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A B S T R A C T   

Digital twin (DT) models are increasingly being used to improve the performance of complex manufacturing 
systems. In this context, DTs automatically enabling anomaly detection, such as increase in orders, and bottle
neck identification, such as shortage of products, can significantly enhance decision-making to mitigate the 
consequences of the identified bottlenecks. The existing literature has mainly focused on implementing top-down 
approaches for analysing the bottlenecks without considering the emergent behaviour of micro-level agents, 
including inventory levels and human resources, and their impact on the macro-level system’s performance. In 
order to handle the aforementioned challenges, this paper extends the current literature by proposing a novel DT 
integrated in a multi-agent cyber physical system (CPS) for detecting anomalies in sensor data, while identifying 
and removing bottlenecks that emerge during the operation of complex manufacturing systems. An extended 5 C 
CPS architecture, using multi-agent approach, is implemented to allow DT integration. The agent-based simu
lation technique enables capturing the probabilistic variability, and aggregate parallelism and dynamism of 
parallel dynamic interactions within the DT-CPS. A new single agent at the exo-level of the multi-level agent- 
based modelling structure, called the ‘monitoring agent’, is introduced in this research. The agent detects 
anomalies and identify bottlenecks through communicating with other agents in different levels automatically. 
The DT-CPS provides feedback automatically to the physical space to remove and mitigate the identified bot
tlenecks. The proposed DT based multi-agent CPS has been tested successfully on a real case study in a cryogenic 
warehouse shop-floor from the cell and gene therapy industry. The performance of the studied cryogenic 
warehouse is continuously measured using real-time sensor data. The analyses of the results show that the 
proposed DT-CPS improves the utilisation rates of human resources, on average, by 30% supporting decision 
making and control in complex manufacturing systems.   

1. Introduction 

The integration of digital twins (DT), cyber physical systems (CPS) 
and the cutting-edge information technologies, including Internet of 
Things (IoT), cloud computing, big data processing and Artificial Intel
ligence (AI), have formed one of the main pillars of the fourth industrial 
revolution, Industry 4.0 (I4.0) [30]. With the rapid development of 
digital and information technologies in the Industry 4.0 era, DT in 
manufacturing sectors and supply chains has grown rapidly, enabling 
automation, digitalisation and intelligence [59]. Over the last two de
cades, digital manufacturing has brought great benefits to the entire 
industry by improving processing quality and reducing production cost 

in an efficient and dynamic way [34,36]. In digital manufacturing, 
computational models and simulation techniques play key role in 
capturing the dynamic behaviour of an asset or process through virtual 
representations of facilities, information, test equipment, spares and 
people, including the skills, roles, and priorities of personnel [3,34,36, 
53]. 

Although DT was introduced by Grieves in 2003 as a concept for 
product lifecycle management [11] a fast growth of this model has been 
mostly observed in the last five years [34,36]. DT, thus, progressively 
moves from its infancy to a stage of quick transformation where real 
industry applications and technologies are investigated. Haag and 
Anderl [13] defined DT as “a comprehensive digital representation of an 
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individual product that plays an integral role in a fully digitalised 
product life cycle”. Similarly, CPSs represent an emerging research area 
due to the increasing importance of the interactions between inter
connected computing systems and the physical world [47]. CPSs can be 
described as a computer-based control system with an integrated 
network of hardware devices and software platforms [57]. Physical 
devices communicate within the cyber network through a transportation 
layer of an IoT infrastructure. CPSs enable the connectivity between 
physical and computational domains over the Internet and provide ac
cess to information and application services for the user [24]. CPSs and 
DTs can provide manufacturing systems with greater efficiency, resil
ience and intelligence [47]. In the context of CPSs, DTs can be defined as 
a cyber-representation of a real system in real time. Tao et al. [47] have 
discussed the importance of integration of CPSs and DTs, highlighting 
the differences and correlation between them. According to ISO 23247-1 
[21], in the context of manufacturing sector, among other purposes, DTs 
are intended to improve the manner in which a process or system is 
designed, manufactured and operated. Similarly, CPSs are intended to 
support system integration and DT implementation by monitoring and 
controlling physical manufacturing systems and cyber-supporting sys
tems with the help of a computing and communication core. In this 
research work, DT is employed to improve the operation of complex 
manufacturing systems, while CPS to support DT implementation by 
monitoring and controlling complex manufacturing systems via the 
integration of sensing (i.e. RFID) and computing devices. 

Despite the plethora of academic and industrial research, DT has not 
yet been properly understood and adopted by many industries, as 
several challenges are identified in the literature in the development of 
accurate DTs. Considering the existing literature, mechanisms to enable 
automated anomaly detection, bottleneck identification and response in 
DTs in manufacturing are limited and relatively new [50,54]. Neglecting 
the detection of anomalies (i.e. deviations from expected behaviour) or 
identification of bottlenecks (i.e. work stages that cannot meet the 
desired outcome and hence stop or slow the system’s operation) limits 
the purpose of DTs to act as enablers for enhanced asset or process 
performance [15]. Current research on anomalies detection and bot
tlenecks analysis is typically conducted using top-down approaches, 
lacking a formal comprehensive method for capturing emergent be
haviours in complex manufacturing systems [32,40]. Moreover, in the 
context of DT-CPS for complex manufacturing systems, the literature on 
the development of models and architectures for integrating DTs in CPSs 
is sparse and relatively new [26,47]. The architecture of integrated 
DT-CPS can be composed of multiple digital representations for different 
cyber-elements. The agent-based modelling technique can be applied 
effectively to develop a multi-agent CPS [26,8]. The challenge in DT-CPS 
is to develop an integrated DT architecture that aggregates multiple 
cyber elements and allows data communication and integrity within a 
multi-agent CPS. However, the development of advanced computational 
models and simulation techniques to design modular and comprehen
sive DTs for complex manufacturing systems is also scarce [26,39,7]. 
Additionally, the literature emphasises on the importance of a bidirec
tional flow of information between physical and cyber spaces in which 
the change in one space in one entity is directly reflected in another 
entity and vice versa. However, only a limited number of studies facil
itates this communication providing feedback automatically from the 
cyberspace to the physical space for on-demand predictive services [23, 
34,36,4]. 

Considering the existing literature on the automated anomaly 

detection in DTs, the research question considered is: “How can an 
agent-based technique be applied to develop a DT-CPS to automatically 
detect anomalies, identify bottlenecks and provide control to remove the 
bottlenecks in complex manufacturing systems1?”. This research ques
tion is addressed by developing a novel Agent-Based Modelling (ABM) 
approach for a DT-CPS that can automatically detect anomalous values 
in sensor data, identify and diagnose bottlenecks that emerge during the 
system operation and provide feedback to physical space to self-optimise 
the system’s performance by removing the diagnosed bottlenecks. The 
agent-based technique can be employed to effectively capture the 
probabilistic variability and aggregate parallelism and dynamism of 
such interactions, providing a mechanism for automated anomalies 
detection and dynamic performance evaluation that can improve deci
sion making and control in multi-agent manufacturing systems. 

In this work, a multi-agent system is formed by a network of agents2 

that interact and communicate with each other and the environment. 
Moreover, an agent-based model of a complex manufacturing system 
consists of macro, exo, meso and micro level agents. A macro-level agent 
is introduced for modelling the operation of complex manufacturing 
systems using an ABM approach. Hierarchically, this is the top-level 
agent of the global manufacturing system design in which exo, meso 
and micro agents belong, operate and interact to each other. 
Manufacturing phases are modelled at the exo-level agent as single 
agents that will always exist within the macro-level agent and commu
nicate with the meso and micro level agents. Manufacturing modules, 
described as a sequence of activities that are repeated frequently such as 
picking products or quality control procedures, are modelled at the 
meso-level agent. These modules are modular and can be deployed in 
multiple manufacturing phases. ABM approach is employed to simulate 
the interactive structure of phases and modules. Discrete Event Simu
lation (DES) modelling approach is additionally employed to model the 
finite dynamical system of manufacturing processes within each 
manufacturing phase and module. A bottom-level agent, called micro, is 
developed using ABM approach for modelling manufacturing compo
nents, which are included in the meso, exo and macro level agents. At 
this level, population of agents are created for manufacturing compo
nents such as human, equipment and material resources. At a multi-level 
ABM structure, in the context of complex manufacturing systems, the 
detection of anomalies in data, captured from sensors, is carried out by 
the ‘monitoring agent’ introduced at the exo-level. Additionally, bot
tlenecks and their root causes are identified at the micro, meso, exo and 
macro level agents. 

This research work contributes to the literature by proposing a DT- 
CPS approach, employing the ABM technique, for detecting anomalies 
in sensor data, and identifying and resolving bottlenecks in multi-agent 
manufacturing systems in an automated way. By adopting a bottom-up 
ABM approach for the DT-driven approach and a hybrid ABM-DES 
technique for real-time simulations, the proposed solution can support 
decision making and control of complex manufacturing systems, 
contributing to the automated monitoring of such systems in a flexible, 
interactive and efficient way. Therefore, the main contributions of this 
work can be summarised as follows: 

1 It is noted that complex manufacturing systems may consist of several 
manufacturing phases, modules and components. The complexity of these 
systems, including labour-intensive processes and random events, may arise 
from the multiple manufacturing phases in which various activities can be 
performed simultaneously, resulting in parallel dynamic interactions within the 
system [7]. 

2 An agent may represent people, products, equipment, facilities, or intan
gible aspects such as task ordering (e.g. a series of activities that compose a 
manufacturing phase) or a mechanism responsible for monitoring the behav
iour of other agents and acting accordingly based on defined rules and condi
tions. An agent can be, thus, used to accomplish an activity based on resource 
and time constraints or exercise control by assigning activities, monitoring 
activities execution, and collecting and combining results. 
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• A novel DT-CPS model for automated anomalies detection, and 
bottlenecks identification and removal is developed using a bottom- 
up ABM technique, by conceptualising the data architecture as a 
multi-agent system using a UML Class diagram. Moreover, a new 
simulation model is developed employing the ABM technique (bot
tom-up approach) by conceptualising the automated anomaly 
detection and bottlenecks identification in complex manufacturing 
systems using a UML State Machine diagram.  

• This research work expands the research by Farsi et al. [7] by 
introducing a single agent at the exo-level of the multi-level ABM 
structure to monitor the performance of the complex manufacturing 
system. This new ‘monitoring agent’ can automatically detect 
anomalies and identify bottlenecks through communicating with 
other agents in different levels automatically. 

• Anomalous values found in sensor data of the system are automati
cally detected by the proposed ‘monitoring agent’ at the exo-level. 
The experienced anomalies may include variations in daily orders 
and delivery rates, cycle times or faulty product type, batch size, etc. 
In the case of anomalies being detected, the system’s performance is 
monitored in terms of throughput rates and lead times to uncover 
bottlenecks emerged from the anomalies and understand the root 
causes. The emergence of unplanned bottlenecks, identified 
dynamically at the macro, exo, meso and micro level agents by the 
‘monitoring agent’, is quantified in terms of throughput, lead times, 
inventory levels, and human and equipment resources utilisations. 
Moreover, the proposed DT-CPS approach automatically provides 
feedback to the physical space through the process of self- 
optimisation. In self-optimisation, the system’s parameters at the 
micro-level agent are autonomously and continuously updated in 
such a way to manage the identified bottlenecks and improve sys
tem’s productivity and performance. 

The remainder of the paper is structured as: Section 2 discusses the 
literature review on DT development and simulation approaches for the 
anomaly detection and diagnosis in manufacturing. The proposed DT 
based multi-agent CPS structure, data architecture and method 
including the automated anomaly detection and bottlenecks identifica
tion are discussed in Section 3. Section 4 validates the proposed archi
tecture through a case study in a manufacturing system at a Cell and 
Gene Therapy cryogenic warehouse. The simulation results are verified 
and validated against actual data obtained from the case study. Section 5 
presents a summary of critical discussion on the DT-CPS approach and 
the simulation outcomes. Finally, the conclusions and future research 
work are highlighted in Section 6. 

2. Literature review 

2.1. Anomaly detection in digital twins in manufacturing 

The literature behind DTs in manufacturing systems highlights that 
this emerging technology can effectively contribute to both capture the 
state of systems in real-time and predict potential anomalies and failures 
[14,29,64]. According to the survey on anomaly detection techniques, 
conducted by Rubio et al. [41], DTs create new opportunities to the 
areas of condition monitoring for anomaly detection,3 fault detection 
and diagnosis,4 and fault prognosis.5 In this regard, Liu et al. [35], 
highlighted that DT can: (i) monitor the deviations between collected 
data and expected values; and (ii) identify anomalies and unwanted 

variations in performance metrics by reproducing the state of physical 
entity in virtual space and comparing DT simulated data against 
collected data. However, only a few research works have been proposed 
to use DTs for detecting anomalies and performing fault diagnosis in 
manufacturing [18], while there is still a lack of systematic research on 
fully employing DT for performing accurate fault diagnosis with stand
ardised data processing flows in complex systems [19]. 

In the area of fault detection and diagnosis, Jain et al. [22] proposed 
a DT-based mathematical model and simulation study to detect and 
identify faults in distributed photovoltaic systems in real-time. MAT
LAB/Simulink was used for developing the simulation model, employing 
the piecewise linear electrical circuit simulation toolbox. Additionally, 
an intelligent digital twin (i-DT) for health monitoring and prognosis of 
electric vehicle motor, using artificial neural network and fuzzy logic, 
was presented by Venkatesan et al. [52]. The i-DT model can predict the 
health and remaining useful life of electric vehicle motors but cannot be 
updated according to the current status of the motor, i.e., digital 
shadow. Similarly, Wang et al. [56] proposed a DT reference model for 
rotating machinery health management, focusing on the dynamic 
behaviour of rotor system. A model-updating scheme based on param
eter sensitivity analysis was employed to enable fault diagnosis and 
enhance model adaptability. In the same year, Xu et al. [59] developed a 
DT for fault diagnosis in the development and maintenance phases in a 
smart manufacturing environment employing deep transfer learning. In 
this work, a virtual model, simulating the physical system, is developed 
and data produced from this model is used as the training set for the 
deep neural network. The training data is then used to build a diagnosis 
model. The model is developed based on the virtual space simulation 
rather than the physical system and it is validated by its application to a 
case study in a car-manufacturing environment. Akin to the two previ
ously discussed works, the actual model developed by Xu et al. [59] is a 
digital shadow as only unidirectional communication between the 
physical and virtual entities is enabled [10]. Recently, Q. Xu et al. [60] 
proposed an Anomaly deTection with DT (ATTAIN) approach to detect 
anomalies in CPSs. The proposed approach enables the continuous and 
automated construction of the DT using real-time data acquired from a 
CPS. ATTAIN considers time constraints by building the DT model as a 
timed automaton, while captures the spatial and temporal characteris
tics of input data by implementing Graph Convolutional Networks. 
Although the model developed is a DT, it remains a challenge to handle 
complex tasks such as the detection of simultaneous attacks in CPS. 

As mentioned earlier, the literature on the development of DTs for 
smart manufacturing highlights the importance to implement autono
mous learning agents [46,54]. This learning capability can help effec
tively detect anomalies [42] and greatly advance the dependability of 
the current approaches to develop DTs where the value of knowledge for 
supporting autonomous operations is mostly ignored [54]. The capa
bility of autonomy in DTs that can be realised if performance is always 
delivered under any circumstances can, thus, lead to high dependability. 
Additionally, dependability can be enhanced by predicting future 
behaviour through self-monitoring, self-diagnosis and self-repair [50]. 

In the area of autonomous monitoring and control in DTs, Tomiyama 
and Moyen [49] in their work proposed an architecture for cyber 
physical production systems (CPPS) to autonomously detect faults and 
respond to them by maintaining the system’s performance at an 
acceptable level. However, the proposed architecture lacks the capa
bility of handling complexities including parallel interactions and het
erogeneity. Moreover, Stark et al. [46] proposed an approach that 
enables simulating the positions of objects in a smart factory DT, as well 
self-monitoring and self-diagnosing the status of processes and objects. 
However, the case study for the mill and the pick-and-place robot as
sumes that the positions of moving objects used in the DT simulation are 
updated accurately and continuously in real-time. More recently, Vrabič 
et al. [54] in their work developed an approach where the learning 
capability is realised by introducing a learning agent. This agent can 
detect and diagnose faults to the DT, as well determine a response and 

3 Anomaly detection refers to any observed behaviour of the system that 
deviates from the expected behaviour as captured by the historical data.  

4 Fault detection and diagnosis is the process of discovering the presence of a 
fault and tracing its symptoms.  

5 Fault prognosis refers to the capability to use available observations to 
predict the fault before it occurs. 
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self-adapt the DT. This approach lacks the ability to provide feedback 
from the virtual to physical system in the form of changes to improve the 
resilience of the physical system in the presence of faults. The integra
tion of bidirectional flow of data between physical entity and its digital 
counterpart closes the loop between DT and physical twin and realises 
digital-physical convergence [1,33]. This bidirectional communication 
needs to be controllable, i.e., changes on one entity should control the 
other entity. However, most of the existing works develop digital models 
or digital shadows as they focus on unidirectional data flow from 
physical to digital [4]. Therefore, the dynamic and fully integrated 
bidirectional mapping of data flow from digital to physical after 
executing DT simulation requires deeper research [33]. 

2.2. Agent-based approach in the development of digital twins 

The adoption of the agent-based approach can play key role in the 
development of DTs and CPSs [32,38]. ABM offers advanced capabilities 
including complexity management, decentralisation, intelligence, 
modularity, flexibility, robustness, adaptation and responsiveness [31, 
48,9]. In this regard, flexibility and adaptation to changes in DTs are 
crucial considering the probabilistic variability, and dynamic and highly 
interactive nature of complex manufacturing systems [7]. In the area of 
agent-based approaches in DTs and CPSs, Laryukhin et al. [25] proposed 
a multi-agent approach for the conceptual development of an integrated 
CPS-DT for managing farms. In this research, a knowledge base with 
domain ontology, DT agent and data mining methods for supporting 
decision making of farmers were considered. Moreover, Tran et al. [51] 
presented an approach for developing a smart cyber physical 
manufacturing system (CPMS). In their research, cognitive agent tech
nology was integrated enabling the CMPS to have autonomous charac
teristics such as perception, communication and self-control. More 
recently, in the context of complex manufacturing systems, Latsou et al. 
[26] developed a DT architecture integrated in a multi-agent CPMS 
where the DT represents the data flow for radio frequency identification 
(RFID) tagged products processed on a shop floor. Furthermore, Zheng 
et al. [63] proposed a conceptual DT modelling method based on a 
multi-agent architecture to examine the factors influence the product 
quality during the manufacturing phase. A multi-agent system compo
nent and a semantic engineering component are integrated for the 

development of the DT approach. Moreover, in the area of dynamic 
scheduling for smart manufacturing, conceptual models [44] and 
top-down approaches [12,62] for the development of DTs using agents 
have been proposed. Similarly, in the context of production systems, 
Dittrich & Fohlmeister [6] proposed a cooperative multi-agent system 
using reinforcement learning to handle the complexity of order sched
uling and overcome the local optimisation problem. Another research 
work on multi-agent systems was proposed by Seitz et al. [43] for the 
development of a CPPS that enables the dynamic organisation of pro
duction resources required to execute a production order. The configu
ration of production resources for enabling the adaptability of an 
individual facility through (physical) modification is also discussed. 
With the increasing availability of data, the current literature on 
agent-based CPSs and DTs gives emphasis to data-driven approaches 
using artificial intelligence [59,20,45]. 

Such approaches where the model is composed of multiple digital 
representations for different cyber elements can facilitate the develop
ment of a flexible and adaptable digital architecture. The agent-based 
approach can, thus, empower the development of such architectures 
with advanced capabilities and be successfully applied to establish a 
multi-agent DT [25,26,31]. The challenge, though, is to develop a DT 
that aggregates multiple cyber elements allowing data communication 
and integrity within a multi-agent CPS. In this regard, the existing 
literature shows that the majority of the current approaches discusses 
the development of multi-agent CPS at a conceptual level. 

Moreover, the existing literature suggests that the currently known 
approaches for developing DT simulations, including mathematical al
gorithms, ontology-based approaches and discrete-event simulation 
methods, lack suitability for advanced computational modelling [55,8]. 
Compared to the other dynamic modelling techniques, i.e., system dy
namics and discrete-event, ABM supports a higher degree of autonomy 
and offers opportunities for a more flexible, interactive and effective 
approach [31]. Additionally, hybrid system design and engineering 
approaches are proposed as a suitable technique for the specification 
and analysis of DTs due to the limitation of individual methods [25,8]. 
The bottom-up approach and the multi-agent structure of ABM can, 
thus, provide innovative opportunities in the development of DT simu
lation models through computational experiments, what-if scenarios, 
and prediction for decision making support, offering prospects for 

Fig. 1. Digital twin-based multi-agent cyber physical system architecture in manufacturing.  
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reduced complexity, high modularity and flexibility [37,45]. 

3. Digital twin-multi agent cyber physical system development 
in manufacturing 

Deployment of mechanisms to dynamically analyse the operational 
conditions of complex manufacturing systems is an ongoing research 
topic. To address the complex, dynamic and highly interactive nature of 
manufacturing systems, this work presents a DT-CPS architecture, model 
and method that enhance the interactivity between physical and cyber 
spaces and allow data communication within a multi-agent CPSs. The 
proposed architecture of the integrated DT in a multi-agent CPS is dis
cussed in detail in Section 3.1. This is followed by the data architecture 
of the DT-CPS in Section 3.2. The method employed to formulate 
mathematically the DT-CPS to derive formal results is discussed in 
Section 3.3. 

3.1. Digital twin-based multi-agent cyber physical system architecture 

A well-known CPS structure that has been adopted by Jay Lee et al. 
[28] is proposed to build the DT-CPS architecture of complex 
manufacturing systems. The architecture considers a sequential work
flow from data capturing and storage to development of simulation 
model as exact replica of the system in the physical space and analysis of 
the simulation results to gain insights for informed decision making. The 
DT is governed by the same control inputs as the system in the physical 
space, while automated knowledge feedback from the cyber to the 
physical spaces is provided for performance improvement. A dynamic 
system of multi-agents is deployed to model DTs for complex 
manufacturing systems. Additionally, the ABM approach, adopted by 
Farsi et al. [7] and extended by introducing the ‘monitoring agent’, has 
been selected to create the global manufacturing system, multiple 
manufacturing phases, ‘monitoring agent’ and manufacturing compo
nents. The architecture of the integrated DT-CPS, as illustrated in Fig. 1, 
is outlined as: 

3.1.1. Physical layer 
Physical layer can be referred to any physical component including 

resource, system or process that is relevant to a given manufacturing 
system or installed at the shop floor and exists at the two spaces: the 
physical space and the twin space. Physical layer may include human, 
equipment and material resources, plants or facilities, storage containers 
and pallet racking storage systems, physical processes (e.g. picking, 
storing or assembling products, etc.), documents or paperwork (e.g. 
checklists and forms to perform inventory or quality assurance audit, 
etc.). 

3.1.2. Smart connection layer 
Smart connection layer is used to capture data measured directly by 

sensors, actuators or controllers, or obtained from enterprise 
manufacturing systems (e.g. product lifecycle management (PLM), en
terprise resource planning (ERP), manufacturing execution systems 
(MES), etc.). Reliable integrated data management solutions should be 
developed to enable effective collection and efficient transmission of 
data acquired from various fixed or mobile sources such as ERP, MES or 
sensors. The diversity of data sources and data latency, the different data 
types, heterogeneous structures and various dimensions, as well as the 
representation of structured, semi-structured and un-structured data, 
are, among others, key aspects in data acquisition that should be 
considered. In terms of the ABM approach, data acquired in the smart 
connection layer is referred to as manufacturing components, modelled 
at the micro-level agent. A database at this level is employed for storing 
the remotely collected sensor data (e.g. quantity of material resources, 
cycle times, etc.) for tracking and tracing physical components at a 
manufacturing system. Additional data available from enterprise sys
tems refers to the status of human, equipment and material resources, 

inventory size, storage capacity, etc. 

3.1.3. Conversion layer 
Conversion layer can be referred to as all the physical processes to 

convert data into information. Once the data is acquired in the smart 
connection layer, data processing, including filtering process, artificial 
intelligence-based processing and data analytics, is required to trans
form the data into information. This information, revealing key failures, 
brings self-awareness to physical components (e.g. product, machine, 
equipment, facility, etc.) and can later help users take actions to increase 
system’s performance. In this work, a novel ‘monitoring agent’ has been 
introduced at the exo-level agent to dynamically detect anomalies in the 
sensor data of the database, identify bottlenecks related to resources 
availability, inventory levels and storage space availability and analyse 
their root causes. Bottlenecks may occur due to obstacles or delays at 
different locations and times within the manufacturing system that slow 
processing physical components. Such root causes can be identified by 
measuring performance metrics, including work in progress, waiting 
time, lead times, utilisation levels of resources, throughput or available 
inventory, and comparing these to historical data of the daily operations 
of the manufacturing system. Monitoring agent is, thus, able to provide 
self-awareness and self-prediction to physical manufacturing system in 
terms of anomalies detection, bottlenecks identification and root cause 
analysis of the latter. 

3.1.4. Cyber layer 
Cyber layer operates as a central hub of information that is acquired 

from the connection layer, stored and processed to develop the cyber 
twin model of system in the twin space (see Fig. 1). Information from 
every physical component for sharing and exchanging data is being 
stored in an information base at the micro-level agent. This helps create 
the network of all connected physical components. Information base may 
store the conditions under which an anomaly has been detected (e.g. 
date, time and location within the manufacturing system), equipment 
failure types, downtime and repair status, processing times of materials/ 
products, etc. Utilising this information, cyber avatars for physical 
components can be created. Advanced data analytics can be then 
employed to extract knowledge from these avatars, providing insights 
beyond the status of individual components. Knowledge will be aggre
gated to the components information to monitor their status and 
generate the cyber twin of each component. The performance of these 
cyber-twin components can then be compared to relevant historical 
information to predict their future behaviour. For managing and ana
lysing information effectively, a hierarchical structure to develop the 
cyber twin model of manufacturing systems is proposed. The hierarchy 
of ABM approach in the cyber layer consists of exo and micro level 
agents for modelling the manufacturing phases and manufacturing 
components (i.e. information base), respectively. Meso-level agent, if 
repeated manufacturing modules exist, may be also considered. Cyber 
layer provides the necessary data analytics to the cognition layer. 

3.1.5. Cognition layer 
Cognition layer is employed to transfer knowledge to the users to 

make appropriate decisions for improving system’s performance and 
productivity. Cognition of the monitored manufacturing system is ach
ieved by thoroughly analysing and effectively visualising the results 
obtained from modelling and simulating the twin model as discussed in 
the cyber layer. Results in terms of anomalies detection, bottlenecks 
identification with root cause analysis and a comparison of these results 
against corresponding historical data to show deviations can be pre
sented. Key performance indicators of manufacturing system, phases 
and components that can be also visualised in this layer may include 
system’s throughput, lead time, work in progress, utilisation of human 
and equipment resources, available storage space and stock size of 
material resources. These indicators are obtained at macro, exo, meso 
and micro level agents. Thus, throughput of the manufacturing system is 
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obtained at the macro-level agent. Lead times and time in system are 
obtained at the exo and meso level agents, while anomalies detection, 
resources utilisation, work in progress, available storage spaces and 
stock sizes at the micro-level agent. 

3.1.6. Configuration layer 
Configuration layer acts as an intelligent control for self- 

configuration of resilience, self-adjustment of variation or self- 
optimisation of anomalies [28], by providing feedback to the smart 
connection, conversion and cognition layers, as seen in Fig. 1. The 
feedback, obtained at the macro-level agent of the manufacturing sys
tem, should be implemented at the other agent levels automatically to 
create a synchronised DT. Feedback in manufacturing systems can be 
applied to achieve optimal throughput, resource planning, initial in
ventory capacity and inventory control, dispatch planning and space 
layout planning or job order control. This work focuses on finding a 
decision strategy that proposes the optimal solution, e.g., for the real
location of human or equipment resources, optimal initial inventory 
level or storage space, to eliminate the bottlenecks caused by anomalous 
values in input sensor data as identified in the conversion layer. Feed
back to the smart connection layer is applied to the micro-level agents 

which are updated based on the optimal solution; to the conversion layer 
is employed to check if the bottleneck remains in the system; and to the 
cyber layer to simulate the cyber-twin model with the updated param
eters at the micro level and obtain updated results visualised in the 
cognition layer. This process stops only if the bottleneck is eliminated, 
otherwise, a new self-optimisation for handling anomalies and their 
emergent bottlenecks is performed. 

Communication between physical and twin spaces for automated 
data capturing and transfer (left arrow in Fig. 1) and knowledge feed
back (right arrow in Fig. 1) can be realised through wired or wireless 
network connections. The network coverage for accessing these net
works and transmitting data can be enabled using personal area net
works (PAN), local area networks (LAN), or wide-area networks (WAN) 
based on the characteristics of physical system, digital twin purpose and 
environmental conditions. In this work, a server computer in the phys
ical system holds the sensor data repository system (e.g. relational or 
non-relational databases, data lakes, etc.). If several manufacturing sites 
exist, such as in a supply chain, one server computer should exist at each 
site. The sensor data repository system should provide improved per
formance, security and excellent data restoration and recovery mecha
nism. For allowing any device, from desktop computers to smartphones, 

Fig. 2. UML class diagram of digital twin based multi-agent cyber physical system model in manufacturing.  
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connected to the same network to view and process the stored sensor 
data, each server computer can run a web service. Moreover, the sensor 
data repository system can be hosted on a cloud computing service, 
enabling cross-site communication and providing interconnection be
tween different devices and sites. Seamless exchange of data between 
the sensor data repository system and database can be enabled through 
Application Programming Interfaces (API). Similarly, the knowledge 
feedback obtained from the cyber space is automatically available to the 
operators at the physical space i.e., shop floor (right arrow in Fig. 1). The 
implementation of this feedback in manufacturing systems for realising 
improvement in the operation of the system requires human interven
tion at the shop floor. A mechanism for enabling real-time data exchange 
can enhance the responsiveness in process monitoring and operation 
optimisation. Real-time DTs are linked to the frequency so called twin
ning rate at which control process or decision making is required or 
realised by the DT. In this study, control refers to the process at which a 
state or data changes frequently (i.e. seconds to hours) and handling is 
needed to control the process. For instance, quality control in 
manufacturing often requires immediate action to eliminate defects in 
production. 

3.2. Data architecture of digital twin-based multi-agent cyber physical 
system 

The data architecture of the multi-level agent-based structure, 
illustrated in Fig. 1, is discussed in this section. The DT-CPS model, 
employing a bottom-up ABM approach, is conceptualised using the UML 
Class diagram in Fig. 2. The proposed simulation method defines a hi
erarchical agent-based structure of the DT-CPS model where any agent is 
living within another agent and can host populations of other agents. In 
this work, the model consists of four levels of agents: macro, exo, meso 
and micro, as viewed in Fig. 1 and blue blocks in Fig. 2. The global 
manufacturing system is composed of one or more manufacturing pha
ses, monitoring agents, manufacturing components, and zero or more 
manufacturing modules (composition relationships). Similarly, each 
manufacturing phase is composed of one or more manufacturing com
ponents, while owning zero or more manufacturing modules. Each 
manufacturing module can have one or more manufacturing compo
nents (aggregation relationship). 

The ‘monitoring agent’, hosted by the macro-level agent for model
ling the manufacturing system, is introduced within the exo-level agent 
using ABM approach. The role of this agent is to provide a mechanism to 
constantly monitor the behaviour of manufacturing components of the 
database (i.e. the sensor data) at the micro-level agent (dependency 
relationship) and detect anomalies in this data by comparing it with 
corresponding values obtained from the steady state performance of the 
system. Anomaly is, thus, any deviation between the behaviours of the 
sensor data and expected behaviour (i.e. historical data). The experi
enced anomalies can consider variations in daily orders and delivery 
rates, cycle times, product type, batch size, etc. Exo-level agent can also 
identify unplanned bottlenecks, as indicated by the dependency rela
tionship that emerge from the detected anomalies, by comparing a set of 
performance metrics (e.g. lead times, work in progress, resources uti
lisation rates, etc.) with a set of properties of the expected behaviour of 
the physical system (i.e. historical data). Bottlenecks, are measured in 
terms of throughput at the macro-level agent, time in system and lead 
times at the exo and meso levels, and inventory levels or resource uti
lisation rates at the micro-level agent. A state machine diagram, using 
the Nondeterministic Finite Automata formalism, is developed to auto
matically detect anomalies and identify bottlenecks in complex 
manufacturing systems. Bottlenecks can be modelled as variables at the 
‘monitoring agent’ to store information obtained from the bottlenecks 
identified during the system’s operation including when (date and time), 
where (location at the manufacturing shop floor) and what type of 
bottlenecks has been identified. The types of bottlenecks can be asso
ciated to shortage of human resources (type B1), equipment resources 

(type B2) or material resources/storage space (type B3). 
Moreover, the ABM approach is also employed to model the inherent 

complexity of manufacturing phases and modules, by developing an 
individual or single agent for each manufacture phase and module, 
respectively. Exo-level agents are created considering how the 
manufacturing phases operate over time. The ‘monitoring agent’ and 
manufacturing phases, created at this stage, can communicate and 
interact in parallel to each other during simulation. Similarly, meso- 
level agents are introduced as a single agent to simulate the interac
tive structure of repeated manufacturing modules. The ‘monitoring 
agent’ monitors the behaviour of manufacturing phases and modules, as 
indicated by the dependency relationships. Performance measures 
captured by the operation of manufacturing phases and modules in 
terms of lead times and time in system are automatically realised by the 
‘monitoring agent’ to analyse emergent bottlenecks within the system. 
Additionally, at this stage, DES approach is used within each agent 
created for each manufacturing phase and module. DES modelling 
approach is employed to model the operation of each manufacturing 
phase and module, at the exo and meso level agents, respectively, as a 
sequence of activities that occur over time and capture the changes 
observed in the system state. 

Similarly, to enable the ‘monitoring agent’ to measure bottlenecks at 
the micro-level agent, population of agents are created for 
manufacturing components such as human, equipment and material 
resources, inventory-related information, etc. The characteristics of each 
micro-level agent can be represented by parameters for specifying the 
type, unit, capacity and rate of the agent; and shift schedules for defining 
how some value changes in time according to the defined pattern. Other 
elements including functions that return the value of an expression every 
time it is called from the model, events used to schedule some action in 
the model or modelling delays and timeouts, and collections to define 
data that group multiple elements into a single unit are also included at 
micro-level, determining the interactions between agents. Thus, each 
manufacturing component owns zero or more functions and events 
(composition relationship). Each resource is a manufacturing component 
(inheritance relationship), while having zero or more functions, events 
and bottlenecks (aggregation relationships). Key element in the pre
sented architecture is a built-in integrated database that captures 
multidimensional (e.g. asset, time, activity) and heterogeneous data 
from multiple time periods from physical components. This is accom
plished with the help of sensors, actuators or controllers located at the 
manufacturing shop floor. Database element included at micro-level 
agent reads data from the sensor data repository system, as discussed 
in the smart connection layer in Section 3.1. This data may include date, 
time and location of data created, contact details of suppliers and re
cipients, order number, delivery location, sample types, batch number, 
container type, etc. The file holding this data is automatically updated at 
a regular basis retrieving new data from the sensor data repository 
system via APIs. An information base that retrieves data from the data
base, stores in a structured form and processes it is then generated 
dynamically. Each database is composed of one or more information bases 
(composition relationship). For the data to create meaningful informa
tion, such as date and time stamps, processing times of products or 
equipment failure types and repair status, retrieved data is further 
processed to create the information base. The latter is the result set of a 
query on the data stored in the database. The information base is at the 
micro-level agent and its contents are used by the manufacturing com
ponents (dependency relationship) and, by extension, by the 
manufacturing phases and modules at exo and meso level agents to 
mimic the behaviour of physical components. 

Moreover, variables or collections are used to store the simulation 
results of the manufacturing system, manufacturing phases, modules 
and components. Such variables are used to measure system’s 
throughput at macro-level agent, time in system and lead times at exo 
and meso level agents, and resource utilisation levels for people and 
equipment, work in progress, number of stored and picked items, stock 
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size and space storage capacity at micro-level agents. Plots can be also 
employed at all levels of the multi-agent model to graphically display 
how variables change over time capturing the dynamic behaviour of 
complex manufacturing systems. Visualising the simulation results and 
performing self-optimisation of the global manufacturing system in the 
cognition and configuration layers, respectively, (see Fig. 1) generates 
knowledge to inform decision makers about the current or future state of 
the physical system. The added value of knowledge can be provided 
through real-time monitoring and data analysis, performance evalua
tion, bottlenecks identification and self-optimisation. Employing the 
multi-agent ABM approach, knowledge provides actions to physical 
space in the form of feedback, for making corrective and preventive 

decisions for performance improvement. According to the knowledge, 
generated from the cyber space, human intervention is required in the 
manufacturing shop floor for developing actions to synchronise the 
communication between physical and cyber spaces and realise 
improvement in the rectification, optimisation, and resilience of the 
physical space. 

In this work, the anomalies are identified in the remotely collected 
sensor data that measures the physical position or state of physical 
components in a manufacturing system. Any identified anomaly that can 
lead to the emergence of unplanned bottlenecks requires action to meet 
the demand of the physical system. The proposed DT-CPS is able to 
continuously update the cyber space, generate knowledge and actuate 

Fig. 3. DT-CPS: multi-agent simulation method.  

Fig. 4. UML state machine diagram of the monitoring agent for automated anomaly detection and bottlenecks identification in manufacturing.  

C. Latsou et al.                                                                                                                                                                                                                                  



Journal of Manufacturing Systems 67 (2023) 242–264

250

this as productive feedback to its physical space. Therefore, if an 
anomaly is detected, the integrated DT-CPS is updated accordingly. As 
previously discussed, anomaly detection is enabled by the ‘monitoring 
agent’ at the exo level (conversion layer in Fig. 1) that determines how 
the sensor data, obtained from the database at micro-level agent (smart 
connection layer), deviate from expected behaviour. If a bottleneck is 
then identified by the ‘monitoring agent’, the simulation model (cyber 
layer) provides results for the impact on the performance of the physical 
system which are visualised and realised at macro-level agent as 
knowledge (cognition layer). In this study, knowledge such as the 
identification of bottlenecks needs further action to be removed and 
optimise the system’s performance. The model is able to perform self- 
optimisation of the global manufacturing system at macro-level agent 
(configuration layer) and find the optimal reallocation of resources, 
initial inventory level or storage space that would reduce the eliminate 
the identified bottleneck. The optimisation results (i.e. number of re
sources, stock size and storage space), obtained at the macro level, 
automatically update the associated parameters at micro-level agent 
(smart connection layer). The ‘monitoring agent’ and simulation model 
in the conversion and cyber layers, respectively, are also updated based 
on the optimised parameters and new results are obtained. The simu
lation and optimisation methods are carried out until the associated 
bottleneck has been removed. In this work, for the decision and real
isation of knowledge in the physical space (i.e. manufacturing system), 
managers and operators are responsible to take actions considering 
further economic, environmental and social impacts. What-if scenarios 
can also be explored off-line with the help of flexible and customisable 
dashboards. Such dashboards can be used to perform different scenarios 
and evaluate the system’s performance by modifying the input param
eter values of the simulation model. Overall, knowledge may allow for 
better performance simulation, monitoring and visualisation, diagnosis 
and prognosis, scenarios analysis, optimisation and decision making for 
resource planning, time-in-system and dispatch planning. Cloud-based 
applications can also allow multiple users with remote access to the 
digital twin to explore various scenarios. 

Deploying a multi-level ABM method, decision makers gain a better 
understanding of system structure, operation and abilities, as the mul
tiple agents of a system are specified at various scales providing system 
granularity. Additionally, ABM and DES approaches are able to capture 
the dynamic behaviour and interdependencies in complex 
manufacturing systems. The mathematical formalism of the DT-CPS 
method is discussed in Section 3.3. In this section, a generic concep
tual model of the ‘monitoring agent’ for detecting anomalies and iden
tifying bottlenecks in complex manufacturing systems is also presented. 

3.3. Digital twin-based multi-agent cyber physical system method 

A hybrid agent-oriented and process-oriented approach has been 
employed in the proposed DT-CPS architecture to model and then 
simulate the complex nature of manufacturing systems. The process 
followed to develop the hybrid multi-agent ABM-DES simulation 
method for detecting anomalies and recognising any associated bottle
necks in a dynamic and automated way is composed of four steps, as 
outlined in Fig. 3. As mentioned earlier, this work extends the hybrid 
simulation method proposed by Farsi et al. [7] that employs an 
ABM-DES technique to simulate a dynamic system of parallel 
multi-agent discrete events. In the current work, the hybrid ABM-DES 
simulation method is extended by introducing the ‘monitoring agent’ 
at the exo-level of the multi-layer ABM structure. In this section, the 
steps of the proposed multi-agent simulation method will be discussed. A 
more detailed explanation for steps 1–3 can be found in Appendix, 
Section 1 and the work proposed by Farsi et al. [7]. 

This section emphasises on step 4 of the proposed multi-agent 
simulation method, i.e., on the development of the ‘monitoring agent’ 
using finite-state machine model. Thus, an agent-based simulation 
model is proposed to create the ‘monitoring agent’ at the exo-level that 

continuously observes the behaviour of the micro, meso, exo and macro 
level agents, while real-time sensor data is captured by the database at 
the micro-level agent. The UML State Machine diagram, as shown in 
Fig. 4, is used to model the dynamic nature of the proposed agent-based 
model for automated detection of anomalies in the input data and for 
identification of any unplanned associated bottlenecks in complex 
manufacturing systems. The anomalies in input data are detected 
through a set of system’s parameters considering variations in deliveries 
or orders, or delivery of the wrong quantity of products, or increased 
cycle times, i.e., time required for human resources to complete an ac
tivity (e.g. receive, store or dispatch products). The system throughput 
rates and lead times of the manufacturing phases are then measured to 
investigate if the anomalies create bottlenecks to the manufacturing 
system. In this study, the bottom-up ABM technique is selected to 
simulate the exo-level agent so called Agent () class. The Agent class 
consists of states that represent a location of control with a particular set 
of reactions to conditions and/or events, and transitions that denote a 
switch from one state to another. Three subclasses of Transition () class 
are considered, which based on their trigger type can be categorised into 
Condition (<TransitionCondition>), Message (<TransitionMessage>) 
and Rate (<TransitionRate>) subclasses. Moreover, actions can be 
associated with transitions, and with entering and exiting states. Thus, 
within each state, three types of actions can be defined, including 
(<EntryAction>) and (<ExitAction>) that are executed when the 
statechart enters and exits the state respectively, and (<DoAction>) to 
calculate performance indicators. All these state actions use data from 
the micro, meso and macro level agents, as well as from the exo-level 
agents of the manufacturing phases where a sequence of activities are 
carried out. 

Considering a complex manufacturing system, the UML State Ma
chine diagram, in Fig. 4, starts with an ‘Initial State’ entry point. Once 
initialise() transition is triggered, ‘Idle’ state is activated and average 
values for throughput (TH) and lead times (LTs) measured in various 
parts in the manufacturing system are obtained. This data can be ob
tained from: (i) databases where recorded historical data, including 
resources utilisation, operating conditions and lead times, has been 
stored; (ii) business process management software systems (e.g. PLM, 
ERP, MES, or other DTs); or from (iii) user data that is collected from 
human input while monitoring the operating levels of the physical asset. 

Employing the modified format of Little’s Law proposed by Hopp and 
Spearman [17], the system’s throughput (macro-level agent) can be 
formulated: 

TH =
WIP
LT

(1)  

where WIP is the work in progress i.e., the average number of items 
processed in a specified part of system per unit time; and LT is the lead 
time i.e., the average time an item spends as WIP. The system’s WIP 
(micro-level agent) can be calculated as: 

WIP =
∑n

i=1
deli −

∑n

i=1
stcini −

∑n

i=1
sri +

∑m

j=1
ordj −

∑m

j=1
disj (2)  

where deli is the number of delivered items for i = 1, …, n, stcini is the 
initial stock size of stored items, sri is the number of items stored after 
delivered items are received, ordi is the number of received orders and 
disi the number of dispatches for j = 1, …, m. Moreover, the stock size 
(Stocksize) at the micro-level agent can be calculated as: 

Stocksize =
∑n

i=1
stci −

∑n

i=1
sri −

∑n

i=1
pcki (3)  

where stci is number of stored items and pcki is the number of items 
picked from storage for further processing, packaging or dispatch. The 
stock size (i.e. item readily available) and stock capacity (i.e. total vol
ume of items that can be stored), retrieved from the micro-level agent, 
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are used to calculate the storage spare capacity in the system, expressed 
as: 

Sparecapacity = StockCapacity − Stocksize (4) 

The lead time (exo-level agent) of i-th item to complete a process can 
be thus: 

LToperate =
1
N

∑N

i=1
Wi (5)  

where Wi is the difference between the start time and end time for the i- 
th item for i = 1, 2, …, N, and N is the number of items in a batch. In 
addition, maximum allowable levels for the utilisations of human re
sources (HRU) and equipment resources (ERU) at the micro-level agent 
are defined. The rate of resource utilisation can be expressed as: 

RU =
∑

i=1

billi
hrs

avi
hrs

∗ 100 (6)  

where billihrs is the total billable hours of i-th resource; and avi
hrs is the 

number of total available hours of ith resource (e.g. based on the shift 
schedule). 

When inputs, i.e., deliveries and/or orders are captured by the micro- 
level agent, busy() transition fires and ‘busy’ state where the system 
performance is measured is activated. The ‘busy – measure process 
performance’ state can dynamically calculate several metrics including 
stored items, items picked from storage, TH, WIP, HRU, ERU, stock size, 
spare capacity and operating LTs. Once real-time data is detected at the 
micro-level agent, detect Real Time Record() transition fires and ‘detect 
Real Time record’ state is activated and parameters associated to the 
real-time data, including tag ID, date and time stamps, location and user 
ID are detected. The model via assess Performance() transition moves 
back to ‘busy’ state. At this point, the detect() transition is enabled and 
the performance of the manufacturing system is assessed by comparing 
the real-time sensor data and performance metrics (i.e. TH and oper
ating LT at macro and exo level agents, respectively) against average 
nominal values that either are provided as inputs to the model or derived 
from historical data (e.g. ERP system). If the performance metrics are 
greater than the nominal values, an anomaly is detected (i.e. set State 
(abnormal) transition is enabled) and the system state is set as disrupted, 
otherwise as normal (i.e. set State(normal) transition is enabled). Based 
on the state, ‘Anomaly Detected’ state or ‘No Anomaly Detected’ state is 
activated, respectively. The latter state leads to the ‘idle’ state, whereas 
if an anomaly is detected, the identify bottleneck() transition is triggered 
and the simulation model explores if the anomaly may cause potential 
unplanned bottlenecks related to human resources, equipment resources 
or inventory. A bottleneck, thus, is identified if:  

• TH (macro-level agent) is greater than the average TH, operating LTs 
(exo-level agent) greater than the average LTs and the rate of HRU 
(micro-level agent) greater than the maximum allowable HRU rate; 
or  

• TH is greater than the average TH, operating LTs greater than the 
average LTs and the rate of ERU (micro-level agent) greater than the 
maximum allowable ERU rate; or  

• spare capacity (micro-level agent) equal to the stock size or stock size 
is less than the number of orders. 

If a bottleneck is identified, the set State (bottleneck) transition fires 
and the type of the bottleneck is recognised, otherwise set State (normal) 
transition is enabled leading to the ‘no disruptive event diagnosed’ and 
‘idle’ states. Three types of associated bottlenecks are categorised, based 
on their root causes, into human resources-related issues (type B1), 
equipment resources-related issues (type B2) and inventory-related is
sues (type B3), as seen in Fig. 4. Once a bottleneck is identified, various 
key performance indicators are measured, becoming available to the 

user. For instance, the time and the activity performed (i.e. zone) when 
the bottleneck is detected, the WIP, increase in TH, LT and HRU/ERU as 
well as the number of items cannot be stored due to lack of storage space 
are obtained from the simulation model, as viewed in Fig. 4. 

From a mathematical perspective, a Nondeterministic Finite 
Automata (NFA), as defined in Hopcroft et al. [16], can be employed to 
formulate the ‘monitoring agent’ at the exo-level and derive formal re
sults as: 

A = (Q, Σ, δ, q0, F) (7)  

where Q is a finite set of states, Σ is a finite set of input symbols, δ is the 
transition function that takes a state in Q and an input symbol in Σ as 
arguments and return a subset of Q, q0, a member of Q, is the start state, 
and F, a subset of Q, is the set of final states. 

4. Case study: digital twin-cyber physical system development 
of a cryogenic warehouse 

In this study, a complex manufacturing system of a cryogenic 
warehouse company in the Cell and Gene Therapy (CGT) sector has been 
selected as the case study to test the validity of the proposed architec
ture. The impact of the DT-based multi-agent CPS model on the auto
mated anomaly detection, and bottlenecks identification and removal in 
complex manufacturing systems is evaluated. The complexity of CGT 
manufacturing systems, originated from multiple response time re
quirements and numerous policies and regulations, can result in parallel 
dynamic interactions within the system. Common example of such 
parallel interactions is when operators are required to perform 
manufacturing activities at different locations within the facility at the 
same time. In this study, radio-frequency identification (RFID) tech
nology has been installed at the cryostorage company for recording, 
monitoring and auditing of cryomaterials. Devices including sensors, 
RFID readers and tablets have been used to capture the real-time data 
from the shop floor. 

The approach proposed in this research work is followed to formu
late the selected case study. The proposed DT-CPS architecture that 
represents the data flow of RFID tagged cryomaterials being processed 
on the shop floor of the studied warehouse is developed in Section 4.1. 
The dynamic behaviour of the cryogenic warehouse is captured by 
considering real-time data for performing simulation experiments. 
AnyLogic software (version 8) has been used to develop the hybrid 
multi-agent ABM-DES simulation method. The simulation time unit has 
been set as ‘minute’. In Section 4.2, the DT-CPS is validated against 
actual data obtained from the studied warehouse. 

After validation, in Section 4.3, a scenario to assess the impact of the 
‘monitoring agent’, its applicability in relation to the other agents and 
how it improves the cognition and configuration layers is simulated and 
analysed. This scenario emphasises on the capability of the ‘monitoring 
agent’ to automatically detect anomalous values to sensor data and 
identify bottlenecks that arise in the system and affect its performance 
and productivity. Moreover, the automated knowledge feedback pro
vided to the physical space to remove and mitigate the identified bot
tlenecks is demonstrated. The selected scenario considers increased 
number of orders, dispatches and time for picking material from cryo
storage and assigning it to shippers for dispatch. This scenario has been 
selected as it captures common challenges faced during the daily prac
tices in the studied cryogenic warehouse. A stochastic data analysis to 
quantify the uncertainty in lead times is also carried out. 

4.1. Digital twin based multi-agent cyber physical system architecture 

In this section, the DT-CPS architecture that represents the data flow 
for RFID tagged products processed on the shop floor of the studied 
cryogenic warehouse is developed. The studied warehouse is responsible 
for receiving cryogenic material from manufacturers, storing and 
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monitoring the material, and dispatching it when requested from man
ufacturers and healthcare institutions. According to these processes, 
three manufacturing phases are considered: Phase I – Receipt & In
ventory; Phase II – Storage & Monitoring; and Phase III – Distribution. 
The manufacturing phases act in parallel with the ‘monitoring agent’ at 
the exo-level. The ‘monitoring agent’ interact with the phases to identify 
bottlenecks, by comparing performance measures (e.g. lead times and 
time in system) obtained from each phase to the corresponding average 
numbers observed during the normal daily operations of the cryogenic 
warehouse. The flow of cryomaterial and information in the warehouse 
is demonstrated in the UML Activity diagram in Fig. 5. Moreover, RFID 
devices have been implemented in the areas of goods in, cryogenic 
storage and goods out of the warehouse, as highlighted in blue in Fig. 5. 
The DT-CPS architecture as discussed in Section 3.1 is followed. 

4.1.1. Physical layer 
Physical layer refers to the operators working at the cryostorage 

company (i.e. human resources), cryocarts and trolleys for the trans
portation of the cryomaterials on the shop floor (i.e. equipment re
sources) and cryomaterials and liquid nitrogen (LN2) for the 
preservation of cryomaterials (i.e. material resources). Moreover, cryo
vials and cryo/freezer bags for the storage of cryomaterials and pack
aging items, including boxes for the storage of vials, racks for the storage 
of bags and boxes, and shippers for the transportation of the biological 
material within the cryogenic supply chain are considered. Pallet racks 
for the storage of shippers are also considered. RFID tags are embedded 
to the containers and packaging items. In this study, three types of RFID 
readers have been implemented to the shop floor of the warehouse, 
including: (i) ‘shipping readers’ for reading dry shipper tags attached to 
cryostorage containers; (ii) ‘proximity readers’ for close up reads of bags 
and racks; and (iii) ‘cold 10 × 10 readers’ for reading cryoboxes con
taining up to 99 vials. Each vial slot in the cold readers has a unique 
antenna, enabling individual readings. All reader types can automati
cally update the location of stored items without requiring human 
intervention (i.e. manual data entry). Moreover, the physical processes 
(e.g. arrivals checking, documenting, picking and storing materials, etc.) 
carried out on the shop floor are captured, as demonstrated in Fig. 5. 

4.1.2. Smart connection layer 
Smart connection layer acquires sensor and other input data asso

ciated with the operations occur at the shop floor of the cryogenic 
warehouse. The innovative cryogenic RFID system, integrated at the 
warehouse, has the ability to read, interpret and process RFID signals. 
The RFID system, used for the automated data capture, is deployed on 

MS Azure, a cloud computing service. The system driver is a component 
that reads RFID signals from a tag and produces an open standard file 
format and data interchange, JSON, which is then consumed by the RFID 
software. In this work, the Internet, the world’s largest WAN, has been 
selected to transmit data between physical system and digital twin due 
to its wide availability and applicability. In terms of the software, the 
data captured by the RFID system is stored to MS SQL Server 2019 (i.e. 
the sensor data repository system) that is hosted on Azure Virtual Ma
chines and transmitted using the Internet. This allows using full versions 
of MS SQL Server in the cloud without having to manage any on- 
premises hardware, enabling cross-site communication and intercon
nection between different devices and geographical regions. 

To facilitate data communication among different software systems, 
a web server based on FLASK micro web framework, written in Python, 
was created. FLASK has an extension called Flask-RESTful that provides 
support to quickly building REST APIs for Create, Read, Update, and 
Delete (CRUD) endpoints. Hence, to retrieve the data to AnyLogic, MS 
SQL Server is connected to Google Sheets to read the RFID data from the 
database, by whitelisting the IP, creating ‘Apps Script’ project, creating a 
connection to MS SQL Server database, reading data from MS SQL Server 
database and writing data to Google Sheets. Google Drive API is also 
used to allow leverage Google Drive storage. AnyLogic software has 
Cloud APIs in Python that enable compatibility with other programs and 
processing JSON files. However, this feature is only available for com
mercial license and hence, XLSX file format used for data exchange 
between Google Drive and AnyLogic by building a REST API. The data in 
XLSX is updated dynamically every twenty minutes, as configured via 
the Azure and Google Drive APIs. For the database deployment, XLSX 
data is imported in the built-in database in AnyLogic via the Database. 
getConnection method call and retrieved in the model by querying the 
database table to mimic the behaviour of the physical components, using 
SQL queries. The database table is set to be updated automatically on 
each model start up, as provided by the software. For the RFID readings 
at the shop floor, the types of collected sensor data from the RFID system 
to the database table include RFID sensor tags unique identifier (UID), 
activity identification and user UID. After each tag is scanned by an RFID 
reader, recordings of date and time stamps of the commencement and 
completion of manufacturing activities, and location are also captured. 
Moreover, data related to the number of orders, deliveries, dispatches’ 
location, carrier information, type and quantity of biological material, 
batch number, type and quantity of container are recorded. 

Other input data obtained from the enterprise system employed in 
the studied system is considered. The company’s working hours is be
tween 8:30 am and 16:30. The number of operators, working at the 

Fig. 5. Case study: UML activity diagram for the CGT cryogenic warehouse; RFID implementation (in blue).  
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cryogenic facility, based on their expertise is shown in Table A1. Each 
operator is trained to carry out multiple activities and the number of 
operators needed for the daily activities at the warehouse can also be 
found in Table A1. Moreover, the cycle time distributions for the 
manufacturing activities are listed in Table A2. An asterisk (*) denotes 
the activities affected by the RFID implementation. Additional input 
data collected from the daily operations of the selected cryogenic 
warehouse is summarised in Tables A1, A2 and A3. 

All data acquired in the smart connection layer is modelled at the 
micro-level agent. For the implementation of micro-level agents, a 
population of agents of the same type living in the same environment is 
created in AnyLogic software. These micro-agents have dynamic prop
erties including movement speed (metre/second), location (X, Y, Z, 
rotation Z coordinates of Java type double), shape (2D/3D animation 
sketch) and recurrence update time. A function that returns the colour 
type value, using getFillColor () function, has been considered to get the 
fill colour of the (human, equipment and material) resources when 
simulation is animated in 2D. This enables to visually track the move
ment of resources on the shop floor when running the model. The space 
type of micro-level agents is defined as continuous, allowing the user to 
set and retrieve the current agent location, and move the agent with the 
specified speed from one location to another. 

4.1.3. Conversion layer 
Conversion layer transforms sensor data stored in the database to 

meaningful information for the health status of RFID tagged products. 
Anomalies identified in the database can be related to an increased 
number of deliveries and/or orders than it is expected on a daily basis, or 
delivery of wrong quantity of products, or increased time (i.e. cycle 
time) required for receiving, processing or dispatching cryomaterials 
compared to the nominal time required to complete these tasks. 
Anomalies are detected by the ‘monitoring agent’ at the exo-level agent 
that can then predict dynamically unplanned emergent bottlenecks 
related to human and equipment resources availability and inventory 
levels and storage space availability. Moreover, the root cause of the 
bottleneck is identified in terms of unstored products, queues of prod
ucts waiting to be processed and any increase identified in the TH, LTs, 
WIP, HRU or ERU compared to average numbers observed during the 
normal daily operations of the cryogenic warehouse. 

Thus, following the finite-state machine model, discussed in Section 
3.3, the ‘monitoring agent’ is deployed in AnyLogic, considering the 
different states of the monitoring agent-based model for automated 
anomaly detection and bottlenecks identification (see Fig. 4). The 
required parameters and variables that define the average nominal 
values used for the case study are summarised in Table A3. This data, 
being input to the micro-level agent, has been collected with the RFID 
system from the shop floor of the case study company for a five-week 
period. The maximum allowable utilisation rates for the human and 
equipment resources have been set at 50% of the company’s working 
hours, as seen in Table A3. This is explained as only part of the opera
tions carrying out at the cryogenic warehouse has been considered in 
this case study. Anomaly detection, bottleneck identification and diag
nosis are further discussed in Sections 4.2 and 4.3. 

4.1.4. Cyber layer 
In this layer, information base, modelled at the micro-level agent, is 

deployed as a built-in fully integrated database for reading input data 
from the database table and writing simulation output. As discussed in 
the smart connection layer, the raw data collected from the RFID system 
is uploaded to AnyLogic software. In the cyber layer, this data is then 
processed using SQL queries to create timestamps and calculate the time 
required for performing various activities within the cryogenic ware
house. In AnyLogic, information base tables and views are created. In
formation base table is a collection of related data held in a structured 
format consisting of fields (i.e. columns) and rows. Each table has a 
column storing unique IDs of the table rows. Additional fields are the 

activities in which the RFID system has been implemented (e.g. arrivals 
checking, storing material, etc.), date and time stamps recorded after 
each tag is scanned, cycle time required for each activity to be carried 
out and users’ UID. Information base views, are relational tables repre
senting a subset of data contained in the information base table. A view is 
computed dynamically from data in the table when access to that view is 
requested. In this work, one view has been created for each RFID ac
tivity. SQL queries for creating the views are developed in the ‘View 
definition’ field using the SELECT statement. One information base table 
and six views, one for each RFID activity as highlighted in blue in Fig. 5, 
have been created. Moreover, ‘Source’ block from the Process Modelling 
Library, modelled at the exo and meso level agents, is used to generate 
one agent per one information base view record. To make ‘Source’ blocks 
generate agents according to the view records, arrivals are defined by 
‘Arrival table in Database’ property. The information base view containing 
the data on agent arrivals is then selected in the ‘Database table’ 
parameter. Moreover, the column (datetime) of the view that contains 
the agent arrival timestamps is selected in the ‘Arrival date’ parameter. 
Therefore, ‘Source’ blocks can generate agents according to the records 
in the view. Each record defines one agent arrival. Agent attributes such 
as ID, activity, date, time, and process time are read and stored in the 
corresponding parameters at the micro-level agent. 

The multi-agent simulation method discussed in Section 3.3 is 
employed to develop the cyber-twin model of the cryogenic warehouse. 
The multi-agent architecture of macro, exo, meso and micro level agents 
is developed according to Appendix Section 1.1. The ‘monitoring agent’ 
is modelled as a single agent type at the exo-level agent in the global 
manufacturing system, macro-level agent, of the cryogenic warehouse. 
The three manufacturing phases, including Phase I – Receipt & In
ventory, Phase II – Storage & Monitoring, and Phase III – Distribution, 
are implemented as single type agents ΦW = {Φ1, Φ2, Φ3} at the exo- 
level agent. According to Eq. (A1) in Appendix, Section 1.1, the sto
chastic phase space of ΦWis ΓW, the probabilities are p1 = p2 = p3 = 1/3 
and can be obtained as: 

ΓW = p1Γ1 + p2Γ2 + p3Γ3 (8) 

It is noted that in this case study there are no repeated manufacturing 
modules, and hence the meso-level agent is not considered. Human and 
equipment resources are implemented as sub-sub-agents, X, at the 
micro-level agent with dynamic properties including population, 
working hours, breaks and shifts, movement speed, home location and 
2D/3D animation shape and capacity. The collection of micro-level 
agents is described in a finite set X = {x1, x2, …, x9} modelling oper
ators for receiving deliveries, general activities, shippers filling, QA, QC, 
QP, trolleys, cryocarts and cryotanks. Each sub-sub-agent contains pa
rameters to capture the dynamic parametric operation of the corre
sponding agent and entire system. 

With regard to the development of the multi-layer network, in Ap
pendix, Section 1.2, the logical network (i.e. transition(s) from one ac
tivity to another) of the manufacturing system at the cryogenic 
warehouse is demonstrated in the UML Activity diagram in Fig. 5. The 
parallel interactive activities in the three manufacturing phases that 
include highly interactive and manual handling processes are initiated 
once a delivery arrives at the company in Phase I and/or an order to 
dispatch cryoproducts to healthcare institutions is received in Phase III. 
After the shippers are delivered at the cryogenic warehouse, in Phase I, 
they are verified and documented (arrivals checking). The shippers are 
recycled and refilled, before they are stored in pallet racks in Phase II. 
The cryomaterials are initially stored in quarantine storages, checked in 
terms of policies and regulations and once approved, they are stored in 
the cryotanks. Phase III initiates once an order is received followed by 
the shipment planning and scheduling. After picking the right material 
and shipper from storage, and assign the material into the shipper, 
secondary packaging (if necessary), verification and dispatch are carried 
out. For the network of agents, let two sets of nodes x21 and x22 that 
represent micro-level agents, e.g., operators for general tasks, 
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interacting with each other. The state for each node set is represented by 
a canonical vector ε21 and ε22 in the space R20, as there are 20 operators 
for performing general tasks. According to Eq. (A3) in Appendix, Section 
1.2, the interactions between the agents can be expressed as: 

Φ2α̃α
β̃β

=
∑20

ĩ,̃j=1

∑20

i,j=1
w212

(
1̃2̃

)
ε2α̃α

β̃β

(
121̃2̃

)
(9)  

where w212(1̃2̃) is the intensity of the relationship between nodes x21 

and x22; ε2α(1) and ε2β(2) are the αth and βth components of the 1st and 
2nd contravariant canonical vectors ε21 and ε22 in R20, respectively; 

and ε2α̃α
β̃β

(
121̃2̃

)
is the fourth-order canonical basis in space 

R20×20×20×20. 
Additionally, discrete event simulation, discussed in Appendix Sec

tion 1.3, is used to develop the process-oriented states, by capturing the 
manufacturing activities carried out at the warehouse in a step-by-step 
process, as illustrated in Fig. 5. For instance, according to Eq. (A4), 
‘Arrivals checking’ activity has: X the input control flow of the shippers 
delivered at the start node, named ‘Delivery of shippers’; Y the output 
control flow after the completion of ‘Arrivals checking’; and s0 the initial 
state of ‘Arrivals checking’ activity before its execution. The AnyLogic 
Process Modelling Library was selected to model these activities as a 
sequence of activities using queue, delay, resource pool, seize and 
release blocks. 

4.1.5. Cognition layer 
Cognition layer is employed to transfer knowledge to the users to 

make appropriate decisions for maintaining or improving the perfor
mance and productivity of the cryogenic warehouse. Such knowledge 
obtained from the computational results includes the system TH, 
modelled at macro-level agent, time required for performing the several 
activities within the three manufacturing phases modelled at the exo- 
level agent, and WIP, HRU, ERU and space utilisation rates, levels of 
inventory size and availability of storage space modelled at the micro- 
level agent. Additionally, the daily numbers of shippers delivered and 
dispatched and cryomaterials stored in the cryotanks, the space avail
ability of cryotanks, and stock size of cryomaterials and consumables are 
considered. For utilisation rates of human and equipment resources, the 
billable hours over the eight working hours of the company are obtained 
from the simulation model. The performance and productivity of the 
cryogenic warehouse is continuously monitored and measured, while 
knowledge is obtained by running the simulation experiment with ani
mation displayed. In the case of a disruptive event is diagnosed, at the 
exo-level agent, the user is warned about the abnormality in the system’s 
performance through an alert that appears in the screen with the asso
ciated bottleneck to be highlighted. 

To collect data analytics from the multi-agent system, as discussed in 
Section 3.3, different methods have been deployed in AnyLogic using 
Java. Thus, utilisation.mean() method is used to measure the daily 
average (collected over time) number of hours that the human/equip
ment resources are busy/used over the daily working hours of the 

cryogenic warehouse. Additionally, count() and out.count() methods are 
used to measure how many agents (i.e. deliveries, orders, shippers and 
cryomaterials) entered the input and left the output ports of different 
blocks (i.e. manufacturing activities) over time. count() method is also 
used to measure the stock size of cryomaterials and shippers available 
for dispatch. TH is calculated by finding the difference between the 
agents left and entered blocks or a set of blocks (i.e. manufacturing 
phase). LTs are measured using Time Measure Start blocks from the 
Process Modelling Library in AnyLogic and distribution() method is used 
to calculate the time distribution the agents spent between given points 
within the manufacturing phases. Time plots, bar charts, pie charts and 
histograms can be used to visualise the results in an interactive and self- 
explanatory way, as can be seen in Sections 4.2 and 4.3. 

4.1.6. Configuration layer 
The configuration layer is employed to automatically optimise the 

performance of the cryogenic warehouse by providing feedback to the 
smart connection, conversion and cognition layers. Self-optimisation is 
implemented at the macro-level agent of the cryogenic warehouse sys
tem. In the studied system, decision strategies including sourcing and 
procurement, risk mitigation and management, environment and sus
tainability strategies, are considered according to managers’ knowledge 
and experience, but also with the help of computational models where 
various simulation and optimisation scenarios can be executed. By 
realising the automated knowledge feedback from the cognition layer, 
actionable insights can be derived for improvement in the control and 
decision making. Thus, relevant data analytics can be performed to 
make informed decisions considering dispatch planning, queue man
agement to reduce WIP limits and queue sizes, resource planning, space 
layout planning and inventory control. In this study, the selected deci
sion strategy proposes reallocation of operators within existing groups in 
order to handle bottlenecks identified in the conversion layer and in
crease system’s flexibility, while maximising the number of deliveries 
completed, while minimising the WIP and excessive use of human re
sources. The self-optimisation is deployed in AnyLogic employing Opt
Quest® search engine that uses the metaheuristic algorithms of Scatter 
Search, Tabu Search and Neural Networks, combining them into a single 
search heuristic. 

The results obtained from the optimisation experiment are used to 
modify the properties of the asset, (e.g. resource planning) and its 
environment (e.g. shop floor planning and control). In this study, the 
optimisation results, i.e. optimal values of operators required within 
each group, are automatically updated to the human resources param
eters at the micro-level in the smart connection layer. Monitoring agent 
in the conversion layer is then updated based on the new reallocation of 
human resources and checks if the bottlenecks previously identified 
have been removed. Based on the updated parameters, the cyber-twin 
model in the cyber layer is then simulated and provides updated re
sults visualised in the cognition layer. In the case of the bottlenecks 
remain or new are identified, a new self-optimisation for handling bot
tlenecks should be carried out. Additional decision strategies can be 
explored finding the optimal number of equipment resources to improve 
the performance and productivity of the digital twin and, by extension, 
physical system. It can be also explored the optimal TH, initial stock size 
and storage space to improve the warehouse capacity and shipping 
speed, minimise the LTs of manufacturing phases and avoid the occur
rence of queues, and emergence of bottlenecks. Self-optimisation is 
further discussed in Section 4.3. 

4.2. Digital twin – cyber physical system model validation 

Validation of the simulation model and DT-CPS architecture is 
accomplished using real data obtained from the studied cryogenic 
warehouse. The validation of the model has been carried out at three 
stages. At Stage 1, the simulation model developed for the shop floor 
warehouse is validated against real data for the state without the DT-CPS 

Fig. 6. Case study: simulation results for the total number of daily orders (No
D) 

and dispatches (Nd
D) for the ‘without DT-CPS’ scenario. 
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and RFID system implementation (‘without DT-CPS’ scenario). This is 
important for later testing the validity of Stage 2 that builds on and 
extends the model of Stage 1. At Stage 2, the DT-CPS architecture is 
validated using real-time data collected from the RFID system for the 
normal operation of the warehouse (‘DT-CPS without anomaly’ sce
nario). This is also necessary for validating Stage 3 that builds on and 
extends the model of Stage 2. At Stage 3, anomalous values are captured 
in the RFID data due to disruptions that occur on the shop floor of the 
warehouse. The ‘monitoring agent’ is validated in terms of its capability 
to automatically detect these anomalies and capture their impact on the 
system’s performance (‘DT-CPS with anomaly’ scenario). 

At Stage 1 (‘without DT-CPS’ scenario), the total number of daily 
orders (No

D) and dispatches (Nd
D) over time are obtained from the simu

lation model as illustrated in Fig. 6. The graph shows that the warehouse 
receives orders during the daily working hours between 8:30 am and 
16:30. However, orders are dispatched between 14:30 and 16:30 when 
the trucks are available at the company. Moreover, real data for the 
cumulative total of monthly dispatches, provided by the studied com
pany for the validation, is compared to the results obtained from the 
simulation model for an eight-month period, between January and 
August, as viewed in Fig. 7. The simulation time has been set accord
ingly. The number of monthly dispatches obtained from the simulation 
results fall into the monthly ranges provided by the company, which are 
150 – 185. The graph for the cumulative monthly dispatches shows the 
accuracy of measurements with a highly representative comparison 
between the simulation model and the real data, having an average 
percentage error of 0.81% in terms of the company performance. 

At Stage 2 (‘DT-CPS without anomaly’ scenario), after validating 
successfully the simulation model for the ‘without DT-CPS’ state, the 
proposed DT-CPS architecture is validated using RFID data collected 
under the normal operation of the cryogenic warehouse. Real data on 
the RFID cycle times for a six-week period has been collected from the 
shop floor of the company. The average cycle times taken for each test 
procedure carried out within a trial are summarised in Table 1. Ac
cording to this data, obtained from the database, the histogram graphs 
have been developed to calculate the Probability Density Function (pdf) 

for the arrivals checking, storing material, picking material and dis
patching cycle times. The mean values of the corresponding pdf graphs 
are λArrivals checking = 12.81sec, λStoring material = 3.3min, λPicking material =

2.05min and λDispatching = 12.3sec. Comparing the cycle times in Table A2 
and these obtained from the pdf graphs for the four manufacturing ac
tivities, excellent agreement is found, with an average error of 1.503%. 
This validates the operation of the DT-CPS architecture under normal 
operation. 

Moreover, the histogram graphs, developed in the cognition layer, 
calculate the pdf for the time spent in each manufacturing phase. The 
pdf graphs for the lead times in Phases I–III for the ‘DT-CPS without 
anomaly’ scenario and mean values can be viewed in Fig. 8. According 

Fig. 7. Case study: simulation results against real data for the cumulative total 
of dispatches (Cd) for an eight-month period for the ‘without DT-CPS’ scenario. 

Table 1 
Case study: real-time RFID input data – cycle times for the ‘DT-CPS without 
anomaly’ scenario.  

Activity with RFID Test Procedures  

1 2 3 4 5 6 7 8 

Arrivals checking (seconds) 9 9 9 15 15 15 15 15 
Storing material (minutes) 2 2 2 4 4 4 4 4 
Picking material (minutes) 1 1 3 3 3 1 3 1 
Dispatching (seconds) 9 9 15 15 15 9 15 9  

Fig. 8. Case study: Pdf graphs for the lead times for the ‘DT-CPS without 
anomaly’ scenario: Phases I – III (a-c). 
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to the pdf graphs, it is observed that 95.5% of deliveries are being 
received and documented in less than 20 min, see Fig. 8(a). The corre
sponding pdf graph has a Poisson distribution with λPhase I−Without Anomaly 
= 13min. Additionally, the pdf for the storage and monitoring lead time 
in the ‘DT-CPS without anomaly’ state shows that 89% of the products 
are being stored in about 50 min, and only 11% of the products in be
tween 50 and 70 min, see Fig. 8(b). The corresponding pdf graph has a 
Poisson distribution with λPhase II−Without Anomaly = 57min. Finally, in 
Phase III, the pdf graph for the distribution lead time has an exponential 
distribution, as illustrated in Fig. 8(c). The average time needed to 
complete a product dispatch is much less as 97% of the orders are being 
dispatched in less than 30 min. The corresponding pdf graph has an 
exponential distribution with λPhase III−Without Anomaly = 0.1158min. The 
pdf graphs and analysis are included as they will be used for the vali
dation of the next stage for the ‘DT-CPS with anomaly’ scenario. 

At Stage 3 (‘DT-CPS with anomaly’ scenario), an anomaly detection 
scenario with ten test procedures has been considered to validate that 
the proposed ‘monitoring agent’ can detect anomalous values in input 
RFID data and realise their impacts to the system performance. In these 
trials, the cycle times for picking materials from storage and assigning 
them to shippers for dispatch have been deliberately increased 
compared to the normal operations of the system. The average cycle 
times taken for each test procedure carried out within a trial are sum
marised in Table 2. The cycle time for ‘Picking material’ under normal 
operating conditions is between 1 and 3 min, as seen in Table A3. The 
cryogenic warehouse carried out these scenarios and collected the data 
using the RFID system. The cycle time distributions are implemented to 
the simulation model at micro-level agent and the mean value of the 
corresponding pdf graph isλPicking material = 16.8min. Comparing the cycle 
times in Table 2 and these obtained from the pdf graph for ‘Picking 
material, excellent agreement is found, with an average error of 1.21%. 
The ‘Anomaly Detected’ state in AnyLogic statechart is activated, vali
dating the ability of the ‘monitoring agent’ to detect anomalous values in 
input sensor data. Additionally, average lead times for the three 

manufacturing phases, for the DT-CPS with anomaly’ scenario are ob
tained. The results are compared with the corresponding computational 
data obtained for the ‘DT-CPS without anomaly’ scenario (Stage 2) and 
the average lead times are summarised in Table 3. Similarly, the average 
human resource utilisation rates for the three manufacturing phases for 
the ‘without anomaly’ and ‘with anomaly’ scenarios are obtained, as 
seen in Table 4. From the computational results in Tables 3 and 4, ob
tained in the cognition layer, it is seen that the model can capture the 
impacts of these anomalies to the operation of the manufacturing phase 
(i.e. Phase III - Distribution) and to entire system in terms of lead times 
and human resource utilisation rates. According to the results, the lead 
time of Phase III – Distribution has increased by 42.4% (Table 3), while 
the utilisation rates of human resources by 69.7% (Table 4) compared to 
the normal operations of the cryostorage warehouse. Although the 
anomaly occurs in Phase III, an increase in the lead times and resource 
utilisation in the other two phase (Phases I and II) has been observed due 
to parallel dynamic interactions within the three manufacturing phases. 

4.3. ‘Monitoring agent’ validation 

The proposed ‘monitoring agent’ within the DT based multi-agent 
CPS architecture has been validated against actual data obtained from 
the studied cryostorage company as discussed previously in Section 4.2. 
The architecture enables real-time communication between the RFID 
system and DT-CPS, and the computational model represents the actual 
behaviour of the interactive system. In this section, a ‘Disruption’ sce
nario is studied to demonstrate that after the ‘monitoring agent’ at the 
exo-level captures anomalous values in input real-time data, collected 
by the RFID system, can analyse the impact of anomalies (i.e. bottle
necks identification) to the system at the macro, exo and micro level 
agents. Self-optimisation is then employed to automatically update the 
micro-level agents and remove the identified bottlenecks. To demon
strate the impact of the ‘monitoring agent’ and self-optimisation, key 
performance indicators (KPIs) are tested and compared for the 
‘Disruption’ scenario for two cases: ‘without feedback’ (i.e. without self- 
optimisation) and ‘with feedback’, obtained from the configuration 
layer. 

The simulation experiments for the ‘Disruption’ scenario have been 
performed for a three-day period. For this experiment, the daily number 
of orders and deliveries have been increased by 100% and the time 
required for ‘Picking material’ (Phase III) by about 500% times on 
average compared to the normal operation of the facility. The average 
cycle times taken for each test procedure carried out within a trial are 
summarised in Table A4. After obtaining the RFID data to the database 
in the smart connection layer (i.e. micro-level agent), the ‘monitoring 
agent’ at exo-level agent in the connection layer informs the user that an 
anomaly has been detected in the input data in terms of large numbers of 
deliveries and orders, and increased time for materials picking. The 
simulation model of the cryogenic warehouse is then executed in the 
cyber layer and the results are visualised in the cognition layer. For the 
‘Disruption – without feedback’ scenario, the anomaly is diagnosed 
identifying that it causes high rates of human resource utilisation at the 
micro-level agent (bottleneck), greater than the maximum allowable 
level of 50% (see Table A3). Moreover, during the third day of operation, 
the simulation model stops due to lack of validated shippers (bottle
neck), modelled at micro-level agent, to assign cryomaterials for 
dispatch. The AnyLogic interface of the monitoring agent-based model 
for automated anomaly detection and bottlenecks identification for the 
‘Disruption – without feedback’ scenario is presented in Fig. A1. Ana
lysing the simulation results, the bottlenecks, identified during the daily 
practices for this scenario in the cognition layer, are:  

• Shortage of human resources in the refilling and recycling zones at 
the warehouse between 9:00 am – 14:30. Queues of cryomaterials 
waiting to be stored are identified, with average waiting time 
21 min. The utilisation levels of the operators trained in the shipper 

Table 2 
Case study: RFID input data of disruption scenario – cycle times for the ‘DT-CPS 
with anomaly’ scenario.  

Activity with RFID Test Procedures  

1 2 3 4 5 6 7 8 9 10 

Picking Material 
(minutes)  

8  10  10  12  25  27  15  17  20  22  

Table 3 
Case study: average lead times for the ‘DT-CPS without anomaly’ and ‘DT-CPS 
with anomaly’ scenarios.  

Lead time for 
Phases I–III 

‘Without anomaly’ 
(minutes) 

‘With anomaly’ 
(minutes) 

Increase 
(%) 

Receipt & 
Inventory  

13  14 7.7 

Storage & 
Monitoring  

57  65 14 

Distribution  33  47 42.4  

Table 4 
Case study: average human resource utilisation rates for the ‘DT-CPS without 
anomaly’ and DT-CPS with anomaly’ scenarios.  

Human resource 
utilisation for Phases 
I–III 

‘Without anomaly’ 
(minutes) 

‘With anomaly’ 
(minutes) 

Increase 
(%) 

Receipt & Inventory  40.2  40.8 1.5 
Storage & Monitoring  50.7  53.6 5.7 
Distribution  45.6  77.4 69.7  
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filling and verification tasks are 81% and 74%, respectively. 
Considering that only LN2 cryogenic products have been studied in 
this work, these utilisation levels are greater than the maximum 
allowable limit (50%) set by the company. This ultimately may result 
in shortage of operators to perform the tasks on the shop floor.  

• Shortage of human resources in the storage zone between 11:30 am - 
16:30, due to interactive actions between the three manufacturing 
phases.  

• Shortage of human resources in the dispatching zone between 
14:30–16:30, due to queues in the quality check completion, due to 
interactive actions between the receipt (Phase I) and distribution 
(Phase III) zones.  

• Shortage of validated shippers (≤ 5). This bottleneck, identified by 
the ‘monitoring agent’, makes the simulation model to stop, as there 
is no available shipper to assign the cryomaterials for dispatch. This 
bottleneck informs users that based on the demand and supply there 
is insufficient initial inventory and the company may miss out on 
sales opportunities. 

The root causes of the bottlenecks are further explored. Thus, the 
computational model captures that the cryogenic warehouse accepts 18 
orders daily from which only the 10 are completed and dispatched. The 
total number of daily orders (No

D) and dispatches (Nd
D) over time are 

obtained from the simulation model as illustrated in Fig. 9(a). The graph 
shows that the average WIP per day (at micro-level agent) is 8 orders, 
while only 56% of the orders accepted daily can be dispatched. 

The bottleneck root causes are further investigated through a sto
chastic data analysis, quantifying the uncertainty in lead times as 
visualised in the cognition layer. The results are compared against these 
from the ‘DT-CPS without anomaly’ scenario to show the capability of 
the ‘monitoring agent’ to capture the impact of the anomalies on KPIs. 
The histogram graphs have been developed to calculate the pdf for the 
time spent in each manufacturing phase at the exo-level agent. The pdf 
graphs for the lead (i.e. processing) times in Phases I–III for the 
‘Disruption – without feedback’ scenario can be viewed in Fig. 10 (a–c). 
The pdf graphs have a Poisson distribution with λPhase I = 22.1min, 
λPhase II = 68.4min and λPhase III = 47.4min respectively. It is observed that 
23% of deliveries are being received and documented within 16 – 
18 min and for about 61% the process takes more than 20 min see 
Fig. 10 (a). On the contrary, in the ‘Without anomaly’ scenario, 95.5% of 
deliveries are being received and documented in less than 20 min, see 
Fig. 8(a). Additionally, the pdf for the storage and monitoring processing 
time in the ‘Disruption’ scenario shows that 35% of the products are 
being stored in about 68 min, 62% of the products in between 68 and 

73 min, and for about 3% the process takes more than 73 min, see 
Fig. 10 (b). Moreover, the pdf for the storage and monitoring processing 
time in the ‘Without anomaly’ scenario, shows that 95.5% of the prod
ucts are being stored in about 60 min, and only 4.5% of the products in 
between 60 and 70 min see Fig. 8(b). Finally, in Phase III, the pdf graphs 
for the distribution processing time for the ‘Disruption’ scenario, 87.5% 
of orders are being dispatched in less than 48 min see Fig. 10 (c). In 
terms of the ‘Without anomaly’ scenario, the average time needed to 
complete a product dispatch is much less as 97% of the orders are being 
dispatched in less than 30 min, see Fig. 8(c). 

Additionally, the average daily utilisation rates of human resources 
for the ‘Without anomaly’ and ‘Disruption – without feedback’ scenarios 
are 47% and 57%, respectively. The daily utilisation rates of the human 
resources for the two scenarios are illustrated in Fig. 11 (a). According to 
the results, the ‘monitoring agent’ can capture the impact of the studied 
anomalies on the utilisation rates of the operators at the warehouse. In 
the ‘Disruption – without feedback’ scenario, an increase in the uti
lisation rate is observed from 9:00 am, exceeding the corresponding rate 
of the ‘Without anomaly’ scenario during the daily operations (Fig. 11 
(a)). This rise is explained due to the unexpected increase in TH and LTs 
for picking materials for dispatch at the macro and exo level agents, 
respectively. 

After identifying the bottlenecks and their root causes, relevant data 
analytics at the configuration layer of the proposed DT-CPS architecture 
can be carried out to find the best decision strategy to eliminate the 
bottlenecks. In this study, a decision strategy on eliminating the bot
tlenecks related to the shortage of human resources will be investigated. 
An optimisation experiment to find the best allocation of human re
sources required within each role, as discussed in Section 4.1.6, in order 
to maximise the number of completed orders, while reducing the HRU 
rates and WIP in Phase III – Distribution is employed. For the formula
tion of the optimisation, the objective function, namely maximising the 
number of deliveries completed daily on the shop floor, in initially 
defined. The decision variables considered for the human resources 
within each role vary between 1 and 19, while ensuring that the total 
number of human resources remains equal to 40 which is the current 
number (Table A1), as the cryogenic company will not recruit more 
operators. In terms of the model constraints, the operators should be 
able to accept all the daily deliveries, WIP in Phase III – Distribution be 
less than or equal to 3 orders, while keeping the HRU rates lower or 
equal to 50% to prevent excessive use of resources. For this experiment, 
it has been assumed that the number of orders received daily equals the 
number of validated shippers on the shop floor. The optimisation has 
been carried out in AnyLogic OptQuest® that automatically builds the 

Fig. 9. Case study: Simulation results for the total number of the daily orders (No
D) and dispatches (Nd

D) for the: (a) ‘Disruption – without feedback’ and (b) ‘Disruption 
– with feedback’ scenarios. 
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User Interface, displaying the current and best feasible solutions and the 
dynamic optimisation progress with respect to the number of iterations 
performed. The optimisation results for the maximisation of the daily 
dispatches (Nd

D) are presented in Fig. 12 for 1750 iterations. No change 
in the results has been observed beyond this number of iterations. 
Additionally, the proposed allocation of human resources within each 
role is: receipt of deliveries (1), receipt of material (5), shipper filling 
(14), inventory (7), verification (10), and dispatch (3). The number of 
human resources required for each activity is denoted in the parenthe
ses. The optimisation results show that if the proposed allocation of 
human resources is adopted by the cryogenic company, the number of 

daily dispatches can increase up to 16, i.e., 60% more orders can com
plete compared to the current figures (see Fig. 9(a)). 

Once the optimisation experiment is conducted, the proposed allo
cation of human resources is automatically embedded as feedback into 
the corresponding human resources parameters, modelled at the micro- 
level agent, in the smart connection layer using the getBestParamValue 
() method for the best iteration. After the human resources-related pa
rameters are updated, the ‘monitoring agent’ detects the anomalous 
values in RFID data, but no bottlenecks related to the human resources 
utilisation rates are identified. The simulation model runs and new re
sults are visualised in the cognition layer as illustrated in Figs. 9(b) and 

Fig. 10. Case study: Pdf graphs for the lead times for the: ‘Disruption – without feedback’ scenario: Phases I – III (a-c) and Disruption – with feedback’ scenario: 
Phases I – III (d-f). 
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11 (b). Thus, the total number of daily orders (No
D) and dispatches (Nd

D) 
for the ‘Disruption – with feedback’ scenario are obtained from the 
simulation model as presented in Fig. 9(b). The computational results 
show that the cryogenic warehouse accepts 18 orders daily from which 
the 16 can be completed and dispatched. The graph shows that the 
average WIP per day in Phase III - Distribution is 2 orders, while 89% of 
the orders accepted daily can be dispatched. After the feedback imple
mentation, the new simulation results suggest that 33% more orders can 
be completed compared to the ‘Disruption – without feedback’ scenario, 
seen in Fig. 9(b). Moreover, the average daily utilisation rates of the 
human resources for ‘Disruption – without feedback’ and ‘Disruption – 
with feedback’ scenarios are illustrated in Fig. 11 (b). It is observed that 
if the system is under disruptions and no action is taken (i.e. ‘without 
feedback’ scenario), the HRU rate increases and remains at high levels, 

making the system unable to efficiently handle the disruptions (orange 
line in Fig. 11 (b)). On the contrary, once the reallocation, obtained from 
the optimisation, is applied, a significant drop is observed (blue line in 
Fig. 11 (b)) and, hence, the HRU-related bottlenecks are eliminated. 
With the feedback implementation, the daily HRU rate slightly increases 
after 10:30 am at around 45%, satisfying the relevant constraint defined 
during the optimisation. 

It is also found that with the new allocation of the operators, the 
average queue waiting time in the refilling and recycling zones at the 
warehouse between 9:00 am – 14:30 has been reduced from 21 to 
15 min. The utilisation levels of the operators trained in the shipper 
filling and verification tasks have been reduced from 81% and 74%, to 
50% and 47%, respectively. Minor decrease of 4 min is also observed in 
the queue waiting time for quality check in the dispatching zone be
tween 14:30 am - 16:30. The pdf graphs for the lead times in Phases I–III 
for the ‘Disruption – with feedback’ scenario can be viewed in Fig. 10 (d 
– f). The pdf graphs have a Poisson distribution with λPhase I = 18.3min, 
λPhase II = 59.8min and λPhase III = 40.4min respectively. The average lead 
times for the three manufacturing phases, for the ‘without feedback’ and 
‘with feedback’ scenarios are summarised in Table 5. According to the 
results, the reallocation of human resources as proposed by the opti
misation experiment can reduce the lead time of Phase III – Distribution 
by 15% compared to the ‘without feedback’ scenario. From the simu
lation results, it can be seen that the proposed reallocation of human 
resources can maximise the daily dispatches, complete all the deliveries, 
eliminate the WIP and prevent excessive use of human resources, while 

Fig. 11. Case study: Daily human resources utilisation rates for the: (a) ‘Disruption – without feedback’ and (b) ‘Disruption – with feedback’ scenarios.  

Fig. 12. Case study: optimisation results for the total number of the daily dispatches (Nd
D) for the ‘Disruption’ scenario.  

Table 5 
Case study: average lead times for the ‘the Disruption – without feedback’ and 
‘Disruption – with feedback’ scenarios.  

Lead time for 
Phases I–III 

‘Without feedback’ 
(minutes) 

‘With feedback’ 
(minutes) 

Reduction 
(%) 

Receipt & 
Inventory  

22  18 18.2% 

Storage & 
Monitoring  

68  60 11.8% 

Distribution  47  40 14.9%  
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satisfying the constraints defined during the optimisation experiment in 
terms of WIP and HRU rates. Therefore, it has been demonstrated that 
the optimal values for the reallocation of human resources can be 
effectively applied for eliminating the bottlenecks emerged in the 
cryogenic warehouse from the occurrence of anomalies in the sensor 
data. 

5. Discussion 

Most of the existing literature on agent-based CPSs and DTs in 

manufacturing is limited to conceptual models [25,44,63], top-down 
approaches [46,51,54,62], static complexity for optimal routing stra
tegies without considering uncertainty in lead times or resources (i.e. 
dynamic complexity) [2] and data-driven approaches [59,20]. Simi
larly, top-down approaches are greatly used by the current DT and CPS 
approaches on detecting and diagnosing anomalies in manufacturing 
[12,19,32,49,51]. The existing top-down approaches are modelling 
systems at the macro and micro levels, while lacking a formal compre
hensive method for capturing emergent behaviour [32,40]. Such ap
proaches where systems are developed at an abstract level are more 
appropriate if the detail of level of the available input data is aggregated 
at a high level. On the contrary, if data about the system is available, 
bottom-up approaches are more beneficial to represent the system by 
modelling external interactions with the environment and internal in
teractions between sub-systems (i.e. exo-level agents) and components 
(i.e. micro-level agents) [48]. 

In manufacturing, systems are built by increasingly dynamic 
complexity at different levels of an agent-based model [7,9,20]. These 

Fig. A1. AnyLogic interface of the monitoring agent-based model for automated anomaly detection and bottlenecks analysis for the ‘Disruption – without feed
back’ scenario. 

Table A1 
Case study: input data – human, equipment & material resources.  

Parameter/variable Value 

Weekly number of deliveries 12 
Weekly number of orders 10 
Initial stock size of shippers 35 
Storage capacity of shippers 280 
Initial stock size of cryomaterial 3000 
Storage capacity of cryomaterial 30,000 
Number of trolleys 2 
Number of cryocarts 6 
Number of tanks for cryomaterial storage 12 
Shippers’ storage capacity of pallet racks 420 
Number of operators for: 

receiving deliveries 
2 

general activities 20 
shippers filling 4 
Quality Assurance (QA) 4 
Quality Control (QC) 6 
certified Qualified Person (QP) 2 
Number of operators required for daily activities: 

receipt of deliveries 
2 

receipt of material 9 
shipper filling 4 
inventory 13 
verification 18 
dispatch 12  

Table A2 
Case study: input data – cycle time distributions.  

Manufacturing Phase Manufacturing Activity Distribution 
(minutes) 

Phase I – Receipt & Inventory Arrivals checking* Uniform(2, 3) 
Documenting Triangular(7 ± 3) 

Phase II – Storage & 
Monitoring 

Recycling & Refilling Triangular(47 ± 23)  

Storing/Picking material* Triangular(18 ± 10) 
Storing/Picking shipper* Uniform(5, 10) 
QA quality check Triangular(30 ± 5) 
QC quality check Triangular(20 ± 5) 
QP quality check Off-site, > 1 day 
Documenting & 
Verification 

Uniform(35, 55) 

Phase III – Distribution Packaging Triangular(15 ± 5) 
Dispatching* Uniform(0.08, 0.17)  
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systems, typically, consist of multiple manufacturing phases where 
various manufacturing activities operate simultaneously. Dynamic 
complexity, arising from manual activities with interactive behaviour, 
can create parallel dynamic interactions (i.e. collaborative in
terdependencies) in the system, affecting its productivity and perfor
mance. Advanced computational modelling such as bottom-up ABM 
approaches help represent such interdependencies and obtain a formal 
and flexible description of the system [20]. Using the agent-based 
technique, the probabilistic variability and aggregate parallelism and 
dynamism of parallel dynamic interactions in complex manufacturing 
systems can be captured [7,9]. 

This work contributes to the literature of complex manufacturing 
systems by proposing a generic, yet novel approach using the ABM 
technique for developing a DT-based multi-agent CPS model. The scope 
of the DT is to improve the operation of complex manufacturing systems, 
while the purpose of the CPS is to support the implementation of DT by 
automatically enabling anomaly detection and emergent bottlenecks 
identification (exo-level) through communicating with other agents in 
macro, exo, meso and micro levels dynamically. The DT-CPS provides 
knowledge feedback automatically to the physical space to remove the 
identified bottlenecks through self-optimisation. The agent-based tech
nique is more flexible, interactive and effective compared to the other 
dynamic modelling techniques, defining the agents’ behaviour and how 
this changes in real-time while interactions with other agents at the 
same or other levels occur [39,9]. Moreover, to derive formal results, the 
SFDS modelling framework is employed to formulate the DT-based 
multi-agent CPS method (Section 3.3). In addition, the SFDS frame
work and NFA theory are used to mathematically formulate the hybrid 
multi-agent ABM-DES simulation method and monitoring agent-based 
model at the exo-level (Section 3.3), respectively. 

This study goes beyond the existing conceptual research, providing a 
formal comprehensive DT-CPS approach for complex manufacturing 
systems able to continuously monitor operation, detect anomalies, and 
identify and remove bottlenecks. This work enhances the current un
derstanding, by employing the agent-based technique to create a flexible 
and functional DT-based multi-agent CPS that captures the elements of a 
system that move around and interact with other parts of the twin. 

Agent-based models single acting entities of the system and the so
phisticated interactions between agents and heterogeneous state space 
during simulation in order to determine the macro behaviour of the 
system. The DT-CPS model offers prompt anomaly detection and bot
tlenecks identification by introducing the exo-level agent. This offers 
users more insights in identifying the anomalies in input data and 
tracking bottlenecks and root causes. Utilising the approach, complex 
manufacturing systems can be analysed considering uncertainty quan
tification on lead times and resources utilisation. Such in-depth analysis 
can facilitate enhanced decision making for the complex manufacturing 
systems. 

According to the case study, this research work examines: (i) the DT- 
based multi-agent CPS architecture for a complex manufacturing sys
tem; (ii) the ability of the ‘monitoring agent’ to automatically detect 
anomalous values to sensor data and identify emergent bottlenecks that 
affect the system’s performance and productivity in terms of 
throughput, lead times, resources utilisation and inventory levels; and 
(iii) the capability of the DT-CPS to provide automated knowledge 
feedback from macro to micro, meso and exo level agents to remove and 
mitigate the identified bottlenecks though reallocation of human re
sources. The results show that the proposed DT-CPS for complex 
manufacturing systems can effectively detect anomalies in input data, 
generated by the RFID system, and evaluate the impact of the bottle
necks these anomalies cause on the system performance. In terms of this 
latter point, the results show that the ‘monitoring agent’ of the DT-based 
multi-agent CPS has effectively detected an increase in the system’s 
throughput by about 100% and, in turn, identify an increase in the 
utilisation rate of human resources by about 21.4%, in lead times by 
about 25.6%, and a shortage of human and material resources at certain 
times during the daily operations of the cryogenic company. Self- 
optimisation for removing the identified bottlenecks and reduce lead 
times and utilisation rates of human resources to normal operating levels 
is successfully employed by reallocating the human resources of the 
cryogenic warehouse. The reallocation of human resources has been 
provided automatically from the configuration layer to the smart 
connection layer reducing the utilisation rates of operators by 30%, 
throughput by 33% and lead time by 15% on average. 

6. Concluding remarks 

This paper has presented a DT-CPS approach, composed of multiple 
agents, for automated anomaly detection, and bottlenecks identification 
and removal for complex manufacturing systems with dynamic parallel 
interactions, using the bottom-up ABM technique. Anomalous values in 
model input data, captured from RFID sensors, are detected at the micro- 
level agent and bottlenecks that deteriorate the system’s performance 
are identified at the micro, meso, exo and macro level agents. The 
theoretical aspects and the mathematical formulation of the DT-based 
multi-agent CPS method have been introduced as an extension to the 
hybrid simulation method, introduced by Farsi et al. [7], that uses an 
ABM-DES technique to simulate a dynamic system of parallel 
multi-agent discrete events. The hybrid ABM-DES simulation method 
has been extended by introducing the ‘monitoring agent’ at the exo-level 
that interactively communicate with the micro, meso, exo and macro 
level agents to detect anomalies, and identify and handle bottlenecks in 
an automated and dynamic way. The UML Class diagram of the 
DT-based multi-agent CPS model and the UML State Machine diagram of 

Table A3 
Case study: average nominal RFID input data.  

Parameter/variable Value/Distribution Unit 
Average number of: 

deliveries 
Uniform (9, 10) /day 

orders Uniform (8, 10) /day 
(continued)      

Parameter/variable Value  
dispatches Uniform (6, 8) /day 
Maximum allowable rate: 

human resource utilisation 
50%  

equipment resource utilisation 50%  
Average lead times with RFID: 

Arrivals checking 
Uniform (9, 15) seconds 

Storing material Uniform (2, 4) minutes 
Picking material Uniform (1, 3) minutes 
Dispatching Uniform (9, 15) seconds 
Phase I – Receipt & Inventory Uniform (12, 14) minutes 
Phase II – Storage & Monitoring Uniform (55, 58) minutes 
Phase III – Distribution Uniform (30, 35) minutes  

Table A4 
Case study: RFID input data - cycle times for the ‘DT-CPS – Disruption’ scenario.  

Activity with RFID Test Procedures   
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23 

Picking Material (minutes)  10  9  10  8  8  15  12  10  11  9  12  15  8  8  8  10  12  10  11  10  10  10  10 
(continued)   

24  24  25  26  27  28  29  30  31  32  33                         
Picking Material (minutes)  9  9  10  10  12  11  12  11  10  9  9                          
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the monitoring agent-based model for automated anomaly detection and 
bottlenecks identification have been presented. Moreover, the impact of 
the ‘monitoring agent’ on the performance of complex manufacturing 
systems in terms of throughput, lead times, inventory levels and 
resource utilisations has been measured. To test the validity of the 
proposed approach, a case study in the CGT industry was employed. 
Following the DT-based multi-agent CPS architecture, the case study for 
the selected cryogenic warehouse was developed and the results ob
tained from the simulation for different scenarios were compared 
against data from the company; excellent agreement was found in terms 
of anomalies detection and bottlenecks identification. The outcomes 
from the DT-based multi-agent CPS model provide support and detailed 
information in terms of prompt and accurate detection of anomalies, and 
identification and removal of bottlenecks in complex systems. 

The DT-based multi-agent CPS architecture, model, mathematical 
method, and simulation model can be used as an automated monitoring 
tool of anomalies detection, and bottlenecks identification and removal 
for more informed decision making and control in manufacturing sectors 
with a highly regulated and complex nature. The proposed architecture 
and method differ from the existing models as anomalies in input data 
are detected and unplanned bottlenecks are identified and eliminated 
automatically over time using real-time data. The bottom-up approach 
of the model using the multi agent-based technique for DTs can enhance 
the flexibility, interactivity and modularity of DT-CPS design. The 
bidirectional communication between the physical and twin spaces is 
also considered. Additionally, the method and simulation model follow 
a stochastic bottom-up approach for DT-CPS, to detect anomalies and 
identify bottlenecks in complex manufacturing systems using the ABM, 
DES and pdf techniques. 

Further to this work, the applicability of the DT-CPS approach can 
also be explored in other manufacturing or production systems and 
supply chains. Further research can also be conducted to quantify the 
impact of the ‘monitoring agent’ in terms of sustainability and evaluate 
the cost of goods and energy consumption. In this regard, cost 

information could be added to the simulation model to calculate the cost 
and profit for different scenarios considering unexpected and emergency 
events and their financial and environmental impacts. Additionally, the 
quality of simulation results could be improved with the integration of 
parameters variation and sensitivity analysis techniques to gain deeper 
understanding in terms of the operation of complex manufacturing 
systems. Another future direction could be to identify different un
certainties within the multi-agent DT architecture checking the accuracy 
of communication between physical system and its digital counterpart. 
The proposed DT could also be enhanced with cognitive capabilities 
through semantic technologies such as knowledge graphs. In this regard, 
actionable cognitive twins could be investigated to bring intelligence 
through cognitive capabilities to support execution of autonomous ac
tivities and provide insights and informed decision-making. 
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Appendix A. DT-CPS: multi-agent simulation method: steps 1–3 

See Fig. A1 and Tables A1–A4. 

Step 1: Multi-layer phase space agents development 

Complex manufacturing systems are structured from multiple layers that interactively communicate to each other. As proposed in the work by 
Farsi et al. [7], in the context of complex manufacturing systems with multiple layers of connectivity, Network theory can be used to model the state of 
locations and dynamics between agents, and stochastic finite dynamical systems (SFDS) formulation can be used to simulate the communication 
networks between agents in a continuous model space and network. The modelling framework of SFDS, as discussed in Laubenbacher et al. [27] has 
been employed to mathematically formulate the DT-CPS and derive formal results. A SFDS is defined as a set of parallel dynamical systems 
{Φπ : π ∈ Τ}, where Τ is the subset of permutations, with a given probability distribution. The states of the system are updated using a permutation π ∈
T and a system Φπ is selected randomly for the next iteration. The stochastic phase space of a SFDS, ΓW, can be modelled as a Markov chain over the 
state space Xn and the adjacency matrix of ΓW that shows the probabilities of moving from one state to another can be formulated as a Markov 
transition matrix. Thus, let W be a finite collection of systems Φ1,…,Φt, where Φi : Xn → Xn for all i, and p1,…,ptbe the probabilities which sum to 1. The 
stochastic phase space of ΦWis ΓW and can be obtained as: 

ΓW = p1Γ1 + p2Γ2 + … + ptΓt (A1) 

where Γi is the phase space of Φi. Thus, macro-level agent, enclosing the ‘monitoring agent’, phases, modules and components, can be expressed as 
a set of parallel dynamical systems {Φπ : π ∈ Τ} with a given probability distribution, where : Xn → Xn. Manufacturing phase at exo-level agent is 
defined as proposed in Eq. (1). Similarly, the finite collection of meso-level agents Ωp are Φm1,Φm2,…Φmp. The stochastic phase space of ΦWm is ΓWp and 
can be calculated as: 

ΓWm = pm1Γm1 + pm2Γm2 + … + pmpΓmp (A2) 

Finally, the collection of micro-level agents in a finite set X can be described as: X = {x1, x2, …, xn}. 

Step 2: Multi-layer network development 

In this section, a network of agents is represented by nodes and the topology, i.e., relationships and methods of interactions, of the agent-based 
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model is developed. Let two sets of nodes xi and xj that represent micro-level agents interacting with each other, where i,j = 1, 2,…n. The state for each 
node set is represented by a canonical vector εi and εj in the space RN. The interactions between the agents in a complex manufacturing system can be 
expressed with the mathematical formulation of multilayer networks, as proposed by Domenico et al. [5] and Farsi et al. [7], as: 

Φα̃α
β̃β

=
∑L

ĩ,̃j=1

∑N

i,j=1
wij

(
ĩ̃j

)
εα̃α

β̃β

(
ij̃ĩj

)
(A3)  

where wij

(
ĩ̃j

)
is the intensity of the relationship between nodes ni in layer i and nodes nj in layer j; εα(i) and εβ(j) are the αth and βth components of the 

ith and jth contravariant canonical vectors εi and εj in RN, respectively; and εα̃α
β̃β

(
ij̃ĩj

)
is the fourth-order canonical basis in space RN×N×L×L. 

Step 3: Process-oriented states development 

In this section, the process-oriented states, i.e., the manufacturing processes that can be described as a sequence of separate discrete events such as 
picking and storing items, performing quality checks and verifications, are simulated at exo-level agents using the DES technique. Based on the 
Discrete Event System Specification (DEVS) formalism, developed by Zeigler et al. [61], discrete event simulation models can be expressed mathe
matically as: 

M =< X, S, Y, s0, δint, δext, λ, tα > (A4)  

where X is a set of input events that occur outside the system; Y is a set of output events; S is a set of sequential states, s0 ∈ S is the initial state; 
tα : S→T∞is the time advance function used to determine the lifespan of a state s; δint is the function that defines the change of a state s according to 
time progress when no external events occur; δext is the function that defines how an input event changes state s of the system; and λ is the output of the 
system in the state s. 
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