
1. Introduction
Isoprene is a reactive volatile organic compound (VOC) emitted by terrestrial vegetation, possibly contributing 
to abiotic stress tolerance (Monson et al., 2021). Annual isoprene emissions exceed all other non-methane VOCs, 
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Plain Language Summary Plants emit a reactive gas called isoprene which has a large impact
on air quality and climate throughout the world. This impact can be studied and quantified using computer 
models, but there are large uncertainties in modeled isoprene emission rates. There are few measurements 
to constrain the emission rates of many vegetation species. There are also uncertainties in the relationship 
between isoprene emissions and temperature, which makes it difficult to predict how air quality may change in 
a warming climate. Our goal in this study was to reduce uncertainties in a widely-used isoprene emission model 
by constraining the model with observations. We used satellite observations to constrain the emission rates 
in a diverse range of ecosystems, but these results were sensitive to many different sources of error including 
drought stress. Using ground-based observations, we found that isoprene emissions were five times more 
sensitive to temperature at a measurement site in the Amazon rainforest than they were at a UK measurement 
site. Updating the temperature sensitivity of isoprene emission models has the potential to improve models of 
air quality during extreme heat events and in a warming climate.
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with an estimated global emission rate of 360–800 Tg yr −1 (Guenther et al., 2012). Emissions vary widely among 
plant species and are concentrated in tropical terrestrial ecosystems (Guenther et al., 1995, 2006), but can also be 
significant in temperate regions during the growing season (Potosnak et al., 2014; Seco et al., 2015; Wiedinmyer 
et al., 2005). Emission rates vary in response to temperature and sunlight (Guenther et al., 1993), and are modu-
lated on seasonal and interannual timescales by landcover and canopy environment changes (Alves et al., 2016; 
Chen et al., 2018) as well as environmental stressors such as drought (X. Jiang et al., 2018; Potosnak et al., 2014; 
Seco et al., 2015) and CO2 inhibition (Heald et al., 2009).

Isoprene has a short atmospheric lifetime on the order of hours due to rapid oxidation by the hydroxyl (OH) radi-
cal (Sprengnether et al., 2002). This oxidation contributes to the formation of air quality and climate pollutants, 
including ozone (Trainer et al., 1987), secondary organic aerosol (Claeys et al., 2004), and carbon monoxide 
(CO) (Z. Jiang et al., 2017). The biogenic CO source from isoprene oxidation exceeds anthropogenic and biomass 
burning emissions in many regions (Hudman et al., 2008; Worden et al., 2019), and the relative contribution of 
biogenic CO to the total atmospheric CO burden may be increasing due to declining anthropogenic emissions 
(Buchholz et  al.,  2021; Worden et  al.,  2013). Isoprene is a major sink for OH, which influences the lifetime 
of methane and other trace gases (Karl et al., 2007, 2013). Quantifying these atmospheric chemistry impacts 
requires accurate isoprene emission estimates.

The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is widely used to estimate isoprene 
emissions (Guenther et al., 2006, 2012). In MEGAN, isoprene emissions are the product of a vegetation-specific 
standard emission rate and dimensionless scaling functions which depend on temperature, sunlight, leaf area 
index (LAI), leaf age, and soil moisture (SM). MEGAN isoprene emissions are highly sensitive to meteorology 
and landcover (Arneth et al., 2011; Misztal et al., 2016) and are thus dependent on the accuracy and resolu-
tion of these model inputs (Ashworth et  al.,  2010; Pugh et  al.,  2013). Model performance is generally good 
when accurate driving variables are used (Situ et al., 2014; see also Filella et al., 2018; Sarkar et al., 2020), but 
significant sources of uncertainty remain. These include the empirical parameterization of the standard emission 
rates and the dimensionless scaling functions, particularly the temperature and drought stress responses (Angot 
et  al.,  2020; Guenther et  al.,  2006; X. Jiang et  al.,  2018; Kramshøj et  al.,  2016; Potosnak et  al.,  2014; Seco 
et al., 2015, 2020, 2022).

The standard emission rates are based on leaf- or canopy-scale isoprene flux measurements which can be extrap-
olated globally over regions with similar landcover (Guenther et al., 1995). This methodology introduces biases 
due to the large variability of isoprene emission rates among plant species (Guenther et al., 1993) and within 
ecosystems (Batista et al., 2019; Li et al., 2021). Emission rate biases are exacerbated by landcover uncertainties 
(Opacka et al., 2021), particularly in tropical regions (Fang et al., 2013; Gu et al., 2017; Mougin et al., 2019). An 
additional source of uncertainty is the relative lack of isoprene flux measurements to constrain emission rates 
in the tropics (Guenther et al., 2006; Marais et al., 2014). Constraining the standard emission rates using satel-
lite observations of the isoprene oxidation product formaldehyde has been shown to reduce emission biases in 
MEGAN (Marais et al., 2014), allowing the model to be improved in regions where ground-based isoprene flux 
measurements are unavailable.

MEGAN's temperature response algorithm, which simulates the exponential increase in emissions with temper-
ature up to an optimum value (Guenther et al., 1993, 1995), is another source of uncertainty. Recent experi-
ments with Arctic vegetation (Angot et al., 2020; Kramshøj et al., 2016; Seco et al., 2020, 2022) and Australian 
eucalypt trees (Emmerson et  al.,  2020) have found that MEGAN significantly underestimates isoprene emis-
sions from these species at high temperatures. Updating the parameterization of the temperature response with 
species-specific measurements in Australia has been shown to improve MEGAN isoprene emissions estimates, 
with significant consequences for predictions of future ozone pollution in a warming climate (Emmerson 
et al., 2020). Because temperature and sunlight are the primary drivers of short-term isoprene emission variabil-
ity (Guenther et al., 1993), uncertainties in the MEGAN temperature response have significant implications for 
isoprene emission modeling.

In this study we use Bayesian model-data fusion, a form of data assimilation which combines information from 
models and observations in a statistically rigorous way, to optimize the parameterization of the MEGAN stand-
ard emission rate and temperature response. Using top-down isoprene emissions based on satellite formalde-
hyde retrievals from the Ozone Monitoring Instrument (OMI; Bauwens et  al.,  2016) and the TROPOspheric 
Monitoring Instrument (TROPOMI), we constrain the standard emission rate in several regions to reduce model 
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biases. Eddy covariance isoprene measurements at the BR-Sa1 AmeriFlux site in the Tapajós National Forest 
in the Brazilian Amazon and isoprene atmospheric mixing ratio measurements at Wytham Woods near Oxford, 
United Kingdom, are used to constrain the temperature response parameterization independently in two distinct 
ecosystems. The sensitivity of our optimization to model input errors and drought stress, discrepancies between 
satellite- and ground-based constraints, and the variability of the temperature response between the two field sites 
are discussed.

2. Methods and Data
In Section 2.1 we describe MEGAN, with a particular focus on the model sensitivity to temperature. Section 2.2 
introduces the ground-based isoprene measurements (Section 2.2.1) and satellite-based top-down isoprene flux 
estimates (Section 2.2.2). Finally, Section 2.3 describes the Bayesian model-data fusion and validates the method 
with a simulated observation experiment.

2.1. MEGAN and the Temperature Activity Factor 𝜸T

MEGAN is an empirical model in which isoprene emissions are the product of a vegetation-specific standard rate 
and activity factors (i.e., dimensionless scaling functions) (Guenther et al., 2006) which depend on meteorology, 
leaf phenology, and environmental conditions (Guenther et  al.,  1991,  1993). This is shown in the following 
equation:

𝐸𝐸ISOP = 𝐸𝐸0 × 𝐶𝐶CE × 𝛾𝛾𝑇𝑇 × 𝛾𝛾PAR × 𝛾𝛾LAI × 𝛾𝛾AGE × 𝛾𝛾CO2
× 𝛾𝛾SM, (1)

where EISOP is the isoprene emission rate, E0 is the standard emission rate, and 𝜸T, 𝜸PAR, 𝜸LAI, 𝜸AGE, 𝐴𝐴 𝜸𝜸
CO2

 , and 𝜸SM 
are activity factors that represent the emission sensitivity to temperature (T), photosynthetically active radiation 
(PAR), LAI, leaf age, CO2 partial pressure, and SM stress respectively (Guenther et  al.,  2006,  2012). Diur-
nal variability of modeled emissions is controlled by temperature and sunlight, whereas longer term variability 
is influenced by changes in leaf phenology, landcover, drought stress, and CO2 inhibition (Alves et al., 2016; 
Chen et al., 2018; Guenther et al., 1993; Heald et al., 2009; X. Jiang et al., 2018; Opacka et al., 2021). CCE is 
a normalization constant which ensures that EISOP = E0 under standard conditions (see Text S1 in Supporting 
Information S1).

We use the Parameterized Canopy Environment Emission Activity (PCEEA) algorithm for the activity factors 
𝜸T, 𝜸PAR, and 𝜸LAI and the empirical parameter values contained therein (Guenther et al., 2006). In particular, the 
temperature response function 𝜸T is given by

𝛾𝛾𝑇𝑇 = 𝐸𝐸Opt

[

𝐶𝐶𝑇𝑇 2 × exp(𝐶𝐶𝑇𝑇 1 × 𝑥𝑥)

(𝐶𝐶𝑇𝑇 2 − 𝐶𝐶𝑇𝑇 1 × (1 − exp(𝐶𝐶𝑇𝑇 2 × 𝑥𝑥)))

]

, (2)

where CT1 (80 kJ mol −1) and CT2 (200 kJ mol −1) are fitting parameters, x is a temperature dependent variable 
given by

𝑥𝑥 =

⎡

⎢

⎢

⎢

⎣

1

𝑇𝑇Opt

−
1

𝑇𝑇

𝑅𝑅

⎤

⎥

⎥

⎥

⎦

, (3)

where T is the air temperature (K) (assumed to be equal to the leaf temperature in the PCEEA algorithm) and R is 
the ideal gas constant (0.00831 kJ K −1 mol −1). Equation 2 is based on a photosynthetic electron transport model 
in which activity increases with temperature up to an optimum value (Guenther et al., 1991). EOpt is an empirical 
parameter given by the equation

𝐸𝐸Opt = 𝐶𝐶EO × exp
(

𝐾𝐾2

(

𝑇𝑇daily − 297
))

, (4)

where CE0 (1.75) and K2 (0.08) are empirical coefficients and Tdaily is the average air temperature of the past 24 hr 
(Guenther et al., 2006). TOpt is an empirical parameter defined as follows:

𝑇𝑇Opt = 𝑇𝑇Max +
(

𝐾𝐾1

(

𝑇𝑇daily − 297
))

, (5)
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where TMax (313 K) is the peak emission temperature under standard conditions and K1 (0.6) is an empirical 
coefficient. Equations 4 and 5 describe how the peak isoprene emission rate, as well as the temperature at which 
it occurs, changes as a function of Tdaily (see Text S2 in Supporting Information S1). This hysteresis, or long-term 
temperature response, is based on a small number of experiments and is highly uncertain (Geron et al., 2000; 
Hanson & Sharkey, 2001; Monson et al., 1994; Pétron et al., 2001).

We quantify the sensitivity of γT to temperature using the Q10 metric, which is defined as γT at 313 K divided by γT 
at 303 K (Seco et al., 2020). All Q10 values presented in this study are calculated using Equations 2–5 with an 
assumed Tdaily of 297 K. This ensures that changes in Q10 can be entirely attributed to changes in the γT parameters 
rather than ambient temperature, allowing for a direct comparison of this metric between measurement sites with 
different environmental conditions.

Unless otherwise stated, we drive MEGAN2.1 (Guenther et al., 2012) with hourly meteorology fields from the 
Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017) 
at 0.5° × 0.625° spatial resolution and 8-day average LAI at 2° × 2.5° resolution from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites (Yuan et al., 2011, 2020). Local 
temperature measurements are used to drive the model at BR-Sa1 (Sarkar et al., 2020, 2022) and Wytham Woods 
(Ferracci, Bolas, et al., 2020, Ferracci, Harris, et al., 2020) instead of MERRA-2 temperature data. We used 
hourly Goddard Earth Observing System-Forward Processing (GEOS-FP; provided by the Global Modeling 
and Assimilation Office (GMAO) at NASA Goddard Space Flight Center) PAR and windspeed data to filter 
the Wytham Woods observations due to their higher native resolution (0.25° × 0.3125°) relative to MERRA-2. 
We used gridded 𝜸SM values at 0.5° × 0.5° from 2005–2015 as obtained with Community Land Model (CLM) 
4.5 and the MEGAN3 SM algorithm (X. Jiang et al., 2018). There are large uncertainties associated with the 
drought stress response 𝜸SM (X. Jiang et al., 2018; Potosnak et al., 2014; Seco et al., 2015; Opacka et al., 2022). 
To quantify the sensitivity of our analysis to this model component, we run our E0 optimization experiments both 
with and without 𝜸SM enabled. We fix 𝐴𝐴 γ

CO2
  = 1 due to the insignificance of CO2 inhibition on short timescales 

(Heald et al., 2009). A priori E0 at 0.25° × 0.3125° spatial resolution are based on the CLM plant functional type 
distribution (Lawrence et al., 2011).

2.2. Data

2.2.1. Eddy Covariance and Atmospheric Mixing Ratio Measurements

Isoprene emissions can be estimated from tower- or aircraft-based eddy covariance measurements (Guenther & 
Hills., 1998; Karl et al., 2009). This approach is useful for constraining the diurnal variability of isoprene emissions, 
making it well-suited for characterizing the temperature response (Misztal et al., 2014; Seco et al., 2015, 2022; 
Yu et al., 2017). In this study, we use tower-based eddy covariance isoprene flux measurements from the Amer-
iFlux site BR-Sa1 in Brazil's Tapajós National Forest (2.86°S, 54.96°W) (Sarkar et al., 2020, 2022), as well as 
isoprene mixing ratio measurements from the 2018 Wytham Isoprene iDirac Oak Tree Measurements (WIsDOM) 
campaign in Wytham Woods near Oxford, UK (51.46°N, 1.20°W) (Ferracci, Bolas, et al., 2020, Ferracci, Harris, 
et  al., 2020). The locations of these field sites are shown in Figure 1. The field sites were selected to repre-
sent contrasting ecosystems based on the availability of concurrent isoprene and temperature measurements. 
Tapajós National Forest is a protected Amazonian old-growth closed-canopy evergreen tropical forest (Sarkar 
et al., 2020), while the Wytham Woods site is a mixed temperate woodland where Quercus robur (European oak) 
is the dominant isoprene emitter (Butt et al., 2009).

The BR-Sa1 data set consists of hourly isoprene emission measurements and surface air temperature measure-
ments from 1 to 16 June 2014 (Sarkar et  al.,  2020,  2022). The isoprene fluxes were calculated from proton 
transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) isoprene mixing ratio measurements using 
eddy covariance techniques. The spatiotemporal overlap of the BR-Sa1 data with the OMI-based GlobEmission 
data allows for a direct comparison of top-down and eddy covariance constraints. Uncertainties were estimated 
to be 15%, based on measurement errors and the variability of the observations (Sarkar et al., 2020). MEGAN 
was driven with locally measured temperature data at this site. The SM response 𝜸SM was equal to 1 at BR-Sa1 
throughout the study period (X. Jiang et al., 2018). Further details about the BR-Sa1 measurements, as well as a 
more detailed site description, are available in Sarkar et al. (2020).

The WIsDOM data set used in this study consists of isoprene mixing ratio and temperature measurements taken at 
a height of 15.55 m above ground level in a UK mixed forest canopy from 25 May to 6 November 2018 (Ferracci, 
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Bolas, et al., 2020, Ferracci, Harris, et al., 2020). Isoprene mixing ratios were measured using the iDirac (Bolas 
et al., 2020) portable gas chromatograph with photo-ionization detection with a measurement precision of 10% 
and a time resolution of 20 min. Temperature was measured with an EasyLog probe (EL-USB-2, Lascard Ltd.) 
placed next to the iDirac inlet; this temperature data set was used to drive MEGAN at this site. A long and unin-
terrupted heatwave occurred at Wytham Woods from 22 June to 8 August 2018 and the associated drought had a 
significant impact on local isoprene emission rates (Ferracci, Bolas, et al., 2020; Otu-Larbi et al., 2020). To avoid 
the impact of drought stress we use only the data from 25 May to 21 June, hereafter referred to as the preheat-
wave period. Local PAR measurements were not available at Wytham Woods during the preheatwave period, 
so we used hourly GEOS-FP PAR at 0.25° × 0.325° resolution to drive MEGAN. Following Ferracci, Bolas, 
et al. (2020), we used a linear mapping to account for any systematic offset between the GEOS-FP PAR and the 
locally measured PAR which was available at Wytham Woods in September 2018 (see Text S4 in Supporting 
Information S1). Additionally, hourly GEOS-FP 10-m wind speed and planetary boundary layer height were used 
for data filtering (see Section 3.3.2). Wytham Woods data are available for download at https://archive.ceda.ac.u
k (Ferracci, Harris, et al., 2020). Further details about the WIsDOM campaign are available in Ferracci, Bolas, 
et al. (2020).

2.2.2. Top-Down Emissions

Isoprene emissions can be estimated from satellite retrievals of its high-yield oxidation product formaldehyde 
(CH2O) (Palmer et al., 2003). Regional and global estimates have been obtained from several sensors including 
the Global Ozone Monitoring Experiment (GOME) (Palmer et  al.,  2003), the SCanning Imaging Absorption 
SpectroMeter for Atmospheric CHartographY (SCIAMACHY) (Barkley et al., 2013; Stavrakou et al., 2009c), 
GOME-2 (Stavrakou et al., 2015), the OMI (Bauwens et al., 2016; Kaiser et al., 2018; Marais et al., 2012), and 
the TROPOMI. Here we use top-down isoprene estimates from (a) the GlobEmission global data set (2005–2014) 
constrained by OMI CH2O columns (Bauwens et al., 2016), and (b) the SOLFEO regional data set over South 
America constrained by TROPOMI CH2O columns in 2018.

The 10-year (2005–2014) GlobEmission inventory (Bauwens et  al.,  2016) was created by assimilating OMI 
CH2O column retrievals into the IMAGESv2 chemistry-transport model (Müller & Stavrakou, 2005; Stavrakou, 
Müller, De Smedt, Van Roozendael, Kanakidou et  al.,  2009, Stavrakou et  al.,  2009b) using an adjoint-based 
variational data assimilation scheme. The inversion is performed at a spatial resolution of 2° × 2.5° on a monthly 
basis. The top-down emissions are further downscaled to a daily inventory resolution at 0.5° × 0.5°, based on 
the spatiotemporal variability of the a priori MEGAN inventory used in the inversions. We use the GlobEmis-
sion data in the Eastern Amazon basin (0°S–4°S, 53°W–61°W), the Western Sahel (10°N–14°N, 3°W–3°E), 
the Southeastern United States (31°N–40°N, 81°W–93°W), and Eastern Australia (25°S–33°S, 148°E–153°E). 
Data for the year 2005 was omitted from our analysis due to missing MEGAN driving variables. Figure 1 shows 

Figure 1. Locations of the 4 study regions used for the optimization of E0 with top-down constraints (rectangles) and the two field sites used for the optimization of 𝜸T 
with eddy covariance and mixing ratio constraints (circles). The colorbar represents the mean isoprene emission rate (kg/0.5° × 0.5° grid° cell/month) from the Ozone 
Monitoring Instrument-based GlobEmission top-down isoprene emission data set from 2005 to 2014.

https://archive.ceda.ac.uk
https://archive.ceda.ac.uk
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the mean GlobEmission isoprene emissions, with the locations of the study regions indicated. Discrepancies 
between MEGAN and top-down flux estimates have been previously documented in each of these regions 
(Bauwens et al., 2016; Marais et al., 2014; Worden et al., 2019), with the Amazon and Southeast USA account-
ing for a significant portion of the total global annual isoprene emissions (Guenther et al., 2006). The SOLFEO 
data set (https://emissions.aeronomie.be/index.php/tropomi-based/isoprene-sa) provided an independent set of 
top-down constraints for the E0 optimization in the Eastern Amazon region. This data set provides monthly 
average isoprene emission rate estimates for 2018 at 0.5° × 0.5° resolution in South America, based on an assim-
ilation of TROPOMI CH2O observations into the regional chemistry-transport model MAGRITTEv1.1 (Müller 
et al., 2019; Stavrakou et al., 2016). Both top-down emission data sets are publicly available from the Emission 
portal at https://emissions.aeronomie.be/.

A validation study using a network of ground-based remotely-sensed CH2O columns revealed a substantial bias 
in the TROPOMI CH2O columns (De Smedt et al., 2021; Vigouroux et al., 2020). The estimated bias is found to 
be low for high columns (−30% for values higher than 8 × 10 15 mole cm −2) and high for low columns (+26% for 
values lower than 2.5 × 10 15 mole cm −2). Based on those comparisons, bias-corrected TROPOMI columns are 
given by the linear regression relationship: 1.56 × C–1.72 × 10 15 mole cm −2, where C is the TROPOMI CH2O 
column (in mole  cm −2). The adjustment increases the columns by 20%–50% for TROPOMI columns within 
(5–40) × 10 15 mole cm −2. Those higher columns would entail substantially higher top-down isoprene fluxes than 
those derived based on the standard TROPOMI product. Since the OMI and TROPOMI formaldehyde products 
were retrieved using similar algorithms (De Smedt et al., 2018), the top-down estimates of the GlobEmission data 
set are also likely similarly underestimated.

The optimization of E0 was found to be largely insensitive to the assumed uncertainty of the top-down emissions 
(see Text S3 in Supporting Information S1). An uncertainty of 30% was used for consistency with the biases 
revealed by ground-based validation studies described above, but this is likely an underestimate of the true uncer-
tainty in some regions (De Smedt et al., 2021; Vigouroux et al., 2020).

2.3. Parameter Estimation Using Bayesian Model-Data Fusion

We use Bayesian model-data fusion, a form of data assimilation used to combine information from models and 
observations in a statistically rigorous way, to constrain the MEGAN parameters with observations. Given a 
parameter vector x and observations O, we can derive the posterior probability density function of x as

𝑃𝑃 (𝒙𝒙|𝑶𝑶) ∝ 𝑃𝑃 (𝒙𝒙)𝑃𝑃 (𝑶𝑶|𝒙𝒙) (6)

where P(x) is the a priori probability distribution of x and P(O|x) is the observation probability given x, also 
called the model likelihood function. In this study we assume a non-informative uniform P(x) for all parameters 
such that P(x) = 1 for all x ∈ [xmin, xmax] and P(x) = 0 outside of this range. The limits xmin and xmax were respec-
tively set to 1/5 and 5 times the a priori parameter value for all parameters except for TMax, which was constrained 
to TMax ∈ [20°C, 60°C] to avoid unphysical parameterizations. For all x ∈ [xmin, xmax] the posterior probability P 
(x|O) is then proportional to the observation probability P(O|x), which we define for N observations as

𝑃𝑃 (𝑶𝑶|𝒙𝒙) = exp

(

−0.5

𝑁𝑁
∑

𝑛𝑛=1

(𝑀𝑀𝑛𝑛 − 𝑂𝑂𝑛𝑛)
2

𝜎𝜎2
𝑛𝑛

)

 (7)

where On is the nth observation (top-down or eddy covariance isoprene measurements), Mn is the corresponding 
model state (in our case, MEGAN isoprene emissions), and 𝐴𝐴 𝐴𝐴2

𝑛𝑛 is the observation error variance. This definition 
of P(O|x) assumes Gaussian error statistics and no covariance between observation errors.

We sample the probability distribution P(x|O) using an adaptive Metropolis-Hastings Markov Chain Monte Carlo 
(MHMCMC) algorithm (Haario et al., 2001). The MHMCMC algorithm has been previously applied to parameter 
estimation problems in the context of ecosystem modeling (Bloom & Williams, 2015; Bloom et al., 2015; Xu 
et al., 2006; Ziehn et al., 2012), and consists of the following 4 basic steps:

1.  Choose an initial parameter state vector: 𝐴𝐴 𝒙𝒙𝒊𝒊

2.  Perturb the parameters: 𝐴𝐴 𝒙𝒙𝑖𝑖+1 = 𝒙𝒙𝑖𝑖 + ∆𝒙𝒙

3.  Run model with both sets of parameters: 𝐴𝐴 𝑴𝑴(𝒙𝒙𝑖𝑖) and𝑴𝑴(𝒙𝒙𝑖𝑖+1)

4.  Accept new parameters if 𝐴𝐴
𝑃𝑃(𝒙𝒙𝑖𝑖+1|𝑶𝑶)

𝑃𝑃(𝒙𝒙𝒊𝒊|𝑶𝑶)
> 𝑈𝑈 ∈ [0, 1] ; else 𝐴𝐴 𝒙𝒙𝑖𝑖+1 = 𝒙𝒙𝑖𝑖

https://emissions.aeronomie.be/index.php/tropomi-based/isoprene-sa
https://emissions.aeronomie.be/
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In Steps 1–4, xi is the ith iteration of the parameter state vector, Δx is the parameter perturbation step-size, U is a 
uniform distribution (Ziehn et al., 2012; see also Bloom & Williams, 2015), and P(x|O) is the observation proba-
bility, given by Equation 7 for all x ∈ [xmin, xmax] and equal to 0 otherwise. Our implementation of the MHMCMC 
algorithm follows Bloom et al. (2020) and uses a Matlab code developed by Yang et al. (2021, 2022).

Step 4 of the MHMCMC algorithm ensures that parameter values which maximize the probability in Equa-
tion 7 are more likely to be accepted. Because only the ratio of probabilities is used, P(x|O) does not need to be 
normalized. In our experiments, Steps 1–4 were repeated for 4 × 10 4 iterations. Following Ziehn et al. (2012), the 
perturbation step size Δx is adjusted every 50 iterations to achieve a parameter acceptance rate between 23% and 
44%, which ensures proper sampling of the parameter space while also minimizing the required number of model 
iterations. The first half of the samples were then discarded, and the remaining half were subsampled by a factor 
of 20 to reduce correlations between samples (Ziehn et al., 2012), giving a final distribution of 1,000 parameter 
samples for each experiment.

We validated our MHMCMC approach using a series of simulated observation experiments. The purpose of these 
experiments was to ensure that the MHMCMC scheme was capable of estimating MEGAN parameters when 
provided with suitable observational constraints. In the initial experiment, the posterior 𝜸T parameterization of 
Emmerson et al. (2020) (based on eucalypt measurements) was used to calculate a “true” temperature response 
with Equation 2. We sampled this “true” temperature response from 290 to 330 K at 2 K intervals to produce 
pseudo-observations, which were perturbed with Gaussian noise (σ = 0.1–2.0, approximately 3%–60% of the 
mean “true” 𝜸T) to simulate measurement error. The PCEEA parameterization of 𝜸T was used as the a priori, as 
in all other experiments in this study. Figure 2a shows the results of a simulated observation temperature opti-
mization experiment, with σ = 0.5. The optimized posterior 𝜸T is in good agreement with the truth and is much 
more sensitive to temperature (Q10 = 3.01) than the a priori (Q10 = 1.73). The MEGAN 𝜸T parameters TMax, CEO, 
CT1, and CT2 could be constrained with pseudo-observations provided that the observation errors were suffi-
ciently small. Figures 2b–2e show that the optimized parameters are consistent with those derived by Emmerson 
et al. (2020). These results demonstrate that MHMCMC is a suitable method for constraining MEGAN parame-
ters with observations.

Figure 2. (a) A priori Model of Emissions of Gases and Aerosols from Nature 𝜸T (black), median posterior 𝜸T (solid red) and interquartile range (dashed red) as 
a function of temperature compared with pseudo-observations. The dotted black line represents the “true” 𝜸T as calculated using the posterior parameterization of 
Emmerson et al. (2020). All 𝜸T curves in (a) were calculated using Equation 2. The posterior parameter distributions for TMax, CEO, CT1, and CT2 (from Equations 2, 4, 
and 5) are shown in (b–e) respectively, with the median values (dotted blue line) agreeing closely with the “true” values (thin dotted black line). The a priori parameter 
values are indicated by the solid black lines. The a priori probability distribution for each parameter (not shown) was uniform and spanned from 1/5 to 5 times the a 
priori values, except for TMax which was constrained between 293 and 333 K.
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Additional simulated observation experiments were used to assess the impact of observation errors and temporal 
resolution on the optimization using time series pseudo-observations. We found that while the standard emission 
rate E0 could be easily constrained with relatively imprecise (<50% error) or infrequent (e.g., monthly) obser-
vations (see Text S3 in Supporting Information S1), the 𝜸T parameters could only be properly constrained with 
more precise and higher frequency observations (see Text S5 in Supporting Information S1). No combination of 
γT parameters could be reliably constrained when observation errors exceeded 20%; some combinations required 
much more precise observations, while all combinations were easier to constrain at higher ambient temperatures 
(see Text S6 in Supporting Information S1). We therefore use 20% as a lower limit on the observation precision 
required to constrain γT, with the understanding that this may be insufficient for some parameter combinations 
under some ambient conditions. Given the stricter observation precision requirements, we limit our γT parameter 
optimization to the BR-Sa1 and Wytham Woods sites where we have sufficiently precise observations available. 
The optimization of γT is performed independently at each field site, and the results are compared to assess model 
performance in two distinct ecosystems.

3. Results
Section 3.1 presents the optimization of the standard emission rate E0 using satellite-based top-down constraints 
in our four study regions (Section 3.1.1) and using eddy covariance measurements at the Amazonian BR-Sa1 site 
(Section 3.1.2). Section 3.2 presents the optimization of the 𝜸T parameters using eddy covariance observations 
at BR-Sa1 Section  3.2.1 and using isoprene mixing ratio measurements at the UK Wytham Woods site 
(Section 3.2.2).

3.1. Optimization of Standard Emission Rate E0

3.1.1. Top-Down Constraints

Monthly OMI-based GlobEmission data were used to constrain the standard emission rate E0 in four study regions 
(Figure 1) for the period of 2006–2014. The study regions were selected to represent a diversity of ecosystems 
with substantial isoprene emissions. The MEGAN a priori emissions were calculated as described in Section 2.1. 
We performed the optimization both with and without the MEGAN3 SM response 𝜸SM enabled to assess the 
impact of this uncertain model component. All MEGAN 𝜸 factor parameters were fixed to their a priori PCEEA
values, as defined in Section 2.1.

Optimization of the standard emission rate E0 reduced MEGAN isoprene emissions in all four study regions, 
leading to better agreement between MEGAN and the OMI-based GlobEmission flux estimates (Figure 3). The 
box-and-whisker plot in Figure 4 shows that the optimized E0 values were well-constrained and significantly 
reduced relative to their a priori values. Constraining E0 with the TROPOMI-based SOLFEO fluxes produced 
a consistent result in the Eastern Amazon (Figure 4), indicating that the biases observed in this region are not 
unique to the GlobEmission data set. Our results are consistent with previous studies which have used top-down 
constraints to reduce biases in modeled isoprene emissions (Kaiser et al., 2018) and in E0 (Marais et al., 2014).

Enabling 𝜸SM reduces the a priori emissions in each region (Figure 3). The optimized E0 values are consequently 
larger than in the no-𝜸SM case (Figure 4) because some of the bias between MEGAN and GlobEmission has 
already been accounted for by 𝜸SM. This change was most significant in Eastern Australia, where the difference 
between the two optimization results is over 40% due to the large impact of 𝜸SM on the a priori emissions. The 
significance of drought stress for Eastern Australian isoprene emissions has been previously reported (Emmerson 
et al., 2019) and our results are consistent with this. Although the impact on the a priori emissions and posterior 
E0 was large, inclusion of 𝜸SM had little impact on the posterior emissions in all four regions. This is an example 
of equifinality, in which different combinations of model inputs and parameters (in this case E0 and 𝜸SM) produce 
the same output. This is a major source of uncertainty in top-down emission optimizations due to the risk of 
misattributing errors in other model components to biases in E0, which in principle allows us to obtain improved 
emissions estimates while using incorrect modeling assumptions. We discuss this in the context of the drought 
stress factor 𝜸SM in Section 4.1.

3.1.2. Eddy Covariance Constraints

The standard emission rate E0 was constrained using hourly eddy covariance measurements at the BR-Sa1 site. 
For this experiment, MEGAN was driven with locally measured air temperature data. The a priori MEGAN 
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Figure 3. Comparison of a priori and posterior fluxes with top-down GlobEmission fluxes for (a) the eastern Amazon, (b) the western Sahel, (c) the southeastern 
US, and (d) eastern Australia. Shown are the a priori Model of Emissions of Gases and Aerosols from Nature (MEGAN2.1) fluxes (dashed-dotted line), the a priori 
fluxes with the inclusion of the MEGAN3 drought stress response 𝜸SM (dotted line), the median posterior MEGAN2.1 fluxes (solid red line), and the median posterior 
MEGAN2.1 fluxes with the inclusion of the MEGAN3 drought stress response 𝜸SM (solid blue line).

Figure 4. Comparison of the median posterior E0 (dashed black lines) inferred from the top-down constraints in all four 
study regions. The colored boxes and error bars show the interquartile range and total range of the posterior E0 distribution, 
respectively. The red boxes indicate the E0 inferred from the OMI-based constraints and Model of Emissions of Gases and 
Aerosols from Nature (MEGAN2.1), whereas the blue boxes denote the E0 estimated from the OMI-based constraints and 
MEGAN2.1 with the inclusion of the MEGAN3 drought stress response 𝜸SM. The green bar for the Amazon shows the 
posterior E0 obtained from the TROPOspheric Monitoring Instrument-based SOLFEO fluxes.
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emissions are biased low relative to the BR-Sa1 observations, but this bias is largely corrected for in the opti-
mization (Figure 5a). The posterior E0 is well-constrained and approximately 36% larger than the a priori value 
(Figure 5b).

The optimization was highly sensitive to the temperature input data. Figure 5c shows that driving MEGAN with 
MERRA-2 temperatures leads to a significant reduction in the a priori emissions. This is due to the negative bias 
of the MERRA-2 temperature relative to the measured temperature at BR-Sa1 (approximately 1–2°K), which 
was also reported by Sarkar et al. (2020). The enhanced negative emission bias is compensated for by increasing 
the posterior E0 by 45% relative to the local temperature case (Figure 5d). While the posterior emissions are 
similar in both cases (Figures 5a and 5c), the E0 values which produce those emissions are very different. This 
is another example of equifinality, as described in Section 3.1.1. In this case, errors introduced by biases in the 
input temperature data are being compensated for in the optimization via a larger positive correction to E0. This 
sensitivity to temperature, but also other model inputs like LAI and PAR, is a significant source of uncertainty 
which is discussed further in Section 4.2.

Optimizing MEGAN with daily top-down emissions from GlobEmission (Figure 5e) resulted in a 22% reduction 
in E0 relative to the a priori (Figure 5f). This contrasts with the 36% increase in E0 obtained using eddy covari-
ance constraints in Figure 5b. The disagreement between these two optimization results reflects the discrepancies 
between the eddy covariance and top-down emissions, which have been previously reported in the Amazon (Gu 
et al., 2017). In Section 4.3 we discuss potential causes for these discrepancies, including biases in the OMI CH2O 
columns (see Section 2.2.2), uncertainties in the chemical transport models that top-down emissions estimates 
rely on, and the representativeness of the eddy covariance flux measurements when compared to the larger spatial 
scales of the top-down emissions.

Figure 5. A priori and posterior isoprene fluxes and E0 estimated with BR-Sa1 eddy covariance data (a–d) and GlobEmission fluxes (e–f). (a) Comparison of 
BR-Sa1 eddy covariance fluxes (+symbols) with a priori (black line) and posterior (red line) Model of Emissions of Gases and Aerosols from Nature (MEGAN) 
fluxes, estimated with local temperature data. (b) A priori E0 and posterior distribution of E0 calculated with local temperature data. (c) Comparison of BR-Sa1 eddy 
covariance fluxes (+symbols) with a priori (black line) and posterior (red line) MEGAN fluxes, calculated with Modern-Era Retrospective analysis for Research and 
Applications, Version 2 (MERRA-2) temperature data. (d) A priori E0 and posterior distribution of E0 inferred with MERRA-2 temperature data. (e) Comparison of 
GlobEmission isoprene fluxes (green stars) with 24-hr mean a priori (black line) and posterior (red line) MEGAN fluxes, estimated with local BR-Sa1 temperature data. 
(f) A priori E0 and posterior distribution of E0 inferred with local temperature data. The dotted red lines in panels (a, c, and e) denote the interquartile range. The dashed 
black vertical lines in (b, d, and f) denote the uniform a priori E0 distribution, indicating the permissible range of E0 values.
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3.2. Optimization of Temperature Response 𝑨𝑨 𝑨𝑨
𝑻𝑻

3.2.1. Tapajós National Forest (AmeriFlux Site BR-Sa1, Brazil)

Figure 6a shows the BR-Sa1 isoprene flux time series from 1 to 16 June 2014, along with the MEGAN a priori 
isoprene emissions calculated using locally measured temperature data (Sarkar et al., 2020). The time series of 
MEGAN 𝜸 factors plotted in Figure 6b shows that the variability in MEGAN is dominated by 𝜸T and 𝜸PAR, while 
𝜸LAI, 𝜸AGE, and 𝜸SM have constant values at or very close to 1 throughout the time series. Figure 6c shows that both 
the modeled and observed emission variability is directly proportional to the temperature and sunlight response 
(𝜸T × 𝜸PAR), with a correlation of r 2 = 0.799 for the observed emissions. The steeper slope of the observed linear 
fit relative to MEGAN in Figure 6c is due to the large afternoon emission peaks observed in Figure 6a that are 
not apparent in the a priori emissions. The linear fit allows us to derive an observed temperature response 𝐴𝐴 𝐴𝐴 ′

𝑇𝑇
 from 

the BR-Sa1 flux measurements.

The linear fit in Figure 6c gives

𝛾𝛾 ′
𝑇𝑇
=

𝐸𝐸ISOP − 𝑏𝑏

𝑚𝑚𝛾𝛾PAR
, (8)

where EISOP is the observed isoprene emission rate, 𝐴𝐴 𝜸𝜸
′

𝑻𝑻
 is the observed temperature response, 𝐴𝐴 𝐴𝐴PAR is the MEGAN 

sunlight response, and m and b are the slope and intercept of the linear fit, respectively. This is equivalent to 
solving Equation 1 for 𝜸T, with a slope of 𝐴𝐴 𝐴𝐴 = 𝐸𝐸0 × 𝐶𝐶CE × 𝛾𝛾LAI × 𝛾𝛾AGE × 𝛾𝛾CO2

× 𝛾𝛾SM and an intercept of b = 0. 
The  strong correlation in Figure 6c indicate that the BR-Sa1 flux observations are broadly consistent with the 
diurnal variability in MEGAN which has been previously reported at this site (Sarkar et al., 2020), and the small 
value of the intercept b in Equation 8 is consistent with the functional form of MEGAN (Equation 1). A sensitiv-
ity test revealed that setting b = 0 had no measurable impact on 𝐴𝐴 𝐴𝐴 ′

𝑇𝑇
 . To ensure a consistent methodology at both 

of our field sites, we retain the non-zero b value from Figure 6c in our subsequent analysis.

This derivation of 𝐴𝐴 𝜸𝜸
′

𝑻𝑻
 is sensitive to errors in model inputs and the other MEGAN 𝜸 factors. Uncertainties in

E0, 𝜸LAI, 𝜸AGE, and 𝜸SM, which are implicit in the slope m, are negligible as all four terms are constant for the 
BR-Sa1 time series. Constant errors in these terms would not impact the agreement between the MEGAN 𝜸T and 
observed 𝐴𝐴 𝜸𝜸

′

𝑻𝑻
 because both quantities would be scaled by the same constant slope m in Equation 8. Uncertainties 

in 𝜸PAR and in the PAR input data are important due to the large influence of 𝜸PAR on emission variability on 
short time scales, particularly given the lack of available local PAR measurements at BR-Sa1. We filtered the 

Figure 6. (a) Time series of BR-Sa1 (+symbols) and Model of Emissions of Gases and Aerosols from Nature (MEGAN) (solid black line) fluxes between 1 and 16 
June 2014 (b) Time series of 𝜸T, 𝜸PAR, 𝜸LAI, 𝜸AGE, and 𝜸SM between 1 and 17 June 2014. (c) Correlation between the observed BR-Sa1 fluxes (+symbols) and the product 
𝜸T × 𝜸PAR in MEGAN. The blue dashed line in (c) indicates the linear fit between the BR-Sa1 fluxes and 𝜸T × 𝜸PAR, whereas the solid black line denotes the fit between 
the MEGAN fluxes and 𝜸T × 𝜸PAR.
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observations for MERRA-2 PPFD >650 μmol/m 2/s (equivalent to PAR >136 W/m 2) to limit the impact of 𝜸PAR 
uncertainties on our calculation of 𝐴𝐴 𝜸𝜸

′

𝑻𝑻
 . This restricts our analysis to intervals centered around midday (approxi-

mately 10a.m.–4p.m. local time), limiting the variability of 𝜸PAR and preventing uncertainties in 𝜸PAR from being 
amplified under low-light conditions when the denominator in Equation 8 becomes small. Further increasing 
the PPFD threshold beyond 650 μmol/m 2/s did not significantly reduce scatter but led to excessive data loss. To 
avoid temperature-related uncertainties, only the locally measured temperature was used to drive MEGAN in the 
𝜸T optimization.

The filtered 𝐴𝐴 𝜸𝜸
′

𝑻𝑻
 observations are shown in Figure 7a, along with the MEGAN a priori 𝜸T. The observed 𝐴𝐴 𝜸𝜸

′

𝑻𝑻
 is more 

sensitive to temperature compared to the a priori, which is consistent with the sharp afternoon emission peaks in 
the BR-Sa1 time series data that are not captured by MEGAN in Figure 6a.

MEGAN has different sensitivity to each of the 𝜸T parameters TMax, K1, K2, CT1, and CT2 (see Text S6 in Support-
ing Information S1). We therefore ran optimization experiments using all 31 unique combinations of these 5 
parameters to identify the largest combination that could be reliably constrained by the observations while signif-
icantly improving model-observation agreement. The subset of K2, CT1, and CT2 yielded the best results, with 
the posterior 𝜸T agreeing closely with the observed 𝐴𝐴 𝜸𝜸

′

𝑻𝑻
 (Figure 7a). The posterior 𝜸T is more than 5 times more 

sensitive to temperature (Q10 = 9.29) than the a priori (Q10 = 1.74). This heightened temperature sensitivity is 
consistent with previous studies, which have found that the a priori MEGAN 𝜸T parameterization underestimates 
emissions at high temperatures for Australian eucalypt species (Emmerson et al., 2020) and Arctic vegetation 
(Angot et al., 2020; Kramshøj et al., 2016; Seco et al., 2020, 2022). Figure 7b shows that the median posterior 𝜸T 
is also consistent with the observed 𝐴𝐴 𝜸𝜸

′

𝑻𝑻
 as calculated with daily top-down GlobEmission fluxes, indicating that 

the top-down and eddy covariance constraints are consistent with respect to the temperature dependence of emis-
sions. The K2, CT1, and CT2 distributions from the MHMCMC optimization are shown in Figures 7c–7e. All three 
parameters are well constrained and significantly different from the MEGAN a priori values (K2: posterior = 0.17, 
prior = 0.08; CT1: posterior = 222 kJ/mol, prior = 80 kJ/mol; CT2: posterior = 502 kJ/mol, prior = 200 kJ/mol). 
Optimization of an alternative parameter combination is shown in Text S7 in Supporting Information S1.

Figure 7. (a) A priori Model of Emissions of Gases and Aerosols from Nature (MEGAN) 𝜸T (black), median posterior 𝜸T (solid red) and interquartile range (dotted 
red) as a function of temperature (calculated using Equation 2) compared with the observed 𝐴𝐴 𝐴𝐴 ′

𝑇𝑇
 (+symbols) at BR-Sa1 (calculated using Equation 8). (b) As in (a), but 

resampled from hourly to daily averages for comparison with OMI-based GlobEmission-derived temperature response (green stars). The Q10 values in (a and b) indicate 
the fractional change in 𝜸T between 303–313 K. Posterior parameter distributions for K2, CT1, and CT2 are shown in panels (c–e) (light blue). The median posterior 
values are indicated by the dashed blue lines in (c–e), while the a priori values are indicated by the solid black lines. The uniform a priori parameter distribution is 
indicated by the dashed black vertical line in panels (c–e).
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Figure 8a shows that the posterior MEGAN isoprene emissions are in good agreement with the BR-Sa1 measure-
ments, with a mean bias reduction of ∼6% relative to the a priori. The temporal correlation between the modeled 
and observed emissions has also improved, with an r 2 value of 0.87 for the posterior emissions compared with 
0.80 for the a priori emissions (Figure 8b). The improved correlation can also be seen in Figure 8a, where the 
posterior emissions are better able to capture the observed emissions peaks. This contrasts with the E0 optimi-
zation at BR-Sa1 (Figure 5a). The slope (0.88 ± 0.02) and intercept ((1.64 ± 0.5)E−11) of the optimized γT 
regression in Figure 8b are significantly different from the regression of the optimized E0 case (not shown; slope 
of 0.94 ± 0.03, intercept of (4.2 ± 0.8)E−11, and r 2 = 0.80).

3.2.2. Wytham Woods (WIsDOM Campaign, Oxford, UK)

Figure 9a shows the WIsDOM isoprene mixing ratio measurements from 25 May to 21 June 2018 at Wytham 
Woods (Ferracci, Bolas, et al., 2020, Ferracci, Harris, et al., 2020), resampled to hourly averages. Because the 
WIsDOM measurements are isoprene mixing ratios, a direct comparison with MEGAN is not possible without 
the use of an atmospheric model. However, an observed temperature response 𝐴𝐴 𝜸𝜸

′

𝑻𝑻
 can be obtained using the 

same methodology as at BR-Sa1 if the variability in the observed isoprene mixing ratios is primarily due to the 
temperature and sunlight emission response (𝜸T × 𝜸PAR). This requires that we filter the WIsDOM observations 
to minimize variability in photochemical loss rates and dispersion, the two main isoprene removal pathways 
(Ferracci, Bolas, et al., 2020). Of these two pathways, dispersion is the primary loss mechanism. Wytham Woods 
are approximately 0.5–1 km across, with the measurement site located in the middle. At the average daytime 
wind speed of ∼2–3 m/s during our measurement period, isoprene emitted at the edge of the woods would reach 
the measurement site in ∼4–8 min. There are no significant isoprene sources in the surrounding area, so the 
measurement footprint of this site is limited to Wytham Woods itself. The dispersion time scale is much shorter 
than the  mean isoprene chemical lifetime of 30–60 min, based on modeled OH and O3 from nearby monitoring 
stations (Ferracci, Bolas, et al., 2020).

Variability in photochemical loss rates was limited by filtering the WIsDOM observations for PPFD 
>850 μmol/m 2/s. This restricted our observations to mid-day (∼10a.m.–3p.m.) and also limited variability in 
the sunlight-driven isoprene emission response 𝜸PAR. Next, variability in horizontal dispersion rates (the primary 
isoprene loss mechanism at this site) was limited by retaining only those observations with a concurrent GEOS-FP 
10-m windspeed within one standard deviation of the preheatwave mean (2.12–5.31 m s −1). Variability in vertical 

Figure 8. (a) A priori and posterior Model of Emissions of Gases and Aerosols from Nature (MEGAN) isoprene flux estimates at BR-Sa1 from 1 to 16 June 2014. 
The posterior emissions were calculated using the optimized 𝜸T based on eddy covariance observations (+symbols). The dotted red line denotes the interquartile range 
on the posterior emission estimate. The mean bias of the a priori and posterior MEGAN emissions relative to the BR-Sa1 measurements are indicated. (b) Correlation 
between observed and modeled hourly mean isoprene emission rates at BR-Sa1. The solid red line is a linear fit to the posterior modeled emissions (red circles), 
whereas the solid black curve is a linear fit to the a priori emissions (+symbols).
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dispersion, though not a primary loss mechanism, is related to changes in the planetary boundary layer height 
(PBLH) and was reduced by filtering for GEOS-FP PBLH >750 m, as well as by our PPFD and windspeed filters 
due to the correlations between these variables. Finally, we filtered the remaining observations for northeasterly 
GEOS-FP winds (0–90°) because there are no other isoprene sources in this direction. These filtering steps 
ensured that the remaining isoprene measurements were directly proportional to the emission temperature and 
sunlight response 𝜸T × 𝜸PAR, as shown by the linear fit in Figure 9c. Further details about the Wytham Woods 
measurement site and WIsDOM campaign are available in Ferracci, Bolas, et al. (2020).

The MEGAN 𝜸 factors for the preheatwave period at Wytham Woods are shown in Figure 9b. The MEGAN3 𝜸SM 
was not available for 2018, but the insignificance of drought stress at Wytham Woods during the preheatwave 
period has been previously reported (Ferracci, Bolas, et al., 2020; Otu-Larbi et al., 2020). The leaf phenology 
activity factors 𝜸LAI and 𝜸AGE exhibited minimal variability (Ferracci, Bolas, et  al.,  2020). The variability of 
observed isoprene mixing ratios (Figure 9a) closely follows the variability of 𝜸T and 𝜸PAR (Figure 9b). This is 
confirmed in Figure 9c, which shows the strong linear correlation between the filtered Wytham Woods isoprene 
observations and 𝜸T × 𝜸PAR. Following the same methodology as at BR-Sa1, we define an observed temperature 
response 𝐴𝐴 𝜸𝜸

′

𝑻𝑻
 as

𝛾𝛾 ′
𝑇𝑇
=

𝐶𝐶ISOP − 𝑏𝑏

𝑚𝑚𝛾𝛾PAR
, (9)

where CISOP is the filtered isoprene mixing ratio, 𝜸PAR is the MEGAN sunlight response, and m and b are the 
slope and intercept of the linear fit in Figure 9c. In contrast to the Amazonian BR-Sa1 site (Equation 8), there is 
a non-zero intercept b in Equation 9. Because Equation 9 relates 𝐴𝐴 𝐴𝐴 ′

𝑇𝑇
 to mixing ratios (CISOP) rather than emissions, 

we cannot assume that CISOP is directly proportional to the MEGAN 𝜸 factors over the full range of unfiltered
observations and thus cannot impose an intercept of b = 0 without incurring additional uncertainty. Figure 10a 
shows that there is good agreement between the observed 𝐴𝐴 𝜸𝜸

′

𝑻𝑻
 and the a priori MEGAN 𝜸T, which is supported by 

the modeling work by Otu-Larbi et al. (2020) for the preheatwave period. This is in stark contrast to the behavior 
observed in Figure 7a at BR-Sa1.

The observed 𝐴𝐴 𝜸𝜸
′

𝑻𝑻
 was used to constrain the MEGAN 𝜸T parameters at Wytham Woods. We tested all 31 parameter 

combinations, but for consistency with BR-Sa1 we present only the optimization results for the subset K2, CT1, 
and CT2 (Figure 10). The posterior 𝜸T (Q10 = 1.92) is within error of the MEGAN a priori (Q10 = 1.74), and both 

Figure 9. (a) Isoprene mixing ratios at the top of the canopy at Wytham Woods from 26 May to 21 June 2018 resampled to hourly averages. The blue circles indicate 
the observations which remain after filtering for PPFD >850 μmol/m 2/s, wind speed (V) between 2.12 m/s and 5.31 m/s, planetary boundary layer height >750 m, and 
wind direction (ϕ) between 0° and 90°. (b) Time series of a priori Model of Emissions of Gases and Aerosols from Nature (MEGAN) 𝜸 factors at Wytham Woods.
(c) Correlation between the filtered Wytham Isoprene iDirac Oak Tree Measurements (WIsDOM) isoprene mixing ratio measurements (blue circles) and the product 
𝜸T × 𝜸PAR in MEGAN. The blue dashed line in (c) indicates the linear fit between the filtered WIsDOM measurements and 𝜸T × 𝜸PAR.
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quantities are in good agreement with the observed 𝐴𝐴 𝜸𝜸
′

𝑻𝑻
 (Figure 10a). Figures (10b–10d) show that the 𝜸T param-

eters are not as precisely constrained as at BR-Sa1, which is due to the lower sensitivity of MEGAN to K2 and 
CT1 at the lower ambient temperatures of Wytham Woods (see Text S6 in Supporting Information S1). Unlike at 
BR-Sa1 (Figures 8c–8e), the median posterior parameters are all relatively close to their a priori values. This indi-
cates that the temperature sensitivity of isoprene emissions at Wytham Woods during the preheatwave period is 
accurately represented by the a priori parameterization of 𝜸T, in contrast to what was observed at BR-Sa1. This  is 
discussed further in Section 4.4.

4. Discussion
Our experiments showed that the standard emission rate E0 could be easily constrained with satellite-based 
top-down down emissions to reduce model biases. However, this optimization was very sensitive to drought stress 
and model input errors, and was found to be inconsistent with a ground-based E0 optimization at our Amazo-
nian BR-Sa1 field site. These sources of error are discussed in Section 4.1–4.3. We also found that 𝜸T could be 
constrained with ground-based observations, revealing an increased sensitivity of emissions to temperature at 
BR-Sa1. This result contrasted with our UK Wytham Woods site, where the a priori 𝜸T was in good agreement 
with the observations. We discuss the differences between these two field sites in Section 4.4.

4.1. Sensitivity to Drought Stress

The sensitivity of MEGAN to drought stress is a source of error in our parameter optimization experiments. Our 
optimization of E0 in Eastern Australia was highly sensitive to the MEGAN3 drought stress activity factor 𝜸SM 
(Figure 3), consistent with previous studies (Emmerson et al., 2019). Enabling 𝜸SM increased the posterior E0 
by 40% relative to the no-𝜸SM optimization because much of the bias between MEGAN and GlobEmission was 
already accounted for by the drought stress factor. We can mitigate this source of uncertainty by focusing our opti-
mization efforts on regions and time periods which are not subject to drought stress, such as the Eastern Amazon 
during the BR-Sa1 measurement period and Wytham Woods during the 2018 preheatwave period.

While in principle we could enable the MEGAN3 𝜸SM in all experiments to account for drought stress, there are 
uncertainties in 𝜸SM itself which limit the usefulness of such an approach. In particular, 𝜸SM does not account 

Figure 10. (a) A priori Model of Emissions of Gases and Aerosols from Nature (MEGAN) 𝜸T (black), median posterior 𝜸T (solid red) and interquartile range (dotted 
red) as a function of temperature (calculated using Equation 2) compared with the observed 𝐴𝐴 𝐴𝐴 ′

𝑇𝑇
 (+symbols) (calculated using Equation 9 from filtered mixing ratio 

observations) at Wytham Woods. Posterior parameter distributions for K2, CT1, and CT2 are shown in panels (b–d) (light blue). The median posterior values are indicated 
by the dashed blue lines in (b–d), while the a priori values are indicated by the solid black lines. The uniform a priori parameter distribution is indicated by the dashed 
black vertical line in (b–d).
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for the observed increase in isoprene emission rates that accompany moderate drought stress (Ferracci, Bolas, 
et al., 2020; Otu-Larbi et al., 2020; Potosnak et al., 2014; Saunier et al., 2020). Including 𝜸SM in our optimization 
experiments therefore risks misattributing uncertainties in 𝜸SM to other model parameters including E0 and 𝜸T. 
A recent study has found that the parameterization of the MEGAN 𝜸SM can be improved using a combination of 
ecosystem-scale isoprene flux measurements and satellite-derived SM (Opacka et al., 2022). Future work in this 
direction, along with updates to the 𝜸SM algorithm to account for the impact of moderate drought stress on emis-
sions, should improve the utility of the MEGAN drought stress response and allow parameter optimization  exper-
iments to be reliably performed under drought conditions.

4.2. Sensitivity to Errors in Model Input Data: Temperature and LAI

The sensitivity of MEGAN to meteorology and landcover inputs is another source of uncertainty in our parameter 
optimization. Biases in temperature and LAI inputs are particularly important, as these are among the primary 
drivers of short- and long-term variability in MEGAN, respectively (Alves et al., 2016, 2018; Chen et al., 2018; 
Guenther et  al.,  1993; Opacka et  al.,  2021). The impact of input biases on our optimization is apparent in 
Figures 5a–5d, where there is a 45% difference between the posterior E0 at BR-Sa1 depending on whether local 
or MERRA-2 temperature data were used due to discrepancies between the two temperature data sets. These 
discrepancies could reflect region-specific biases in the MERRA-2 temperature data (e.g., Draper et al., 2018; 
Gupta et al., 2020) or could simply be due to the coarse spatial resolution of the MERRA-2 data.

The sensitivity of MEGAN isoprene emissions to temperature and LAI inputs is illustrated in Figure 11, which 
shows the impact of temperature and LAI biases on annual mean (2014) MEGAN isoprene emission rates in the 
Eastern Amazon and Western Sahel regions. A 1% temperature bias (∼2.5–3.5 K, consistent with the difference 
between the local BR-Sa1 and MERRA-2 temperatures) leads to emission biases exceeding 30% (Figure 11a) in 

Figure 11. (a) Mean annual (2014) isoprene emission bias as calculated with Model of Emissions of Gases and Aerosols from Nature Version 2.1 (MEGANv2.1) in the 
Amazon (light blue) and the Sahel (orange) when running the model with biased temperature (T ± 1%) or leaf area index (LAI ± 10%) input data. (b) A priori MEGAN 
𝜸T (calculated using Equation 2) superimposed with range of temperatures in the unperturbed Era Retrospective analysis for Research and Applications, Version 2 input 
data for both the Amazon (dash-dotted line) and the Sahel (dotted line) in 2014. (c) A priori MEGAN 𝜸LAI (calculated using Equation S5 in Supporting Information S1) 
superimposed with range of LAI values in the unperturbed 8-day average Moderate Resolution Imaging Spectroradiometer LAI input data for both the Amazon and the 
Sahel in 2014. The heightened sensitivity of MEGAN to LAI in the Sahel is indicated by the steeper slope of 𝜸LAI in the Sahel LAI range compared to the Amazon.
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both regions. This demonstrates the importance of using reliable air temperature measurements to drive MEGAN. 
However, even if the air temperature measurements are unbiased, the modeled isoprene emissions can still incur 
errors if the relationship between air temperature and leaf temperature is not parameterized properly in the model 
(see Section 4.4). This relationship is implicit in the parameterization of γT in our study but can also be modeled 
explicitly using full canopy physics models (e.g., Silva et al., 2020). Note that this sensitivity test used the a priori 
parameterization of 𝜸T (Q10 = 1.74). The impact of temperature input errors would be even more significant if we 
instead used the posterior parameterization from BR-Sa1 due to the enhanced temperature sensitivity of isoprene 
emissions at that site (Q10 = 9.29).

The sensitivity to LAI is much lower and varies significantly between the two regions, with a 10% LAI bias 
(based on the estimated uncertainty of the MODIS LAI product (Fang et al., 2013)) leading to a 10% emission 
bias in the Sahel but only a 2% emission bias in the Amazon (Figure 11a). This variable sensitivity is due to the 
saturation of 𝜸LAI in high-LAI environments such as the Amazon (Figure 11c), which represents the shading of 
foliage by the upper layers of the forest canopy (Guenther et al., 2006) (see Equation S5 in Text S8 in Supporting 
Information S1). Biases in LAI are therefore unlikely to have any significant impact on our optimization in high-
LAI environments such as the Amazon but may introduce biases of 10% or more in low-LAI environments like 
the Sahel. In such cases, locally constrained LAI data may be necessary to mitigate this source of error and obtain 
reliable posterior parameters. The spatial variability of the MEGAN temperature and LAI sensitivity on a global 
scale is presented in Text S8 in Supporting Information S1.

Although the sensitivity to total LAI is low in the Amazon, measurements show that changes in the leaf-age frac-
tionated LAI (i.e., the proportion of young, mature, or old leaves) can have a significant impact on Amazonian 
isoprene emissions (Alves et al., 2018; Wu et al., 2016). This effect is modeled by the leaf age activity factor 𝜸AGE 
(Guenther et al., 2006), but its influence is likely underestimated in the Amazon because the leaf age fractions are 
calculated based on changes in total LAI. Using directly measured leaf age fractions has been shown to improve 
MEGAN isoprene emissions in the Amazon basin (Alves et al., 2018). Given the short duration of the BR-Sa1 
time series it is unlikely that 𝜸AGE would have a significant impact on our temperature optimization experiments, 
but it may introduce significant biases in our 9-year E0 optimization based on top-down emissions.

Uncertainties in PAR input data are another potential source of error and may contribute to the E0 biases seen in 
Section 3.1. However, these biases are likely smaller than the temperature-related biases shown in Figure 5c due 
to the lower sensitivity of MEGAN to PAR compared to temperature (Guenther et al., 2006). Time-dependent 
errors in PAR could impact our γT optimization, but this is largely accounted for by filtering out low-PAR obser-
vations at BR-Sa1 and Wytham Woods (see Section 3.2).

4.3. Discrepancies Between Top-Down and Eddy Covariance Constraints

The a priori MEGAN isoprene emissions at BR-Sa1 were biased high relative to the top-down constraints from 
GlobEmission (OMI-based) and SOLFEO (TROPOMI-based) but biased low relative to the local eddy covar-
iance measurements, leading to inconsistent posterior E0 values. The disagreement between the top-down and 
eddy covariance constraints is possibly due to the low bias of the OMI and TROPOMI CH2O columns, discussed 
in Section 2.2.1. Note that similar discrepancies between top-down and eddy covariance isoprene fluxes have 
previously been reported in the Amazon (Gu et  al., 2017), which may also have been due to underestimated 
spaceborne columns. Correcting the low OMI and TROPOMI CH2O column biases with ground-based vali-
dation studies in the Amazon would result in higher top-down emissions than in GlobEmission and SOLFEO, 
and consequently smaller discrepancies between the top-down and eddy covariance constraints. Other uncer-
tainties in top-down emissions may also contribute to these discrepancies. Top-down estimates are sensitive to 
CH2O retrieval errors (Millet et  al., 2006), chemistry-transport model errors (Barkley et  al., 2013; Stavrakou 
et al., 2015), spatial smearing errors due to non-local CH2O sources (Palmer et al., 2003; Turner et al., 2012), and 
non-biogenic CH2O background sources such as biomass burning and methane oxidation (Marais et al., 2012; 
Wolfe et al., 2016).

Chemistry-transport model errors have been identified as a source of particular concern in top-down isoprene 
emissions in tropical regions due to their impacts on the CH2O yield from isoprene oxidation as well as the diur-
nal variability of isoprene and CH2O concentrations (Kefauver et al., 2014). This is relevant in the Amazon due 
to the large uncertainties in regional NO2 and OH, both of which impact isoprene oxidation chemistry (Jeong 
et al., 2022; Liu et al., 2016, 2018; Wells et al., 2020; Wolfe et al., 2016). Stronger constraints on this chemistry, 
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such as direct space-based isoprene retrievals from the Cross-track Infrared Sounder (CrIS) (Fu et  al.,  2019; 
Wells et al., 2020), may mitigate some of these uncertainties. For example, CrIS isoprene column retrievals have 
recently been validated using ground-based remotely sensed isoprene columns in the Amazon and combined 
with OMI CH2O and NO2 retrievals to reveal large day-to-day variability in isoprene oxidation lifetime (Wells 
et al., 2022). Taking full advantage of top-down emissions estimates to optimize MEGAN will require a better 
understanding of the sensitivity of these estimates to chemistry-transport model errors. This sensitivity could 
be quantified by obtaining top-down emission estimates using multiple chemistry-transport models (Miyazaki 
et al., 2020). Simulated inversion experiments could also be performed to directly probe the impact of chemistry 
model errors on top-down emissions based on satellite pseudo-observations.

An additional important issue is the representativeness of the eddy covariance observations at BR-Sa1. The 
top-down fluxes are provided at 0.5° × 0.5° spatial resolution, corresponding to a pixel size of roughly 3,000 km 2 
near the equator (Bauwens et al., 2016). Extrapolating the BR-Sa1 flux measurements to this large pixel size 
can incur biases due to the spatial heterogeneity of isoprene emissions (Batista et  al.,  2019; Li et  al.,  2021). 
However, independent aircraft-based eddy covariance isoprene flux measurements from the Green Ocean 
Amazon campaign (Gu et al., 2017) show similar discrepancies with OMI-based emissions, which suggests that 
this problem cannot be entirely due to the representativeness of the BR-Sa1 measurements.

4.4. Variability of 𝜸T Between Ecosystems

The optimized 𝜸T at the Amazonian BR-Sa1 site was roughly five times more sensitive to temperature (Q10 = 9.29) 
than the MEGAN a priori (Q10 = 1.74). This could be due at least in part to the relationship between air temper-
ature and leaf temperature. Isoprene emissions depend on leaf temperature, but MEGAN uses air temperature as 
an input. The relationship between these quantities is implicit in the PCEEA parameterization of γT, which was 
derived from canopy physics simulations for warm broadleaf forests and has been shown to introduce local emis-
sion biases of up to 25% relative to more sophisticated multi-level canopy model versions of MEGAN (Guenther 
et al., 2006). More sophisticated canopy models are also still subject to errors in the air-temperature/leaf-tem-
perature relationship (e.g., Silva et al., 2020). It is therefore possible that errors in the parameterization of γT at 
BR-Sa1 reflect this underlying discrepancy between air temperature and leaf temperature. It is also possible that 
this is a physiological adaptation of the local vegetation to their high temperature environment, as was proposed 
by Emmerson et  al.  (2020) for the Australian eucalypt species from that study. However, without leaf-level 
temperature and isoprene flux measurements, we cannot disentangle any potential physiological effects from 
errors in the parameterization of the air-temperature/leaf-temperature relationship.

In any case, due to the increased temperature sensitivity of the posterior 𝜸T, applying this parameterization to the 
broader Amazon region would have potentially significant impacts on regional isoprene emissions. However, it 
is difficult to extrapolate results from a single measurement site to a broader geographic area due to landcover 
and species distribution heterogeneity. Measurements from other Amazonian sites could be used to determine 
whether this posterior parameterization is representative of the region.

Unlike at BR-Sa1, the optimized 𝜸T at the UK Wytham Woods site was not significantly different from the 
a priori. This demonstrates that the performance of 𝜸T varies across ecosystems, and that any updates to the 
parameterization of 𝜸T should be applied on an ecosystem-specific scale. This has been done previously for 
Australian eucalypt species (Emmerson et  al.,  2020), and other studies have demonstrated that this may also 
be necessary for Arctic vegetation (Angot et al., 2020; Kramshøj et al., 2016; Seco et al., 2020, 2022). Accu-
rately modeling the sensitivity of isoprene emissions to temperature will depend on the development of an 
ecosystem-specific parameterization for 𝜸T, which could be derived using our methodology wherever suitable 
observations are available. This has the potential to significantly improve models of atmospheric chemistry in a 
warming climate or during severe heat wave events (Emmerson et al., 2020) in addition to improving day-to-day 
emission variability.

An unresolved source of uncertainty is the impact of drought stress on the emission temperature response. While 
the MEGAN a priori 𝜸T adequately describes the observed temperature response at Wytham Woods during the 
preheatwave period, increased temperature sensitivity was observed after the onset of a severe drought and heat-
wave in June 2018 (Ferracci, Bolas, et al., 2020; Otu-Larbi et al., 2020). A similar drought response was observed 
in an oak-dominated forest in the Missouri Ozarks (Seco et al., 2015). These observations are consistent with 
current conceptual models of the drought stress response, in which reduced transpiration of water through plant 
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leaves leads to an increase in leaf temperature and a stimulation of isoprene emissions (Potosnak et al., 2014). 
This shows that the temperature sensitivity of emissions is a function not only of ecosystem type but also of 
current environmental conditions including drought stress.

5. Summary and Conclusions
We have used Bayesian model-data fusion to optimize the standard emission rate and the temperature activity 
factor in MEGAN, using top-down isoprene fluxes derived from satellite observations in four regions (Amazon, 
Southeast USA, Western Sahel, and Eastern Australia), eddy covariance isoprene flux measurements in the 
Amazon, and isoprene atmospheric mixing ratio measurements in the United Kingdom.

Optimization of the standard emission rate E0 with satellite constraints reduced model biases in the Amazon, 
the Southeast USA, the Western Sahel, and Eastern Australia. The optimized E0 values were highly sensitive to 
model input errors. Sensitivity to temperature errors was extremely high in all regions, while sensitivity to total 
LAI errors was only significant in low-LAI environments such as the Western Sahel. The impact of the MEGAN3 
drought stress response on the optimization was spatially and temporally variable, with the largest impact being 
seen in Eastern Australia. Uncertainties in the drought stress response are a major obstacle for reliable parameter 
optimization under drought conditions.

We optimized E0 at the Amazonian BR-Sa1 field site using both satellite and eddy covariance constraints and 
found that the two results were inconsistent with one another. This mismatch may be largely due to the low 
biases identified in the satellite CH2O retrievals used as constraints to derive the top-down emissions, leading 
to an underprediction of the top-down emission fluxes. Chemistry-transport model errors may add more uncer-
tainty to the top-down emissions. Future optimization work using top-down emissions as constraints will be 
dependent on understanding and reducing the uncertainties in top-down emissions, which could be done through 
a combination of satellite validation studies with ground-based measurements and modeling studies to assess 
the impact of chemistry-transport model errors on top-down emissions. Stronger constraints could be placed 
on isoprene oxidation chemistry in models by combining satellite retrievals of CH2O with retrievals of isoprene 
(e.g., Wells et al., 2020), while simultaneous optimization of isoprene and NOX emissions may also improve 
top-down constraints due to the strong dependence of isoprene oxidation chemistry on ambient NOX concentra-
tions (Miyazaki et al., 2020).

Optimization of the temperature response 𝜸T with eddy covariance isoprene emission measurements increased 
the temperature sensitivity of the model by a factor of 5 (posterior Q10 = 9.29 compared to priori Q10 = 1.74) 
at BR-Sa1 and reduced model biases by 6%. By contrast, optimizing 𝜸T with isoprene mixing ratio measure-
ments at the UK-based Wytham Woods site had no significant impact on the model parameters due to the good 
agreement between the MEGAN a priori 𝜸T and the observations. Enhanced sensitivity of isoprene emissions to 
temperature, and more specifically the underestimation of emissions at high temperatures, has now been observed 
in several ecosystem types, including an Amazonian old growth forest (this study), Australian eucalpyt trees 
(Emmerson et al., 2020), and various species of Arctic vegetation (Angot et al., 2020; Kramshøj et al., 2016; Seco 
et al., 2020, 2022). Drought stress has also been shown to increase temperature sensitivity at multiple temperate 
sites (Ferracci, Bolas, et  al., 2020; Otu-Larbi et  al., 2020; Seco et  al., 2015). Accurate modeling of isoprene 
emissions, as well as their impacts on air quality and climate, will require an ecosystem-specific parameteriza-
tion of the temperature emission response as well as an improved understanding of the drought stress emission 
response. Such a parameterization could be derived from ground-based isoprene and temperature measurements 
in a wide range of ecosystems. Existing measurements should be used to evaluate and reparametrize the temper-
ature response where possible, while future measurement campaigns should target a wide range of ecosystem 
types. The use of longer measurement time series than presented in this paper would allow seasonal impacts 
such as drought to be investigated as well. The significance of isoprene emissions at high temperatures or under 
drought conditions is expected to increase in a warming climate (Emmerson et al., 2020; Saunier et al., 2020), 
further highlighting the need for a reliable parameterization of the emission temperature response.

Data Availability Statement
The MEGAN 2.1 source code (Guenther et  al.,  2012) and the MEGAN 3 drought stress activity factors (X. 
Jiang et al., 2018) can be obtained from https://bai.ess.uci.edu/megan/data-and-code. The MHMCMC Matlab 
code (Yang et al., 2021) is available at https://doi.org/10.5281/zenodo.4904195. The global OMI-based top-down 

https://bai.ess.uci.edu/megan/data-and-code
https://doi.org/10.5281/zenodo.4904195
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isoprene flux estimates (Bauwens et  al.,  2016) are available for download at https://emissions.aeronomie.be/
index.php/omi-based/biogenic. The TROPOMI-based top-down isoprene flux estimates for South America are 
available for download at https://emissions.aeronomie.be/index.php/tropomi-based/isoprene-sa. The data from 
the WIsDOM campaign (Ferracci, Bolas et al., 2020, Ferracci, Harris et al., 2020) are available from the Natural 
Environment Research Council (NERC) Centre for Environmental Data Analysis (CEDA) archive at https://
catalogue.ceda.ac.uk/uuid/0c39809848ce47bb850d8ca2045e40f2. The BR-Sa1 isoprene flux and tempera-
ture measurements (Sarkar et al., 2020, 2022) are available at https://bai.ess.uci.edu/research/data-archive. The 
MERRA-2 and GEOS-FP data used in this study have been provided by the Global Modeling and Assimilation 
Office (GMAO) at NASA Goddard Space Flight Center. The particular files used to drive MEGAN in this study 
were obtained from the GEOS-Chem (Bey et al., 2001) met-field archive at http://geoschemdata.wustl.edu. The 
MODIS 8-day LAI product (Yuan et  al.,  2011,  2020) is available at http://globalchange.bnu.edu.cn/research/
laiv6.
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