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ABSTRACT 

This thesis investigates the design and development of a Hybrid Electric Propulsion 

System (HEPS) for aircraft. The main contributions of the study are the multi-objective 

system sizing and the two energy optimization algorithms. 

First, the system sizing method is employed to design the hybrid electric propulsion 

system for a prototype aircraft. The sized hybrid propulsion system can ensure that no 

significant performance is sacrificed and the fuel economy is improved. The novel 

approach in this work is a new non-dominated sorting algorithm for the Non-dominated 

Sorting Genetic Algorithm (NSGA). The new algorithm can improve the time complexity 

of non-dominated sorting process. The optimized hybrid aircraft can save up to 17% 

fuel, achieve higher cruising speed and rate of climb. It is concluded that the optimal 

results are more sensitive to the variation of battery energy density than other 

parameters. 

Next, the main components of the HEPS are modelled for example. The engine model 

provides an insight into the inherent relationship between the throttle command and the 

output torque. Regarding the 𝑑-𝑞 model of motor/generator, the estimation of torque 

loss at steady state is achieved using the efficiency map from experiments. The 

application of Shepherd model leads to the straightforward parameter identification.  

In this research, both non-causal and causal energy management strategies for HEPS 

are investigated. The main novelty when studying convex optimization is the proposal 

of a new lossless convexification, which simplifies the formation of the convexified 

problem, and the proof of equality between the original problem and convexified 

problem. The introduced variable—battery internal energy, is proposed to convexify the 
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battery model. The first test case verifies that the convex relaxation does not sacrifice 

the optimality of the solution nor does the variable change lose the original bounds. 

Also, the optimal control from convex optimization is demonstrated to be robust to a 

disturbance in power demand. Comparison with the benchmark optimization—dynamic 

programming, shows that convex optimization achieves a minimal objective value with 

much less optimization time. Most significant is that the convexification reduces the 

optimization computation time to a level compatible with implementation in practical 

application. 

In causal control, the main focus is to extend the original Equivalent Consumption 

Minimization Strategy (ECMS) with the fuzzy control. The proposed algorithm can 

maintain the battery State of Charge (SoC) in a desirable range, without the 

requirement of off-line estimation of equivalence factor. By comparing with non-causal 

control—dynamic programming, the test cases validates that the fuzzy based ECMS 

succeeds in converting the non-causal optimization, with little sacrifice of the optimality 

of the solution. In other words, the prior-knowledge of flight mission is not a pre-

requisite, and the fuzzy based ECMS can achieve the sub-optimal control for on-line 

implementation. The fuzzy based ECMS is also validated to outperform the adaptive 

ECMS, since it can reduce the computation time of optimization and save more fuel 

usage. The theoretical relationship between the equivalence factor of ECMS and the 

co-state variable of Hamiltonian function is also demonstrated in this thesis. 

The convex optimization and fuzzy based ECMS are combined to complete a flight 

mission with several sub-tasks. Each task has different power and SoC requirements. 

The test case demonstrates that only the combination of non-causal and causal 

optimization can satisfy the various constraints and requests of the test scenario. 

Compared with the engine-only powered aircraft, the hybrid powered aircraft saves 

18.7% on fuel consumption. Furthermore, the hybrid propulsion system has better 

efficiency since it integrates the high efficient electric powertrain. 

 

Keywords:  

Light Aircraft, Hybrid Electric Propulsion System, Sizing, Modelling, Energy 

Management, Dynamic Programming, Convex Optimization, Pontryagin’s Maximum 

Principle, Fuzzy Logic Control, Hardware-in-the-Loop 
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 Introduction 

Over the last decades, the rapid growth in fossil fuel consumption has generated a 

need for energy sustainability. Industries have made much effort to decrease the use of 

fossil fuels, but the fuel used in transportation is still increasing [1]. This is partly due to 

the widespread use of aircraft in both military and civilian applications. If the growth of 

air transportation continues, there will be the peremptory challenge in sustaining the 

petroleum consumption. Additionally, the exhaust gas from fuel combustion not only 

does harm to human health but also has a negative impact on the environment, for 

example, contributing to global warming. It is even worse if those emissions are from 

aircraft since the tail gas is directly discharged to the atmosphere. Concerning those 

adverse effects, NASA calls on the aeronautic industry to reduce aircraft fuel burn by 

70% by 2025 in their N+3 concepts [2]. Meanwhile, FlightPath 2050 reported by 

ACARE targets a 75% reduction in CO2 emissions [3]. 

The aim to sustain natural resources and relieve environmental pollution are pushing 

the related research areas to develop less fuel consumption and environmental friendly 

aerospace technologies. This leads to not only the development of renewable fuels but 

also alternative propulsion technologies. 

1.1 Hybrid Propulsion System 

The most prospective environmentally-clean propulsion technology is to shift towards 

electric propulsion systems, e.g. the Electric Motor (EM), replacing the conventional 

Internal Combustion Engine (ICE). 
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At the beginning of powered flight, the ICE was the most popular propulsion means for 

aerial vehicles. Even in today’s transportation market, most air transport is based on 

fossil fuels, with no apparently sign of reduction of numbers. The emissions, noise and 

heating issues accompanied by ICE powering are difficult to tackle, if the ICE-powered 

aircraft want to achieve a good stealth performance. This must leads to the rapid 

development of electric powered aircraft.  

For the propulsion point of view, an EM has better efficiency and responds much faster 

than an ICE does [4]. Electric propulsion systems do not generate on-board emissions, 

so are more environmentally friendly. From an aircraft point of view, electric 

powertrains have further advantage—elimination of all propulsion system noise 

excluding propeller noise. With reduced emissions and lower noise profile, the electric 

aircraft has better stealth performance compared with the ICE-powered one. However, 

the energy density (specific energy) of electrical energy storage source, such as 

batteries, are much lower than that of fossil fuel [5]. The truth is that at this point in time 

and for the foreseeable future, aerial vehicles using electric propulsion systems cannot 

achieve the same flight endurance as their conventional (i.e. combustion engine) 

powered counterparts. 

Considering the disadvantages of ICE or EM powered flight, an evolving technology—

Hybrid Electric Propulsion System (HEPS) comes to the researchers’ mind and attracts 

much attention. HEPS integrates an electric powertrain with a conventional combustion 

engine to provide the propulsion. It can combine the clean power and system efficiency 

of an electric propulsion system with the extended range of an ICE. This results in 

decreased fuel burn and additional ‘stealth mode’ (low emissions/noise mode) 

compared with ICE-powered aircraft, and increased flying range compared with electric 

aircraft. HEPS has the potential to provide much better fuel economy. For these 

reasons, there is a significant interest in further research into this technology and 

applications for the aviation industry. However, those advantages come at the cost of 

increased complexity of the system design, modelling and hybrid energy management. 

1.1.1 Powertrain Configuration 

In a hybrid propulsion system, two or more power sources with different configurations 

are combined to improve the performance of the whole system. In this thesis, only two 

energy storages are considered: fuel and battery. For the fuel/battery hybridization 
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system, the most commonly used configurations are series, parallel and series-parallel 

architecture.  

1.1.1.1 Series Configuration 

In a series hybrid configuration, the propeller is driven only by the electric motor (see 

Figure 1-1). The engine power derived from combustion is converted into electrical 

power via a generator. The electrical power can be used to power the EM directly, or 

can be stored in the battery by a charging process. The benefit of this architecture is 

that the engine is completely decoupled from the propeller and its output power is not 

related to the power demand of the powertrain. In other words, the engine can run at its 

optimal operating condition during the different working condition. The fuel efficiency of 

engine can remain high and its lifespan can be lengthened. Moreover, the series 

architecture has the definite advantage of flexibility for locating the ICE-generator set 

due to the mechanical decoupling.  

Engine

Generator
DC/DC

Converter
Motor Propeller

Battery
Electrical

Connection

Non-electrical

Connection

 

Figure 1-1 Series configuration 

However, the series configuration suffers from the poor system efficiency, since 

massive power losses exist in the combustion and electrical energy conversion. 

Another disadvantage is that it needs three propulsion devices: engine, generator and 

EM. All three propulsion devices need to be sized to cope with maximum power if the 

series HEPS is designed for sustained climbs. This makes series HEPS expensive and 

bulky [5]. Last but not the least, series architecture cannot make use of the maximum 

combined power potential of the engine and motor, since the engine is not 

mechanically connected to the load. 

1.1.1.2 Parallel Configuration 

In parallel configuration, the ICE and the EM are both connected mechanically to the 

propeller, so they can contribute to the propulsion energy either simultaneously or 

individually. In addition with the parallel configuration, the ICE can simultaneously drive 
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the propeller and motor/generator, thereby charging the battery pack. Other advantage 

of the parallel over the series configuration is that it only needs two propulsion 

devices—engine and motor/generator. Also, a smaller engine and a smaller electric 

motor can be used to get the same performance [5]. Even for long-climb trip operation, 

only the engine needs to be rated for the highest sustained power. The power losses 

are also reduced compared with the series configuration, with no need of mechanical-

electrical energy conversion. 

However, the rotational speed of propeller is not always the optimal speed of the 

engine, thus operating at the optimum region of engine cannot be guaranteed. In 

general, there are two approaches to deal with this issue. The first and more direct one 

is to implement a Continuously Variable Transmission (CVT), which permits the 

independence of the engine and propeller rotational speed. The second and more 

economical one is to develop an energy management strategy. The energy 

management strategy can optimize the power contribution of the engine and the motor, 

which enables the propulsion devices to operate at their optimum condition. 

Parallel hybrids are further classified according to the position of the motor/generator in 

the drivetrain [6]. If the engine and the motor/generator are mounted on two separate 

drive shafts, as shown in Figure 1-2, the speed of the engine and motor/generator can 

be different from the propeller and each other. This architecture is called as double-

shaft parallel configuration. Similarly, if a CVT is applied in this architecture, the speed 

of two propulsion devices can be decoupled from the speed of the propeller.  

Engine

Motor/

Generator

Propeller

Electrical

Connection

DC/DC

Converter
Battery

Fuel

Transmission

Non-electrical

Connection

 

Figure 1-2 Double-shaft parallel configuration 

If the engine is connected to the motor/generator but not directly linked to the propeller, 

the architecture is called single-shaft since the transmission has only one input shaft 

(see Figure 1-3). Generally, the electric machine is directly linked to the propeller, while 

the engine is connected to the electric machine via decoupling devices and gears. In 
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this architecture, the speed of motor/generator is always rigidly linked to that of the 

propeller. 
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Figure 1-3 Single-shaft parallel configuration 

1.1.1.3 Series-Parallel Configuration 

The series-parallel configuration, also recognized as power-split configuration, is a 

mixture of the two architectures shown above. Here, the propeller, engine, motor and 

generator are connected to a planetary gear. This structure not only makes power 

distribution more flexible, but also allows the engine and motor to operate in its most 

efficient region. The series-parallel configuration is the most advanced configuration of 

the hybrid propulsion system, but it also requires the most complicated clutch/gearing 

mechanism and energy management. 
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Figure 1-4 Series-Parallel configuration 

Overall, the most commonly used configurations are illustrated above. Among them, 

the series configuration enables the engine to operate at its ideal operating condition. 

However, its system efficiency is relatively low since large power losses exist in the 

energy conversion. The series-parallel is the most functional, but complicated 

configuration out of the three architectures. The parallel configuration offeres a good 

trade-off  between those two configurations. 
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1.1.2 Charge Strategy 

In addition to the powertrain configurations, hybrid propulsion systems also differs in 

the battery operating strategy, having two classifications: charge-sustaining and 

charge-depleting strategy.  

The charge-sustaining strategy aims at maintaining the State-of-Charge (SoC) of the 

battery at a certain level with on-board recharging. This ensures the battery will always 

have an adequate reserve SoC in the case of an emergency, but the electricity cannot 

be made the biggest use of. The charge-depleting strategy differs in that the battery 

charge does not take place. The battery SoC is allowed to decrease continuously until 

its minimum value is reached. A consequence of not charging the battery in a charge-

depletion system is that the battery needs to have enough capacity to provide enough 

power during the specified run time. Therefore, the charge-depleting strategy tends to 

lead to a large battery. 

1.1.3 State-of-Art 

1.1.3.1 Ground Vehicle Application 

Most people believe that hybrid cars powered by both gasoline and electric systems 

are relatively new, however they already existed at least as early as the late 1800s. In 

1899, a car featured a gasoline-generator system fed four electric motors, is believed 

to be the first hybrid car. This hybrid car was constructed by Dr Ferdinand Porsche at 

Jacob Lohner & Co and named the Lohner-Porsche [7]. Shortly after Dr Porsche 

introduced the first hybrid, an American engineer H. Piper filed a patent for a petrol-

electric hybrid vehicle in 1905. The hybrid vehicle employed an electric assist motor 

and a gasoline engine, capable of reaching a top speed of 25 mph (40 km/h) [8]. In 

1916, a prominent electric vehicle company—Woods Motor Vehicle offered a hybrid 

electric car, Dual Power. It operated in electric-only mode under 15 mph (24 km/h) with 

the assistance of a four-cylinder ICE to achieve 35 mph (56 km/h) top speed. However, 

Dual Power was considered as a commercial failure, since it was too slow for its price 

and too difficult to service [9]. From the 1920s to the 1960s, the hybrid car drew little 

attention due to the low price of petrol and the advance of combustion engines.  
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1966 is the turning point of hybrid-electric technologies. U.S. Congress introduced the 

first bills recommending the use of electric vehicles as a means of reducing air pollution 

[10]. Additionally, with the Arab oil embargo of 1973, the soaring price of gasoline 

created new interest in electric and hybrid vehicles. In 1976, the U.S. Congress 

enacted Public Law 94-413, the Electric and Hybrid Vehicle Research, Development 

and Demonstration Act of 1976 [11]. The period of two decades from 1960 saw the 

accumulation of techniques related to hybrid vehicles. Regenerative braking systems, a 

core design concept of most modern hybrids, was developed in 1967 by American 

Motors Corporation [12]. An experimental hybrid car, XP-883, was constructed by 

General Motors in 1969 [13]. XP-883 demonstrated the concept—plug-in hybrid 

vehicle, whose battery can be charged by plugging it into an external source as well by 

its on-board engine-generator unit. In addition to hybrid cars, many concept hybrid 

buses were also released in those decades. Mercedes-Benz launched a project in 

1969 to develop OE 302, which was the first hybrid omnibus [14]. Volkswagen 

researched into hybrid powertrains for their city taxis in response to the oil crisis in 

1973. The prototype hybrid was based on a Volkswagen Type II microbus and reached 

a speed of up to 70 km/h [15]. 

Even with the accumulation of techniques, hybrid cars had been at experimental stage 

until the 1990s. In 1993, the “big three” American automakers (Chrysler, Ford and 

General Motors) and United States governmental agencies (Department of Energy 

etc.) combined forces in the initialization of Partnership for a New Generation of 

Vehicles (PNGV). All three manufacturers developed concept cars, but there were 

problems with the development of production prototypes [16]. The breakthrough came 

from the Japanese car corporation—Toyota. In 1997, Toyota launched the worldly first 

mass-produced hybrid vehicle—Toyota Prius, after two decades of its first hybrid 

prototype on the road [17]. In the same year, Audi introduced the Audi Duo, a hybrid 

car based on the A4 Avant, to the European market. Finally, in 1999, the introduction of 

the Honda Insight started the sales of hybrid automobiles to Americans. The “big three” 

American automakers hadn’t kept up to date until Ford released the first hybrid-electric 

sport-utility vehicle in 2005, one year after Toyota authorizing Ford to apply its patents 

to the hybrid manufacturing [18]. 

Global sales of hybrid cars are led by Toyota with more than 10 million Lexus and 

Toyota hybrids sold as of January 2017 [17]. The first-generation Prius sedan could 

offer a top speed of 100 mph (160 km/h) and a fuel economy of 42 miles per gallon 
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(mpg) for combined city and highway operation [5]. Both its fuel economy and exhaust 

emissions were much better than that of any conventional automobile. Toyota began 

the mass production of the Auris Hybrid in 2010. Auris Hybrid shares the same 

powertrain as the third-generation Prius, but the combined city/highway fuel economy 

increases from the original 50 mpg to 62 mpg [19]. The 2016 Prius Eco is 

acknowledged as the most fuel-efficient car available in the US without plug-in 

capability. After introducing the plug-in hybrid techniques, the all-electric range of Prius 

Plug-in Hybrid is several times longer than its conventional hybrid ones. Meanwhile, the 

equivalent fuel economy at electric-only mode is up to 133 mpg [20]. 

1.1.3.2 Aerial Vehicle Application 

The widespread research and advances in hybrid electric propulsion systems in 

automobiles are transferrable to the aircraft industry. Automobile hybrid systems have 

been in use for several years, have been verified and widely accepted. Those benefits 

include increased endurance time as compared to electric-powered aircraft, with 

additional benefits of reduced noise, emissions and fuel consumption which are not 

attainable using gasoline-power. After acknowledging of those benefits, aeronautic 

academia and industry began to introduce the HEPS to power the aircraft. There is a 

significant interest in further research into this technology and its application on from 

small to larger-scale aircraft.  

Initially, academics focused on the small-scale (unmanned) sector to validate and 

demonstrate the feasibility of the hybrid electric technology. The Air Force Institute of 

Technology (AFIT) began its investigations of hybrid electric technologies with the 

conceptual design and configuration comparison, see Harmon [21] and Hiserote [22]. It 

was concluded that the clutch-start parallel configuration is the most practically 

realizable. Continuing this work, Ausserer [23] and Molesworth [24] implemented the 

system validation and flight test, by integrating the 1.3-hp (969 W) Honda GX35 engine 

with a 1.6-hp (1.2 kW) Fuji motor. The research team from Queensland University of 

Technology (QUT) also developed a parallel HEPS by combing a 10 cc combustion 

engine and a 600 W brushless motor. Simulation and ground tests demonstrated that 

the aircraft performance [25] could be improved by a large margin and fuel usage [26] 

is decreased by 6%, with only a 5% weight penalty compared to the non-hybrid system. 

(Quasi-) static models of each component were developed for the preliminary design 

and sizing of HEPS, by Schoemann in the Technical University of Munich [9]. A scaling 
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method was applied since it is difficult to develop an accurate model for small engines. 

Friedrich and Robertson, from the University of Cambridge, researched design and 

sizing methods for hybrid-electric propulsion of a 20 kg UAV [27] where the combustion 

engine was sized based on the engine ideal operating line. Sliwinski, et al., 

investigated the range and endurance performance of HEPS powered aircraft [28] and 

demonstrated that hybrid electric technology represents a viable trade-off solution in 

small-scale aircraft. 

The mid-scale aircraft (light manned aircraft) also has drawn much attention. At the 

early stage of HEPS study for small-scale aircraft, Hiserote questioned the adaptability 

of hybrid propulsion technologies to larger aircraft [22]. Using the same conceptual 

design method, Ripple (also from AFIT) successfully retrofitted several general aviation 

platforms using the mild HEPS [29]. In 2009, German aircraft builder Flight Design 

presented a hybrid electric system where a 40-hp (30 kW) EM can provide 

approximately 5 min of additional power to a 115-hp (86 kW) ICE [30]. Based on this 

hybrid system, a light aircraft–EcoEagle was developed by Embry-Riddle Eagle Flight 

Research Center to compete in the NASA’s Green Flight Challenge 2011 [31]. 

However, though using a parallel configuration, EcoEagle has the same issue as the 

Hybrid Atlas (built by the University of Cambridge in 2010 [32]). Neither of these has 

the capability to recharge the battery during flight. Following a new project–SOUL, The 

University of Cambridge successfully retrofitted a light sport aircraft and completed on-

board regeneration, by combing an 8 kW ICE and a 12 kW EM [27]. The first series-

configured hybrid-electric manned aircraft, named DA36 E-Star, was demonstrated by 

Airbus, Siemens and Diamond Aircraft [33]. It launched its debut flight on June 2011, 

featured a 70 kW motor made by Siemens and 30 kW rotary engine made by Austro 

Engine. A more advanced version, DA36 E-Star 2, benefited from the revised electric 

powertrain and was approximately 100 kg lighter than its predecessor [34]. Also, an 

increase in range/duration was expected. HYPSTAIR project, starting from 2013, 

unveiled the prototype of the world’s most powerful series hybrid powertrain (200 kW) 

for general aviation, after a four-year study [35]. The University of Nottingham initialized 

the conceptual design of hybrid electric propulsion for skydiver aircraft [36]. The study 

demonstrated that the series-hybrid-distributed architecture could offset the 

problematic aspects of increased HEPS weight. 

The world's largest aerospace magnates have been exploring the potential of hybrid-

electric technology on large-scale transport aircraft, i.e. regional or even 
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intercontinental airlines. The Georgia Institute of Technology won the 2012-2013 

Federal Aviation Administration (FAA) Design Competition in electric/hybrid-electric 

aircraft technology category [37]. The developed technology suite implemented on the 

NXG-50 hybrid aircraft provided a future regional jet with expected reductions of 15% 

for life-cycle energy consumption. Airbus invited Siemens as the third partner to 

support the E-Fan X program in 2017, as a first step in the long-term goal of developing 

a hybrid-electric regional airliner [38]. The Delft University of Technology explored 

innovative propulsion techniques to achieve NASA N+3 goals. One feasible design for 

hybrid regional aircraft results in a fuel weight drop of 28 %, and a global aircraft weight 

rise of 14 % [39].  

The hybrid electric distributed propulsion for transport airplanes is highly rewarded in 

recent years [40]. NASA leads the concept of Turbo-electric Distributed Propulsion 

(TeDP) that hybridizes turboshaft engine and distributed electric powertrain in a series 

architecture. Following the successful project SCEPTOR [41], ESAero continued to 

work with NASA on SBIR program to investigate the benefit of a gas generator and 

superconducting motor [42]. NASA also funded Boeing SUGAR team to boost the 

promotion of subsonic air transport using hybrid electric concept design. The 2014 final 

report demonstrated that hybrid SUGAR Volt is able to meet NASA goals in terms of 

fuel burn [43]. With the experience of developing hybrid DA36 E-Star, Airbus started a 

joint project DEAP [44] with Rolls-Royce in 2016. The proposed E-Thrust concept can 

also be described as a series-hybrid/distributed propulsion system.  

1.2 Aims and Objectives 

The research aim of this study is to improve the fuel economy of aircraft hybrid electric 

propulsion system. This aim can be accomplished by studying the design and energy 

management of HEPS for aircraft applications. The thesis first designs a hybrid electric 

propulsion system for a prototype aircraft and investigates how to achieve better fuel 

economy of the hybrid aircraft at the design stage. Fuel consumption of the HEPS is 

further reduced by researching different energy management strategies, i.e. 

supervisory controls.  

The objectives of the four main work are illustrated as follows: 
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(1) Design: The designed hybrid electric propulsion system needs to achieve 

improved fuel economy with little-compromise in aircraft performance. 

Therefore, the system sizing method must achieve optimal trade-off between 

the fuel consumption and flight duration. 

(2) Modelling: This part of work aims to develop a simulation environment to 

validate the energy management methods. Different dynamic models are 

studied according to different subsystems’ timescales characteristics.  

(3) Non-causal Energy Management: The objective of this part is to study a non-

causal optimization that not only simplifies the original energy management 

problem, but also does not lead to any loss of original optimality. The time cost 

of the optimization process is required to be lower than the dynamic 

programming. 

(4) Causal Energy Management: The causal control based method is researched 

here to realize the on-line optimization of the original non-causal problem. The 

proposed causal control based algorithm must have little sacrifice of the 

original optimality.  

1.3 Contributions 

This thesis presents a successful design for an aircraft hybrid electric propulsion 

system and management of its energy distribution. The design method results in the 

hybrid aircraft that can save 17% fuel consumption compared with the prototype 

aircraft. The studied energy management strategies further improve the fuel economy 

of the hybrid aircraft. Up to 18% fuel is reduced by comparing the hybrid aircraft and 

the engine-only powered aircraft. 

The main contributions of the study are the multi-objective sizing method and the two 

energy optimizations: 

• For the system sizing, the optimal trade-off between fuel consumption and flight 

duration is achieved by applying the multi-objective genetic algorithm. The 

author does not find any open full-length-articles covering the detailed analysis 

of hybrid propulsion system sizing using multi-objective genetic algorithm. This 

part of work proposes a new non-dominated sorting algorithm for the Non-

dominated Sorting Genetic Algorithm (NSGA), which can reduce the number of 
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comparisons and improve the time complexity of non-dominated sorting 

process.  

• The convex optimization is applied due to its low computational complexity. 

Currently, there still no research is conducted to apply the convex programming 

to the HEPS of aircraft. A new lossless convexification proposed in this thesis, 

can simplify the formation of the convexified problem, and the proof of equality 

between the original problem and convexified problem. Most significant is that 

the convexification reduces the optimization computation time for 

implementation in practical application. 

• The fuzzy logic control is employed to solve the equivalence factor issue of 

Equivalent Consumption Minimization Strategy (ECMS). The fuzzy-based 

ECMS succeeds in transferring the original causal problem into the 

instantaneous one, with no need for off-line estimation of equivalence factor.  

Furthermore, it realizes the on-line charge-sustaining, with no sacrifice of the 

computation time. It can resolve the conflict between the SoC sustaining and 

electric power consumption. Neither sustaining the SoC at the high or low level, 

the proposed approach exploits the advantages of HEPS for the aircraft to the 

full. 

1.4 Thesis Layout 

This thesis completes the design, modelling, energy management of an aircraft hybrid 

electric propulsion system.   

Chapter 1 introduces the background of the development of aircraft HEPS. The state-

of-art of hybrid configurations and studies of hybrid propulsion technologies are also 

presented.  

Chapter 2 reviews the previous work related to the system sizing, modelling and 

energy management of hybrid propulsion system. The research gaps in these areas 

are demonstrated based on the analysis of the pros and cons of various methods and 

algorithms. 

Chapter 3 accomplishes the design of a HEPS for the prototype aircraft, using the 

multi-objective genetic algorithm. A new non-dominated sorting algorithm is proposed 
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to reduce the computational cost. The optimized HEPS can reduce fuel consumption 

by up to 17%. 

Chapter 4 presents the modelling of the engine, motor/generator, battery and DC/DC 

converter of the HEPS.  

Chapter 5 studies the convex optimization to solve the original non-causal energy 

management of the HEPS. A lossless convexification is proposed to convexify the 

original problem. The optimality of the original problem is not sacrificed but the 

computational efficiency is improved. 

Chapter 6 converts the original non-causal energy management to a causal 

optimization problem, using the proposed fuzzy-based equivalent consumption 

optimization. The new method achieves the on-line optimization with sub-optimal 

solutions. 

Chapter 7 demonstrates that the HEPS-powered aircraft can save around 18% fuel 

using the two energy optimizations. The fuzzy-based equivalent consumption 

optimization is proved to resolve the conflict between the SoC sustaining and electrical 

power consumption. 

Chapter 8 summarizes all the work and its conclusions. The future work is then 

recommended.  
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 Literature Review 

This chapter reviews the previous work related to the system sizing, modelling and 

energy management of hybrid electric technologies. The advantages and 

disadvantages of various methods and algorithms are demonstrated based on the 

previous studies and their conclusions. New approaches or applications are proposed 

according to the research gaps in the system sizing and energy management. 

2.1 Sizing 

The first technological problem to be resolved when introducing hybrid electric 

technology, is the synergetic design and sizing of the propulsive system at aircraft 

level. The sizing mentioned in this study means the process of determination of 

parameters of the corresponding devices, which can represent their weight, output 

power and energy capacity characterises. 

The pioneer of hybrid technology—AFIT firstly applied the conventional aircraft design 

method to size the aircraft wing and HEPS components for the Unmanned Aerial 

Vehicle (UAV) [21,45]. The sizing problem was formulated as a constrained 

optimization problem, in which UAV performance requirements were represented by 

the constraints. Based on the optimization code developed by Harmon and Hiserote 

[21,45], Ripple applied the sizing approach to design the HEPS for the mid-scale 

Remotely-Piloted Aircraft (RPA) [29]. Case studies demonstrated that the retrofit of the 

existing airframe is possible, but the fuel saving ability is not clear in the study. For a 

regional airline case, Delft University of Technology integrated the weight estimation 

function to the optimization iteration [39]. It was concluded that 30% fuel reduction 

could be accessible if the battery technique could be promoted to 1000 Wh/kg. 
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Isikveren proposed so-called quadrant-based algorithmic nomograph to pre-design the 

aircraft with advanced propulsion systems [46]. This universal graphical-based 

approach allows for maximizing transparency for the designer, since the optimization is 

not used in the design process.  

Generally, a propulsion system sizing should not be regarded singularly since it 

describes the interdependency of the propulsion system and aircraft [21]. However, 

integrated propulsion system and aircraft sizing are time-consuming. Therefore, 

Schömann introduced the aircraft scaling approach and only focused on the propulsion 

system sizing [47]. The optimization results achieve 5% fuel mass reduction in the 

hybrid powered aircraft. Using the scaling method but no need of optimization, 

Friedrich, et al., showed the feasibility of HEPS application on small unmanned aircraft 

and intercity airliners, with 47% and 10% fuel saving, respectively [27]. Glassock, et al., 

provided a detailed comparison of the fuel burn, battery weight and climbing 

performance between the original skydiver aircraft and its hybrid-retrofitted one, 

covering the full spectrum of hybridisation ratio [36]. The hybrid-energy retrofitting of 

reference aircraft was successfully achieved by Pornet et al., even considering the 

medium-range mission [48]. The study claimed that the retrofitted aircraft has a 

potential to save 16% fuel burn for a 900 n mile (1666 km) mission. Furthermore, sizing 

the hybrid aircraft to its reference range (3300 n mile) would lead to an increase of the 

wing area. The range and endurance are mainly concerned characteristics when 

retrofitting the RPA with HEPS in the study by Sliwinski et al. [28]. The results 

suggested that HEPS technology could promote the mitigation of exhaust while 

providing adequate range and endurance performance, compared with the ICE-only 

propulsion system. In short, researchers are benefited from sizing the HEPS excluding 

the aircraft design. A prototype (reference) aircraft is selected in those studies. The 

verification of hybrid aircraft is straightforward by just being compared with the 

prototype one. 

Most studies on the sizing of HEPS employ single-objective optimization to reach the 

optimal results [47]. However, the single-objective (such as fuel minimization) can only 

give one optimal sizing at one specific performance request (like duration), in one 

optimization run. Therefore, several optimization runs have to be carried out to 

examine the different performance demands [28,36]. The multi-objective optimization 

can simultaneously optimize several costs and result in Pareto-optimal solutions. 

Pareto-optimal solutions, or so-called Pareto front, is the combination of all possible 
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optimal outcomes. If the performance needs are also included in the cost function, the 

potential of the hybrid propulsion system can be thoroughly evaluated in one 

optimization run, by using multi-objective optimization.  

An engineering note about hybrid unmanned aircraft design using multi-objective 

genetic algorithm has been published in 2016 [49]. Yet the authors did not find any 

open full-length-articles covering the detailed analysis of hybrid propulsion system 

sizing using multi-objective optimization. The design of HEPS for aircraft starts with the 

system sizing using the multi-objective genetic algorithm.  

2.1.1 Multi-objective Genetic Algorithm 

Since the Genetic Algorithm (GA) works with a population of points, it may capture a 

number of Pareto-optimal solutions in one single simulation run. The study of multi-

objective GA is as early as the 1980s. Schaffer and Grefenstette applied GA to multi-

objective learning, but their algorithm suffered from biasness towards some Pareto-

optimal solutions [50]. To eliminate the bias, Srinivas and Deb proposed the famous 

Non-dominated Sorting Genetic Algorithm (NSGA) in 1994 [51]. The proposed 

algorithm avoids the bias and distributes of the population over the entire Pareto-

optimal regions. The proof-of-principle simulation also demonstrated that NSGA could 

maintain stable and uniform reproductive potential across non-dominated individuals. 

However, NSGA was criticised due to its high computational complexity, lack of elitism 

and need for specifying the sharing parameter [52]. Therefore, Deb, et al., brought the 

second version of NSGA—NSGA-II, which alleviates all the above three issues. 

Simulation results show that the proposed NSGA-II, in most problems, is able to find a 

much better spread of solutions and better convergence near the true Pareto-optimal 

front. Nevertheless, the computational complexity is still relatively high although the 

Fast Non-dominated Sorting (FNS) was proposed. This is also a common problem 

most existing of the Pareto-front-based evolutionary algorithms.  

2.1.2 Non-dominated Sorting Algorithm 

Non-dominated sorting is a procedure where solutions in the population are assigned 

to different Pareto fronts based on their dominance relationships. It accounts for a large 
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part of the computation of NSGA. If the computational complexity of non-dominated 

sorting can be reduced considerably, the computing efficiency of NSGA will be 

benefited a lot. 

The idea of non-dominated sorting was first suggested by Goldberg as a selection 

strategy for the multi-objective evolutionary optimization [53]. Srinivas and Deb then 

introduced it to its NSGA. The time complexity of the original non-dominated sorting is 

𝑂(𝑀𝑁3) and a space complexity of is 𝑂(𝑁), where 𝑀 is the number of objectives and 𝑁 

is the population size. Deb, et al., successfully decreased the time complexity to 

𝑂(𝑀𝑁2) in the NSGA-II [52], though the space complexity increased to 𝑂(𝑁2). The 

new non-dominated sorting algorithm is termed Fast Non-dominated Sorting (FNS). 

FNS is the first to acquire all the dominance relation between every two solutions by 

traveling all the solutions. Since proposed by the research group leaded by Deb, FNS 

becomes the benchmark of the non-dominated sorting algorithm. Schorlars have been 

engaged in reducing the complexity of non-dominated sorting. 

Jensen extended the divide and conquer vector sorting algorithm and applied it to the 

non-dominated sorting [54]. The recursive non-dominated sorting approach leads to the 

time complexity of 𝑂(𝑁 log𝑀−1𝑁). This means that Jensen’s sorting method can only 

reduce the computation time by a large margin for bio-objective problems. Its 

complexity increases expotentially with the number of the objectives. Furthermore, this 

approach is only applicable to problems with weak dominance, which is less more 

commonly used than the strong dominance (where a solution only dominates another if 

it is better for all objectives). 

Arena’s principle was proposed by Tang et al. [55] in 2008. The concept of arena host 

was established to construct the non-dominated set. A randomly selected solution is 

set as the first arena host. Then, the arena host is compared with each of the 

remaining solutions. Consequently, all the solutions can be divided into two parts: 

dominated or non-dominated set. Different from Arena’s principle, the deductive sort 

[56] proposed that each solution is compared against all following solutions and not 

previous solutions. If any solution is found to be dominated, it can be ignored in later 

comparisons.  Both Arena’s principle and deductive sort didn’t reduce the worst case 

complexity of FNS, but they do perform better in the simulation tests. 

Efficient Non-dominated Sort (ENS), proposed by Zhang et al. in 2015 [57], is the most 

promising sorting approach since the FNS. Both theoretical analysis and empirical 
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results show that the ENS is computationally more efficient than all previous non-

dominated sorting methods. ENS creatively proposed to first sorts all candidate 

solutions in ascending order by their first objective. This approach guarantees that the 

succeeding solution can never dominate the preceding solution. Therefore, a 

considerable number of unnecessary comparisons can be omitted. Regarding the 

necessary comparisons, both the sequential search and binary search were studies 

and compared. Zhang et al. extended ENS to the Approximate-ENS (A-ENS) [58]. It 

significantly enhances the time efficiency for many-objective optimizations, which has 

more than three objectives. The time complexity of A-ENS is independent of the 

number of objectives and fixed to 𝑂(𝑁2). 

2.2 Modelling 

In systems engineering, a general approach for modelling is to focus on the dynamics 

of interest. The dynamics that are not quite related to the targeted application are 

ignored. In terms of different levels of details, the model can be classified as steady-

state (static) and transient (dynamic) one. 

(Quasi-) Static Model: Static and quasi-static models are treated under the same 

category since both types of models serve similar purposes. They have several 

advantages in comparison with more detailed models. Without complex differential 

equations, (quasi-) static models are less time-consuming and better qualified for real-

time simulation. With limited approximation ability, their main objectives are to evaluate 

steady-state performance and slow response performance, such as fuel economy and 

exhaust emissions. From the preliminary studies of propulsion systems, the (quasi-) 

static model are widely employed on the system sizing [22,27,48] and energy 

management design [59,60].  

Low-frequency Dynamic Model: Since the static and quasi-static models are mostly 

qualified for average performance ratings, a dynamic model is required to present the 

transient activity. In addition to the benefits of (quasi-) static models, low-frequency 

dynamic models provide detailed descriptions of dynamics that have impacts on 

stability and control performance, with a negligible compromise on the accuracy of 

models. In general, the validation of energy management strategies requests the 

numerical simulation with dynamic models [61,62]. 
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In this thesis, the (quasi-) static models are adopted in the research on the design of 

the hybrid propulsion system and its energy management. The detailed dynamic 

models are studied to develop the simulation system. The literature review of dynamic 

modelling of different components is illustrated as follows. 

2.2.1 Engine 

The Mean Value Model (MVM) is widely applied when the purpose of modelling is to 

identify engine output performance (power and torque), rather than implementing 

detailed engine design. The MVM neglects the discrete cycles of the engine and 

assumes that all processes and effects are spread out over the engine cycle [63]. It not 

only simplifies phenomena that are too fast or sophisticated such as thermodynamic 

and kinetic processes, but also keeps the rotational dynamics and is able to predict fuel 

injection and pollutant formation. Hence, the MVM is suitable for the speed control 

design and fuel/exhaust analysis of engines [64]. However, the traditional MVMs still 

consider the inlet manifold dynamics and flow rate dynamics, etc. Those details are 

unnecessary for the simulation of hybrid propulsion systems, as well as increasing the 

complexity of modelling. As a result, the application of the simplified MVM is 

widespread. 

The simplified MVMs usually focus on torque output and fuel consumption rate. In 

some studies [65,66], the engine model is simplified to a first-order or second-order 

transfer function characterizing the torque response. The dynamics of torque response 

is reflected by the time constant and damping ratio. The engine losses are 

approximated on the steady-state condition. This approach can assure the steady-state 

performance to be well modelled, at the same time preserving a certain level of 

dynamics. However, it cannot reveal the relationship between the engine throttle 

position and output capability, which is the main characteristic interesting researchers. 

This study aims to develop a simplified MVM of the engine that provides an insight into 

the inherent relationship between the throttle command and the torque output. 
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2.2.2 Electric Subsystem 

Motor/Generator: The well-established 𝑑-𝑞 model was introduced to model Permanent 

Magnet Synchronous Motor/Generator (PMSM/PMSG) during the 1990s [67,68]. In a 

salient pole Alternative Current (AC) machine, parameters (such as phase inductance) 

change with the rotor turning in the machine. This introduces a set of time-varying 

variables to the equations for each phase, which increases the complexity of model 

[67]. The transformation of equations to the 𝑑-𝑞 frame forces all varying inductances to 

become constant, thereby simplifying the dynamic model. In terms of steady-state 

behaviour of the 𝑑-𝑞 model, the energy losses are approximated to achieve a good 

match with experimental data. There was a novelty in the use of efficiency data and a 

general purpose friction moment in [69].  

DC/DC Converter: The general-purpose power stage model can be used under 

different operating modes. Since switching power supplies are discontinuous and non-

linear by nature, the linearization techniques need to be applied. The state-space 

averaging model [70] is one of the linearization methods that result in a continuous 

mode of the power stage. This modelling approach has been widely employed in the 

power management of systems including the supercapacitor and battery [71,72]. 

Recently, its implementation on the voltage buck/boost between the PMSM and lithium 

battery draws much attention [73].  

Battery: The main purpose of battery modelling in hybrid propulsion system is to 

present its charge/discharge characteristics and predict the SoC that is indispensable 

for the energy management. Therefore, the electric circuit-based model should be 

precise enough for the application. The most widely applied electric circuit-based 

model is the one proposed by Shepherd in 1965  [74]. This model pays attention to 

charge/discharge characteristics with open circuit voltage and internal resistance. It 

neglects Resistance-Capacity (RC) circuit dynamics since the two RC-circuit modes 

are much faster than the dynamics of SoC. This model can also present the discharge 

and charge process. However, it leads to an algebraic loop problem in the 

mathematical simulation. To resolve this issue, Tremblay, et al., replaced the 

polarisation resistance with the polarisation voltage [75,76].  
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2.3 Energy Management 

Different from the one in a conventional non-hybrid vehicle, the controller in an HEPS is 

generally recognized as two levels: supervisory control and component control [4]. The 

supervisory controller functions at the energy management level, splitting power or 

torque request between the combustion and electric powertrain. The lower level 

component controller, which receives commands from the supervisory controller, aims 

to regulate the performance of each subsystem (component). The component 

controller sometimes is applied to optimize the system efficiency in series hybrid 

systems [77,78] 

With the demand for the energy management, supervisory control strategies attract 

more attention and have been widely studied. Broadly, the energy management 

strategies of hybrid propulsion system can be classified into causal and non-causal 

ones. 

2.3.1 Non-Causal Control 

The purpose of energy managing is to distribute the engine and motor power to meet 

one or several criteria. If the objective is to optimize one performance along the 

complete mission profile, the optimization problem with a time-varying cost function is 

normally formulated. Since the state of this kind of problem is dependent on future 

inputs, the energy management strategy used to solve it is called the non-causal 

control. Many researchers also name this kind of problem as ‘global optimization 

problem’, for which the complete mission is taken as the ‘global information’. However, 

the non-causal or time-global problem is used in this thesis to avoid ambiguity. 

When the fuel minimization is the objective, the non-causal control can get time-global 

optimum by minimizing the cost function representing fuel economy along a given 

mission profile. Unless future mission information is priori-known, the non-causal 

control cannot be implemented on the practical application. Despite this, the non-

causal optimization is still the most studied energy management strategy for the hybrid 

propulsion system [79].  

In general, there are two approaches handling the formulated energy optimization of 

hybrid propulsion systems: the one is to solve the original nonlinear problem directly; 
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another one is to simplify the original problem with approximation techniques. Several 

optimizations have been applied to solve the original energy management problem, 

such as dynamic programming [80,81] and genetic algorithm [82]. The dynamic 

programming is the dominant one for solving the complicated nonlinear system.  

Dynamic Programming: The Dynamic Programming (DP) is one of the most studied 

non-causal optimizations since it can guarantee the global optimality of the solution 

[83]. The conventional DP requests the prior-known of the complete mission, so it is 

also called as Deterministic DP (DDP). The DDP was first introduced to the optimal 

control of hybrid vehicles in the 1980s [84]. After about one decade, Brahma et al. 

applied the same method to the optimization of the power split between electrical 

generation and energy storage in series hybrid vehicles [85]. On the other hand, many 

researchers benefit from extracting sub-optimal power split from the DDP, rather than 

directly implementing the DDP results [86–88]. In the study by Lin et al. [86], the DDP 

was firstly used to optimize the gear-shifting ratio and the power split of a parallel 

HEPS, subjecting to the battery SOC-sustaining constraint. Then, the near-optimal 

rules were extracted and implemented in the real practice. Ref. [88] employed the 

same approach in a series-parallel hybrid configuration. The simulation results of the 

extracted rules were proved to be very close to the optimal ones. However, the 

extraction process is generally time-consuming, and extracted rules are only sub-

optimal for the given mission [89].  

To overcome the drawback of poor adaptability, Lin et al. proposed the Stochastic DP 

(SDP) [89], one year after they studied the DDP. Instead of being optimized over a 

given driving cycle, the power split is optimized over a family of random driving cycles. 

The power demand of driving cycles is represented by the stochastic Markov process. 

It was found that the proposed SDP control algorithm outperforms sub-optimal rules 

extracted from the DDP results. The stress of electrical powertrain was considered in 

the study of SDP for a retrofitted hybrid vehicle [90]. The designed SDP yielded a 13% 

reduction in electrical powertrain stress without sacrificing any fuel savings. However, 

this approach did require a collection of representative driving data on which to be 

based. Those data may not be readily available [90]. 

On the other hand, many researchers aim to reduce the computational burden of DP, 

by combing the DP with other methods [91,92]. However, those DP-based algorithms 

sacrifice the optimality of DP, thereby leading to poorer accuracy [79]. Moreover, those 
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improved algorithms still suffer from large computational cost, since they all consider 

the complete nonconvex characteristics of the energy optimization problem.  

The most effective way to reduce the computational complexity is to simplify the 

original energy optimization problem. So forth, several simplification approaches have 

been implemented, and their corresponding optimization algorithms have been studied. 

Those  programming algorithms include linear programming [93,94], quadratic 

programming [95–97], mixed integer linear programming [98–100], and convex 

programming problem [101–103]. Those approaches can effectively simplify the 

original problem and save the time cost of study. The convex programming is worth 

further studying and more attention, since it can avoid over-simplification compared 

with the linear programming and quadratic programming [104].  

Convex Optimization: The convex optimization was firstly proposed by Murgovski et 

al. [105,106] to solve the component sizing and energy management of a plug-in hybrid 

city bus. Due to low computational complexity, the convex modelling approach enables 

the optimization of problems with several state variables. Therefore, the convex 

programming can simultaneously optimize the battery size and energy distribution, on 

the condition that the city bus is driven along a perfectly known bus line. The original 

non-convex, mixed integer problem was converted to a new problem by two main 

steps.  

The first one is the convexification process. The battery pack energy was first 

introduced as the state variable. The state transition equality became convex but not 

affine, by replacing the battery SoC with battery pack energy. Then, the non-affine 

equality constraint was relaxed to a convex inequality constraint. Finally, the battery 

constraints were converted to a convex form. The second step is to relax the mixed 

integer convex problem into conventional convex programming. Two integer control 

variables—gear ratio and engine on/off were tuned outside the optimization loop. The 

heuristic decisions of these two variables were based on the demanded power and 

speed of vehicles. This heuristic approach removes the need for solving a mixed 

integer problem, thereby reducing the complexity of the problem. The results indicated 

that both the convexification process and heuristic approach have a small influence on 

the optimal solution. The convex optimization pointed toward similar battery size to one 

of the DP [106]. 
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In the following further study of Elbert et al. [107], the convexification process was 

similar to the previous study. However, the optimal engine on/off strategy was 

calculated analytically using Pontryagin’s maximum principle. The engine is switched 

on if and only if the requested power exceeds a certain threshold, which is dependent 

on the co-state and electrical buffer energy. The study also gave the necessary 

condition for a globally optimal solution of the convexified problem. It was shown to 

deliver optimal results in less time than DP even in the presence of active state 

constraints. 

The lifetime of the battery was considered in another study by Murgovski et al. [108]. A 

simple battery wear model was adopted to predict the life of the battery. The battery 

replacement times within the vehicle lifetime is taken as the optimized variable. The 

integer number of replacement times was relaxed to a real number to convexify the 

original problem. The ceiling of this real number was labelled as the maximum number 

of replacements, which was used in the cost function and constraints. One significant 

finding of this paper is that the optimal result of battery size is noticeably different, 

when the battery lifetime is considered in the sizing problem [108]. 

The convex programming has been proved to be an efficient optimization to solve the 

component sizing and energy management problem. However, the approximation and 

relaxation methods used in the convexification process, may lead to the errors between 

the original problem and the convexified problem. In [109], Murgovski et al. illustrated 

that the relaxation of state transition equality does not bring any errors between the 

original and the convexified model. In other words, the solution of the relaxed problem 

will provide the solution to the non-relaxed problem. The proposition given in the paper 

indicated that the global minimum of the original problem could be obtained by solving 

the relaxed problem without the loss of equality. The effect of approximation was not 

discussed in the paper. 

Hu et al. [110] extended the convex programming to the application of fuel cell and 

battery hybrid vehicles. The battery State-of-Health (SoH) model was adopted in the 

study to consider the longevity of the battery. Since the SoH state equation is naturally 

convex, only one equality relaxation is needed to convexify the SoH constraint. In later 

research [111], the objective of optimization was changed to the minimization of carbon 

dioxide emissions. The study adopted an economic grid dispatch model for power 

plants to generate marginal grid carbon dioxide emissions. The results revealed that 
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the size of battery size does not necessarily grow as the emission of carbon dioxide 

levels reduces.  

Currently, there still no research is conducted to apply the convex programming to the 

HEPS of aircraft. This thesis proposes a new convexification method. It can not only 

retain the feature of lossless relaxation from previous studies, but also lead to a more 

straightforward and explicit form of convexified problem.  

2.3.2 Causal Control 

Though the simplification can reduce the complexity of the original problem, the 

application of non-causal energy management still cannot be implemented in the real-

time application, if the complete mission profile is not priori-known. Therefore the 

causal control is introduced to the energy management of hybrid propulsion system. 

In addition to the optimization algorithm, the causal energy management can also refer 

to the rule-based control since the control rules generally consider the current or past 

system information. The rule-based causal energy management and optimization-

based one are illustrated in the following text. 

2.3.2.1 Rule-based One 

The rule-based control is comprised of a series of logic statements, which can 

determine the modes of operation only dependent on past and current system states. 

Therefore it is easily implemented as the real-time supervisory control. Without the 

optimization algorithm, the rule-based control achieves the best criterion by regulating 

the system to one ‘optimal’ condition. This ‘optimal’ condition is determined by the 

designer using different kinds of performance maps. The fuel rate map, motor 

efficiency map and battery efficiency map are selected according to the predefined 

optimal criterion. The rule-based control can be further subcategorized into 

deterministic rule-based and fuzzy rule-based one.  

The deterministic rule-based control employs the classic set theory and elements to 

define different modes of operation. The transitions between those modes are 

determined by the logic rules. The rules are normally designed based on the operation 

states of the engine, such as the most efficient point [112], engine optimal operation 

line [113] and engine peak efficiency region [114]. Regardless of the point/line/region, 
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the basic idea of those rule-based controls is to operate the engine around its optimal 

condition while adopting the EM to provide additional power. In some further studies 

[115], not only the engine/fuel efficiency is considered, but also the transmission power 

loss and electric system efficiency are taken into account. No matter how complicated 

the optimal criterion is, it can be represented by the deterministic states and rules. 

Therefore the rules-based strategy is simple and easy to apply. However, the 

deterministic rules-based control is not robust to the model uncertainties and 

measurement disturbances.  

Fuzzy Logic Control: In essence, the Fuzzy Logic Control (FLC) is the linguistic rule-

based control, so it is an extension of the deterministic rule-based control. Unlike the 

classical set theory, the membership of an element in a fuzzy theory is uncertain and is 

typically numbered between zero and one. That decides that the FLC deals with 

reasoning using an approximate way rather than the precise way. As a result, the FLC 

is tolerant to imprecise measurements and variations, thereby being robust against 

system uncertainties [116].  

As early as the 1990s, Lee and Sul [117] applied the fuzzy logic decision-making to 

generate motor torque command of the hybrid powertrain of a city bus. The torque 

command was dependent on the acceleration pedal stroke and the rotational speed of 

the motor. The fuzzy rules were extracted from road tests, which characterized the 

relationship between the motor torque and the nitrogen oxides emission. The designed 

FLC achieved the 20% reduction of nitrogen oxides emission in the dynamometer test. 

Schouten, et al., [61] developed a set of fuzzy rules to determine the energy split 

between the combustion and electric powertrain. The underlying theme of the rules is 

to optimize the operating efficiency of the complete hybrid propulsion system. The fuel 

economy was also improved in the simulation tests. Schouten, et al., [61] selected the 

Takagi-Sugeno (T-S) fuzzy system, instead of the Mandami type. Baumann, et al., 

[118] gave the definition of Degree of Hybridization (DoH) when conducting the 

mechatronic design of hybrid powertrains. The ICE-dominated configuration 

(DoH<0.48) was preferred due to the smaller battery pack and less cost. It was 

demonstrated that better fuel economy and drivetrain efficiency could be achieved with 

the fuzzy logic controller for the ICE-dominated hybrid automobile.  

In some further studies, the FLC is tuned by other intelligent algorithms [119–121]. The 

parameters of membership functions of FLC were optimized by the genetic algorithm 

[119]. Further reduction of fuel and emissions were realized with the tuned parameters. 
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However, those improved advance algorithms sacrifice the low-complexity and easy-

implementation of fuzzy rules control. It can be concluded from preceding studies that 

the FLC can regulate the HEPS to operate around its pre-specified ideal condition, 

such as the best system efficiency, the lowest emissions and the minimum fuel usage. 

In addition, fuzzy logic based methods are insensitive to model uncertainties and are 

robust against the measurement of noises and disturbance [117,118]. 

In sum, the rule-based controls are made up of a series of logic statements and 

predefined criteria, thereby being easily implemented in practice. However, the set of 

logic rules is usually designed based on the human expertise and engineering intuition. 

Accordingly, the development of rule-based energy management strategy is usually 

time-consuming and experience-dependent. Furthermore, since the rule-based control 

cannot give any necessary or sufficient conditions for the control to be optimal, the 

optimality of solutions cannot be guaranteed. 

2.3.2.2 Optimization-based One 

The optimization-based strategy becomes more and more attracting, as its optimality 

can be, to some extent, supported by the theoretical basis. The difference between the 

non-causal and causal optimization is that the latter one does not need the future 

information. Many studies have found that the non-casual optimization problem can be 

converted to a causal optimization problem based on optimal control theories. 

Pontryagin’s Maximum Principle: The Pontryagin’s Maximum Principle (PMP) is a 

classic optimal control approach. It can find the best possible control for the original 

non-causal problem, by solving several causal functions. The primary benefit of PMP is 

that it can provide the necessary condition for the solution to be the optimal control of 

the original non-causal problem. Basically, the PMP can be taken as an approach of 

converting a non-causal optimization to the corresponding Hamiltonian function 

minimization. Another advantage of PMP is that it can give the analytical solution of 

energy optimization problems [122,123]. The optimization constraints can be 

represented by the algebraic equations. Kim, et al., [124][125] demonstrated the 

conditions of reaching the global optimality for PMP.     

The Hamiltonian function can be minimized instantaneously using current information, 

if the initial co-state value is pre-known. However, the future information is requested to 

estimate the optimal value of initial co-state. Otherwise, the system state (the battery 
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SoC) may not reach its ideal value at the end of the mission. This limits the application 

of PMP in the on-line implementation. Some studies around PMP is how to estimate 

the initial co-state. Delprat et al. [126] applied the dichotic search to off-line optimize its 

Lagrangian multipliers. Less than ten iterations were requested to converge to the 

optimal point. Serrao et al. [122] employed the same approach to estimate the initial 

co-state value. On the other hand, some researches took advantage of the inner 

relationship between PMP and DP [127,128]. In other words, the optimal co-state is 

related to the optimal cost-to-go result from DP. However, the above-mentioned 

approaches all need future information of the mission, since generally implemented on 

the off-line optimizations. Moreover, the optimal value of initial co-state varies 

depending on the driving cycles. 

The application of PMP makes the real-time energy optimization theoretically feasible. 

Still large computational cost exists due to nonlinear and nonconvex characteristics of 

the optimization problem. To reduce the computational loads, various approximations 

are applied to the simplification of the original problem. Ambuhl et al. [129] 

implemented a quadratic approximation on both the engine fuel rate and the electric 

powertrain efficiency. Koot et al. [96] described the energy optimization problem using 

the quadratic programming structure. It reduces the time consumed of optimization, 

compared with the DP. The work of Tate and Boyd [93] converted the original 

nonconvex problem to a large linear programming problem, by approximating the fuel 

map and battery losses with linear models. To overcome the deficiency of the above-

mentioned fitting method, Hou et al. [62] firstly proposed a piecewise linear 

approximation to fit the fuel rate map. The distortion of the fuel rate map was 

successfully avoided by considering the turning point of efficiency. 

Equivalent Consumption Minimization Strategy: The Equivalent Consumption 

Minimization Strategy (ECMS) is one of the most promising causal optimizations since 

proposed by Paganelli [130]. It can be considered as the extension of PMP by 

replacing the co-state variable with the so-called equivalence factor [131]. Then the 

Hamiltonian function is converted to a new objective—the equivalent consumption. This 

new objective has a real physical meaning as the sum of actual fuel consumption from 

ICE and equivalent electric energy consumption from the battery. 

The first challenge of the ECMS is to estimate the equivalence factor. Since the 

equivalence factor is essentially related to the co-state variable of PMP, the 

researchers first applied the Hamilton-Jacobi-Bellman equation to predict the 
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equivalence factor [128,132]. However, this approach requests the optimal cost-to-go 

result from DP. Put differently, a-priori knowledge of mission has to be known to 

estimate the equivalence factor. This sacrifices the advantage of causal optimization. 

Some studies implemented other methods to off-line evaluate the optimal equivalence 

factor. Ref. [133] optimized the corresponding equivalent discharging/charging factor 

using the genetic algorithm, before implementing the ECMS on-line. If the minimization 

of equivalent consumption was considered as a multi-objective optimization problem, 

the equivalence factor could be estimated from the Pareto front [134].  

Unfortunately, those approaches all need future information about the system. 

Moreover, the optimality of equivalence factor is heavily dependent on the driving 

cycles. Therefore, many studies start to approximate the equivalence factor according 

to its physical meaning. Since the equivalence factor can be interpreted as the 

equivalent amount of fuel represented by a given amount of electrical energy, it can be 

evaluated using the specific fuel usage of engine and the efficiency of electrical 

component [135–137]. 

The key issue with the ECMS, when applied in real-time, is that it cannot sustain the 

battery SoC due to the equivalence factor being evaluated off-line [132]. As a 

consequence, the Adaptive-ECMS (A-ECMS) have been addressed to regulate the 

equivalence factor on-line. Generally, A-ECMS can be classified into two kinds. The 

first one is to update the original equivalence factor with a correction term regarding the 

SoC value. At the beginning of the establishment of the concept of equivalence factor, 

the penalty function was already applied to regulate the SoC behaviour [138]. The 

control variable was corrected by the penalty function if the SoC deviates from its 

desired value. The commonest way to adaptively update the equivalence factor was to 

adopt the P or PI controller [139,140]. The input of the controller was the error between 

the current SoC and desired SoC. Ref. [137] compared the results of different methods 

for the SoC correction. 

The second category of A-ECMS, sometimes, is also called as predictive ECMS, since 

it needs to predict the future information on-line. A neural network based velocity 

predictor was constructed by Ref. [141] to forecast the short-term future driving 

behaviours by learning the data stored in 3-D maps. Instead of keeping updating the 

optimal equivalent factor, Ref. [142] demonstrated an approach to estimate the upper 

and lower bounds of the optimal equivalent factor, which were independent of drive 

cycles. The second category of A-ECMS is obviously more advanced, but it suffers 
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from larger computational cost when implementing the optimization and profile forecast 

simultaneously. This approach might be a good compromise for ground vehicle, but still 

not ideal for aircraft.  

The aforementioned A-ECMS algorithms aim to realize the charge-sustaining strategy 

[138], which is typical of hybrid ground vehicles. However, the charge-sustaining 

strategy is not ideal for aerial vehicle applications [143]. If the SoC is sustained at a 

very low level, the residual battery capacity cannot guarantee a safe landing when 

there is a failure of the engine; on the other hand, maintaining a high-level SoC, means 

full use cannot be made of the electrical energy in the battery. Therefore, for aircraft, it 

is better that the SoC is held within a range instead of at a specific value. The most 

intuitive way is to combine the ECMS with a rule-based control [135,144], since the 

desired SoC requirement can be achieved using logic rules. This means, the control 

performance will not be heavily dependent on the selection of equivalence factor. 

2.3.3 Summary 

The brief review of non-causal and causal energy management strategy for HEPS is 

presented above. Compared with the causal approaches, the non-causal energy 

management is generally preferred for off-line applications, since it requests the 

complete information of missions. The non-causal optimization can also be taken as 

the benchmark for causal approaches, since it can reach time-global optimal 

trajectories of control variables and system states. Meanwhile, the non-causal control 

may be applied to the on-line mission where the upcoming mission profile is priori-

known or predictable. 

On the other hand, the causal strategy has less limitation since it only requires the 

current or past system information. However, an instantaneous optimization cannot 

guarantee the time-global optimum along the complete mission. Furthermore, the 

causal control commonly cannot meet the requirement of system states (for example 

the final state), since the future information is not considered in the algorithm. 

Basically, the non-causal and causal energy management are preferred under different 

circumstances. If the flight mission varies depending on the flight environment, the 

causal control needs to be adopted to update control variables on-line. If a specific sub-

task is demanded for the part of the future flight, the non-causal control is preferred to 
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achieve the optimal results, since all information about this sub-task is previously 

known. Therefore, both the non-causal and causal control are required to complete a 

complicated mission. 

2.4 Conclusion 

A multi-objective optimization—NSGA will be applied to size the hybrid propulsion 

system, since it can simultaneously optimize several objectives. A new non-dominated 

sorting algorithm is needed to reduce the computational complexity of NSGA. The 

newly proposed approach will be developed based on the ENS algorithm. 

Both the non-causal and causal energy management have their advantages and 

disadvantages and are worth further studying. For the non-causal control, the convex 

programming will be studied, where a new convexification approach is needed to 

simplify the original non-causal problem. For the causal control, the ruled-based ECMS 

optimization will be proposed to transform the original non-causal problem to the causal 

problem, and solve the equivalence factor issue. In this study, as opposed to previously 

published articles, the fuzzy rules will be performed to improve the robustness of the 

supervisory control to system uncertainties.  
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 Design 

This chapter aims to design a hybrid electric propulsion system for the prototype 

aircraft. Parameters, including the weight, maximum power or energy capacity of the 

main components in the propulsion system are optimized using the system sizing.  

The system design starts by first covering the analysis of the prototype aircraft. The 

performance requirements are evaluated on the basis of the aerodynamics of prototype 

airframe. The power-weight models of different sorts of engines and motors are also 

established and compared. A high-level parallel configuration is presented before the 

system sizing. 

The system sizing is formulated as a multi-objective optimization problem with two 

contradictory objectives. The fuel consumption is minimized while the flight duration is 

maximized. Then, a new non-dominated sorting algorithm is proposed, and its 

computational complexity is analysed. The constraint handling is integrated into the 

original Non-dominated Sorting Genetic Algorithm (NSGA) to address the optimization 

constraints (performance requirements). The preferred solution from the Pareto front is 

evaluated. This preferred solution is also set as the configuration of the hybrid 

propulsion system for the prototype aircraft.  

In the next two sections, the performance of hybrid aircraft is verified by comparing with 

the prototype aircraft. The sensitivity of optimization results to the variation of 

optimization parameters, system parameters and aircraft performance is further 

discussed. The main propulsion components are selected among off-the-shelf products 

on the basis of the preferred optimal solution. 
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3.1 Prototype Aircraft 

The prototype aircraft is developed based on Ercoupe, first manufactured by the 

Engineering and Research Corporation (ERCO).  It is a low-wing monoplane aircraft 

and usually equipped with Continental combustion engine from 48 kW to 67 kW. In this 

study, a Continental C-75-12 powered model is selected as the template of prototype 

aircraft. The basic properties and performance of the prototype aircraft are given in 

Table 3-1. The Maximum Take-Off Weight (MTOW) is 572 kg when the 56 kW 

Continental engine used. Some of the parameters are explicitly used in the following 

sections, so their symbols are also given in the table. 

Table 3-1 Basic Properties 

Prototype Aircraft  Symbol Value 

Airframe Wingspan - 9.1 m 

 Length - 6.3 m 

 Height - 1.8 m 

 Wing area 𝑆  13.3 m2 

 Aspect ratio 𝐴𝑅  6.23 

 Airfoil - NACA 43013 

Performance Maximum speed - 177 km/h 

 Range speed - 118 km/h 

 Endurance speed - 90 km/h 

 Stall speed - 77 km/h 

 Rate of climb 𝑅𝑐  2.8 m/s 

 Take-off distance 𝑑𝑡𝑘𝑜𝑓  230 m 

 Endurance duration - 2-3 h 

    

Others MTOW - 572 kg 

 Engine power - 56 kW 
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3.1.1 Aerodynamics 

The aerodynamic analysis provides the drag polar, which is directly related to the 

required thrust and power for the aircraft. It has a significant impact on the propulsion 

system sizing and therefore has to be analysed in some detail. The drag polar 

suggests the relationship between the lift coefficient and drag coefficient. It can be 

expressed as an equation in terms of the drag coefficient on the lift coefficient: 

𝐶𝐷 = 𝐶𝐷,0 +
(𝐶𝐿−𝐶𝐿,0)

2

𝜋𝑒𝐴𝑅
, (3-1) 

where 𝐶𝐷,0 is the zero-lift parasite drag coefficient, 𝐴𝑅 is the aspect ratio, and 𝑒 is the 

Oswald efficiency factor typically between 0.7 and 0.85 [145]. The minimum-drag lift 

coefficient 𝐶𝐿,0 is introduced to reflect the truth that the parasite drag is slightly higher 

than the minimum drag [146]. 

The parasite drag is a consistent percentage of the skin-friction drag, so the parasite 

drag coefficient can be addressed by 𝐶𝐷,0 = 𝐶𝑓𝑒
𝑆𝑤𝑒𝑡

𝑆
, where 𝐶𝑓𝑒  represents the skin 

friction coefficient and its estimated value is given by Ref. [145] for mid-scale aircraft. 

Aircraft wetted area 𝑆𝑤𝑒𝑡 can be calculated by the actual exposed planform area, while 

𝑆 refers to wing area. 

The minimum-drag lift coefficient 𝐶𝐿,0 can be calculated using the minimum lift, which 

occurs at the maximum speed based on the following relation: 

𝐶𝐿 =
2𝑊𝑔

𝜌∞𝑉∞
2 𝑆

, (3-2) 

for steady flight, in which 𝜌∞  and 𝑉∞  can be any available chosen values. And 𝑊𝑔 

represents the global weight of aircraft. Similarly, the coefficient 𝐶𝐿,𝑚𝑎𝑥 is acquired by 

using the stall speed. 

The endurance speed is corresponding to the maximum endurance duration, which 

requests the minimum power from the propulsion system. Put differently, the aircraft 

achieves the maximum 𝐶𝐿
3/2
/𝐶𝐷 at the endurance speed [146]. Combining 𝐶𝐿

3/2
/𝐶𝐷 with 

Eq. (3-1), the lift coefficient at endurance speed 𝐶𝐿,𝑒𝑛𝑑𝑢𝑟 can be obtained. On the other 
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hand, the range speed refers to the speed leading to the maximum range, flying at the 

maximum 𝐶𝐿/𝐶𝐷  [146]. Similar to the endurance speed, the lift coefficient at range 

speed 𝐶𝐿,𝑟𝑎𝑛𝑔 can be calculated using Eq. (3-1). 

3.1.2 Airspeed and Power Requirements 

The aircraft when retrofitted will be required to meet a number of performance targets, 

such as the requirements of airspeed and propulsion power.  

The first will be that the endurance speed will have an adequate safety margin above 

the stall speed. As mentioned in Eq. (3-2), the aircraft flight speed is determined by the 

lift coefficient and the wing loading, for steady-level flight 𝑉∞ = (2𝑊𝑔/𝜌∞𝐶𝐿𝑆)
1/2 . 

Therefore, the stall speed 𝑉𝑠𝑡𝑎𝑙𝑙, endurance speed 𝑉𝑒𝑛𝑑𝑢𝑟, and range speed 𝑉𝑟𝑎𝑛𝑔𝑒 of 

hybrid powered aircraft can be calculated by substituting their lift coefficients, 

respectively. 

Though those three speed is vital for identifying the performance of aircraft, the ideal 

cruising speed usually is none of them. The range speed is known as the most fuel 

economy speed, but generally too slow for aircraft cruising. This thesis introduces 

Carson's Speed [147] as the optimum cruising speed, since this speed desires to 

achieve the minimum additional fuel consumption compared with the real minimum 

one. Unless otherwise stated, the cruising speed 𝑉𝑐𝑟𝑢𝑖𝑠𝑒 used in the thesis would be 

Carson's Speed. The relation between Carson's Speed and the range speed is 

𝑉𝑐𝑟𝑢𝑖𝑠𝑒 = 3
1/4𝑉𝑟𝑎𝑛𝑔𝑒. 

Secondly, the minimum and maximum power requirements also need to be 

determined, and for steady-level flight, the power requirement is expressed by: 

𝑃𝑟𝑑 = √
2𝑊𝑔

3

𝜌∞𝑆
∙
𝐶𝐷

𝐶𝐿
3/2. (3-3) 

Using Eq. (3-3), the power needed for the steady-level flight at different airspeeds (like 

𝑃𝑒𝑛𝑑𝑢𝑟) can be obtained. The power at the endurance speed is the minimum power 

demanded for steady-level flight, i.e.  𝑃𝑚𝑖𝑛 = 𝑃𝑒𝑛𝑑𝑢𝑟.  
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On the other hand, the maximum power requirement is dependent on the take-off and 

climbing performance, mainly featured by the take-off roll and Rate of Climb (RoC). 

For a reciprocating engine/propeller combination, the power is reasonably constant at 

the take-off phase. Neglecting the rolling resistance and using average thrust and drag, 

the specifying take-off distance can be expressed as: 

𝑑𝑡𝑘𝑜𝑓 =
𝑊𝑔𝑉𝐿𝑂

2

2𝑔(𝐹𝑎𝑣𝑔−𝐷𝑎𝑣𝑔)
, (3-4) 

where 𝑔 is the acceleration of gravity. The lift-off velocity 𝑉𝐿𝑂 should be no less than 

1.1𝑉𝑠𝑡𝑎𝑙𝑙  [146]. 𝑇𝑎𝑣𝑔  and 𝐷𝑎𝑣𝑔  are equal to their values at 0.7𝑉𝐿𝑂 , respectively. 

Therefore, the take-off power 𝑃𝑡𝑘𝑜𝑓 can be estimated using 𝑃𝑡𝑘𝑜𝑓 = 𝑇𝑎𝑣𝑔 ∙ 0.7𝑉𝐿𝑂. 

Climbing to a higher altitude at a certain rate is another important characteristic of 

aircraft performance. 𝑅𝑐 is a function of excess power, which is the difference between 

available power (𝑃𝑐𝑙𝑖𝑚𝑏) and the power required to overcome drag (𝑃𝑟𝑑): 

𝑅𝑐 =
𝑃𝑐𝑙𝑖𝑚𝑏−𝑃𝑟𝑑

𝑊𝑔
, (3-5) 

Here, the power demanded for cruising, 𝑃𝑐𝑟𝑢𝑖𝑠𝑒, not minimum power required, is taken 

to represent the power required (𝑃𝑟𝑑). Thus, the power available for climbing can be 

addressed by: 𝑃𝑐𝑙𝑖𝑚𝑏 = 𝑃𝑐𝑟𝑢𝑖𝑠𝑒 + 𝑅𝑐 ∙ 𝑊𝑔. 

3.1.3 Weight Models 

From the equations in the previous section, all performance of aircraft depends on its 

global weight. The global weight of aircraft mainly consists of the weight of propulsion 

system and airframe with other devices (avionics and mechanics etc.). Different from 

the conventional propulsion system, an HEPS includes both engine and electric motor. 

The weight of engine and motor increases with the growth of its power capability.  

This study compares the weight models as the function of maximum power, between 

two types of reciprocating engines. As shown in Figure 3-1, the rotary engine has 

higher power-to-weight ratio than the piston engine with 1-3 cylinders, when the engine 
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output capability is under 100 kW. Between 30 kW and 90 kW, four-cylinder piston 

engines are also favoured due to less fluctuation of output torque, compared with 1-3 

cylinders. However, few 3-4 cylinders are employed in rotary engines during this power 

range, since the rotary engine can achieve smooth operation with only 1-2 cylinders. 

 

Figure 3-1 Comparison of weight model for different engines 

With respect to electric motors, it is well known that BrushLess Direct Current motor 

(BLDC) and PMSM (PMSG) have better efficiency and power density than the 

induction motor [148]. The weight models of BLDC and PMSM motors from different 

companies are given in Figure 3-2. The maximum rotational speed of selected BLDC is 

around 3000-5000 rpm when without load, while the maximum no-load rpm of selected 

PMSM is around 5000. 

Regarding off-the-shelf motors, the PMSM normally can achieve higher maximum 

power output than the BLDC. The same type of electric motor from different companies 

normally have different power densities, but products from the same company show 

similar values. The fitted lower boundary implies the highest power density of the 

electric motors (considering BLDC and PMSM) can achieve; while the fitted higher 

boundary denotes the lowest power density of the electric motors quoted in the thesis.  
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Figure 3-2 Weight model for electric motor 

On the other hand, the weight of the motor controller cannot be ignored for high 

voltage/current one. The fitted results of weight model for the motor controller are also 

shown in Figure 3-3. In a word, for the aircraft in this study, the rotary engine is more 

suitable than the piston engine, regardless of cylinders. This thesis also selects 

PMSM/PMSG with the highest-power-density. 

 

Figure 3-3 Weight model for the controller of electric motor 

3.2 Configuration 

There are various hybrid powertrain configurations currently in use. The most 

commonly used configurations are series, parallel and series-parallel architecture. Of 



Design 

40 

these, the series architecture enables the engine to operate at its ideal operating 

condition. However, its system efficiency is relatively low since large energy losses 

exist in the energy conversion [149]. Also, the series configuration cannot achieve a 

combination of combustion and electrical power. The series-parallel is the most 

functional structure of the three architectures. Nevertheless, its complicated clutch/gear 

mechanism raises the issue of reliability on real aircraft applications. Compared with 

the series-parallel configuration, the parallel configuration is lighter and less complex, 

whilst keeping the flexibility of hybridization. According to the work by Harmon [150] 

and Hiserote [45], the single-shaft parallel configuration is best suited for small- and 

medium-scale aircraft. 

Electrical

Connection

Non-electrical

Connection

Engine Propeller

Power 

Electronics
Battery

Motor/

Generator

Decoupling

Device & Gear
Fuel

 

Figure 3-4 Parallel configuration of HEPS 

The high-level diagram of the parallel hybrid propulsion system developed in this study 

is shown in Figure 3-4. The energy/power flows between the combustion and electric 

powertrains are indicated by the red, purple and blue line around blocks. The red 

dotted line represents the fuel flow to the engine and the corresponding power to drive 

the propeller, while the purple dashed line denotes the engine power used to charge 

the battery. The electric power supporting the propeller driving is represented by the 

blue solid line. 

The output shaft of the engine and the input shaft of the motor/generator are connected 

through a decoupling device and reduction gear. The energy needed by the motor is 

supplied by a battery with the integrated power electronics. This setup enables the 

system to combine the power from engine and motor/generator, when the power 

demand exceeds that which can be provided by only one of the propulsive units. 

Otherwise, when the power demand is lower than the maximum engine power, the 

motor/generator can draw power from the engine to charge the battery. Moreover, this 

architecture also permits the motor to drive the propeller alone, if electric-only flight 
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mode is required. The hybrid architecture has the property that it is fault-tolerant. In the 

case of a failure of one of the propulsion units, it can de-couple the combustion 

drivetrain or shut down the electric power supply, so that one of the working units will 

continue driving the propeller. 

3.3 Propulsion System Sizing 

This section will firstly formulate the sizing of hybrid propulsion system into a standard 

multi-objective optimization problem. As explained in Section 2.2, the (quasi-) static 

models are employed in the study of propulsion system sizing. 

3.3.1 Objectives and Variables 

Different from the traditional propulsion system, the hybrid one has two additional 

parameters that determine its capability—hybrid of power and hybrid of energy.  The 

former one is normally called Degree of Hybridization (DoH) [151], which compares the 

maximum installed power between the engine and electric motor; while the latter 

parameter reveals the ratio of energy storage from two sources. In other words, the 

maximum power of the engine and electric motor, and the energy storage of fuel and 

battery amount must be taken as the optimized variables. It is more common to refer to 

the mass of the fuel rather than its energy content since the former provides a more 

straightforward representation of fuel consumption. Therefore, the mass of fuel and 

battery are considered as the optimized variables, replacing the energy storage of fuel 

and battery, respectively. 

The fuel mass of a flight mission cycle can be presented as: 

𝐽 = ∫ �̇�𝑓𝑢𝑒𝑙(𝑃𝐼𝐶𝐸)𝑑𝑡
𝑡𝑓
0

, (3-6) 

where �̇�𝑓𝑢𝑒𝑙 is the rate of fuel usage and 𝑡𝑓 is the end time of flight.  

From Eq. (3-6), the total fuel consumption mainly depends on the power drawn from 

the engine and the flight duration. The instantaneous engine power 𝑃𝐼𝐶𝐸 is generally 

related to the power requirement 𝑃𝑟𝑒𝑞 using the power-split variable 𝜎𝑝, and so 𝜎𝑝 has 
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to be considered as variable to be optimized. Note that 𝜎𝑝 is time-variant and 𝑃𝐼𝐶𝐸(𝑡) =

(1 − 𝜎𝑝(𝑡)) ∙ 𝑃𝑟𝑒𝑞(𝑡). 

Eq. (3-6) shows that one can minimize fuel consumption by reducing either or both 

flight duration 𝑡𝑓  and engine power 𝑃𝐼𝐶𝐸 . However, the flight time is a variable that 

every designer desires to maximize. Thus, fuel consumption 𝑚𝑓𝑢𝑒𝑙 and flight duration 𝑡𝑓 

should be considered as contradictory objectives. 

In brief, the optimized variables consist of the maximum engine power 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥, the 

maximum motor power 𝑃𝐸𝑀,𝑚𝑎𝑥, fuel mass 𝑚𝑓𝑢𝑒𝑙, battery mass 𝑚𝑏𝑎𝑡𝑡, flight duration 𝑡𝑓, 

and power-split variable 𝜎𝑝. Two objective functions are defined by: 

min 𝑓1 = 𝑚𝑓𝑢𝑒𝑙, (3-7) 

min 𝑓2 = − 𝑡𝑓.  

3.3.2 Constraints 

One of the constraints of sizing hybrid propulsion system is that the performance of the 

prototype aircraft cannot be significantly compromised. Specifically, the take-off and 

climbing performance are requested not to be sacrificed. In other words, the hybrid 

aircraft has to achieve larger RoC and shorter take-off distance, or at least the same 

value. The typical stall and endurance speed are not fixed, but the difference between 

those two values has to be maintained (see Eq. (3-8)).  

Furthermore, the hybrid propulsion system has to meet other mission requirements, 

such as electric-only cruising and battery charging. Therefore, a certain amount of on-

board fuel and electrical energy source (battery) is also needed to complete the whole 

flight mission.  

In sum, all performance and mission requirements can be categorized into three points: 

airspeed requirement, power requirements, and energy requirements. All of them can 

be governed by the inequality constraints expressed by Eqs. (3-8)-(3-13). 
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𝑉𝑠𝑡𝑎𝑙𝑙 + ∆𝑉 ≤ 𝑉𝑒𝑛𝑑𝑢𝑟, (3-8) 

(𝑃𝐼𝐶𝐸,𝑚𝑎𝑥 ∙ 𝑒𝑎𝑖𝑟 + 𝑃𝐸𝑀,𝑚𝑎𝑥 ∙ 𝑒𝑒𝑙𝑒𝑐) ∙ 𝑒𝑚𝑒𝑐ℎ ≥ 𝑚𝑎𝑥{𝑃𝑡𝑎𝑘𝑜𝑓 , 𝑃𝑐𝑙𝑖𝑚𝑏}, (3-9) 

𝑃𝐸𝑀,𝑚𝑎𝑥 ∙ 𝑒𝑒𝑙𝑒𝑐 ∙ 𝑒𝑚𝑒𝑐ℎ ≥ 𝑃𝑚𝑖𝑛, (3-10) 

𝑃𝐼𝐶𝐸,𝑚𝑎𝑥 ∙ 𝑒𝑎𝑖𝑟 ∙ 𝑒𝑚𝑒𝑐ℎ ≥ 𝑚𝑎𝑥 {𝑃𝑐𝑟𝑢𝑖𝑠𝑒 ∙ (1 − 𝜎𝑝(𝑡))}, (3-11) 

𝑚𝑓𝑢𝑒𝑙 ≥
𝐸𝑓𝑢𝑒𝑙

𝑒𝑎𝑖𝑟∙𝑒𝑚𝑒𝑐ℎ
∙ 휀𝑓, (3-12) 

𝑚𝑏𝑎𝑡𝑡 ≥
𝐸𝑏𝑎𝑡𝑡

𝑒𝑒𝑙𝑒𝑐∙𝑒𝑚𝑒𝑐ℎ
∙
1

𝜀𝑏
. (3-13) 

Eq. (3-9) guarantees that the combination of the maximum engine and motor power 

can satisfy the take-off and climbing requirements. 𝑒𝑎𝑖𝑟 is an altitude-related factor for 

correcting the engine output capability. 𝑒𝑒𝑙𝑒𝑐 consists of the motor, DC/DC efficiency 

and battery efficiency. 𝑒𝑚𝑒𝑐ℎ represents the mechanical efficiency mainly affected by 

the propeller. Eq. (3-10) means the electric motor has the ability to power the aircraft by 

itself; while Eq. (3-11) ensures that the engine has extra power to charge the battery 

during the cruising, if necessary. 

With regards to Eqs. (3-12) and (3-13), 𝐸𝑓𝑢𝑒𝑙 and 𝐸𝑏𝑎𝑡𝑡 denotes the consumed fuel and 

battery energy, respectively. The total fuel consumption is equal to the fuel used during 

the flight; while the battery energy storage has to cover the additional usage for the 

emergency condition, such as engine failure. The calculations of consumed fuel and 

battery energy are addressed by Eqs. (3-14) and (3-15): 

𝐸𝑓𝑢𝑒𝑙 = ∫ (𝑃𝐼𝐶𝐸(𝑡))𝑑𝑡
𝑡𝑓
0

= ∫ (𝑃𝑟𝑒𝑞(𝑡) ∙ (1 − 𝜎𝑝(𝑡))) 𝑑𝑡
𝑡𝑓
0

, (3-14) 

𝐸𝑏𝑎𝑡𝑡 = ∫ (𝑃𝐸𝑀(𝑡))𝑑𝑡
𝑡𝑓
0

= ∫ (𝑃𝑟𝑒q(𝑡) ∙ 𝜎𝑝(𝑡)) 𝑑𝑡
𝑡𝑓
0

+ ∫ (𝑃𝑚𝑖𝑛)𝑑𝑡
𝑡𝑒𝑚𝑒𝑟𝑔
0

, (3-15) 

where power requirements 𝑃𝑟𝑒𝑞(𝑡)  changes at different flight phase, for example 

𝑃𝑟𝑒𝑞(𝑡) = 𝑃𝑐𝑙𝑖𝑚𝑏 during the climbing period. 휀𝑓 is the Specific Fuel Consumption (SFC) 
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of the engine, while 휀𝑏 is the energy density of the battery. The emergency time 𝑡𝑒𝑚𝑒𝑟𝑔 

represents the time duration for aircraft safe-landing using the electric power source. 

This parameter (𝑡𝑒𝑚𝑒𝑟𝑔) can also be considered as the maximum time for continuously 

electric-only fly. 

3.4 Non-dominated Sorting Genetic Algorithm 

NSGA is one of the multi-objective evolutionary algorithms that can find multiple 

Pareto-optimal solutions in one single simulation run. As one of the first such proposed 

evolutionary algorithms, the NSGA approach has been widely used though some 

shortage had been concerned [52]. To address these issues, the same research group 

led by Kalyanmoy Deb proposed an elitist version–NSGA-II [52] in 2002.  

The development of the optimization algorithm in this thesis is based on an open 

source NSGA-II programmed by Aravind Seshadri [152]. Some changes are made to 

improve the computing efficiency. A new non-dominated sorting algorithm is developed 

to replace the FNS approach by Kalyanmoy Deb [52]. Also, the constraint handling is 

incorporated into the program.  

3.4.1 Non-dominated Sorting Algorithm 

Non-dominated sorting is a procedure where solutions in the population are assigned 

to different Pareto fronts based on their dominance relationships. It plays a critical role 

in the sorting operation of the NSGA. Note that the strong dominance definition [56] is 

used in this thesis. If there is no any other individual/solution whose objectives are all 

better than this solution, this solution is the non-dominated solution in the population.    

Assume that the individuals in the population 𝑃  can be categorized into 𝐾  fronts, 

denoted as 𝐹𝑖, 1 ≤  𝑖 ≤  𝐾. According to the non-dominated sorting, all non-dominated 

solutions in 𝑃 are first assigned to the front 𝐹1; then, the non-dominated solutions in 

𝑃 − 𝐹1, are assigned to 𝐹2. This procedure repeats until all solutions in 𝑃 are assigned 

to a front 𝐹𝑖, 1 ≤  𝑖 ≤  𝐾. 

Non-dominated sorting can acquire multiple fronts in one simulation run, but its 

operation is computationally intensive. Dominance comparisons between the solutions 
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are the main operation in the non-dominated sorting. The interesting factor is that many 

dominance comparisons between solutions are unnecessary and can be spared. As 

illustrated in the Ref. [57], one dominance comparison can be categorized into the 

following four cases, when the solution 𝑝𝑚 is compared with the solution 𝑝𝑛: 

1) Case 1: 𝑝𝑚 is dominated by 𝑝𝑛, or 𝑝𝑛 is dominated by 𝑝𝑚; 

2) Case 2: 𝑝𝑚 and 𝑝𝑛 are non-dominated, and they belong to the same front 𝐹𝑖, 

where 𝐹𝑖 is the current front; 

3) Case 3: 𝑝𝑚 and 𝑝𝑛 are non-dominated, and they belong to the same front 𝐹𝑖, 

where 𝐹𝑖 is not the current front; 

4) Case 4: 𝑝𝑚 and 𝑝𝑛 are non-dominated, but they belong to different fronts. 

For non-dominated sorting, comparisons in Case 1 and comparisons in Case 2 cannot 

be avoided. Thus, they are termed necessary comparisons. Most of the comparisons in 

Cases 3 and 4 are unnecessary comparisons. The necessary comparisons in Case 1 

refer to the comparisons between solutions in different fronts, while the necessary 

comparisons in Case 2 refer to comparisons between solutions in the same front. The 

number of necessary comparisons in Cases 1 and 2 is the theoretical minimum number 

of needed dominance comparisons for any non-dominated sorting algorithm. 

Unfortunately, most popular non-dominated sorting approaches have a total number of 

dominance comparisons much higher than this minimum number. The reason is that 

those non-dominated sorting algorithm cannot avoid the unnecessary comparisons 

existing in Cases 3 and 4. 

To improve the computational efficiency, many existing non-dominated sorting 

algorithms focus on the reduction of the number of unnecessary comparisons. The new 

non-dominated sorting algorithm proposed in this thesis can further reduce the 

unnecessary comparisons belonging to Cases 3 and 4. 

3.4.1.1 Hierarchical Non-Dominated Sort Framework 

ENS strategy was proposed in 2015 [57] and referenced by many studies, since it can 

considerably reduce the number of unnecessary comparisons existing in Cases 3 and 

4. The chief merit of ENS is that it determines the front to which each solution belongs 

separately. Consequently, a solution to be assigned only needs to be compared with 

solutions that have already been assigned to a front. 
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Hierarchical Non-Dominated Sort (HNDS) algorithm was proposed in 2017 [153], also 

based on ENS. The HNDS first sorts all candidate solutions in ascending order by their 

first objective. Then it compares the first solution with all others one by one to make a 

rapid distinction to decide if this solution belongs to the current front. The HNDS was 

proved to be more computationally efficient than the FNS, Arena’s principle and 

deductive sort. The operation of HNDS is illustrated as follows. 

Before conducting the sorting algorithm, the 𝑛 solutions in the population 𝑃 are sorted 

in an ascending order according to the first objective value. The sorted solution is 

contained in the set 𝑄. If the first objective values of two solutions are the same, then 

they are sorted according to the second objective value. This procedure continues until 

all individuals in the population are sorted. If solutions have the same value in all 

objectives, their order can be arbitrary. Since all the solutions are sorted by one 

objective, the following conclusions can be inferred: 1) the first solution must belong to 

the current front; 2) the succeeding solution can never dominate the preceding solution; 

3) if a succeeding solution is not dominated by the preceding solution, the remaining 

objectives of this succeeding solution cannot be worse than the remaining objectives of 

the preceding solution. 

To find the solutions in the set 𝑄 that belongs to the current front 𝐹𝑘, HNDS divided the 

comparison into several rounds. In the first round, the algorithm assigns the first 

solution to the current set and compares the first solution with all succeeding solutions. 

The succeeding solutions dominated by the first solution are discarded and allocated to 

the set 𝑅, since they are determined to not belong to the current front. On the other 

hand, the solutions not dominated by the first solution need another round to determine 

if they belong to this front. The algorithm moves these non-dominated solutions to a 

new set 𝑄 and starts the second round comparison. The same procedures as the first 

round are performed in the second round. More discarded solutions are transferred to 

the set 𝑅  and another new set 𝑄  is created for the third round comparison. This 

comparison loop will be repeated until the new set 𝑄 becomes empty. All solutions in 

the current front are identified during each round. To start the determination of the next 

front, the solutions in set 𝑅 is assigned to the set 𝑄. 
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An example is given in Figure 3-5. Each circle stands for one solution. Without loss of 

generality, assume that each solution has two objectives and the number shown in the 

circle is the value of the second objective. Also, if the number in the circle is 6, we term 

this circle solution 6. The first solution of each round, highlighted by the red colour, 

belong to the current front. As shown in Figure 3-5, solution 6 is the first one of set 𝑄 

and must be assigned to the current front 𝐹𝑘. For the remaining solutions, solutions 3, 

1, 2 and 5 are non-dominated by solution 6 and allocated to the new set 𝑄, while 

solutions 9 and 7 are discarded and assigned to the set 𝑅 . In the second round 

comparison, except for the first solution (solution 3), solutions 1 and 2 belong to the 

next new set 𝑄, while solution 5 has to be discarded. For the third round, solution 2 is 

finally allocated to the set 𝑅 and listed after solution 5. It is clear that HNDS may leads 

to the disorder of the original sequence of solutions. Therefore, sorting of the set 𝑅 

according to the first objective value is also requested before the next front screening. 
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Figure 3-5 Hierarchical non-dominated sort algorithm 
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3.4.1.2 New Algorithm 

HNDS can avoid lots of dominance comparisons between solutions in different fronts. 

However, it still performs many unnecessary comparisons, since it enforces the 

comparisons between the first solution and all succeeding solutions. In this study, the 

idea of the benchmark solution is proposed to reduce the unnecessary comparisons 

further. Our algorithm can also be classified into several rounds. In the first round, the 

first solution in the set 𝑄 is included in the current front and selected as the benchmark 

solution. Different from HNDS, the first solution will be compared with the succeeding 

solutions until the first non-dominated solution occurs. Then, this non-dominated 

solution is included in the current front and assigned as the new benchmark solution, 

which means that the second round comparison starts. The loop end condition is the 

same as HNDS. The pseudocode of the new non-dominated sorting algorithm is 

presented in Table 3-2.  

Table 3-2 A new non-dominated sorting algorithm 

Algorithm 1: Find the current front set 𝐹𝑘 

Input: The solution set 𝑄 with sorted individuals; 𝑄 is not an empty set 

Output: The current front 𝐹𝑘 

𝐹𝑘 = {𝑄[1]};         {assign the first solution to the current front} 

𝑅 = { };         {the set containing solutions not belonging to the current front} 

𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ{𝑄};        {the number of solutions in the solution set} 

𝑖 = 1;        {the number of solutions in the current front} 

𝑠 = 𝑖;        {the position of the benchmark solution} 

𝑄𝑠 = 𝑄[𝑠];        {select the first solution as the benchmark} 

while 𝑛 > 0 do 

        𝑠 + +; 

        for 𝑗 = 𝑠: 𝑛 do 

                if 𝑄[𝑗] is non-dominated by 𝑄𝑠 then 

                        𝐹𝑘 = {𝐹𝑘, 𝑄[𝑗]}; 

                        𝑄𝑠 = 𝑄[𝑗]; 

                        𝑠 = 𝑗; 

                        𝑖 + +; 

                        𝑛 − −; 

                        break; 

                else 

                        𝑅 = {𝑅, 𝑄[𝑗]}; 
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                        𝑛 − −; 

                end if 

        end for 

end while 

𝑄 = 𝑅        {prepare the solution set for next front run} 

 

Algorithm 1 starts with assigning the first solution to the current front set 𝐹𝑘. Several 

parameters and sets are also initialized, such as the number of solutions in the solution 

set and current front, denoted by 𝑛 and 𝑖 seperately. The set 𝑅 contains the solutions 

not belonging to the current front and is initialized as an empty one. The benchmark 𝑄𝑠 

is firstly set using the value of the first solution. Then, the while loop of Algorithm 1 

separates the solutions non-dominated by 𝑄𝑠  and those dominated by 𝑄𝑠 , by 

comparing each solution with the benchmark one. If the solution and the benchmark 𝑄𝑠 

is non-dominated by each other, this solution is included in the current front set 𝐹𝑘 and 

assigned as the new benchmark. The number of solutions in the current front (𝑖) is also 

increased by one. Conversely, if 𝑄𝑠 can dominate the solution, then this solution has to 

be discarded and contained in the set 𝑅. The number of solutions in the solution set (𝑛) 

will be decreased by one after each comparison. Therefore, the while loop can 

continue until 𝑛 becomes zero. Finally, the set 𝑅 is assigned to new solution set and 

needs to be compared again at the sorting of next front. 

An example is given in Figure 3-6. The benchmark solution 𝑄𝑠  of each round is 

highlighted by the red colour. Solutions 6, 3, and 1 are set as benchmark, respectively 

and all belong to the current front 𝐹𝑘. Solution 6 is the first benchmark solution. Solution 

9 is dominated by solution 6 and allocated to the set 𝑅 . Since solution 3 is non-

dominated by solution 6, it is directly assigned to the current front and set as the new 

𝑄𝑠. This indicates the beginning of the second round. For the next second round, 

solution 7 is discarded and solution 1 is selected as the new benchmark. In the third 

round comparison, solutions 2 and 5 are all discarded since they are dominated by 

solution 1. Note that our new algorithm can keep the original sequence between 

solution 2 and 5. Therefore, the operation of re-sorting of the set 𝑅 can be avoided. 



Design 

50 

6

...

9

3

7

1

2

5

Q Fk

1
st
 round

2
nd

 round

3
rd

 round

R

6

...

3

1

...

9

7

2

5

 

Figure 3-6 New non-dominated sort algorithm 

The proposed algorithm has several advantages, in addition to HNDS: 1) at each round 

comparison, creating new set 𝑄 is not needed anymore; 2) the new algorithm will not 

change the sequence of solution in the set 𝑅, overcoming the drawback of HNDS; 3) 

many unnecessary comparisons are further avoided, since each benchmark solution 

does not need to be compared with all succeeding solutions; 4) new algorithm is 

friendly to the comparison between the identical solutions, since the succeeding 

solution can replace the preceding one to be the new benchmark solution. 

The time complexity of the proposed non-dominated sorting algorithm consists of two 

main parts. First, the initial population is sorted in ascending order according to the first 

objective. Second, the solutions in the sorted population are compared and assigned to 

different fronts. The time complexity of the first step is 𝑂(𝑁 𝑙𝑜𝑔 𝑁) if ‘Merge Sort’ is 

applied. Regarding the second step, the worst case happens when every solution in 

the sorted population belongs to different fronts and is dominated by its all preceding 

solutions. In this case, all solutions have to be compared with each other, so the worst 

time complexity is 𝑂(𝑀𝑁2). For the best case, all solutions in the sorted population are 

non-dominated by each other and can be assigned to one front. Put differently, each 

solution only needs to be compared with the one next to it in the sorted population, so 

the best time complexity is 𝑂(𝑀𝑁). 
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3.4.2 Constraint Handling 

The constraint is traditionally handled with the Lagrangian function using the penalty 

term. If constraints are treated as another cost when implementing non-dominated 

sorting, the penalty term can be removed. The definition of domination is adjusted so 

that the solution with a smaller constraint violation has a better rank and feasible 

solution always dominates the infeasible solution.  

The pseudo-code of constrained non-dominated sorting is provided in Table 3-3. 

Before the while loop of Algorithm 2, the initial population 𝑃  is separated into the 

feasible part 𝑄 and infeasible part 𝐼. Those two parts are sorted according to the first 

objective value and the constraint violation value, respectively. The front set 𝐹 is set to 

be empty. The fronts of feasible solutions 𝑄 can be acquired by implementing the while 

loop. The while loop will call Algorithm 1 to sort out each front 𝐹𝑘, until the solution set 

𝑄 becomes empty. The executing condition of while loop is realizable since Algorithm 1 

will update the solution set 𝑄 at each loop. When every solution is assigned to one 

front, the loop ends. Especially, the executing condition of while loop also ensures that 

the set 𝑄  used in the Algorithm 1 is not empty. Finally, all infeasible solutions are 

considered to belong to one front, so the set 𝐼 can be attached at the end of front set 𝐹.  

Table 3-3 Constrained non-dominated sorting algorithm 

Algorithm 2: The main program of constrained non-dominated sorting algorithm 

Input: The initial population 𝑃 

Output: The set of fronts 𝐹 

Calculate the objective values and constraint violation values of all solutions; 

Separate feasible and infeasible solutions; 

𝑄 = feasible 𝑃; 

𝐼 = infeasible 𝑃; 

Sort 𝑄 in an ascending order of the first objective value; 

Sort 𝐼 in an ascending order of the constraint violation value; 

𝐹 = { };  

𝑘 = 1;        {initialize the front number} 

while 𝑄 ≠ ∅ do 

        𝐹𝑘 = { };  

        Find the solutions belonging to the to a front 𝐹𝑘 according to Algorithm 1; 

        𝐹 = {𝐹; 𝐹𝑘}; 
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        𝑘 + +; 

end while 

𝐹 = {𝐹; 𝐼};  

 

3.4.3 Discretization 

Since NSGA-II is a numerical optimization, all variables dependent on time 𝑡  are 

requested to be discretized. As mentioned in Section 3.3.1, optimized variables are 

[𝑃𝐼𝐶𝐸,𝑚𝑎𝑥, 𝑃𝐸𝑀,𝑚𝑎𝑥, 𝑚𝑓𝑢𝑒𝑙 , 𝑚𝑏𝑎𝑡𝑡,   𝑡𝑓 , 𝜎𝑝] , where 𝜎𝑝  is the only one needed to be 

discretized at specific time nodes 𝑡𝑘, 𝑡𝑘 ∈ [0, 𝑡𝑓]. The integer 𝑘 indicates the number of 

the node, i.e. 𝑘 = 1, . . . , 𝑁 . Following this, constraints are converted to a discrete 

formation and imposed at the collocation points. 

Optimization parameter 𝑁 is called the number of discretization, which is an index to 

evaluate the computational burden of one algorithm and have the impact on the 

accuracy of optimization. The sensitivity of optimization results to the variation of 𝑁 will 

be analysed in the Section 3.6. 

3.5 Optimization Results 

The result of NSGA-II is not a single dominating-optimal point, but a series of feasible 

solutions that cannot be improved in any of the objectives without degrading at least 

one of the other objectives. Those solutions do not dominate each other, and the set of 

them is called the Pareto front or Pareto frontier. This section will give the Pareto front 

of hybrid propulsion system optimization and select one from all Pareto optimal 

solutions according to the practical demands. Later, the selected optimal solution and 

prototype propulsion system is compared. Meanwhile, the performance between the 

original and hybrid aircraft is also analysed. 

Before moving to the optimization results, the boundaries of optimized variables are 

first provided in Table 3-4. The maximum power of engine and motor are both not 

allowed to exceed the one of prototype engine. The upper bound of fuel and battery 

mass is the useful load mass of prototype aircraft, while the lower bound of battery 
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mass is equal to the prototype battery mass. The feasible value of the duration 𝑡𝑓 is not 

limited between 2-3 h, but a wider range (from 1 h to 5 h) is applied to search more 

possibilities. The maximum value of power split 𝜎𝑝 cannot be larger than 1 based on 

the definition of 𝜎𝑝. On the other hand, since part of engine power should be used to 

power the aircraft, the power for battery charging cannot be too high. Considering this, 

the minimum value 𝜎𝑝 is set to -10. 

Table 3-4 Variable Bounds 

Variable Lower Bounds Upper Bounds 

𝑃𝐼𝐶𝐸,𝑚𝑎𝑥  0 56 kW 

𝑃𝐸𝑀,𝑚𝑎𝑥  0 56 kW 

𝑚𝑓𝑢𝑒𝑙   0 233 kg 

𝑚𝑏𝑎𝑡𝑡  20 kg 233 kg 

𝑡𝑓  1 h 5 h 

𝜎𝑝  -10 1 

 

The parameters needed are listed in Table 3-5, reflecting other system requirements 

and component features. The minimum difference between stall and endurance speed 

is set as 13 km/h, the same as the prototype aircraft. The minimum time for emergency 

landing using electrical energy is around 15 minutes, which is estimated based on the 

landing performance of the prototype aircraft. Generally, the energy density of the 

Lithium-ion battery is between 110 Wh/kg and 240 Wh/kg, while one of some high-

performance cell can be up to 260 Wh/kg [154]. The average value (180 Wh/kg) is 

selected initially to study the universal situation.  

Table 3-5 Parameters 

 Symbol Value 

Requirement ∆𝑉  13 km/h 

 𝑡𝑒𝑚𝑒𝑟𝑔  15 min 

Component 휀𝑏  180 Wh/kg 
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3.5.1 Pareto Front 

The Pareto optimal outcomes in Figure 3-7 show optimal trades of fuel consumption 

and flight duration. When the duration boundary is restricted between 1 h and 5 h, the 

minimum fuel mass varies from 10 kg to 60 kg, and higher fuel usage is needed if 

longer duration intended to complete. To reduce the fuel usage as much as possible 

and at the same time do not sacrifice the duration performance, the Pareto optimal 

solution with 3 h duration is selected as the preferred solution. 

 

Figure 3-7 Pareto frontier and preferred solution of propulsion system sizing 

problem 

The values of other variables at the Pareto front are also given in Figure 3-8, including 

the mass of fuel and battery, the maximum power of engine and motor, and the 

maximum take-off weight. Note that the flight duration variable is displayed monotone 

increasingly, as well the display of other variables changed correspondingly. The 

preferred solution is also plotted on each graph using the red triangle. From Figure 3-8 

(a) and Figure 3-8 (b), it is evident that the value of fuel mass increases with the 

duration, while the battery mass has the opposite trend. The MTOW in Figure 3-8 (d) 

remains relatively stable for different solutions.  
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Figure 3-8 Optimization results sorted by the variable–duration 

Different from these correlations, the optimized engine and motor power (shown in 

Figure 3-8 (c)) are weakly related to the duration and fuel/battery mass. This also 

makes sense since the needed maximum output power mainly depends on take-off 

and climbing performance and aircraft global weight. Following the same law, the 

MTOW in Figure 3-8 (d) increases to roughly 680 kg when the maximum engine and 

motor power (see Figure 3-8 (c)) grows up to 48 kW and 40 kW, respectively. This is 

also the reason that the battery weight has a slight growth even with the rising of fuel 

weight and duration. 

In sum, the maximum engine and motor power impact little on two objectives. In other 

words, both the fuel usage and flight duration are not determined by the DoH, while the 

hybrid of energy is the most significant factor affecting the fuel economy for middle to 

long endurance flying (above 2 h flight). 

3.5.2 Comparison 

The details of the preferred solution are listed in Table 3-6. The performance of hybrid 

powered aircraft is also calculated and compared with the prototype one. The power 

capability of the hybrid propulsion system is higher than the original one, with the 

combination of both engine and motor power. Therefore, the hybrid propulsion system 

can provide the potential for larger take-off weight. Most of the additional weight is used 
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to carry the battery (114 kg), since the load weight and needed fuel weight are less 

than ones of the prototype aircraft. It is worth mentioning that the real load capability 

(190 kg) is not sacrificed when the aircraft is equipped with the hybrid system, since the 

fuel is generally considered as part of the load. 

Table 3-6 Comparison between prototype aircraft and hybrid powered one 

  Prototype Hybrid 

Maximum  Engine Power 56 kW 39 kW 

Propulsion Motor Power 0 33 kW 

System Power Total 56 kW 72 kW 

    

Weight MTOW 572 kg 634 kg 

 Load weight 233 kg 223 kg 

 Fuel weight  43 kg 33 kg 

 Battery weight 10 kg 114 kg 

 Additional Gear weight 0 5 kg 

    

Performance Maximum speed 177 km/h 186 km/h 

 Cruise speed 153 km/h 162 km/h 

 Rate of climb 2.7 m/s 3.5 m/s 

 Take-off roll 230 m  200 m 

 Endurance 3.5 h 3.3 h 

 Range 452 km 396 km 

    

Fuel Save 300 km Cruising (%) 0 17.3% 

 

Regarding aircraft performance, the hybrid aircraft can achieve higher cruising speed 

and RoC due to higher power capability. For the same reason, the take-off roll is further 

minimized to 200 m. The best endurance and range of hybrid powered aircraft are 

compromised a little with less on-board fuel. However, for the same mission (300 km), 
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the hybrid propulsion can save 17.3% fuel compared with the conventional combustion 

engine. 

Figure 3-9 compares the weight fraction of components for the original combustion 

system and HEPS. The weight fraction was calculated using the mass of components 

and MOTW of aircraft. Firstly, the dry mass (excluding fuel and battery) ratio is given in 

Figure 3-9 (a). The dry mass of the original propulsion system only includes the engine 

mass, while hybrid dry components comprise the engine, motor, motor controller and 

clutch.  

The weight fraction of original propulsion system is over twice larger than one of HEPS 

‘dry’ components. This is partly since the electric motor has higher power density than 

the combustion engine. Another reason is that lower power requirement means a two-

cylinder engine can be used instead of the original four-cylinder engine which was 

much heavier. Even so, the weight of the two-cylinder engine still occupies the highest 

portion of the whole dry mass, for the hybrid powertrain. 

 

Figure 3-9 Comparison of component weight for original and hybrid propulsion 

system, regarding the dry mass (a) and total mass (b) 

Figure 3-9 (b) provides the weight fraction of the total mass of the original combustion 

system and HEPS, including both the wet mass (fuel and battery mass) and dry mass. 

The weight fraction of the total mass of the complete HEPS is higher than for the 

original propulsion system. Another interesting factor is that for the original combustion 

system the dry mass takes up the largest ration, while for the HEPS the wet mass 

consumes most weight. Explicitly, for the original system the engine accounts for over 

half the total weight, and for the hybrid system it is the battery that accounts for over 
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half the total weight. It can be concluded that the increase of battery energy density can 

significantly benefit the reduction of hybrid system weight. 

In short, the optimized hybrid electric propulsion system can achieve better fuel 

economy, without any sacrifice of significant performance (load, take-off and climb 

capability). Higher cruising speed and RoC are also benefits due to being equipped 

with the hybrid system. Furthermore, the hybrid propulsion system uses less weight to 

reach much more power output. Therefore more weight can be exploited to carry the 

energy source (such as fuel and battery). 

3.6 Sensitivity Analysis 

This section describes the sensitivity of optimization results to the variation of 

optimization parameters, system parameters and aircraft performance. Specifically, 

those parameters are discretization number, battery energy density, emergency time, 

take-off distance, and RoC. Note that the test case in Section 3.5 is regarded as the 

benchmark. 

3.6.1 Discretization Number 

For any numerical optimization involving discretization, the number of discretization 

would affect the precision of optimization results. Generally, larger discretization 

number gives a more accurate solution but also leads to heavier computational burden. 

As mentioned in Section 3.4.3, 𝜎𝑝 is the only variable needed to be discretized, so the 

discretization number of 𝜎𝑝  is equal to discretization number of the optimization 

problem. The value of 𝜎𝑝 should be different at take-off, climbing and cruising phase. 

Therefore, the minimum discretization number for the analysis test can be given by 𝑁 =

3. The Pareto front results of test cases with the minimum number and other three 

larger numbers are graphed in Figure 3-10. Here, the frontier with 𝑁 = 12  is the 

optimization result in the Section 3.5 and highlighted with the underline. It is clear that 

the precision of the Pareto front does not sacrifice much with smaller discretization 

number.  
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Figure 3-10 Pareto frontiers with different discretization numbers 

Table 3-7 compares the optimization time, convergence generations and normalized 

spread of solutions. The convergence generation is recognized when the average 

change in the spread of Pareto optimal solutions is less than the pre-set tolerance. 

With the largest spread, the case with 𝑁 = 22 achieves the best Pareto front spread 

among four tests. However, its optimization time is twice over time of the case with 𝑁 =

12. The spread increases with the rising of discretization number, from 𝑁 = 3 to 𝑁 =

22 . The spread of 𝑁 = 32  case is even smaller than one of 𝑁 = 3  case. On the 

contrary, the spread decreases when the discretization number increases from 𝑁 = 32 

to 𝑁 = 52. This implies that the optimization performance will be improved with larger 

discretization number, but overlarge number leads to poorer performance might due to 

overmuch computation demand. 

Table 3-7 Comparison of optimization indices from different 

discretization numbers 

𝑁  Optimization Time (s) Generations Spread 

3 37 102 0.1284 

12 115 103 0.1459 

22 266 185 0.1695 

32 393 167 0.1231 

42 555 151 0.1229 
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52 744 136 0.1038 

 

In sum, the smaller discretization number will not sacrifice the precision of Pareto front; 

while the larger number can achieve better distribution performance with the trade-off 

of longer computation time. Another worth mentioning factor is that the overlarge 

number may lead to even poorer optimization performance. 

3.6.2 Requirements and Parameters 

The sensitivity of optimization results to the variation of performance requirements and 

system parameters is illustrated in detail in the following text. First, the Pareto frontiers 

of study cases with different 𝑑𝑡𝑘𝑜𝑓 (230 m, 180 m, 130 m) and 𝑅𝑐 (2.8 m/s, 3.4 m/s, 4.0 

m/s) are compared in Figure 3-11. It shows that the variation of take-off distance and 

RoC will not influence the outcome of Pareto fronts. This is because that those two 

requirements mainly affect the take-off and climbing phase, which have little impact on 

two costs (fuel usage and flight duration). 

 

Figure 3-11 Pareto frontiers with different take-off distance (a) and rate of climb 

(b) 

The above-mentioned phenomenon is also validated in Table 3-8, which lists the 

details of the preferred solution from different requirements and parameters. Note that 

the figure with underline means it is the result of the benchmark case used in Section 

3.5. The minimum fuel mass does not change much for the same flight duration, even 

though the shorter take-off roll and higher RoC are requested. The most signification 
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effect of the variation of 𝑑𝑡𝑘𝑜𝑓 and 𝑅𝑐 is the combined maximum power, which becomes 

larger to achieve better performance. Another common consequence is that more 

powerful electric motor is sized instead of the combustion engine, because of the 

higher power-weight ratio of motors. The global weight is also increased to cover 

bigger propulsion component and additional battery weight. The fuel saving for 300 km 

cruising compared with the prototype aircraft falls slightly, since more fuel is consumed 

at the take-off and climbing segment. 

Table 3-8 Comparison of optimized variables from different requirements 

and parameters 

 
𝑃𝐼𝐶𝐸,𝑚𝑎𝑥  

(kW) 

𝑃𝐸𝑀,𝑚𝑎𝑥  

(kW) 

𝑃𝑡𝑜𝑡𝑎𝑙,𝑚𝑎𝑥  

 (kW) 

𝑚𝑓  

(kg) 

𝑚𝑏  

(kg) 

𝑚𝑔  

(kg) 

Fuel Save 
(%) 

𝑑𝑡𝑘𝑜𝑓 (m)        

230 39 33 72 33 114 635 17.3 

180 39 34 73 33 118 641 17.3 

130 40 46 86 34 115 642 16.7 

        

𝑅𝑐 (m/s)        

2.8 39 33 72 33 114 635 17.3 

3.4 39 41 80 33 122 647 16.3 

4.0 39 48 87 34 115 642 15.5 

        

𝑡𝑒𝑚𝑒𝑟𝑔 (min)        

15 39 33 72 33 114 635 17.3 

30 39 33 72 36 122 647 10.8 

45 43 36 79 43 180 713 0 

        

휀𝑏 (W*h/kg)        

180 39 33 72 33 114 635 17.3 

260 41 33 74 31 123 642 23.8 

340 42 35 77 28 158 675 33.3 
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Different from above-analysed variables, the variation of emergency time and battery 

energy density does affect Pareto fronts and the corresponding preferred points 

significantly (see Figure 3-12). The fuel mass is increased due to the rising of 

emergency time (electric-only flying), while the opposite trend occurs with the increase 

of battery energy density. 

More details are provided in Table 3-8. The battery weight grows and the fuel-saving 

decreases, if more time of continuously electric-only flying is demanded. Furthermore, 

when the requested time rises to 45 min, the hybrid powered aircraft performs equally 

to the prototype one in terms of fuel economy. On the other hand, if the best 

commercially off-the-shelf battery (260 W*h/kg) is implemented in this research, 6% 

more fuel can be saved compared with the benchmark test case. The fuel saving can 

be even up to 33.3% if the energy density could realize 340 W*h/kg. Regarding the 

optimal weight and propulsion power, the global take-off mass and the total maximum 

power is sized higher for larger 𝑡𝑒𝑚𝑒𝑟𝑔 and 휀𝑏. 

 

Figure 3-12 Pareto frontiers with different batter energy density (a) and 

emergency time (b) 

In sum, the Pareto fronts and the corresponding preferred points are more sensitive to 

the variation of emergency time and battery energy density, than take-off distance and 

RoC. Put differently, the retrofitted (hybrid) aircraft can be sized to achieve better take-

off and climbing performance, at the same time reserving the fuel saving advantage. 

Another conclusion from sensitivity analysis is that the prototype aircraft is not suitable 

to be retrofitted for over 45 min continuously electric-only flying. Following common 

sense, the improvement of battery technology (energy density) makes the hybrid 

propulsion system even more competent. 
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3.7 Components Selection 

The off-the-shelf or custom-made devices for each component (see Figure 3-4) are 

illustrated in this section.  

2EK C72AE from Sensenich Technologies, Inc. is selected as the initial propeller. 2EK 

C72AE is a two-blade propeller, equipped with Sensenich’s new pitch cartridge system. 

The system enables the user to change and set the pitch on the ground easily. The 

propeller is manufactured using an internal pressure, closed mould system to produce 

a hollow, one-piece blade. This process yields very repeatable blades with maximum 

strength, durability, and low weight.  2EK C72AE can give around 75 kW at 2750 rpm. 

It is suitable for 162-209 km/h airspeed flight.  

As concluded from Section 0, the rotary engine normally has a higher power-to-weight 

ratio than the piston one. The rotary engine has other advantages worth mentioning: 1) 

less output vibration and smooth operation because of longer process time; 2) compact 

size and lightweight, which becomes more attractive in aerospace application; 3) 

simple structure and fewer components due to unique intake and exhaust mechanism; 

4) less vibration and low noise due to the absence of piston. All these benefits gain 

reliability and durability of rotary engines. 

 

Figure 3-13 RT600 LCR rotary engine 

The RT600 LCR [155] given in Figure 3-13, built by Rotron Power Ltd., is one of the 

high-performance rotary engines. This compact, two-rotor engine utilises the most 

advanced rotary technology and premium materials to produce industry-leading 
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performance in a lightweight, reliable and efficient package. RT600 LCR can achieve 

low levels of torsional vibration and zero radial vibration at mid-to-high speed range. It 

is integrated with an altitude compensation control, thereby being a good choice for 

aircraft application. 

RT600 LCR can achieve the maximum torque around 6500 rpm with the liquid cooling 

technology from the company. Different from the conventional general aviation piston 

engine, the rotary engine tends to run at higher speed, like between 3000-8000 rpm 

(see Figure 3-14). Also, its best efficiency region is between 4500-5500 rpm and 40-50 

N*m. Though the area with 7000-8000 rpm and 50-55 torque also has good efficiency, 

this working region is not recommended since continuously operating at high 

speed/torque condition easily causes the damage and over-heating for rotary engines. 

Considering the output ability and durability, the maximum speed of RT600 LCR is set 

as 6500 rpm for our HEPS. As a result, the normal working range of RT600 LCR is 

limited between 2000-6500 rpm, while 4500-5500 rpm is its ideal operating range. To 

apply the rotary engine to general aviation aircraft and the propeller 2EK C72AE, a 

reduction gear is needed and its ratio is set as 2.37. The reduction gear is normally 

attached to the output of the engine so called as the reduction drive. 

 

Figure 3-14 RT600 LCR efficiency map 

Concerning the electric motor, the PMSM has the same advantages as the BLDC 

motor. The primary profit is the high power-weight and power-size density, which leads 

to light and compact motors. Secondly, they are inherently more energy efficient than 

induction motors since the rotor’s magnetic field is not electrically produced. This can 
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significantly benefit the reduction of battery weight. In addition, the PMSM is superior to 

the combustion engine in many aspects. It can deliver high continuous output torque 

over their entire speed range. Better dynamic performance is also guaranteed under 

high load. 

The EMRAX2x8 series of Company EMRAX d.o.o. [156] is widely applied in the 

automotive, marine and aerospace industries.  The EMRAX motor ranks as one of the 

best high power-density motors in the global market. Its power density can be up to 4-5 

kW/kg. The mechanical and no-load electrical losses of EMRAX motors are very small. 

This is important to our hybrid propulsion system since the electric motor has a high 

chance to operate on the low load condition. Moreover, the optimum operating range of 

EMRAX motors fits the speed range of the Sensenich propeller. This allows a gearless 

drive from the motor output, thereby reducing the power losses and avoiding the extra 

weight. Figure 3-15 gives the efficiency map of EMRAX228. The optimum speed range 

is between 2000-2500 rpm.  

 

Figure 3-15 EMRAX228 efficiency map 

Different EMRAX motors have similar efficiency map, but the output capability varies 

with different types. The continuous maximum power of EMRAX208, EMRAX228 and 

EMRAX268 are shown in Figure 3-16. The required power in the graph indicates that 

the sized hybrid propulsion system requests the electric motor to produce 33 kW 

around 3000 rpm. It is apparent that EMRAX228 is the most appropriate selection, 

while the power of EMRAX208 is insufficient and EMRAX268 is overly powerful. 
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Figure 3-16 Continuous power output of EMRAX2x8 series motors 

The EMRAX228 motor/generator is the medium-power one in the EMRAX2x8 series. 

Its size is only ⌀228 x 86 mm, as shown in Figure 3-17. It can work as a Permanent 

Magnet Synchronous Generator (PMSG) with the same technical data. Note that the 

motor controller of EMRAX228 is custom-made. Furthermore, the efficiency data of 

EMRAX228, as given by Figure 3-15, are acquired using this custom-made motor 

controller. 

 

Figure 3-17 EMRAX228 motor 

Meanwhile, a Lithium-ion Polymer (LiPo) battery pack are custom-made according to 

the voltage and current requirements of EMRAX228. The specific load-speed-rating of 

EMRAX228 is roughly 10 rpm/V, and the maximum speed it reaches is under 3000 
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rpm. Therefore, the 296 V nominal voltage battery could meet the requirements. Then, 

the battery capacity (Ah) can be estimated using the battery voltage and demanded 

electrical energy that is given by the optimal results of the propulsion system sizing.  

Table 3-9 Components Overview 

Components Parameters Values 

RT600 LCR Weight 21.2 kg 

 Continuous maximum power 42 kW @ 7500rpm 

 Available maximum power 40 kW @ 6500rpm 

EMRAX228 Weight 12 kg 

 Peak power  100 kW @ 5500rpm 

 Continuous maximum power 56 kW @ 5000rpm 

 Available maximum power  36 kW @ 3000rpm 

Battery Weight 106 kg 

 Nominal voltage 296 V 

 Capacity 70 Ah 

Reduction drive Weight 5 kg 

 Gear ratio 2.37 

 

An overview of all products is given in Table 3-9, while specific parameters are 

presented in the Chapter 4 Modelling. The rotation speed following a power value via 

@ indicates that this is the power reached at the stated speed. Note that both RT600 

LCR and EMRAX228 cannot operate in its maximum-power condition, due to the 

constraint of the propeller speed and the gear ratio. The available power of RT600 LCR 

and EMRAX228 are 40 kW and 36 kW, reached around 6500 rpm and 3000 rpm, 

respectively. 

Table 3-10 lists and compares the power and weight data of selected components and 

the corresponding optimized variables. The adjusted HEPS has higher combined 

power and dry weight. The selected motor costs three kilograms more than the 

optimized one, since a more powerful motor is selected. On the other hand, the weight 

of selected devices is not always the same as the optimized variable even though the 

power is equal. Those minor differences are usually acceptable for conceptual system 
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design. The selected engine and motor controller are heavier than the optimal ones 

since the best models are not always available among the off-the-shelf products. The 

battery weight is however reduced since the higher energy density cell is available from 

the manufacturer. If the load and the fuel weight are remained unchanged, the final 

MTOW of hybrid aircraft will be 633 kg. The adjusted global weight is 1 kg higher than 

the optimized one. 

Table 3-10 Power and Weight Adjusting for Hybrid Aircraft 

  Optimal Adjusted 

Available  Engine 40 kW 40 kW 

Maximum Power Motor 31 kW 36 kW 

 Total 71 kW 76 kW 

    

Weight Engine 17 kg 21 kg 

 Fuel 33 kg 33 kg 

 Motor/Generator 8 kg 12 kg 

 Controller 7 kg 8 kg 

 Battery 114 kg 106 kg 

 Load weight 223 kg 223 kg 

 Fuel weight  33 kg 33 kg 

 Additional Gear weight 5 kg 5 kg 

 MTOW 632 kg 633 kg 

 

3.8 Conclusion 

A parallel hybrid electric propulsion system was designed for the prototype aircraft in 

this chapter. The chapter first presented the aerodynamics and requirements of the 

prototype aircraft before implementing the system sizing. The propulsion system sizing 

was established as a multi-objective optimization problem, in which the fuel usage was 

minimized and the flight duration was maximized. The requirements of the prototype 

aircraft were formulated as constraints.  
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The sized hybrid propulsion system can ensure that no substantial performance is 

compromised when saving the fuel burn. Using the multi-objective optimization, more 

characteristics of the hybrid system can be evaluated in one optimization run. A new 

non-dominated sorting algorithm was developed to improve the computational 

efficiency of the multi-objective optimization. This method can reduce lots of 

unnecessary comparisons and achieve 𝑂(𝑀𝑁)  of the best time complexity of the 

comparison. The potential of the hybrid electric technology is reflected via the Pareto 

fronts and the corresponding preferred points. 

The Pareto frontier can give the best balance between fuel consumption minimization 

and duration maximization. Every possibility was evaluated and a series of optimal 

solutions is achieved, considering two contradictory cost functions. It is clear from the 

Pareto solutions that how the variables change with the objectives and which variables 

affect the costs mostly. The interesting conclusion is that the DoH has little impact on 

fuel usage and flight duration, while the hybrid of energy is the most significant factor 

affecting the fuel economy. One preferred solution (3-h duration) at Pareto frontier was 

selected to form the optimized hybrid electric system. It achieves around 17% fuel 

saving and better cruising and climbing performance, when using the battery with the 

energy density of 180 Wh/kg. Furthermore, the hybrid propulsion system has higher 

power-weight ratio than the conventional combustion powertrain, due to the 

introduction of the electric power system. 

The result section also presented the sensitivity analysis of Pareto front and the 

preferred solution to the variation of discretization number, battery energy density, 

emergency time, take-off distance, and RoC. One of advantages of NSGA in this study 

is that the smaller discretization number not only reduces the computation 

considerably, but also has no sacrifice of the precision of the Pareto front. Another 

worth mentioning factor is that the overlarge number may lead to even poorer 

optimization performance. On the other hand, the hybrid propulsion system can be 

sized to achieve better take-off and climbing performance, also keeping the same 

amount of fuel saving. HEPS will lose its advantage on fuel saving if 45-minute 

continuously electric-only flying is required for the hybrid aircraft, but the advance of 

battery technology (energy density) can help HEPS to get rid of this limitation. 

The off-the-shelf components were selected and compared with the optimized ones in 

the last section. The rotary engine RT600 LCR and PMSM EMRAX228 were chosen 

according to the optimized maximum power from the sizing results. The battery voltage 
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was determined following the requirement of EMRAX228. The reduced weight of 

battery compensates the increased weight of other devices (engine, motor and its 

controller). The adjusted MTOW of hybrid aircraft is 1 kg higher than the original 

optimized one. 
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 Modelling 

This chapter will present the modelling of the engine, motor/generator, battery and 

DC/DC converter in detail.  

The dynamics of the engine is governed by the mean value model, which considers the 

engine unit control. The static fuel performance is given by the fuel map. The engine 

model is validated by comparing the simulation data with the experimental data. 

𝐷-𝑞 model is introduced to simplify the integration of torque loss and the control of 

permanent magnetic motor/generator. The steady-state torque loss of motor/generator 

is estimated using the efficiency map supplied by the manufacturer. The design of 

vector control follows the estimation of torque loss, to convert the original AC model 

into a DC model. 

The Shepherd model is applied to estimate the open circuit voltage of the lithium 

battery. The parameters of the model are directly identified using the battery discharge 

curve. The identified model is also validated by the comparison with the experiment 

results.  

The average model of bidirectional DC/DC converter is provided in the last section of 

this chapter. 
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4.1 Engine 

4.1.1 Model 

For this study, the MVM is too complicated while a model based on first-order or 

second-order transfer function cannot reveal the relationship between the throttle 

position and output capability. Therefore, a simplified mean value engine model is 

proposed in this study. It does not include manifold dynamics and flow rate dynamics, 

but can reserve the dynamics between the throttle demand and the engine speed, 

which are both needed to estimate the engine torque request, 𝑇𝑖𝑐𝑒,𝑟𝑒𝑓 . The engine 

torque request is the sum of Engine Control Unit (ECU) output and torque make-up 

from the idle speed controller: 

𝑇𝑖𝑐𝑒,𝑟𝑒𝑓 = 𝑓(𝛿𝑖𝑐𝑒 , 𝜔𝑖𝑐𝑒 , 𝑒𝑎𝑖𝑟) + 𝑇𝑖𝑐𝑒,𝑖𝑑𝑙𝑒, (4-1) 

where 𝑓(𝛿𝑖𝑐𝑒 , 𝜔𝑖𝑐𝑒 , 𝑒𝑎𝑖𝑟) is an experimental-data based function which realizes the utility 

of the ECU. 𝑇𝑖𝑐𝑒,𝑖𝑑𝑙𝑒  is the idle torque from idle speed controller. 𝛿𝑖𝑐𝑒  is a throttle 

command and generated by the engine speed controller. 𝑒𝑎𝑖𝑟 , the altitude-related 

coefficient, is also introduced to compensate the engine loss due to the variation of air 

density. It is worth noting that 𝑓(𝛿𝑖𝑐𝑒 , 𝜔𝑖𝑐𝑒 , 𝑒𝑎𝑖𝑟)  also includes other engine losses. 

Therefore, there is no need to estimate torque losses of the engine.  

The relationship between the engine torque request and the induced torque is given by: 

�̇�𝑖𝑐𝑒(𝑡) = −
1

𝜏𝑖𝑐𝑒
𝑇𝑖𝑐𝑒(𝑡) +

1

𝜏𝑖𝑐𝑒
𝑇𝑖𝑐𝑒,𝑟𝑒𝑓(𝑡 − 𝛿𝑖𝑐𝑒,𝑝𝑟𝑐), (4-2) 

where 𝑇𝑖𝑐𝑒  is the induced engine torque and 𝜏𝑖𝑐𝑒 is the engine time constant due to 

fuel/air injection. 𝛿𝑖𝑐𝑒,𝑝𝑟𝑐 = 𝜗𝑟𝑜𝑡𝑎𝑟𝑦/𝜔𝑖𝑐𝑒  represents the time for one engine process, 

namely the combustion stroke to exhaust stroke. Since the working principle of the 

rotary engine is different from the piston engine, this process time needs to be changed 

according to the characteristics of the rotary engine.  

The rotational dynamics of the engine is governed by: 
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𝑑𝜔𝑖𝑐𝑒

𝑑𝑡
= (𝑇𝑖𝑐𝑒 − 𝑇𝑖𝑐𝑒,𝑙𝑜𝑎𝑑)/𝐽𝑖𝑐𝑒, (4-3) 

where 𝐽𝑖𝑐𝑒 is the inertia of engine and 𝑇𝑖𝑐𝑒,𝑙𝑜𝑎𝑑 is torque of the load. 

When the engine is decoupled from the motor/generator, 𝑇𝑖𝑐𝑒,𝑙𝑜𝑎𝑑 is equal to zero. On 

the contrary, if the rotational dynamics of engine and motor/generator are coupled, the 

load torque 𝑇𝑖𝑐𝑒,𝑙𝑜𝑎𝑑  is dependent on devices connected to the engine output shaft, 

such as motor/generator and propeller. The calculation of load torque will be given in 

Section 4.1.3. Lastly, the restriction of engine speed is imposed on the output of 

rotational dynamics module. 

The parameters needed for the engine modelling are given in Table 4-1. 

Table 4-1 Parameters of Engine 

Parameters Symbols RT600 

Maximum speed (rpm) - 8000 

Idle speed (rpm) - 2000 

Time constant (s) 𝜏𝑖𝑐𝑒 0.002 

Angle for one process (degree) 𝜗𝑟𝑜𝑡𝑎𝑟𝑦 90 

Moment of inertia (kg*m2) 𝐽𝑖𝑐𝑒 0.07638 

 

The complete engine model and its speed control loop are illustrated in Figure 4-1. The 

output of speed controller is the throttle command, while the input of speed controller is 

the speed reference 𝜔𝑖𝑐𝑒,𝑟𝑒𝑓 and instantaneous engine speed. The speed controller of 

the engine is modelled as a PI controller, the same as the idle-speed controller. 
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Figure 4-1 Speed control loop of engine 

The fuel estimation module is attached at the end of the whole model, using the static 

fuel map. The static fuel map is a function of the torque and engine speed (see Figure 

4-2). The static map has been proven to give a satisfactory prediction of fuel 

consumption under different operating conditions [26]. The Specific Fuel Consumption 

(SFC) values are used here to emphasize the trend of fuel consumption per power. As 

shown in Figure 4-2, the engine reaches the best fuel economy per power at the high 

torque among the range of 4500-5500 rpm. 

 

Figure 4-2 Specific fuel consumption map of engine 

4.1.2 Validation 

The steady-state characteristics of the engine model is validated by comparing the 

simulation data with experimental measurements. Figure 4-3 shows the torque and 

power percentage errors under different steady states. Among the speed range 

considered, the error is defined as: 

𝑒𝑟𝑟 =
(𝐷𝑠−𝐷𝑒)

𝐷𝑒
, (4-4) 
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where 𝐷𝑠 means simulation data while 𝐷𝑒 represents experimental one. The calculated 

error percent is always less than 2.5%. Note that the continuous-operation speed 

(recommended speed) of RT600 is between 3000-6500 rpm. 

 

Figure 4-3 Comparison between simulation and experimental data of engine 

4.1.3 Reduction Drive 

A sprag clutch is integrated into the reduction drive of the engine. Its working state 

depends on the speed of input and output shaft of the clutch. The speed of input shaft 

of the clutch is equal to the engine speed 𝜔𝑖𝑐𝑒, while the speed of output shaft is the 

same as the motor/generator speed 𝜔𝑚𝑔.  

When the engine and motor/generator is coupled, the following constraints have to be 

satisfied: 

𝜔𝑖𝑐𝑒 = 𝐺𝜔𝑚𝑔, (4-5) 

𝐺𝑇𝑖𝑐𝑒,𝑙𝑜𝑎𝑑 = 𝑇𝑚𝑔,𝑑𝑟𝑖𝑣𝑒, (4-6) 

where 𝑇𝑚𝑔,𝑑𝑟𝑖𝑣𝑒 indicates the torque drives the following devices (motor/generator and 

propeller etc.). At this state, the speed of input shaft has to be no less than one of 

output shaft, namely 𝜔𝑟𝑑,𝑖𝑛 ≥ 𝜔𝑟𝑑,𝑜𝑢𝑡. 
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If the speed of output shaft is larger than one of input shaft, i.e. 𝜔𝑟𝑑,𝑖𝑛 < 𝜔𝑟𝑑,𝑜𝑢𝑡, the 

two shafts would be decoupled. The output shaft speed will be free from the input shaft 

speed. Furthermore, 𝑇𝑖𝑐𝑒,𝑙𝑜𝑎𝑑 and 𝑇𝑚𝑔,𝑑𝑟𝑖𝑣𝑒will become zero after decoupling. 

4.2 Motor/Generator 

This thesis introduces the 𝑑-𝑞 model to approximate the dynamics of the permanent 

magnet motor/generator. Concerning the steady-state behaviour, Evangelou and 

Shukla studied a creative method to estimate a general-purpose friction torque, using 

the efficiency map [69]. In the study by Evangelou and Shukla, it is proved that the 

friction torque loss of the motor they used can be approximated by the function which is 

only dependent on rotor speed. In our study, without sacrifice of complexity, the torque 

loss is given as the function of both electromagnetic torque and rotor speed. The 

calculated torque loss is then integrated into the 𝑑-𝑞 model.  

Different from the engine, the control of PMSM/PMSG is separated into three parts: 

vector control, torque control and speed control. The vector control is used to convert 

PMSM/PMSG into equivalent separately excited Direct Current (DC) machines, which 

have highly desirable control characteristics. The torque and speed control are 

implemented on the basis of the vector control. 

Lastly, the average model of the voltage source converter (inverter/rectifier) is 

described by the input-output electrical relationships of the average Pulse-Width-

Modulated (PWM) converter in the 𝑑-𝑞 frame [157,158].  

4.2.1 Motor 

Under some assumptions [68], the dynamic behaviour of the three-phase PMSM can 

be described by the following differential equations, in the rotor 𝑑-𝑞 reference frame 

[67]: 

𝑑𝑖𝑑 

𝑑𝑡
= (𝑣𝑑 − 𝑅𝑠𝑖𝑑 +𝜔𝑠𝐿𝑞𝑖𝑞)/ 𝐿𝑑, (4-7) 
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𝑑𝑖𝑞 

𝑑𝑡
= (𝑣𝑞 − 𝑅𝑠𝑖𝑞 −𝜔𝑠𝐿𝑑𝑖𝑑 −𝜔𝑠𝜆𝑚)/𝐿𝑞, (4-8) 

where 𝑣𝑑  and 𝑣𝑞  are the 𝑑- and 𝑞- axis stator voltages, whereas 𝑖𝑑  and 𝑖𝑞  are the 𝑑- 

and 𝑞-  axis stator currents. 𝐿𝑑  and 𝐿𝑞  are the 𝑑-  and 𝑞-  axis stator inductances, 

respectively. 𝜆𝑑  and 𝜆𝑞  are the 𝑑-  and 𝑞-  axis stator flux linkages, while 𝜆𝑚  is the 

magnet mutual flux linkage. 𝑅𝑠 represents the stator resistance and 𝜔𝑠 is the inverter 

frequency.  

The equation of the motor rotational dynamics is: 

𝑑𝜔𝑚𝑜𝑡 

𝑑𝑡
= (𝑇𝑚𝑔,𝑑𝑟𝑖𝑣𝑒 + 𝑇𝑚𝑜𝑡 − 𝑇𝑚𝑜𝑡,𝑙𝑜𝑠𝑠 − 𝑇𝑝𝑟𝑜𝑝)/𝐽𝑚𝑜𝑡, (4-9) 

in which 𝜔𝑚𝑜𝑡 is the rotor speed, 𝐽𝑚𝑜𝑡 is the moment of inertia, and 𝑇𝑝𝑟𝑜𝑝 is the load 

torque caused by the rotating of the propeller. The electromagnetic torque (𝑇𝑚𝑜𝑡 ) 

produced by the motor is given by [67]: 

𝑇𝑚𝑜𝑡 = 3𝑝[(𝜆𝑚𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞)]/2 =
3

2
𝑝𝜆𝑚𝑖𝑞, (4-10) 

where 𝑝 is the number of pole pairs and the inverter frequency is related to the rotor 

speed with 𝜔𝑠 = 𝑝𝜔𝑚𝑜𝑡. It should be noted that the right hand side of Eq. (4-10) is 

obtained by forcing  𝑖𝑑 to zero. Therefore, 𝑖𝑞 can be represented by 
2𝑇𝑚𝑜𝑡

3𝑝𝜆𝑚
. 
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Figure 4-4 Efficiency map of PMSM 

On the other hand, the motor torque loss 𝑇𝑚𝑜𝑡,𝑙𝑜𝑠𝑠 including friction loss and damping is 

approximated by the efficiency map supplied by the manufacturer (see Figure 4-4). 

Note that the 𝑦-axis of Figure 4-4 represents the output torque of motor or the input 

torque of the generator. In other word, if the electric device works as the motor, the 

torque given in the efficiency map is equal to the load torque 𝑇𝑝𝑟𝑜𝑝; otherwise, this 

torque is equal to the driving torque 𝑇𝑚𝑔,𝑑𝑟𝑖𝑣𝑒. 

The efficiency of the motor 𝜂 is defined as: 

𝜂 =
𝑃o𝑢𝑡

𝑃𝑖𝑛
=

𝑇𝑝𝑟𝑜𝑝𝜔𝑚𝑜𝑡

𝑃𝑖𝑛
, (4-11) 

in which 𝑃𝑖𝑛 represents the total electromagnetic power and is expressed by [69]: 

𝑃𝑖𝑛 = 3(𝑣𝑑𝑖𝑑 + 𝑣𝑞𝑖𝑞)/2. (4-12) 

According to mechanical characteristics under equilibrium conditions, the torque loss 

acting on the rotor is: 

𝑇𝑚𝑜𝑡,𝑙𝑜𝑠𝑠 = 𝑇𝑚𝑜𝑡 − 𝑇𝑝𝑟𝑜𝑝, (4-13) 

when there is no driving torque from the reduction drive, 𝑇𝑚𝑔,𝑑𝑟𝑖𝑣𝑒 = 0. If 𝑇𝑚𝑜𝑡 in Eq. 

(4-13) is substituted using equations (4-10)-(4-12), a quadratic equation of 𝑇𝑚𝑜𝑡,𝑙𝑜𝑠𝑠 can 

be addressed: 

𝑘𝑇𝑚𝑜𝑡,𝑙𝑜𝑠𝑠
2 + (𝜔𝑚𝑜𝑡 + 2𝑘𝑇𝑝𝑟𝑜𝑝)𝑇𝑚𝑜𝑡,𝑙𝑜𝑠𝑠 + 𝑘𝑇𝑝𝑟𝑜𝑝

2 + (1 −
1

𝜂
)𝜔𝑚𝑜𝑡𝑇𝑝𝑟𝑜𝑝 = 0, (4-14) 

where 𝑘 =
2𝑅

3𝜆𝑚
2 𝑝2

. Different from the study in [69], the torque loss is not approximated by 

the function that is only dependent on rotor speed, while it is given as the function of 

electromagnetic torque and rotor speed. The details of result are presented in the next 

Section 4.2.2. 
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4.2.2 Generator 

The electrical dynamics of the PMSG is the same as one of the PMSM. The reversal of 

the flow of current and voltage is reflected by changing the signs of the corresponding 

variables. That is: 

𝑑𝑖𝑑 

𝑑𝑡
= (−𝑣𝑑 − 𝑅𝑠𝑖𝑑 + 𝜔𝑠𝐿𝑞𝑖𝑞)/ 𝐿𝑑, (4-15) 

𝑑𝑖𝑞 

𝑑𝑡
= (−𝑣𝑞 − 𝑅𝑠𝑖𝑞 −𝜔𝑠𝐿𝑑𝑖𝑑 +𝜔𝑠𝜆𝑚)/𝐿𝑞. (4-16) 

The rotational dynamics of the generator is governed by the following equation: 

𝑑𝜔𝑔𝑒𝑛 

𝑑𝑡
= [𝑇𝑚𝑔,𝑑𝑟𝑖𝑣𝑒 + 𝑇𝑔𝑒𝑛 − 𝑇𝑔𝑒𝑛,𝑙𝑜𝑠𝑠 − 𝑇𝑝𝑟𝑜𝑝]/𝐽𝑔𝑒𝑛, (4-17) 

in which 𝜔𝑔𝑒𝑛 is the generator rotor speed. Note that the electromagnetic torque 𝑇𝑔𝑒𝑛 is 

negative when the device functions as the generator.  𝑇𝑚𝑔,𝑑𝑟𝑖𝑣𝑒 and 𝑇𝑝𝑟𝑜𝑝  have the 

same meaning as given in the above section. 𝐽𝑔𝑒𝑛  is the inertia of generator. The 

electromagnetic torque 𝑇𝑔𝑒𝑛 and power 𝑃𝑜𝑢𝑡 of the generator are: 

𝑇𝑔𝑒𝑛 =
3

2
𝑝𝜆𝑚𝑖𝑞, (4-18) 

𝑃𝑜𝑢𝑡 = 3(𝑣𝑑𝑖𝑑 + 𝑣𝑞𝑖𝑞)/2, (4-19) 

if the vector control is applied and 𝑖𝑑 is forced to zero.  

It is noted that, when acting as the generator, the PMSG must be coupled with the 

engine via the sprag clutch. To estimate the torque loss, the load torque 𝑇𝑝𝑟𝑜𝑝 should 

be set to zero at the steady state, instead of the driving torque. Therefore, the 

generator torque loss 𝑇𝑔𝑒𝑛,𝑙𝑜𝑠𝑠 is related to driving torque 𝑇𝑚𝑔,𝑑𝑟𝑖𝑣𝑒 with: 

𝑇𝑔𝑒𝑛,𝑙𝑜𝑠𝑠 = 𝑇𝑚𝑔,𝑑𝑟𝑖𝑣𝑒 + 𝑇𝑔𝑒𝑛, (4-20) 
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when all driving torque is used to generate electricity. The efficiency of the generator is 

given by:  

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=

𝑃𝑜𝑢𝑡

𝑇𝑚𝑔,𝑑𝑟𝑖𝑣𝑒𝜔𝑔𝑒𝑛
. (4-21) 

Following the similar deduction as one for 𝑇𝑚𝑜𝑡,𝑙𝑜𝑠𝑠, a quadratic equation of 𝑇𝑔𝑒𝑛,𝑙𝑜𝑠𝑠 can 

be addressed. The results of the loss estimation of motor and generator are both 

shown in Figure 4-5. It is obvious that the torque loss grows quickly when the speed is 

above 4500 rpm or the torque is higher than 200 N*m for both motor and generator 

mode.  

Furthermore, the torque loss of the motor increases with the growth of torque when the 

torque is under 50 N*m, while the variation of speed have no big influence on the 

torque loss. More importantly, the minimum loss of the motor is around 2000-2500 rpm 

and 80-120 N*m. These characteristics are the same for the generator. 
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Figure 4-5 Torque loss of motor (a) and generator (b) 

The parameters of PMSM/PMSG required for the modelling are shown in Table 4-2. 

Table 4-2 Parameters of motor/generator 

Parameters Symbols EMRAX228 

Maximum speed (rpm) - 5000 

D-axis stator inductance (μH) 𝐿𝑑 175 

Q-axis stator inductance (μH) 𝐿𝑞 180 

Stator resistance (Ω) 𝑅𝑠 0.018 

Magnet mutual flux (Wb) 𝜆𝑚 0.0542 

Moment of inertia (kg*m2) 𝐽𝑚𝑜𝑡/𝐽𝑔𝑒𝑛 0.0421 

Number of pole pairs 𝑝 10 

4.2.3 Controllers 

The control of PMSM/PMSG can be separated into three loops (see Figure 4-6): vector 

control, torque control and speed control. All control loops are realized using PI 

controls. To convert AC motors into equivalent DC motors which a re separately 

excited, the vector control is used to recreate the orthogonal flux by controlling 𝑖𝑞 and 

𝑖𝑑, respectively [68].  Then, the torque following is achieved by forcing 𝑖𝑑 to zero and 

regulating 𝑖𝑞. Similarly, the required speed is obtained by controlling the torque. This 
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control structure can accept both speed and torque references. Meanwhile, the 

transition between speed and torque control modes is governed by the supervisory 

control. 

Rotational

Dynamics

Electric

Dynamics

Vd , VqVector

Controller

Torque

Controller
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id,ref =0

ωmot/gen Tmot/gen
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Tmot/gen,ref id , iq

id , iq

Speed

Controller
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Tmot/gen
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Figure 4-6 PMSM/PMSG control loops 

4.2.4 Inverter/Rectifier 

The average model of the inverter/rectifier is represented by the average PWM 

converter in the 𝑑-𝑞 frame [157]: 

[
𝑣𝑑
𝑣𝑞
] = [

𝑑𝑑
𝑑𝑞
] 𝑉𝑏𝑢𝑠, (4-22) 

𝐼𝑏𝑢𝑠 =
3

2
[𝑖𝑑 𝑖𝑞] [

𝑑𝑑
𝑑𝑞
], (4-23) 

in which 𝑑𝑑, 𝑑𝑞 are continuous duty cycle functions in the 𝑑- and 𝑞- axis, respectively. 

Their values are be obtained from the actual values of 𝑉𝑏𝑢𝑠, 𝑣𝑑 and 𝑣𝑞 (see Eq. (4-22)). 

𝑉𝑏𝑢𝑠 is the voltage connected to the DC/DC converter bus. Then, the current 𝐼𝑏𝑢𝑠 drawn 

by the inverter/rectifier from the DC/DC converter can be derived using Eq. (4-23). 

4.3 Battery 

4.3.1 Model 

The battery model applied in the thesis is the one proposed by Shepherd in 1965 [74] 

and improved by Tremblay in 2007-2009 [75,76]. This model follows the approach 
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proposed by Shepherd, which neglects the faster RC circuit dynamics and pays 

attention to the open circuit voltage and current of the battery. Both the battery open 

circuit voltage and internal resistance are primarily dependent on the battery SoC and 

electrolyte temperature. Here, we assume that the open circuit voltage is immune to 

the temperature and the internal resistance is a constant value [74]. As a result, the 

discharge characteristics of LiPo batteries are governed by: 

𝑉𝑏 = 𝐸0 − 𝐾 ∙
𝑄

𝑄−𝑄𝑏𝑎𝑡𝑡,𝑐
∙ 𝑄𝑏𝑎𝑡𝑡,𝑐 − 𝐾 ∙

𝑄

𝑄−𝑄𝑏𝑎𝑡𝑡,𝑐
∙ 𝑖∗ + 𝐴𝑒−𝐵∙𝑄𝑏𝑎𝑡𝑡,𝑐; (4-24) 

where 𝑉𝑏 is the battery open circuit voltage, 𝐸0 is the battery constant voltage, 𝑖∗ is the 

filtered current obtained by a low-pass filter, 𝐾 is the polarization resistance (𝛺), 𝐴 is 

the exponential voltage coefficient (𝑉), and 𝐵 is the exponential capacity coefficient 

((𝐴ℎ)−1). 𝑄 is the battery capacity and 𝑄𝑏𝑎𝑡𝑡,𝑐 = ∫ 𝐼𝑏𝑎𝑡𝑡𝑑𝑡 is called actual battery charge, 

in which 𝑄𝑏𝑎𝑡𝑡,𝑐(0) = 𝑄 − 𝑄0  and 𝑄0  is the battery energy at the initial state. The 

definition of battery SoC is established on the battery capacity and actual battery 

charge: 

𝑆𝑜𝐶 =
𝑄−𝑄𝑏𝑎𝑡𝑡,𝑐

𝑄
. (4-25) 

The filtered current 𝑖∗ is used to obtain a ripple-free battery current. It can also solve 

the algebraic loop issue caused by directly multiplying (𝑄 − 𝑄𝑏𝑎𝑡𝑡,𝑐)/𝑄  by 𝑖  in Eq. 

(4-24). Additionally, filtered current 𝑖∗  can reproduce a slow dynamic behaviour of 

battery voltage for a step response, which is more compatible with the experimental 

results [76]. Also derived from the experimental experience, 𝑄𝑏𝑎𝑡𝑡,𝑐  instead of 𝑖 , is 

multiplied by 𝐾 ∙ (𝑄 − 𝑄𝑏𝑎𝑡𝑡,𝑐)/𝑄.  

For the charge mode, the polarisation resistance 𝐾  increases when actual battery 

charge 𝑄𝑏𝑎𝑡𝑡,𝑐  decreases. This feature is expressed by the term 𝐾 ∙ 𝑄/𝑄𝑏𝑎𝑡𝑡,𝑐 . As a 

result, the charge characteristics is given by: 

  𝑉𝑏 = 𝐸0 −𝐾 ∙
𝑄

𝑄−𝑄𝑏𝑎𝑡𝑡,𝑐
∙ 𝑄𝑏𝑎𝑡𝑡,𝑐 − 𝐾 ∙

𝑄

𝑄𝑏𝑎𝑡𝑡,𝑐
∙ 𝑖∗ + 𝐴𝑒−𝐵∙𝑄𝑏𝑎𝑡𝑡,𝑐. (4-26) 
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Since 𝑄𝑏𝑎𝑡𝑡,𝑐 = ∫ 𝐼𝑏𝑎𝑡𝑡𝑑𝑡𝑄−𝑄0
, the term 𝐾 ∙ 𝑄/𝑄𝑏𝑎𝑡𝑡,𝑐  will become the infinite when the 

battery is fully charged (𝑄𝑏𝑎𝑡𝑡,𝑐 = 0). This not only leads to the computation problem, 

but also not conforms to the practice. The experimental results shows that the 

contribution of the polarisation resistance is shifted by about 10% of the battery 

capacity [75]. Therefore, the charge equation can be rewritten to: 

  𝑉𝑏 = 𝐸0 −𝐾 ∙
𝑄

𝑄−𝑄𝑏𝑎𝑡𝑡,𝑐
∙ 𝑄𝑏𝑎𝑡𝑡,𝑐 − 𝐾 ∙

𝑄

𝑄𝑏𝑎𝑡𝑡,𝑐−0.1𝑄
∙ 𝑖∗ + 𝐴𝑒−𝐵∙𝑄𝑏𝑎𝑡𝑡,𝑐. (4-27) 

Finally, the output voltage 𝑉𝑏𝑎𝑡𝑡 is obtained by: 

 𝑉𝑏𝑎𝑡𝑡 = 𝑉𝑏 − 𝐼𝑏𝑎𝑡𝑡 ∙ 𝑅𝑏, (4-28) 

in which 𝐼𝑏𝑎𝑡𝑡 is the output current and 𝑅𝑏 represent the internal resistance.  

4.3.2 Parameter Identification 

One of advantages of the Shepherd model is that it is straightforward to identify the 

parameters for the dynamic model. One discharge curve and the value of internal 

resistance are sufficient for the parameter identification. Three points on the discharge 

curve are required to be identified. Those three points are: fully charged point (𝑉𝑓𝑢𝑙𝑙, 

𝑄𝑐𝑢𝑡), the end of the exponential zone (𝑉𝑒𝑥𝑝, 𝑄𝑒𝑥𝑝), and the end of the nominal zone 

(𝑉𝑛𝑜𝑟𝑚, 𝑄𝑛𝑜𝑚). The final results of the parameter identification contain the values of 

constant voltage (𝐸0), polarization resistance (𝐾), exponential voltage coefficient (𝐴), 

and exponential capacity coefficient (𝐵). 
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Figure 4-7 Experimental discharge curve of one cell 

The one-cell discharge curve supplied by the manufacturer is shown in Figure 4-7. 

Note that the manufacturer curve is obtained at constant discharge current. Here, the 

battery is discharged with the 5.007 A. The related values of three key points are all 

given in Table 4-3.  

Table 4-3 Parameters of battery 

Parameters Symbols LiPo 

Full zone 
Full Voltage (V) 𝑉𝑓𝑢𝑙𝑙 4.175 

Capacity (Ah) 𝑄 4.951 

Exponential zone 
Exponential Voltage (V) 𝑉𝑒𝑥𝑝 3.5500 

Exponential Capacity (Ah) 𝑄𝑒𝑥𝑝 4.6410 

Nominal zone 
Nominal Voltage (V) 𝑉𝑛𝑜𝑚 3.5710 

Nominal Capacity (Ah) 𝑄𝑛𝑜𝑚 4.6007 

Discharge Current (A)  𝑖 5.007 

Internal Resistance (Ω) 𝑅𝑏 0.296 

 

In terms of the fully charged voltage, both the extracted discharge (𝑄𝑏𝑎𝑡𝑡,𝑐 = 0) and the 

filtered current (𝑖∗) are zero. The output voltage at the fully charged point becomes: 
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𝑉𝑓𝑢𝑙𝑙 = 𝐸0 + 𝐴 − 𝑖 ∙ 𝑅𝑏. (4-29) 

Concerning the end of the exponential zone and nominal zone, the multiplication 

inverse of 𝐵 is approximated to one third of 𝑄𝑒𝑥𝑝, since the energy of the exponential 

term (𝑒−𝐵𝑄𝑒𝑥𝑝) is almost zero (0.05) when the argument is larger than three [76]. The 

filtered current (𝑖∗) is equal to  𝑖 since the current is at the steady state: 

  𝑉𝑒𝑥𝑝 = 𝐸0 − 𝐾 ∙
𝑄

𝑄−𝑄𝑒𝑥𝑝
∙ (𝑄𝑒𝑥𝑝 + 𝑖) + 𝐴𝑒

−𝐵𝑄𝑒𝑥𝑝 − 𝑖 ∙ 𝑅𝑏, (4-30) 

  𝑉𝑛𝑜𝑚 = 𝐸0 −𝐾 ∙
𝑄

𝑄−𝑄𝑛𝑜𝑚
∙ (𝑄𝑛𝑜𝑚 + 𝑖) + 𝐴𝑒

−𝐵𝑄𝑛𝑜𝑚 − 𝑖 ∙ 𝑅𝑏, (4-31) 

The identified parameters of the LiPo battery are shown in Table 4-4.  

 

Table 4-4 Identified Parameters of battery 

Identified Parameters Symbols LiPo 

Constant voltage (V) 𝐸0 4.1484 

Polarization resistance (Ω) 𝐾 0.0011 

Exponential voltage coefficient (V) 𝐴 0.4772 

Exponential capacity coefficient ((Ah)-1) 𝐵 0.6464 

 

Then, the steady-state characteristics of the battery model is verified by the 

comparison between the simulation data and experimental measurements. Figure 4-8 

(a) compares the discharge curve derived from the Shepherd model with the discharge 

curve from experiments. Note that one shortage of the Shepherd model is that it cannot 

predict the battery voltage beyond the nominal zone (lower than 3.5 V). This deficiency 

can be accepted in practical applications since the battery usually is not permitted to 

operate at the low voltage (SoC) condition. Figure 4-8 (b) provides the error of the 

voltage between the engine model and experimental data, under different equilibrium 

states. It is clear that the model achieves a very good match, since all errors are lower 

than 1%. 
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Figure 4-8 Comparison between simulation and experimental data of battery 

4.4 DC/DC Converter 

The bidirectional DC/DC converter is applied to stable the voltage and manage the 

battery charge. Another role of the DC/DC converter in our HEPS is to boost the 

voltage to a high value during take-off and climb. 

According to the placement of energy storage source, the bidirectional DC/DC 

converter can be categorized into the buck and boost type. The buck type is to have 

energy storage placed on the high voltage side, while the boost type is to have it 

placed on the low voltage side [70]. Therefore, the DC/DC converter in our system is 
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the boost one, but it can work at both buck and boost mode. The transition between 

buck and boost modes is achieved by regulating the duty-cycle switching frequency. 

As shown in Figure 4-9, Ref. [70] gives a simplified general circuit diagram of 

bidirectional DC/DC converter when the battery is on the low voltage side. 𝑄1 and 𝑄2 

are two active switches that can change the duty cycle of the bidirectional DC/DC 

converter. 𝐶1  indicates the bus capacitor bank at high voltage side. Since the low 

voltage side is the battery, a strong voltage source, the capacitor bank of this side is 

neglected. The equivalent inductance and its parasitic resistance are denoted by 𝐿1 

and 𝑅𝐿 , respectively. Note that the inductance parasitic resistance should not be 

neglected for the high power application. 

Q1

M Q2

RL

C1

L1

 

Figure 4-9 General circuit of bidirectional DC/DC converter 

Then, the dynamics of the inductor current 𝑖𝐿 and capacity voltage 𝑣𝐶 are addressed 

by: 

𝑑𝑖𝐿  

𝑑𝑡
=

{
 

 
𝑣𝐶 − 𝑉𝑏𝑎𝑡𝑡 − 𝑅𝐿𝑖𝐿

𝐿1
,   𝑄1 is on 

−𝑉𝑏𝑎𝑡𝑡 − 𝑅𝐿𝑖𝐿
𝐿1

,         𝑄2 is on

 (4-32) 

𝑑𝑣𝐶  

𝑑𝑡
=

{
 

 
−𝐼𝑏𝑢𝑠 − 𝑖𝐿

𝐶1
,    𝑄1 is on

−
𝐼𝑏𝑢𝑠
𝐶1

,            𝑄2 is on

 (4-33) 

at two different subintervals of one switch cycle. The first equations of Eqs. (4-32) and 

(4-33) represent current and voltage variation in the first subinterval, respectively, when 
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the switch 𝑄1 is on and 𝑄2 is off. In the second subinterval, when 𝑄1 is off and 𝑄2 is on, 

the equivalent circuit is governed by the second equations of Eqs. (4-32) and (4-33). 

The parameters needed for the converter modelling are listed in Table 4-5.   

Table 4-5 Parameters of bidirectional DC/DC Converter 

Parameters Symbols DC/DC Converter 

Equivalent inductance (μH) 𝐿1  25 

Bus capacitor bank (μF) 𝐶1 150 

Inductance parasitic resistance (mΩ) 𝑅𝐿 35 

 

Assume that the inductor current ripple is small, then the state-space averaging model 

can be derived: 

𝑑𝐼𝐿 

𝑑𝑡
= (𝛼𝑉𝐶 − 𝑉𝑏𝑎𝑡𝑡 − 𝑅𝐿𝐼𝐿)/ 𝐿1, (4-34) 

𝑑𝑉𝐶 

𝑑𝑡
= (−𝐼𝑏𝑢𝑠 − 𝛼𝐼𝐿)/𝐶1, (4-35) 

where 𝛼 is the duty-cycle average value of the first subinterval. 𝐼𝐿 and 𝑉𝐶 are average 

values of their instantaneous corresponding ones. Lastly, the output of the DC/DC 

converter bus is: 

𝑉𝑏𝑢𝑠 = 𝑉𝐶, 𝐼𝑏𝑎𝑡𝑡 = −𝐼𝐿. (4-36) 

The bus voltage can be regulated by controlling the switching duty-cycle. A PI 

controller is employed in this thesis. 

4.5 Conclusion 

This section presented the modelling of the ICE, PMSM, LiPo battery and bidirectional 

DC/DC converter.  
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The MVM of the engine was validated by comparing the simulation results with 

experimental data. The model simplifies the manifold dynamics and flow rate dynamics. 

The model represents the inherent dynamics between the throttle command and the 

output torque. The model has the low computational complexity since further 

calculation of the engine torque loss is not needed.  

The 𝑑-𝑞  model was applied to simulate the electromagnetic dynamics of the 

motor/generator. Concerning the model behaviour at the steady state, the torque loss 

was estimated using the efficiency map supplied by the manufacturer. The 𝑑-𝑞 model 

and vector control simplify the speed and torque control of motor/generator, by 

converting the original AC model into a DC one.  

The Shepherd model and its improved version were employed to estimate the battery 

voltage. The parameters of the Shepherd model can be easily extracted from the 

discharge curve of the battery. Not only a precise model is achieved, but also large 

amounts of identification experiments are avoided.  

Lastly, the averaging model of bidirectional DC/DC converter was derived using a 

general circuit diagram. 
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 Non-Causal Energy 

Management 

In the non-causal control study, both dynamic programming and convex optimization 

are researched and compared, while only the convex optimization is presented in 

detail. 

This chapter starts by first covering the primary energy management formulation, in 

which the minimization of the total fuel usage is selected as the objective. The 

convexity of the original problem is clarified via investigating the approximation to the 

experimental data. 

The most challenging work of applying the convex programming is to convert the 

original problem into a convexified one. Two techniques—change of variables and 

equality relaxation are implemented to convexify the concave constraints. The 

discretization is implemented subsequently on the new convexified problem. The proof 

of equality between the original problem and convexified problem is also given in this 

study.  

Two different hypothetical flight test scenarios are designed in this thesis to validate the 

convex optimization. The first test includes the complete flight mission, while the 

second test case extends the cruising phase of the first one. 
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5.1 Original Problem Formulation 

Initially, the formulation of the original problem, including constraints and the objective, 

will be presented. In this study, the objective of the energy optimization is to minimize 

the fuel consumption of engine during the complete flight mission.  

5.1.1 Powertrain Modelling 

As explained in Section 2.2, the (quasi-) static models are employed in the energy 

optimization study. The HEPS combines the energy from the fuel and electric storage 

to power the vehicle, regardless of the hybrid powertrain configuration. Considering the 

instantaneous power flow in the powertrain, the power output of fuel combustion 𝑃𝑓𝑢𝑒𝑙 

in addition to electric storage, 𝑃𝑒𝑙𝑒𝑡𝑟𝑖𝑐 , always equals to the sum of system power 

requirement, 𝑃𝑟𝑒𝑞, and power loss, 𝑃𝑙𝑜𝑠𝑠 (see Eq. (5-1)).  

𝑃𝑓𝑢𝑒𝑙 + 𝑃𝑒𝑙𝑒𝑡𝑟𝑖𝑐 = 𝑃𝑟𝑒𝑞 + 𝑃𝑙𝑜𝑠𝑠. (5-1) 

𝑃𝑓𝑢𝑒𝑙 is sometimes replaced by the engine power 𝑃𝐼𝐶𝐸, since the fuel map of the engine 

is normally represented as the function of power, 𝑃𝐼𝐶𝐸. If the minor mechanical power 

loss is omitted, the power loss, 𝑃𝑙𝑜𝑠𝑠, needs contain only the electric power loss, then 

Eq. (5-1) can be re-written as: 

𝑃𝐼𝐶𝐸 + 𝑃𝑒𝑙𝑒𝑡𝑟𝑖𝑐 = 𝑃𝑟𝑒𝑞 + 𝑃𝑒𝑙𝑒𝑡𝑟𝑖𝑐,𝑙𝑜𝑠𝑠. (5-2) 

If the battery is selected as the electrical energy source, the battery 

discharging/charging power will be the electric power displayed in Eq. (5-2), while the 

electric power loss will be the power loss from the electric motor (i.e the 

motor/generator in this thesis): 

𝑃𝐼𝐶𝐸 + 𝑃𝑏𝑎𝑡𝑡 = 𝑃𝑟𝑒𝑞 + 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠. (5-3) 

Put differently, the power demand 𝑃𝑟𝑒𝑞, in addition to the electric motor power losses 

𝑃𝐸𝑀,𝑙𝑜𝑠𝑠, appears as the sum of the contributions of engine power, 𝑃𝐼𝐶𝐸, and battery 

power, 𝑃𝑏𝑎𝑡𝑡. 
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The role of HEPS energy management of is to split the power demand appropriately 

between the combustion and electrical energy sources. Thus, the control variable of 

the powertrain is typically formulated relative to the engine output power, i.e. 𝑢 = 𝑃𝐼𝐶𝐸. 

When selecting the battery for energy storage, the state variable of the hybrid 

propulsion system is the battery’s State-of-Charge (SoC), and is denoted by 𝑥 . 

According to the definition of SoC, the system state transition equation can be written 

as: 

�̇� = −
𝐼

𝑄𝑚𝑎𝑥
, (5-4) 

where 𝐼 is the current flowing supplied by the battery and 𝑄𝑚𝑎𝑥 is the battery maximum 

capacity.  

In the energy management analysis of hybrid vehicle, the battery model is commonly 

described by an ideal open-circuit voltage source in series with an internal resistance 

[75]. It uses the open circuit battery voltage 𝑉𝑏 and internal resistance 𝑅𝑏 to obtain the 

battery output power 𝑃𝑏𝑎𝑡𝑡: 

𝑃𝑏𝑎𝑡𝑡 = 𝐼 ∗ 𝑉𝑏(𝑥) − 𝐼
2𝑅𝑏, (5-5) 

in which the resistance 𝑅𝑏 is assumed to be constant. 

In addition to system dynamics, the optimization must consider the physical limitations 

of each component, which could be expressed by the bounds of variables: 

𝑃𝐼𝐶𝐸,𝑚𝑖𝑛(𝜔𝐼𝐶𝐸) ≤ 𝑃𝐼𝐶𝐸 ≤ 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥(𝜔𝐼𝐶𝐸), (5-6) 

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥, (5-7) 

𝐼𝑚𝑖𝑛 ≤ 𝐼 ≤ 𝐼𝑚𝑎𝑥, (5-8) 

where the engine rotational speed is 𝜔𝐼𝐶𝐸 , and the engine power upper and lower 

boundaries change with 𝜔𝐼𝐶𝐸. 
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The engine rotational speed is determined by the reference speed due to the 

mechanical link constraint: 

𝜔𝐼𝐶𝐸 = 𝑟 ∗ 𝜔𝑟𝑒𝑞, (5-9) 

where 𝑟 is the transmission ratio of the drivetrain. 

5.1.2 Objective 

In this study, the objective of the energy optimization is to minimize the fuel 

consumption of the engine during the overall flight mission. The cost function can be 

expressed by: 

𝐽 = ∫ �̇�𝑓(𝑃𝐼𝐶𝐸)
𝑡𝑓
𝑡0

𝑑𝑡, (5-10) 

where �̇�𝑓 denotes the fuel consumption rate of the engine. The time 𝑡 ∈ [𝑡0, 𝑡𝑓], where 

𝑡𝑓 is the final time and the initial time 𝑡0 generally starts at zero. 

In sum, the original Problem (5-11) is to minimize the objective, 𝐽, in Eq. (5-11a) 

𝐽 = ∫ �̇�𝑓(𝑃𝐼𝐶𝐸)
𝑡𝑓
𝑡0

𝑑𝑡, (5-11a) 

subject to: 

𝑃𝐼𝐶𝐸 + 𝑃𝑏𝑎𝑡𝑡 = 𝑃𝑟𝑒𝑞 + 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠. (5-11b) 

�̇� = −
𝐼

𝑄𝑚𝑎𝑥
,  (5-11c) 

𝑃𝑏𝑎𝑡𝑡 = 𝐼 ∗ 𝑉𝑏(𝑥) − 𝐼
2𝑅𝑏 , (5-11d) 

𝑃𝐼𝐶𝐸,𝑚𝑖𝑛(𝜔𝐼𝐶𝐸) ≤ 𝑃𝐼𝐶𝐸 ≤ 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥(𝜔𝐼𝐶𝐸), (5-11e) 
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𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥, (5-11f) 

𝐼𝑚𝑖𝑛 ≤ 𝐼 ≤ 𝐼𝑚𝑎𝑥 , (5-11g) 

𝜔𝐼𝐶𝐸 = 𝑟 ∗ 𝜔𝑟𝑒𝑞. (5-11h) 

5.1.3 Approximation of Fuel Rate 

In this case, the fuel rate (the integrand of the objective function) is not a convex 

function of the control variable, but it is piecewise linear (affine) dependent on the 

engine torque at a given speed (see Figure 5-1). In other words, the fuel rate at each 

speed can be addressed by:  

�̇�𝑓 = 𝑘(𝜔𝐼𝐶𝐸)
𝑃𝐼𝐶𝐸

𝜔𝐼𝐶𝐸
+ 𝑑(𝜔𝐼𝐶𝐸), (5-12) 

where 𝑘  and 𝑑  are parameters that are estimated by the piecewise linear 

approximation and will vary depending on engine speed. 

 

Figure 5-1 Piecewise linear approximation of the fuel rate at different speeds. 

The results of piecewise linear approximation are plotted in Figure 5-1 as the solid 

curve. The first turning point (gradient change point) indicates the best efficiency for a 
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given speed, if the fuel rate curve is piecewise convex [62]. This condition is not fulfilled 

at 6500 rpm and 7000 rpm, so their best efficiency points move to the second turning 

point due to the presence of nonconvex segments. The best efficiency points at 

different speeds are marked by mauve triangular symbols in Figure 5-1. To avoid 

substantial distortion and shift of the best efficiency region, the best efficiency points 

need to be retained at their original values when implementing the approximation.  

This following work will verify the piecewise linear approximation of fuel rate by 

comparing the original efficiency map and fitted data.  Also, another efficiency map, 

which is computed from the fitted fuel rate using spline approximation, is also 

presented and compared with one using the piecewise linear approximation. 

 

Figure 5-2 Original efficiency map 

The original efficiency map of the engine is shown in Figure 5-2. It is obvious that the 

best efficiency region roughly falls between 4000-5500 rpm and 40-45 N*m. If possible, 

operating around this area can improve engine’s efficiency and also extend its lifetime. 

For the same reason, it is not recommended to control engine to the region above the 

maximum continuous torque curve and below the minimum continuous torque curve. 

A piecewise linear approximation of the engine fuel rate was introduced to convexify 

the cost function. The piecewise approximation was done by first specifying the best 

efficiency point at the current speed. The best efficiency point was kept at its original 

value when the fuel rate was approximated by a piecewise linear function, via the least 

square method. The efficiency map of the approximated data is shown in Figure 5-3, 
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with the original efficiency also shown. The dotted curve represents the original fuel 

rate data, with fitted data denoted by the dashed curve. It can be concluded that the 

piecewise linear fitting reflects the feature of the original data, especially around the 

area of best efficiency. The reason is that minimizing the fitting error for this portion of 

the data takes priority. 

 

Figure 5-3 Piecewise linear approximation of the engine map 

Another efficiency map from spline approximation is presented in Figure 5-4 as a 

comparison of piecewise linear approximation. The comparison demonstrates that both 

approaches can avoid a large shift of the best efficiency region, whereas the piecewise 

linear fitting performs better in keeping its original shape. On the other hand, the two 

methods both underachieve in fitting data around the region between 3000-4000 rpm 

and 20-35 N*m. This may be due to the deficiency of the original experimental data. 

However, it can be observed that our piecewise linear approximation tries to follow the 

gradient of the original data, while there occurs obviously overfitting for the spline 

approximation. The two techniques express different understandings when predicting 

the missing original data between 3000-7000 rpm and 20-35 N*m. It is not 

straightforward to judge which technique is better, but the piecewise linear 

approximation seems more reliable than the spline approximation that overreacts to 

minor fluctuations.  
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Figure 5-4 Spline approximation of the engine map 

5.1.4 Flight Missions 

There are two test cases for validating the designed optimization algorithm. The first 

test case is a complete mission that includes take-off, climbing, cruising and landing 

phases, where both the battery charge-depleting and charge-sustaining strategies are 

implemented in the hypothetical flight scenario. In the second, the charge-sustaining 

strategy is employed for the cruising flight phase.  

The flight mission profile only highlights a few significant flight phases, by 

demonstrating their power demands. In our HEPS, the power requirement 𝑃𝑟𝑒𝑞 is the 

sum of the power requested to drive the propeller and power demanded by the 

auxiliary devices of the aircraft (such as payloads, power electronics and supervisory 

controller). Note that the power requirement takes into account of the power loss of 

propeller propulsion. However, different from the estimation of power demand in the 

system sizing, the calculation of power demand here does not need to consider the 

power loss due to the variation of altitude. The reason is that the model of engine ECU 

control already takes the altitude coefficient 𝑒𝑎𝑖𝑟 into account. 

The test scenario 1 used in this thesis simulates a complete 30 minutes flight mission 

that includes take-off, climbing, cruising and landing phases. As shown in Figure 5-5, 

the system initialization and take-off are in the 1st minute, it then climbs to the cruising 

altitude in the time interval of the 1st-6th minute. The aircraft commences the cruising 
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phase at 7th minute. The cruising segment lasts for roughly 20 minutes. After the 

hypothetical cruising mission, the aircraft starts its landing around the 27th minute. 

 

Figure 5-5 Power requirement of test case 1 

Since in real flight, external factors such as wind will cause fluctuation of power 

demands, to increase the fidelity of the simulation, a disturbance is added to the 

original power requirement, as shown in Figure 5-5. The original power demand is 

normally used in the energy optimization control, while the disturbed power need is 

implemented on the simulation verification. 

 

Figure 5-6 Power requirement of test case 2 
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As shown in Figure 5-5, the cruising phase is simplified to one segment with the 

constant power requirement. To investigate the optimization performance during the 

cruising, this segment is re-designed and set as the test scenario 2. Similarly, the 

power demand is added with the disturbance and compared with the original one in 

Figure 5-6. The power demand varies when the aircraft cruises at different airspeeds. 

5.2 Dynamic Programming 

Dynamic Programming (DP) is a numerical method originating to solve multi-stage 

decision-making problems. After being aware of its capability of finding the best control 

trajectory, researchers start to exploit it to solve optimal control problems. DP accords 

with the Bellman’s principle of optimality [159]: An optimal policy has the property that 

whatever the initial state and initial decision are, the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the first decision. In 

other words, from any point on an optimal trajectory, the remaining trajectory is optimal 

for the corresponding problem initiated at that point. 

Consider the discrete-time system: 

�̇�𝑘+1 = 𝑓𝑘(𝑥𝑘 , 𝑢𝑘),  𝑘 = 0,1,… ,𝑁 − 1, (5-13) 

where 𝑥𝑘 and 𝑢𝑘 are discretized state and control variable at collocation time point 𝑘, 

respectively. 𝑁 is the number of discretization points. 

The cost 𝐽 of the decision 𝑢(𝑢0, 𝑢1, … , 𝑢𝑁) with initial state 𝑥0 can be addressed by: 

𝐽(𝑥0, 𝑢) = 𝐿𝑁(𝑥𝑁) + ∑ 𝐿𝑘(𝑥𝑘, 𝑢𝑘)
𝑁−1
𝑘=1 , (5-14) 

where 𝐿𝑘  is the instantaneous cost function. 𝐿𝑘(𝑥𝑘, 𝑢𝑘) indicates the cost of moving 

from collocation time 𝑘  to 𝑘 + 1 . The minimum cost function is achieved with the 

optimal control 𝑢∗: 

𝐽∗(𝑥0) = min
𝑢
𝐽(𝑥0, 𝑢). (5-15) 
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Then consider the remaining sub-problem of minimizing the cost-to-go 𝑌  from 

collocation time 𝑖 to 𝑁: 

𝑌(𝑥𝑖, 𝑖) = 𝐿𝑁(𝑥𝑁) + ∑ 𝐿𝑘(𝑥𝑘, 𝑢𝑘)
𝑁−1
𝑘=𝑖 . (5-16) 

Bellman’s principle of optimality states that the “tail policy”, {𝑢𝑖
∗, 𝑢𝑖+1

∗ , … , 𝑢𝑁−1
∗ }, is the 

optimal solution for the remaining sub-problem. Put differently, the optimal control can 

be obtained by finding the best decision to minimize the cost-to-go at each step, from 

the final step 𝑁 backward to the initial step. 

Dynamic programming can be used to solve the optimal energy management problem 

defined in Section 5.1. Before applying the backward scanning, the candidate set of 

possible state (i.e. battery SoC) is created based on its bounds, at each step. The 

same procedure is done for the control variable, 𝑃𝐼𝐶𝐸. Then for the final step 𝑁, the 

instant cost 𝐿𝑁(𝑥𝑁)  is computed using each state value in the candidate set. The 

backward searching starts from time 𝑁 − 1.  

The instant cost 𝐿𝑘(𝑥𝑘, 𝑢𝑘)  for all possible combinations of state and control is 

computed and stored. 𝐿𝑘(𝑥𝑘, 𝑢𝑘) indicates the fuel cost of moving from all possible SoC 

at step 𝑘 to all admissible SoC at step 𝑘 + 1, using all reachable 𝑃𝐼𝐶𝐸. Then, a series of 

cost-to-go 𝑌(𝑥𝑘 , 𝑢𝑘, 𝑘) are computed to represent the cost to the end of time starting at 

step 𝑘 from each possible state 𝑥𝑘 using all possible 𝑢𝑘.  

One of the most significant advantage of DP is that the cost-to-go 𝑌(𝑥𝑘 , 𝑢𝑘, 𝑘) can be 

calculated using the current cost 𝐿𝑘(𝑥𝑘, 𝑢𝑘) and the cost-to-go at time 𝑘 + 1. This can 

effectively reduce the computation since the algorithm proceeds backwards and 

𝑌(𝑥𝑘+1, 𝑢𝑘+1, 𝑘 + 1) have been computed. For each step, the control 𝑢𝑘  resulting in 

minimum 𝑌(𝑥𝑘 , 𝑢𝑘, 𝑘) is marked and included to the optimal control sequence. When all 

time steps are examined, the control sequence with the lowest cost-to-go represents 

the complete optimal solution. 

The most critical benefit of DP is that it is capable of providing the optimal solution to 

any problems, regardless of their complexity level. Therefore, DP can solve our 

discretized original problem directly. However, large computational cost exists in DP 

due to nonconvex characteristics of the energy optimization problem. Therefore, the 

optimization result from DP is usually used as a benchmark. More details on how to 
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develop the dynamic programming for hybrid propulsion system can be referred in 

[80,160]. 

5.3  Convex Optimization 

Consider the optimization problem [161]: 

 minimize    𝑓0(𝑥)  

 subject to   𝑓𝑖(𝑥) ≤ 0,    𝑖 = 1,… ,𝑚 (5-17) 

                                                               𝑎𝑖
𝑇𝑥 = 𝑏𝑖,     𝑖 = 1,… , 𝑝  

where 𝑚 and 𝑝 are numbers of inequality and equality constraints, respectively. If 𝑓𝑖(𝑥), 

𝑖 = 0,… ,𝑚 are convex functions, the problem (5-17) is a convex optimization problem.  

Comparing with the general standard form optimization problem, the convex problem 

has three additional requirements: 1) The objective function must be convex; 2) The 

inequality constraint functions must be convex; 3) The equality constraint functions 

must be affine. 

Convex optimization is widely favoured since it can be solved, very reliably and 

efficiently [161]. Using interior-point methods, the problem can be guaranteed 

convergence to the global optimum with a deterministic upper bound on the number of 

iterations, without the requirement of a pre-supplied initial guess. In other words, the 

global optimality, lower complexity and no request of user-specified initial value make 

the convex programming very promising for practical applications. 

The most challenging work of applying the convex programming is to convert the 

original problem into a convexified one. First, the convexity of cost and constraints is 

figured out with the approximation of experimental data. Then, the convexification is 

completed by changing variables (the battery power and SoC, etc.) and relaxing the 

power equivalent equation. The lossless of this convexification is also proved in this 

part of the study. 
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5.3.1 Approximation of Experimental Data 

The approximation is normally employed to reveal the inherent correlation between 

different variables with an algebraic expression, by analysing the original numerical 

data from experiments. What is more, the convexity of cost and constraints can also be 

investigated thoroughly. 

In this case, the fuel rate (the integrand of objective function) is not a convex function of 

the control variable, but it is piecewise linear (affine) dependent on engine torque at a 

given speed as presented in Section 5.1.3.  

In this study, the plot of battery voltage as a function of SoC can be divided into three 

segments. The experimental data and turning points are shown in Figure 5-7. It is clear 

that the function 𝑉𝑏 is nonlinear and also nonconvex. Fortunately, to extend the lifetime 

of the battery, the SoC is typically limited between 20% and 80%. The voltage between 

20% and 80% is convex and can be accurately fitted with a quadratic function of the 

form: 𝑉𝑏 = 𝑎𝑣𝑥
2 + 𝑏𝑣𝑥 + 𝑐𝑣. 

 

Figure 5-7 Approximation of open circuit voltage along the operating range of 

battery 

The convex approximation result is also marked in Figure 5-7, using the dashed curve 

with red circles. When the coefficients (𝑎𝑣 , 𝑏𝑣 , 𝑐𝑣)  are (24.95, 9.319, 291.0), 

respectively, the coefficient of determination is 0.9993. Note that the voltage is broadly 

fitted with a constant or affine function, to further simplify the model. However, the 
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constant or affine function is neither applied here due to its lower accuracy. On the 

other hand, the quadratic function performs well but leads to concave inequality 

constraints. This issue will be illustrated in Section 5.3.2.1. 

The power loss of electric motor was calculated using efficiency map supplied by the 

manufacturer. From the previous research in Section 4.2.1 and 4.2.2, the power loss of 

the electric motor is actually dependent on the speed and torque. In this thesis, the 

correlation between power loss and torque/speed was analysed first. It was found that 

the distance correlation between power loss and torque is only 0.0541. This means that 

the power loss is only slightly influenced by torque. This is demonstrated in Figure 5-8 

that presents the relationship between power loss and speed under difference torques.   

 

Figure 5-8 Approximation of the power losses of the electric motor 

As a result, the power loss can be approximated in a formula which involves only 

speed, using the convex function 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠 = 𝑎𝑚 ∗ exp (𝑏𝑚𝜔𝑀𝐺). The fitting results are 

also plotted in Figure 5-8, with the red solid line marked with circles. The fitted 

coefficient are 𝑎𝑚 = 0.0563, 𝑏𝑚 = 9.4248 ∗ 10−4, when the speed unit is revolutions per 

minute (rpm). The coefficient of multiple determination is 0.9919.  It is worth noting that 

the observed data used in the fitting is the mathematical expectation of original power 

loss data at different torques. 

By analysing the experimental data, the fuel rate map is estimated with a series of 

piecewise linear expression. The operating region of the battery voltage is also shown 
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to be convex. Meanwhile, the power loss of EMs is proved to be mainly dependent on 

output speed, instead of output torque. 

5.3.2 Lossless Convexification 

The convexity of the original Problem represented by Eq. (5-11) is examined in Section 

5.1.3 by evaluating the experimental data. The objective function is found to be convex 

with the piecewise linear integrand. The variable bounds (5-11e-g) and mechanical 

constraint (5-11h) are affine, but equality constraints (5-11b-d) do not satisfy the 

requirement of convex programming [161].  

In the following section, a convexification including change of variables and equality 

relaxation, is carried out to convert the Problem represented by Eqs. (5-11) into a 

convex Problem represented by Eqs. (5-28).  

5.3.2.1 Change of Variables 

Internal power of battery 𝑃𝑏  which does not include power loss is proposed in this 

thesis, then the equality constraints (Eqs.  (5-11b) and (5-11d)) become: 

𝑃𝐼𝐶𝐸 + 𝑃𝑏 = 𝑃𝑟𝑒𝑞 + 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠 + 𝑃𝑏,𝑙𝑜𝑠𝑠, (5-18) 

𝑃𝑏 = 𝐼 ∗ 𝑉𝑏(𝑥). (5-19) 

The power loss of the battery, 𝑃𝑏,𝑙𝑜𝑠𝑠 defined here is mainly due to the power dissipated 

in the resistance, which is dependent on the internal battery power and battery SoC 

(see Figure 5-9). Similar to 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠, the distance correlation between power loss and 

SoC is only 0.0810. In other words, the power loss is correlated mainly with battery 

power, rather than SoC. 𝑃𝑏,𝑙𝑜𝑠𝑠 can be fitted with a simple convex quadratic function: 

𝑃𝑏,𝑙𝑜𝑠𝑠 = 𝑎𝑙𝑃𝑏
2. The fitted coefficient is 𝑎𝑙 = 3.24 ∗ 10

−6, with its coefficient of multiple 

determination being 0.9998. The observed data used in the fitting is the mathematical 

expectation of the original power loss data at different SoC. Note that by introducing 

the battery internal power 𝑃𝑏, the power loss is transformed to a symmetrical graph 

across the 𝑦-axis, which simplifies the formulation of battery model and the proof of 

Lemma 1 as follows in Section 5.3.2.2.  



Non-Causal Energy Management 

106 

Now, the inequality (5-11g) becomes: 

𝐼𝑚𝑖𝑛 ≤
𝑃𝑏

𝑉𝑏(𝑥)
≤ 𝐼𝑚𝑎𝑥, (5-20) 

which is affine in the battery internal power 𝑃𝑏, but does not guarantee the convexity of 

the battery voltage 𝑉𝑏(𝑥).  

 

Figure 5-9 Approximation of the battery power losses 

Consider approximating 𝑉𝑏(𝑥) with two affine functions: 𝑉𝑙𝑏(𝑥) and 𝑉𝑢𝑏(𝑥), as illustrated 

in Figure 5-10, with black dotted and solid lines, respectively. The 𝑉𝑙𝑏(𝑥) is the Taylor 

expansion of 𝑉𝑏(𝑥) at 𝑥 = 0.5, while the line defined by 𝑉𝑢𝑏(𝑥) goes through two points 

at 20% and 80% SoC.  

Because of the convexity of 𝑉𝑏(𝑥), 𝑉𝑙𝑏(𝑥) and 𝑉𝑢𝑏(𝑥)  suggest the lower and upper 

bounds of the voltage: 

𝐼𝑚𝑖𝑛𝑉𝑏(𝑥) ≤ 𝐼𝑚𝑖𝑛𝑉𝑢𝑏(𝑥), 𝐼𝑚𝑎𝑥𝑉𝑏(𝑥) ≥ 𝐼𝑚𝑎𝑥𝑉𝑙𝑏(𝑥). (5-21) 

Thus the following constraints need to be satisfied: 

𝐼𝑚𝑖𝑛𝑉𝑢𝑏(𝑥) ≤ 𝑃𝑏 ≤ 𝐼𝑚𝑎𝑥𝑉𝑙𝑏(𝑥). (5-22) 
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Figure 5-10 Upper and lower bounds of the open circuit voltage 

By solving the problem within the bounds of these constraints (see Eq. (5-22)), one 

never obtains solutions that violate the constraints imposed by the physical problem. 

The bounds on errors (𝑒𝑙𝑏 , 𝑒𝑢𝑏 ) introduced by second approximation of 𝑉𝑏(𝑥) were 

computed and are displayed in Figure 5-11. The figure clearly shows that the 

percentages of errors of upper and lower bounds are both smaller than 1%. Put 

differently, for all practical purposes, the inequalities Eq. (5-20) are not compromised 

when replaced by Eq. (5-22).  

 

Figure 5-11 Error bounds of the second approximation 
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From Eq. (5-11c) and Eq. (5-19), the state equality function can be deduced: 

�̇� = −
𝑃𝑏

𝑉𝑏(𝑥)𝑄𝑚𝑎𝑥
, (5-23) 

which still does not meet the requirement of convex programming. Therefore, a new 

variable called battery internal energy 𝐸  is introduced to replace the original state 

variable (SoC). The new state transition equality is formulated as: 

�̇� ∶= 𝑄𝑚𝑎𝑥𝑉𝑏(𝑥)�̇� = −𝑃𝑏, (5-24) 

while 𝑥 still denotes the battery SoC to maintain consistency. Simple integration leads 

to: 

𝐸(𝑥) = 𝑄𝑚𝑎𝑥 ∫𝑉𝑏(𝑥)𝑑𝑥 = 𝑄𝑚𝑎𝑥 (
1

3
𝑎𝑣𝑥

3 +
1

2
𝑏𝑣𝑥

2 + 𝑐𝑣𝑥 + 𝑑𝑣), (5-25) 

where  𝑑𝑣  is set to zero without loss of generality. Meanwhile, the inequality (5-11f) is 

transformed into: 

𝐸𝑚𝑖𝑛 ≤ 𝐸 ≤ 𝐸𝑚𝑎𝑥. (5-26) 

Since 𝐸(𝑥) monotonically increases with 𝑥 in the domain of definition, 𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥 are 

calculated using 𝐸(𝑥𝑚𝑖𝑛) and 𝐸(𝑥𝑚𝑎𝑥), respectively. 

5.3.2.2 Constraint Relaxation 

Similarly, by the substitution of variables, the equality (5-11b) is converted to the 

convex equality Eq. (5-18) to prepare for the formulation of the new convex problem. 

Subsequently, the relaxation of Eq. (5-18) yields to the inequality constraint: 

𝑃𝐼𝐶𝐸 + 𝑃𝑏 ≥ 𝑃𝑟𝑒𝑞 + 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠 + 𝑃𝑏,𝑙𝑜𝑠𝑠. (5-27) 

As a consequence, the non-affine equality is successfully converted to a convex 

inequality. This relaxation does not prejudice the optimality of the solution. The detailed 

reasoning supporting this statement is given in [109]. Assuming that the convex solver 
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finds the optimal solution while respecting 𝑃𝐼𝐶𝐸 + 𝑃𝑏 > 𝑃𝑟𝑒𝑞 + 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠 + 𝑃𝑏,𝑙𝑜𝑠𝑠, it would 

mean that some of the energy supplied by the fuel and battery was wasted, thus a 

better solution can be found via Eq. (5-27), while maintaining the equality. Proof of this 

proposition will be given in Lemma 1.  

The constraint relaxation leads to a convex fuel optimization problem. The convex 

formulation of the original Problem (5-11) is re-constructed as Problem (5-28): 

𝐽 = ∫ (𝑘(𝜔𝐼𝐶𝐸)
𝑃𝐼𝐶𝐸

𝜔𝐼𝐶𝐸
+ 𝑑(𝜔𝐼𝐶𝐸))

𝑡𝑓
0

𝑑𝑡,  𝑘 > 0, (5-28a) 

subject to: 

𝑃𝐼𝐶𝐸 + 𝑃𝑏 ≥ 𝑃𝑟𝑒𝑞 + 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠(𝜔𝐸𝑀) + 𝑃𝑏,𝑙𝑜𝑠𝑠, (5-28b) 

�̇� = −𝑃𝑏, (5-28c) 

𝑃𝐼𝐶𝐸,𝑚𝑖𝑛(𝜔𝐼𝐶𝐸) ≤ 𝑃𝐼𝐶𝐸 ≤ 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥(𝜔𝐼𝐶𝐸), (5-28d) 

𝐸𝑚𝑖𝑛 ≤ 𝐸 ≤ 𝐸𝑚𝑎𝑥, (5-28e) 

𝐼𝑚𝑖𝑛𝑉𝑢𝑏(𝑥) ≤ 𝑃𝑏 ≤ 𝐼𝑚𝑎𝑥𝑉𝑙𝑏(𝑥), (5-28f) 

𝜔𝐼𝐶𝐸 = 𝐺 ∗ 𝜔𝐸𝑀 = 𝑟 ∗ 𝜔𝑟𝑒𝑞, (5-28g) 

in which the motor speed 𝜔𝐸𝑀 is related to the engine speed by the gear ratio 𝐺. 

Lemma 1: The optimal solution of the original Problem (5-11) can be accomplished by 

solving the relaxed convex Problem (5-28). In other words, a sufficient condition for 

reaching the minimum of Problem (5-11) is that the constraint (5-28b) holds with 

equality at the optimum of Problem (5-28). 

Proof: Assume that an optimal solution of Problem (5-28) is found that satisfies: 

𝑃𝐼𝐶𝐸
∗ + 𝑃𝑏

∗ > 𝑃𝑟𝑒𝑞 + 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠 + 𝑃𝑏,𝑙𝑜𝑠𝑠
∗ . (5-29) 



Non-Causal Energy Management 

110 

It is possible to construct a suboptimal solution with the same battery internal power 

and power loss trajectory, i.e. �̃�𝑏 = 𝑃𝑏
∗, �̃�𝑏,𝑙𝑜𝑠𝑠 = 𝑃𝑏,𝑙𝑜𝑠𝑠

∗ . In the meantime, this feasible 

solution maintains the condition: 

�̃�𝐼𝐶𝐸 + �̃�𝑏 = 𝑃𝑟𝑒𝑞 + 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠 + �̃�𝑏,𝑙𝑜𝑠𝑠. (5-30) 

It can then be inferred that: 

𝑃𝐼𝐶𝐸
∗ > �̃�𝐼𝐶𝐸. (5-31) 

Meanwhile, the cost,  𝐽, increases monotonically with 𝑃𝐼𝐶𝐸. Consequently, the following 

inequality can be deduced: 

𝐽∗ > 𝐽, (5-32) 

which contradicts the assumption that 𝑃𝐼𝐶𝐸
∗  is the optimal solution of Problem (5-28). 

That means Eq. (5-28b) holds with the condition of equality at the optimum. Therefore, 

the relaxation does not lead to any loss of the original optimality. 

5.3.3 Discretization 

The discretization is implemented subsequently on the convexified Problem (5-28), 

since the numerical optimization algorithm requires the discrete version of the control 

problem. The discretization procedure converts the infinite dimensional optimization 

problem to a finite-dimensional one by discretizing the system at specific time nodes. 

The constraints are also converted to a discrete formation and imposed at the 

collocation points. 

For a given time interval [𝑡0, 𝑡𝑓] , and time increment array, ∆𝑡𝑘, 𝑘 = 1, . . . , 𝑁 , the 

collocation nodes can be expressed as:  

𝑡𝑘 = 𝑡𝑘−1 + ∆𝑡𝑘,  𝑘 = 1, . . . , 𝑁, (5-33) 
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in which  𝑡0 is normally set to 0. Then, the priori-known power requirement and speed 

reference are converted to 𝑃𝑟𝑒𝑞(𝑡𝑘) and 𝜔𝑟𝑒𝑞(𝑡𝑘). As illustrated in the Section 5.1.3, the 

power loss of EMs is related only to the motor/generator speed, it can be transformed 

to a pre-known variable 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠(𝑡𝑘). 

The most important step in the discretization of the problem is to obtain the discretized 

control input 𝑢. Then, all other variables (like system states) can be represented by the 

control variable 𝑢(𝑡𝑘).  

With the convex relaxation of equality (5-10b), the original control variable has to be 

extended to: 

𝑢(𝑡𝑘) = [
𝜎1(𝑡𝑘)

𝜎2(𝑡𝑘)
] = [

𝑃𝐼𝐶𝐸(𝑡𝑘)

𝑃𝑏(𝑡𝑘)
],  𝑘 = 1, . . . , 𝑁, (5-34) 

where 𝜎1(𝑡)  and 𝜎2(𝑡)  are introduced to represent the continuous formation of the 

control input 𝑢. 

The control variable is broadly constructed on the basis of some prescribed continuous 

basis functions, 𝜙𝑗 , 𝑗 = 1, . . . , 𝑀 [162]: 

[
𝜎1(𝑡)

𝜎2(𝑡)
] = ∑ (𝜂𝑗𝜙𝑗)

𝑀
𝑗=1 ,   𝑗 = 1, . . . , 𝑀. (5-35) 

Thus, the control input at the collocation points 𝑢(𝑡𝑘) can be addressed by: 

[
𝜎1(𝑡𝑘)

𝜎2(𝑡𝑘)
] = 𝐼𝑘Η,   𝑘 = 1, . . . , 𝑁, (5-36) 

where 𝐼𝑘 is the matrix function of time index determined by the selected basis functions 

and Η = [𝜂1, . . . , 𝜂𝑀]. After acquiring the discrete control (engine and battery power), the 

cost and constraints can be represented by the 𝑢(𝑡𝑘). 

If the piecewise constant basis functions are applied: 

𝜙𝑗(𝑡) = {
1,   𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗]

0,   otherwise   
,   𝑗 = 1, . . . , 𝑀, (5-37) 
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which indicates that: 

𝜂𝑗 = [
𝜎1(𝑡𝑗−1)

𝜎2(𝑡𝑗−1)
],  𝑗 = 1, . . . , 𝑁, (5-38) 

and 𝑀 = 𝑁. The procedure corresponds to zero-order-hold discretization of a time-

invariant system. 

5.4 Numerical Examples 

To validate the proposed convexification and convex programming, two different 

hypothetical flight test scenarios are considered. The first test case is a complete 

mission that includes take-off, climbing, cruising and landing phases, where the battery 

charge-depleting and charge-sustaining strategy are both implemented on convex 

programming. Secondly, the charge-sustaining based convex optimization is employed 

on a cruising flight phase and its performance is compared with the DP. Furthermore, 

the optimal controls of two scenarios are conducted and verified on a forward 

simulation model developed in the previous Chapter 4. 

5.4.1 Convex Optimization 

This section validates the optimal results of convex programming, using test scenario 

1. This test case simulates a complete 30 minutes flight mission that includes take-off, 

climbing, cruising and landing phases. The details of this hypothetical mission are 

given in Section 5.1.4. Regarding the SoC-regulating strategy, the initial value of 

battery SoC is set to 60%. The maximum and minimum value of SoC are 80% and 

20%, respectively, considered the operating range of the battery. When the SoC 

depletes to 30%, then the energy management maintains the SoC around this value, to 

extend the lifetime of the battery. 

5.4.1.1 Lossless Optimal Results 

The power requirement of this flight mission is shown in Figure 5-12 (a) as the dark 

blue dotted line, in addition the figure also shows the optimal engine power, the battery 

internal power and the power consumed. The power consumed is the sum of useful 
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power and power losses, namely 𝑃𝐼𝐶𝐸 + 𝑃𝑏 − 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠 − 𝑃𝑏,𝑙𝑜𝑠𝑠. As shown in Figure 5-12 

(a), the power consumption is equal to the power requirement, i.e. 𝑃𝐼𝐶𝐸 + 𝑃𝑏 −

𝑃𝐸𝑀,𝑙𝑜𝑠𝑠 − 𝑃𝑏,𝑙𝑜𝑠𝑠 = 𝑃𝑟𝑒𝑞 being satisfied at each and every time node. That means Eq. 

(5-28b) holds under the equality condition at the optimal trajectory. In other words, the 

relaxation presented in Section 5.3.2.2 does not affect the results of the optimization. 

Figure 5-12 (b) displays the optimal state variable 𝐸 with a red dotted line. Note that 

this virtual variable 𝐸 has no precise physical definition, and thus cannot reflect the 

actual remaining energy of the battery. The original state SoC is computed from 

internal energy 𝐸 and plotted alongside the internal energy. In this case, the SoC value 

during the mission satisfies the original variable bounds and meets the requirement of 

the SoC-regulating strategy. The optimal SoC demonstrates that the convex 

optimization can realize both depleting and sustaining strategies. It also demonstrates 

that the change of state variable in convexification retains the original variable bounds. 

 

Figure 5-12 Optimization results of convex programming 

In short, the convexification procedures proposed in this thesis do not lead to any loss 

of original optimality and the optimization of convexified problem gives the same 

solution of the original problem.  
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5.4.1.2 Forward Simulation 

The optimal control is implemented in the forward simulation model. Note that the 

power requirement with disturbance is used for the numerical simulation. 

Similarly, Figure 5-13 gives the simulation results of convex programming, including the 

engine and motor/generator power, in addition to battery SoC. As shown in Figure 5-13 

(a), the simulation result of engine and motor/generator power basically follows the 

optimized one. For most of the time during the mission, the engine power fluctuates 

with the power disturbance but maintains convergence and good performance. It 

implies that the optimal control is robust to the disturbances. 

The supervisory controller requests energy from both combustion and electrical 

sources to power the aircraft during the lift-off (around 1 min). The power demand for 

the engine and motor/generator reach to their maximum power during the climbing 

part, between 1st and 6th minute. Regarding the cruising phase, the engine contributes 

almost two-thirds of power requirement, while the motor/generator facilitates the 

propeller driven. The output engine power decreases while the motor/generator power 

increases from about 20th minute. Those two values becomes similar at the end of the 

cruising flight. The motor/generator functions as the generator to charge the battery, 

when the power requirement is low in the system initialization and final taxiing parts. 

 

Figure 5-13 Simulation results of convex programming (1) 
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The motor/generator power is monitored in the numerical simulation instead of the 

battery one, since the battery internal power cannot be observed in the real application. 

This replacement is reasonable since both of them can reflect the consumption of 

electric power.  

Figure 5-13 (b) displays the simulation results for SoC. Though the SoC varies from the 

optimized one, it still accomplishes both depleting and sustaining strategies. The SoC 

increases in the 1st minute, due to the battery charging during the initial ground-roll run. 

Later, it drops by a large margin with the aircraft’s demand for power for lift-off and 

climb. The SoC continuously decrease during the cruising phase and the margin 

becomes larger in the time interval of the 20th-26th minute. Once the SoC reaches the 

30% level (set as the sustaining value in this test case), the controller maintains it at 

that level. 

Figure 5-14 compares the results of the engine power, motor/generator power, battery 

power and SoC, between the forward simulation and the optimization. The figure 

demonstrates that the simulation engine power matches the optimal one, while there is 

difference between the motor/generator power and battery internal power. This 

difference is small and mainly due to the power loss in electrical energy path. Different 

from the simulation results of engine and motor/generator, the simulation value of SoC 

differs from the optimized one. This is partly due to the fluctuation of control variable 

(engine power), but the main error comes from the battery model. 

 

Figure 5-14 Comparison between simulation results and optimal results 
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Figure 5-15 and Figure 5-16 give simulation results of other variables, such as speed, 

torque, current and voltage. From Figure 5-15 (a), it is obvious that the engine and 

motor/generator can achieve good speed performance. The torque values in Figure 

5-15 (b) also indicates the charge state at the initial and final part of the mission, with 

negative torque values of motor/generator. From Figure 5-15 (b), the torque of 

motor/generator is more vulnerable to the fluctuation of power requirement, since 

electric machines have a smaller time constant than combustion engines.  In other 

words, the integration of electric motor can reduce the fluctuation of engine output, 

thereby improving the working condition of the combustion engine. 

 

Figure 5-15 Simulation results of convex programming (2) 

As shown in Figure 5-16, the output current and voltage of the DC/DC converter are 

compared with ones of the battery, which is equal to the input current and voltage of 

the DC/DC converter. The output voltage of the DC/DC converter is stabilized to 300 V, 

which is higher than the voltage of the battery. As a result, the output current of the 

DC/DC converter is not higher than one of the battery. The voltage of the battery 

decreases sharply when the discharging current is high between 1st and 6th minute. It 

recovers to nearly 280 V when the drawing current reduces to around 20 A. Then, the 

voltage continuously falls by the final part of the mission. Before the landing part, the 

output current rises to 40 A, since the SoC has not reached its sustaining value yet. 
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Figure 5-16 Simulation results of convex programming (3) 

In sum, the optimal control has a potential to be applied to the practical application with 

a degree of robustness. 

5.4.2 Comparison 

This section compares the results from convex programming with ones from another 

global optimization—DP, using the second test instance. Similar to the test case 1, the 

forward simulation technique is applied and the disturbance to power demand is added. 

5.4.2.1 Test Case 2 

In the test scenario 2, the battery SoC is demanded to sustain around 50%. The initial 

value of battery SoC is also set to 50%. The maximum and minimum value of SoC are 

still 80% and 20%, respectively.  

Figure 5-17 compares the simulation results of battery SoC and fuel consumption 

between convex optimization and DP. The initial value of SoC is set to 50% and its 

value is supposed to be sustained in the 20-minute whole cruising. The curves of SoC 

verify that both optimizations can realize the charge-sustaining, but the convex 

optimization obtains a more precise regulation of SoC than DP. Moreover, the convex 

optimization can achieve better optimal objective value, i.e. fuel consumption, than DP. 

Note that since the SoC trajectory of convex programming and DP are not exactly the 

same, the direct comparison between fuel consumptions cannot reflect which one is 

better regarding the fuel saving. The SoC correction is introduced in this study to adjust 
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the fuel consumption, since many researches [62] claim that fuel consumption in HEPS 

should be evaluated for the balanced energy content of their electric storage devices. 

 

Figure 5-17 Comparison of simulation results between convex optimization and 

dynamic programming (1) 

The details of fuel/energy saving and computational cost of two optimizations are given 

in Table 5-1. The final SoC for convex programming (50.47%) is lower than for DP 

(51.85%), which means the convex programming implies greater consumption of 

electric energy. The extra electric energy stored in the battery with DP is the cause of 

the additional fuel consumed. The real fuel consumption of two optimizations can be 

acquired by adjusting two final SoC values to the same one. This process is the above-

mentioned SoC correction.  

The corrected SoC and fuel usage are also displayed in Table 5-1. The figures show 

that the convex optimization really has lower fuel usage (3.39) compared with DP 

(3.48). Apart from the amount of fuel used, another criterion—energy consumption, 

which includes the fuel usage and electrical energy consumption, also indicates that 

the convex optimization demands less energy to complete the flight mission. This 

implies that the optimal trajectory of convex optimization results in better energy 

efficiency. Note that the study assumes that the gasoline is applied and its energy 

density (12.89 kW*h/kg) is used to estimate the energy of a certain fuel. 
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Table 5-1 Comparison of optimization results between convex optimization and 

dynamic programming 

 Convex Programming Dynamic Programming 

Final SoC (%) 50.47 51.85 

Fuel Consumption (kg) 3.40 3.52 

Corrected Final SoC (%) 50.00 50.00 

Corrected Fuel Consumption (kg) 3.39 3.48 

Energy Consumption (kW*h) 43.7 45.0 

Optimization Time (sec) 0.40 4.65 

 

The most important advantage of convex programming is reduced computational cost 

of non-causal optimization. It is generally accepted that global optimization such as DP 

normally has low efficiency and an exponentially growing (worst-case) complexity 

[161]. Theoretically, with the same problem dimension and convergence accuracy, the 

convex optimization should have much lower computational cost than DP.  

For the same problem given in test case 2, it takes around 4.65 sec for DP to 

converge, while convex programming is over ten times faster and the optimization time 

is only 0.4 sec (see Table 5-1). Confirming that the convexification simplifies the 

original problem and largely reduces the complexity cost. Considering 3GHz CPU and 

2GB memory used in this study, the convexified problem is applicable to be converted 

to the real-time implementation. 

The simulation results of the engine and motor/generator power from two optimizations 

are given in Figure 5-18, in addition to the power request. Figure 5-18 (a) compares the 

optimal engine power between convex optimization and DP. They both follow the 

change of power demand, e.g. increasing when the power demand is rising, vice versa. 

The main difference is that the DP draws more combustion power, while the convex 

programming prefers the electric powertrain. In terms of motor/generator power shown 

in Figure 5-18 (b), the motor/generator works at charging mode when the power 

requirement becomes relatively lower, while it outputs power to facilitate the cruising 

flight if the power demand is higher. 
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Figure 5-18 Comparison of simulation results between convex optimization and 

dynamic programming (2) 

In sum, the forward simulations demonstrate that optimal controls of the two methods 

are both practical in real application.  

5.5 Conclusion 

This chapter presented the energy management of the hybrid electric propulsion 

system using two non-causal controls: convex optimization and dynamic programming. 

The design of convex optimization was illustrated in detail.  

The simplified models were applied to study the energy management of hybrid 

propulsion systems and to formulate the primary problem. The experimental data were 

analysed and approximated to clarify the convexity of the original problem. Under the 

operating range, the battery voltage is able to be approximated with a quadratic 

equation. The examination also shows that the power loss of motor is mainly 

dependent on the motor speed with an exponential function. Concerning the engine 

fuel approximation, the comparison reveals that piecewise linear fitting not only 

performs better in keeping the original shape of the best efficiency region, but also in 

data prediction than spline approximation. 

However, the battery model and power equality still do not satisfy the requirement of 

convex programming. Hence, two techniques—change of variables and equality 

relaxation were implemented with the need for lossless convexification. A variable 

named battery internal voltage was proposed in this thesis to convexify the battery 
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model and power equality. The corresponding variable bounds, such as current and 

SoC limits, were also converted and convexified. Finally, the relaxation of non-affine 

equality yielded to a new inequality constraint. A Lemma is also proposed and proved 

to establish that this convexification does not lead to any loss of original optimality. 

Subsequently, the discretization is implemented on the new convexified problem. 

Two different hypothetical flight test scenarios were designed in this thesis. The first 

one includes the complete flight process (take-off, climbing, cruising and landing), while 

the second test case enriches the cruising phase of the first one by varying the power 

demands based on different cruising airspeeds. Those two test cases were applied to 

validate the optimality of the convex optimization, under different flight missions. 

The first test case verifies that the convex relaxation does not sacrifice the optimality of 

the solution nor does the variable change lose the original bounds. With the forward 

simulation, the optimized control from convex optimization is testified to be robust to 

the disturbance in power demand. Also, it can reach optimal results under both charge-

depleting and charge-sustaining strategies.  

The dynamic programming was also implemented in the second test scenarios. By 

comparing with dynamic programming, the convex optimization achieves better optimal 

cost results. Most significant advantage of convex optimization is that it can converge 

to the optimal solution with a much lower time cost than dynamic programming method. 

This makes the convex optimization more attractive for practical applications.   

 





Causal Energy Management 

123 

 Causal Energy 

Management 

In causal energy management, our proposed algorithm—the fuzzy based Equivalent 

Consumption Minimization Strategy (ECMS) is compared with the conventional ECMS 

and adaptive ECMS.  

The Hamiltonian function is introduced to transform the original non-causal fuel 

minimization into a causal optimization. The equivalence factor and the new 

instantaneous cost are derived from the Hamiltonian function. The new instantaneous 

cost is also considered as the equivalent consumption. The ECMS can optimize the 

equivalent consumption but not guarantee the sustaining of battery SoC. Therefore, a 

fuzzy controller is designed to maintain the battery SoC in a desirable range. The main 

work of developing a fuzzy controller is to design the corresponding membership 

functions and fuzzy rules. The instantaneous SoC value is fuzzificated by its 

membership functions and regulated by fuzzy rules. 

The proposed fuzzy based optimization is validated by the comparison with the 

conventional ECMS, adaptive ECMS and dynamic programming, via two hypothetical 

flight scenarios. Moreover, the PMP is studied to validate the established relationship 

between the equivalence factor of ECMS and the co-state variable of Hamiltonian 

function. 
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6.1 Equivalent Consumption 

Basically, the original problem of causal energy optimization shares the same 

constraints as the one of non-causal optimization. The constraints of the causal 

optimization problem are given by equations (6-1a)-(6-1g). 

𝑃𝐼𝐶𝐸 + 𝑃𝑏 = 𝑃𝑟𝑒𝑞 + 𝑃𝐸𝑀,𝑙𝑜𝑠𝑠(𝜔𝐸𝑀) + 𝑃𝑏,𝑙𝑜𝑠𝑠, (6-1a) 

�̇� = 𝑓(𝑥, 𝑢) = −
𝑃𝑏

𝑉𝑏(𝑥)𝑄𝑚𝑎𝑥
, (6-1b) 

𝑃𝐼𝐶𝐸,𝑚𝑖𝑛(𝜔𝐼𝐶𝐸) ≤ 𝑃𝐼𝐶𝐸 ≤ 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥(𝜔𝐼𝐶𝐸), (6-1d) 

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥, (6-1e) 

𝐼𝑚𝑖𝑛 ≤ 𝐼 ≤ 𝐼𝑚𝑎𝑥, (6-1f) 

𝜔𝐼𝐶𝐸 = 𝐺 ∗ 𝜔𝐸𝑀 = 𝑟 ∗ 𝜔𝑟𝑒𝑞. (6-1g) 

Though subject to the same constraints (system state and component limitation), non-

causal and causal problems employ different approaches to express the cost function. 

6.1.1 Objective 

As same as the convex optimization, the objective of the causal optimization is to 

minimize the total fuel consumption. Traditionally, this issue is formulated into a non-

causal optimization problem: 

𝐽 = ∫ �̇�𝑓
𝑡𝑓
𝑡0

𝑑𝑡. (6-2) 

However, it generally requires unknown priori knowledge (like the complete flight 

mission). To avoid this drawback, the original ECMS proposes to replace the non-

causal criterion by an instantaneous one [130], reducing the problem to a minimization 

of equivalent fuel consumption at any instant of time.  
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If considering the energy optimization as the optimal control problem, the optimal 

control also minimizes the Hamiltonian function:  

𝐻 = �̇�𝑓 + 𝜆 ∙ 𝑓(𝑥, 𝑢), (6-3) 

where 𝑓(𝑥, 𝑢) is the system state transition equation and 𝜆 is the so-called co-state 

variable. This co-state variable has to satisfy a dynamic equation defined in the 

maximum principle [163].  

By substituting Eq. (6-1b) for system state transition equation in Eq. (6-3), the 

Hamiltonian function can be transformed to: 

𝐻 = �̇�𝑓 + (−
𝜆

𝑉𝑏(𝑥)∙𝑄𝑚𝑎𝑥
) ∙ 𝑃𝑏. (6-4) 

If the term −
 𝜆 

𝑉𝑏(𝑥)∙𝑄𝑚𝑎𝑥
 is replaced by the equivalence factor 𝑠, the Hamiltonian function 

can be considered as a new criterion: 

𝐽 = �̇�𝑒𝑞𝑢𝑖𝑣 = �̇�𝑓 + 𝑠 ∙ 𝑃𝑏. (6-1h) 

This new criterion is so-called the equivalent consumption [130]. It is the instantaneous 

cost function used in the ECMS optimization. Actually, the second term on the right of 

the equation is taken as the virtual fuel consumption rate of electric energy [138].  

From above deducing, it is obvious that the co-state of Hamiltonian function, to some 

extent, represents the equivalence between the fuel and electric energy usage. If the 

equivalence factor has to be evaluated from the co-state, ECMS will lose the 

advantage when compared with the maximum principle. The following text will present 

how to estimate the equivalence factor based on its physical meaning; while, the 

relationship between co-state 𝜆  and equivalence factor 𝑠  will be demonstrated in 

Section 6.5. 
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6.1.2 Equivalence Factor 

The equivalence factor represents the core of ECMS. This parameter influences the 

system behaviour as follows: if it is relatively large, the use of electrical energy tends to 

be penalized and the fuel consumption increases; if, on the contrary, it is relatively 

small, the use of electrical energy is overly favoured and the battery SoC decreases 

[164]. Since the equivalence factor represents the conversion ratio between two 

energies, it can be estimated using SFC [136]. Meanwhile, the overall efficiency of the 

electric path is also reflected. Given that the efficiencies of the electric path must be 

included, the equivalence factor can be expressed as: 

𝑠 = {
  𝑆𝐹𝐶 ∙ 𝜂𝑀𝐺

−1 ∙ 𝜂𝑏𝑎𝑡𝑡.𝑐
−1 ,   𝑃𝑏 > 0 

𝑆𝐹𝐶 ∙ 𝜂𝑀𝐺 ∙ 𝜂𝑏𝑎𝑡𝑡,𝑑 , 𝑃𝑏 < 0
 , (6-5) 

where 𝜂𝑀𝐺  is the efficiency of motor/generator. 𝜂𝑏𝑎𝑡𝑡,𝑐  and 𝜂𝑏𝑎𝑡𝑡,𝑑  are battery 

charging/discharging efficiency, respectively. The efficiency of the converter is not 

considered. Note that the equivalence factor defined in this thesis is not dimensionless, 

since 𝑃𝑏 instead of a virtual electric fuel cost �̇�𝑒 is introduced in the cost function. The 

SFC is given by Figure 4-2 and motor/generator efficiency map is shown in Figure 4-4. 

Note the generator mode shares the same efficiency map as the motor mode, only the 

torque becoming negative. 

The idea of equivalent consumption was initially established based on the charge-

sustaining strategy, in which the battery is considered as an energy buffer with no net 

usage of electricity [138]. If the battery energy flow is taken into account as an 

‘additional’ fuel used, the ECMS can also be applied to other charging strategies (e.g. 

maintaining the SoC within a range).  

6.2 Fuzzy Logic Control 

As illustrated in Section 2.3.2.2, the conventional ECMS cannot maintain the desired 

constraints on battery SoC. Therefore, a fuzzy logic controller is designed to regulate 

the optimal control of ECMS according to the instantaneous value of the SoC.  

A fuzzy logic controller generally consists of the rule-base, fuzzification interface, 

inference mechanism, and defuzzification interface (see Figure 6-1). The rule-base 
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collects a series of linguistic rules that describe available expert knowledge and 

experience on how to control the system. On the fuzzification interface, the numeric 

inputs of the controller are converted into the linguistic inputs. Then, using the linguistic 

inputs and established rule-base, the inference mechanism mimics the expert’s 

knowledge and determines the linguistic control decisions (linguistic outputs). Lastly, 

defuzzification is performed to convert the linguistic controls into actual control values 

(outputs of the fuzzy controller). 
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Figure 6-1 Fuzzy controller [165] 

6.2.1 Fuzzy Sets 

In this study, the fuzzy controller has four input variables: the power requirement 𝑃𝑟𝑒𝑞, 

the maximum engine power 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥, the optimal engine power 𝑃𝐼𝐶𝐸,𝑜𝑝𝑡 and the SoC. 

The output of the fuzzy controller is the motor/generator power 𝑃𝑀𝐺. Using the power 

requirement, the maximum power and optimal power of the engine can be substituted 

by their difference. Thus, hereafter, the original inputs are replaced by 𝑢1 = 𝑃𝑟𝑒𝑞 −

𝑃𝐼𝐶𝐸,𝑚𝑎𝑥, 𝑢2 = 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑜𝑝𝑡, and 𝑢3 = 𝑆𝑜𝐶. The output of fuzzy controller is denoted 

by 𝑦 = 𝑃𝑀𝐺. To simplify the illustration, the linguistic variables (inputs and outputs) are 

also described by symbols, 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥, 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑜𝑝𝑡, 𝑆𝑜𝐶 and 𝑃𝑀𝐺, instead of the 

lengthy linguistic terms. 

The fuzzy set, 𝐴𝑖, and its associated Membership Function (MF), 𝜇𝐴𝑖(𝑢𝑖), can describe 

the degree of certainty that the input, 𝑢𝑖, possesses the property characterized by its 

linguistic value, �̃�𝑖 [165]: 

𝐴𝑖 = {(𝑢𝑖, 𝜇𝐴𝑖(𝑢𝑖)): 𝑢𝑖 ∈ 𝑈𝑖}, (6-6) 
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where 𝑈𝑖 is the universe of discourse for 𝑢𝑖. In other word, the MF associated with 𝐴𝑖 

and �̃�𝑖 can map the 𝑈𝑖 to [0, 1]. Note that generally there are more than one MF for one 

input. Therefore, the fuzzy set and its associated MFs are symbolized by 𝐴𝑖
𝑗
 and 

𝜇
𝐴𝑖
𝑗(𝑢𝑖), where 𝐴𝑖

𝑗
∈ 𝐴𝑖. 

In this study, a functional fuzzy system (T-S fuzzy system) is introduced as the basis of 

the controller. In the same manner as a traditional fuzzy system, the T-S fuzzy system 

describes the inputs by fuzzy sets. However, its control values are determined by the 

function with input variables as arguments. The MFs of three new inputs are shown in 

Figure 6-2. 

With the substitution of input variables, the number of inputs is reduced to three. In 

addition, fewer MFs are required to cover the range of 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥  and 𝑃𝑟𝑒𝑞 −

𝑃𝐼𝐶𝐸,𝑜𝑝𝑡, since only two linguistic values (‘neg’ and ‘pos’) are needed. The domain of 

𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥 and 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑜𝑝𝑡 is (-40, 40) kW and (-50, 50) kW, respectively. 

 

Figure 6-2 Membership Functions 

Concerning the SoC, four linguistic terms are defined to represent values of SoC, i.e. 

‘L’, ‘S’, ‘H’ and ‘F’. The ‘L’ is where the SoC is low and the battery charge is requested 

if the extra engine power is available. The ‘S’, denoting ‘sustaining’, is the most 

important criterion. When the degree of this membership reaches 1, the corresponding 
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numeric value of SoC is the ideal sustainable value. The ‘H’ implies that the SoC is 

high and the battery charge is not compulsory, unless the power demand is lower than 

the optimal engine power. The full SoC is indicated by the ‘F’, where the battery charge 

is not permitted. 

It can be concluded from Figure 5-7 that the battery voltage will decrease sharply when 

the SoC is under 20%. Hence, the zero degree of ‘L’ is set at slight above 20% SoC. 

On the other hand, (30%, 40%) is selected as the ideal SoC range, because the 

remaining electrical energy (30%, 40%) can guarantee a safe landing if the engine 

fails. The advantage of combining the motor power can be obtained by classifying the 

range for fuzzy set ‘H’ as (50%, 90%). 

6.2.2 If-Then Rules 

The rule-base of fuzzy controller consists of a series of linguistic rules. The general 

form of the linguistic rules is as follows [165]: 

If premise, then consequent. 

Therefore, the linguistic rule is normally called If-Then rules. The premise is associated 

with the input and is on the left-hand side of the If-Then rule. The consequent is 

associated with the control and is on the right-hand side of the If-Then rule. The 

controls are inferred from the premise and consequent of linguistic If-Then rules.  

As mentioned in Section 6.2.1, the T-S fuzzy system is applied in this study. Therefore, 

the premises of the If-Then rules are represented by fuzzy sets with the associated 

MFs, while the consequents are approximated using linear functions: 

1) If 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥 is pos and 𝑆𝑜𝐶 is H or 𝑆𝑜𝐶 is F, then 𝑃𝑀𝐺 = 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑜𝑝𝑡; 

2) If 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥 is pos and 𝑆𝑜𝐶 is S, then 𝑃𝑀𝐺 = 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥; 

3) If 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑜𝑝𝑡 is neg and 𝑆𝑜𝐶 is F, then 𝑃𝑀𝐺 = 0; 

4) If 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑜𝑝𝑡 is neg and 𝑆𝑜𝐶 is not F, then 𝑃𝑀𝐺 = 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑜𝑝𝑡; 

5) If 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥 is neg and 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑜𝑝𝑡 is pos and 𝑆𝑜𝐶 is H or 𝑆𝑜𝐶 is F, then 

𝑃𝑀𝐺 = 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑜𝑝𝑡; 

6) If 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥 is neg and 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑜𝑝𝑡 is pos and 𝑆𝑜𝐶 is L or 𝑆𝑜𝐶 is S, then 

𝑃𝑀𝐺 = 𝑃𝑟𝑒𝑞 − 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥; 
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7) If 𝑆𝑜𝐶 is L, then 𝑃𝑀𝐺 = 𝑓(𝑆𝑜𝐶). 

As shown in Rules 1) and 2), if the power demand is above the ICE maximum power, 

the positive motor/generator power decreases when the SoC drops from ‘H’ level to the 

‘S’ level. On the other hand, when the power demand is lower than the ICE optimal 

power, the battery charge will be activated and continue until the SoC is near its 

maximum capacity (see Rules 3)-4)). The third scenario is that the power demand is 

between the ICE optimal and maximum power, see Rule 5)-6). If the SoC is high 

enough (‘H’ or ‘F’), the controller demands the positive power from the motor/generator, 

to enable the ICE to operate at its optimal condition. Otherwise, the motor/generator 

acts as a generator to restore the electrical energy in the battery, using the extra 

available power of the engine.  It should be noted that if the SoC is very low, without 

compromising the safety of aircraft, charging the battery has the priority over meeting 

higher power demand (see Rule 7)). This is to prevent permanent damage to the 

battery and guarantee enough electrical energy in case of engine failure. Rule 7) also 

illustrates that charging power increases at lower values of SoC. 

6.2.3 (De-)fuzzification and Inference 

On the basis of designed fuzzy sets and If-Then rules, the fuzzification, inference and 

defuzzification can be employed in sequence to deduce the final control output. In the 

fuzzification process, actual inputs are transformed to fuzzy sets. Note that the 

singleton fuzzification (generally used in the T-S system) is not applied in this study, 

since it is sensitive to measurement noise. 

The inference mechanism has two basic tasks: the first one is called matching, 

determining the extent to which each rule is relevant to the current system state; 

secondly, the inference step draws the conclusions using the inputs and the relevant 

rules. 

The inference involves resulting in the membership value combing the fuzzy sets in 

premises of rules and fuzzification: 𝜇
𝐴𝑖
𝑗(𝑢𝑖) = 𝜇𝐴𝑖

𝑗(𝑢𝑖) ∗ 𝜇𝐴
𝑖

𝑢𝑖(𝑢𝑖). Then, the membership 

value 𝜇𝑖 for the 𝑖𝑡ℎ rule’s premise can be formed as: 

𝜇𝑖 = 𝜇𝐴1
𝑗 (𝑢1) ∗ 𝜇𝐴2𝑘

(𝑢2) ∗ 𝜇𝐴3𝑙
(𝑢3), (6-7) 
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where ∗ denotes fuzzy intersection. The parameters 𝑗, 𝑘, 𝑙 represent all possible 𝑗, 𝑘, 𝑙 

MFs for three input variables. 

In the defuzzification process, the linear functions 𝛽𝑖 are given by the consequents of If-

Then rules in Section 6.2.2. Therefore, the defuzzification is expressed as: 

𝑦 =
∑ 𝛽𝑖𝜇𝑖
𝑅
𝑖=1

∑ 𝜇𝑖
𝑅
𝑖=1

, (6-8) 

where 𝑦 is the numeric output of the fuzzy controller. It is assumed that the functional 

fuzzy system is well defined so that ∑ 𝜇𝑖
𝑅
𝑖=1 ≠ 0 for all possible inputs. 

6.3 Fuzzy Based Optimization 

With the combination of ECMS and FLC, the supervisory control can achieve the 

optimal hybrid of fuel and electrical energy, and also keep the battery SoC in the 

desirable range. The variable exchanges between the ECMS and FLC are highlighted 

in Figure 6-3. The ECMS requests the instantaneous value of power requirement 𝑃𝑟𝑒𝑞 

and SoC to optimize the engine power. The optimal engine power from the ECMS is 

sent to the FLC, in addition to the maximum engine power, 𝑃𝐼𝐶𝐸,𝑚𝑎𝑥 . The FLC still 

needs the power demand, 𝑃𝑟𝑒𝑞  and SoC to give the outputs of the supervisory 

controller.  

Preq

SoC

PICE,opt
ECMS

FLC
PICE,max

Preq

Fuzzy based ECMS 

Supervisory controller

 

Figure 6-3 Combined supervisory controller 
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6.4 Numerical Examples 

This section reports the validation of the FLC based ECMS, also using hypothetical 

flight test scenarios given in Section 5.1.4. As the same as the Section 5.4, since the 

first test case is taken as a priori-known flight mission, DP can also be implemented; on 

the other hand, the second mission is assumed as impromptu and unpredictable in this 

section, which can only be optimized by our FLC based ECMS, the original ECMS and 

A-ECMS. 

6.4.1 Fuzzy Based Optimization 

This section validates the results of FLC based ECMS, using test scenario 1. This test 

case simulates a complete 30 minutes flight mission that includes take-off, climbing, 

cruising and landing phases. The details of this hypothetical mission are given in 

Section 5.1.4. Regarding the SoC-regulating strategy, the initial value of battery SoC is 

set to 50%. The maximum and minimum value of SoC are 80% and 20%, respectively, 

considering the operating range of the battery. The SoC is sustained according to the 

designed fuzzy rules. 

Figure 6-4 gives the simulation results of FLC based ECMS, including the engine and 

motor/generator power, in addition to battery SoC. At the beginning of the mission, the 

battery SoC is 50% that falls into the fuzzy set ‘S’. According to the If-Then rules 6), the 

battery should be charged if the engine has extra available power. It is clear in Figure 

6-4 that the motor/generator absorbs power from the engine during this process (before 

1st minute). 

Regarding the take-off and climbing phase, between 1st and 6th minute, the power 

demand exceeds the maximum engine power. Therefore, the motor/generator should 

output positive power to facilitate climbing. Since the battery SoC at this moment is 

both in ‘S’ and ‘H’ sets, the controller requests nearly maximum power from the motor, 

as shown in Figure 6-4. 
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Figure 6-4 Simulation results of FLC based ECMS (1) 

After the climbing phase, the battery SoC decreases to between 30% and 40%, which 

is the sustaining range according to the designed fuzzy sets. Consequently, the output 

of the motor/generator reduces under zero during the whole cruising part. In this 

process, the engine not only provides all the power that the propeller needs, but also 

delivers some power to sustain the battery SoC based on fuzzy rules. When the 

landing phase starts, the battery SoC recovers by a small margin since the engine has 

more extra available power. This charging process is in accordance with the rule 4) or 

6) in Section 6.2.2. 

Figure 6-5 and Figure 6-6 give simulation results of other variables, such as speed, 

torque, current and voltage. It is seen from Figure 6-5 (a) that the engine and 

motor/generator speed fluctuate a little during the cruising. This reflects that the 

instantaneous (on-line) control algorithm is more vulnerable to the variation of mission 

requirement, compared with the off-line control method. The torque values in Figure 

6-5 (b) also indicates the battery charge at the initial, cruising and final part of the 

mission.  
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Figure 6-5 Simulation results of FLC based ECMS (2) 

As shown in Figure 6-6, the output current and voltage of the DC/DC converter are 

compared with ones of the battery, which is equal to the input current and voltage of 

the DC/DC converter. The output voltage of the DC/DC converter is also stabilized to 

300 V, which is higher than the voltage of the battery. The absolute value of output 

current of the battery is also not lower than one of the DC/DC converter. The voltage of 

the battery decreases to roughly 271 V when the discharging current is high between 

1st and 6th minute. Then it recovers and stables around 279 V since the output current 

of those two electric devices varies around zero. The charging current rises to 20 A for 

the landing phase, with a small margin of growth of battery voltage. The current falls 

back to zero at the end of the flight mission. 

 

Figure 6-6 Simulation results of FLC based ECMS (3) 
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In sum, the proposed fuzzy based optimization can sustain the battery SoC between 

30% and 40%, at the same time satisfying power requirement. With the implementation 

of disturbed power demand, the control algorithm is also verified to be robust to the 

disturbance. 

6.4.2 Comparison 

In the previous section, the FLC based ECMS is validated to have the good 

performance, but the optimality of its result has not been discussed. Therefore, the 

results of FLC based ECMS are compared with ones of DP, since DP can guarantee 

the global optimality of its solutions. On the other hand, the on-line performance of FLC 

based ECMS is compared with another two instantaneous optimizations—ECMS and 

A-ECMS. 

6.4.2.1 Test Case 1 

According to the If-Then rules, the battery SoC should be sustained between (30%, 

40%). Thus, the final state of SoC is set as 35% for DP. The initial state is equal to one 

in the previous section, i.e. 50%. The maximum and minimum value are also 80% and 

20%, respectively. 

Table 6-1 lists the information on the final SoC and the fuel/energy usage from two 

optimizations. It is obvious that two approaches can ensure that the final value of 

battery SoC is between 30% and 40%, while the certain error exists between the final 

value from DP and the desired value. Similar to Table 5-1, the true fuel consumption of 

two optimizations is acquired using SoC correction.  

Table 6-1 Comparison of optimization results between FLC based ECMS and 

dynamic programming 

 Fuzzy based ECMS Dynamic Programming 

Final SoC (%) 35.14 33.68 

Fuel Consumption (kg) 5.65 5.41 

Corrected Final SoC (%) 35 35 

Corrected Fuel Consumption (kg) 5.64 5.42 

Energy Consumption (kW*h) 72.7 70.0 
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The corrected SoC and fuel usage are also displayed in Table 6-1. The corrected 

figures demonstrate that the FLC based ECMS can achieve sub-optimal results, 

though the fuzzy-based rules are applied to adjust optimal results from ECMS. The 

error between the fuel usage of FLC based ECMS and the optimal one of DP is 4%. 

The error between the energy consumption of the two methods is less than 4%. 

Figure 6-7 provides the details of battery SoC and fuel used for DP and FLC based 

ECMS. Note that FLC based ECMS is labelled as F-ECMS in the figure. At the first 

step of the mission, before the 1st minute, two optimizations act the similar way. When 

the take-off and climbing phase start, the FLC based ECMS requests more electrical 

energy than the DP, resulting in lower SoC and fuel consumption compared to ones of 

DP. At the end of climbing, since the SoC of FLC based ECMS declines to about 31%, 

a charging process is activated to sustain the SoC during the cruising. Therefore, the 

fuel usage of FLC based ECMS rises quickly than one of DP after the 6th minute. It 

outnumbers the fuel usage of DP around 20th minute. The charging process lasts until 

the end of the mission, since high power demand does not occur. With the continuous 

charge, the SoC of FLC based ECMS recovers to 35.14% finally. 

 

Figure 6-7 Comparison of simulation results between FLC based ECMS and 

dynamic programming (1) 

On the other hand, after the first minute, the DP has been requesting the positive 

power from the electric powertrain until the landing phase. Consequently, the time 
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length of the battery charge for DP is much less than one for the FLC based ECMS. 

This means that the DP saves many energy losses caused by converting the 

combustion energy to the electrical one. Therefore, it consumes less fuel compared 

with the FLC based ECMS. However, this optimal result is on the basis of the prior-

known knowledge of future mission. As a causal optimization, the FLC based ECMS 

selects the best solution only based on the past and current information, thereby 

leading to the sub-optimal results.  

The engine and motor/generator power shown in Figure 6-8 give an insight into the 

power distribution of two methods. When the aircraft requests the high power to take-

off and climb, the DP draws more power from the engine while the FLC based ECMS 

uses more electric power. This directly leads to the battery charge during the cruising 

phase for the FLC based ECMS, but the battery in DP still has a few energy to facilitate 

the propeller driven. 

 

Figure 6-8 Comparison of simulation results between FLC based ECMS and 

dynamic programming (2) 

In short, the FLC based ECMS succeeds in converting the non-causal energy 

optimization into an equivalent causal energy optimization, with little sacrifice of the 

optimality of the solution. Moreover, the prior-knowledge of flight mission is not pre-

requisite and the FLC based ECMS can achieve the sub-optimal control for on-line 

implementation. 
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6.4.2.2 Test Case 2 

Different from the test case 1, the second one emphasizes on analysis of the capability 

of SoC sustaining and computational cost of different instantaneous optimization 

algorithms. Since the sustaining range of fuzzy rules is (30%, 40%), the initial SoC in 

this test is set as 35%. The maximum and minimum value are also 80% and 20%, 

respectively. The flight mission used in this section is the second test scenario, and its 

power requirement is given in Figure 5-6. 

In addition to the FLC based ECMS, the original ECMS and A-ECMS are also studied 

and validated in this test case. It is well-known that the original ECMS cannot sustain 

the battery SoC if its equivalence factor is not optimized for the test mission profile 

[132,133]. To enable the comparison between three ECMS based optimizations, the 

optimal equivalence factor of the original ECMS in this test case is estimated off-line 

using the cost-to-go from DP [128]. On the other hand, the equivalence factor of A-

ECMS is updated on-line using a PI controller. The formulation of this PI controller is 

illustrated in the following Section 6.5.3. 

Figure 6-9 presents the battery SoC, fuel usage and computation time of optimization 

of ECMS, A-ECMS and FLC based ECMS. The results of FLC based ECMS is labelled 

by F-ECMS. As shown in Figure 6-9 (a), the FLC based ECMS succeeds in sustaining 

the SoC between 30% and 40%, following the objective of designed fuzzy rules. On the 

other hand, both the A-ECMS and ECMS can sustain the battery SoC around the pre-

set value (35%). However, the ECMS shows poorer performance than the A-ECMS, 

though it applies the optimal equivalence factor estimated off-line. This demonstrates 

that even though the mission profile is priori-known and the corresponding equivalence 

factor is optimized, the ECMS still cannot achieve precise sustaining if there is a 

disturbance in the mission profile. 

The computation time of optimization of ECMS, A-ECMS, and FLC based ECMS are 

plotted in Figure 6-9 (b). It indicates that these three instantaneous optimizations are all 

eligible for implementing on the real-time application, since their optimization time are 

all less than 0.01 sec. Among three algorithms, the A-ECMS has the largest 

computational burden, since it needs to update the equivalence factor on-line. The 

computational cost of FLC based ECMS is not much higher than the benchmark one 

(the original ECMS). 
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Figure 6-9 Comparison of simulation results between ECMS, A-ECMS, and FLC 

based ECMS 

Table 6-2 lists the details of final values of SoC and fuel consumption, in addition to 

their corrected values. The corrected (true) fuel usages demonstrate that the original 

ECMS consumes the least fuel (3.21 kg) among three approaches. The reason may be 

that its equivalence factor is estimated from the non-causal optimization—DP. On the 

other hand, the FLC based ECMS can save around 7% fuel usage, compared with the 

A-ECMS. The fuel cost of the FLC based ECMS (3.23 kg) is not much higher than one 

of the original ECMS. 

Table 6-2 Comparison of optimization results between ECMS, A-ECMS and FLC 

based ECMS 

 ECMS A-ECMS F-ECMS 

Final SoC (%) 31.72 35.11 33.67 

Fuel Consumption (kg) 3.19 3.51 3.22 

Corrected Final SoC (%) 35 35 35 

Corrected Fuel Consumption (kg) 3.20 3.51 3.23 
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Energy Consumption (kW*h) 41.7 45.2 41.9 

Average Optimization Time (sec) 0.0033 0.0089 0.0034 

Need for Off-line Optimization of 
Equivalence Factor 

Yes No No 

 

The average computation time of optimization is also given in Table 6-2. It is shown 

that the average optimization time of the A-ECMS is nearly three times higher than 

another two instantaneous methods. However, the combination of fuzzy control and 

ECMS does not increase much of the computational cost of the original ECMS. 

Furthermore, the FLC based ECMS can be applied on-line directly while the original 

ECMS requests the off-line optimization of the equivalence factor. 

In sum, the FLC based ECMS overcomes the deficiency of the original ECMS, by 

integrating fuzzy logic controller. Similar to the A-ECMS, it can realize the on-line 

charge-sustaining with no need for off-line estimation of equivalence factor. Moreover, 

the FLC based ECMS outperforms the A-ECMS, concerning the less computing time 

and less fuel consumption. 

Besides the profits revealed by the test cases and comparisons, some further 

advantages are worth to be mentioned: It is well-known that the performance of A-

ECMS is sensitive to mission profiles, since the PI controller or penalty function may be 

required to be regulated for each mission. Following the designed fuzzy rules, the fuzzy 

controller won’t be up against this issue. 

6.5 Pontryagin’s Maximum Principle 

As mentioned in Section 6.1, the equivalence factor of ECMS is related to the co-state 

variable of Hamiltonian function. This section aims to solve the energy management 

problem by the PMP and then verify the relationship between the co-state variable and 

the equivalence factor. 
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6.5.1 Problem Formulation 

The minimum (or maximum) principle of optimal control gives the fundamental 

necessary conditions for a controlled trajectory, generally described with (𝑥, 𝑢), to be 

optimal [163]. Though only a necessary condition for the original non-causal problem, 

PMP is still worth researching since it can transform the original problem to the causal 

one.  

As given in Section 6.1.1, the Hamiltonian function of fuel minimization problem for 

hybrid propulsion system consists of two parts: 

𝐻(𝑥, 𝑢, 𝑡) = �̇�𝑓(𝑢) + 𝜆(𝑡) ∙ 𝑓(𝑥, 𝑢). (6-9) 

The first term in the Hamiltonian is the instantaneous fuel usage, which is the integrand 

of the original objective; while the second term is the co-state variable multiplied by the 

system state transition function.  

The PMP states that the necessary conditions (equations (6-10)-(6-12)) must be 

satisfied, if 𝑢∗(𝑡) is the optimal control of the original problem. Eq. (6-10) indicates that 

𝑢∗(𝑡) can minimize the Hamiltonian function at each instant; and Eqs. (6-11) and (6-12) 

give transition equations of the co-state variable and system state variable, 

respectively. 

𝐻(𝑥(𝑡), 𝑢(𝑡), 𝑡) ≥ 𝐻(𝑥(𝑡), 𝑢∗(𝑡), 𝑡),    ∀𝑢(𝑡) ≠ 𝑢∗(𝑡) (6-10) 

�̇�(𝑡) = −
𝜕𝐻

𝜕𝑥
= −𝜆 ∙

𝜕𝑓(𝑥,𝑢)

𝜕𝑥
, (6-11) 

�̇�(𝑡) =
𝜕𝐻

𝜕𝜆
= 𝑓(𝑥, 𝑢). (6-12) 

In consequence, the original non-causal problem can be resolved theoretically by 

finding the optimal control to minimize the Hamiltonian function at any instant of time. 

Generally, the initial value of co-state needs to be set previously; then the value at the 

next step can be updated with the state transition equation. 
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6.5.2 Piecewise Linear Approximation of Hamiltonian function 

Though the PMP has converted the non-causal optimization into an instantaneous one, 

the real-time application is still a challenge due to the nonlinearity of the Hamiltonian 

function, which comprises the engine fuel rate and SoC rate multiplied by the co-state. 

Here, the fuel rate is fitted with the piecewise linear approximation as the same as in 

convex optimization. 

The SoC rate is also approximated with the piecewise linear function, though with the 

motor/generator torque as the self-dependent variable (see Figure 6-10). The 

motor/generator torque is selected since it is more relevant to the battery power. The 

turning point of all ∆𝑆𝑜𝐶 curves is the zero torque point, due to the opposite power flow 

directions. As a result of the directional reverse, for the same absolute output motor 

power, a negative torque will cause a smaller absolute value of ∆𝑆𝑜𝐶 than a positive 

torque. This phenomenon has been retained by the piecewise linear approximation, as 

shown in Figure 6-10. 

 

Figure 6-10 Piecewise linear approximation of the SoC rate 

6.5.3 Equivalence Factor 

This section validates the PMP based energy optimization using the first hypothetical 

flight test scenario given in Section 5.1.4. Furthermore, the co-state variable of PMP is 
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transferred and compared with the equivalence factor of A-ECMS. The initial value of 

co-state variable and equivalence factor are both estimated by the cost-to-go of DP. 

The initial value of SoC is set to 60%. The maximum and minimum value of SoC are 

80% and 20%, respectively, considering the operating range of the battery. The SoC is 

allowed to be depleted to 30%, then the energy management is demanded to sustain 

the SoC around this value.  

The A-ECMS updates the equivalence factor 𝑠(𝑡) by a PI controller to regulate the 

current SoC (i.e. 𝑥(𝑡)) to the target value 𝑥𝑠𝑢𝑠: 

𝑠(𝑡) = 𝑠0 + 𝐾𝑃(𝑥(𝑡) − 𝑥𝑠𝑢𝑠) + 𝐾𝐼 ∫(𝑥(𝜏) − 𝑥𝑠𝑢𝑠)𝑑𝜏. (6-13) 

Here, the 𝑠0 is the initial value of equivalence factor, whereas 𝐾𝑃 and 𝐾𝐼 are gains of PI 

controller. Likewise, the Hamiltonian function takes the SoC into consideration using 

the state transition equation. 

Figure 6-11 compares the optimization time and equivalence factor between the PMP 

and A-ECMS. In terms of the computational cost, the A-ECMS has less optimization 

time than PMP. The reason may be that the PMP is needed to update the co-state in 

each step. Yet this does not influence its capability of the on-line application. 

 

Figure 6-11 Comparison of optimization variables between PMP and A-ECMS 
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The equivalence factor is a significant parameter of A-ECMS optimization, since the 

performance of A-ECMS methods is heavily dependent on its precise estimation. The 

equivalence factor of PMP is defined and calculated by 𝑠(𝑡) = −
 𝜆(𝑡)

𝑉𝑏(𝑡)∙𝑄𝑚𝑎𝑥
. Two 

equivalence factor are shown in Figure 6-11 (b). The equivalence factor of PMP is 

clearly comparable to one of A-ECMS. Furthermore, the equivalence factor of PMP 

increases gradually and reaches a similar value as A-ECMS around the 10th minute. 

This avoids the sharp up and down of equivalence factor, leading to a gently varying of 

optimal control.  

6.6 Conclusions 

This chapter proposed a causal optimization—the fuzzy based equivalent consumption 

optimization, to manage the energy distribution of hybrid propulsion system.  

The original non-causal fuel minimization problem was first converted into a causal 

one. The main difference between the original non-causal problem formulation and its 

corresponding causal one is the objective function. The causal problem formulation 

replaced the non-causal criterion by an instantaneous one, by introducing the 

Hamiltonian function. The Hamiltonian function was processed and converted to the 

new instantaneous cost, which is named by equivalent consumption. Furthermore, the 

co-state variable of Hamiltonian function was related to the equivalence factor of 

equivalent consumption.  

The causal optimization—ECMS can optimize the equivalent consumption but not 

guarantee the sustaining of battery SoC, if the equivalence factor is not optimized 

based on the mission profile. To overcome this issue, this study extended the ECMS 

with a fuzzy control. The fuzzy rules can maintain the battery SoC in a desirable range, 

since it can favour the electric power if the SoC is too high while request the battery 

charge if the SoC is too low. The so-called ‘sustaining’ range of SoC is determined by 

the membership functions of fuzzy control. It is worth mentioning that for the FLC, the 

T-S fuzzy system was selected and the number of MFs was also reduced by 

reconsidering inputs of FLC. Those approaches reduce the complexity of the fuzzy 

system and the computation of (de-)fuzzification.  

The proposed FLC based ECMS was validated using hypothetical flight scenarios 

defined in Chapter 5. Its optimality and advantages were demonstrated by the 
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comparison with DP, ECMS and A-ECMS. The first test scenario compared the results 

of one non-causal optimization—DP with our FLC based ECMS algorithm. The test 

validates that the FLC based ECMS succeeds in converting the non-causal energy 

optimization into an equivalent causal energy optimization, with little sacrifice of the 

optimality of the solution. In other words, the prior-knowledge of flight mission is not 

pre-requisite and the FLC based ECMS can achieve the sub-optimal control for on-line 

implementation.  

Another two causal optimizations: the original ECMS and A-ECMS, were also studied 

in the second test case. Their results were compared with one of the FLC based 

ECMS. The FLC based ECMS overcomes the deficiency of the original ECMS, since it 

can realize the on-line charge-sustaining with no need for off-line estimation of 

equivalence factor. Moreover, the FLC based ECMS outperforms the A-ECMS, since it 

can reduce the computation time of optimization and save more fuel. 

The PMP was applied to solve the energy management problem. The piecewise linear 

approximation was employed to simplify the Hamiltonian function. The test results 

demonstrate that the relationship between the equivalence factor of ECMS and the co-

state variable of Hamiltonian function can be represented by the equation provided in 

this chapter. 
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 Combined Energy 

Management  

The convex optimization and fuzzy based optimization has been proposed and 

validated in Chapter 5 and Chapter 6. The convex optimization can save more fuel 

usage even compared with the most popular non-causal optimization—DP. 

Furthermore, it reduces the computation time of optimization to less than 1 sec. 

However, the convex optimization still cannot be applied when the mission profile is not 

priori-known. Therefore, the FLC based ECMS is also studied in this thesis, since it 

only requires the current or past system information. The deficiency of all causal 

optimizations is that it can only achieve sub-optimal results. Moreover, the control 

trajectory cannot lead the system to a pre-defined state since the future information is 

not considered in the algorithm. 

This chapter will combine the convex optimization and fuzzy based optimization to 

complete a flight mission with several sub-tasks. If the profile of sub-task is not 

accessible before the flight, the FLC based ECMS needs to be adopted to update 

control variables on-line. If a specific sub-task is demanded for the part of the future 

flight, the convex optimization is preferred to achieve the optimal results, since all 

information about this sub-task is previously known.  

 



Combined Energy Management 

148 

7.1 Flight Mission 

The flight mission illustrated in this chapter is called the test case 3. It also includes 

take-off, climbing, cruising and landing phases. Besides, the Combined Mode, Charge 

Mode and EM-Only Mode are all verified in the test scenario. When both the engine 

and motor output positive power to drive the propeller, the HEPS is at Combined Mode. 

The Charge Mode requests the power from the engine to charge the battery, on this 

condition that the motor functions as the generator. If the engine fails or the aircraft 

enters a ‘low-noise’ area, the EM-Only Mode is activated. The engine will be decoupled 

from the drivetrain, while the motor will be only drivers to provide the propulsive power. 

Similar to the flight mission given in Section 5.1.4, the power requirement 𝑃𝑟𝑒𝑞 is the 

sum of the power requested to drive the propeller and power demanded by the 

auxiliary devices of the aircraft (such as payloads, power electronics and supervisory 

controller). Note that the power requirement takes into account of the power loss of 

propeller propulsion. However, different from the estimation of power demand in the 

system sizing, the calculation of power demand here does not need to consider the 

power loss due to higher altitude. The reason is that the model of engine ECU control 

already takes the altitude coefficient 𝑒𝑎𝑖𝑟 into account. 

 

Figure 7-1 Power requirement of test case 3 

The test scenario 3 simulates a complete one and half hour flight mission that includes 

take-off, climbing, cruising, descending and landing parts. As shown in Figure 7-1, the 

whole mission can be classified into five segments: 
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(1) Phase 1:  

Phase 1 is the first stage of the aircraft flight. It contains the take-off, climbing and small 

segment of cruising at the optimum velocity. The system is initialized and the aircraft 

lifts off from the ground to the safety height in the first 2 minutes. The climbing is as 

follows and continues until the aircraft reaches roughly 2000 m. Climbing to this altitude 

costs around 10 minutes. Then, the aircraft cruises at its optimum velocity for another 

10 minutes. 

The FLC based ECMS is applied in Phase 1. The initial value of battery SoC is 100%. 

The final state of SoC is not constrained, but it has to be higher than 20%. 

(2) Phase 2:  

Phase 2 stays at Charge Mode and the battery SoC is required to recover to 60% at 

the end of the phase. Phase 2 is actually a period of transition before the aircraft starts 

the EM-Only Mode in Phase 3. After the take-off and climbing in Phase 1, the battery 

SoC may stay relatively low. Therefore, Phase 2 is set to restore the SoC before the 

electric-only flying. The convex optimization is used in this phase to produce the 

optimal energy trajectory to meet the constraints of SoC. 

The aircraft is set to cruise at the range speed during Phase 2. Thus, the power 

demand of Phase 2 is lower than the power demand of the cruising segment of Phase 

1, as shown in Figure 7-1. 

(3) Phase 3:  

The EM-Only Mode is activated in Phase 3, continuing on around 10 minutes. The 

engine is decoupled from the motor/generator. The energy management is not needed 

in this phase since only the motor is connected to the load.  

The cruising speed increases to the optimum speed in Phase 3. The power demand 

rises to the corresponding value, either.  

(4) Phase 4:  

Phase 4 can be divided into two parts. At the first part, the aircraft climbs at a small rate 

of climb. This process continues on 10 minutes until the aircraft climbs by 600 m. Then 

it enters into the second part—descending stage, which lasts for another 10 minutes.     
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After roughly 10-minute electric-only flying, the battery SoC must fall into a low range at 

the end of Phase 3, i.e. at the beginning of Phase 4. There is no specific requirement of 

SoC trajectory in Phase 4. Therefore, the FLC based ECMS is employed in this phase 

to sustain the SoC. 

(5) Phase 5:  

The final segment—Phase 5 is the aircraft landing. The power requirement decreases 

with time. The battery SoC is requested to recover to 40% at the end of the landing 

phase. Convex optimization is applied to give the optimal solution. 

The information about the different phases is summarized in Table 7-1. The table lists 

the aircraft flight phase, HEPS mode, energy optimization strategy and final SoC 

limitation. It is clear that two phases (Phase 1 and 4) apply the FLC based ECMS. 

Meanwhile, the mode and the final SoC value of these two phases are not constrained, 

but depends on the management of fuzzy based ECMS. On the other hand, the final 

value of battery SoC of Phase 2 and 5 are limited to 60% and 40%, respectively. The 

Charge Mode is also forced to these two phases with the implementation of convex 

programming. Phase 3 is different from others. It operates at EM-Only Mode and does 

not need the energy management strategy. 

Table 7-1 Aircraft flight stage, HEPS mode, energy optimization strategy and final 

SoC limitation of different phases 

 Flight Phase Mode Optimization Final SoC 

Phase 1 Take-off and Climb - Fuzzy based ECMS - 

Phase 2 Cruise Charge Convex Optimization 60% 

Phase 3 Cruise EM-Only - - 

Phase 4 Climb and Descend - Fuzzy based ECMS - 

Phase 5 Land Charge Convex Optimization 40% 

 

7.2 Numerical Examples 

This section validates the results of hypothetical test scenario 3. This test case 

simulates a 1 h 30 minutes flight mission that includes take-off, climbing, cruising, 



Combined Energy Management 

151 

descending and landing phases. Regarding the SoC-regulating strategy, the initial 

value of battery SoC is set to 100%. The maximum and minimum value of SoC are 

80% and 20%, respectively, considering the operating range of the battery.  

Figure 7-2 (a) gives the simulation results of the engine and motor/generator power, in 

addition to power requirement. The corresponding SoC is also plotted in Figure 7-2 (b). 

As mentioned above, the FLC based ECMS is performed on Phase 1. At the initial 

stage of Phase 1, since the power demand is quite small, the extra engine power is 

available to charge the battery. However, since the battery is at full capacity, the SoC 

still remains at 100%. For the take-off and climbing parts, both the engine and motor 

produce power to drive the propeller, since the power demand exceeds both of their 

maximum power. The motor contributes more than the engine since the battery SoC is 

at ‘H’ and ‘F’ region, according to the fuzzy rules. Both the power of engine and motor 

decline when the power requirement falls to a cruising level after the 13th minute. The 

engine power only drops by a small margin (around 4 kW). The motor power reduces 

by over 20 kW since the battery SoC (50%) comes to the lower bound of fuzzy sets—

‘H’, at the end of Phase 1. 

 

Figure 7-2 Simulation results of test case 3 (1) 
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The energy management approach is switched to the convex programming for Phase 

2, since the sub-task of this phase is to charge the battery to restore SoC to 60%. The 

engine power rises to over the power demand, while the generator power drops to a 

negative value. The power for the battery charge is held on around 8 kW between the 

24th and 34th minute. Its value declines to zero when the battery SoC reaches 60% at 

the end of Phase 2. The engine power is equal to the power requirement at the close of 

Phase 2. 

The ten-minute electric-only flying occurs in Phase 3, with no need for energy strategy. 

Since the engine is decoupled from the drivetrain, the motor has the full responsibility 

of powering the propeller. Its output power is identical to the power requirement, while 

the engine has no power output. With the continuous electrical power flow drawn, the 

SoC of decreases to roughly 35% from 60%.  

The energy management method is switched back to the FLC based ECMS during 

Phase 4. It is interesting that though the fuzzy rules illustrate that the SoC should be 

sustained around 35%, more electrical power is still available when high power request 

is demanded at the first 10 minutes of Phase 4. After the power demand falls to the 

level that the engine can power the aircraft by itself, the generator starts to draw power 

from the combustion powertrain. The SoC also recovers gradually and reaches about 

30% after 10-minute charging.  

The target value of battery SoC is 40% at the end of Phase 5, i.e. at the final of the 

whole flight mission. Convex programming is employed in this landing phase. The extra 

available power of the engine is used to charge the battery. The power of generator 

changes from -5 kW to -8 kW, when the aircraft touches down and starts to taxi. 

As shown in Figure 7-3, the output current and voltage of the DC/DC converter are 

compared with ones of the battery, which is equal to the input current and voltage of 

the DC/DC converter. Before around 7th minute, the battery voltage is higher than the 

DC/DC converter one. The DC/DC converter works as the buck type and reduces the 

voltage to the 300 V. The current of the battery is lower than one of DC/DC converter 

before the 7th minute. After this turning point, the absolute value of battery current 

cannot be lower than one of DC/DC converter current, since the battery voltage 

becomes smaller than the DC/DC converter one. 
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Figure 7-3 Simulation results of test case 3 (2) 

The current values of both two devices are above zero for Phase 1 and Phase 3. 

Phase 1 requests the motor to output power to facilitate the climbing. In Phase 3, the 

motor provides all the power requested to fly, since the HEPS runs at EM-Only Mode. 

On the other hand, the current of battery and DC/DC converter becomes all negative 

values during Phase 2 and Phase 5. The charging process is requested in these two 

phases to recover the battery SoC. Phase 2 can be considered as the stage of making 

preparations for Phase 3. The charging process is favoured in the final phase, since 

extra engine power is usually available. Different from Phase 2, Phase 4 regulates the 

output current according to the instantaneous power demand and battery SoC. At the 

first stage of Phase 4, the battery provides electrical power since the power demand is 

higher than the engine maximum one. For the second stage, the charging power is 

drawn from the combustion powertrain since the SoC is in its sustaining range. 

The test scenario 3 demonstrates another advantage of the FLC based ECMS: it can 

resolve the conflict between the SoC sustaining and electrical power using. The 

inherent drawback of all non-rule-based optimizations is that the SoC can only be 

sustained around a single value. If the SoC is sustained at a very low level, the residual 
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battery capacity cannot guarantee a safe landing when the engine fails; while the SoC 

stays at a high level, the combination of the fuel and electric energy cannot be made 

the best use of. Therefore, the advantages of HEPS for the aircraft would not be 

exploited to the full, using non-fuzzy-rule-based optimizations. Concluded from the 

fuzzy logic rules of the FLC based ECMS, the SoC can be sustained to a desirable 

range (30, 40%) but also permitted to drop to a lower value if necessary and possible. 

7.3 Fuel Economy 

In this section, the fuel and energy performance of our hybrid propulsion system are 

analysed and compared with the conventional combustion powertrain. In Chapter 2, the 

fuel saving performance of HEPS has been already compared with the prototype 

aircraft, under the same cruising distance. However, the prototype and hybrid aircraft 

have the different MTOW, cruising speeds and the corresponding power requirements. 

This brings the question that how much fuel the HEPS can save compared with the 

engine-only system, powering the same aircraft with the same MTOW. 

This section compares the fuel saving performance of HEPS and one of engine-only 

propulsion system, using the same flight mission. Therefore, the original Continental C-

75 engine is replaced by higher-power Continental O-200. Continental O-200 can 

reach the maximum 75 kW at 2750 rpm. Actually, if only considering the maximum 

power, Continental C-85 (63 kW) is more appropriate than Continental O-200. 

However, Continental C-85 can hold at its maximum shaft speed for only 5 minutes, but 

the time length of climbing in the test scenario 3 is at least 10 minutes. Furthermore, 

the operating speed range of Continental C-85 is not compatible with our propeller 

[166]. As a consequence, the slightly over-powered Continental O-200 is selected. On 

the other hand, the engine of HEPS is still RT600 LCR (see Section 3.7). 

Figure 7-4 compares the output power of engine between the hybrid-electric and ICE-

only propulsion system. It is clear that the engine of ICE-only propulsion system 

provides all the power required to fly, while the engine power of HEPS is dependent on 

energy optimization algorithm. When the power demand is high, it is shown in Figure 

7-4 that the output power of HEPS is lower than one of ICE-only propulsion system in 

Phase 1, since the HEPS combines the power of the electric propulsive unit. When the 

output of HEPS is higher than one of ICE-only one, the extra power is drawn to charge 

the battery, e.g. in Phase 2 and 5. 
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Figure 7-4 Comparison of engine power between HEPS and engine-only powered 

aircraft 

The fuel rate and fuel consumption of two propulsion systems are plotted in Figure 7-5. 

The fuel rates of two propulsion systems both vary depending on the output power of 

the engine. In other words, more engine power implies more fuel used. In Phase 3, 

between 44th and 55th minute, the fuel used rate is not equal to zero when the power 

demand of RT600 LCR in HEPS is zero. The reason is that the engine is not shut down 

but held at its idle speed while the power demand is zero. This strategy is to ensure the 

safety of the HEPS powered aircraft.  

Most important factor concluded from Figure 7-5 is that the fuel used rate of HEPS is 

lower than one of ICE-only propulsion system, during most of the flight time. Even the 

engine power of HEPS is higher than one of ICE-only powertrain, the fuel rate of HEPS 

can be lower than one of ICE-only powertrain, for example from around 66th minute to 

the end of the mission. This indicates that RT600 LCR has better fuel performance 

than Continental O-200. 
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Figure 7-5 Comparison of fuel usage between HEPS and engine-only powered 

aircraft 

The final fuel usages for the complete mission of HEPS and conventional propulsion 

system are provided by Table 7-2. At the end of the flight mission, the hybrid aircraft 

can save at most 40.8% fuel compared with the Continental O-200 powered one. 

Concerning the whole energy consumption, the HEPS also achieves 28.3% reduction. 

For a nearly 90-minute mission in this test case, the HEPS can save around 6 kg of 

fuel. In other words, the retrofitted hybrid aircraft can save about 4 kg per 1-hour flight. 

This means that up to tens of thousands of fuel usage can be reduced in a typical 

lifetime of one light aircraft. 

Table 7-2 Comparison of fuel and energy usage between HEPS and engine-only 

powered aircraft 

 Engine Only HEPS 

Fuel Consumption (kg) 18.1 12.0 

Fuel Saving (%) 0 40.8 

Energy Consumption (kW*h) 233.4 167.3 

Energy Saving (%) 0 28.3 
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The comparison of fuel consumption between two propulsion systems demonstrates 

the significant fuel saving capability of HEPS, however, is not quite a fair comparison. 

One reason for the considerable fuel reduction of our HEPS is that RT600 LCR has 

higher fuel efficiency than Continental O-200. The fuel consumption of Continental O-

200 at the full throttle is between 6.3 g/s and 6.9 g/s, while the fuel rate of RT600 LCR 

at the maximum power is only 4.8 g/s. This is also demonstrated in Figure 7-5 (a). The 

fuel rate of Continental O-200 powered aircraft is always higher than one of hybrid 

aircraft, though the HEPS consumes more engine power for some parts of the flight 

mission.  

The main issue occurs when comparing the fuel performance between HEPS and 

conventional propulsion system is that RT600 LCR substantially has better fuel 

efficiency than Continental O-200. Therefore, the SFC of Continental O-200 has to be 

adjusted by scaling the fuel map of RT600 LCR. In this study, the Willans line model is 

introduced to re-map the SFC of Continental O-200 using the SFC of RT600 LCR. The 

Willans line model was originally used to describe a linear relationship between the 

brake mean effective pressure and the fuel consumption [167]. Researchers have 

extended it to a scaling technique to approximate the fuel consumption and even 

efficiency [168].  

Figure 7-6 shows the fuel rate and fuel consumption of the hybrid system, ICE-Only 

system with original fuel map, and ICE-Only system with adjusted fuel map. As 

illustrated in Figure 7-6 (a), the adjusted fuel rate is remarkably lower than the original 

one. Moreover, the difference between the original and adjusted fuel rate is small when 

the engine power is high; while the difference is large if the engine power is low. In 

other words, the adjusted Continental O-200 (or RT600 LCR) performs even better fuel 

efficiency at low power area compared with the original Continental O-200. Figure 7-6 

(b) compares the fuel usage of ICE-Only system with original fuel map and with 

adjusted fuel map. Before the end of Phase 1 (around 24th minute), the fuel 

consumption of ICE-Only system with adjusted fuel map is only slightly lower than one 

of ICE-Only system with original fuel map. Then, when the power request declines, the 

difference between the original and the adjusted one becomes larger. 
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Figure 7-6 Comparison of fuel usage between HEPS and engine-only powered 

aircraft, with adjusted fuel map 

The details of the final fuel consumption and fuel saving of HEPS and ICE-Only system 

with adjusted fuel map, are listed in Table 7-3. It demonstrates that the hybrid 

propulsion system still can save 18.7% fuel, even if the fuel map of Continental O-200 

in ICE-Only system is re-scaled to the same level of RT600 LCR. The ICE-Only 

propulsion system consumes 14.8 kg fuel, while HEPS only costs 12 kg. Table 7-3 also 

gives the energy consumption and saving of the complete propulsion. The energy 

usage of HEPS is still lower than one of engine-only propulsion system. The hybrid 

powered aircraft uses 12.5% less energy compared with the conventional engine 

powered one, to complete the same flight mission. 

Table 7-3 Comparison of fuel and energy usage between HEPS and engine-only 

powered aircraft, with adjusted fuel map 

 Engine Only (Adjusted) HEPS 

Fuel Consumption (kg) 14.8 12.0 

Fuel Saving (%) 0 18.7 

Energy Consumption (kW*h) 191.2 167.3 

Energy Saving (%) 0 12.5 

Energy Efficiency (%) 20.3 23.2 
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The energy efficiency in this study is defined as the efficiency of converting the stored 

energy to the propulsion energy. The energy requirement of one flight mission can be 

determined using the power requirement. The energy efficiency of engine-only 

powered aircraft is 20.3%, which cannot be higher than the average efficiency of the 

engine. The energy efficiency of the hybrid propulsion system (23.2%) is higher than 

the efficiency of the engine, since the HEPS integrates the electric storage source. The 

electric energy storage (like the battery) usually has a much higher efficiency of energy 

conversion than the combustion fuel. 

The Federal Office of Civil Aviation (FOCA) of Swiss Confederation carried out a series 

of experiments to research the aircraft piston engine emissions [169]. The report gives 

the typical emission factors (emission-weight/fuel-weight) for one specific mission, 

including the Landing and Take-Off cycle (LTO) and one-hour cruise. The CO2 

emission factor is around 2 kg per 1 kg fuel consumption for one mission, tested on the 

different piston engines ranging from 100 kW to 220 kW. Since the CO2 emission factor 

keeps the same for different piston engines with comparable power outputs, it is 

applied to the calculation of CO2 emission for the Continental O-200 powered aircraft. 

Similarly, the CO emission factor is 760 g per 1 kg fuel consumption for one mission. 

Yet the authors did not find any open materials covering the rotary engine emission 

during the flight. Without loss of generality, the same factors are used for estimation of 

CO2 and CO emissions for the rotary engine. 

Table 7-4 Comparison of fuel usage and CO2 Emission between HEPS and 

engine-only powered aircraft 

 Engine Only HEPS 

Fuel Consumption (kg) 18.1 12.0 

CO2 Emission (Fuel) (kg) 36.2 24 

CO Emission (Fuel) (kg) 13.8 9.12 

Electrical Energy Consumption (kW*h) 0 11.9 

CO2 Emission (Electricity) (kg) 0 3.9 

Total CO2 Emission (kg) 36.2 27.9 
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Another study from the International Energy Agency (IEA) provided the CO2 emission 

from the electricity generation [170]. In 2015, Europe produced 329 g CO2 when 

generating 1 kWh. Actually, a real-time British electricity fuel mix factor (gCO₂/kWh) is 

available on the webpage of Electricity Info [171]. The average value in 2017 is 292 

g/kWh. To make a relatively fair comparison, the average European value of 2015 is 

used in this thesis. Note that CO emission from the electricity generation can be 

neglected. 

The general aviation contributes to environment pollutant much less than the civil 

airlines, in total [172]. The findings in the study of  FOCA in 2007 [169] disclosed that 

piston engine aircraft contribute less than 1% of the total CO2 emissions from the non-

land transportation. However, piston engines applied on aircraft accounts for 40% 

share of CO emission, since the ‘stoichiometric combustion’ is hard to achieve for 

aircraft piston engines.  

The total CO2 and CO emissions of ICE powertrains and HEPS generated in the test 

case 3 are listed in Table 7-4. The Continental O-200 produces 36.2 kg CO2 and 13.8 

kg CO, while the hybrid propulsion system generates 24 kg CO2 and 9.12 kg CO when 

using the on-board fuel. 11.9 kWh electrical energy is consumed in this mission, and 

3.9 kg CO2 is discharged to generate this energy. Put differently, the hybrid aircraft can 

reduce both CO2 and CO emissions by approximately 33% by the comparison with 

engine-only aircraft. The electrical energy is cleaner compared with the fuel combusting 

in the aircraft engines, even if the CO2 emissions from the electricity generation 

process are considered. 

7.4 Conclusion 

The convex optimization and fuzzy based optimization were combined to complete a 

flight test case with several sub-tasks. The hypothetical test scenario used in this 

chapter can be categorized into five phases, with different power and SoC 

requirements. The test case demonstrates that only the combination of non-causal and 

causal optimization can satisfy the different constraints and requests of the test 

scenario. The fuel economy of the HEPS with the two optimizations was also 

evaluated. 
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The test scenario also illustrates that the FLC based ECMS is more suitable for hybrid 

propulsion of aerial vehicles, compared with other ECMS based optimizations. Those 

ECMS based optimizations were designed for ground vehicles, with no consideration of 

vehicle safety if the engine fails. The FLC based ECMS can sustain the battery SoC 

among a range to guarantee the aircraft landing using the remaining electrical energy. 

The FLC based ECMS also allows the SoC to drop to the lower level if the flight 

mission requests high power for a short duration. In other words, the FLC based ECMS 

can not only sustain the SoC in a range around the desirable value, but also take 

advantage of the electrical energy source to power the aircraft. 

Another two advantages of the hybrid propulsion system were revealed in an analysis 

of the fuel saving performance. Firstly, the hybrid propulsion system can have longer 

continuous climbing, since the engine does not necessarily work at its maximum power 

during climbing. The second benefit is that the hybrid propulsion system can enjoy the 

higher energy efficiency by introducing the electric powertrain.  

In this chapter, the hybrid propulsion system was proved to reduce the fuel 

consumption by 18.7%, when compared with the engine-only propulsion system. This 

result was concluded with the consideration of the different fuel efficiency levels 

between different engine classes. The scaling technique was applied to re-map the fuel 

efficiency using the same engine classes. 
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 Summary 

This thesis studied the techniques to design and optimize a hybrid electric propulsion 

system for aircraft. Firstly, the hybrid propulsion system was sized to retrofit the 

prototype aircraft. Then, dynamic models of the hybrid propulsion system were studied. 

Two energy optimization supervisory controls were proposed to minimize the fuel 

consumption of the hybrid propulsion system.  

8.1 Conclusion 

A parallel hybrid electric propulsion system was designed for the prototype aircraft 

using the system sizing. The propulsion system sizing was established as a multi-

objective optimization problem and optimized by NSGA. The sized hybrid electric 

propulsion system will ensure that with a fuel saving of 17%, there is no substantial 

performance loss. Furthermore, the hybrid propulsion system can be sized to achieve 

larger RoC and higher cruising speed. The novel approach of this work is a new non-

dominated sorting algorithm. It was developed to improve the computational efficiency 

of NSGA. This method can reduce many unnecessary comparisons and achieve 

𝑂(𝑀𝑁) of the best time complexity of the comparison. One of advantages of NSGA in 

this study is that the smaller discretization number not only reduces the computation 

considerably, but also achieves no sacrifice of the precision of the Pareto front results. 

One interesting conclusion is that the DoH has little impact on the two objectives (fuel 

usage and flight duration). The sensitivity analysis shows that the Pareto front are more 

sensitive to the variation of battery energy density than other parameters. The MTOW 
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of hybrid aircraft was adjusted after the selection of off-the-shelf products, and is 1 kg 

higher than the MTOW of the original optimized hybrid aircraft. 

The dynamic and static characteristics of the main components of the HEPS were 

modelled. The engine MVM simplified the manifold dynamics and flow rate dynamics, 

but can represent the dynamics between the throttle command and the output torque. 

The model has low computational efficiency due to no requirement for the estimation of 

the torque loss. Regarding the motor/generator, the 𝑑-𝑞 model and vector control were 

introduced to simplify its speed and torque control. The torque loss of the 𝑑-𝑞 model at 

steady state was estimated using the efficiency map. One of advantages of the battery 

Shepherd model is the simplicity of identifying the model parameters. This avoids large 

number of experiments.  

The primary energy management problem was first formulated in the convex 

optimization. The simplified model of powertrain was developed using first principle and 

experimental data. The experimental data were analysed and approximated to clarify 

the convexity of the original problem. Subsequently, two techniques, change of 

variables and equality relaxation were implemented with the need for lossless 

convexification. The main novelty of this part of work is the proposal of a new lossless 

convexification by the introduction of variable—battery internal energy. The test cases 

verify that the convex relaxation does not sacrifice the optimality of the solution nor 

does the variable change lose the original bounds. Also, the optimal control from 

convex optimization is demonstrated to be robust against the disturbance. By 

comparing with the dynamic programming, the convex optimization performs minimal 

optimal cost results, with much lower optimization time. The most significant advantage 

is that the convexification reduces the optimization computation to a level compatible 

with the practical application.  

The conventional ECMS was established by introducing the Hamiltonian function. It 

can convert the original non-causal fuel minimization problem to an equivalent causal 

one, but cannot sustain the battery SoC. The main contribution of this part of work is to 

extend the original ECMS by a fuzzy control. The proposed algorithm can keep the 

battery SoC in a desirable range, without the requisite of off-line estimation of 

equivalence factor. By comparing with a non-causal optimization—DP, the test case 

validates that the FLC based ECMS succeeds in converting the non-causal energy 

optimization, with little sacrifice of the optimality of the solution. In other words, the 

prior-knowledge of flight mission is not pre-requisite and the FLC based ECMS can 
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achieve the sub-optimal control for on-line implementation. Another causal optimization 

(A-ECMS) was also studied and compared. The FLC based ECMS is validated to 

outperform the A-ECMS, since it can reduce the computation time of optimization and 

save more fuel. 

The convex optimization and fuzzy based optimization were combined to complete a 

flight mission with several sub-tasks. Each sub-task has different power and SoC 

requirements. The test case demonstrates that only the combination of non-causal and 

causal optimization can satisfy the different constraints and requests of the test 

scenario. The FLC based ECMS considers the safety issue of hybrid powered aircraft, 

since it can sustain the battery SoC within a range to guarantee that the aircraft is 

capable of landing using the remaining electrical energy. Compared with the engine-

only powered aircraft, the hybrid powered aircraft saves up to 18.7% fuel consumption. 

Furthermore, the hybrid propulsion system has better efficiency since it integrates the 

high efficient electric powertrain. 

8.2 Future Work Recommendation 

The thesis completed the design and energy management of an aircraft HEPS. The 

new non-causal and casual supervisory controls were proposed to optimize the power 

distribution between the engine and motor and save fuel consumption. The improved 

fuel economy performance was validated by the numerical simulation tests. The areas 

of future work are recommended: 

1) The conceptual design of hybrid-powered aircraft. This thesis has been 

engaged in the sizing of HEPS for a prototype aircraft. The aircraft design was 

not included due to its high computational complexity. The synergetic sizing of 

the aircraft and its hybrid propulsion system is an interesting and challenging 

topic. The aerodynamics of the aircraft and propeller, etc., will be considered 

and integrated into the developed NSGA. Further study to develop a new non-

dominated sorting algorithm is recommended due to the increased 

computational cost of the new sizing problem.   

2) The reduction of pollutant emissions from hybrid propulsion systems. 

Generally, the total amount of emissions decreases when the fuel consumption 

reduces. The reduction of CO2, CO and NOx is worth studying to reduce the 
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side effect of hybrid-powered aircraft on the environment. The emission maps 

of the engine are needed for this further study. 

3) The validation of energy optimization strategies in the Hardware-in-the-Loop 

(HiL) system. The real-time capability is the main performance required to be 

validated. The optimization solvers for the embedded systems are needed. 

The on-line estimation of battery SoC will be integrated to the embedded 

systems. The developed HiL system of the HEPS is briefly described in the 

Appendix. 
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 Appendix 

The high-level architecture of HiL system for the HEPS is shown in Figure 9-1. The 

blocks with dashed outlines are simulated in software, while the others are the 

hardware implementation of the system. Different categories of lines also denote 

different physical connections. The black solid line without arrows indicates the 

mechanical connection between different components, while the power supply is 

represented by the red solid line with arrows. The control and feedback signal are 

illustrated via black lines with arrows. 
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Figure 9-1 Architecture of hardware-in-the-Loop system 

The primary function of the supervisory controller is energy optimization of HEPS. The 

supervisory controller receives power demand from the simulation, optimizes the power 
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distribution and converts the optimal control to the physical control signal. It sends the 

analog voltage command to the ECU to regulate the engine throttle; meanwhile, it sets 

the speed or torque of motor/generator via a series port of the power electronics. The 

ECU and electronic control interface feed the instant variable values back to the 

supervisory controller, through the CAN bus and series port, respectively.  

As shown in Figure 9-1, the motor/generator acquires the power from the battery via 

the motor/generator controller. Note that the voltage control of motor/generator is 

integrated with the motor/generator controller and the battery can manage its 

discharge/charge process with its own management system. Therefore, there is no 

need for an extra DC/DC converter between the motor controller and battery. The take-

off weight is further saved here. Likewise, the start battery will supply the power to the 

starter motor of the engine. On the other side, the integrated generator of the engine 

can power the supervisory controller and some other payloads (like sensors), via a 

DC/DC converter. 

  

(a) (b) 

Figure 9-2 Test rig with propeller (a) and dynamometer (b) 

A transportable test rig has been manufactured and developed with the assist of Rotron 

Power Ltd., based on the design of HiL system. The test rig is divided into two layers: 

the upper layer is to hold and fix the propulsive parts that include the engine (with the 

exhaust subsystem), motor and propulsion load; the lower layer contains the energy 

sources (fuel tank and battery), controllers and other auxiliary devices (such as 

converters and interface boards). The cooling system is developed attached to the 
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frame of the test rig. Figure 9-2 shows the test rig with the propeller and the air-cooled 

eddy-current dynamometer. The output shaft of the motor/generator is extended if 

connected to the dynamometer. 
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