMS,

applied to the DLPFC, was effective in increasing reward

responsiveness, in healthy participants, akin to the studies

we were replicating (e.g., Ahn et al., 2013; Duprat et al., 2016).

Overall, we found no conclusive evidence for the primary

hypothesis replicating the effect of active stimulation on

reward responsiveness. However, we found evidence

favouring the null in our replication of the interactions of

interest reported by Ahn et al., (2013) and Duprat et al., (2016).

For our secondary hypotheses, we noted substantial and

strong evidence towards the null for negative and positive

mood, respectively, following TMS stimulation. In an explor-

atory break down of these omnibus tests, for negative mood,

we noted substantial evidence towards the null for both active

and sham stimulation conditions. Importantly, and in

contrast to our predictions, positive mood was significantly

reduced following active stimulation, indicating active stim-

ulation adversely affected positive mood. We discuss these

findings and their possible implications to the treatment of

depression, below.

4.1. Primary effect of interest

Firstly, our primary hypothesis predicted that response bias

would increase as a function of active stimulation in block 1 of

the PLT. However, the mean difference between conditions

(active vs. sham stimulation) was in the opposite direction

and the corresponding Bayes Factor was inconclusive

(BF¼ .696), indicating no conclusive support for either the null

or alternative hypothesis. Here our primary 1df was insensi-

tive but the mean difference in the opposite direction moti-

vated an exploratory analysis which favoured the absence of a

positive effect, the opposite to Ahn et al., (2013)'s finding. This

finding is important as elevated reward responsiveness

following repetitive TMS is used to support clinical efficacy

(e.g., Ahn et al., 2013; Duprat et al., 2016), but our failure to

replicate this basic effect, suggests that such effects if real, are

likely to be much smaller than previously thought and

therefore of questionable clinical relevance. This is also in line
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with a more recent study by Duprat et al., (2017) who also

failed to demonstrate an increase in reward responsiveness

on the PLT following active stimulation in a sample of patients

with depression. Taken together these non-significant, or null

findings around elevated RB following TMS invites further

questions around the clinical efficacy and utility of TMS, as

endorsed by NICE (2015) and the FDA (2008).

4.2. Replications of interest

Ahn et al.'s (2013) primary finding, used to justify their positive

conclusions, was an interaction between stimulation � block

where our replication favoured the null, BF ¼ .243. However,

the theoretical underpinning of this interaction appears

questionable. Ahn et al., (2013) compared post active to post

sham stimulation focusing the analysis on block 1 of the PLT

only, which the authors argue is evidence for the enhanced

effect of one session of active TMS. This is surprising as the

reward responsiveness literature commonly describes

increased RB across sequential blocks of the task, as a function

of reinforcement learning, not over a single block (e.g.,

Lancaster et al., 2012; Pizzagalli et al., 2005; Pizzagalli et al.,

2008). That is participants learn to favour the most

frequently rewarded stimulus, over several blocks, rather

than suddenly increasing RB over a single block as described

by Ahn et al., (2013). Additionally, Ahn et al., (2013) showed no

evidence of a linear increase in response bias across blocks

(for active stimulation), which is a typical finding across

studies (Pizzagalli et al., 2008; Pizzagalli et al., 2008b, Pizzagalli

et al., 2005). However, we note that a linear increase in

response bias across blocks is not present in every study (e.g.,

Pizzagalli et al., 2008). Conversely, our study exhibited

learning across the sequential blocks of the PLT, irrespective

of stimulation type, indicating reward learning had occurred

in line with the PLT evidence-base (e.g., Barr et al., 2008;

Lancaster et al., 2012; Pizzagalli et al., 2008; Pizzagalli et al.,

2005).

We also found strong evidence towards the null (BF ¼ .178)

for Duprat et al., (2016)'s main significant interaction

(Time � Stimulation � Block with the added covariate of

consummatory pleasure) and no support for the alternative

hypothesis using our frequentist ANCOVA test. Duprat et al.,

(2016) suggested that this interaction showed iTBS increased

reward responsiveness more for those participants with

higher baseline hedonic capacity, as measured on the

consummatory subscale of the TEPS (Gard et al., 2006). How-

ever, this finding is intriguing as theoretically we would

expect the anticipatory as opposed to the consummatory el-

ements of the TEPS to express the effects of iTBS, as the

anticipatory subscale measures reward responsiveness. This

inconsistency could be seen as indicative of a serendipitous

result. Moreover, Duprat et al., (2016) reported that they did

not correct for multiple comparisons (of which there were six

ANCOVAs, yielding one marginally significant effect), again

suggesting a serendipitous result.

Given that there are theoretical questions around both Ahn

et al., (2013) andDuprat et al., (2016)'s primary findings, the use

ofmanipulation checks to see whether the task workedwould

have been useful, which were not utilised in either study.
Indeed, a strength of our replication studywas the inclusion of

such checks indicating the PLT and reinforcement learning

had occurred.

4.3. Secondary hypotheses: mood ratings

Our replication study did not find overall effects on critical

omnibus tests, but did find the measure of positive mood

decreased, opposing the prediction and becoming less posi-

tive following active TMS, under exploratory analysis.

Reduced positive affect on the PANAS has been linked to

anhedonia in depressed patients (Watson & Clark, 1984) and

is indicative of reduced motivation and pleasure (Crawford &

Henry, 2004). Similar to our finding, some early studies have

reported decreased happiness in healthy controls, using self-

report mood measures following TMS (George et al., 1996.;

Martin et al., 1997; Pascual-Leone et al., 1996). Nevertheless,

this finding was surprising, as we had expected active TMS to

increase pleasure, as demonstrated by an increase in reward

responsiveness on the behavioural PLT task, where contrary

to our expectation active stimulation decreased positive

mood. As this unexpected finding is suggestive of a detri-

mental effect on mental wellbeing, in the context of a

treatment used to improve depressive symptoms, we advo-

cate further confirmatory research in this area. It is worth

noting however, that the levels of withdrawal due to

discomfort in our experiment were relatively high (six par-

ticipants compared to none reported by either Ahn et al.,

(2013) or Duprat et al., (2016)). Repetitive TMS applied to

the DLPFC often causes activation of the muscles and nerves

such as the trigeminal nerve, resulting in facial twitches that

participants can find uncomfortable. Therefore, it is possible

to speculate that such, largely unavoidable, discomfort could

also drive the reduction of positive mood effects we

observedeindeed, our experimental protocol saw the PANAS

being administered almost immediately after stimulation,

and thus the discomfort could have a strong influence on

ratings. Consistent with our interpretation we note the

reduction of positive mood was only observed for active and

not sham stimulation. Here further research, including

further post experiment monitoring, may be required to test

the possibility that factors such as discomfort could drive

effects of rTMS.

If the reduced positive mood following stimulation from

the exploratory analyses were to be confirmed it would lead to

a more fundamental question about whether TMS should be

used as a treatment for depression, given the core premise of

TMS treatment protocols for depression is to increase positive

mood rather than decrease it. However, it is also worth noting

that individual differences in responsiveness to TMS may be

factors in the discrepancy of results between ours and both

Ahn et al., (2013) and Duprat et al., (2016)'s studies. A possible

future avenue for TMS protocols could be measuring individ-

ual differences in stress hormones, such as cortisol, which are

thought to modulate the effectiveness of TMS in non-

depressed healthy control participants (e.g., Baeken et al.,

2014) and in depressed patients (Baeken et al., 2009). Using

personalised TMS protocols, which take into account indi-

vidual differences in neural connectivity and variability (e.g.,
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Singh et al., 2019; Caeyenberghs et al., 2018; Tik et al., 2018)

could enhance the effectiveness of TMS treatments and

indeed enhance reward sensitivity.

We also predicted that negative mood, as measured on

the PANAS NA, would decrease as a function of TMS, that is

participants would experience less negative mood following

active rTMS. We found substantial support for the null hy-

pothesis of no change following both active and sham

stimulation in line with previous evidence (e.g., Baeken et al.,

2008; Jenkins et al., 2002; Moulier et al., 2016; Mousimann

et al., 2000). However, the absence of differences here

could be driven by floor effects which limit the utility of the

PANAS NA in non-clinical populations (Crawford & Henry,

2004). Prior to participation, participants underwent safety

screening which excluded participants taking psychoactive

medication, including antidepressants, therefore the non-

clinical status of our participants is likely to have contrib-

uted to the presence of such floor effects in our data. Also,

when conducting brain stimulation experiments, we aim to

ensure participants are comfortable and informed. These

factors may have also contributed to the prevalence of floor

effects, and we would expect them to be present in any

similar TMS experiment.

In light of stimulation not decreasing negative mood, and

active stimulation potentially decreasing positive mood, we

question the basic application of TMS to treat depression.

4.4. Limitations

A possible limitation of our study could be our stimulator not

being identical to that of Duprat et al., (2016). This resulted in

one of the components of the theta burst protocol being

generated at a slightly different frequency to those of Duprat

(i.e the mean frequency of the triplet bursts was 45.967 Hz as

opposed to 50 Hz, See Supplementary Material for a full

breakdown of frequency used, https://osf.io/sep4g). Howev-

er, our protocol was still facilitatory, with frequencies well

above ~5 Hz, above which are postulated to induce excitatory

effects (Huang et al., 2005; Siebner & Rothwell, 2003), and still

above the high frequency TMS protocol used by Ahn et al.,

(2013). As Ahn et al., (2013) used a different stimulator, and

a different high frequency TMS protocol rather than iTBS

such as Duprat et al., (2016), we argue that the differences

between Ahn et al., (2013) and Duprat et al., (2016) replication

are greater than the iTBS frequency differences between our

replication and that of Duprat et al., (2016), and the stimu-

lator we used is far more commonly used and therefore of

greater clinical relevance.
5. Conclusions

In sum, participants in our study demonstrated reward

responsiveness akin to that found in the extant PLT literature.

However, we failed to replicate Ahn et al., (2013) and Duprat et

al., (2016)'s key findings that active stimulation would posi-

tively modulate reward responsiveness. Nevertheless, we

found, in an exploratory analysis, that positive affect was

reduced, akin to anhedonia, following active stimulation,

which is concerning for the use of TMS as a treatment for
depression as such TMS is thought to reduce anhedonia. We

also found support towards the null for all other key effects,

including decrease of negative affect, which highlights the

need for further research to parse what depressive symp-

tomatology may be targeted effectively via TMS, if not nega-

tive mood, or anhedonia. These fundamental questions are

pivotal for the continued safe and ethical roll-out of TMS to

treat depression.
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