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Synopsis

Low-rank tensor models have been applied in accelerating dynamic magnetic resonance imaging (dMRI). Recently, a new tensor nuclear norm based on t-SVD has been

proposed and applied to tensor completion. Inspired by the different properties of the tensor nuclear norm (TNN) and the Casorati matrix nuclear norm (MNN), we introduce

a novel dMRI reconstruction method combining TNN and Casorati MNN, which we term as TMNN. Moreover, we convert the the TMNN dMRI reconstruction problem into a

simple tensor completion problem, which can be efficiently solved by the alternating direction method of multipliers (ADMM).

Introduction

Dynamic magnetic resonance imaging (dMRI) is one of the most important non-invasive imaging modalities. However, it is usually challenging to obtain dynamic MR images

with high spatiotemporal resolution within clinically acceptable scan time. Low-rank tensor priors  have been successfully applied to reconstruct dynamic MR images from

highly undersampled k-space data to accelerate dMRI. Recently, a new easy-computed tensor decomposition called tensor singular value decomposition  (t-SVD) and a new

tensor nuclear norm  (TNN) have been proposed. Some works have adopted this framework to reconstruct dMRI. Banco et al.  have applied t-SVD in dMRI reconstruction on

a specific sampling mask. TNN and total variation (TV) regularizations  are combined to improve the reconstruction of dMRI. Moreover, we notice that the TNN and Casorati

matrix nuclear norm (MNN) has distinct properties, and thereby introduce a novel dMRI reconstruction method combining TNN and Casorati MNN, named TMNN.

Methods

We denote the distortion-free dynamic MR tensor image as , where ,  denote the spatial coordinates, and  is the temporal coordinate. The data

acquisition of dMRI can be modeled as

where  is the observed undersampled -space data,  is the Fourier sampling operator, and  is the Gaussian distributed white noise. Inspired

by the different properties of the TNN and the Casorati MNN, we propose a novel algorithm combining TNN and Casorati MNN, which we term as TMNN. The optimization

problem can be formulated as follows

where  is the tensor nuclear norm of ,  unfolds the tensor into a Casorati matrix,  denotes the nuclear norm of the Casorati matrix

, and ,  are the regularization parameters.

We notice that the dMRI image  and its k-space  have equal TNN and MNN. Thus, in the case of Cartesian sampling, where ,  is the under-sampling mask and 

transforms the dMRI image into k-space, we can rewrite the reconstruction model above as a simple tensor completion optimization problem

which can be solved in alternating direction method of multipliers (ADMM).

Results and discussion

We evaluate the performance of the proposed TMNN method based on two data, i.e., a cardiac cine MR image with the size of  and a myocardial perfusion MR

image with the size of . We assume that the measurements are acquired using the pseudo radial Cartesian sampling and variable density random sampling

patterns under different undersampling ratios. We also add complex Gaussian white noise with the signal-to-noise ratio (SNR) of 20dB to the undersampled k-space data. The

balancing parameters are experimentally set to be  and  for the noiseless case, and  for the noisy case.

In Fig.1, we compare the recovery results of the TMNN with MNN on a cine cardiac MR image from 30 radial lines (undersampling ratio 0.1) in the noiseless case. We observe

that the proposed TMNN model outperforms the MNN method in providing more accurate reconstruction. Fig.2 shows the reconstruction of the cine cardiac MR image from

the noisy undersampled measurements using 30 radial lines. In Fig.3, we plot the noisy reconstruction results of the perfusion MR image from the variable density random

sampling trajectory with the undersampling ratio of 0.3. It is observed that the TMNN method generates less error compared with the MNN approach. The SNRs of the

reconstructed dynamic image using TNN, MNN, and the proposed TMNN at different undersampling conditions are shown in Table.1. We observe that except for one case, the

proposed TMNN consistently provides the best reconstruction results and improves the SNR by up to 2dB over the MNN method. In addition, it is shown that the

improvement of the proposed TMNN over MNN is more significant in the noisy setting.

Conclusion

We proposed a novel combined regularization algorithm for dMRI reconstruction. By combining the tensor nuclear norm and the Casorati matrix nuclear norm, both the low-

rank properties of the tensor and the Casorati matrix can be captured to exploit the spatiotemporal structures, and thus further improve the reconstruction performance.

Moreover, we we convert the dynamic MRI reconstruction into a simple tensor completion problem, which can simplify the solution of the reconstruction problem. In order to

efficiently solve the proposed optimization problem, we adopt the ADMM algorithm. Experimental results demonstrate the improved performance of the proposed TMNN

model over the low-rank matrix recovery method.
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Figures

Fig.1: Recovery of the cine MRI data from the noiseless radial undersampled measurements using TMNN. The error images are shown in the second row.

Fig.2: Recovery of the cine MRI data from the noisy radial undersampled measurements using MNN and TMNN. The error images are shown in the second row.

Fig.3: Recovery of the myocardial perfusion MRI data from the noisy variable density random undersampled measurements using MNN and TMNN. The error images are

shown in the second row.

Table.1: SNR comparisons of TNN, MNN, and the proposed TMNN on two datasets using four sampling schemes.
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