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Summary

Français – Cette thèse porte sur la modélisation numérique du réseau lym-
phatique à différentes échelles. Une défaillance de ce réseau résulte en une accu-
mulation du fluide dans la zone concernée pouvant entraîner un lymphœdème.

Afin de comprendre ce réseau et comment il développe sa capacité à déplacer
la lymphe, nous nous s’intéressons dans un premier temps à une comparaison
des différentes description et modèles de réseau lymphatique dans la littérature.
Nous étudions d’abord les approches discrètes à zéro dimension et à une dimen-
sion. De plus, les différentes équations constitutives observées dans la littérature
sont extraites et analysées. Dans le but de comprendre les interactions entre
les éléments motiles de base du réseau lymphatique, nous présentons différentes
méthodes pour les calculs de couplage en simulation fluide–structure. Puis,
en nous appuyant sur différents articles récents, nous comparons différentes
approches et géométries sur l’étude des lymphangions (unités fonctionnelles
valvulées des réseaux lymphatiques).

Pour cette approche en zéro dimension, une nouvelle formulation numérique
est employée pour le calcul d’écoulement de lymphe dans le réseau collecteur.
La formulation analytique est détaillée et justifié dans ce document, nous ré-
duisons le nombre de paramètres dans l’équation constitutive généralement util-
isé. De plus cette formulation permet d’obtenir une fréquence de contraction
variable avec la charge imposée par les conditions limites du système. L’étude de
différents cas spécifiques tels que les bifurcations convergentes et divergentes,
éléments fondamentaux d’un réseau est effectué. Nous comparons les résul-
tats numériques avec des données expérimentales. Enfin, les résultats d’une
géométrie de réseau spécifique basée sur des planches d’anatomie de la jambe
sont présentés, montrant des phénomènes de synchronisation complexe entre
lymphangions.

Dans le dernier chapitre, un modèle en deux dimensions d’un lymphangion
est proposé, qui sera ensuite utilisé pour l’étude du comportement des valves,
lymphocytes et parois. Nous expliquons en détail le fonctionnement du code
numérique multiphysique d’interaction fluide-structure utilisant une méthode
nommée : Immersed Structural Potential Method (ISPM). Initialement, nous
introduisons les équations de la mécanique des fluides et des solides, comment
elles sont couplées, ainsi que le détail de leurs implémentations. Ensuite, le
comportement d’un groupe de lymphocytes dans le canal lymphatique à l’aide
d’un code d’interaction fluide-structure est étudié. En utilisant la géométrie
d’un lymphangion, nous comparons le déplacement des lymphocytes dans dif-
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férents cas, d’abord avec une ou sans valve, pulsation du fluide puis des parois
mobiles. Ce type d’écoulement est similaire à celui des globules rouges dans un
flux sanguin.

English – This thesis aims at numerically modelling the lymphatic network
at different scales. A failure of this network results in an accumulation of fluid
in the area concerned, which can lead to lymphoedema.

With the objective to understand this network and how it develops its ca-
pacity to move lymph, we are interested in a comparison between different
description and models on the lymphatic network from the literature. We first
study the discrete approach in zero dimension and in one dimension. In addi-
tion, the different constitutive equations observed in the literature are detailed
and analysed. In order to understand the interactions between the basic motile
elements of the lymphatic network, different methods for coupling calculations
in fluid-structure simulation are presented. Then, with the help of different
recent articles, we compare different approaches and geometries for the study
of a lymphangion.

In this zero-dimensional approach, a new numerical formulation is used for
the calculation of lymph flow in the collecting network. Equations of this model
are detailed in this document, and the number of parameters generally used in
the constitutive equation is reduced. Moreover, these equations allow for a
variable contraction frequency depending on the load imposed by the boundary
condition applied. Different specific cases such as divergent and convergent
bifurcations, elementary units of a network are first studied. Furthermore,
lymphangions at the end of a channel appear to deliver more pumping energy
than the initial ones. The results from the simulations are compared with
experimental data. Finally, a specific and realistic network geometry extracted
from an anatomical drawing of a leg is used to simulate the model and show
complex synchronization behaviours between lymphangions. Three different
regimes of synchronization between lymphangion in a channel are identified.

For the last chapter, a two-dimensional model of a lymphangion is proposed,
which will then be used to study the behaviour of valves, lymphocytes and
walls. The operation of the multi-physics fluid-structure code is explained, it
is based on a method called: Immersed Structural Potential Method (ISPM).
Initially, the equations of fluid and solid mechanics are introduced, how they
are coupled, as well as the details of their implementation. Then, we study the
behaviour of a group of lymphocytes in the lymphatic channel using a fluid-
structure interaction code. Using the geometry of a lymphangion, we compare
the displacement of the lymphocytes in different cases, first with or without
valve, pulsation of the fluid and then the moving walls. We observe that a
poiseuille flow is maintained across the range of lymphocite density considered
here. This type of flow is similar to that of red blood cells in a blood stream.
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Chapter 1

Introduction

The lymphatic system constitutes a transport system, which was first briefly
mentioned by Hippocrates in the fifth century BC. And, first described scien-
tifically only in the seventeenth century by Thomas Bartholin (Bartholin and
Lyser [1652]). The system operates in parallel with the blood system. However
by comparison, it does not form a closed loop system, like the blood system
with veins, arteries and the heart as a pump. From a functional point of view,
it transports excess interstitial fluid back into the blood circulation, via the
thoracic duct. It also helps carry some fat from the digestive tract into the
blood, or to the appropriate organs. Along with the excess interstitial fluid,
some proteins are transported back to the circulation via for example the tho-
racic duct. The lymphatic system also serves a great purpose for immune cells
and contributes to the immune response by carrying lymphocytes for example.
In fact, lymph nodes across the network filter the interstitial fluid and break
down bacteria, viruses and waste. They also collect antigens carried by the
lymph, triggering the release of antibodies and lymphocytes. Furthermore as
it moves fluid and cells back into venous system, it contributes importantly to
the spread of cancer cells throughout the entire body and tend to cluster in the
lymph nodes.

Lymph drainage can be impaired as a consequence of infection, surgery,
transplantation, or congenital diseases. This condition is called lymphoedema,
in which lymph does not flow properly and tends to swells until it solidifies. As
of today, there are no treatments and management for this disease has limited
success. As a matter of fact, multiple paths have been followed to limit its
effects, showing the limited understanding of initial causes. For example, arm
lymphoedema can occur in breast cancer patients. As mentioned earlier, cancer
cells tend to cluster in lymph nodes and are often removed which modifies the
equilibrium of the lymphatic network and thus its ability to pump.

Despite the importance of the lymphatic system in health and disease, its
transport properties have received a rather limited attention. The lymphatic
system is complex with different functions between anatomical sites. In fact,
mammals have similar lymphatic system, it is present in reptiles and bird as well
but with less or no lymph nodes. However, insects have open circulatory fluid,
and blood and lymph functions are ensured by a similar fluid called hemolymph.

3
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In this introduction, an overview will be given of the lymphatic system, its
structure, function as well as the main pathological issues and clinical impli-
cations. The disease impact will be discussed alongside the links to clinical
applications. Finally, the outline of this manuscript is described.

1.1 The lymphatic system

The lymphatic system, which is used also in the immune system, carries pro-
teins, bacteria and cellular debris. This system is made out of the lymph (lym-
pha: water in Latin), the conducting network and the lymphatics organs. The
conducting network connects a fine network (capillary–like) in the tissue and
the organs to the lymphatics organs and then to the lymphatic duct. For this
study, we will only focus on the lymphatic network, as represented in figure 1.2
which represents the lymphatic network in leg skin.

As one can observe from figure 1.1 (i), the lymphatic network starts close
to blood capillaries where fluid is pumped and releases lymph back to the ve-
nous system, after passing through few lymph nodes. In this system one can
categorize into three main components:

• Lymph vessels (which are described below),

• Lymph,

• Lymph nodes.

Lymph vessels form a network that covers most of the human body. The skin,
intestines and lungs are a few example of organs covered with the lymphatic
network. Figure 1.1 (ii) represents the inside of a right leg skin collecting
lymphatic network. As it can be seen, the bottom of the foot is covered with
vessels which extend up to the lymph node of the groin area. There are also
some hidden nodes under the knee called Popliteal lymph nodes. As defined
by Sappey [1874], one can divide the network into three hierarchical levels
corresponding to increasing diameter ranges:

• Capillaries (also called initial lymphatics) are smooth channels with no
valves and an average diameter of 50 µm Sappey [1874].

• Secondary vessels (also called collecting lymphatics) have a diameter
of 0.12mm on average Sappey [1874] or 0.2mm depending on authors
Margaris and Black [2012]. They are made of units called lymphangions
that can pump fluid thanks to the presence of valves, with an inter-valve
distance/diameter ratio of about 10. These will be described in more detail
below.

• Trunks which have the same structure as secondary vessels but with a
lower inter-valve distance/diameter ratio. They often run parallel to the
largest veins and are less numerous than the secondary vessels.

The focus of this thesis is on the secondary vessels, which are also called collect-
ing lymphatics. This terminology has been used by Zawieja and Barber [1987]
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lymphangion

valve lumen

(i) (ii)

(iii)

Figure 1.1: (i) Picture representing lymph and blood circulatory system and how they
connect with each other. (ii) Inner leg lymphatic skin network from large drawing of Sappey
[1874]. (iii) Microscopic image showing the profile section of a lymphangion with the two
leaflets from Moore and Bertram [2018].

and more recently in Breslin et al. [2018]. Lymphangions are the elements con-
stituting the lymphatic network and are represented in figures 1.3 and 1.1 (iii).
The figure also depicts the length of a lymphangion and its diameter. As they
contract and expand to propel lymph which is contained inside, their diameter
varies. The cycle used by the pump is described in the 0D model chapter. How-
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ever it is possible to get an average value around which the diameter will be
considered contracted or relaxed. Table 1.1 shows data from the literature, in
which the value of 0.2mm is often used for lymphangion diameter. Furthermore
the length depends on the source, but a value of 2mm will be used and seems
to be a consensus. It is important to note that human lymphangions are not
easily accessible and requires experimental know-how since lymph vessels are
smaller than blood ones and also present in smaller quantities. Furthermore,
ethic measures are required to observe those vessels in vitro. However with
technical progress, it is possible to observe them via specific markers but it is
not still widely spread. In literature, lymphangions of rats or other mammals
are often more studied than human ones. For example Arkill et al. [2010] used
bovine lymphatics, Bohlen et al. [2009] worked on rat lymphatic valve, or even
dogs Burton-Opitz and Nemser [1917].

Figure 1.2: Lymphatic vessels of the leg skin (Vaisseaux lymphatiques superficiels ou cutanés
du membre inférieur in french) this illustration can be found in Sappey [1874].

The lymphatic network begins with a lot of porous dead-end capillaries which
merge together to form a bigger lymphatic vessel. From then, the lymphatic
vessels can merge and fork at lymphatic nodes, or without lymphatic nodes,
as can be observed on figure 1.2. The walls of a lymphangion are composed of
lymphatic smooth muscles according to von der Weid and Zawieja [2004]. The
thickness in table 1.1 is defined as 10 µm, however as the wall contracts and
relaxes, this value should be considered as a variable. These walls are essential
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Margaris
and Black
[2012] Pan
et al. [2010]

Rahbar and
Moore [2011]

Jamalian
et al. [2016]
Contarino
and Toro
[2018]

Bertram
[2020]

Diameter 0.2mm 0.2mm x x
Length 2mm 2mm 3mm x

Wall thickness x 10µm x x
Valve thickness x x x 5µm

Table 1.1: List of different sources for dimensions of typical human lymphangion of the
collecting network. (x) denotes that the value could not be retrieved or it is a variable.

for the drainage of interstitial fluid through the contraction cycle. Lymphangion
walls behave as a feedback loop from a wide variety of stimuli that helps to
modulate their contractile activity. As of today it is still unclear whether stimuli
are received from chemical balance (Na/CO ions) or electro-nervous impulse.
Besides, from an energy point of view, only 40% of the fluid displacement is
generated by these contraction cycles. The rest of the displacement is ensured
by muscle contraction due to body movement or other internal displacements
squeezing the lymphatic vessels. One can say that physical activity is essential
for lymph circulation.

Valves

Diameter

Length

Figure 1.3: Schematic representation of one lymphangions with its neighboring ones. The
Diamter here represent the lymphangion diameter, and the length shows the overall length
of a lymphangion. The Valves are shown in two different state. They are oriented in a
direction allowing it to close if the pressure difference moves the fluid backward, and close
the valve otherwise if it moves forward.

Figure 1.3 shows a schematic of a lymphangion. The valve, which in our case
is located on the left of a lymphangion is attached to the wall and floating in the
lymph. It is formed of two leaflets, their shape like a moon croissant and means
of attach to the lymphangion itself favors the flow in one specific direction,
so one can say that these are unidirectional valves. According to Mazzoni
et al. [1987], there is no active smooth muscle action inside the leaflet tissues
to open or close the valve, making it a purely passive object. Furthermore,
only the pressure and the viscous forces appear to displace the valve, the valve
is constructed such that it prevents prolapse and therefore reduces the risk
of regurgitation (back-flow). Also in Watson et al. [2017], they were able to
reconstruct a valve using a confocal microscope method for a rat lymphatic
valve. It confirms that the valve is bicuspid and that each valve has a semi-
lunar shape. This shape has a bias toward forward flow and tend to close in
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case of reverse flow. The valve is composed of elastic fibers and collagen matrix
according to Arkill et al. [2010]. In terms of elastic properties, the Young
modulus is estimated to be around 45 kPa by Wilson et al. [2015], however
Wilson et al. [2018] propose that it might be lower and should be around 20 kPa.

Now that the network and secondary lymphatic structure have been defined,
the next section is about lymph, the fluid itself. So it will expose its composition
properties, as well as the function it covers as a fluid.

1.2 Lymph and its composition

Lymph is a fluid (lympha meaning water, and also related to water in move-
ment in Latin) issued from the filtration of capillaries which are the dead-end
entrance point of the network. As mentioned by Moore and Bertram [2018]
the total flow rate for a human person should be around 5Lday−1, and the
total amount of lymph is between 8 to 10 liters according to Moore [2018]. As
a comparison, blood flow rates vary between 3.0∼26mLmin−1 in arteries and
1.2∼4.8mLmin−1 in veins according to Klarhöfer et al. [2001] Furthermore the
total blood flow rate is 5Lmin−1. The composition of lymph evolves while
crossing lymph nodes. As a matter of fact, pre-nodal lymph is similar to in-
terstitial fluid and its composition is mainly water, salts, plasma proteins and
white blood cells. The concentration for plasma proteins and cells is so low
that one can consider lymph to be as viscous as water in that case Stoltz et al.
[1976]. The viscosity of lymph has been found to be 1.7 times greater than
water according to Burton-Opitz and Nemser [1917]. Before flowing into the
capillaries, the fluid is called interstitial fluid, which allows interstitial cells to
interact with hormones or proteins Fogh-Andersen et al. [1995]. The osmotic
pressure difference plays a key role in the feeding of lymphatic capillaries by the
interstitial fluid Guyton et al. [1976]. However, regarding the size of opening
of the capillaries, some molecules such as glycocalyx play a role of sieve in the
formation of lymph according to Hansen et al. [2015]. As long as interstitial
fluid hydro-static pressure is above lymph pressure, this pressure difference al-
lows interstitial fluid to be drawn inside the lymph capillaries. Furthermore,
lymph can be seen as issued from the filtration of blood to the interstitial fluid
as mentionned in Quéré [2010]. The fluid enters the lymphatic capillaries with
a flow rate of approximately 5mLh−1 as mention in Hansen et al. [2015] and
Smith et al. [1970], from a vessel entering a lymph node. However, this value
is dynamic and it has been observed to vary, notably under pathological con-
ditions. Those variations can be associated with increased lymphangiogenesis,
cellular trafficking or inflammatory reaction, which affect the lymphatic system.

From a functional viewpoint, lymph is considered as part of the immune
system. As mentioned in Kogan and von Andrian [2008], lymph is charged with
lymphocytes and monocytes. Between the capillaries and the collecting system,
the concentration of these cells in lymph can increase if the immune system
reaches inflammatory conditions. In addition, the stiffness of lymphocytes can
evolve as it is discriminated toward a specific purpose, as shown in figure 1.4.
After going through a lymph node, more antigen/antibody complexes can be
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found in the lymph.
Also surrounding the gut and during the digestion process, the lymphatic

system carries chyle. According to Bragdon [1958], this fluid is specifically pro-
duced at the wall of small intestine and differs from lymph because it contains
emulsified fats. These lipids are stored in chylomicrons, which form particles in
the fluid forming a suspension. As the concentration of fat is greater than in
normal lymph, chyle is whiter and opaque. Furthermore the viscosity of chyle is
expected to be different from lymph and some study on drug absorption hinted
the viscoelastic behaviour of such fluid Peppas et al. [1984].

Figure 1.4: Summary of elasticity values (Young’s modulus) for different immune cells, from
Bufi et al. [2015].

Another point to raise in the modification of lymph is the alteration of
lymphocytes. As they are part of the immune system, for this section only the
B and T cells are considered. From a general point of view, B lymphocytes
play a large role in the adaptive immune response, while T-cells are more active
during the primary response, and can also activate B-cells, as explained in
DeFranco [1987]. Furthermore, it has been shown by Gowans et al. [1964] that
lymphocytes primarily reside in lymph nodes. They massively enter the blood
circulation and lymph circulation if the immune system is provoked by the
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Kristenson
[2009]

Petchakup
et al. [2021]

Bufi et al.
[2015]

Diameter 5 ∼ 7µm 8 ∼ 10µm x
Rigidity x x 90Pa

Table 1.2: Characteristic values of a lymphocyte that affects lymph flow.

intrusion of pathogen agents. There is information on density of lymphocite
in rat lymph, the density ranges from 32.6 lymphocites per µL to 3.55 × 104

according to Dixon et al. [2006]. No information on human lymphocites density
in lymph has been found and it is expected to vary between rat and human
or also depends on the health between different specimens. Lymph nodes also
allow for precise and localized reaction by connecting lymph and the blood
circulation.

As shown in figure 1.1, the lymphatic system collects fluid, cleans it and
inserts it back to the main blood circulation. This part of the network can
fail and lead to multiple disease, such as lymphoedema. Complications from
this disease can become significant if patients are sedentary Greene [2015]. In
terms of treatment, massage, inelastic compression bandage and skin care are
a few examples of interventions in order to manage the complications Ko et al.
[1998]. Other surgeons have investigated rerouting the network in order to
achieve drainage of lymph after removal of a lymph node (lymphadenectomy).
This operation often happens in breast cancer, and can leave some lymphatic
vessels open which might then lead to lymphoedema. However, there are no
clear standard or efficient surgical techniques for such operation to this day
Scaglioni et al. [2017].

1.3 Outline of the Thesis

The main goal of this thesis is to gather knowledge on the physical phenomena
that occur within the lymph network. As of today, it is not possible to cure
a lymphoedema, and physician often use compression garments to prevent this
long-term condition. So by improving the knowledge of lymph transport, one
should find better ways to prevent or even cure lymphoedeme.

From a physical point of view, the fluid and the solid particles inside lymph
or the flexible walls of the vessel present new difficulties and unsolved prob-
lems when trying to model and understand the transport of lymph. Some key
challenges for which this work seeks to find some further insights are:

• The pumping function of lymphangions and its dependency on fluid prop-
erties, mechanical properties of the lymphangion and valves and dynamical
parameters such as pressures and contractility

• The structure of the flow of a particle-laden fluid (lymph and lympho-
cytes) in lymphangions: how does the presence of particles (cells) affect
the structure of the flow, its rheological properties and the pumping effi-
ciency
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• The modeling of lymphangion networks viewed as dynamical systems of
coupled active units, their ability to synchronize to produce a global flow
and the description of flows in such complex networks

In order to contribute to these different aspects, two different scales of the
system were considered with two types of modeling, namely 2D fluid-structure
simulations at the scale of a lymphangion, and a 0D model of networks in which
each lymphangion is modeled by a set of coupled ordinary differential equations.

To conclude this introduction, the main chapters of this thesis are listed
hereafter. The first chapter provides a review and gathers multiple articles
with model or modeling made similar to the work presented in this thesis.
Then, the second chapter will develop an improved version of the model in 0D
dimension derived by Bertram et al. [2011] and its use against an example of
a leg skin network. The third chapter focuses on the description of a fluid-
structure interaction model and 2D simulation code that was used in the fourth
chapter. The last chapter presents a numerical study on the influence of the
presence of lymphocytes on lymph flow in a vessel, with a focus on the dispersion
and transport of particles through a lymphangion with pulsed flow. Finally,
conclusions and perspectives for future work are presented.
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Chapter 2

Current models of
lymphangion and lymphatic
networks

Résumé - Tout d’abord, une comparaison est faite entre différents articles
sur le réseau lymphatique et leurs modèles. Nous étudions d’abord l’approche
discrète en zéro dimension, ainsi qu’avec une dimension. De plus, nous ex-
trayons les différentes équations de constitution observées dans la littérature.
Différentes méthodes pour les calculs de couplage en simulation fluide–structure
sont ensuite présentées. Enfin, en se basant sur des articles choisis sur l’étude
des lymphangions en trois dimensions, nous comparons différentes approches et
géométries.

Abstract - First, mutiple articles are comparared articles on the lymphatic
network and their modelling. Study of lumped zero and one dimension model for
vessels and network. Furthermore, a close attention is given to the constitutive
equation. Then, we present multiple methods to solve fluid–structure interac-
tion problems. Finally, by selecting articles on three dimensions lymphangion
modelling, different approaches and geometries are detailed.

2.1 Introduction

The human lymphatic system can be described of three main components, which
are the lymph, the network and the lymph nodes. Lymph is a body fluid, mostly
made of blood plasma, its molecular composition is subject to many variations
as it helps to spread hormones D'Alessio et al. [2007] or also to support the
immune system Olszewski [1986]. Furthermore, one of the most notable case
is the modification in lipid concentration within the lymph near the guts after
the digestive process. The lymphatic network can be separated into three main
categories: the capillaries, the vessels and the trunks. The former is valveless
and quite porous. The latter two have the same structure, a succession of
lymphangions and only differ by their diameters. They both are able to contract
due to muscle cells present in their walls. Lymph nodes are of oval shape, they

13
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play key role in the immune system as they produce (as well as bone marrow)
and conserve different version of antibodies Jerne [1973].

For this thesis, we will focus on the mechanical study of the lymphangions,
its pumping mechanism at the lymphangion scale and into the network. Lymph
gets into the network from the interstitial fluid into the capillaries. In fact, using
osmotic pressure the interstitial fluid flows into the porous end of the lymphatic
capillaries. According to Sappey [1874] the diameter of those are lower than
blood capillaries. For most of them the diameter is not larger than a microm-
eter. All these capillaries converge to larger vessels which are regularly valved
and have muscle tissue. These valves are important for the flow direction. In
fact, they close to prevent back flow and open when the flow pushes them open,
in other words, these valves have a passive bias for forward flow. Furthermore,
there are two types of forces to generate lymph transport. Passive ones are
generated by overall movement of the entire body such are walking, exercising.
It can be linked to the contraction of skeletal muscles, fluctuation of the central
venous system, the influence of the respiratory movements, gravitational forces
Gashev [2002] or more simply by walking or exercising. Active forces are gener-
ated by the muscles in the lymphatic vessels or trunks. Self-contractile activity
has been observed in the lymphatic vascular system.

In order to get overall value of the forces per lymphangion or global scale of
the total flow of lymph without measuring it in vitro, which might disturb the
measurement, a zero dimension model can be easily set up in order to simulate
a whole collecting network. Different models are shown in detail then different
papers using networks is presented. Finally, the lymphangion approach with
two or three dimensions using fluid structure interaction simulation are shown.

2.2 Various lumped models

The initial work on lymphatic lumped modelling is from Reddy et al. [1977], and
used main lymphatic trunks to form a network. However, trunks and secondary
vessels are different in length–diameter ratio. The main equations are common
to most of the articles since each model the same phenomenon. These equations
can be written as:

dV

dt
= Qin −Qout

Q = −Kδp
p = pact + ppas + pext

(2.1)

This set of equations consists in mass conservation, the Hagen-Poiseuille law
and the pressure balance involving fluid pressure p active pressure pact (wall
contraction), passive pressure ppas (wall elasticity) and external pressure pext.
With p the pressure in the lymphangion, V the lymphangion’s volume, Q the
flow and Ki the conductance (resistance’s inverse) with the subscript i as the
valve or the lymphatic, since those have independent diameters. A complete
derivation of this set of equations is provided in the following chapter.
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In Bertram et al. [2011] from a modelling point of view, a simple geometry is
defined with the wall of a lymphangion forming a cylinder. The pressure drop is
estimated from the standard Poiseuille flow in a straight channel. Such approx-
imation is strong since the lymphatic is displaced via a pulsed flow. However
the time spent during the contraction (systole) and the relaxation (diastole)
are not equal. For lymphangions, the diastole is significantly longer than the
systole in a normal condition Meisner et al. [2007], Telinius et al. [2010]. So
the lymph is often in a steady state, thus the Poiseuille flow approximation is
valid. The valve is defined in a similar manner, the pressure difference between
the two ends of the valve determines the valve resistance, then a pressure drop
is computed. To sum up, this method considers a lymphangion as a chain of
two cylinders of different diameter with flow passing through. Then, in order
to compute pressures this paper defines the transmural pressure. To simulate
the contraction and relaxation process of the lymphangion’s wall, the constitu-
tive equation has a forced cycle with a trigonometric function. Furthermore,
the relaxation term is the sum of an exponential term and polynomial series
to fit the pressure-diameter relation given by the experimental data, and the
collapse function is using an inverse cubic term. To solve the set of equations,
a Runge-Kutta fourth–order method is used for time integration and Matlab
own subroutine for ordinary differential equation (ODE) is used.

Contarino and Toro [2018], use a one dimension approach, a set of partial
differential equations (PDE) similar to (2.1) however its discretization does not
depend on the lymphangion. In other words, this approach does not hold the
variable value at specific points of the lymphangions, such as before or after
the valve. Also, this paper introduces a model for the electro-fluid-mechanical
contraction, which takes into account amount Ca2+ in lymph to increase rate of
contraction while NO help modulate such response and play the role of contrac-
tion inhibitor1. This allows the contraction term in the constitutive equation to
be independent of any trigonometric periodic function referred by s(x, t) (the
contraction state variable) in table 2.1. Instead the cycle is based on an equilib-
rium between the stretch-activated calcium influx and contraction inhibitor of
the wall shear stress by the production of nitric oxide. This equilibrium provides
its own periodic behaviour, so the lymphangion contracts and relax depending
on its input and output pressure. It is solved using an ordinary differential first
order in time equation with s(x, t) (a contraction state) as unknown, explained
in table 2.1. Tests are run on a chain of three lymphangions in a similar set up
to Bertram et al. [2011] paper. Furthermore, the valve model is implemented in
a similar manner. A sensitivity analysis is done for different pressure gradients,
and the presence of electrical coupling in order to pass contraction information
to synchronise lymphatic contractile activity is suggested in the conclusion.

Jamalian et al. [2013], uses a model similar to Bertram et al. [2011] which
assumes Poiseuille flow in lymphangions. Furthermore, the contraction term
of the constitutive equation is forced by a trigonometric function and does not

1NO is a relatively labile free radical with an in vivo half-life of less than 5 s, NO cannot be stored
in free form and must generally be synthesized on demand or from more stable adducts (such as
Glutathione) that have specific biological effects Dudzinski et al. [2006].
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include the balance between the wall shear stress and the contraction inhibitor
to compute the contraction–relaxation cycles. Matlab subroutines are used
to solve the system of equations. A sensitivity analysis is performed for the
valve parameters and for lymphangion wall as well. In order to estimate the
most efficient chain of lymphangions, their number in a chain is varied. Also,
Jamalian et al. [2013] points out that rat lymphatic secondary vessels of human
and rat should behave differently. The constitutive equation used in this article
is written in table 2.1. The eleven parameters on the passive term, and the four
parameters for the active term makes it the most complex constitutive equation
of the literature.

Tretyakova et al. [2018] defines two similar models, the first in zero dimension
and the second in one dimension. For the zero dimension model, the constitutive
equation used in this article is mentioned in table 2.1. Both of them use a
similar constitutive contraction equation such as Bertram et al. [2011]. The
valve modelling however varies quite a lot from the other papers. In fact, the
model is implemented in order to prevent back flow on a general level, and does
not have a dynamical valve model. The zero dimension model has a constant
value as a Poiseuille resistance, the one dimension model applies friction force
to compensate back flow. The geometry used for the zero dimension is a series
of lymphangions, from two to ten in a straight channel. In the description of
the one dimension method, a network approach is mentioned, but the numerical
section does present any results. The metrics used in this paper are pressure,
radius flow and contraction term.

Bertram et al. [2011], Contarino and Toro [2018], Jamalian et al. [2013] &
Tretyakova et al. [2018] lymphangion models are often applied to small or larger
networks in order to understand the dynamic of lymph flow. Simulations can
help clinicians as they provide insight of flow and pressure of the lymphatic
system without the need of experimental protocol or surgery operations.

2.3 Lymphatic network lumped models

There are few articles that focus on simulating various kinds of lymphatic net-
work. As detailed in the introduction there are different types of network.
Unlike the articles from the previous section, the geometry presented here has
convergence and divergence of lymphatic vessels. For example, it is the case in
Jamalian et al. [2016] and Reddy et al. [1977] papers. The first one defines a ge-
ometry made of chains of three vessels merging or diverging from the secondary
lymphatic network. The second one has a geometry based on human lymphatic
trunks. Such modification in the structure has various impact on the modelling
and the simulation. But those can be summed up as how to handle the bifur-
cation and confluence of vessels. From a model perspective, these connections
are handled by equating the pressure and by satisfying the mass conservation
at the connecting lymphangion. The boundary conditions on Jamalian et al.
[2016] paper are set so the inlet pressure remains the same and is defined at
6 cmH2O. Furthermore, the outlet pressure is varied in different simulations
and extends from −3 to 41 cmH2O. However, networks used in this article are
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Table 2.1: Table of main different constitutive equations found in literature.
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Method Geometry Metrics

B
er

tr
am

et
al

.[
20

11
]

Forced pulsation to con-
trol contraction cycle
Poiseuille flow assumption
Working valve with differ-
ent opening and closing
pressure difference
Unknown variables are
pressure and diameter.

ODE
chain of two valves and
one lymphangion
Forced contraction cycles.

• Pressure
• Diameter
• Valve resistance
• Flow

C
on

ta
ri

no
an

d
To

ro
[2

01
8]

Poiseuille flow assumption
Valve opens and closes
with respect to the pres-
sure difference
Unknown variables are
area and flow.

PDE
series of three lymphan-
gions
mechanico-chemical bal-
ance for contraction cy-
cles.

• Pressure
• Diameter
• Valve state
• Flow
• Stimulus, contrac-

tion state

Ja
m

al
ia

n
et

al
.[

20
13

]

Poiseuille flow assumption
for flow resistance
Forced pulsation to con-
trol contraction cycle
Sensitivity analysis for
valve and contraction pa-
rameters
Unknown variables are
pressure and diameter.

ODE
Variable chain from 3 to
21 lymphangions
Forced contraction cycles.

• Pressure
• Diameter
• Frequency
• Flow

Tr
et

ya
ko

va
et

al
.[

20
18

]

Poiseuille flow assumption
for flow resistance
Forced pulsation to con-
trol contraction cycle
Unknown variables are
section and velocity
Constant Poiseuille resis-
tance for valves in 0D
Larger friction force to
prevent back flow in 1D.

ODE and PDE
chain of 2 to 10 lymphan-
gions
Lymphatic channel valves
are treated differently
from 0D to 1D.

• Pressure
• Diameter
• Flow
• Active contraction

term

Table 2.2: Recapitulating table of method and geometry from relevant literature papers on
the secondary valve and lymphangion model.
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only made of convergent vessels with a total of 3 connections, with four inlets
and one outlets, as shown in figure 2.1.

C1

C2

C3

Figure 2.1: Schematic of a network used in Jamalian et al. [2016] paper, here it is drawn
with three lymphangions per vessels. In the article, the amount of lymphangions per vessel
is varied. Furthermore, the overall structure remains the same, such that the number of
connection between vessels remains at three with four inlets and one outlet.

In this article, Reddy et al. [1977] which is the oldest one related to simulat-
ing lymphatic network, it does consider, the whole body main ducts going back
to blood, and does not contain bifurcation. The network modeled is slightly
less than 300 lymphangions. Pressure profile against time is observed for dif-
ferent organ. In order to simplify the network, all lymphangions are considered
the same, which is used as well for our model. With regards to the figure pro-
vided in this article, the time axis shows ten seconds of simulation time. It
is acceptable to consider this time not enough to propagate information into
the entire network. Also the number of lymphangions can be considered small,
since trunks ones have small ratio than secondary vessel ones.

2.4 Numerical method, fluid-structure interaction

In this section, we brielfy review the main numerical methods that can be
used for numerical simulation of lymph flow. In order to solve numerically the
displacement of lymph in two or three dimensions, one needs to solve the fluid
and the solid displacement. There are multiple ways to couple fluid and solid
solver, the mains approaches are:

• Arbitrary Lagrangian Eulerian (ALE),

• Smoothed Hydrodynamic Particles (SPH),

• Immersed Structural Potential Method (ISPM).

The ALE method finds its root with the work of Hirt et al. [1974]. It is
limited since fluid and solid are meshed on the same space and need to be
re-meshed when the solid is displaced, and can be computationally expensive
Gil et al. [2010]. Meanwhile the SPH method does not have a mesh, each
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particles need to compute its neighbor distance in order to estimate the next
time-step which is demanding. However, this process is highly efficient with
proper parallelization. The immersed boundary method which founded the
ISPM was first introduced by Peskin [1972]. ISPM is composed of a mesh
for the fluid and a cloud of particles for the solid. This means that for every
time-step the information of velocity needs to be interpolated from the fluid
grid to the solid points raising the computational time. A comparison on FSI
benchmark, a dam break with elastic obstacle has been done by Yang et al.
[2017], of between SPH and ISPM.

These methods found an echo in various domains from aero–elasticity to
mechanical biology. However, the time scales varies a lot between these two
domains. Naval applications is confronted to similar problem of elasticity as
aerodynamicist. In fact, the Reynolds number for ships or planes is larger
by three up to five order of magnitude compared to biological problems, thus
inertia plays a larger role. As detailled in Sigrist [2015], fsi coupling can be
written in the Laplace space. This frequency based formulation is suited for
aerodynamic elasticity problems, as the solid does not deform a lot but with
higher frequency than in biological application.

In the mechanical biology domain, few problem has been studied such as
the aortic valve or red blood cells. The first replacement of this valve was first
performed in 1962. Since then, teams try to improve the design, but the in vivo
measurement and working conditions are difficult to obtain valuable results.
Thubrikar et al. [1981] presented work on improving the working functionality
of an aortic valve on dogs. But with the help of simulation and the increase of
computational power available, not only valve were considered but also blood
vessels. The figure 2.2 (i) & (ii) represent an aortic valve from a numerical
point of view Such that today, there are frameworks to compute intraventricular
blood flow Prud’homme et al. [2012] or Spühler et al. [2018]. However, on the
lymphatic side progress are moderate, the secondary network valve has been
observed using confocal imagery and mechanically analysed by Watson et al.
[2017]. Also, on the next section we are investigating a new approach to the
lymphatic valve problem.

2.5 Two & three dimensions, secondary lymphatic
valve and lymphangion models

In this section, we are going through articles focusing on the numerical simula-
tions of lymphangion using coupled or uncoupled fluid–solid interaction (FSI).
By opposition to the lumped model simulations, two and three dimensions sim-
ulations are more recent in the literature. Most of articles on this topic focus
on the valve displacement and its behaviour in the pumping function of a lym-
phangion. They also use water as a fluid in the simulations, by setting the
density and the viscosity, apart from Bertram [2020].

Wilson et al. [2015] uses an uncoupled approach as forces are applied to
the valve structure giving a deformation. This deformation uses then as input
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(i)

(iii)

(ii)

Figure 2.2: Different types of valve studied from a numerical bio engineering point of view.
(i) Aortic valve for numerical simulation from Spühler et al. [2018], (ii) idem from Loon, van
[2005], (iii) Lymphatic valve from experimental result from Watson et al. [2017].

geometry for a fluid simulation. The limitation of such method to compute
the valve resistance has clear limits by not coupling fluid and solid. However,
the geometry are reconstituted from confocal microscopy images. The valve
stiffness is homogeneous in the valve and is set to 45 kPa. The stiffness of the
valve used here is relatively high compared to other paper as shown in table
2.3.

It focuses on the pressure along side the central axis of the lymphangion,
which exhibits a typical Poiseuille flow in a straight tube type of pressure profile
with variation near the valve. A later paper from the same group, Wilson et al.
[2018] achieved a fully coupled transient simulation of flow through a valve.
While remaining focused on the sinus region, it presents the fluid dynamic,
valve deflection and the resistance to forward flow. However, the geometry
used in the simulation only corresponds to one forth of the channel, based on
its symmetrical nature, which might not completely capture the physic, since
the Reynolds number is low and eddy asymmetry will not establish. Also, vessel
walls are not simulated, yet they are likely to influence the dynamic of the valve.

Using a different method, but with a very similar geometry, Ballard et al.
[2018] focuses on impact of valve aspect ratio and the relative stiffness of the
valve. In fact, it uses a lattice Boltzmann method for the fluid is coupled to a
lattice spring model for the solid. This method is described in Ladd and Verberg
[2001]. From a geometry perspective, the walls are statics and only the valve is
moving. Furthermore, Ballard et al. [2018] mention observing valve with aspect
ratio from 1.15 to 3.0, and Wilson et al. [2015] have aspect ratio from 1.17

to 1.41. Their valve stiffness is homogeneous but varies from simulations from
1.2 kPa to 7.5 kPa. By opposition to the first paper, Ballard et al. [2018] use a
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different valve Poisson ratio of one third, while all the other papers use one half
in term of ratio. Aside from the simulation, experimental work on lymphatic
vessels from rats and sheep are presented.

Bertram [2020] and Li et al. [2019] work include computation of wall defor-
mation. This brings new insight as the vessel wall is responsible for part of the
lymph drainage since it produces force to squeeze the fluid out. Li et al. [2019]
use lattice Boltzmann model for the fluid, furthermore they track ions couple
Ca2+ and NO to trigger respectively relaxations and contractions of the vessel
walls. The NO concentration is treated as a scalar field, it uses convective,
diffusive and an additional term to take into account the decay and production
rate, shown in the equation number 7. Furthermore, the Ca2+ is only confined
to the wall of muscle cells, and only transfer from one cell to its neighbors, thus
the concentration equation is only diffusive. It is more complex than the nitrite
oxide equation, due to its non linearity and fail-safe feature to limit the min-
imum of radius. From the two dimensions geometry, valves need variation of
Young’s modulus to correct the parabolic anchoring to the wall which can only
be properly defined using three dimensions geometry. Here, the valve stiffness
at the trailing edge is ten-times smaller than at the root, and sinus region in the
result’s figures does not exhibit the round shape typical of lymphatic vessels.
It is not clear whether these two phenomena are linked. Li et al. [2019] shows
improvement of pumping efficiency with valve trailing edge flexibility, and that
the valve rest position does impact the pumping.

Bertram [2020] runs its simulation with Arbitrary Lagrangian-Eulerian ap-
proach, using a three dimensions geometry. However, it is not clear if the au-
thors used a full model of a lymphangion or 1

4 of the whole geometry. It shows
evidence of retrograde flow during the valve closure, and rarely closes com-
pletely. Furthermore, the vessel wall passively deforms and does not account
for the muscular forces, which can impact the pressure inside the lymphangion
and thus the valve shape. Since the valve is incompressible and its deformation
due to pressure difference for it to open or close, it must have an impact on the
wall displacement as well. Valve resistance, flow rate and valve deformation are
computed against pressure difference in order to compare with lumped models
and verify their accuracy.
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Method Geometry Metrics

B
er

tr
am

[2
02

0]

Adina software
using Arbitrary
Lagrangian-Eulerian
(ALE) approach

3D
Both wall and valve are
simulated.
Variation in the wall
and valve stiffness are
achieved.

• Valve trailing edge
• Sinus radius
• Flow rate
• Valve resistance

Li
et

al
.[

20
19

]

lattice Boltzmann model
Additional forces to fully
capture the fluid–solid
coupling
Convective diffusive set
of equations to capture
Ca2+ and NO concentra-
tions dynamic

2D
Both valve and wall are
computed.
Valve have linear stiffness
gradient.
Gmin=0 kPa at the trail-
ing edge & Gmin=18 kPa
at the valve root.
Wall have homogeneous
stiffness: 9 kPa.

• Flow rate
• Lymphangion

diameter
• Ca2+ and NO con-

centration

W
ils

on
et

al
.[

20
18

]

Arbitrary Lagrangian-
Eulerian (ALE),
ANSYS fluent for fluid
and APDL for solid.

3D
1
4

of the domain is simu-
lated,
Walls are not simulated,
valves are.
Pressure but the geome-
try is varied across differ-
ent simulations.
Valve stiffness is homoge-
neous and set to 20 kPa

• Trans-valvular
pressure

• Valve resistance
• Valve deflection,

displacement, ve-
locity along the
valve

B
al

la
rd

et
al

.[
20

18
]

lattice Boltzmann model
for the fluid,
lattice spring model for
the solid.
Ladd and Verberg [2001]

3D
Only valves are simulated,
walls are static.
Poisson ratio 1

3

Different valve stiffness
are use in simulations

• Valve aspect ratio
• Dimension-less

bending stiffness
• Normalized resis-

tance and conduc-
tance of valve

Table 2.3: Recapitulating table of method and geometry from relevant literature papers on
the secondary valve and lymphangion 3D/2D model.
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Chapter 3

Discrete modeling of
lymphangion chains and
networks

Résumé – On présente un modèle d’écoulement dans le réseau lymphatique
basé sur une modélisation 0D de la dynamique des lymphangion avec une nou-
velle formulation numérique, pour le calcul d’écoulement de la lymphe dans le
réseau collecteur. Pour cette étude, on se base sur une version simplifiée du
modèle qui réduit le nombre de paramètres dans l’équation constitutive sans
modifier sa physique. Cette première se portera sur différents cas spécifiques
tel que la bifurcation, convergence, nécessaire pour la création d’un réseau. Les
résultats seront comparés avec des données expérimentales effectués sur des
rats de laboratoire. Enfin, on présente les résultats d’une géométrie de réseau
spécifique extraite des planches d’anatomie d’une jambe humaine.

Abstract – We present a flow model of the lymphatic network based on a
zero dimension model of the lymphangion dynamics with a new numerical for-
mulation, for calculation of lymph flow in the collecting network. This study
starts on a simplified version of the model that reduces the number of param-
eters in the constitutive equation without altering its physics. It will focus on
different specific cases such as confluences or bifurcation geometries which are
key elements necessary for the creation of a network. The results will be com-
pared with experimental data acheived on laboratory rats. Finally, the results
of a specific network geometry are presented from an anatomical drawing of a
human leg.

3.1 Introduction

In this chapter, a 0D model is presented for the estimation of lymph flow in
chains of lymphangions which is then used to study flows in small–scale networks
as well as in a larger network whose geometry was extracted from anatomical
drawing from Sappey [1874] This model is an improvement of the previous one
presented in Jamalian et al. [2016] as it does not enforce the pulsatile behaviour
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26 DISCRETE MODELING OF LYMPHANGIONS

by trigonometric function. We will use it against experimental data as a valida-
tion procedure. Most of the experimental data used in this thesis are produced
either in Davis et al. [2012] or Bertram et al. [2016]. It focuses on the main
lymphatic channels, which Sappey [1874] calls trunks. They differ from collect-
ing lymphatics by their length and diameter. In fact, when new lymphangion
mechanisms are observed by experimentalists, new models are developed to try
to fit those experimental data. As well as a vessel made of a chain of a few lym-
phangions (most of the time ten) was studied experimentally by Bertram et al.
[2013] and numerically by Bertram et al. [2015] or Tretyakova et al. [2018]. Note
that, gathering mechanical data from real lymphangions requires fine equipment
with proper tuning in terms of size, forces and chemical balance. The model
used in this section allows computer simulations of a lymphatic network using
a 0D approach. It is based on a few approximations such as:

• lymph being a Newtonian fluid with the viscosity of water,

• flow being in a quasi-steady state, in other words, the flow is assumed to
be slowly varying, such that a fully developed Stokes flow is assumed,

• lymphangion geometry is considered to be cylindrical.

In terms of dimensionless numbers the Reynolds, the Womersley and the
Strouhal numbers are defined as:

Re =
vDρ

µ
, Wo = D

√
ωρ

µ
and, St =

ωD

v
(3.1)

With characteristic length D = 0.3 cm the diameter of the vessel, the density
ρ = 1g cm−3 the dynamic viscosity µ = 1 cP and ω = 0.01Hz for pulsation
frequency. All these values are gathered from the more exhaustive table 3.3.
The frequency used here fit a human lymphatic system but in this document a
comparaison is done with experimental data which uses rats or mouses.

As the proposed code does not compute the velocity but pressure, it is
possible to use the pressure gradient over a Poiseuille flow in a straight channel
the characteristic velocity v = 1.36 cm s−1, using the following equation:

v =
D2

8µ

(
δp

δx

)
With the pressure gradient being the difference of pressure boundary condition
over three lymphangions length. Using these values one can determine the
Reynolds number to be 40 and the Wormersley number 0.3 approximately.

The Reynolds number correspond to the ratio between the inertial forces to
the viscous forces, while the Womersley number compares the ratio of inertial
pulsatile flow effects to viscous effects. So here, the Reynolds number is low
as well as the Womersley number. Therefore, the unsteadiness of the pulsatile
flow is not considered as the Reynolds number is low. Moreover, when Wo is
small, the velocity profile solution is similar the Poiseuille profile. The Strouhal
number compares the ratio of velocity between oscillatory velocity to ambient
flow velocity, it can be written as a combination of both the Reynolds and the
Womersley number.
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Quantity CGS unit symbol in SI
force dyne dyn 1× 10−5 N

energy erg erg 1× 10−7 J
pressure barye Ba 1× 10−1 Pa
viscosity poisse P 1× 10−1 Pa s

Table 3.1: Table listing the units from the centimeter, gram and second system used in this
document.

For convenience, and because most of the literature use CGS (centime-
ter–gram–second) unit system, this unit system will be used in this document.
Also, it is important to notice that the pressure and work will be considered
in this CGS system, if not indicated otherwise. The table 3.1 introduces the
physical quantities, their CGS units and their SI equivalents.

The next section is about the presentation of the model. Then we will see
how this model is implemented. Finally, the results section will discuss different
cases run using this model.

3.2 Description of a lymphangion

A lymphatic vessel is made out of a chain of lymphangions. A single lymphan-
gion can be simplified as shown in figure 3.1. In all points described in figure
3.1, the [i] subscript represents the i th lymphangion.

i th lymphangioni− 1 th i+ 1 th

Pn[i−1] Pv[i] P[i] Pn[i]

D[i]

Dv[i+1]
Q1 Q2 Q3

(i)

Volume V
wall motion

Pext

Pa + Pp

P

valve opening
(ii)

Figure 3.1: Sketch of a lymphangion’s side view, exposing the valve and the container part.
(i) The position of different pressure points and diameters are provided. As well as the
different flux between the pressure points (ii) The short arrows represent the wall motion of
a contracting ith lymphangion. The short arrows in the i+1th lymphangion show the valve
opening. Large arrows display the different pressures a lymphangion is submitted to.

Figure 3.1 represents a lymphangion with computation points for pressure
and diameter. Three pressure points are estimated directly:

• Pv,[i] the pressure right after the valve,
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• P[i] the lymphangion pressure,

• and Pn[i] the pressure right before the valve.

Two diameter points are computed:

• D[i] the lymphangion diameter,

• Dv[i] the exit valve diameter.

²
Computational points in figure 3.1, Pn[i−1] and Dv[i+1] are represented only

to show the iteration over the next computational unit that leads to lymphan-
gions if put together sequentially. In order to properly describe how the lym-
phangion is defined, first the modelling equations for the valve are presented,
then the equations governing the contraction of the lymphangion. From these
two models, the coupling between these two sets of equations is explained.

3.2.1 Valve model

The model used here, is based on the articles by Mynard et al. [2011] & Bertram
et al. [2011] and is utilized to determine the diameter of the valve orifice. This
computation is based on the pressure difference across the valve and the diame-
ter of both the lymphangion and the valve interface. The valve state ζ is defined
as: ζ ∈ [0 , 1] where 0 represents a fully open valve and 1 represents a fully closed
one. The following convention is set to be 0 for a fully open valve and 1 for a
fully closed one. ζ depends on time and the pressure difference across the valve.
In order to compute the valve state, one needs to know whether it is closing or
opening. This information is obtained by computing the difference of pressure
across the valve. The pressure computational points is made of three different

Pn[i−1] Pv[i]

kopen opening compliance (Ba−1 s−1)
kclose closing compliance (Ba−1 s−1)

Figure 3.2: Sketch of a lymphangion’s valve, with the mesh pressure point. Table of the
constant relevant for the valve model. Here, δP = Pv[i] − Pn[i−1].

points for each lymphangion: Pv[i], P[i] and Pn[i] (cf. Figure 3.1 and Figure
3.2). Thus, the difference in pressure is computed as : δP = Pv[i] − Pn[i−1],
with the subscript indicating the previous ([i−1]) or the current ([i]) connected
lymphangion. Hence, if δP is positive the valve should be closing and negative
the valve should be opening. Furthermore, the valve state is time dependent,
one can define its derivative: dζ

dt . If the pressure difference is positive, one can
observe the valve is closing, and if it is negative, the valve is opening. Then,
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using the simplified model defined in the article from Mynard et al. [2011], one
has the following set of equation.

dζ

dt
=


(1− ζ)kcloseδP if (δP ) > 0,

ζkopenδP if (δP ) < 0,

0 else,

(3.2)

In the above equation, kopen and kclose are the opening and closing compliances.

close

open

V
al

ve
st

at
e

(ζ
)

time

if δP > 0
close

opentime

if δP < 0

Figure 3.3: Evolution of the valve state in function of time. The left graph is the closing
process. The right graph is the opening process. The time scales are not relevant as they
are dependent on δP , and the opening or closing compliance: kopen,kclose.

Figure 3.3 represents the general variation of the valve state in time. If one
considers δP to be a constant in the set of equations (3.2), the trend and the
solution of the ODE can be estimated.

Then in order to obtain the valve orifice diameter (Dv), the following equa-
tion is used. Here, D[i−1] and D[i] refers to the diameters of the two lymphan-
gions surrounding the valve.

Dv[i] =
1

2
(D[i−1] +D[i])(1− ζ) (3.3)

The previous equation requires the orifice diameter to be lower or at most
equal to the average size of its two closest lymphangions. In most of the simula-
tions, kclose and kopen hold the same value and is set to 100 Ba−1 s−1. The char-
acteristic time for opening and closing are therefore relatively similar. However,
these also depend on the amplitude of δP , which depends on different factors,
such as the state of contraction of preceding and following lymphangions. It is
interesting to compare the contraction/relaxation cycle period with the valve
characteristic time τ0.

τ0(t) =
1

kopenδP (t)
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τ0 characterizes the response of the valve to a given constant pressure differ-
ence input. In terms of scale, a human lymphangion contracts on average once
every 20 seconds for an intestinal lymphatic vessel according to Telinius et al.
[2017].

3.2.2 Contraction model

Following the same logic as the valve state, equation (3.4) is the contraction
intensity equation. ξ holds the value of the state of the contraction, is bounded
between emin

m0
and emax

m0
, and is used in the active pressure formulation Pa in

equation (3.10). Detailed definition will be given in the following paragraph. γ
is a variable used to contain ξ between two extrema and its definition is detailed
later in this section.

ith lymphangion

P[i]

D[i]

ω frequency (Hz)
ξ contraction intensity (no unit)
γ contraction memory (no unit)

Figure 3.4: Sketch of a lymphangion, exposing the valve and the container part with the
list of those variables related to the contraction model.

The contraction model used here aims to replicate the experimentally ob-
served mechanism, which correlates the frequency of contraction ω to the di-
ameter D[i]. There is a relation between Ca2+ and NO and the contraction
compliance of a lymphangion which explains this correlation, as stated by Con-
tarino and Toro [2018]. Such that Ca2+ increases the rate of contraction while
NO modulates it as a contraction inhibitor. However, in most lymphatic lumped
models, the contraction is constrained in time by a periodic function (cf. Ja-
malian et al. [2016], Tretyakova et al. [2018]). Here, the contraction is governed
by an equation similar to the valve state equation.

dξ

dt
=

{
(1− ξ) kc ω if γ = 0,

−ξ kr ω if γ = 1.
(3.4)

ω is the frequency of contraction, it is linked to the diameter of the lymphangion
as shown in equation 3.5, with c1 the threshold for D

Dd
to increase frequency

and c2 the frequency increasing rate.

ω = ωmin +

(
D

Dd
− c1

)
∗ c2 if

D

Dd
≥ c1 (3.5)
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The difference between this model and the valve model comes from the condition
on γ. In fact, this condition relies on the comparison of diameter constant (cf.
table 3.2) to the previous contraction intensity. γ is defined by equation (3.8). It
can either have the value of 0 or 1, like a boolean and the process in determining
its value will be described in the following paragraph.

First, the contraction compliance kc and the relaxation compliance kr are
defined as:

kc = −ecen + 1

ecen
log

(
m0 − emax

m0 − emin

)
, (3.6)

kr =
ecen + 1

ecen − 1
log

(
emin

emax

)
. (3.7)

emin is the minimum stiffness and emax is the maximum stiffness. ecen is
the eccentricity of contraction and this parameter is bounded between 0 and 1.
It defines the ratio between the time spent contracting and relaxing. m0 is a
stiffness factor for the active pressure. Standard values of those constants are
given in table 3.3. The variation of kc and kr in function of ecen are developed
in figure 3.5
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Figure 3.5: Graph of the constant values for kc (i) and kr (ii) for different value of ecen and
a. For these graphs a = emax

m0
and b = emin

m0
, with 1 > a > b > 0. Since b is not large and

does vary a lot, it is not considered as a parameter.

From the differential equation (3.4), γ = 0 defines a contracting state while
γ = 1 refers to a relaxing state. Such that, the contraction intensity ξ remains
contracting if it has not reached emax

m0
, and it will remain relaxing while emin

m0
is not reached. It can be defined as follows:

γ[i] =


0 if

emin

m0
> ξ,

1 if
emax

m0
< ξ,

γ[i−1] else.

(3.8)
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This makes the lymphangion behave in a contractile fashion which changes
whenever γ is above or below a trigger value. Equation (3.8) ensures that while
the contraction memory(γ) remains constant, the contraction intensity (ξ) keeps
contracting or relaxing until it reaches an extremum to switch memory value.
Thus, the model is mechanistic and driven by the mechanics of the problem
and it does not rely on any time–defined trigger to change state, it is based on
maximum and minimum stretch of a lymphangion.

contracting

relaxing

C
on

tr
ac

ti
on

st
re

ng
th

(ξ
)

time

if γ = 0
contracting

relaxing

emin
m0

emax
m0

time

if γ = 1

Figure 3.6: Evolution of the contraction intensity in function of time. The left graph is the
contracting process. The right graph is the relaxing process. The timescale are not relevant
as they are dependent on ω, and the contracting or relaxing compliance: kc,kr. The working
conditions of the contraction strength are define between the bottom green line ( emin

m0
), and

the top green line ( emax
m0

)

A contraction cycle is defined by a contraction phase and a relaxation phase.
If one considers that kcω and krω are defined constants by equation (3.4), then
the time constant can be written as the inverse of these products. In reality,
they are not constant, since ω depends on the diameter, as shown in equation
(3.5), so the value of these constants vary in time. Using figure 3.6, one can
estimate the time spent between the upper and lower bounds of the contraction
intensity. Furthermore, an example of a few relaxation–contraction cycles are
provided by figure 3.13. If the terms kcω and krω are regarded as constant,
one can solve the differential equation (cf. equation (3.4)) and obtain that the
time for relaxation is: tr = ecen−1

ecen+1 and time for contraction is: tc = ecen
ecen+1 . By

adding these two times, one obtains the period of the full cycle and dividing
them, one gets the ratio of contraction–relaxation of a lymphangion.

3.2.3 Constitutive equation

The point of this section is to detail the relation between the pressure of the
lymph and the diameter of a lymphangion. There are two types of wall forces
here, one without muscle force and another one with muscle contraction. The
first will be called passive pressure, the second one will be called contraction or
active pressure. As listed in equation 3.1 (ii).
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Passive Pressure
Pd pressure constant
Dd diameter constant

Active Pressure
τ thickness of the lymphangion wall (cm)
D diameter (cm)
γ contraction memory

Table 3.2: Table listing all variables and parameters for the constitutive equation.

Passive pressure

The elasticity of the lymphangion walls leads to the existence of a passive
component to the pressure, which is related to the diameter by the following
non–linear relationship (3.9). This derivation is fully explained in the article of
Bertram et al. [2015]:

Pp = Pd
4

15

(
12 exp

(
D

Dd
− 1

)
− 11−

(
Dd

D

)3
)

(3.9)

This model only depends on the diameter. The constants are summed up in the
table 3.2, furthermore they can be seen as gauges of the equation. Nonetheless,
compared to the full curve shown in the article of Bertram et al. [2015], only
the exponential term is used here as well as the cubic inverse term.

• The exponential term reflect on the elastin–collagen for high D
Dd

stretch,

• The cubic inverse term is a collapse function at low pressure.

The figure 3.7 represents the passive pressure of the lymphangion as a func-
tion of the diameter as described in equation (3.9). This passive pressure pre-
vents the lymphangion from dilating to a rupture point. It means that after a
specific threshold related to Dd, the diameter increases the pressure. Neverthe-
less, in the other case, if the diameter is small, the passive pressure should not
have an important contribution to the constitutive law as shown in figure 3.7.

Active pressure

The active pressure is governed by equation (3.10), which relates it to three
variables: the contraction intensity ξ, the thickness of the lymphangion wall τ
and the diameter D.

Pa = 2ξm0τ
D − cDd

cDdD
. (3.10)

Where c is a constant that can be linked to the standard deviation of the
stress–free diameter of the lymphangion. The thickness of the lymphangion τ

is defined as :

τ = D −
√
D2 − 9

25
D2

d. (3.11)

The contraction intensity and the thickness are only factors of the lymphangion
diameter. One can observe that the active pressure can reach values three times
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Figure 3.7: Passive pressure as a function of the diameter of the lymphangion. The range
of diameter has been selected from minimum to maximum of the simulation used in this
section.

higher than the passive pressure, using figure 3.8. Here, c represents a constant
parameter related to the free stress diameter position, and also refers to as
relaxed position of the lymphangion. It is obtained in terms of the Dd constant.

Then by adding the contribution of the passive and active pressure get the
figure 3.9.

3.2.4 Conservation equation

For this lymphangion modeling, the mass balance equation is used, and it is
written like so:

∂V

∂t
−Qnet = 0. (3.12)

The partial derivative term represents the derivative of the volume V over time.
Qnet shows the net flux entering the lymphangion. The volume V is computed
in using the cylinder approximation, so one can write:

V = π
D2

[i]

4
(L− Lvalve). (3.13)

With L the length of the lymphangion and Lvalve the length of the valve.
Now that the reader is comfortable with the physics of this model and the

approximation used here, we will now learn about the numeric aspect.
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Figure 3.8: Active pressure in function of the diameter of the lymphangion. The pressure
here is in Barye and the diameter in centimeter. ξ is the contraction intensity. The range of
diameter has been selected from minimum to maximum of the simulation completed here.
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Figure 3.9: Sum of the active and the passive pressure in function of the diameter of the
lymphangion. The pressure here is measured in Barye and the diameter in centimeter. The
range of diameter has been selected from minimum to maximum of these simulations.
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3.3 Numerical implementation of a lymphatic net-
work

3.3.1 Flow resistance

This model focus on specific diameter and pressure points, described figure
3.1. The physical approach used to the shallow water equations (Equations de
Saint-Venant) like defined in this article Carson and VanLoon [2016]. We will
consider three points for pressure and two points for the diameter. Concerning
the pressure, P represents the pressure of the container, Pv is the pressure
just at the exit of the valve and Pn represents the pressure at the entry of the
valve. Since a zero–dimension model is used here, it is possible to represent a
lymphangion using the electrical analogy, as in figure 3.10. Here, the spatial

Pn[i−1]

Pv[i] Pn[i]

Pv[i+1]

P[i]

Pext
Qnet

Q1 Q2 Q3

Figure 3.10: Zero–dimension approximation of a lymphangion using the electrical analogy.
Dashed lines represent the limit of a lymphangion, diodes are the valve and capacitor repre-
sent the container/vessel.

discretisation is defined (using the subscript [i]) based on the pressure drops
between the elements of figure 3.10. If an equation is defined at a specific
discretised time n and written like so [i,n] the subscript is implicit and is not
written. It will only be written when different times are needed in an equation
like so [i,n+1], for example. Let us consider the point Pv[i], with Kf [i] the
conductance of the resistor and Kv the conductance of the diode. We can write
the following equations using the Hagen–Poiseuille law:

Q1 = −Kv[i](Pv[i] − Pn[i−1]),

Q2 = −Kf [i](P[i] − Pv[i]) and

Q3 = −Kf [i](Pn[i] − P[i]).

(3.14)

Kf is defined by:

Kf [i] = 0.5
π(D[i])

4

128(L− Lvalve)µ
.

It takes two Kf to cross the entire lymphangion, hence the 0.5 coefficient in
front of the fraction. Kv is defined by:

Kv[i] =
π(Dv[i])

4

128Lvalveµ
with Dv[i] =

(1− ζ[i])(D[i−1] +D[i])

2
.

The variable ζ[i] is the valve state and is defined by the equation:

dζ[i]

dt
=

{
(1− ζ)kclose(δP )[i] if (δP )[i] > 0,

ζkopen(δP )[i] if (δP )[i] ≤ 0.
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Here, (δP )[i], is defined as Pv[i]−Pn[i−1]. Using the conservation of the flow, and
since Q1 is going to Pv[i] and Q2 is leaving it, one can add all the contributions
to the flow and write:

Q1 −Q2 = 0,

Which leads to:

−Kv[i]Pn[i−1] + (Kv[i] +Kf [i])Pv[i] −Kf [i]P[i] = 0. (3.15)

By applying the same discretisation to the point P[i] one obtains:

−Kf [i]Pn[i] + 2Kf [i]P[i] −Kf [i]Pv[i] +Qnet[i] = 0. (3.16)

Idem for the point Pn[i]:

−Kf [i]P[i] + (Kv[i+1] +Kf [i])Pn[i] −Kv[i+1]Pv[i+1] = 0. (3.17)

3.3.2 Mass conservation

The mass equation is written for the lymphangion itself. It is written as follows:

∂V

∂t
−Qnet = 0 (3.18)

Qnet represents the net flux entering the lymphangion, its value is only used
in the matrix itself. The volume in this equation is estimated by the following
decomposition ∂V

∂D
∂D
∂t . One can use the following approximation:

∂V

∂D
= πL

D

2
, and

∂D

∂t
=

1

2δt
(−3D[i,n+1] + 4D[i,n] −D[i,n−1]). (3.19)

Here, the subscript ([i]) is for spatial discretisation and ([i,n]) is for the time. The
second order upwind scheme is used for the time derivative and an analytical
derivative for the diameter. This equation actually neglect the volume of fluid
in the valve compartment.

3.3.3 Constitutive law

For this model, the constitutive law is used linking the pressure and the diameter
but for different states of contraction. One part of this equation describes the
pressure for a lymphangion with no muscle activity (relax state). It relates
to the combination between the transmural pressure Pp and the diameter of a
passive lymphangion D. This part of the constitutive law can be found in this
article Bertram et al. [2015].

Pp[i] = Pd
4

15

(
12 exp

(
D[i]

Dd
− 1

)
− 11−

(
Dd

D[i]

)3
)

(3.20)

Here constants are Pd and Dd, representing the collapse pressure and the col-
lapse diameter. These constants are defined in the parameter files. The second
part of the equation focuses on the muscle activity (contraction intensity). To
define the pressure due to the contraction, we need the wall thickness τ[i] of
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a lymphangion, the hoop strain σ[i] and the contraction intensity ξ[i]. The
contraction intensity is defined by the following equation.

dξ[i]

dt
=


(1− ξ[i])kcω if

emin

m0
> ξ[i],

−ξ[i]krω if
emax

m0
≤ ξ[i].

kc, kr, emin and emax are constants detailed in the previous section. ω is the
frequency and is defined based on the diameter of the lymphangion D[i]. Then,
one can derive the wall thickness τ such as:

τ[i] = D[i] −
√
D2

[i] −
9

25
D2

d (3.21)

Here, m0 is the wall stiffness, and the contraction pressure is defined by the
following relation, using a linear parameter c to adjust the stress–free point:

Pa[i] =
2σ[i]τ[i]

D[i]
= 2ξ[i]m0τ[i]

D[i] − cDd

cDdD[i]
. (3.22)

These pressures are then introduced to the lymphangion at the point P[i] using
the equation:

P[i] = Pext + (Pa[i] + Pp[i]) + (D[i,n+1] −D[i,n])
∂(Pa[i] + Pp[i])

∂D[i]
. (3.23)

The last equation used in this model is the conservation of mass, defined by
equation (3.18), with the following discretisation as in the article Bertram et al.
[2013],(

1

2δt
(−3D[i,n+1] + 4D[i,n] −D[i,n−1])

)(
πL

D[i,n]

2

)
−Qnet[i] = 0. (3.24)

The five main equations are (3.15), (3.16), (3.17), (3.23) & (3.24). Which, can
be summed up in the following system.

−Kv[i]Pn[i−1] + (Kv[i] +Kf [i])Pv[i] −Kf [i]P[i] = 0

−Kf [i]Pn[i] + 2Kf [i]P[i] −Kf [i]Pv[i] +Qnet[i] = 0

−Kf [i]P[i] + (Kv[i+1] +Kf [i])Pn[i] −Kv[i+1]Pv[i+1] = 0

P[i] = Pext + (Pa[i] + Pp[i]) + (D[i,n+1] −D[i,n])
∂(Pa[i] + Pp[i])

∂D[i](
1

2δt
(−3D[i,n+1] + 4D[i,n] −D[i,n−1])

)(
πL

D[i,n]

2

)
−Qnet[i,n+1] = 0

(3.25)
Now that we have been through the main equations and their discretisation, we
will see how to solve such system.

3.3.4 The system matrix

Using the system defined by equation (3.25), and with the following vector of
unknown: [

Pn P D Qnet Pv

]T
[i,n+1]

, (3.26)
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it is possible to write a system like AX = B, as mentioned in the previous
section. In order to solve this system, we need to rewrite (3.23) and (3.24) to
fit with this vector of unknown. So the equation (3.23) becomes:

P[i,n+1] +Ka[i]D[i,n+1] = Fa[i], (3.27)

with
Ka[i] = −

∂(Pa[i] + Pp[i])

∂D[i]
,

and
Fa[i] = Pext[i] + Pa[i] + Pp[i] +D[n,i]

∂(Pa[i] + Pp[i])

∂D[i]
.

And the equation (3.24) becomes:

Km[i]D[i,n+1] +Qnet[i] = Fm[i], (3.28)

with
Km[i] =

3

4δt
πLD[i,n],

and
Fm[i] = πLD[i,n]

4D[i,n] −D[i,n−1]

4δt
.

The entire system is the equation (3.29) below:
Kv +Kf −Kf 0 0 −Kv

−Kf 2Kf 0 1 −Kf

0 0 Km 1 0

0 1 Kc 0 0

−Kv −Kf 0 0 Kv +Kf


[i,n]


Pn

P

D

Qnet

Pv


[i,n+1]

=


0

0

Fm

Fa

0


[i,n]

(3.29)
Once the matrix is assembled, it is solved. Then we replace the old variable

by the new ones, and it is possible to write these data in a file or on the
terminal stream. The matrix written in the equation (3.29), is written to be as
symmetrical as possible.

3.3.5 Boundary and initial conditions

They are implemented in the time loop, as part of the right-hand side of the
equation (3.16) only for the first lymphangion and the last of the chain. They
are the only ones to have an unbalanced pressure drop equation. So one can
write these equations:

Kf [1](−Pv[1] + 2P[1] − Pin) +Qnet = 0

Kf [l](−Pv[l] + 2P[l] − Pout) +Qnet = 0
(3.30)

Here, the subscript [1] means the first lymphangion of the chain and [l] the last
one of the chain. Also, Pin & Pout refer to the selected pressure for the input
and the output respectively. With the default inputs, one can find that half a
minute, physics time, is enough.
To conclude this section, we just saw how the code works and how it solves the
entire matrix system.
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Parameter Description Value Units
Boundary & Initial conditions

Pin input pressure 3920 Ba
Pout output pressure 4900 Ba
Pext external pressure 0 Ba
Pn[i,0] initial pressure node 1960 Ba
Pv[i,0] initial pressure valve 1960 Ba

Contraction & Valve Mobilisation
ecen eccentricity of contraction 0.2 erg cm−1

emin min stiffness for the contraction function 10 erg cm−1

emax max stiffness for the contraction function 6e5 erg cm−1

ωmin minimum of frequency 0.01 Hz
m0 stiffness factor 1e6 erg cm−1

Dd contraction lymphangions diameter 2e-3 cm
Pd contraction pressure for the constitutive law 35 Ba
c1 threshold for D/Dd to increase frequency 2.1 -
c2 rate of increase of frequency 0.2 -
c constant 2.15 -

kopen valve opening compliance 100 Ba−1 s−1

kclose valve closing compliance 100 Ba−1 s−1

Material Mobilisation
l numbers of lymphangions -1 9 -

Lvalve valve length 0.01 cm
ρ lymph density 1 g cm−3

µ lymph dynamic viscosity 0.01 P
D lymphangions diameter 0.01 cm
L lymphangions length 0.3 cm

Numeric Mobilisation
δt time step 5e-3 s
T simulation total time 10 s
ε epsilon 1e-10 -

Table 3.3: List of all parameters used for the 0d model, and their default or initial values.
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3.3.6 Integral quantities

Diameter average

In order to obtain the average diameter, a time integration is used here. Unless
precised otherwise, it is counted from time zero and to the end of the physical
time of the simulation, such as described by equation:

D̄ =

∫ T

0
D̃(t)dt (3.31)

With D̄ the diameter average, D̃(t) the average of all lymphangion diameter at
time t. Furthermore, it can be compared to different specific diameters, such
as the stress–free diameter.

Pressure average

Similarly to the diameter average metric, the pressure average is defined by a
time integration. It is computed by the following equation:

P̄ =

∫ T

0
P (t) dt (3.32)

In the equation (3.32) P̄ , the pressure average, P̃ (t) for a given time it represents
the pressure average of all lymphangions, computed at its center.

Work estimation

Here, to compute the work properly we use the following approach:

W =

∫
P dV (3.33)

As lymphangions are regarded as cylinder, V = lπr2. P is the pressure of the
lymphangion. Since we only compute the diameter of the lymphangion, and it
depends in time, one gets the following simplification:

dV =
1

2
πlD

dD

dt
dt (3.34)

However, there are two phases in time for a lymphangion, one spent contracting
which contributes positively during time tc , and one relaxing contributing
negatively during time tr. So we obtain the following relation:

W =

∫
tr

1

2
πlDP

dD

dt
dt−

∫
tc

1

2
πlDP

dD

dt
dt (3.35)

The term dD
dt is easily computed by a simple difference explicit. tc and tr are

defined using the contraction intensity variable shown in the equation (3.4).
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3.4 Results

This section presents results from simulations run on a desktop computer1. As
well as Swansea University cluster called “Sunbird” via the supercomputing
Wales portal2. The code used here was implemented in Fortran 90 using four
different files. All files holding functions related to:

• the mathematical part,

• the physical part,

• the input–output,

• the network aspect.

As well as, a main one holding the time loop and calling function form the other
files. The matrix solver is using the MUMPS library Padua et al. [2011]. Fur-
thermore, paralleling of independent simulation was obtained via the program
parallel from Tange [2015].

3.4.1 Analysis of the behaviour of a simple vessel

We first analyse the behaviour of a single channel formed by a chain of three
lymphangions such as represented in figure 3.11. This simple test case is a good
set up to understand how the various models and approximations used can
impact a lymphangion. Furthermore, this geometry is used on the first hand
to look at specific variables such as the opening of the valve, the contraction
intensity, as well as the mass flow and conservation. On the second hand, it
is used to illustrate the behaviour of the model and the precision of the code.
A simulation is run for 30 seconds of physical time with a time step of 10−3s.
Imposed by the geometry shown in figure 3.11, there are two working valves,
the first one is constrained by the input boundary condition. The boundary
conditions were set to Pinput = 2940Ba or 3 cmH2O and Poutput = 4900Ba or
5 cmH2O. The initial conditions in pressure inside the vessel are identical to
the input pressure.

output
Figure 3.12 Figure 3.13

input
1 2 3

Figure 3.11: Schematic of a single lymphatic vessel, made of three lymphangions. This set
up is simple enough to test different parameters such as the valve or the contraction model.

1Using Dell®Inspiron 3847 – Core i3 4150 3.5GHz – 8 GB – 4 TB
2Using Intel®Xeon®Gold 6148 CPU 2.4GHz – 80 CPU – 100GB
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Valve analysis

Here, a description is provided on how the model behaves in different regimes.
Figure 3.12 shows the response of the valve in the central lymphangion. Using
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Figure 3.12: Evolution of the valve of the second lymphangion in time. The graphs from
top to bottom represent the pressure difference across the valve (i & ii), the valve state (iii)
and the diameter of the valve orifice (iv). When the pressure difference becomes negative,
the valve state switches from 0 (open) to 1 (close) which leads to the valve shutting closed.

equation (3.2), this ODE has two main different responses, depending on the
pressure difference (δP ):

• a closing regime

• an opening regime

A third regime is implemented when the pressure difference is equal to zero,
however such occurrence rarely happens.

From a physical point of view, the valve closes under the action of the reverse
flow velocity. But the two unknowns used in these simulations are the pressure
and the diameter. So the pressure difference (δP ) is used. In this valve model,
flow reversal is also assumed to be very quick when (δP ) changes sign so the
associated relaxation constant ko and contraction constant kc are large. The
value of this constant allows the switching time scale to be considered small from
equation (3.2) defined previously. In figure 3.12 (iv) it is possible to compare
the orifice diameter to a step function. Also, while the valve state is open, one
can observe that the orifice diameter keeps varying, this phenomenon is linked
to the equation (3.3) where this diameter is linked to the average diameter of
the lymphangions surrounding the valve. No test has been conducted to modify
the constant ko and kc to evaluate their range in order to obtain inertia type of
behaviour.
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Figure 3.13: Evolution of the contraction of the second lymphangion in time. The graphs
from top to bottom represent the contraction memory (i), the contraction intensity (ii), the
pressure from contraction (iii) and the overall pressure (iv). Here, the contraction memory
change from 0 (contracting) to 1 (relaxing). This allows the contraction memory to switch
from contraction phase to relaxation phase, which then influences the contraction pressure.
The lymphangion pressure is shown to compare the contribution from the contraction pres-
sure term.

Contraction analysis

Using the same simulation as in the valve analysis, one can plot the main
variables for the contraction model in figure 3.13. To show the process and
logic of this model, only the last ten seconds are displayed. The pulsating loop
defined by exponential curves in the differential equation (3.4) is the variable
(ii). Equation (3.4) shows that the state of contraction is a bounded function,
and oscillates with values in the following interval: [9.9 × 10−6; 6.0 × 10−1].
These numerical value are set at the beginning of the simulation by emin

m0
and

emax

m0
.

In a similar manner to the valve model with ζ2 of figure 3.12, here γ2, is the
gate function, with zero being the contracted state and one being the relaxed
state. From a physics viewpoint, if one compares the curve of the contraction
memory and the ones from the valve state, the timescale is approximately the
same as there is three cycles in both models. Since the contraction is forced
and imposes the pressure, the valve cycles will synchronise with the contraction
cycle after a while. Here, for example the period is of approximately 2 s.

While this contraction model can be quite periodic, the previous model for
the valve is not. If they are synchronised then it suggests that all the lym-
phangions are coordinated since the valve can be seen as the interface between
two following lymphangions. However, this is not always the case, it has been
commented in the following section. This non–coordination of contraction is
explored for longer vessel later in the thesis.

Time scales of contraction and relaxation are defined by constants kcω and
krω. It is important to notice, ω depends on D, this relation makes the model
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non–linear. This coupling with the diameter D causes variation on the time
scale of the contraction cycle. Moreover, trends can be observed by varying
parameters such as boundary condition pressures and initial conditions.

Constitutive equation analysis
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Figure 3.14: Evolution of the passive and active pressure of the middle lymphangion in time.
Graphs from top to bottom represent pressure of the second lymphangion (i), diameter (ii).
(iii) is a standard pressure–volume diagram, it allows to see the work and path taken by the
contraction and relaxation cycle.

Again with the simulation used in the previous paragraph, it is possible to
observe the contribution of the constitutive equation of this model in figure
3.14. For the contraction phase, it is defined as the sum of the passive and
active terms defined in equations (3.9) & (3.10). Furthermore, we compare it
with the total pressure of the lymphangion and the diameter of lymphangion.
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The main contribution on the pressure is achieved via the constitutive equation.
Figure 3.14 (iii) represents the volume vs pressure inside the second lym-

phangion. It shows almost three cycles, of contraction and relaxation. The first
one starts at the point A then goes to B and finishes at C. A represents the
start of the contraction, it has the largest volume before the contraction. B
shows the start of the relaxation, an isovolumetric pressure drop occurs then
the volume increase at the same rate until the next contraction, from the point
C. The second cycle is completed between points C, D and E. A third cycle can
be observed as well between E, F and a point situated between C and E. The
volume span is shorter for the second cycle compared to the first one. Nonethe-
less, the work produced in these two cycles is approximately the same, since
the second cycle provides a stronger contraction with higher peak in pressure.

3.4.2 Comparison with experimental results

PoutPin

PL

central
lymphangion

Figure 3.15: Schematic of a single lymphatic vessel, made of two valves. This geometry
represents the experimental set up made by Davis et al. [2012]. Here, PL represents the
pressure inside the lymphangion. The rectangles define the position of the camera to record
both the central lymphangion diameter as well as the n+ 1.

In order to test the model against reality, it is important to obtain experi-
mental data. As this aspect is not covered in this thesis, we will just use data
gathered by Davis et al. [2012] & Bertram et al. [2016]. However, the units used
in those papers are not always CGS unit system. Data used here was digitised
by engauge digitizer3. They used laboratory rats to conduct their experiments.
By extracting and cropping the lymphatic vessel to a two–valve segment as
shown in figure 3.15, they inserted glass micropipette at each end of the vessel.
This set up allows to measure the input and output pressure via a low–pressure
transducer. To obtain the diameter values, they used a monochrome camera
wired to a computer tracking the wall movements.

Nevertheless, two experimental devices were designed to simulate contraction
from the wall and from the valve. More details are provided in Appendix A. In
this section, different results obtained in experiments are analysed.

Parameters tuning

First, the relevant physiological ranges need to be defined in order to vary
parameters properly. The table 3.4 defines bounding values used in this study.
Eccentricity (ecen) refers to the ratio of time spent between the contraction and

3This software is published by Mitchell et al. [2020]
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Units Minimum Maximum
eccentricity (ecen) - 0.090 0.11

max stiffness (emax) - 2.7 × 105 3.3 × 105

min stiffness (emin) - 9.0 × 10−5 1.1 × 10−4

stress–free contraction diameter (Dd) cm 2.5 × 10−3 3.1 × 10−3

stress–free contraction pressure (Pd) Ba 26 32
dimension active pressure (m0) - 9.0 × 107 1.1 × 108

zero stress active contraction (c) - 1.71 2.09
threshold to increase frequency (c1) - 1.89 2.31

rate of for frequency increase (c2) - 4.5 × 10−2 5.5 × 10−2

minimum frequency (fmin) Hz 9.0 × 10−2 1.1 × 10−1

Table 3.4: List of minimum and maximum values used to tune the contraction model against
Davis et al. [2012] experimental data.

emax emin Dd Pd m0 α c1 c2 fmin

3× 105 10−8 2.9× 10−3 36 108 1.9 1.9 2.5× 10−1 10−2

2× 104 10−4 2.9× 10−3 35 108 2.0 2.4 2× 10−1 5× 10−2

Table 3.5: Values used to tune the model to fit the data set 1. Data set 2 values are shown
in table 3.6.

relaxation phases, as it is a ratio, it is therefore dimensionless. Maximum and
minimum stiffness (emax & emin) are mostly important in the contraction phase
to define to which extend the contraction term of the constitutive equation can
grow. Additionally, they define the overall period of a contraction–relaxation
cycle since they define when to switch from one to another (cf. equation (3.4)).
Pd and Dd control the stress–free condition for the constitutive equation. Both
stress–free state pressure (Pd) and diameter (Dd) are used as parameters in
equations (3.9) & (3.10). m0 is the key constant in the active pressure relation
as it sets the pressure scale. The couple of constants c1 and c2 are defined in the
frequency equation and link the active pressure to diameter. They only matter
when the pressure difference forces the fluid in the lymphangion and adapts the
active response. fmin is the minimum frequency, it sets the base level on the
term ω of the active pressure equation (3.10).

Table 3.4 lists all the parameters used to tune the model to experimental
data gathered on different articles. These were manually tuned using batches
of simulations to scan the parameter space.

Comparison between simulation and digitized data

Data set 1 This data set was gathered from figure 1 of the article Davis
et al. [2012]. After running batches of simulations and varying the parameters
listed in table 3.4, a behaviour comparable to experimental results in terms of
frequencies and amplitudes was obtained with the parameter values listed in
table 3.5.

Furthermore, in order to model the boundary conditions properly from
1 cmH2O to 6.5 cmH2O then drops quickly back to its original level. The
growth slope of used in the simulation is estimated as 2.75 cmH2O/min.

Pressure is better captured than the diameter. Difference may come from the
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Figure 3.16: Schematic representation of the geometry for data set number 1 (i). Graph
showing the evolution of pressure boundary conditions (ii).
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Figure 3.17: Diameter (cm) of second lymphangion vs time (s) for the simulation (i) and
the experiment (ii). In terms of frequency, one can observe faster contractions when the
pressure difference is larger and amplitude is reduced. Maximum of peak values are constant
in the simulation while they decrease in the experimental data.

constitutive equation or the contraction cycle. This difference might also come
from the irregular pulsation cycle of the experimental data, while the simulation
imposes more regular pulsations. The maximum diameter from the simulation
remains constant while the experimental data appears to have two plateaus,
one before and one after 250 s. The first one is close the 9.5× 10−3 cm, and the
second one with faster contraction is lower than the initial one: 9 × 10−3 cm.
Furthermore, regarding the shape of the diameter evolution for one contraction
cycle is not properly computed. Indeed, the simulated diameter overvalues the
time spent for each local minimum before 250 s in figure 3.17.

With regard to the frequency, figure 3.18 shows that simulation data have
higher frequency than experimental one. As we saw before, the experimental
data hold two different regimes, one before 250 seconds and one after. For
the first one, experimental data gives approximately 7.2 contraction cycles per
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Figure 3.18: Graphs representing pressure (Ba) against time (s) for the simulated data (i)
and the digitized data (ii). Here the envelop matches well between the two graphs. The
frequency trend is properly captured as well.

minute (ccpm), while the simulation is closer to 11.4. On the second phase and
until the output, boundary condition gets back to initial level, from 250 s to
330 s, there is approximately 14.25 ccpm in the experimental data, compared
to 19.5 for the simulation. In both cases, the number of contraction per minute
is overestimated in the simulation. Even if this difference is large, what matters
here is to capture the envelop of the pressure oscillation.
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Figure 3.19: Schematic representation of the data set number 2 showing a lymphatic vessel
in a chain of 5 lymphangions (i). Graph of the evolution of the boundary conditions (ii).

Data set 2 Here, we focus on experimental results provided in figure 9 from
the article by Bertram et al. [2016]. It still considers a single lymphatic vessel
but slightly longer with five lymphangions, Figure 3.19 shows the geometry, as
well as the evolution of the boundary conditions. Here by opposition to data
set 1, input and output boundary conditions grow simultaneously, but keep a
2 cmH2O difference.

For this simulation, the optimised parameter set is given in table 3.6. When
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emax emin Dd Pd m0 α c1 c2 fmin

2× 104 10−4 2.9× 10−3 35 108 2.0 2.4 2× 10−1 5× 10−2

3× 105 10−8 2.9× 10−3 36 108 1.9 1.9 2.5× 10−1 10−2

Table 3.6: Values used to tune the model to fit the data set 2. Data set 1 values are in
table 3.5.

comparing the two sets of data, few parameters need to be changed, the one
which holds most variation is emin. In order to model the boundary conditions
properly, we follow the input and output described in the paper.
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Figure 3.20: Experimental data of a lymphatic vessel made out of five lymphangions. Plots
are representing the diameter (cm) in function of time (s). From top to bottom, are the first
to last lymphangions displayed.

In this data set, the pressure values inside each lymphangions are not mea-
sured by article’s authors, so we only focus on the diameter. However, it is
possible to observe a difference in the growth starting time. For the simulation,
it happens straight after the change in boundary conditions, so approximately
around 210 seconds. For the experimental data, there is a 30 seconds delay, as
the diameter and the frequency switch.

Regarding the frequency, there are multiple observations:

• For simulation data the average is 10 ccpm for all lymphangions except
the last (5th) one.

• The last lymphangion of the simulation data has 18 ccpm before the ramp
up but goes back to average when the boundary condition pressure falls
back to 2 cmH2O of pressure difference.
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• Experimental data before the variation of the boundary conditions:

– Lymphangions are on average 10 ccpm.
– The two initial lymphangions appear to contract less.

• Experimental data after the variation of the boundary conditions (t >
440 s):

– Lymphangions are on average 4 ccpm.
– The two initial lymphangions have half the frequency of the third

lymphangion.
– The last two lymphangions only contract once during a minute.
– Only the third lymphangion recover approximately its previous fre-

quency.

In the end, the simulation tend to overestimate the frequency after 440
seconds of simulation. Furthermore, before 210 seconds the experimental data
have non–stable contraction behaviour, and such behaviour cannot be produced
by simulation.

In terms of diameter, the simulations rise up to 0.015 cm during peak pres-
sure on all lymphangions. The same behaviour is observed in experimental data,
except the peak diameter is slightly lower and around 0.013 cm. The third lym-
phangion has the largest amplitude in the experimental data while it is the first
one for simulations. Furthermore, diameter is similar for all lymphangions in
the simulation while figure 3.4.2 shows that first two lymphangions have small
amplitude compare to lymphangion three to five in experiments.

To sum up, there are good agreements between the model defined here and
the experimental data in terms of order of magnitude. But the frequency in the
experimental data is too chaotic to be captured properly. Numerical data tends
to overestimate the number of contraction. Furthermore, mouse lymphatics
network is analysed and fit the model according to the experimental data. As
we try to model a full human leg network, the similarities between such rodent
and human on their lymph system is not well studied, some literature exist
on this topic and the length and time scales appear to be the main factors of
difference Mestas and Hughes [2004].

3.4.3 Three-vessel networks

Here we introduce bifurcation and confluence into the vessels. This type of
network has partially been studied by Jamalian et al. [2016]. The secondary
lymphatic network found in a leg skin is ramified and shows various bifurca-
tions and confluences. In fact, all the capillaries merge into initial secondary
vessels and their number are greater than lymph node total input. The overall
secondary vessels network has a converging structure, but still displays some
bifurcations, in this type of network with many lymph inputs and few outputs.
In order to understand the dynamics of the network, we run different simple
geometries such as a confluence and a bifurcation. In the following geometries,
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Figure 3.21: Simulation of a lymphatic vessel made out of five lymphangions. Plots are
showing diameter(cm) in function of time(s). Top graphs represent the first lymphangion of
the chain until the last one represented by the last line of graphs.

emax emin Dd Pd m0 α c1 c2 fmin

2× 104 10−4 2.9× 10−3 35 108 2.0 2.4 2× 10−1 5× 10−2

Table 3.7: Values of the contraction constants used for the confluence and bifurcation
network study.

different number of lymphangions per vessels are considered. Moreover, a new
variable is added for the boundary condition: δPBC = Pout − Pin. Both input
and output have steady pressure value during the simulation, unlike previous
cases. For all simulations, the input boundary condition is defined as 5 880Ba

(6 cmH2O). First, we are going to study the confluence as shown on figure 3.22
on the left.

The metrics used to quantify the behaviour of the system are the average
work per contraction and per lymphangion, as well as the number of contraction.
Here, the parameters used for the contraction model of this simulation are
summed up in table 3.7. Furthermore, all the simulations are ten minutes long.
A minute is used at the beginning to stabilise the system and is not taken into
account.

The key parameters are the pressure difference on the imposed on the bound-
ary condition (δPBC), and the number of lymphangion per vessel (n). It is
important to notice that whatever the number of lymphangions in a vessel,
their length does not vary, and is defined as 10−1cm, and that all vessels of the
network get the same number of lymphangions. For example, if one considers
a vessel with 11 lymphangions then the total vessel length would be 1.1 cm.
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Figure 3.22: Schematic of a simple network of three vessels, in a confluence configuration
(left) and bifurcation configuration (right). Here the number of lymphangion per vessel (n)
is three. However, this parameter varies for this study.

By varying n it will allow us to understand under which condition the system
behaves more efficiently. Main interest is to observe the influence of pressure
difference over the boundary conditions. The main two metrics used here are
average work per lymphangion and average contraction per minute. To esti-
mate the work metric, equation (3.35) is used, then the result is averaged over
total time and lymphangions per vessel. Same process is used for the average
contraction per minute.

Confluence

In this study, we will consider the number of lymphangions per vessel as a vari-
able. However, it is the same for all the three vessels of the network. It is
important to note that only two vessels graphs are shown (afferent top & effer-
ent), since the geometry has a top–down symmetry. Furthermore, the boundary
conditions are symmetric as well, so the curves are almost identical, between
the vessel vc1 and vc2. The subtle modification between the two afferent vessels
will not be considered here.
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Figure 3.23: Time average work per contraction for multiple n configurations, with n from
three to ten. (i) graph represent the vc1 vessel while the (ii) graph the vc3 vessel.
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Figure 3.23 (i) shows that the afferent vessels tend does not balance the
work between each lymphangion properly. In fact, the lymphangions closer to
the merging node produces more work than the one close to the input of the
vessel. It is less the case in the (ii) graph, as one can observe that the work is
approximately the same for all lymphangions from the confluence node to the
output.
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Figure 3.24: Work per lymphangion against different boundary conditions for different
length of vessels from 3 to 10 lymphangions. (i) graph represents the afferent top vessel
(vc1), This vessel is efferent (vc3) on the (ii) graph.

Figure 3.24 (i) can be distinguished into two main groups: vessels with great
number of lymphangions (n ≥ 7) and vessels with less than seven (n < 7). The
first one grows more or less linearly with the pressure difference on the boundary
conditions. However, the second group behaves differently. Indeed, for most
cases when δPBC is set to 4 cmH2O, a maximum appears and configuration with
three lymphangions displays a peak work. Also four lymphangions configuration
peak work is shown for δPBC of 7 cmH2O.

In figure 3.24 (ii), the overall behaviour of this vessel is quite different from
the previous one. It shows that whatever the number of lymphangion per vessel,
the greater δPBC the larger work is provided in order to push lymph. It is pos-
sible to observe as well that for large δPBC (7 cmH2O and above) the behaviour
is quite similar. A simple explanation could be that more lymphangions per
vessel result in lower to individual pumping work. Besides, for large value of
n and small values of δPBC, the average work appears to be constant, which is
the base level the system remains when small difference of pressure are applied,
such as observed in the previous section.

Figure 3.25, shows the average work per lymphangion multiplied per n versus
the boundary condition pressure gradient. For the afferent vessel, a linear trend
can be observed. With a pressure difference of 12 cmH2O, the average work per
lymphangion multiplied per n grows by 0.01 erg approximately. The slope is
just about 1.2× 103 cmH2Oerg−1. But for figure 3.25 (ii), the curve resemble
to a power law function or an exponential. This similarity is tested in for
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Figure 3.25: Work per lymphangion multiply by the number of lymphangion in the vessel
against different boundary conditions for different length of vessels from 3 to 10 lymphan-
gions. (i) graph represents the afferent top vessel (vc1), This vessel is efferent (vc3) on the
(ii) graph.

bifurcation cases. Figure 3.26 shows the average contraction per minute and per
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Figure 3.26: Contraction per lymphangion per minute against different boundary conditions
for different length of vessels from 3 to 11 lymphangions. (i) graph refers to vessel (vc1) and
is the afferent bottom one, This vessel is the efferent one (vc3) on the (ii) graph.

lymphangion. It allows to observe whether the lymphangion would have a peak
in activity, and draw conclusion whether the work load is spread in all vessels
of if afferent or efferent vessels are more solicited. We observe that whatever
the number of lymphangion in a vessel (n), averaged frequency grows with
the pressure difference δPBC for vessel vc3. This is also observed for the vessel
vc1, and one can notice that the frequencey does not vary with the lymphangion
numbers (n). The less lymphangion in a vessel, the more often they contract for
afferent vessel to the confluence. Furthermore, vessel vc1 has an overall average
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contraction frequency higher than vc3. These differences between vc1 and vc3
lead us to the conclusion that efferent vessels in a simple confluent network are
more active than efferent ones, whatever the size or the pressure difference on
the boundary conditions. The word active here relates to an average frequency,
and a higher average work output.

Bifurcation

In this section, the main focus is the bifurcation network which is represented in
figure 3.22 (ii). We reproduce the same geometry set as in the previous section
except with a bifurcation network. Similarly, when the number of lymphangion
per vessel is set to n, all vessels are made of the same n number of lymphangion.
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Figure 3.27: Time average work per contraction for multiple n configuration. (i) graph
represent the vb1 vessel while the (ii) graph the vb3 vessel.

In figure 3.28, very similar results are observed compared to figure 3.24, but
the scale is reduced by half. It appears the lymphangions are less active than
in the confluence type of network. However, in this configuration there are two
out vessels while on the confluence network, there is only one single out vessels.
One can notice that the more lymphangion in the vessel the less an individual
lymphangion produces work. Also the greater the boundary condition δPBC

the more lymphangions will produce work.
Figure 3.29 (i), shows even more clearly than in figure 3.30 that vessels with

more than seven lymphangions are more efficient with pressure gradient near
7 cmH2O. Moreover, three to five lymphangions vessels are more efficient with
the lowest pressure gradient. For high pressure gradient all vessels appears to
show linear pattern. As a matter of fact for high δPBC, for 3 cmH2O the average
work per lymphangion multiplied by n grows by 24 × 10−3 erg, so a slope of
1.25× 103 cmH2Oerg−1 approximately for all vessels.

For the efferent vessels of figure 3.29, the average work per lymphangion
multiplied by n grows for δPBC larger than four. Furthermore, one can fit the
numerical results against a mathematical function. Two types of functions were
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Figure 3.28: Work per lymphangion against different boundary conditions for different
length of vessels from 3 to 10 lymphangions. On the left, vessel considered here is the
afferent one (vb1), on the right vessel is the efferent one (vb2).
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Figure 3.29: Work per lymphangion multiplied by the number of lymphangion in the vessel
against different boundary conditions for different length of vessels from 3 to 10 lymphan-
gions. (i) the vessel considered here is the afferent one (vb1), (ii) the vessel is the efferent
one (vb2).

tried, a power law
f(x) = axn + b

and an exponential
g(x) = cx× edx + e.

The best fit for the power law provides n ≈ 3, so the average work per lym-
phangion multiplied by n grow by a third of the boundary conditions pressure
difference. But if one consider figure 3.28 without multiplying by n then for
the same high δPBC and high range of n, the slope is more linear, while for low
range of n a power law or an exponential is more suited.
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Figure 3.30: Contraction per lymphangion per minute for different boundary conditions
for different length of vessels from 3 to 11 lymphangions. Left graph represents the afferent
vessel (vb1). The vessel represented on the right is the efferent one (vb2).

In figure 3.30, the tendencies are quite different from the ones observed in
the previous network. Here, the amount of work appears to be decorrelated
to the pressure difference of the boundary condition. But the same trend is
observed as the number of lymphangions per vessel is inversely proportional to
the work given.

The average contraction period for vessel (vb2), is larger than its equivalent
in the previously considered network. This metric also shows that the lymphan-
gions are contracting more and thus more active. To put this in perspective
with the work provided, it appears that lymphangions contract more, but the
average work is not as great as for the confluence network.

To conclude, the bifurcation network tends to provide better balance in the
work provided by both afferent and efferent vessels. Nonetheless, the efferent
vessels have a higher frequency, and this can be translated into a saturation
and difficulty for the vessel to meet the boundary condition. The number of
lymphangion per afferent vessel does not modify its behaviour, and only impacts
its frequency for pressure difference lower than 7 cmH2O.

3.4.4 Leg skin networks

Introduction In this section, the dynamics of the model in a realistic lym-
phatic network geometry is studied. This geometry was acquired from origi-
nal drawings of a leg skin lymphatic network by Sappey [1874]. Initially, we
describe how the digitisation process works, then a reflection on the general
structure of the network is proposed. Then, we inspect different vessel regime
and contraction wave of different lymphangion vessels.

Digitisation & general network structure Figures 3.31 & 3.32, show the
original images and results of the digitisation. The process is as follows, the
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ecen emax emin Dd Pd m0 α c1 c2 fmin

10−1 106 10−8 10−3 35 108 1.9 1.9 2.5× 10−1 5× 10−2

Table 3.8: Values used to model lymphangions in the full network simulations.

input output confluence bifurcation
fig I. 72 25 62 15

fig II. 46 26 39 16

Table 3.9: Table of number of inputs, outputs, confluences and bifurcations for the two
networks presented in both figures 3.31 & 3.32

input and output are defined by selecting the area used for the simulation. As
detailed in the introduction, the lymph flows from the interstitial fluid back to
the blood circulation near the heart. So if we apply this into the original images
shown in figures 3.31 & 3.32, the lymph flows approximately from left to right,
as it enters the network from the foot or capillaries and exits the network by
accessing to lymph nodes of the groin area. As we study the leg network, the
simulation domain is delimited by the red lines at the ankle and the red line
in upper part of the leg, near the groin area. Then, bifurcations, confluences,
inputs and outputs are identified and labeled. In the network of figure 3.31,
there are 72 inputs for 25 outputs, so approximately three times more inputs.
In figure 3.32 one can observe 46 inputs and 26 outputs, so the ratio is closer
to two times. As a consequence of these ratios, networks are dominated by
confluences, which reflects the collecting function of the network. There is still
a small, but significant number of bifurcations though as seen in table 3.9. In
order to convert the network from figure for its simulation, it is necessary to
identify the beginning and the end of each vessel. So the limit of the context is
defined in both figures 3.31 & 3.32 by the red line. The dimension chosen for
the leg are 100 cm of length and 30 cm half the circumference. Furthermore,
the bifurcation are referenced as blue dots, and confluence as yellow dots. The
coordinates are used to then evaluate the distance from the beginning to the
end of a specific vessel. Knowing the distance, the number of lymphangions in
a vessel is then determined automatically by the average size of a lymphangion
provided in the input file. A lymphangion is estimated to be 0.3 cm as define in
table 3.3 as L. Such information allows to build the entire network. Since the
position of lymphangion is not important for the computation it is not used in
the code. Data set to build the networks for these simulations are provided in
the appendix C.

In terms of boundary conditions, the inlets are set to a pressure of 2 940Ba,
and the outlets to 4 900Ba. This applies a δPBC of 1 960Ba across the whole
network. The parameters used to model a lymphangion are all defined in table
3.8.

However, it is used again for post–processing such as figure 3.37 & 3.38. It
is interesting to note, position of vessels might as well be used to include the
effect of gravity for a later integration.
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Figure 3.31: (i) Example of lymphatic networks provided by figure 1.2. This drawing
will be referenced as drawing one. Here blue dots represent bifurcation in the network
and yellow represent confluences. The right red line represent the beginning of the network
considered here, and left red line the end. The green lines can represent the inputs or outputs
depending on their position. This is the first leg lymphatic network drawn in Sappey [1874].
(ii) Disposition of the vessels replicating the above network with vessel numbers. The color
green refers to the inlet, and red the outlets. Bifurcations and confluences are blue and
yellow respectively.

Chaotic behaviour Table 3.10 provides the position of the 61st vessel of the
first drawing as well as its input and output. Figure 3.33 represents the 61st
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Figure 3.32: (i) Example of lymphatic networks provided by figure 1.2. This drawing will
be referenced as drawing two. Here blue dots represent bifurcation in the network and yellow
represent confluences. The right red line represent the beginning of the network considered
here, and left red line the end. The green lines can represent the inputs or outputs depending
on their position. This is the second leg lymphatic network drawn in Sappey [1874]. (ii)
Disposition of the vessels replicating the above network with vessel numbers. The color
green refers to the inlet, and red the outlets. Bifurcations and confluences are blue and
yellow respectively.

vessel which is an input vessel going from the middle top of the physical domain
to a merge point. It is possible to notice the merging of 56th and the 61st
into the 72nd vessel. As one can observe, between 20 s and 30 s, the last few
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Vessel
number

lymphangion
number

input
position

input type output
position

output type

drawing 1
vessel 61

15 (32.42; 18.73) simulation
inlet

(34.38; 16.69) confluence

Table 3.10: Details of the vessel showing chaotic behaviour studied in this section.

lymphangions (11 to 14) do not contract and remain still, except the last one
(15). These lymphangions (11 to 14) are still in the initial equilibrium state,
which they exit as the lymph is carried out of the vessel. In this initial state,
a lymphangion remain still and does not contract cyclically. For this vessel, no
train of pulsation appears to synchronise all the lymphangions. The average
number of contraction for a minute is about 15 to 20 per minutes which is
relatively high compare to literature findings. For a human the thoracic duct
the frequency of contraction is found to be in between 5 to almost 15 per minutes
according to Telinius et al. [2010]. But since these lymphatics are trunks, and
we are focusing in the secondary collecting network one can use the Womersley
number which is in our case closer to 0.1 than unity, as precised in Moore
and Bertram [2018]. This dimensionless number represents the ratio between
transient inertial force to the viscous force, and is defined like so:

Wo = L

√
ω

ν
(3.36)

Since the diameter of a secondary lymphatic vessel is smaller in diameter than
a trunk vessel, then the Womersley number should be smaller, which increase
the pulsation of the transient inertial force term. Here, viscous force dominates
over the transient inertia, while in trunks they balance each others. From figure
3.33, it is possible to compute ≈ 0.12 for the Womersley number.

Vessel
number

lymphangion
number

input
position

input type output
position

output type

drawing 1
vessel 17

16 (7.02; 6.27) simulation
inlet

(10.08; 5.34) confluence

drawing 2
vessel 103

19 (78.73; 19.56) simulation
inlet

(81.74; 17.49) confluence

Table 3.11: Details of vessels displaying in phase behaviour studied in this section.

All in phase behaviour Table 3.11 gives position, input and output of the
17th vessel of first drawing as well as 103rd vessel of first drawing network.
Figure 3.34 represents a vessel on the beginning of the network near the ankle
from the first drawing. It is an input vessel like the previous case, here it leads
to a merge node going to the 24th vessel. However, here one can observe that all
the lymphangions are in phase with each other after 50 seconds. Before these
50 s, the group formed by the last three lymphangions are behaving chaotically.
It is possible to follow the path of wave of contractions and see how it spreads
in a vessel. The red line in figure 3.34 shows the propagation of the pressure
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Figure 3.33: Pressure for all lymphangions against time, for the 61st vessel of the first
drawn network.

pulse across 15 lymphangions in 10.5 seconds, which indicates a delay of 0.7 s
and a propagation velocity of 0.28 cm s−1

Figure 3.35 display the same type of synchronised behaviour, while being on
the other side of the leg close to the groin lymph nodes. As all the previous
vessel analysed, this one (103) is an input vessel going to a merge node, except
it is longer by three lymphangions. After fifty seconds it is possible to see three
waves well spaced, but with slower speed. In red, figure 3.35, shows the waves
propagating from the third lymphangion. Furthermore, I decided to not use the
last lymphangions to estimate the velocity for the last wave as the sixteenth
one contracted almost as soon as the fifteenth one. So the two waves here have
a propagation velocity of ≈ 0.31 cm s−1 and ≈ 0.2 cm s−1.

Vessel
number

lymphangion
number

input
position

input type output
position

output type

drawing 2
vessel 72

25 (54.16; 9.96) confluence (60.19; 8.45) confluence

Table 3.12: Details of the vessel showing appearance of synchronisation and studied in this
section.

Appearance of synchronisation behaviour In figure 3.36 represent the pres-
sure for all lymphangion of the 72nd vessel, it results from the confluence of
two vessels and lead to a bifurcation. Table 3.12 provides the position of the
72nd vessel of drawing 2 as well as its input and output. There are couples
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Figure 3.34: Pressure for all lymphangions against time, for the 17th vessel of the network
from the first drawing.
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Figure 3.35: Pressure for all lymphangions against time, for the 103rd vessel of the second
drawn network.

of synchronised wave propagating however no clear pattern emerge. Near 60
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seconds, a wave appears from the 6th lymphangion, but the following ones are
broken by the 15th lymphangion. Some similar events occur later with third
lymphangion but the relaxation phase is separated by the ninth lymphangion.
Couple of reasons make this vessel different from the other cases studied. On the
first hand the number of lymphangions which is larger than previously shown
vessels. On the other hand, its position in the network is different as it is not
an input vessel, but it is fully integrated in the network.
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Figure 3.36: Pressure for all lymphangions against time, for the 72nd vessel for the network
of the second drawing.

Overall view From figure 3.37, it is possible to observe screenshots as the
simulation evolve. Every dots on figure represent a lymphangion. For some
vessel, lymph never reach them and thus never start to contract automatically.
The simulations did not run for enough time to observe a privilege route for
lymph. However, few routes showed to be sub–optimal. This is not pushed
further since the code build bifurcation such that it might lead to lymph spillage,
and obviously need further investigation.

Concluding remarks We have seen that this lymphangion model can com-
pute the lymph dynamics of an entire secondary network. Different behaviour
has been identified, but the equilibrium state has not been reached. It would
be interesting to let the simulation run longer than 80 s. From these longer
simulations, some privilege route should appear. Furthermore, inlet and out-
let flow can be computed to compare with clinical data. Some could suggest
a chaotic approach in order to deeply understand the dynamic of bifurcations
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Figure 3.37: Pressure in the network in the initialisation phase, in the network of the
drawing one presented in figure 3.31
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Figure 3.38: Pressure in the network in the initialisation phase, in the network of the
drawing two presented in figure 3.32
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and confluences in a complex network.



Chapter 4

Simulations of flow and
particle transport in a
lymphangion with a
two–dimensional model.

Résumé – Dans ce chapitre, un modèle en deux dimensions d’un lymphan-
gion est proposé, ensuite on étudie le comportement des valves, lymphocytes
et parois. On explique en détail le fonctionnement du code. Initialement, on
introduit les équations de la mécanique des fluides et des solides. Comment
elles sont couplées, ainsi que le détail de leurs implementations en MATLAB.
Ensuite, on étudie le comportement d’un groupe de lymphocytes dans le canal
lymphatique à l’aide d’un code d’interaction fluide structure. En utilisant la
géométrie d’un lympangion, on compare le déplacement des lymphocytes dans
différents cas, d’abord avec ou sans valve, pulsation du fluide puis les parois
mobiles. Ce type d’écoulement est similaire à celui des globules rouges dans un
flux sanguin.

Abstract – The work achieved here proposes a two-dimensional model of a
lymphangion, and study the behaviour of lymphocytes in the lymph flow. First,
by giving the fluid and solid equations of the simulation model used. How they
are coupled together with all the technical details related to their implementa-
tions in MATLAB. Then, we study the behaviour of a group of lymphocytes
in a lymphatic channel with valves using an FSI (Fluid-Structure Interaction)
code. We define a lymphangion geometry and compare the displacement of
lymphocites in different scenari, first with or without valve, pulsations and/or
movable walls. The lymph flow in the secondary network is similar to blood
pulsating flow.

69
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4.1 Numerical method

In this section, we aim to provide a description of the equations, models and nu-
merical methods used for the 2D simulations. We will first present the computa-
tion techniques for the fluid, followed by those for the solid. The fluid–structure
interaction scheme is given after this description of the computation techniques.
A lymphangion as defined in figure 1.1 in the introduction contains fluid and
cells. It carries lymph which for the purpose of this thesis will be considered as a
classic incompressible Newtonian fluid. However, this hypothesis is not always
true as the density of biological cells varies and modifies the fluid viscosity and
possibly its visco–elastic properties. Another known alteration of rheology in
the lymph network occurs in the small intestine during digestion. This altered
lymph is called chyle and contains lipids which modify the viscosity Bragdon
[1958]. Incompressibility is a property of the flow that allows simplification in
the fluid solver such as the density is considered as a constant. A newtonian
fluid correlates shear stress (τ) and local strain rate of the fluid, in such a way
that they are proportional: τ = µ(∇u +∇uT). On the other hand, the valve
lymphocytes and walls will be considered as incompressible hyperelastic solids
following a Neo-Hookean model. Such model links the Cauchy stress tensor (σ),
with the pressure (p) and the Cauchy-Green deformation tensor (B). So one
can write: σ = −pI+2C1B, with (C1) a shear modulus constant. Furthermore,
the density of the fluid will be written ρ.

FSI (Fluid-Structure Interaction) codes are multi-field problems since the
fluid and solid share a moving interface. There are different strategies when it
comes to choose the best support to capture the interface. A classic formulation
such as ALE (Arbitrary Lagrangian Eulerian) uses a moving spatial domain to
resolve the solid position and movement as described in Maury and Glowinski
[1997]. This fluid & solid domains requires more computational power as its
boundary conditions and mesh need to be computed at every time step Bavo
et al. [2016]. Also, this method is more suited for limited deformations of the
solid geometry. Another formulation called IBM (Immersed Boundary Method)
developed for both incompressible fluid and solid shows better results for high
deformation of structure, which is important in biomedical applications. In fact,
it uses a different way to share information between the fluid and the solid, such
that the solid interpolates the fluid solution in order to compute its deformation,
displacement and forces. The forces are then added back to the Navier-Stokes
equations to include the effect of the solid. However, this interpolation can lead
to spreading and excessive diffusion of the numerical solution. But in this code
the solid is treated as a potential energy functional completely immersed. Also,
different solid computational point1 functions has been considered in order to
reduce the numerical diffusion.

The FSI method used here is introduced in the article by Gil et al. [2010]
and is called ISPM (Immersed Structural Potential Method) and is a variation
of the IBM. The flow chart shown in figure 4.1 shows the organisation and links
between the main steps in order to run the code. The starting point the chart is

1also known as kernel from Peskin [2002]
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Definition of
simulation
parameters

Evaluate
fluid fields

Compute viscous

Compute inertia

Apply bound-
ary conditions

Solve Lapla-
cian equation
for pressure

Update velocities

Evaluate
solid fields

Interpolate com-
putational points

Compute ve-
locity gradient

Integrate to obtain
deformation

gradient tensor

Compute the
Kirchhoff

stress tensor

Integrate in space

Obtain the
FSI forces

Update the points
coordinates

Organise results
and post–
processing

t < tfinal

Err(fFSI) <
ktolerance

t → t + ∆t

fluid steps

solid steps

yes

no

no

yes

Figure 4.1: Flow chart of the main steps for the ISPM (Immersed Structural Potential
Method) code. The top represents the initialisation and the bottom the end of the procedure.
In green rhombi are the conditions occurring in the code logic. Here, t represents time, ∆t

is the time-step, Err(fFSI) =
|fn

FSI−fn−1
FSI |

|fn
FSI|

the error function and ktolerance is the tolerance
constant.
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the definition of the simulation. It is a MATLAB file from which one can choose
the methods for boundary conditions, size for the physical domain, position of
the structure and other elements related to the geometry. Then the fluid is
computed using a predictor–corrector method which consists in computing the
viscous term then the inertia term which are then summed into a predicted fluid
velocity variables. Next, the boundary conditions are applied on the velocity
fields. Then, these new fluid variables are used to compute the pressure. The
gradient of the pressure is used to update the predicted velocity into a corrected
velocity.

After solving the fluid, the structure is computed, first by interpolating the
velocity values of the fluid using kernel functions. From there, the velocity
gradient is computed in order to get to the Kirchhoff stress tensor which will
give the FSI forces to be applied to the Navier-Stokes equation. Then the sodid
computational points are displaced based on the interpolated velocity. Using
the FSI forces field, the relative error of the forces is compared to a tolerance
constant at every iteration. A new time step is computed when the relative
error is below a defined tolerance.

Now that the key steps for the ISPM code have been introduced, the detail
of the main equations is provided in the following subsection of the thesis.

4.1.1 Fluid computation
Mesh

The computational domain (Ω) is defined by a rectangular fluid mesh, also
referred to as the structured grid. It is composed of uniform rectangular cells.
This mesh holds the values of velocity along the x–axis and y–axis, as well as
the pressure field. For stability reasons, the computational point of pressure

ui,j ui+1,j

vi,j

vi,j+1

Pi,j

Figure 4.2: Staggered grid for fluid computation, representing a pressure centered compu-
tational cell. Here i & j are positive integers referring to the cell position. Pi,j represents
the pressure and is estimated at the center of the cell i,j. The x–axis velocity, u is computed
on the left and right cell’s wall. Same for v the y–axis on the top and bottom.

and velocities are shifted as presented in figure 4.2. In this figure, the lines
form the computational pressure cells. This method of staggering the pressure
points and velocity is also called Marker And Cell (MAC). It was first proposed
by Harlow and Welch [1965]. These computational points are also defined for
the u and for v, which will be useful for the Quadratic Upstream Interpolation
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for Convective Kinematics (QUICK) scheme.

Boundary Conditions

In order to apply Boundary Conditions (BC), an additional layer of fluid cells
is added at the border of the simulation domain, these cells are called ghost
cells. They are not taken into account in the results but play key role in the
calculation of the solution. From a numerical point of view, they allow all the
multiple differential operators to provide results for all the cells of the simulation
domain. In our case they account for two cells in addition to the computational
domain just for the BC. The number of additional cells depends on the scheme
used by differential operators. Furthermore, the value of pressure and velocity
held by these cells is defined before solving the physics thus they are known a
priori and influence the results. There are various types of BC, for the velocity
field in computational fluid dynamic. The main types of BC used in this thesis
are:

• Dirichlet

• Neumann

In order to have Dirichlet type of BC, all velocity values in the BC cells are
defined and fixed at the beginning of the simulation. So one can write:

u(x) = fD(x) with x ∈ ∂Ω.

With ∂Ω the boundary of the domain, and fD a function defining the velocity
at the BC. A Neumann BC is different as it depends on the value of u near
the border of the simulation domain, since it is function of a differential term
in space. It can be written:

∂u

∂n
(x) = fN (x) with x ∈ ∂Ω.

Here n is the normal to the boundary ∂Ω and fN the function describing the flux
of velocity. Furthermore, a periodic BC is used in one of simulations presented
in this thesis. More details are provided in the definition of the geometry in the
specific section later in the document.

4.1.2 Fluid numerical method

In this section, is a description of the major steps of the numerical formulation
as described in figure 4.1, in order to solve the fluid fields, which is the pressure,
and the two components of the velocity. Also, the fluid velocity vector field is
u = (u v)T.

Time progression This code uses the predictor–corrector method, which are
explained in Ferziger and Perić [2002]. Using the Navier-Stokes equation one
can obtain for the predicted step:
u∗ − un

δt
= −3

2
(un · ∇)un +

1

2
(un−1 · ∇)un−1 +

1

ρ
(µ∆un + fn + fnine). (4.1)
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The name of the time discretisation scheme is called Adam-Bashforth scheme.
Here, un is the velocity at the n-time step, u∗ is the predicted velocity and fn

are the structural forces applied to the fluid. Furthermore, fnine represents the
inertial forces which are only taken into account if the density of the fluid and
the solid are different. At this step the boundary conditions for the fluid are
imposed as:

u∗|∂Ω = un+1
BC . (4.2)

The correction step can be written as follows:

∆pn+1 =
ρ

δt
∇ · u∗. (4.3)

Here p is the pressure field and ρ is the fluid density. The Poisson equation
(4.3) is solved using a Fast Fourier Transform (FFT) solver in order to improve
efficiency. The boundary conditions are then applied as:

n|∂Ω · ∇pn+1 = 0. (4.4)

Finally the velocities are corrected:

un+1 = u∗ − δt

ρ
∇pn+1. (4.5)

Viscous discretisation The diffusive term of equation (4.1) is written as fol-
lows:

(∆u)i,j =
µ

ρ

(
ui−1,j − 2ui,j + ui+1,j

(δx)2
+
ui,j−1 − 2ui,j + ui,j+1

(δy)2

)
. (4.6)

Speaking of computational efficiency, the mesh size (δx & δy) is constant as
well as the viscosity (µ) and the density (ρ) so this operator can be vectorised,
for i and j in the entire simulation domain, except the ghost cells. The equation
which defines (∆v)i,j is similar and thus is not written here.

Inertia discretisation The QUICK formulation requires to know the velocity
normal to the computational cell, represented in figure 4.2. If one consider the
point ui,j the orthogonal velocities of this cell are defined as follows:

ūi+ 1

2
,j =

1
2(ui,j + ui+1,j),

ūi− 1

2
,j =

1
2(ui,j + ui−1,j),

ūi,j+ 1

2
= 1

2(vi,j+1 + vi−1,j+1),

ūi,j− 1

2
= 1

2(vi,j + vi−1,j).

(4.7)

ū represents the averaged velocity in between two neighboring computational
velocity points. Knowing the velocities normal to the cell, one can apply the
QUICK formulation to obtain the interpolated velocities û :

ûi+ 1

2
,j =

{
1
8(3ui+1,j + 6ui,j − ui−1,j) if ūi+ 1

2
,j > 0

1
8(3ui,j + 6ui+1,j − ui+2,j) else.

(4.8)
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And,

ûi− 1

2
,j =

{
1
8(3ui,j + 6ui−1,j − ui−2,j) if ūi− 1

2
,j > 0

1
8(3ui−1,j + 6ui,j − ui+1,j) else.

(4.9)

In the same manner, one can obtain the formulation for the y–axis, and find
the following velocities, ûi,j− 1

2
and ûi,j+ 1

2
. The convective term of the equation

(4.1) is then written as follows in the code:

(ui,j · ∇)ui,j =

ūi+ 1

2
,j · ûi+ 1

2
,j − ūi− 1

2
,j · ûi− 1

2
,j

δx
+

ūi,j+ 1

2
· ûi,j+ 1

2
− ūi,j− 1

2
· ûi,j− 1

2

δy
.

(4.10)

The same procedure is applied to compute the vi,j contribution to the convective
term. For i and j in the entire simulation domain, except the ghost cells. In
terms of vectorisation it is still manageable but the condition on the equation
(4.8) and (4.9) required to create list of boolean in order to “unroll” 2 the
for-loop properly.

4.1.3 Solid computation
Points – Kernels

In a same way that the fluid needs a mesh, the solid structure need computa-
tional points to evaluate its position. These points are also referred to as kernels
then a cloud or collection of kernels form a solid structure. The formulation
for kernel is defined in Peskin [2002], which is the same as the one used here
follows these equations :

φ(r) =


1
8(5− 2|r| −

√
−7 + 4(3− |r|)|r|) if 1 ≤ |r| ≤ 2,

1
8(3− 2|r|+

√
1 + 4(1− |r|)|r|) if |r| < 1,

0 else.

(4.11)

The φ function is shown in figure 4.3, first as a function of the radius r and
then in two dimensions.

These kernels are the support of the solid structures, each one hold the
position of the solid as well as its density They are usually defined as primitive
shape such as a square or a circle at the start of a simulation. It is then
possible to adapt their geometry by applying geometric transformation. In the
remainder of this section, N will refer to the number of solid structure points,
and xs the point coordinates of a kernel. Any variable with subscript (s) will
refer to the collection of solid structure points defining a solid in the simulation.
Besides, if subscript (n) is not written, it is implicit.

2Also known as loop unwinding, it is a computer science technique that a compiler attempts to
optimize a program execution speed but enlarging the size of the binary file.
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Figure 4.3: Representation of the Peskin [2002] kernel in function to its center. (i) Shows
the kernel function φ in function of its radius. (ii) Displays the 2D representation of the
kernel function.

Boundary Conditions

In terms of boundary conditions for the solid, The solid structure depends on
the fluid computational mesh. So the solid BC are defined by the underlying
fluid conditions as detailed in figure 4.1 The solid kernels are used to compute
the structure physical position, displacement and velocity through interpolation
of the fluid mesh. If, one would like to get the solid attached to a position in
the simulation domain, it would then need to define a patch of zero velocity for
the fluid which will then interpolate into the solid.

4.1.4 Solid numerical method

In this subsection the structural displacement and forces computed by the al-
gorithm from the interpolated fluid velocity field is detailed.

Interpolation A kernel approach is used to compute the interpolation of fluid
velocity, as all the kernel use an interpolation function. In the article Gil et al.
[2010], few different ones where tested. This approach defines a distance of
support for the kernel, to extract velocity from the fluid mesh. Then the velocity
of a kernel is defined by:

us =
∑

Ax∈Ix

uAxφAx(xs). (4.12)

With Ax being a fluid cell edge within the kernel support written Ix. Further-
more, φ is the kernel function defined in the previous subsection. The same is
achieved to obtain vs using Ay.

Velocity gradient The solid velocity gradient is computed as:

ls = [∇sus ∇svs]
T (4.13)

Numerically, the gradient is applied to the the kernel function φ from the equa-
tion (4.12).
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Deformation gradient tensor Then, in order to obtain Fs the deformation
gradient tensor, we will use this formula:

∂Fs

∂t
= lsFs. (4.14)

Which lead to for the n+ 1–th time step:

Fn+1
s = e∆tlns Fn

s . (4.15)

To properly estimate the exponential term, one need to separate ls into its
symmetric component ds and skew-symmetric ws. This lead to:

e∆tls = e∆tdse∆tws . (4.16)

From a numerical point of view, the ds term is solved using spectral decom-
position. And the ws term is solved by Hughes-Winget’s update method as
developed in Hughes and Winget [1980].

Deviatoric Kirchhoff stress tensor The stress tensor is obtained using an
incompressible hyperelastic Neo-Hookean material constitutive equation:

ψs(C) =
G

2
(Ic − 3) and Ic = λ21 + λ22 + λ23 = tr(J−2/3FTF). (4.17)

J can then be defined as the determinant of the F the deformation gradient
tensor. Next, Ic the first invariant of C, the right Green-Cauchy stress tensor,
ψ the strain energy density function and G, the standard shear modulus. The
Kirchhoff strain tensor τ s can then be written as:

τ s = GJ−2/3F

(
I − 1

3
IcC

−1

)
FT. (4.18)

Spatially integrate the Deviatoric Kirchhoff stress tensor Since τ s is eval-
uated from the fluid velocity field, it holds the fluid strain τ f as well as the
solid. By integrating this updated solid strain in space one obtains the struc-
tural forces.

f =

∫
(τ s − τ f )dS. (4.19)

Here f depends on the fluid mesh as this force will be applied to the fluid of
equation (4.1) in the last two terms.

Evaluation of inertia At this stage, it is possible to evaluate inertia as well, if
needed. It requires δρ = ρs − ρf , the difference between solid and fluid density.

fine =

∫
δρ(g − Dus

Dt
)dS. (4.20)

The inertial forces are to be added to the solid forces computed in the previous
paragraph, only if δρ 6= 0. Dus

Dt is the total derivative of the solid velocity, and
g represents a possible body force per unit of undeformed volume (i.e. gravity
effects).
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Update the solid point coordinates Finally, the kernel positions are being
updated using the solid velocity, such as:

xn+1
s = xns +

δt

2
(un

s + un+1
s ). (4.21)

Once this step is complete, the structural forces from equation (4.19) are used
to compute the error which must be below the tolerance ktolerance in order to
proceed to the next time step, as defined in the flow chart 4.1.

After detailing all the steps of the FSI code used in this thesis, a test case is
chosen in order to verify the accuracy against finest mesh simulation. Multiple
benchmarks where achieved by Gil et al. [2010], such as free fall of a rigid and
deformable cylinders, or floating or sinking balls in a closed channel, or flapping
membrane under pulsating flow. There are a few tests that are commonly used
to validate FSI code. For example, the movement of a free moving flap behind a
cylinder has been widely studied which is a common geometry initially proposed
by Turek and Hron [2006]. Yet, for this document, the benchmark used here
is the deformation of a particle in a Couette flow, and it will be detailed in
the next section. This numerical test has been selected because it has not been
tested in the initial paper, and an analytical solution is available as well.

4.2 Benchmark case – an elastic particle in a Cou-
ette flow

4.2.1 Introduction

This benchmark allows us to test the validity of the physical solution provided
by the numerical code. However, the numerical examples provided in Gil et al.
[2010] paper are not interesting for lymphangion modelling. The flow around
ellipsoidal particle in a Couette flow has been analytically solved by Jeffery
[1922]. Since then, simulations has been used to extend this solution to elastic,
deformable particles. When deformed by the flow, the elastic particle takes the
shape of an ellipsoid. A relation between the capillary number (Ca) and the
aspect ratio of the ellipse, also known as the Taylor deformation parameter (D)
is shown to be linear according to Gao and Hu [2009] for low capillary numbers3.
Moreover, the slope of the linear regime is shown to be one. Here, Ca ' 0.16

for the simulated particle, thus similar value for D is expected.
Particle deformation is key element for the study of lymph as those particles

can be assimilated to lymphocytes in the following sections. In addition, phys-
ical parameters of a lymphocyte can be modified by their biological functions.
It is therefore important to check that the code can properly handle particle
deformations.

First, the geometry and dimensions are given, then the boundary conditions
are defined, finally error are estimated and compared to analytical solution.

3Their article use below 0.3 Ca as a limit.
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4.2.2 Presentation and geometry

The geometry shown in figure 4.4 is defined in order to test the physics of
the two dimensions code used in this thesis The boundary conditions are set
to generate a shear flow which will then deform the particle. The boundary
conditions are therefore ux = U and uy = 0 on the top wall and ux = −U and
uy = 0 on the bottom wall. Initially, the particle is set as a disk, then under
shear flow it will be deformed into an elliptic shape. The shape of an ellipse is

l

l

x

y

r

(i)

a
b

x

y

θ

(ii)

Figure 4.4: (i) Shear flow model used for numerical simulations of solid particle deforming
in a Couette flow. With l the size of the simulation box, and r the radius of the particle
simulated. (ii) Modification to the particle submitted to shear flow. Here a and b are the
semi–major and semi–minor axis of the ellipse.

given by the following equation:
1

a2
((x− x0) cos(θ) + (y − y0) sin(θ))

2+

1

b2
((x− x0) sin(θ)− (y − y0) cos(θ))

2 = 1.

(4.22)

Here, a define the semi–major axis of the ellipse and b defines the semi–minor
axis of the ellipse as shown in figure 4.4. Furthermore, the angle θ is the angle
between the long axis of the ellipse and the x–axis of the reference frame. In our
case the simulation domain is set in a way that x0, y0 are the coordinates of the
center of the simulation box. The dimensions defined in figure 4.4 and the size
of the box l = 150 µm and the initial radius of the particle r = 55 µm. In this
benchmark, we set U = 1 cm s−1. In terms of discretisation, four different fluid
mesh densities are used, those are listed in table 4.1, the solid mesh density
remains however the same. 4.1, the solid mesh density remains however the
same.

In these four simulations a constant number of solid kernels are used and
the number of fluid cells are varied. The time step (δt) is decreased along as
the number of fluid computational points is increased to maintain stability of
the simulation based on the CFL condition defined at the beginning of the
simulation. Also, the second column of table 4.1 shows that time spend for
each timestep is larger as the mesh is refined.
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Run Timesteps/s nx,ny Solid kernels δt h
1 4.40 27,27 461 2.500 0×10−6 5.55× 10−5

2 4.13 54,54 461 1.250 0×10−6 2.75× 10−5

3 3.81 108,108 461 6.250 0×10−7 1.38× 10−5

4 3.07 216,216 461 3.125 0×10−7 6.95× 10−6

Table 4.1: List of the discretisation and performance parameters for particle stretch in a
pure shear flow. Here, time–step per second refers to the amount of time–steps achieved in
one seconds. δt corresponds to the time discretisation of the simulation. nx and ny represent
the number of fluid computational cells in each direction x and y. h is the length of a fluid
cell, it is obtained by l

nx
and is mesured in centimeter.
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Figure 4.5: Relative error of the velocity field and the pressure for a particle in a shear
flow. The error for the velocity in the x–direction, y–direction as well as the pressure field
are compared to the finest mesh case. This case is the run number 4 from table 4.1. Top
and bottom slopes are here to represent respectively the error in O(h) and O(h2).

In figure 4.5, the different norm of error are shown for the x & y–velocities
as well as the pressure. For example, Ω being the computational domain. i and
j belong in Ω. One then can write the x–velocity L2 error like so:

L2(Ω) =

√∑
i,j ui,j − ufm

ufm
. (4.23)

And for the L∞:
L∞(Ω) = max

i,j

ui,j − ufm
ufm

. (4.24)

With ui,j the value of the computed velocity and ufm the finest meshs used to
compare. To estimate the error for all the fields in this simulation, we compare
the pressure to a zero pressure field which is a correct assumption if one assume
that the particle did not start to move. Then, as the solid kernels start to move
and deform the pressure solution will be different from a zero scalar field. Same
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reasoning applies to the y–velocity as it is set to zero at the beginning of the
simulation and grow positive and negative value as the particle deforms.

4.2.3 Results

In order to find the proper value for the elongation of the particle one can use
the variables a and b defined previously. Those long and short axis of the ellipse
define the Taylor deformation parameter D, as defined in Jackson and Tucker
[2003] but also in Gao and Hu [2009].

D =
a− b

a+ b
. (4.25)

With this parameter D, we will analyse the evolution of the deformation of the
particle with the capillary number Ca and compare it with the analytical solu-
tion. This dimensionless number compares the viscous effect over the elasticity.
It is defined as :

Ca =
γ̇µfluid
ηsolid

. (4.26)

Where γ̇ is the shear rate defined by the boundary conditions and is derived
like so 2U

l . µfluid being the fluid viscosity and ηsolid is the shear modulus of
the solid. In this case, U = 0.1 cm s−1 and the size of the simulation box is
l = 15 × 10−3 cm, so γ̇ ≈ 133 s−1. Furthermore, µfluid = 1.2 × 10−2 P for
the water viscosity, and also ηsolid = 10Ba. So the capillary number for these
simulations is Ca ≈ 0.1596.

Also, Gao and Hu [2009], defines a relation between Ca number and the
deformation parameter D. In order to obtain this relation, they use the dimen-
sionless stream function from the Stokes flow solution of a rotating cylinder.
From this stream function, a velocity can be determined as well as the pressure
field. At the interface between the cylinder the stress distribution is obtained
from the fluid pressure field. Then the velocity, stress and pressure in the solid
cylinder is then expended in the power of the Ca number. Using simulations
and mathematical simplifications, it is possible to obtain the pathline of a ma-
terial in function of the Ca number. Finally, equation 49 of Gao and Hu [2009]
writes :

D = Ca +O(Ca2) (4.27)

However this equation have limits such that the capillary number must be below
0.3 and the cylinder deforation must be small. Furthermore, this paper study
particle–particle interactions in a shear flow.

The points of computation distribution here have been designed to take the
shape of concentric circles with same ratio of surface per points. However,
this way of distributing computational points is not isotropic, thus making the
cloud of points with better discretisation in one direction compare to the other
as shown in figure 4.6 (i).

Figure 4.6 (i) show the particle discretisation at an early stage of the com-
putation. It is slightly tilted, with θ < π

2 . Furthermore, figure 4.6 (ii) shows
the interface of the particle after it reaches a plateau deformation and begins to
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Figure 4.6: (i) – Representation of the particle solid kernels in a shear flow after a hundred
timesteps, one can observe the beginning of the deformation. (ii) – Shape of the particle
under shear flow after saturation of the deformation at time step t = 0.13 s only showing the
solid kernels at the fluid–solid interface and not the whole set of solid kernels.

rotate. Using equation (4.27), D parameter is proportional to the Ca number
with a big O in Ca2.
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Figure 4.7: Evolution of the deformation parameter defined in the equation (4.25) against
time. Different curves represent degrees of discretisation as defined in table 4.1 (1 being the
rough mesh and 4 being the finest mesh).

From figure 4.7, all the mesh converge toward a similar deformation param-
eter D. The finest mesh represented by the simulation number 4 and its final
converged value is 0.1587 approximately. Also, using equation (4.27) one can
compare the Capillary number and the deformation parameter D. Here, the Ca
number for these simulations is 0.1596 so the converged value of D should be the
same. But using figure 4.7, the converged value of the deformation parameter
D is lower as the mesh is finer. The finest mesh (curve 4) one can read a value
of approximately 0.1587 for the deformation parameter D. This value is lower
than expected but the relative error of the deformation parameter compares to
the capillary number is of 0.52%.
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4.3 Dispersion of particles in a lymphangion with
valve

In this section, we use the 2D simulation code to the study of the transport
and dispersion of a cloud of particles representing lymphocytes in a model
lymphangion. Multiple parameters are varied to evaluate their influence, such
as the number of particles, or the presence of valve in the flow. The flow
and structuration of suspensions of deformable particles in flow is an active
research field due to its complexity. Many works report on the distribution of
red blood cells in a blood vessel for instance and its consequences for transport
and rheology. Geislinger and Franke [2014], define different types of forces that
apply to a particle in a Poiseuille flow and lead to transverse motion:

• Shear-gradient causes a migration of particles.

• Wall-particle interactions leads to an inward migration, toward the
center line.

• Hydrodynamic interactions between particles diffuse the particles
away from each others.

The first two lead to migration of particles toward the center of the channel
while the last force mentioned spread the particle away from each other. Kaoui
et al. [2008] investigate numerically in two–dimension the migration of a vesicle
in low Reynolds number. Furthermore, non–inertial migration of vesicles in a
Poiseuille flow is studied experimentally and numerically in Coupier et al. [2008].
This equilibrium state is formed maintaining the particles in a central zone in
the blood vessel, as explained in Fedosov et al. [2010]. Losserand et al. [2019]
measured the inward migration velocity of red blood cells in microchannels and
derived a universal scaling law for this migration velocity as a function of local
shear rate and distance to channel walls.

When comparing blood and lymph in the collecting network, there are a
few differences. Key differences are the particle nature and properties, the
nature of the pulsation and the viscosity of the fluid. If one compares red
blood cells and lymphocytes, they have a similar diameter. However, red blood
cell have a disk shape while lymphocytes are more spherical. According to
Hivroz and Saitakis [2016], a human lymphocyte’s stiffness value can vary from
90Pa to 1MPa by order of magnitude. This wide range can be explained
as lymphocytes are a family of immune cells whose activity and physiological
state have a strong influence on their stiffness. On the other hand, the effective
Young’s modulus of RBCs (measured by Atomic Force Microscopy) varies over
a narrow range between 16 kPa up to 34 kPa on average according to Kozlova
et al. [2017]. However, it should be noted that treating cells, especially red blood
cells, as homogeneous elastic particles characterized by an elastic modulus is
a rough approximation compared to the standards of numerical modelling of
red blood cells nowadays. Still, a simple elastic model has its own merits for
a simple evaluation of cell dynamics in a flow. First, the particles are more
elastic but also depend on the state of the immune system. Also, comparing
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the frequency of fluid pulsation between the blood system and the lymphatic
system, it is lower for the lymph and the peak velocities are slower as well
as defined in the introduction. Lastly, the effective viscosity of whole blood
is different from lymph. However, the viscosity of blood plasma is about the
same as the viscosity of lymph without lymphocytes. Both of them being body
fluid, they depend on many factors but here we consider the fluid that composes
lymph to be a newtonian fluid. After describing the geometry of the system
and boundary conditions, we present here a set of results on the evolution of
the spatial distribution of particles.

4.3.1 Presentation of the geometry

wall(L)

wall(L)

uininlet(l) outlet(l)

upper leaflet

lower leaflet

x

y

Figure 4.8: Representation of the simulation setup in order to test the dispersion of particles
in a Poiseuille flow.

Figure 4.8 represents the geometry of the simulation. The goal of such a
geometry is to evaluate the effect of the presence of the valve on a pulsed flow
with particle. In order to achieve this, one needs to run multiple cases with
different configurations. This batch of simulations presented here is made of
seven specific setups. All these simulations use the dimensions defined in table
4.2. When compared with the dimension of a real lymphangion only half a
lymphangion length is simulated in order to save up computational time. It is a
limit of this study to not have proper sized lymphangion, as it would contribute
to dispersion of particle to a greater extent. Particles are chosen to fit the
lymphocyte size reported in literature. As the number of particles varies with
the immune response, it is interesting to test different particle concentrations.
In this study, we focus on three cases with respectively 1, 36 or 72 particles,
which corresponds to a density of approximately 2, 80 and 160 particles/mm2

respectively. Furthermore, it is important to notice that the initial position of
particles in the simulation box is random. For this geometry, a set of seven
simulations is summarized in tables 4.3 and 4.2.

In terms of dimensionless numbers the Reynolds, the Womersley and the
Strouhal numbers are defined as:

Re =
vL

ν
, Wo = L

√
ω

ν
and, St =

ωL

v
(4.28)

With characteristic length L = 0.3mm the diameter of the vessel, the kinematic
viscosity ν = 0.8mm2 s−1, the characteristic velocity v = 1.5mms−1 and ω =
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Simulation Domain input & output (l) 0.3mm
wall (L) 1.5mm

Leaflet width 0.03mm
length ≈ 0.33mm

Boundary conditions uin 1mms−1

Particles amount 1, 36 or 72
diameter 0.01mm

Table 4.2: List of the main physical values for the test of dispersion of particles in a Poiseuille
flow.

Simulation A B C D E F G
Valve with without without without with with with
Number of
particles

0 1 36 72 1 36 72

Table 4.3: List of simulations used for this section geometry with their characteristics.

0.33Hz for the pulsation frequency. The Reynolds number correspond to the
ratio between inertial forces and viscous forces, while the Womersley number
compares the ratio of inertial pulsatile flow effects to viscous effects. Here,
the Reynolds number is approximately 0.56 and the Womersley number is 0.18
approximately. Therefore, the unsteadiness of the pulsatile flow is not to be
considered as the Wo number is below one. As the Reynolds number is small, it
is reasonable to assume that the inlet boundary condition , far from valves, can
be considered as a Poiseuille velocity profile whose amplitude instantaneously
follows the imposed pulsed flow described below The Strouhal number is 0.066

and it compares the ratio of velocity between oscillatory velocity to ambient
flow velocity.

4.3.2 Boundary conditions

In order to simulate what would happen in a long chain of lymphangions, we
apply periodic boundary conditions on the velocity and particles. In other
words, the velocity profile of the right border is used as the velocity profile on
the left border. With regard to the particles, it allows them to leave from the
right side of the simulation box to re-enter from the left side. A multiplicative
coefficient is used to modulate the velocity, and reproduce a pulsed flow. From
the immersed boundary condition method, the particle position modification
was simple to implement. In fact, a particle position is defined by the average
position of all its solid kernel position. Then to move a particle from the right
boundary to the left, one can simply subtract the length of the simulation box to
the x–coordinate of each solid kernel position. So its orientation relative to the
simulation box and its size are conserved, since this operation is a geometrical
translation. Figure 4.9 shows the evolution of the boundary condition applied
to the left wall. This periodic boundary condition cycles with a period of 2 s.
For a short period of time, the flow is reversed, as imposed by the boundary
conditions. The flow reversal due to this pulsatile flow needs to be implemented
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in order to take into account its effect of valves, which in turn periodically
modifies the geometry and therefore influences particle dynamics.

t(s)

uin(cm s−1)

tn tn + 0.5 tn + 2

-0.05
0

.1

Figure 4.9: Periodic boundary conditions in time for the inlet x-velocity imposed on the
left boundary condition. From a mathematical point of view the function periodicity can be
written: uin(t) = uin(t + 2). Reader should note that uin is the maximum velocity of the
Poiseuille profile.

As defined by the Poiseuille flow, vin, the velocity in the y–direction is set to
zero. The top and bottom walls are considered as non–slip boundary conditions.
With the velocity equal to zero at all times.

4.3.3 Mesh convergence study

In order to estimate the error produced by the code, a mesh convergence study
is achieved. Since there are two materials, namely the fluid and the solid to dis-
cretise, only the fluid mesh size is varied in this study.For the solid structures,
no meshes are available, only a collection of solid kernel points. However, the
density of solid kernel points used to define the solid does modify its discreti-
sation. For this convergence study, only the valve is considered, particles are
removed of the simulation. Leaflets are made of 24300 solid kernel points each,
so a valve is supported by 48600 kernel points. In order to produce a leaflet,
a rectangle is first produce of 270 times 90 solid kernels, then this rectangle is
deformed via geometric transformation into an elongated shaped leaflet. Nev-
ertheless, the simulation time increases with the amount of solid kernel used.
So apart from this mesh study, for later simulations a balance has been found
between computational accuracy and time. Fluid mesh density refers to the
amount of pressure computational points divided by the surface covered. Sim-
ilarly, solid kernel density, is defined as the amount of kernels divided by the
initial surface covered by the solid. A condition linking the fluid mesh density
and the solid kernel density is provided in Gil et al. [2010], which should be
at least 2 solid kernels for a single fluid computational point, in each direction.
In fact, they tried different types of kernels but only the one defined in Peskin
[1972], equation (6.27), is properly used and detailed. So for issues of clarity
and stability, the Peskin kernel is the one used in this section. Table 4.4 shows
the list of all meshes chosen for the mesh convergence study. Next, relative
errors for the velocity fields and pressures are plotted in figure 4.10. In figure
4.10, the L2 and L∞-norms are displayed in function of the x mesh size, called
h. As no analytical solution exists, we compare the whole velocity and pressure
fields solution to the finest mesh. It is described in table 4.4, run 4. Here the
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Run Timesteps/s nx,ny Solid kernels δt h
1 4.28× 10−2 69,21 48600 1.041 7×10−6 2.173×10−3

2 4.06× 10−2 141,45 48600 5.208 3×10−7 1.063×10−3

3 4.11× 10−2 285,93 48600 2.604 2×10−7 5.263×10−4

4 4.03× 10−2 573,189 48600 1.302 1×10−7 2.617×10−4

Table 4.4: List of the discretisation and performance parameters for the valve study in a
straight channel. Here time-step per second refers to the amount of time–steps achieved in
one seconds. δt correspond to the time discretisation of the simulation. nx and ny represent
the number of fluid computational cells in each direction x and y. h is the length of a fluid
cell, it is obtained by l

nx
and is mesured in centimeter.
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Figure 4.10: The error for the velocity in the x–direction, y–direction as well as the
pressure field are compared to the finest mesh case. This case is the run number 4 from
table 4.1. Orange and yellow linear slopes are here to represent respectively the error in
O(h) and O(h2).

L∞ norm has a higher rate of convergence than what can be observed in Gil
et al. [2010] as it is not impacted by immersed boundary additive term called
f in equation (4.1). As a matter of fact, the pressure field is only estimated
locally at the computational point x = 0.03 cm and y = 0.015 cm.

4.3.4 Study of the distribution of particles

Figure 4.11 shows the entire valveless simulation domain at different capture
times. The reader can appreciate the proportions as well as the size of particles
and how they spread in the channel. One can observe that the particle tends
to gather in the center and distribute themselves properly across all the entire
channel. Also, for capture time 22.5 s, the Poiseuille flow is going on the opposite
direction, since the input velocity frequency is 0.5Hz as shown in figure 4.9 as
uin is a periodic function. This frequency is higher compare the contraction
frequency showed in the lumped model chapter, because the simulation does
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(i) (ii) (iii)

Figure 4.11: Velocity fields of a pulsed flow with a particle representing a lymphocyte. Per
column: (i) one particle simulation – case B, (ii) 36 particles – case C, (iii) 72 particles –
case D. Per line: different capture times: 7.5, 15, 22.5 and 30 s.

not represent a complete lymphangion.

(i) (ii) (iii)

Figure 4.12: Velocity fields of a pulsed flow with a particle representing a lymphocyte and
valve. Per column: (i) one particle simulation – case E, (ii) 36 particles – case F, (iii) 72
particles – case G. Per line: different capture times: 1.25, 2.5, 3.75 and 5 s.

Here, in figure 4.12 display the entire simulation domain with velocity fields
in black arrows and the valve and particles in red. At time 2.5 s the flow
is reversed, and it is possible to see how the valve is impacted by the flow
reversal. As these simulations with valve are shorter than ones without valve,
the spreading of particle in the y–direction is not complete.

Figures 4.13 & 4.14 characterize the migration of particle towards the center
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distribution of particles at specific times Particles are spread randomly in the
simulation at time t = 0 s. These figures also show that there are no large
clusters of particles forming and that they tend to spread along the x–axis.
In figure 4.13, the evolution of the distribution of particles along the y-axis is
shown, with a time step of 7.5 s and by counting particles in layers of 0.3mm

width in the y–direction.
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Figure 4.13: Distribution of particles in simulation without valve along the y–axis for
different times for the simulation C, with 36 particles (i). And for the simulation D with 72
particles (ii), both without valve.

Comparing between different particles densities in the valveless cases, figure
4.13 shows that for all simulations including simulation C, the concentration
tends to amass in the center. At t = 7.5 s, there are approximately six particles
per range between 0.6 and 2.4mm. And at t = 30 s, the central range has 15
particles, less than half the total amount is concentrated in one tenth of the
channel width. It is not the case for simulation D, but a similar process occurs:
the number of particles decreases near the walls, increases in the center. But it
is not possible to observe a single central channel, the three main ranges have
16 particles each, although the distribution is not as narrow as in the previous
case. In this simulation, more than half of the particles are spread in less than
a third of the channel width. This is likely due to an enhanced shear-induced
diffusion due to a greater particle concentration and also possibly to the fact
that the configuration has not reach steady state.

In the case of valve simulation (case F & G), the maximum time is only 5 s,
so stability is not reached yet as it can be seen from figure 4.18. So the results
of figure 4.14 are not converged into a stable state. However, similar to the
cases without valve studied in the paragraph above, the particle concentration
is increasing in the center of the channel and decreasing in the region near
the wall. In terms of the distribution at the latest time step, it is similar to
the simulation C case, i.e. no homogeneous front appears. The part linked to
the presence of an obstacle in the flow or simulations has not reached a time
independent state and thus this state cannot be evaluated.

Figure 4.15 (i) represents the average position for all particles in the simula-
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Figure 4.14: Distribution of particles in simulation with valve along the y–axis for different
times for the F simulation with 36 particles (i), and simulation G with 72 particles (ii) are
present and are spread randomly at time 0 s.
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Figure 4.15: Average of all particles y–position for different simulations, as a function of
time. The three curves correspond to simulations B, C and D, with respectively 1, 36 and
72 particles without valve (i). And similarly with valve (ii) representing simulation E, F and
G.

tions without valve. The pulsatile nature of flow does not have a large impact
on the average y-position over time for valveless simulations as no trace of the
2 s frequency can be observed. While the average y–position of simulations B
and C tends to quickly reach the center of the channel, defined at 0.15mm,
the D simulation shows a slightly different behaviour. This simulation has 72
particles, and thus has the highest density of all valveless simulations. The ini-
tial positions of the particles are generated randomly. As a consequence, in the
D simulation, a cluster has formed and will take more time to diffuse properly
than the total simulation time. Nonetheless, the final average y–position of
all particles is close to the center of the channel in all valveless cases. Figure
4.15 graph (ii) represents the average position of all particles on the y–axis, for



4.3. DISPERSION OF PARTICLES IN A LYMPHANGION WITH VALVE 91

simulations with valves. The total simulation time with valves is 5 s while it
is 30 s in simulations without valves. For simulation E with only one particle,
effects of the valve are quite important and the cyclic variations are large. For
the F simulation with 36 particles, the spreading action on the x–axis is more
consequent and the cyclic variations are smaller. Lastly with the G simulation,
there are a small variations and the overall value is close to the center of the
channel.

It is possible to compute migration velocities based on the initial slope for
figure 4.15 (i) and the average slope for figure (ii) where simulations have a
duration of 5 s. Note however that, simulations D and G start with a cloud of
particles that is already more or less centered, and show mainly fluctuations
around this position. For simulation B without valve and only one particle one
obtains a migration velocity of −0.61 µms−1, using the initial slope from 5 s to
15 s. Furthermore, for the simulation C the velocity almost doubles from the B
case and reaches −1.18 µms−1. In the valve case, the situation is the opposite.
E simulation has a velocity of −1.63 µms−1 and the F one has velocity of
0.65 µms−1.

The difference between the two velocities for a single particle case can be
attributed to the presence of the valve. The velocity of migration depends
on shear that the particle is submitted to, so the initial position does impact
the velocity as well as the presence of valve. However, the difference between
the two velocities for 36 particles is less obvious as it might come from an
equilibrium between the diffusive force spreading particles in a repulsive way
from the center to the walls of the channel and migration force pushing particle
toward the center.
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Figure 4.16: Distance of the closest particle from the top or bottom wall as a function of
time for the simulation without (i) and with (ii) valves.

Figure 4.16 shows the distance in the y–direction between the walls and its
closest particle. This is a measure of the thickness of the particle-free layer near
walls. (i) represents only valveless simulations, and (ii) simulations with valve.
In the valveless cases, the observation formulated in the previous paragraph are
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confirmed. After 8 seconds of simulation D, values plateau or oscillate around
same value. Furthermore, the distance from the top and bottom wall are similar.
For simulation C, such phenomenon occurs as well but after a long period. Both
curves, Ct & Cb raise for 18 seconds, here subscript t means top and b means
bottom. However, the distance from top wall falls back while the bottom one
keeps rising. In figure 4.16 (ii) the presence of the valve causes large peaks. The
average migration velocity is faster when there are valves in the lymphangion.
The overall displacement is bigger after 5 s in 4.16 (ii) than after 5 s in 4.16 (i).
Due to the reduction in channel width, shear rate is higher in the valve section,
which enhances the migration towards the center. However since the particles
are at different distance from wall, due to the Poiseuille nature of the velocity
profile, it means they also travel at different speeds. In fact, a particle closer
to the wall is advected slowly compare to a particle travelling in the center of
the channel. So, they do not get close to the valve at the same time nor at the
same frequency.

The distribution of particles as well as the velocity field with arrows are
represented in figures 4.17 & 4.18 at specific time. For the valveless simulations,
capture at 22.5 s shows a reverse flow configuration, while the simulations with
valve happen for the capture at 2.5 s. It is possible to observe from figure 4.17
that with fewer particles the y–displacements are limited. In fact, the graph
(i) shows a very few changes in direction and most of the curves are straight.
While in the graph (ii), curves tend to oscillate more and overall travel larger
distances in the y–direction.

Multiple ideas can justify such phenomenon such that the diffusive force that
spread the particles can be affected by the density of particle. Furthermore, it
could be linked to the initial position of particles, but no statistical simulations
study were run.
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Figure 4.17: Evolution of the position of y–coordinate particles in function of time. 0.015 cm
is the middle of the channel and the Poiseuille flow is defined with y–orientation. In these
figures, there are 36 particles (i) and 72 (ii) in the simulation so respectively C & D.

The particle density however does not seem to influence the movement of
particles in figure 4.18 for simulation with valve. As a matter of fact, most
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of the displacement of particles in the y–direction are linked to the valve. It
pushes particles toward the center then draws them back toward the walls after.
Such movement produces larger amplitude in the particle displacement on the
y–direction.
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Figure 4.18: Evolution of the position of a y–coordinate particles in function of time for
valved simulation. In these figures, there are 36 particles (i) and 72 (ii) so respectively
simulations F & G.

In order to obtain the different migration velocities several y–ranges are
defined, similarly to distribution of particle study. So all the particles in a band
is used to compute the average in space. The time average is done in such way
that a particle can only be counted once, but across different y–ranges. The
migration velocities are low compare to the advection velocity, by one order of
magnitude roughly.
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Figure 4.19: Distribution of particle y–velocity (migration velocity) averaged in space and
time for simulation without valve along the y–axis for different time ranges for the simulation
C, with 36 particles (i). And for the simulation D with 72 particles (ii), both without valve.

Figure 4.19, particles tends to get closer to the center (low shear rate zone) as
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time progress. This migration toward the center is no depending on the upper
or lower side of the lymphangion. Also, the migration velocity reduces with time
in both cases with 36 or 72 particles. However, the particle density appears to
affect the intensity of the migration velocity. It can be linked to the effective
viscosity modified by the increased particle density. Such hypothesis should be
confirmed by the cases with valve. Furthermore, the symmetry between the top
and bottom region remains the same.
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Figure 4.20: Distribution of particle y–velocity (migration velocity) averaged in space and
time for simulation with valve along the y–axis for different time ranges for the F simulation
with 36 particles (i), and simulation G with 72 particles (ii). Particles in both cases are
present and are spread randomly at initial time.

In figure 4.13, the two cases have valve. It has been observed in the previous
subsection that the valve contributes to the mixing of particles with figure 4.18
for example. In the simulation F, the average velocity for the particle below the
center line have negative velocities. This behaviour can be linked to a group
of particles moving toward the wall after passing around it. The simulation
G does not show this behavior because the density is larger and the averaging
process smooth these local phenomena.

4.3.5 Velocity profiles

In this subsection, a closer look will be taken at the velocity profiles of the
lymph in a lymphangion. The Reynolds and the Wormersley number are low
as computed in Presentation of the geometry. Therefore, the fluid inertia is
low compared to viscous effects as well as the influence of the pulsatile flow.
However, secondary lymphangions have valves which perturbed the flow. Con-
sequently, it is possible to observe such impact on the width of the established
Poiseuille solution. First, simulations C & D will be considered in figure 4.21,
which are valveless. Then the simulation F & G that present a valve will be
observed in figure 4.22.

Figure 4.21, one can observe that most of the profiles are parabolic which
is the solution provided by Poisuille. For 21 s and 30 s the profile are mostly
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Figure 4.21: x–velocity profile as a function of y, for different times and different y–position.
Each curve color represent a time in second given in the legend. (i) Figure uses results from
the C simulation. (ii) Figure uses results from the D simulation.

smooth whereas the other profiles are rougher. This suggests that the flow
achieves a steady state after at least 21 s and is only perturbed by the particles.
Their position is defined randomly at time t = 0 s, and most of the perturba-
tion are present near y–position 0.1 cm and 0.2 cm. These two bands are equally
distant from the center, and does depend slightly on the particle density. Fur-
thermore, the intensity of these perturbations is larger in the simulation D.

For simulations with valve, in figure 4.22, profiles plotted for x values of
0.06 cm, 0.09 cm & 0.12 cm the impact of the valve is observable. In fact,
negative values can be seen near the walls, because a recirculation zone develops
between the wall and the valve. However, after 3 s, the valve lie over the wall,
as can be seen on the plot x = 0.12 cm. Before 3 s, the valve is not open and
the parabolic profile is confined between y = 0.006 cm & y = 0.024 cm which
concentrate the particles and produce perturbations on the parabolic profile.

So particles do not modify to a great extent the parabolic profile, however
the perturbation are concentrated at the same position. The valve however
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Figure 4.22: x–velocity profile as a function of y, for different times and different y–position.
Each curve color represent a time in second given in the legend. (i) Figure uses results from
the F simulation. (ii) Figure uses results from the G simulation.

impact the flow and tend raise locally the particle density which generates
more perturbation.

4.3.6 Position of the valve

For this subsection, the valve displacement is the main focus. The initial setup
is described in figure 4.8.

The boundary condition are identical to the previous subsection, a Poiseuille
flow for the inlet and outlet, and non–slip wall for the top and bottom simulation
boundaries. For the valve, they are embedded to the wall, and the root of
the leaflets do not move during the whole simulation. The two-dimensional
simulation used here contains the two leaflets of a lymphangion, but only the
tip of the lower one will be discussed. Simulations are run with 5 seconds of
physical time, which provides more than 2 contraction cycles. In figure 4.23,
the initial position of the leaflet tip is defined at the (I) point, then opens up
to reach the point (II). At this moment the flow has changed its direction and
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instead of closing the valves it keeps on opening but the tips retracts (II → III).
Then the flow returns to a forward direction and keeps opening the valve also,
the number of particles influence the valve tip as it can be observed in figure
4.24. (III → IV). At (IV) the valve has reached its full extension and cannot
extend more. It will retract to (V) position where another reverse flow event
occurs, and then into (VI) where a similar event also happens. It is interesting
to notice that the valve keeps on opening even with reverse flow. This might be
linked to the reverse flow not being strong enough, or the reverse phase having
a period too short. The initial opening phase pushed the valve from an opening
radius of 20 µm up to approximately 78 µm. Then the second phase reached
an opening radius of 100 µm. However, the third phase does not increase the
opening radius by a significant margin. A normal lymphatic valve have an
approximate value comparable to the one computed here, and should return to
a closed state when backflow occurs.

With regard to the different amount of particles in the simulation, it al-
ters the opening movement of the valve, but it can be considered negligible.
However, the path taken by the valve varies slightly between simulations. The
largest modification comes from the G simulation which has the largest amount
of particles. It is also interesting to notice that whatever the path takes, the
loops produced by the reverse flow occur at the same y-coordinates. So the
particles in this case mostly affect the elongation of the valve rather than its
opening radius. This effect can be attributed to multiple causes, but the main
one would be that the valve is more free in the two–dimensional case than in
real life. In fact, Li et al. [2019] used a variable thickness (Young Modulus)
of alongside the valve main axis to approach a more natural behaviour. Such
setup has been tried as well during this thesis, but is not presented in this
manuscript.
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Figure 4.23: Evolution of the lower valve tip position. Here, the difference comes from the
number of particles in the simulation. Two arrows represent the time evolution.
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Figure 4.24: Zoom on the solution of the lower valve tip position between 2 and 5 seconds
of physical time. The difference comes from the number of particles in the simulation. The
arrow shows the evolution of the curve as function of time.

After showing results of simulation with pulsed flow, a comparison with
regular Poiseuille flow is considered. The initial position of particles is different
from simulations A to G, but after a period of time it does not influence the
results.

After comparing different particle densities and valve impact on the lym-
phatic flow, a next step is to observe the influence of wall. Since those actively
contribute to the pumping aspect of the lymph displacement, numerical simu-
lations will be performed to understand this phenomenon. However, it is still
subject to debate, and no geometry properly captures the whole physics. The
following section aims at remaining simple and only focus on 2D geometry.

4.4 Towards simulation of pumping dynamics

Similarly, a lymphangion contracts its wall to move lymph, we study the effects
of the wall on the displacement of the valves. Furthermore, the flow variation
in the channel modifies the position of the valve relative to the wall allowing
the fluid to pass or else be stopped. We compare the results in input/output
flow rate, and different geometries.
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Figure 4.25: Representation of the simulation setup in order to understand the wall impact
on lymph flow in a lymphangion.

simulation domain total height 0.5mm
total length (L) 1.5mm

movable wall thickness 0.02mm
distance between walls (l) 0.3mm

leaflet width 0.03mm
length ≈0.33mm

Table 4.5: List of the main physical values for the wall impact on lymph flow in a lymphan-
gion test.

4.4.1 Presentation of the geometry

Figure 4.25 displays the geometry of this section simulations. The straight bars
in the simulation box are walls, and are considered as solid, thus they interact
with the fluid. The valves are identical to the previous section, and the position
overlaps slightly with the top and bottom wall. So they are “attached” virtually,
even if they are defined as different in the simulations.

In table 4.5, the values of the geometry used for this section ’s simulations
are summed up. The length is defined based on the half lymphangion geometry
from the previous simulations. The height is defined to allow the movement of
the wall on the y–direction. Leaflets and walls have been chosen based on the
geometry presented by Watson et al. [2017] and Zawieja [2009]. The geometry
proposed here imitates the experimental setup presented in appendix. Its main
objective is to move the walls as defined in figure 4.25 to compress or expand
the lymphatic volume. In order to achieve this goal, multiple strategies were
used.

4.4.2 Methods

Three approaches of this study were used to simulate effects of contraction on
the wall’s displacement. Boundary conditions are set such that:

• Flow rate boundary function is forced on fluid field,

• External displacement function is imposed on the solid walls,
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• Additive force function is enjoined on the solid walls.
Initially, it was planned to use boundary conditions to impose a flow rate

on the top and bottom wall to force the fluid to produce a wall displacement.
However, a boundary condition function along the y−axis must be determined
to adjust. Moreover, the link between the flow rate and the pressure gradient
exerted by the fluid on the wall can be determined but the one between the
pressure gradient and the wall displacement seems to be non-linear. Therefore,
this approach is easier to implement numerically but harder to adjust physically.

Then it was decided to force the displacement of wall. This setup was not
tried since a strong control over the wall displacement is impossible in this
configuration. It can be achieved by adding the wanted displacement in the
equation (4.21). However, since this step is computed after the forces, the
interaction between fluid and solid is not properly achieved. Also since the
physics is altered from the solid point of view, the convergence study did not
succeed. And it was then not kept for any of the following results.

Lastly, a force field was applied to the wall to simulate the contraction and
relaxation of the lymphangion. Compression of lymph worked properly, but
the inflating of the lymphangion gave rise to instabilities. Those instabilities
are known in fluid mechanics as Rayleigh–Taylor instability. So the wall was
behaving as the interface between fluid of different density even if in our case
the two fluids had same density, but with a force applied to the interface. This
method is easier to implement and also provide more interesting results. Here
the wall are assimilated to an interface, and the contraction motion is achieved
in a way that resemble the biological way as if muscle cells were stimulated.

The following part focuses on the mesh study, those are run for all different
geometry cases presented in this section. Doing so allows the mesh to be verified,
as well as the physics. In fact, the pressure and velocities fields are verified
against the finest mesh simulation.

4.4.3 Mesh convergence study

Similarly to the previous section with particles flowing in Poiseuille flow, a mesh
convergence is achieved. The list of simulations runs for this study is shown in
table 4.6. Furthermore, the figure 4.26 shows norm L1, L2 and L∞, long side h
which represents the mesh size in the x–direction. In both cases, the parameters
or the solution are tuned to the finest simulation computed. The first case
appears to be diverging, the norms of the error are above one for both norm
L1, L2. However, the three other cases present a standard slope. Similarly to
previous setup (without movable walls), the pressure has low error for the latest
case. Furthermore, it appears to maintain a constant slope while the velocity
does not. These results were obtained using the latest setup simulations and
with a physical time of 0.8 s.

4.4.4 Details on different geometries to model pumping

The main concept is to observe how the wall compressing or expanding the
fluid could impact its flow. Multiple approaches to this problem have been
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Figure 4.26: Relative error of the velocity field and the pressure for the wall and valve
study. The error for the velocity in the x–direction, y–direction as well as the pressure field
are compared to the finest mesh case. This case is the run number 4 from table 4.6. Top
and bottom slopes are here to represent respectively the error in O(h) and O(h2).

Run Timesteps/s nx,ny Solid kernels δt h
1 9.21× 10−3 31,21 135750 2.082 3×10−5 4.838×10−3

2 9.37× 10−3 73,41 135750 1.044 7×10−5 2.054×10−3

3 1.10× 10−2 145,81 135750 5.219 0×10−6 1.034×10−3

4 1.13× 10−2 289,161 135750 2.603 6×10−6 5.190×10−4

Table 4.6: List of the discretisation and performance parameters for the wall contraction
and valve study. Here time-step per second refers to the amount of time–steps achieved in
one seconds. δt correspond to the time discretisation of the simulation. nx and ny represent
the number of fluid computational cells in each direction x and y. h is the length of a fluid
cell, it is obtained by l

nx
and is mesured in centimeter.

considered, and only one was properly tried. The initial one was to apply
Dirichlet type of boundary condition to enforce wall movement. However, a
more direct approach was retained which consists of applying the force field
directly onto the wall. This force takes the form of an additive constant to
the force field from equation (4.19). From this setup two different actions of a
lymphangion can be defined:

• Push configuration – contraction motion – where the fluid is compressed
in between the walls and is propelled outwards through the left and right
boundaries.

• Pull configuration – relaxation motion – here, the fluid is absorbed by the
lymphangion, so it moves inwards through the left and right boundary of
the simulation box.

For the initial test, it has been decided to have no solid attachment points of
the wall relative to the simulation domain. In terms of boundary conditions a



102CHAPTER 4. FLOW AND PARTICLE TRANSPORT IN A LYMPHANGION

Neumann of zero are applied to all the walls orthogonally. In order to maintain
the mass balance, the right wall is still defined as the inlet or outlet, depending
on the configuration. This is achieved by a multiplicative constant applied to
the boundary condition of the right wall. Overall, all this work on the boundary
condition helps comply with any trends the wall can take. For example in figure
4.27, one can observe that the whole domain is pushing fluid to the left direction.
This shows the requirement for a boundary condition to hold the wall in position
and not be advected by the fluid.

Figure 4.27: Initial geometry with wall pushing fluid outward. The solid structure is
independent of the fluid domain, so it begins to be advected. Physical time is 1.07 s.

Furthermore, it is possible to see the effect of a pull configuration in figure
4.28. Here the fluid enters from the left and right walls of the simulation
box. The valve is still in the initial position state, as the velocity field has a
small magnitude in the center of the simulation. In this type of configuration,
the movable walls are advected up and down meaning the lymphangion radius
increases. However, the movement should be caused by the fluid forcing the
inflation of the container and not the wall itself. This was not tries as it needs
to redesign the whole simulation and treat the boundary conditions properly.

Figure 4.28: Initial geometry with wall pushing fluid inward. The walls are submitted
to forces pulling them apart from one another. Physical time is 0.55 s, since at 1 s this
simulation diverge and the walls are submitted to instabilities.

Lastly, figure 4.29 represents the second geometry. It was only tried in a push
condition because of the reasons mentioned above. Furthermore, the Young’s
modulus of the wall and valve are modified between the two geometries. Here
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to fix the advection of the wall, a small square near the intersection between
the valve and the wall forces the x-velocity to zero. These patches only allow
the walls to move up and down, setting the solid part in the whole simulation
box. As this is a push configuration, fluid should flow out of the simulation to
the right and left sides. Compared to figure 4.27, the results are more physical.
Furthermore, outside the lymphangion on the left boundary, the fluid enters
the simulation domain to press the lymphangion as the walls have additional
force. On the right boundary the magnitude of the fluid is large inside the
lymphangion than outside.

Observing such behaviour allows us to quantify the flow leaving the simula-
tion from the right and the left in order to estimate difference of flow provided
by this geometry.

Figure 4.29: Second geometry with wall pushing fluid outward. In this case, the walls are
attached to the simulation domain by constraining the x–velocity to zero where the wall and
valve attaches.

4.4.5 Flow analysis

Here we are comparing the evolution of the flow in a push configuration. The
flow is estimated at the left and right walls of the simulation between the top
and the bottom walls, as the flow of the lymphangion. It is important to notice
that in this case both before and after the valve are contracting in the same time.
As showed in the lumped model chapter, that the contraction only accounts for
10% of the whole period cycle. Furthermore, two lymphangions contracting at
the same time can occur in a network it has been mentioned that they tend to
synchronize. In such way, if one is contracting the other one happen to be in a
relaxing phase.

Figures 4.30 & 4.31 show the flows and diameter after and before the valve.
Since the simulations take a long time to complete, the time frame studied here
is only the initial phase of the contraction. However, it is possible to observe
how the forward motion propagates. The initial setup should lead to equal
propagation of fluid to the right and the left, but the valve forces the left-hand
flow to reduce in intensity. On the graph 4.30, after approximately 0.15 s, the
right flow keeps on growing while the left flow keeps on decreasing. A sum of
the two represents the overall valve impact. However, these results should be
considered with care as they only represent the initial phase of the contraction.
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Figure 4.30: (i) Second geometry flow at the left wall and the right wall. (ii) Sum of the
previous flow in order to estimate the flow produced.
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The diameter for example on figure 4.31, should keep decreasing, after 0.11 s

for the left wall and 0.18 s the walls expend again. This phenomenon can be
linked to an equilibrium between the diameter and maximise the flow.



Chapter 5

Conclusion

5.1 Summary of the thesis achievements

This thesis provides a study on a multiscale approach of the secondary lym-
phatic network. The first scale considered a chain of lymphangion forming a
vessel using lumped models. It provided insight on the pumping function of a
lymphangion as well as its synchronizing ability in a chain to produce a for-
ward flow in a vessel. This might lead to interesting findings in order to improve
condition of people with light lymphoedema symptoms. As of today there are
little to none clinical treatments, and the most effective one is compression gar-
ment. Lumped model is the standard for computational lymph network but
refining models and computational methods could lead to better understanding
of lymphatic flows, including in its pathological aspects. As there is no re-
fined lymphatic network simulations in the literature, one could find or proper
medication except compression garment. The second scale studies part of a
lymphangion with coupled fluid and solid interaction in two–dimensional simu-
lation. With these FSI simulations, we compared various cases to find whether
presence of valve in the lymphatic flow or the density of particle would have
an impact on the transport capacity. Furthermore, different geometries have
been tried, with or without movable walls, which allowed us to confirm that
secondary lymphangions only actively squeeze fluid and passively inflate.

In order to produce these results, we studied a lumped model approach, and
extended it to a fully integrated approach, using the latest findings. In terms of
modeling, a recent constitutive equation was used, including the complete set of
ODEs for the valve behaviour as well as the contractile effect. Using results of in
vitro experimental studies on rat lymphangion vessels, from Davis et al. [2012]
and Bertram et al. [2016], the model parameters were adjusted. This allowed to
understand the influence of parameters on the different phases of contraction,
relaxation of the lymphangion cycle, as well as the relation between the pressure
and diameter. From this initial study, a simple confluence and bifurcation of
lymphatic channels were investigated to observe how different vessels would
react to different pressure loads. As shown by Sappey [1874], lymphatic vessels
have different lengths and various number of lymphangions per vessel. This
observation led to a study to check if there is an optimum value of lymphangion
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number per vessel. The results were observed in terms of work per lymphangion
and frequency of contraction. Then we studied a larger, complex network by
digitizing the geometry of a real leg skin secondary lymphatic network. This
secondary network posseses more confluences and bifurcations than what has
been studied in the literature. It led to interesting results on the synchronicity
of the lymphangions depending on the pressure difference between the inlet and
outlet of a vessel and thus its position relative to the network. Three categories
were made to classify these different behaviours :

• chaotic: here no synchronisation were found between the lymphangion in
the vessel,

• mixed: Intermittent synchronisation and a wave-like pattern was observed,

• synchronized: the lymphangions were all in-sync and produced wave re-
peatedly.

This classification might give rise to threshold value based on pressure differ-
ences between the inlet and outlet or even external pressure. As a matter
of fact, compression garments are already in use, but knowing the secondary
network structure of a specific person key area might require higher or lower
external pressure to balance lymph flow and thus avoid fibrosis. For the two–
dimensional approach, two geometries are used to model a lymphangion. The
first uses a straight channel with valves and particles, the second one includes
the movable walls. For the first geometry, different observations were made on
the valve movement, the particle distribution and on the influence given by a
pulsed flow. In fact, in fluid mechanics, a Poiseuille flow is considered time–
independent but this is not completely true for lymph flow, and thus would
have an impact on the particle distribution. Results on the valve movement
were mitigated since the valve did not manage to close itself under the reverse
flow phase. However, the particle distribution is modified by the valve presence,
and they tend to gather in the center quicker than without the valve. The dis-
tribution of particles in a straight channel and in a steady flow has been studied
in the case of red blood cells, such as presented in Losserand et al. [2019]. Two
phenomenona enter in competition, one where the particles diffuse from the
initial configuration. This spread happens as the particles are advected, so in
our case in the y-direction. The second is a force that attracts particles toward
the center of the channel often mentioned as “lift”. These forces are observed
in the simulations performed here. Also, the presence of the valve modifies the
equilibrium between the two phenomena. Regarding the valve simulations, the
stiffness and the geometry were not properly designed, as they did not close
properly. The movable wall simulation allowed us to observe the flow difference
upstream and downstream of the valve. Two different configurations emerged
from this geometry, one where the fluid is pushed away from the valve, and
another one where the fluid is pulled toward the valve. From the first configu-
ration we were able to observe the flow before and after the valve to find that
the valve shape allowed the fluid to move in the forward direction. The second
configuration did not lead to interesting results.
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5.2 Discussion on the lumped model chapter

When we compare diverse experimental results to the results from the simula-
tion, the number of parameters are excessively large and concurrent on same
physical phenomena. One good example is the ratio of time spent between
the contraction and relaxation time, it has three parameters of adjustment.
The same occurs for the amplitude of contraction, with five other parameters.
Even if this problem allows multiple solutions, a simplification of the constitu-
tive equation is welcome. Also, the ODE used for the contraction/relaxation
system could benefit from a simplification of the constants used, even if the
frequency response might be difficult to then integrate to the model. The use
of artificial intelligence could be interesting, in order to fit the large number of
parameters. The simple network section with unique bifurcation or confluence
has delivered fascinating results, mainly on the frequency of contraction as well
as on the work per lymphangion. In the case of a confluence, the afferent vessel
is more active than the efferent ones and has on average the same contraction
frequency. For a bifurcation, we demonstrate quite the opposite with the ac-
tivity being similar between afferent and efferent vessels, but the contraction
being on average larger for afferent vessels. On the network simulations, we
used two different drawings of the lymphatic leg skin network. In terms of the
overall shape, the first network proposition has reasonable amount of inlet and
outlet properly spread in the leg tissue. However, for the second network, the
number of inlets situated on the top part is quite significant and led to vessels
with little bifurcation and confluences, and little interaction between each other.
Furthermore, the simulations used eighty seconds, and it would be entertaining
to allow them run for a longer period of time. This would allow the study of
average inlet and outlet flow as well as compare different sides of the network
to determine whether major routes are preferred or if the load is distributed
across all vessels.

5.3 Discussion on 2D simulations chapter

To begin with, we described the immersed structural potential method employed
to solve the numerical geometries used in this section. This method worked,
but some improvement could be made on the efficiency of the solid part. As a
matter of fact, the fluid section are vectorised and in addition, it used an FFT
to solve the Poisson equation making the fluid solver fast. However, the solid
section was not vectorised, and MATLAB spent time doing the interpolation
and solving the solid. After verifying the validity against analytical solutions,
different geometries were used.

Initially, pulsed flow in a straight channel is used to model the dynamic of a
lymphangion. Multiple topics were studied such as the spread of particles with
or without valve, and also depending on the density. Also, the movement of the
valve was explored, but no conclusion could be achieved from these simulations.
Variation of the Young’s modulus has been considered, as well as modifying the
thickness gradually. These modifications were tried in order to stiffen the base
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of the valve, in order to imitate the three–dimensional valve behaviours.
At that point in time, another geometry was tried which took the wall mo-

tion into account however the pull configuration did not provide any results.
As a matter of fact, the method of exerting forces to the wall is not how lym-
phangion works, such method could not work, and only led to instability in
the simulation. A lymphangion is filled because the fluid is squeezed in from
the previous lymphangion and not aspirated in by the lymphangion itself. So
in order to get the pull configuration to work one needs to impose a Dirichlet
velocity at the lymphangion inlet. Then, fill it until the walls are extended
enough (estimated by the constitutive equation from the lumped model). Only
under those circumstances it would be possible to shift paradigm and enter a
push configuration where the wall actually contracts and a force can be applied
to the wall.

5.4 Future work

With regard to the lumped model chapter, there are two main axes of research
that could bring interesting results:

• Improve the constitutive model and include the chemical components.

• Tune lymphangions parameters for the network simulations.

This constitutive model needs to be worked backward. In other words, it needs
to be built from experiments results instead of analytically. However, such
procedure requires lots of rigorous experimental work as most of lymphangions
come from rodent and we are trying to dimension the simulations to a human
lymphatic network. For example in Windberger et al. [2003], sample of blood
are used from different species of mammals and human seems to stand out. Even
if, using rodent data can help to simulate a whole human lymphatic network
one will require more data from human samples. For the network simulations,
it would be interesting to play with the external pressure to observe the effect
of compression garment. Also observe whether an increased viscosity would
reduce or increase the pumping efficiency of a simple network. Furthermore,
from Sappey drawing in figure 1.2, focus on bifurcations and confluences and
compare to the results obtained in our simulations of three-vessel networks.

The direct simulation of fluid-structure interactions in a lymphangion that
was performed using 2D numerical modeling in this work could benefit from
improvement in several directions:

• Update toward three–dimension simulations.

• Include chemical response in the wall from the concentration model.

• Improve the lymphocyte model.

Going toward a three–dimension code would help to model the valve mechanism
properly. The chemical response has already been included in two dimension
by Li et al. [2019] and shown decent results. The lymphocyte model does
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not seem to have been included in the numerical simulation of lymphangion.
Furthermore, in term of geometry maybe use a three lymphangions vessel to
not be disturbed by the boundary conditions effect.
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Appendix A

Design of microfluidic
experiments

Introduction This document aims at presenting microfluidic experiences. They
can be used to understand flow at the scale of a collecting lymphangion. There
are two different dynamic behaviours which are interesting from a modeling
point of view. The first one is the valve, the second one is the vascular wall
hereafter called contractile body. They will be both presented here, with dimen-
sions and a rough estimation of the movement. Here, the microfluidic channel
are made of PDMS gel on a microscope glass slide. The study of lymphangion
using microfluidic channel is recent, Selahi et al. [2019]. The approch taken in
this cited abstract is more biological than the work presented here. However,
the use of PDMS1–Glass microfluidic devices for micro–fluidic experiments is
not recent. It is convinient to model and form into a micro channel structure.
At the same time, it is biologically compatible and widely distributed.

Valve

10.04 mm

⌀2.00 mm

3.00 mm

0
.3

0
 m

m

0.30 mm

0
.1

5
 m

m

18.97 µm

Figure A.1: Dimension of a microfluidic collecting lymphangion like valve.

1Polydimethylsiloxane is a clear, silicon–based organic polymer
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Using the static beam theory, one obtains the maximum deformation of
a beam fixed at both ends with a uniform distribution using the following
relation :

ymax =
ωL4

384EI
. (A.1)

Where constant values are given in the table A.1.

uniform load ω 10Pa to 50Pa
length L 0.3mm

modulus of elasticity E 1.5MPa
area moment of inertia I 9.5× 10−8 mm3

Table A.1: Physical constants for the leaflet of the experimental set-up

The pressure difference between lymphangions, across a valve is in the range
of 1mm of water up to 5mm, which is approximately 10Pa to 50Pa.

The formula to get the area moment of inertia is:

I =
bh

12
(b2 + h2) (A.2)

Using the geometry we have b = 30 µm and h ≈ 0.335mm, thus I ≈ 9.5 ×
10−8mm3. So we get the maximum deformation on a leaflet of the valve de-
pending on the load of:

ymax ≈ 1.5 µm up to 7.4 µm. (A.3)

These results look quite small in regard to the size of the channel. For more
interesting experience, it would be better to have a range ten times larger. This
can be obtained by using a smaller modulus of 1.5×102 kPa or by thinning the
width of the valve.

Contractile body

Here, the same approach for the valve and parameters is used but with a dif-
ferent I and ω. In fact, the pressure difference for the contractile walls should
be about 1 bar, thus one obtains:

uniform load ω 1× 105 Pa
area moment of inertia I 8.2× 10−5 mm3

Table A.2: Physical constants for the contractile wall of the experimental set-up

According to figure A.2, we set the following parameters, b = 2.7mm and
h = 50 µm. So, the maximum displacement of the wall is:

ymax = 17.1 µm (A.4)

This result gives a good approximation, but for experimental purposes, it would
be better to have the estimation with an order of magnitude larger. A value
closer to the half width of the channel would be better, which is around 0.15mm.
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Figure A.2: Dimension of a microfluidic collecting lymphangion like contractile body.

Conclusion The approximation given by the static beam theory gives coherent
values. However, the maximum displacement is a bit too small compared to
what one should be seeking for the set up presented here. One way to get closer
would be to reduce the physical property of PDMS to get E 10 times smaller,
or get thinner walls or valves to allow larger deformation.
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Appendix B

Analytical solutions for a
simplified lymphangion in 2D

Analytical solutions used to fit the solution in the mesh convergence study are
defined here. A newtonian fluid is considered for all the following calculations.
Here, u = uxex and defines the velocity vector field. p represents the pressure.
ρ and µ are respectively the fluid density and the fluid viscosity. The bold font
is used to represent any vector quantity.

Dρ

Dt
=
∂ρ

∂t
+∇ · (ρu) = 0,

Dρu

Dt
=
∂ρu

∂t
+∇ · (ρu · u) = ∇ · σ = −∇p+∇ · τ.

(B.1)

The first equation represents the mass conservation of the fluid, and the sec-
ond one the conservation of momentum. Often, a third equation is added for
tracking a scalar field such as a concentration marker, or energy if temperature
needs to be evaluated, which is the case of compressible fluid.

Velocity – Poiseuille flow

First, the Navier-Stokes equations (B.1) are written as a start ground for the
derivation of the Poiseuille profile. The following hypothesis are considered:

• incompressible,

• newtonien fluid,

L

hu

y

x

Figure B.1: Schematic of a lymphangion’s without taking the valve into account. Here, L
represents the length of a lympahngion, u the velocity field of the lymph in a Poiseuille flow,
h the diameter of the lymphangion.
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• stationnary flow,

• unidirectional flow.
The first one allows to consider ρ as a constant thus takes it out of the

derivative. The second hypothesis simplifies the diffusion term of the Navier-
stokes momentum equation into

τ = µ(∇u+∇uT). (B.2)

which can later be simplified into a laplacian operator. The third hypothesis
removes any time–dependent derivative as the flow is considered established
and steady thus time derivative is zero. The last hypothesis allows us to write
the velocity only in one direction. Considering the problem geometry we will
use it such as:

u(x) = uxex. (B.3)
Also since the model for the lymphangion is in two–dimension, equations will
also be developped in a two–dimension cartesian space. So by applying all the
hypothesis, the mass conservation can be written:

ρ
∂(ρux)

∂x
= 0. (B.4)

Thus, one can deduce that the velocity only depends on the y–variable:

ux(x, y) = ux(y) + C. (B.5)

By using the conservation of momentum equation (B.1) in the x–direction, and
by introducing the result of equation (B.5), it is possible to write the following
equation:

0 = −∂p
∂x

+ µ

(
∂2ux
∂y2

)
. (B.6)

By doing the same for the y–direction:

0 = −dp
dy

(B.7)

So the pressure only depends on x and not on y. One can then consider the
hypothesis on the pressure. If the pressure is constant or does not depend on
x, then it is possible to integrate equation (B.6) twice on the y–direction:

ux(y) = − 1

µ

dp

dx

y2

2
+ C1y + C2. (B.8)

Here C1 and C2 are integration constants. They will be set using boundary
conditions of the problem, such as detailled on figure B.1. Since the walls are
considered to be no slip, one can write:

ux(0) = 0, ux(h) = 0. (B.9)

Then, one can set the values for the integration constant as:

C1 =
1

µ

dp

dx

h

2
;C2 = 0. (B.10)

So, the analytical solution for the velocity can then be written as:

ux(y) =
1

2µ

dp

dx
y(h− y). (B.11)
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Pressure – Pressure drop in low Reynolds

Here, the Reynolds number is low so the slope of the pressure in this case
can be approximated to 16

Re . The objective of this part is to demonstrate the
Darcy charge factor for this set up: a laminar flow in a two–dimension tube.
As shown in figure B.1, h is the height between the two walls and L is the
considered length of the flow.

As we proved in the previous part, the pressure only depends on the x–direction
variable such that:

dp

dx
=

2µux(y)

y(h− y)
. (B.12)

Then, the pressure difference between the inlet and the outlet can be obtained
by integrating the previous equation:

∆p =
2µux(y)L

y(h− y)
. (B.13)

Furthermore, the charge factor can be written using the pressure difference and
other parameters written by Darcy and improved by Weisbach such that:

fD =
∆p2Dh

ρLU2
. (B.14)

With Dh the hydraulic diameter, L the length of the flow in the x–axis and
U the fluid velocity. By replacing (B.13) in equation (B.14), one obtains the
following formula:

fD =
4µux(y)LDh

y(h− y)ρLU2
. (B.15)

In our case, the hydraulic diameter is four times the cross-sectional area of
the flow divided by the wetted perimeter of the cross-section, in mathematical

terms: Dh = 4
h2

4h
. Then by replacing y by h/2 (and ux(h/2) = U), one can

write:
fD =

4µULh

h

2
(h− h

2
)ρLU2

. (B.16)

Then by simplifying the previous equation, we get:

fD =
16µ

hρU
. (B.17)

Then, this leads to a relation between the charge coefficient in function of the
Reynolds number Re = ρUh

µ
. So, one should find the following equation:

fD =
16

Re
. (B.18)

Pressure – Pressure evolution squeezed between walls

Figure B.2 describes a basic lymphangion with relevant physical quantities.
This figure sets up the physical problem to estimate the pressure profile of a
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Figure B.2: Schematic of a lymphangion’s chain with a symmetry showing the upper half
of the chain. Here, L represents the length of a lympahangion, u the velocity of contraction
of the lymphangion upper wall, r the radius of the lymphangion and Va the mean velocity
of the lymph in the lymphangion.

fluid being compressed by rigid walls. Here, we consider the fluid to be slow
enough that inertia can be neglected, allowing us to use the Stokes equation.
Furthermore, no back flow is possible and the valve on the left is considered
shut while the one on the right is open and free floating.

Writing the flow conservation of the lymphangion, one obtains:

Va = u
r

L
. (B.19)

For this equation (B.19), L is the length of the lymphangion and r is the radius.
In term of velocity, Va is the average velocity in the y–direction, u the velocity of
contraction of the lymphangion upper wall. So, if one uses the Stokes equations
for an incompressible newtonian fluid, with u = [u v].

η∆u−∇p = 0,

∇ · u = 0.
(B.20)

Using a dimensional analysis, and the equation (B.20), the pressure gradient
in the y–direction is given by:

∂p

∂y
= η

∂2v

∂x2
(B.21)

By integrating the velocity over the x–axis, considering with the y–velocity
being 0 at the wall, so when x = r and x = −r, one can obtain:

Va = −r
2

η

∂p

∂y
(B.22)

Furthermore, using the mass conservation from equation (B.20) one can
write:

∂u

∂x
+
∂v

∂y
= 0 (B.23)

Then, by integrating over the x-axis between r and −r, one should obtain:

− ∂

∂y
(rVa) + u = 0 (B.24)

By replacing the Va from the equation (B.22) into equation (B.24) one gets
the following relation:

r3

η

∂2p

∂y2
+ u = 0 (B.25)
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So from this relation, it is possible to deduce the parabolic profile of the
pressure along the y–axis of a lymphangion in the case of a movable “rigid”
walls.
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Appendix C

Table of vessels mapping for
full network zero dimension
simulations

Introduction There are two drawings for secondary leg network provided by
Sappey [1874]. Here, is the detail of all the vessels connection and number used
in this thesis simulations. For simplicity purposes, foot is not taken into account
in both drawing, so the network in this thesis start at the ankle and stops before
the groin lymph nodes. Lymph vessels coming from the foot are referred to as
lower inlets. Also conglomeration of capillaries lead to secondary vessels in the
network, these vessels are called capillaries inlets Then, as the drawing only
show the inner or outer face of different legs, some vessels can cross these two
faces and they will be referred to as lateral inlets. With regard to outlets,
they are only located before the groin area. In order to limit the amount of
information process by the input file, only the inlet, outlet, bifurcation and
confluence are defined, they will be referred to as connections. To sum up there
are five different types of connections :

• Inlets are the entry points to the secondary lymphatic network and 1 is
the connection number.

– Lower inlets from the secondary lymph vessels of the foot,
– Capillary inlets from accumulation of capillaries,
– Lateral inlets from the vessels coming from the other side of the leg.

• Bifurcations correspond a state where a vessel split into two vessels, its
connection number is 2.

• Confluences represent a merging of two vessels into one, its connection
number is 3.

• Links refer to a points linking a vessel to another, its connection number
is 4, but not used here.

• Outputs correspond to the exit points of the network, 5 is the connection
number.
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Their position was extracted from Sappey [1874] drawing by a software devel-
oped by Mitchell et al. [2020]. A vessel number is then defined to identify all
vessels but they are not used in the data set. This use the fact that intersec-
tion of the secondary network only have a maximum of three vessels. A vessel
number can be characterised by the link between two connections. Table C.1
shows the data set for the first leg lymphatic network represented in Sappey
[1874]. And, table C.2 shows the data set for the third leg lymphatic network
represented in Sappey [1874].

Tables
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Connections
type

x y Vessel
numbers

Lower inlets
1 4.95868 2.125 1
1 4.60055 3.08929 2
1 4.07713 4.05357 3
1 3.96694 4.48214 4
1 4.49036 3.59821 5
1 3.52617 5.63393 6
1 2.03857 9.00893 7
1 2.2865 8.47321 8
1 2.45179 7.99107 9
1 2.58953 7.64286 10
1 2.78237 7.1875 11

Capillaries
inlets

1 3.74656 6.51786 12
1 7.02479 6.27679 17
1 14.1047 7.45536 25
1 15.7851 10.2143 26
1 20 13.5893 31
1 20.2204 11.7946 33
1 20.2755 9.00893 34
1 22.4242 6.625 36
1 22.3123 15.146 41
1 26.1157 8.09821 49
1 26.7218 10.2679 44
1 27.3003 15.9464 47
1 28.4298 13.9107 58
1 29.6694 7.375 52
1 32.314 9.08929 65
1 31.9835 17.7411 56
1 34.2149 12.8929 63
1 35.9504 17.3393 76
1 38.1267 19.3482 83
1 41.8457 15.1161 87
1 42.259 9.65179 82
1 44.3526 18.0893 95
1 45.5372 15.25 88
1 50.1377 22.1875 105
1 50.1377 19.8304 103
1 52.314 16.5625 110
1 53.9945 5.63393 104
1 54.876 20.1786 109
1 57.7686 20.3929 125
1 62.011 15.7589 129
1 62.259 4.99107 120
1 66.1433 18.8125 123
1 66.9421 3.75893 118
1 69.3113 14.2054 134
1 71.9284 16.8304 147
1 70.4132 2.3125 138
1 45.3994 20.0179 149
1 76.0055 21.8661 154
1 83.2231 20.5 159
1 89.4766 20.0179 161

Lateral inlets
1 13.719 13.0804 28
1 19.5041 14.8214 32
1 24.2149 16.375 40
1 25.6749 16.7232 55
1 32.4242 18.7321 61
1 35.4821 19.8036 80
1 38.0441 20.9286 94
1 44.876 21.8929 96
1 52.3691 22.6964 113
1 56.4187 22.9107 151
1 65.5923 23.2857 152
1 76.5565 23.2321 156
1 84.3802 22.7232 158
1 49.0909 6.51786 101
1 56.4187 4.77679 111
1 61.0468 3.91964 117
1 66.6391 2.39286 137

Bifurcations
2 6.25344 3.41071 2 14 15
2 8.09917 10.2946 7 18 19
2 10.1377 3.78571 16 20 21
2 21.6804 2.875 1 38 39
2 28.7328 4.64286 37 53 54
2 34.9862 7.85714 64 67 69
2 38.8154 14.9018 62 71 78
2 39.7796 12.9464 73 75 79
2 46.584 11.2589 66 91 92
2 53.0028 17.4732 89 98 99
2 52.6722 12.5714 91 100 102
2 60.6612 13.6964 8 122 131
2 68.0441 19.6161 127 128 133

Connections
type

x y Vessel
numbers

2 64.8485 7.34821 60 139 140
2 68.843 10.9107 93 144 145

Confluences
3 4.95868 7.02679 11 12 13
3 7.63085 3.91964 3 15 16
3 11.1019 3.67857 5 20 22
3 11.3499 4.58929 4 21 23
3 10.0826 5.33929 6 17 24
3 16.0055 7.75 10 25 27
3 16.5289 11.0714 18 26 29
3 17.0523 12.8393 19 28 30
3 21.9559 7.32143 13 27 35
3 22.4242 4.05357 14 22 37
3 23.9669 13.8571 31 32 42
3 23.8843 10.7768 29 33 43
3 23.0303 8.52679 9 34 45
3 24.2975 7.29464 35 36 46
3 26.281 15.1429 40 41 48
3 28.5399 7.80357 46 49 51
3 29.0358 10.8571 43 44 50
3 31.4325 15.0089 47 48 57
3 32.011 13.1607 42 58 59
3 32.5344 7.26786 24 52 64
3 33.1405 4.83036 38 54 60
3 34.0771 14.9554 55 57 62
3 34.9862 9.75893 45 65 66
3 37.7686 9.19643 51 67 68
3 37.2176 7.08036 23 53 70
3 34.3802 16.6964 56 61 72
3 36.8044 16.1875 72 76 77
3 38.1267 12.625 30 63 73
3 40.1377 14.5268 59 71 74
3 39.0358 17.0446 77 80 81
3 40.2755 18.6518 81 83 84
3 41.4876 14.125 74 75 85
3 45.2893 10.0268 68 82 93
3 43.1956 16.3482 78 84 86
3 44.3526 14.0446 85 87 89
3 47.686 16.1875 86 88 90
3 47.9339 18.8393 94 95 97
3 52.1488 21.0893 96 105 112
3 54.1322 14.9018 50 90 115
3 52.9477 18.7054 97 103 106
3 54.8209 18.5179 99 106 107
3 55.6198 16.4018 79 110 116
3 56.3361 6.22321 101 104 108
3 56.7769 19.1607 107 109 114
3 56.7769 22.3214 112 113 124
3 62.0661 21.5179 124 125 126
3 63.2231 6.25 108 111 119
3 64.0771 12.3839 100 102 130
3 64.9587 20.1786 114 126 127
3 64.9862 15.2232 115 129 132
3 68.4848 6.70536 121 139 141
3 65.4821 6.25 120 119 121
3 68.9256 14.9286 131 132 135
3 70.2479 18.7589 123 128 136
3 69.4215 5.74107 117 118 142
3 71.8733 21.1696 152 151 153
3 71.9559 14.6875 134 135 146
3 76.4187 16.6964 147 98 148
3 78.0716 17.7946 133 149 150
3 78.7328 19.2411 153 154 155
3 84.2149 17.7143 155 156 157
3 86.7493 19.4554 159 158 160
3 89.8072 18.0357 160 161 162
3 71.5152 4.13393 137 138 143

Outlet
5 73.6915 4.91071 143
5 73.168 6.08929 142
5 73.0579 6.91964 141
5 72.9201 7.75 140
5 72.8099 8.52679 70
5 72.8926 9.51786 39
5 73.0028 10.2143 69
5 73.168 10.6964 144
5 73.4435 11.2321 145
5 73.3884 11.6607 92
5 73.719 12.2768 130
5 74.3802 13.3214 122
5 75.3719 14.4464 146
5 76.5014 15.25 116
5 79.1185 16 148
5 80.2479 16.2143 136
5 82.7548 16.3214 150
5 86.5014 16.6964 157
5 90.9917 17.1786 162

Table C.1: List of all nodes used to build the network from the first drawing representing
the secondary leg lymphatic network.
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Connections
type

x y Vessel
numbers

Lower inlets
1 3.37483 10.1535 1
1 3.34716 11.4372 2
1 3.37483 12.5814 3

Capillaries
inlets

1 8.04979 12.8047 4
1 17.0954 7.61395 15
1 21.7427 8.00465 25
1 29.101 11.0744 40
1 38.2573 6.86047 45
1 37.87 4.6 47
1 43.2365 8.6186 57
1 51.2863 9.23256 67
1 53.278 2.31163 66
1 54.7441 4.6 71
1 59.4467 10.4047 78
1 65.2282 11.3256 83
1 65.3112 5.68837 82
1 65.9751 3.28837 81
1 67.3859 11.3814 85
1 67.5242 7.55814 90
1 70.7607 5.10233 91
1 74.8271 9.45581 94
1 75.3804 18.3581 100
1 76.6528 13.8651 116
1 78.7275 19.5581 103
1 83.0429 17.0465 105
1 88.2988 15.8465 110

Lateral inlets
1 34.1355 19.1674 48
1 36.8741 5.68837 54
1 46.8603 14.6465 61
1 51.0097 15.0372 73
1 54.1632 15.9302 79
1 58.2296 17.0465 84
1 62.0747 17.8558 96
1 62.8769 18.7767 97
1 71.148 20.1163 98
1 75.5187 21.0651 101
1 78.8935 21.5674 104
1 82.2683 22.1814 106
1 85.6155 22.6279 109
1 88.1051 22.7953 112

Bifurcations
2 8.63071 13.9209 3 5 6
2 11.397 14.8977 6 9 8
2 13.278 14.2 9 11 12
2 15.5187 16.2651 8 13 14
2 17.7317 17.7442 14 16 17
2 21.3555 11.1581 11 19 20
2 21.5491 16.0977 13 23 27
2 22.7386 15.4837 23 24 26
2 23.6791 11.7442 12 21 22
2 26.5837 16.4326 27 31 35
2 26.9433 15.4 31 32 33
2 29.3223 16.6837 35 37 38
2 34.5505 7.7814 37 43 44
2 39.0871 13.893 48 49 53
2 40.8022 15.2326 54 55 56
2 44.343 5.26977 50 59 63
2 54.1079 1.16744 64 69 70
2 45.8091 3.84651 59 60 64
2 42.047 1.89302 51 115 77

Connections
type

x y Vessel
numbers

Confluences
3 10.6224 11.4372 2 4 7
3 13.9142 10.1256 1 7 10
3 25.4772 6.55349 5 25 28
3 20.2213 7.55814 10 15 18
3 24.8409 10.1814 20 21 29
3 25.3389 11.9116 22 24 30
3 26.7773 13.8651 26 32 34
3 27.1093 11.3535 30 34 36
3 29.8479 5.43721 19 29 113
3 31.1203 17.1302 16 38 39
3 32.6141 7.22326 33 40 41
3 37.455 10.3767 17 39 46
3 32.7801 5.32558 36 41 42
3 39.1148 3.03721 43 47 51
3 40.5256 8.33953 46 49 50
3 41.1065 4.40465 44 45 52
3 44.8133 10.0698 53 55 58
3 46.1411 2.00465 52 60 65
3 46.722 8.06047 57 58 62
3 54.1632 9.95814 61 67 72
3 53.5546 3.31628 63 56 68
3 56.0996 1.25116 70 66 74
3 59.1425 2.6186 68 71 75
3 60.1936 8.45116 72 73 76
3 61.8811 11.3814 78 79 80
3 68.3817 8.89767 80 83 87
3 68.3817 4.15349 62 82 88
3 70.2628 2.92558 75 81 89
3 69.6542 11.7442 84 85 86
3 70.5671 6.2186 76 90 92
3 72.0885 14.1442 96 97 99
3 75.4357 5.77209 91 92 93
3 79.0871 9.4 86 94 95
3 79.5574 16.0977 100 101 102
3 80.9405 10.9907 99 116 117
3 81.7427 17.493 103 104 107
3 85.4219 13.9488 105 107 108
3 89.2946 13.6698 106 110 111
3 88.5201 19.4744 109 112 114

Outlet
5 77.2337 1.27907 65
5 77.1784 2.11628 69
5 77.1231 2.84186 74
5 77.2061 3.59535 89
5 77.3444 4.48837 88
5 77.7593 5.66047 93
5 78.4786 7.11163 87
5 80.3596 8.95349 95
5 83.1535 10.0698 117
5 85.2282 10.9349 98
5 87.9391 11.5488 102
5 89.8202 12.107 108
5 91.2586 12.4977 111
5 94.6058 13.4186 114
5 24.7303 5.10233 18
5 27.9115 4.51628 28
5 32.3375 3.56744 113
5 34.6611 3.0093 42
5 42.296 0.69302 77
5 44.9793 0.58139 115

Table C.2: List of all nodes used to build the network from the third drawing representing
the secondary leg lymphatic network.
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