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Abstract—This paper investigates a generalized dy-
namic predictive control (GDPC) strategy with a novel au-
tonomous tuning mechanism of the horizon for a class
of nonlinear systems subject to mismatched disturbances.
As a new incremental function for the predictive control
method, the horizon can be determined autonomously with
respect to the system working conditions, instead of select-
ing a fixed value via experience before, which is able to ef-
fectively improve the control performance optimization abil-
ity to a certain extent considering different system pertur-
bation levels. To this aim, firstly, a non-recursive composite
control framework is constructed based on a series of
disturbance observations via higher-order sliding modes.
Secondly, by designing a simple one-step scaling gain
update mechanism into the receding horizon optimization,
the horizon can be therefore adaptively tuned according to
its real-time practical operating conditions. A three-order
numerical simulation and a typical engineering application
of permanent magnet synchronous motor (PMSM) drive
system are carried out to demonstrate the effectiveness
and conciseness of the proposed GDPC method.

Index Terms—continuous-time predictive control, self-
tuning receding horizon, mismatched disturbance, robust-
ness and adaptiveness balance, PMSM

I. INTRODUCTION

MODEL predictive control is regarded as a promising
control strategy that has attracted a great deal of atten-

tion from industrial practitioners, owing to its implementation
simplicity and high-performance trajectory regulation [1]–[3].
Notably, with the development of semiconductor science and
microprocessors, the constrained application range of MPC has
been extended from slow time-varying systems to fast dynamic
systems, e.g., power converters [4], [5], multiple robots control
[6], PMSM [7]–[9], etc.
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Facing such a large application prospect, the requirements
for higher precision and faster response are continuously
increasing in industrial systems recently, which brings more
challenges to the design of MPC approaches. An inevitable
problem is that the existing disturbances certainly result in un-
desirable impacts on the closed-loop control performance for
the baseline MPC framework. Moreover, when encountering
time-varying mismatched disturbance, the response precision
and dynamic performance are more difficult to guarantee [10].

Actually, disturbance rejection is one of the most important
issues in control systems. In the early years, the conventional
robust control was developed to suppress the disturbance
negative impacts, see e.g., [7], [11], etc. Nonetheless, the fact
deserved to be emphasized that this manner tends to render
the asymptotic result and restrain disturbance asymptotically
via feedback regulation in a relatively slow way, rather than
handle the disturbances directly by controller design [12]. For
pursuing higher precision, the disturbance/uncertainty estima-
tion and attenuation (DUEA) scheme receives more and more
attention from practitioners, see e.g., [10], [13], [14], etc. This
approach category is greatly developed by industry scholars
and applied properly in many control application fields, such
as various vehicles control [15], [16], aircraft control [17],
etc. By integrating with feedback compensation technology,
the built composite approaches have been proven promising to
attenuate the undesirable effect brought by perturbation [18],
[19].

Since the active intervention strategy is the potential to
cope with the disturbance and uncertainty issues in indus-
trial application scenarios, a natural thought is that one can
integrate the DUEA design into the baseline MPC scheme
aiming to improve the control precision. Indeed, there are
many existing related theoretical and practical works have
been investigated. For example, the trajectory of the nonlinear
tracking system subject to matched/mismatched disturbances
and input constraints can be regulated by a reduced order
disturbance-observer-based fuzzy MPC in [20]. The authors in
[21] investigate an observer-based robust tracking predictive
controller for discrete-time nonlinear affine systems to cope
with changing setpoints and non-additive non-slowly varying
unknown disturbance with bounded variations. A composite
controller constituted by an explicit nonlinear MPC and a
nonlinear disturbance observer (NDO) is proposed to tackle
the autonomous flight of small-scale helicopters, which can be
referred to [22]. One can also refer to [23], [24] and references
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therein, etc.
Whereas, after partially revisiting the above, it is notable

that the MPC integrated with disturbance rejection results are
mostly based on the fixed horizon design. With the presence
of time-varying mismatched disturbance, the fixed horizon,
determined upon human experience, can ensure robustness
to a certain extent. However considering the case when mis-
matched disturbance varies within a large range, the selected
horizon may be too conservative for wide working conditions,
and therefore, one direct problem is that the transient-time
control performance will be possibly deteriorated, i.e., the
control optimization ability is limited in such cases and clearly
a tunable predictive period matters under complicated and
frequent changing working conditions.

For ease of understanding, the electric vehicle control sce-
narios are taken as an example. On the one hand, on relatively
smooth ground, the output speed should have a fast response
ability while ensuring a comfortable ride experience for pas-
sengers, which corresponds to the internal PMSM controller
regulation performance. With the conventional generalized
predictive control (GPC) approaches [25], [26], the fixed hori-
zon would be mainly suitable for a unique working condition.
Once the desired value of the speed changes, a larger horizon
may give rise to a bumpy experience for passengers, i.e.,
possible response overshoot. On the other hand, for special
driving conditions such as uphill and road bumps, the steady-
state speed won’t change drastically, which also leads to a
challenge for the onboard motor. Accordingly, the dynamic
horizon design manner seems to be more feasible in practical
implementations with complex operating conditions.

Consequently, aiming to present a partial solution to the
aforementioned problems, a novel generalized dynamic predic-
tive control (GDPC) strategy is established. Firstly, a higher-
order sliding mode disturbance observer is applied to recon-
struct the internal matched/mismatched disturbances, and the
compensating loop is subsequently designed. On this occasion,
an equivalent nominal system is obtained. Secondly, by ignor-
ing the estimation errors, one can derive the implementable
nominal chain of integrators, and consequently, the traditional
nonlinear GPC law yields. At last, motivated by the dynamic
scaling gain design in references [27], [28], a horizon online
updating mechanism is built aiming to enhance the suitability
of the conventional GPC when facing disturbance fluctuations.
Compared with the existing results, this paper is mainly
dedicated to making improvements in the following areas:

• The offline MPC and online updating horizon mecha-
nism are integrated into the proposed GDPC framework,
which not only reduces the computational burdens, but
also endows the control system with adaptive transient-
time performance optimization capabilities facing work-
ing condition fluctuations.

• An offset-free predictive controller is built by employing
a composite non-recursive synthesis manner under a
semi-global control framework, therefore both the predic-
tive controller form and adaptive update mechanism are
largely simplified, which facilitates the implementation in
industrial applications.

The organized structure of this article is listed below. The
primary theoretical results are placed in Sections II and III.
Sections IV and V verify the efficacy of the proposed con-
troller from the points of a three-order numerical simulation
and a series of real-life experiments applied to PMSM drive
control. Section VI summarizes the paper. Finally, the main
stability analysis is provided in the Appendix.

II. PROBLEM STATEMENTS

This paper constructs a GDPC design framework to deal
with the trajectory regulation problem for the following can-
didate nonlinear system:

ẋi = xi+1 + fi(x̄i) + di, i = 1, 2, · · · , n− 1,

ẋn = u+ fn(x) + dn,

y = x1

(1)

where x̄i = (x1, x2, · · · , xi)>, x = x̄n, u and y are the system
partial state vector, full state vector, control input, and output,
respectively. di, i = 1, 2, · · · , n is regarded as a bounded
disturbance term. fi(·), i = 1, 2, · · · , n is a known smooth
nonlinear function. Meanwhile, the initial time is denoted as
t0 = 0 while the initial state vector is denoted by x0. yr is
denoted as the tracking reference signal.

The control objective of this paper is to develop a composite
controller to grant the control system the anti-disturbance
ability while achieving an asymptotic regulation result, i.e.,
lim
t→∞

y = yr, and the tracking error is defined as es = y− yr.
The following assumptions, which are quite reasonable in

practice, are essential for theoretical deductions thereafter.
Assumption 1: The reference signal yr and its n-th order

derivative are piecewise continuous, known, and bounded.
Assumption 2: The disturbance di, i = 1, 2, · · · , n and its

n− i+ 1 order derivatives are assumed to be bounded.

III. MAIN THEORETICAL RESULTS

In this section, the details of the controller construction
procedure are presented in an explicit manner.

A. System Performance Recovery and Pre-treatment

To proceed, a higher-order sliding mode observer (HOSMO)
is constructed, in order to achieve rapid system performance
recovery. By defining that βi,j = 1

n+2−i−j , ζi,j = zi,j − νi,j ,
and the design parameters αi,j > 0, li > 0 with i =
1, 2, · · · , n, j = 0, 1, · · · , n − i + 1, the expressions of
HOSMO are depicted as the following form [30]:

żi,0 = νi,1 + xi+1 + fi(x̄i), i = 1, 2, · · · , n,
żi,1 = νi,2, · · · , żi,k = νi,k+1, k = 1, 2, · · · , n− i+ 1 (2)

where bwer , sign(w)|w|r, ∀r ≥ 0,

νi,0 = xi, νi,1 = −αi,0l
βi,0
i bζi,0e1−βi,0 + zi,1,

νi,j+1 = −αi,j l
βi,j
i bζi,je1−βi,j + zi,j+1,

νi,n−i+2 = −αi,n−i+1l
βi,n−i+1

i bζi,n−i+1e1−βi,n−i+1
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are regarded as the auxiliary states in the observer system for
i = 1, 2, · · · , n, j = 1, 2, · · · , n − i; xn+1 = u; zi,0 =

x̂i, zi,1 = d̂i, zi,j = d̂
(j−1)
i are estimations of xi, di, d

(j−1)
i .

Remark 1: The utilized observer (2) will promisingly
reconstruct the unknown disturbance signals within a finite
time. The selection guideline of the observer gain li tends
to be appropriately large aiming to estimate the disturbances
accurately. Meanwhile, for the purpose of achieving desirable
disturbance estimation performance, αi,j can be selected in
a “trial and error” manner according to the current output
response.

At this point, by employing an auxiliary variable χi(d, ȳr)
with d , (d1, d

(1)
1 , · · · , d(n)

i , · · · , dn−1, d
(1)
n−1, dn)> and ȳr ,

(yr, y
(1)
r , · · · , y(n)

r )>, depicted as the following equations, the
steady-state reference functions are able to be constructed

χ1 = yr,

χi =
dχi−1

dt
− fi−1(χ̄i−1)− di−1, i = 2, 3, · · · , n+ 1 (3)

where χ̄i = (χ1, χ2, · · · , χi)>, i = 1, 2, · · · , n+ 1.
Combining with (2), one is able to modify the series of

implementable steady state reference functions via substituting
∂dji
∂tj with ζi,j+2, detailedly, they can be expressed as the fol-
lowing form by denoting z = (z1,0, z1,1 · · · , z1,n, · · · , zn,1)

>:{
xref

1 = χ1 = yr,

xref
i = χi(z, ȳr), i = 2, 3, · · · , n+ 1.

(4)

To proceed, a natural procedure is to implement the state-
space model transformation given as{

ηi = xi − xref
i , i = 1, 2, · · · , n,

υ = u− xref
n+1.

(5)

By this means, the following equivalent stabilizable system
can be derived{

η̇i = ηi+1 + fi(x̄i)− fi(x̄ref
i ) + εi, i = 1, · · · , n− 1,

η̇n = υ + fn(x)− fn(xref) + εn
(6)

in which x̄ref
i = (xref

1 , x
ref
2 , · · · , xref

i )>, xref = x̄ref
n , εi =

fi(x̄
ref
i ) +xref

i+1− ẋref
i − (fi(χ̄i) +χi+1− χ̇i), i = 1, 2, · · · , n.

B. Receding-Horizon Optimization

To begin with, a simple receding-horizon performance index
is provided to regulate the output of system (1) optimally
converges to the reference signal [31],

J(t) =
1

2

∫ T

0

e2
s(t+ τ)dτ, (7)

where T > 0 is the horizon.
In what follows, the nominal system (6) can be concisely

depicted as the compact form via ignoring the estimation errors

η̇ = Aη +Bυ (8)

where η = [η1, η2, · · · , ηn]> and (A, B) are matrices in the
controllable canonical form. Then, the tracking error es(t+τ)

within a horizon (i.e., 0 ≤ τ ≤ T ) can be predicted by Taylor
series expansion given as the following along system (8):

ês(t+ τ)|(8)
.
= η1 + τη2 + · · ·+ τn−1

(n− 1)!
ηn+

τn

n!
υ + · · ·+ τn+r

(n+ r)!
υ(r) = H̄η + H̃V (9)

where H̄ ,
[
1, τ, · · · , τn−1

(n−1)!

]
,H̃ ,

[
τn

n! ,
τn+1

(n+1)! , · · · ,
τn+r

(n+r)!

]
,

V ,
[
υ, υ(1), · · · , υ(r)

]>
and r is the control order [2].

Subsequently, combined with (9), the performance index
defined by (7) can be calculated specifically as

Ĵ(t) ,
1

2

∫ T

0

ê2
s(t+ τ)dτ

=
1

2
η>H1η + η>H2V +

1

2
V >H3V (10)

where H1 ,
∫ T

0
H̄>H̄dτ ∈ Rn×n, H2 ,

∫ T
0
H̄>H̃dτ ∈

Rn×(r+1), and H3 ,
∫ T

0
H̃>H̃dτ ∈ R(r+1)×(r+1).

Taking partial derivative of Ĵ(t) with respect to V , it can be
depicted as ∂Ĵ/∂V = H>2 η+H3V . It is clear that the matrix
H3 is positive definite. By setting ∂Ĵ/∂V = 0, ∂2Ĵ/∂V 2 > 0,
the optimal controller is obtained as V ∗ = −H−1

3 H>2 η. Then,
the implementable optimal intermediate law is developed as

υ∗ = −BH−1
3 H>2 η (11)

where B , [1, 0, · · · , 0] ∈ Rr+1. Taking H2(i, j) =
pi,jT

n+i+j−1, H3(i, j) = qi,jT
2n+i+j−1 into consideration,

the optimal intermediate controller can be simplified as υ∗ =

− k∗1
Tn η1 − k∗2

Tn−1 η2 − · · · − k∗n
T ηn, where pi,j , qi,j and k∗i are

constants related to r and n. Noting that the above derivations
still hold when the receding horizon is variable or state-related,
therefore the optimal controller can be expressed as

u∗ = − k
∗
1

Tn
η1 −

k∗2
Tn−1

η2 − · · · −
k∗n
T
ηn + xref

n+1. (12)

At this stage, it is common that the horizon of the traditional
GPC is generally selected as a fixed value at (12), which relies
on engineers’ experiences. However, the fixed horizon predic-
tive control may possibly lead to variability in performance
optimization under various working conditions. In practice, as
motivated in the introduction, a variable horizon mechanism
with respect to different working conditions would present
a more reliable control result regarding GPC design. In the
subsequent section, we are aiming to design a novel and simple
horizon tuning mechanism for the optimal controller (12).

C. Self-Tuning Mechanism for the Horizon

Denote K , [
k∗1
Tn0
,

k∗2
Tn−1
0

, · · · , k
∗
n

T0
] which is viewed as the

control gain vector of the optimal controller and T0 is the
initial value of horizon, Θ = diag {0, 1, · · · , n− 1}. Then
there exists a matrix Q ∈ Rn×n subject to Q = Q> > 0,
such that (A − BK)>Q + Q(A − BK) ≤ −In, where In
is the n-th order identity matrix. Additionally, % is a positive
design parameter determined by

% > max

{
0,−λmin(ΘQ+QΘ)

2λmin(Q)

}
(13)
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where λmax(·) and λmin(·) are the maximum and the minimum
eigenvalues of the matrix (·), respectively.

Aiming to design an autonomous tuning mechanism for
the dynamic horizon, with the re-scaled transformation ξi =
ηi/L

%+i−1, i = 1, 2, · · · , n, ξ , [ξ1, ξ2, · · · , ξn]>, and
‖ξ‖ ,

√
ξ>ξ, we introduce the following adaption law to

grant T the self-configuration ability{
T = T (0)/L, T (0) > 0

L̇ = c‖ξ‖2, L(0) = 1
(14)

where L is an auxiliary scaling gain function, c > 0 is a design
parameter to restrain the growth rate of L.

Theorem 3.1: For nonlinear system (1) under the distur-
bance observer (2) and the optimal control action (12) with
a self-tuning horizon (14), provided that the initial value of
system states satisfy x0 ∈ [−ρ, ρ]n with ρ being an arbitrarily
large positive constant, the following statements hold:
• All signals in the closed-loop (1)-(2)-(12) system are

uniformly bounded.
• lim
t→∞

y = yr.

The control diagram of the proposed controller can be
depicted in Fig. 1. Meanwhile, for the sake of the readability
of this paper, the laborious semi-global stability analysis is
listed in the Appendix.

The Proposed Controller

Disturbance Observer

The Investigated Nonlinear System

 

Coordinates Transformation #1Performance Index

Coordinates Transformation #2
Adaptive Mechanism

Receding-Horizon Optimization

Fig. 1: The control diagram of the proposed strategy.

Remark 2: During the controller design process, the basic
parameter selection criteria can be specifically listed as the
following steps: a) The optimal control gains k∗i is calculated
by Eq. (10); b) After solving joint linear matrix inequalities,
the matrix feasible solution of Q can be obtained; c) The
design parameter % is determined by calculating a simple
linear inequality shown in Eq. (13), which commonly can
be selected as a small positive value, even can be zero in
application-oriented scenarios; d) The scaling gain c linked to
the convergence of T is generally chosen via the “trial and
error” method; e) T0 is the key parameter in this approach,
which is selected according to the error between the real-time
output response and expectations.

IV. NUMERICAL SIMULATION TESTS

In this section, an illustrative three-order nonlinear system
subject to mismatched and matched disturbances is presented

to illustrate the efficacy of the proposed control method, which
is denoted as the following form

ẋ1 = x2 + sin(x1 +
π

3
) + d1,

ẋ2 = x3 + x1x
4/3
2 ,

ẋ3 = u+ ln(1 + x2
2) + d2

(15)

where d1 = sin(t) + cos(t) is the mismatched disturbance
and d2 = 1.2 is the matched disturbance, while the reference
signal yr = −0.3 + e−t, t ∈ [0,∞).

According to the proposed control design procedure, the
first step is to build a HOSMO to estimate exactly d1, d2 and
their corresponding derivatives, i.e., z1,1, z1,2, z1,3, z2,1. Con-
sequently, we are capable of constructing the implementable
steady-state reference functions: xref

1 = yr, xref
2 = ẏr−sin(yr+

π
3 )−z1,1, xref

3 = y
(2)
r −cos(yr+

π
3 )ẏr−z1,2−yr(xref

2 )4/3, xref
4 =

y
(3)
r + sin(yr + π

3 )ẏ2
r − cos(yr + π

3 )y
(2)
r − z1,3− ẏr(xref

2 )4/3−
4
3yr(x

ref
2 )1/3

(
y

(2)
r − cos(yr + π

3 )ẏr − z1,2

)
−ln(1+(xref

2 )2)−
z2,1. Thereafter, the coordinate transformations are depicted as
η1 = x1 − xref

1 , η2 = x2 − xref
2 , η3 = x3 − xref

3 , υ = u− xref
4 .

With the preparation of the preliminary work, one could
structure the optimal regulation law straightforwardly as the
following form, and for simplicity, r is set as 0:

u = −
(
k∗1
T 3
η1 +

k∗2
T 2
η2 +

k∗3
T
η3

)
+ xref

4 ,

T = T (0)/L, L(0) = 1,

L̇ = c

(
η2

1

L2%
+

η2
2

L2%+2
+

η2
3

L2%+4

)
.

From another perspective, for the purpose of showing the
concision of the proposed controller law form, the dynamic
surface control (DSC) strategy integrated with the NDO is
utilized [32], [33], which is commonly regarded as an effective
methodology to mitigate recursive strategy complexity explo-
sion. Specifically, the composite candidate controller can be
expressed as:

d̂1 = κ1(x1 − p1),

ṗ1 = x2 + sin(x1 +
π

3
) + d̂1;

d̂2 = κ2(x3 − p2),

ṗ2 = u+ ln(1 + x2
2) + d̂2;

S1 = x1 − yr, S2 = x2 − x2d, S3 = x3 − x3d,

$1ẋ2d + x2d = −λ1S1 − sin(x1 +
π

3
)− d̂1 + ẋ1d,

$2ẋ3d + x3d = −λ2S2 − x1x
4/3
2 + ẋ2d,

u = −λ3S3 − ln(1 + x2
2)− d̂2 + ẋ3d

where κi > 0, λj > 0, $i > 0, i = 1, 2, j = 1, 2, 3 are the
control gains, the filter time constants of first-order filters.

To proceed, the initial values are given as T0 = 0.8; x>0 =
[1.5,−1, 0]; z>(0) = 0; x2d(0) = x3d(0) = 0. The control
gains can be calculated as [k∗1 , k

∗
2 , k
∗
3 ] = [ 21

2 ,
42
5 ,

7
2 ] via (10).

Besides, the parameters of HOSMO are selected as [α1,0, α1,1,
α1,2, α1,3, l1;α3,0, α3,1, l3] = [12, 18, 24, 24, 120; 28, 56, 80],
and the design parameters are [c, %] = [0.01, 0.01]. Addi-
tionally, the control gains of the composite candidate con-
troller are [κ1, κ2] = [28, 40]; [λ1, λ2, λ3] = [2.4, 1.5, 1.5];
[$1, $2] = [0.01, 0.01]. The fixed horizon of the conventional
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GPC in Eq. (12) is selected as 0.15 and 0.25, as the control
group. The control result figures are shown in Figs. 2-4.

Fig. 2: Response curves of the output and tracking errors.
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Fig. 3: Response curves of system states x2, x3.
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Fig. 4: Dynamic horizon response and control efforts.

Subsequently, analyzing one by one, one can observe in
Fig. 2 that the control objective is basically achieved via
all the candidate controllers. One interesting fact is that the
horizon plays a key role in the intensity of the response curve
listed in Fig. 2, and furthermore, the response curve of the
proposed controller is more satisfactory compared with the
other controllers, which implies that the internal robustness
redundancy is possibly released to some extent. The dynamic
horizon converges from the initial value to 0.248. From another
perspective, in Fig. 4, the control consumption of the proposed
controller is clearly lower than other controllers, and the

optimized recursive strategy consumes the most. The detailed
performance indexes are listed in TABLE. I.

TABLE I: Performance Indexes of Simulation Results.

Controllers ISE MSE
the proposed controller 84.770 0.041

the GPC strategy with T = 0.15 241.966 0.121
the GPC strategy with T = 0.25 319.138 0.159

the DSC integrated NDO 235.941 0.118

V. EXPERIMENTAL VERIFICATION OF A PMSM
DRIVE SYSTEM

In this section, a typical application of a PMSM drive
system is implemented to validate the efficacy of the proposed
GDPC algorithm.

A. Model Description & Controller Design
Firstly, the dynamic model of a surface-mounted PMSM in

the d-q frame is formulated as [34]:
ω̇ =

1

J

(3

2
npψf iq −Bω − TL

)
,

i̇d =
1

Ls
(−Rsid + npωLsiq + ud) ,

i̇q =
1

Ls
(−Rsiq − npωLsid − npψfω + uq)

(16)

where ud, uq, id, iq are the stator voltages and currents of
the d- and q-axes, respectively, ω is the angular velocity, np is
the number of pole pairs, Rs is the stator resistance, Ls is the
stator inductance, ψf is the rotor flux linkage, TL is the load
torque, J is the rotor inertia, and B is the viscous frictional
coefficient. Besides, the reference rotating speed is defined as
ωref in this paper. For system (16), consider an ideal tracking
case for d-axis current, i.e., id

.
= i∗d = 0. Furthermore, we

introduce the following transformation x1 = ωref − ω, x2 =
(− 3

2npψf iq + Bωref)/J , which are regarded as the system
states. Specifically, the control-oriented model is rewritten as:

ẋ1 = x2 −Bx1/J + d1, y = x1,

ẋ2 = u− 3

2

(
n2
pψ

2
fx1 − (n2

pψ
2
f +

2

3
RsB)ωref

)
/(JLs)

−Rsx2/Ls + d2

where u = −1.5npψfuq/(JLs) is the control input, y is
the system output, d1 = TL/J is viewed as the mismatched
disturbance and d2 is the matched disturbance which contains
unmodelled dynamic or measurement errors, etc.

At this point, we have transferred the rotating speed regula-
tion problem into a stabilizable one. By the proposed means,
one can calculate the steady-state functions as xref

1 = 0, xref
2

= −z1,1, x
ref
3 = −z1,2− 1

JLs
(RsJz1,1+( 3

2n
2
pψ

2
f+RsB)ωref)−

z2,1, where z1,1, z1,2, z2,1 are derived from (2). Hence, the
coordinate transformations are η1 = x1− xref

1 , η2 = x2− xref
2 ,

υ = u− xref
3 . Then, one is able to formulate the controller in

the following form utilizing the proposed framework:

u = −
( k∗1
T 2
η1 +

k∗2
T
η2

)
+ xref

3 , T = T0/L,

L̇ = c
( η2

1

L2%
+

η2
2

L2%+2

)
(1 + sign(|es| − δ)), L(0) = 1, (17)
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where δ > 0 is an arbitrarily small tolerance, commonly can
be set as slightly larger than the system tolerance value.

It is noted that in (17), a threshold is added to the adaption
law. When |es| ≤ δ, it’s clear that T will converge to a certain
constant. The reason is that in practical implementations,
by acknowledging the measurement noises and inevitable
system uncertainties, the output tracking error is impossible
to converge to zero, which renders an uncontrollable decrease
of T , and departs from control expectations.

B. Simulations-Parameters Configuration

For the purpose of validating the influence of the design pa-
rameters upon the output speed and the horizon convergence,
here we implement several simple simulations first that facil-
itate the parameter selection for the following experiments.

To begin with, the simulation scenario should be clarified
that: the reference output speed is constant at 500rpm for t ∈
[0, 1], at 1000rpm for t ∈ (1, 2], with no load. Thereafter at
1.5s, the 30% nominal torque load (0.0817Nm) is considered.

Fig. 5: The influence upon the output speed and the dynamic
scaling gain L convergence of the parameter T0.

Specifically, Fig. 5 describes the role of the T0 value in the
output channel and the dynamic horizon. One can find that a
larger T0 leads to a slower, but more smooth, speedy recovery
process. With the increase of T0, the settling time reduces.
However, when T0 is smaller than 0.8, the possible robustness
redundancy occurs, and the recovery process becomes more
intense that has a certain overshoot. From this perspective, T0

is a vital parameter to deserve to be carefully chosen, which
can be selected as near 1 in the speed regulation of the PMSM
drive.

In Figs. 6 and 7, the parameters % and c are analyzed. Here,
we present them together because they are the scaling gains,
which have a similar influence on the output speed and the
convergence of the dynamic horizon. Detailedly, in Fig. 6,
one can get that clearly, the smaller % is, the bigger L is,
corresponding to the smaller T , which results in the more
drastic regulation process. If % is set as a relatively large value,
the process is smooth, and the settling time becomes longer.
On the other hand, the influence of c is inversely similar.

Fig. 6: The influence upon the output speed and the dynamic
scaling gain L convergence of the parameter %.

Fig. 7: The influence upon the output speed and the dynamic
scaling gain L convergence of the parameter c.

C. Experiment Verification

1) Experimental setup: The experimental configuration,
depicted in Fig. 8, in the laboratory is made up of a control
circuit in the platform TI LAUNCHXL-F28379D with the
switching frequency of 15kHz, a drive circuit BOOSTXL-
DRV8305EVM, a torque sensor with a range of 0-1Nm, a test
motor, and an auxiliary loading motor. Besides, the parameters
of the PMSM platform are listed in TABLE. II.

Fig. 8: Experimental setup.

2) Experiment results: The experiments are carried out
from two perspectives. On one hand, in addition to the
proposed GDPC controller, the other two existing control
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methodologies are chosen to compare the control performance,
i.e., the traditional double-loop PI control and the GPC control
with a fixed horizon. On the other hand, the speed regulation
conditions of the PMSM are essential to be rigorously de-
signed. Concretely, the test experiments are conducted from
the following three scenarios.

Scenario 1: The reference speed switches from 500rpm to
1500rpm with TL = 0.02Nm. The experiment results of this
case can be referred to in Fig. 9. In this case, the worst
speed response is clearly the PI controller, whether settling
time (0.592s) or maximum overshoot (129.71rpm). Besides,
compared with the GPC strategy, the proposed controller has a
relatively smoother response curve, but slower regulation time,
which causes by over strong robustness of the GPC method,
i.e., unsurprisingly, the conservative horizon determination
leads to a faster response time but a more intense process.
The dynamic horizon converges from 1s to 7.12ms to 6.21ms.

Scenario 2: The reference speed switches from 500rpm to
3000rpm with TL = 0.02Nm. Clearly, from Fig. 10, the
phenomenon occurring to the PI controller is consistent with
Scenario 1, i.e., longest settling time and largest overshoot.
From the perspective of predictive control, one can find that
the output speed behaviors of the GPC and GDPC are similar
in this case. The philosophy of this manifestation is that the
fixed horizon is artificially chosen as the most suitable value
to confront this case (the worst case in these experiments),
thereby the dynamic performance can be guaranteed. For the
proposed dynamic horizon design, in this case, the dynamic
horizon has to tune to the most conservative value (commonly
close to the fixed horizon) according to the self-configuration
mechanism, and only in this way can the sudden change of
this severe working condition be suppressed, detailedly, the
dynamic horizon switches from 1s to 59.31ms to 27.68ms.
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Fig. 9: Experiment results of the reference speed switches
from 500rpm to 1500rpm with TL = 0.02Nm.

Scenario 3: TL switches from 0.02Nm to 0.02 sin(t)Nm
with the fixed speed 1500rpm. For this scenario, the output
response performance of all candidate controllers has a huge
difference. First of all, the PI controller is unsatisfactory as
always with the TL presence of frequent switching, and the
steady-state speed fluctuation seems to be hard to be accepted.
The steady-state speed of the GDPC is relatively more desir-
able than the GPC, due to the horizon generated seems to
be more suitable in this condition, which switches from 1 to
12.76ms to 7.04ms. At the TL operation condition switching
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Fig. 10: Experiment results of the reference speed switches
from 500rpm to 3000rpm with TL = 0.02Nm.

TABLE II: Parameters of the PMSM drive system.

Parameter description (symbol) Value
number of pole pairs (np) 4
stator resistance (Rs) 0.36Ω
stator inductance (Ls) 2×10-4mH
rotor flux linkage (ψf ) 0.0064Wb
rotor inertia (J) 7.066×10-6kg·m2

viscous frictional coefficient (B) 2.637×10-6N·m·s/rad
rated current (IN ) 7.1A
switching frequency (fsw) 15kHz
observer #1 gains (l1, α1,1, α1,2, α1,3) 1200, 40, 48, 54
observer #2 gains (l2, α2,1, α2,2) 1×107, 72, 84
controller gains (k∗1 , k

∗
2 ) 10/3, 2.5

design parameters (T0, %, c, δ) 1s, 1, 0.5, 15
fixed-horizon of GPC approach (T ) 5ms
PI gains of id-axis (kdp, kdi) 2.3197, 0.2817
PI gains of iq-axis (kpp, kpi) 2, 6.6675×10−4

moment, the maximum overshoot of the conventional GPC
is larger than the proposed GDPC, and the obvious speed
fluctuation occurs in the PMSM drive system.

The detailed behavior data of the candidate controllers are
listed in TABLE. III for reference. In summary, the controlled
design expectancy of the proposed framework is basically
achieved in the experimental verification.
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Fig. 11: Experiment results of TL switches from 0.02Nm to
0.02 sin(t)Nm under the fixed speed of 1500rpm.

VI. CONCLUSION

For the purpose of alleviating the optimization ability
limitations of conventional MPC methods employing a fixed
horizon in the presence of multiple working conditions, a novel
GDPC synthesis scheme has been developed in this paper.
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Fig. 12: Dynamic horizon response curves; (a) scenario 1,
(b) scenario 2, (c) scenario 3.

TABLE III: Performance data of all candidate controllers
(The ISE and MSE have been normalized).

Controller Working
condition

Maximum
deviation/rpm

Settling
time/s ISE MSE

the proposed
controller

case 1 0 0.543 0.845 0.845
case 2 0 0.68 0.927 0.927
case 3 15.32 / 0.010 0.010

the GPC
strategy

case 1 0 0.512 0.821 0.816
case 2 0 0.665 0.772 0.772
case 3 53.67 / 0.024 0.024

the PI
controller

case 1 129.71 0.592 1 1
case 2 343.16 0.726 1 1
case 3 98.13 / 1 1

By this means, the horizon can realize autonomous, real-time
adjustment according to the current operating conditions, and
furthermore, the balance between robustness and adaptability
is promisingly achieved. The control expectation is validated
by both numerical simulation and application to the PMSM
drive system. The output regulation theme for constrained
systems will be further discussed in the future.

APPENDIX

To begin with, some essential lemmas are provided first for
ease of understanding and derivation.

Lemma A.1: (Young’s Inequality) If p > 1, q > 1, 1
p + 1

q =

1, then ∀a, b ≥ 0, the following inequality holds: ab ≤ ap

p + bq

q .
Lemma A.2: (Barbalat’s Lemma) If lim

t→∞
g(t) <∞ exists, ġ

is uniformly continuous or g̈ is bounded, then lim
t→∞

ġ(t) = 0.

In what follows, the main stability proof for Theorem 3.1
is presented in detail.

Proof: Denote ei,0 = x̂i − xi, ei,j = zi,j − d(j−1)
i , j =

1, 2, · · · , n − i and N > 0 as the boundness of di and its

derivatives. Combining with Assumption 2 and the HOSMO
(2), the error dynamics can be expressed as

ėi,0 = ei,1 − αi,0l
βi,0
i bei,0e1−βi,0 ,

ėi,j = ei,j+1 − αi,j l
βi,j
i bei,j − ėi,j−1e1−βi,j , j = 1, · · · , n− i,

ėi,n−i+1 ∈ [−N,N ]

− αi,n−i+1l
βi,n−i+1

i bei,n−i+1 − ėi,n−ie1−βi,n−i+1 .
(18)

From Th. 5 in [30], one knows that for any possible well-
defined trajectories x(t), all signals in the error system (18)
are uniformly bounded if the selection of li is proper, and
there exists a finite-time instance t1 > 0 such that ei,j =
0, t ∈ [t1,∞). On the basis of ensuring the convergence of the
disturbance observer, the main semi-global stability analysis
of this paper is presented as follows. To begin with, one can
rewrite ξ-system as the following compact form

ξ̇ = L(A−BK)ξ − (%In + Θ)
L̇

L
ξ + z + ε̃ (19)

where ξ , [ξ1, ξ2, · · · , ξn]>,z , [F1, F2, · · · , Fn]>, ε̃ , [ε̃1,

ε̃2, · · · , ε̃n]>, Fi =
fi(x̄i)−fi(x̄ref

i )
L%+i−1 , ε̃i = εi

L%+i−1 , i = 1, · · · , n.
Construct a Lyapunov candidate function as W (ξ) = ξ>Qξ,

and one can get that W (ξ) ≤ λmax(Q)‖ξ‖2. According to
[30] and Assumption 2, it is clear that the observer errors do
not converge to zero in the initial period, i.e., there exists a
bounded constant Γ satisfying sup

i=1,2,··· ,n
{|εi|} ≤ Γ. Keeping

these basic deductions in mind, the first few steps of the proof
are presented in sequence.

Take the time derivative of W (ξ) along system (19), i.e.,

Ẇ (ξ) =L
∂W (ξ)

∂ξ>
(A−Bk)ξ − ∂W (ξ)

∂ξ>
(%In + Θ)

L̇

L
ξ

+
∂W (ξ)

∂ξ>
z +

∂W (ξ)

∂ξ>
ε̃. (20)

Similar to the estimations of Eqs. (22), (23) based on the
mathematical scaling method in [29], we arrive at:

L
∂W (ξ)

∂ξ>
(A−BK)ξ ≤ −L‖ξ‖2, (21)

∂W (ξ)

∂ξ>
z|η∈Γη ≤ ι1 ‖ξ‖

2
, (22)

∂W (ξ)

∂ξ>
(%In + Θ)

L̇

L
ξ ≥ ι2

L̇

L
‖ξ‖2 ≥ 0 (23)

where Γη is an any given compact set, and the constant ι1 > 0
dependent on Γη . ι2 = 2%λmin(Q) + λmin(ΘQ+QΘ) > 0 is
a constant.

Next, the stability analysis of ε̃ can be divided into two
parts, i.e., t ∈ [0, t1) and t ∈ [t1,∞).
Case 1. t ∈ [0, t1): Using Lemma A.1, one can get that

∂W (ξ)

∂ξ>
ε̃ ≤ 2λmax(Q) ‖ξ‖ ‖ε̃‖ ≤ 2

√
nλmax(Q) ‖ξ‖Γ

≤ ι3 ‖ξ‖2 + Γ2 (24)

where ι3 = nλ2
max(Q).

Case 2. t ∈ [t1,∞): In this time interval, it is obvious that

ei,j = 0 ⇒ d
(j)
i = d̂

(j)
i ⇒ εi = 0 for i = 1, 2, · · · , n, j =

0, 1, · · · , n− i.
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A. The Boundness of the Dynamic Horizon T

In this subsection, we shall present the explanation of the
boundness of T . Notably, L̇(t) is a positive semi-definite
function. Then, a prior hypothesis is set that L(t) will escape
at a finite time tf , i.e., lim

t→tf
L(t) =∞. For an arbitrary large

set Γη , there exists a proper finite-time instant t∗ ∈ [0, tf ) such
that L(t∗) ≥ ι1 + ι3 +1. Thereafter, substituting (21)-(24) into
(20), we arrive at

Ẇ (ξ)|η∈Γη ≤ −(L− ι1 − ι3)‖ξ‖2 + Γ2

≤ −λ−1
max(Q)W (ξ) + Γ2, ∀t ∈ [t∗, tf ). (25)

Further, we consider the following relationship:

+∞ = L(tf )− L(t∗) =

∫ tf

t∗

L̇dτ ≤ c
∫ tf

t∗

(−Ẇ + Γ2)dτ

= c (W (t∗)−W (tf )) + cΓ2(tf − t∗) = constant. (26)

Hence, it is obvious that Eq. (26) leads to a contradiction.
Then, it can be concluded that the self-tuning bandwidth factor
L is bounded in ∀t ≥ 0. And furthermore, for the adaptive
horizon T , one can get that it will clearly converge to a certain
value from the transformation T = T0/L and T0 > 0.

B. Uniform Boundness of States

Thereafter, define a proper level set first. For any bounded
x(t) ∈ [−ρ, ρ]n, there exists a constant ρ̄ > 0 such that

max
i=1,2,··· ,n

{sup
t≥t∗
|xref
i (t)|} ≤ ρ̄. Subsequently, the level set can

be defined as Ω , {η ∈ Rn|W (η) ≤ Wmax , sup
η∈0η
{η>Qη},

where 0η , [−(ρ+ρ̄), (ρ+ρ̄)]n. In what follows, with the fact
that L ≥ 1 and re-scaled transformation, a prior conclusion can
be drawn that ∀η(t) ∈ Ω, ξ(t) will stay in Ω forever.

To proceed, assume that the above statement is not true,
i.e., at least one trajectory of η(t) will escape the level set
Ω within a finite time. Thereafter, according to the finite-time
escaping phenomenon, there must exist a time instant t2 ≥ t∗,
such that

(η(t2))>Q(η(t2)) = Wmax, Ẇ (ξ(t2)) > 0. (27)

Then, for any tolerance σ0 satisfying σ0 ∈ ( 4Γ2

λ−1
max(Q)

, Wmax

2 ),
the following relationship holds

Ẇ (ξ(t2))|η∈Ω ≤ −‖ξ(t2)‖2 + Γ2

≤ −λ−1
max(Q)(Wmax −

σ0

4
) < 0.

Recalling relation (27) leads to an obvious contradiction.
Then one can conclude that ∀x(0) ∈ [−ρ, ρ]n ⇒ η ∈ Ω ⇒
ξ ∈ Ω, ∀t ≥ 0.

C. Asymptotic Convergence of States

Define G ,
∫ t
t∗
‖ξ‖2dτ . Then, the following relation holds:

lim
t→∞

G ≤
∫ t1

t∗

(Γ2 − Ẇ )dt−
∫ ∞
t1

Ẇdt

≤W (t∗) + Γ2(t1 − t∗) <∞.

Hence, combined with (19), (22), ξ ∈ Ω, both ξ̇, G̈ =
2(ξ1ξ̇1 + · · ·+ ξnξ̇n) are uniformly bounded. By Lemma A.2,
lim
t→∞

Ġ = 0⇔ lim
t→∞

ξ = 0, i.e., lim
t→∞

y = yr holds.
At this point, the proof of Theorem 3.1 is completed.
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