

© C r a n f i e l d U n i v e r s i t y , 2 0 1 8 . A l l r i g h t s r e s e r v e d . N o p a r t
o f t h i s p u b l i c a t i o n m a y b e r e p r o d u c e d w i t h o u t t h e
w r i t t e n p e r m i s s i o n o f t h e c o p y r i g h t h o l d e r .

CRANFIELD UNIVERSITY

TIMOTHY MACKLEY

A PROCESS FOR THE APPLICATION OF MODULAR

ARCHITECTURAL PRINCIPLES TO SYSTEM CONCEPT DESIGN

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

PhD

Academic Year: 2018

Supervisor: Professor Philip John

January 2018

© C r a n f i e l d U n i v e r s i t y , 2 0 1 8 . A l l r i g h t s r e s e r v e d . N o p a r t
o f t h i s p u b l i c a t i o n m a y b e r e p r o d u c e d w i t h o u t t h e
w r i t t e n p e r m i s s i o n o f t h e c o p y r i g h t h o l d e r .

© C r a n f i e l d U n i v e r s i t y , 2 0 1 8 . A l l r i g h t s r e s e r v e d . N o p a r t
o f t h i s p u b l i c a t i o n m a y b e r e p r o d u c e d w i t h o u t t h e
w r i t t e n p e r m i s s i o n o f t h e c o p y r i g h t h o l d e r .

CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

PhD

Academic Year 2018

TIMOTHY MACKLEY

A process for the application of modular architectural principles to

system concept design

Supervisor: Professor Philip John

January 2018

ii

ABSTRACT

A system architecture can be configured in ways that simplify both a system

design and its development, by using established architectural principles such as

independence and modularity. Despite systems design having been recognised

as a discipline and a process as early as the mid-1900s, there are currently few

methods available that address how these principles can be applied in practice.

The literature search for this research has established a set of principles that can

be used to develop a modular design, but has also shown that there are few

formal methods available that will allow a system designer to apply such

principles. This thesis examines what the key principles of modular architecture

are and develops a process that enables the application of these principles to a

system concept design. Key principles used are those of simplicity,

independence, modularity and similarity. The concept of ‘context types’ is

developed to allow the system designer to choose an architectural strategy that

suits the system context. Another novel concept of ‘functional interaction types’

helps the system designer to identify critical interactions within the architecture

that need to be addressed. Finally, the concept of functional interaction types is

combined with existing measures of architectural ‘goodness’ to generate a

method of evaluating the architecture that focusses on critical aspects. The

process proposed is demonstrated by using a range of system examples and

compared with the two of the most well-known methods currently available;

Systematic Design and Axiomatic Design.

Keywords:

systems engineering, system design, system architecture, modularity, critical

interaction modular design methodology

iii

ACKNOWLEDGEMENTS

I would like to acknowledge my supervisor, Professor Philip John for his patient

and supportive guidance through this PhD, which due to work pressures has

taken longer than either of us might have imagined. I also appreciate the

guidance provided by Professor Hoi Yeung, Dr Craig Lawson and Dr Pavlos

Zachos as members of my progress review team. I acknowledge all those family,

friends and colleagues that beat me to the submission of a PhD thesis, but who

have never-the-less spurred me on; my daughter Dr Emma Mackley, nephew Dr

Andrew Mackley, Dr James Goss, Dr Piotr Sydor, Dr Richard Halliburton and Dr

Gilbert Tang (and my son, Ben Mackley MMath, for not jumping on the

bandwagon). Also Professors Iain Gray and Phillip Webb, Rachael Wiseman,

Lisa Rice and Maeve Williamson for their help and support. Finally I must thank

Gillian for her patience and support especially during the thesis write-up period.

iv

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENTS... iii

LIST OF FIGURES ... viii

LIST OF TABLES ... xi

LIST OF EQUATIONS .. xiii

LIST OF ABBREVIATIONS .. xiv

1 INTRODUCTION ... 1

 Background ... 1

 Thesis Structure .. 3

2 LITERATURE SEARCH ... 4

 Overview ... 4

 System process definitions .. 4

 System process definition literature .. 4

 Observations on systems process definitions 9

 System Design Methodologies .. 10

 Existing methodologies ... 10

 Observations on current methodologies 14

 System architecting techniques ... 17

 Patterns .. 18

 System Architecting Strategies ... 18

 Architectural Perspectives .. 25

 Observations on architecture principles .. 28

 Methods for System Architecting ... 31

 Axiomatic Design (Suh) .. 31

 Design Structure Matrices .. 32

 Literature update ... 33

 The impact of context on systems design ... 34

 Systems design in context .. 34

 Observations on systems context ... 37

 System and architecture evaluation .. 37

v

 Evaluation of Architecture ... 37

 Evaluation of systems ... 40

 Observations on evaluation of system and architecture 41

3 RESEARCH QUESTIONS, METHODOLOGY AND APPROACH 42

4 THE SYSTEM DESIGN IN CONTEXT... 47

 Frameworks and Notations ... 47

 Context and the functional requirement ... 50

 Context types related to definition of lifecycle approach...................... 52

 Existing concepts .. 53

 Further context types .. 59

 Combination types .. 64

 Problem solving approach and risk evaluation 66

5 A MODULAR APPROACH TO SYSTEMS DESIGN 72

 Basic principles of the System Design or Architecting process 72

 System Design: Functional .. 76

 Functional Interaction Types ... 76

 Partitioning by functional interaction type 79

 Identifying Functional interaction types in a system 83

 Applying function interaction types ... 87

 System Design: Physical ... 88

 Architectural approaches to Physical design 88

 Architectural strategies for improving quality attributes and

achieving effectiveness .. 90

 Lifecycle Architectural Influences .. 98

6 EVALUATING THE SYSTEMS DESIGN ... 100

 Overview ... 100

 Evaluation of architecture design .. 100

7 THE CRITICAL INTERACTION MODULAR DESIGN METHODOLOGY 111

 Step 1: Analyse the Context type and requirement: 111

 Step 2: Devise functional chain framework 113

 Step 3: Conceive the concept framework .. 114

 Step 4: Lifecycle solution ... 115

vi

 Step 5: Evaluate architecture .. 116

8 APPLICATION OF METHODOLOGY TO CASE STUDIES 117

 A simple Lego Mindstorms system .. 117

 Step 1: Analyse the Context type and requirement 119

 Step 2: Devise functional chain framework 121

 Step 3: Conceive the concept framework 123

 Step 4: Lifecycle solution .. 124

 Step 5: Evaluate architecture .. 125

 Simple Lego Mindstorms example: Summary 126

 Application of approach to a generic cruise missile example 126

 Step 1: Analyse Context type and requirements 126

 Step 2: Devise functional chain framework 128

 Step 3: Conceive the concept framework 138

 Step 4: Lifecycle solution .. 140

 Step 5: Evaluate architecture .. 141

9 COMPARISON OF METHODOLOGIES .. 144

 Candidate methods for comparison .. 144

 Comparison of methods study for Central heating 145

 Systematic Design solution ... 146

 Requirement analysis ... 146

 Functional design .. 147

 System design .. 153

 Evaluation of solutions .. 154

 Axiomatic Design Solution ... 158

 Requirement Analysis ... 158

 Functional design .. 158

 System Design.. 159

 Evaluation of solutions .. 162

 Critical interaction modular design methodology 162

 Requirement analysis ... 162

 Functional design .. 166

 System design .. 169

vii

 Evaluate solutions ... 176

 Discussion ... 177

 A high level comparison .. 177

 Systematic Design .. 179

 Axiomatic Design .. 180

 Critical interaction modular design methodology 181

10 Conclusions .. 183

 Overview .. 183

 Current state of knowledge .. 183

 A proposed methodology for system architecture design............... 184

 Case examples .. 186

 Method comparison ... 186

 Reflection on Research Approach and areas for further work 188

REFERENCES ... 192

APPENDICES .. 203

viii

LIST OF FIGURES

Figure 1: Systems design process (NASA Systems Engineering Handbook) .. 14

Figure 2: INCOSE system design process ... 14

Figure 3: Proposed schematic of a generic architectural framework 48

Figure 4: System context diagram (Flood and Carson) 49

Figure 5: Functional Context Diagram .. 52

Figure 6: Problem type ... 54

Figure 7: Management type.. 56

Figure 8: Values type ... 57

Figure 9: Complexity type ... 58

Figure 10: Coordination type .. 59

Figure 11: Evolution type .. 60

Figure 12: Response type .. 61

Figure 13: Situation type .. 62

Figure 14: Risk type ... 63

Figure 15: Target type .. 63

Figure 16: Business area ... 64

Figure 17: Problem risk type... 65

Figure 18: Urgent complexity type .. 65

Figure 19: Risk evaluation matrix ... 66

Figure 20: Kiveat diagram of example risk scores .. 68

Figure 21: Functional grouping without order ... 74

Figure 22: Functional grouping with order .. 74

Figure 23: Reduced order after allocation to subsystems 75

Figure 24: Influence diagram of relationships of Hitchins' Generic Reference
Model ... 85

Figure 25: Generic “design for” influence diagram ... 91

Figure 26: Aspects of design for reliability .. 92

Figure 27: Aspects of design for Maintainability ... 93

ix

Figure 28: Aspects of design for safety .. 94

Figure 29: Aspects of design for operability ... 95

Figure 30: Aspects of design for compatibility .. 95

Figure 31: Aspects of design for survivability ... 96

Figure 32 Critical interaction modular design methodology process steps 111

Figure 33: Functional context diagram ... 113

Figure 34: Pick-up vehicle .. 118

Figure 35: Sorter vehicle .. 118

Figure 36: Lego Mindstorms project: Functional context diagram 119

Figure 37: Missile example: Functional context diagram 128

Figure 38: Missile example: N2 of functional interaction (not clustered) 129

Figure 39: Missile example: N2 of functional interaction (clustered) 130

Figure 40: Missile example: visibility vs dependency diagram 130

Figure 41: Missile example: generic missile system guidance schematic 131

Figure 42: Missile example: initial functional chain framework 131

Figure 43: Missile example: functional chain framework (option 1) 134

Figure 44: Missile example: functional chain framework (option 1 simplified) 135

Figure 45: Missile example: functional chain framework (option 2) 136

Figure 46: Missile example: viability and resource functional chains 137

Figure 47: Central heating functional architecture (Systematic design) 151

Figure 48: Central heating architecture design (Systematic design) 152

Figure 49: Design matrix central heating .. 160

Figure 50: Design matrix for Axiomatic Design’s optimum heating solution ... 160

Figure 51: Candidate solution for Axiomatic Design’s optimal heating solution
 .. 161

Figure 52: Human issues in central heating ... 165

Figure 53: Functional Context Diagram for household central heating 166

Figure 54: Initial functional chains of central heating example 167

Figure 55: Schematic of example placing of components in central heating
system ... 174

x

Figure A - 1: Lego Mindstorms example: Functional chain framework (option 1)
 .. 205

Figure A - 2: Lego Mindstorms example: Functional chain framework (option 2)
 .. 207

Figure A - 3: Lego Mindstorms example: Functional solution (option 1) 209

Figure A - 4: Lego Mindstorms example: Functional solution (option 2) 211

Figure A - 5: Lego Mindstorms example: Physical solution (option 1) 213

Figure A - 6: Lego Mindstorms example: Physical solution (option 2) 215

Figure A - 7: Missile example: functional solution (option 1) 217

Figure A - 8: Missile example: functional solution (option 2) 219

Figure A - 9: Missile example: physical solution (option 1) 221

Figure A - 10: Missile example: physical solution (option 2) 223

Figure A - 11: Central heating functional chains ... 225

Figure A - 12: Initial mapping of heating functions to components 227

Figure A - 13: Example of a manifold design hydronic central heating system
 .. 229

Figure A - 14: Alternative mapping of heating functions to components 231

xi

LIST OF TABLES

Table 1: Comparison of popularity of systems design methodologies 13

Table 2: Classifications of system design methodologies 17

Table 3: Metrics for characteristics of modular design 23

Table 4: A definition of system quality attributes .. 28

Table 5: Required characteristics of system design methodologies 46

Table 6: Generic architectural framework views and abstractions.................... 50

Table 7: Characterizing risk: Examples .. 67

Table 8: Architectural approach according to context type (sub-type numbers are
as Figure 19) ... 69

Table 9: The influence of architectural principles on Bar Yam’s system
characteristics (product and process) .. 73

Table 10 Definition of Functional interaction types ... 81

Table 11: Internally and externally stimulated functionality of the GRM 84

Table 12: Relationships between functional interaction types and the GRM 86

Table 13: Design for influences in system design .. 98

Table 14: Existing measures of modularity compared with Critical interaction
modular design methodology steps (elaborated in Chapter 7) 103

Table 15: Approach according to the Situation context type 112

Table 16: Lego Mindstorms project: Context types .. 120

Table 17: Lego Mindstorms example: Architecture assessment 125

Table 18: Missile example: context types ... 127

Table 19: Missile example: viability and resource functions 137

Table 20: Missile example: addressing conflicts by lifecycle resolution (option 1)
 .. 140

Table 21: Missile example: addressing conflicts by lifecycle resolution (option 2)
 .. 141

Table 22: Missile example: architecture evaluation .. 143

Table 23: Comparison of existing system design methodologies 145

Table 24: Checklist with main headings for design evaluation during the
conceptual phase (Pahl and Beitz) .. 155

xii

Table 25: Evaluation parameters for a central heating concept (Systemic Design)
 .. 157

Table 26: Central heating; Context types ... 163

Table 27: Options for hydronic system designs .. 171

Table 28: Architectural evaluation of central heating options (Critical interaction
modular design methodology) ... 176

Table 29: Comparison of methodologies .. 177

Table 30: Summary of processes to be compared ... 178

xiii

LIST OF EQUATIONS

Equation 1: Ideality equation .. 19

Equation 2: Critical degree modularity .. 104

Equation 3: Critical distance modularity ... 104

Equation 4: Bridge modularity .. 105

Equation 5: Dispersion index .. 106

Equation 6: Suitability ... 107

Equation 7: Critical functional modularity ... 107

Equation 8: System boundary modularity ... 108

Equation 9: Relative Architectural Score .. 110

xiv

LIST OF ABBREVIATIONS

3D Three dimensional

BITE Built in test equipment

COTS Commercial off the shelf

DODAF Department of defence architectural framework

DP Design parameters

DSM Design structure matrix

EMC Electromagnetic compatibility

FR Functional requirement

GDT General design theory

GRM Generic reference model

HCI Human computer interface

IEC International electro-technical commission

IEEE Institute of electrical and electronic engineers

INCOSE International council on systems engineering

ISO International standards organisation

LRU Line replaceable unit

MCDA Multi criteria decision analysis

MODAF Ministry of defence architectural framework

NASA National aeronautics and space organisation

NHS National health service

OODA Observe, orient, decide, act

PBN Painting by numbers

PhD Doctor of philosophy

RAS Relative architectural score

SADT Structured analysis and design technique

SOI System of interest

SOSA System of systems approach

TRV Thermostatic radiator valve

UAV Unmanned Air Vehicle

UDT Universal design theory

UK MOD United Kingdom ministry of defence

US DOD United States department of defence

xv

VDI Verein Deutscher Ingenieure (Association of German engineers)

WSOI Wider system of interest

xvi

1

1 INTRODUCTION

 Background

Systems engineering, and systems design in particular, has been a recognised

discipline for more than 50 years, but there are few methodologies in existence

that allow the system designer to purposefully design system concepts to manage

their quality attributes and the risk involved in the lifecycle. As 80% of whole-life

costs are determined in the concept stage (Ehrlenspiel, Kiewert, & Lindemann,

2007) and only 29% of projects developed achieve full compliance with

requirements (Standish Group, 2015), early consideration of such aspects in

concept design would seem important.

The author has over thirty years of experience in the field of systems design and

systems engineering; twenty with a prime contractor of engineering systems.

Throughout this time, there have been few significant changes to the way system

design is performed. The process typically involves a systematic partitioning of

requirements over successive hierarchical levels of the system with little guidance

on how the partitioning should be achieved, unless there is previous experience

of similar designs to learn from. Some methods have been developed and

introduced over the years, many of which are discussed in Tomiyama’s paper

(Tomiyama et al., 2009), but these have struggled to gain acceptance in industry

(Yang, 2007). However, arguably the need for a method or approach to designing

effective systems has never been greater.

Systems are becoming both more complex and complicated as the promise of

performance benefits from increasing integration and interdependency are

sought. However, the pursuit of this often leads to unanticipated cause and effect

(Perrow, 1999). The UK MOD and US DOD initiatives to develop systems of

systems, represent examples of how increased dependencies are being used to

increase capability, but even everyday examples such as the Ford Focus car offer

examples of such increased ‘dynamic complexity’ (P. M. Senge, Kleiner, Roberts,

Ross, & Smith, 1994).

Design authorities are also increasingly being asked to take responsibility for the

overall provision of a capability or service, rather than just provision of a product.

Responsibility for anticipating and managing wider systemic effects is therefore

increased. Technological advances lead to pressure to improve the time to

market so as to keep up with market opportunities, and competitive pressures

require that time and cost in development is optimised with regard to the

capability of the product produced.

The context of a system is changing more rapidly: technological advances are

often disruptive requiring radical new solutions for which past experience is no

2

longer relevant (Clark, 1987). There is also a desire to utilise all available

information and assets to best effect such as with the UK System of Systems

Approach (SOSA) (Coffield, 2016). At the same time, stakeholder expectations

are increased along with improvements in our engineering and processes,

including areas of:

 Safety, reliability and security

 Cost in competitive environment

 Latest technology

 Reduced risk generally

 Out of the box interoperability.

The above challenges can be summarised as a need for dealing with increased

scope, increased complication/complexity in both product design and enterprise

approach and greater expectations of value, overall effectiveness and risk. With

the increased need, what might be the reason for a lack of methods? Firstly, it is

a difficult problem; “system” is a broadly applicable term that refers to concepts

in many widely differing domains requiring different skills and experience to

design. A system is characterised by many different parameters; it is a multi-

criteria problem where an objective “best” solution is hard to determine and justify.

The aim of this research will be to develop a system design methodology that can

be used to create system designs and specifically address the need to manage

design effectiveness and lifecycle risk at the concept stage. The output of the

concept stage is the systems architecture rather than a detailed design, and

following a literature search, a modular approach is chosen as this represents a

means of managing systems and controlling system behaviours more effectively.

The research question will be:

How can modular architectural principles be applied to early system concept

design to manage system effectiveness and reduce lifecycle risk?

In conducting the research it has been apparent that satisfactory solutions for the

architecture of systems often require a variety of concepts from systems thinking.

Therefore a further aim is that the approach will provide a means of unifying

various strands of the systems theory and practice, so that they might be

addressed and integrated within a common approach. These strands of theory

and practice have originated, in part, to address problems that have been created

by different contextual situations. Therefore in order to achieve a common

approach systems of varying types and contexts will be examined.

Note: the literature review for this research encompasses a period of almost a

century and inevitably accepted terms have changed. This is the case for the

3

term complex. According to the Cynefin Framework (Snowden & Boone, 2007)

complex is where “the relationship between cause and effect can only be

perceived in retrospect”. Prior to this model complex was often also used to

describe complicated, where “the relationship between cause and effect requires

analysis or some other form of investigation and/or the application of expert

knowledge”. In reviewing the literature historical terms will be used and it is

suggested that this distinction is borne in mind when dealing with the term

“complex”.

 Thesis Structure

Section 2 of this thesis describes the literature search informing the research; it

addresses areas of definitions, existing systems design methodologies,

architecting techniques, the effect on system context and means of architecture

evaluation.

Having identified the relevant literature, Section 3 develops the research

objectives, a research question and the methodology that will be employed for

the research.

Sections 4, 5 and 6 describe the analysis behind the research for characterising

the systems context, applying architectural principles in the different stages of

development of the systems design and evaluation of the designed architecture.

Section 7 summarises the proposed methodology from the earlier analysis as a

set of prescribed steps that the systems designer should apply. This methodology

is then applied to three design cases with different levels of complication.

Section 8 presents two practical examples of how the proposed approach can be

employed to problems of varying complication. Practical examples have been

chosen to test the approach in different situations. The first example is a simple

system used in a continuous professional development course run at Cranfield

University, with a view to demonstrate the approach at a level that is easy to

assimilate. A missile system example is then used to demonstrate the method for

a more complicated application. A final example of household central heating is

chosen as a design problem in order to compare the proposed method, the

Critical interaction modular design methodology, with two well established

methods that arguably represent the current state of the art; Axiomatic design

and Systematic design. Central heating is chosen as it is an area that is well

understood and there is plenty of design practice against which the results from

each approach can be compared, and this is reported in Section 9.

Section 10 presents the conclusions, makes suggestions of how research might

continue in this area and contains some ‘lessons learnt’ about research as a

result of this PhD study.

4

2 LITERATURE SEARCH

 Overview

A search of the literature has been performed to establish the current state of

knowledge for this research and the results of this will be summarised in this

chapter. The literature is arranged in sections to support the research as follows:

 System process definitions: the processes of System Design and

Systems Architecting are often used interchangeably within the literature.

Establishing their similarities and differences is necessary to help in critical

analysis of previous research

 Systems Design methodologies: there are a number of documented

Systems Engineering processes with different approaches to System

Design that should be reviewed and assessed in terms of their scope,

efficacy and the degree to which they are currently in used by the System

Engineering community

 System architecting techniques: will examine the current role of

patterns, architecting strategies and specific architecting methods that can

be employed in the systems design.

 The impact of context on systems design: examines how the context of

a problem can be seen to influence how a system should be architected

and designed

 System and architecture evaluation: will review how architectures are

characterised and how this might be used to evaluate the particular merit

of one architectural design against another.

The literature will be analysed to determine the state of knowledge in the field to

reveal particular areas of need and any current gaps that can be exploited by this

research, At the conclusion of the thesis, these needs and gaps will be reviewed

to establish how the research develops current thinking in this area and therefore

contributes to the ‘body of knowledge’.

 System process definitions

 System process definition literature

System design and system architecture are often used interchangeably. They are

also used as both verbs and nouns; being parts of the System Engineering

process, but also products of that process. This presents a potential source of

confusion and the various terms are analysed in this section.

5

Systems engineering is a term that has been used for the last 70 years, but has

only emerged as a discipline since 1990 with the creation of the International

Council of Systems Engineering (INCOSE). The INCOSE definition of Systems

Engineering is:

“Systems engineering is an engineering discipline whose responsibility is

creating and executing an interdisciplinary process to ensure that the

customer and stakeholder's needs are satisfied in a high quality,

trustworthy, cost efficient and schedule compliant manner throughout a

system's entire life cycle.” www.incose.org

Whilst this is a detailed definition for the ‘what’, a view of the ‘how’ of Systems

Engineering can be derived from the Merriam-Webster online dictionary:

 Engineering is defined as “the work of designing and creating large

structures or new products or systems by using scientific methods”,

where

 Designing is “to plan and make decisions about something that is being

built or created”, and

 Scientific is “knowledge about … the natural world based on facts learned

through experiments and observation”.

Therefore engineering, and specifically Systems engineering, might be restated

as:

“The work of planning and making decisions about building or creating

systems by using methods based on evidence based (scientific)

knowledge”.

The reason for pursuing this line of ontological development is that it tells us that

the system engineering activity is a process that should be followed, but one that

requires an understanding of the system based on valid scientific or evidence

based methods and techniques. There is support for this in the history of

Mechanical engineering, where ‘Design Science’, arguably introduced by

Redtenbacher in the 1850s (Pahl, Beitz, Feldhusen, & Grote, 2007), is defined

as “scientific methods to analyse the structures of technical systems and their

relationships with the environment”. Only later in the 1940s was a process and

methodology associated with it. Pahl and Beitz’s methodology, Systematic

design, dealt with electromechanical systems, but it was at this time when

electronic and computer systems were only just being introduced and with it, the

“traditional” engineering problem developed greater abstraction and

complication. The need for systems engineering to cope with this increased

complication was recognised in the late 1940s and early 1950s, and this was able

6

to draw upon developments in systems science, which has its origins earlier in

the late 1920s. Therefore in the search of a methodology for systems design we

should expect a process to be followed, but also an evidence based way of

understanding the behaviour of the system being developed. The literature

demonstrates that there is no shortage of process definitions (as explored in the

next section), but a lack of definitions of how the system design should be

designed.

The genesis of systems engineering as a formal approach is generally recognised

to have been in the early 1940s at Bell Laboratories (Buede, 2000),(Kelly, 1950).

Fitts (Fitts & Washington, 1951) recognised the need to identify system functions

and then address how they are allocated to the elements of the system; a

fundamental element of the currently known concept of systems design. Chestnut

(Chestnut, 1965) identified systems design as just one of the primary functions of

systems development, along with: systems analysis, systems test, systems

evaluation, systems operation and systems management.

A review of electronic academic databases1 by searching on the terms of “system

architecture” and “software architecture” gives an indication of when the

terminology was present in the academic community. System architecture

appears to have been introduced in 1969 (Hammond, 1969) and software

architecture in 1971 (Spooner, 1971), though the principle of architecture in

software, in all but name, was accepted to have been first identified in 1968

(Dijkstra, 1968).

In historical terms then, it seems clear that systems engineering and systems

design pre-date the use of systems architecture by 20 years or more, but the

terms of system and software architecture arose at about the same time. This is

perhaps not surprising as the advent of software arguably provided increased

flexibility of how functions could be managed within a system, and with it, the

sense that this needed to be more formally controlled. In practice the term

architecture has, until recently, been more associated with software than systems

(Clements & Northrop, 1996).

Ulrich (Ulrich, 1995) provides a definition of product architecture as “the scheme

by which the function of the product is allocated to physical components”. This is

similar to the definitions for systems design, but Hitchins (Hitchins, 2008),

believes that there is a fundamental difference between the systems design

process and architecting:

“Systems Design is sometimes viewed as an esoteric, even arcane,

practice; so much so, that teachers, references and books no longer refer

1 INSPEC/ Elsevier, ISI Web of Knowledge, Scirus

7

to systems design choosing instead to talk about ‘architecting’, suggesting

perhaps that design and architecting are substantially the same thing,

which may not be entirely correct.”

Hitchins offers the thought that a system architecture may represent different

ways of viewing useful patterns within a system.

“Some prefer the term ‘systems architect’ to ‘systems designer’ and there

does seem to be some correspondence between the ideals and goals of

the civil architect and those of the designer… However, systems

architecture is less well understood. At its most basic, systems architecture

is the pattern formed by linked clusters and subsystems. Since such

clustering and linking can occur in many different ways, there are many

different patterns, so many different system architectures…”

He also feels the need for scientific justification behind systems architecture does

not currently exist.

“There ought to be a science of systems architecture, systems

architronics, which would indicate the most appropriate architecture for

systems in different situations, to assure the best system solution; no such

science appears to have been formulated.”

Hitchins believes that Systems Design has traditionally represented a limited view

of patterns within a system (that is to say a mapping of functions to subsystems),

whereas there may be more than one architectural view and different views might

be employed in different situations to achieve different goals or criteria. He

suggests that the notion of systems architecture is open to acceptance of different

architectural views and their corresponding optimal solutions, though it says

nothing about how these different views might be reconciled for a multi-criteria

problem.

Wasson (Wasson, 2006) on the other hand, does not use the term systems

design, preferring to use systems architecture in its place. He refers to ‘system

architecture levels of abstraction’ as ‘system, segment, product, subsystem,

assembly…’, which is similar to a hierarchy of system within systems design. He

also talks about logical entity relationships, physical entity relationships as

architectural concepts and the partitioning, sequencing and evolution from logical

to physical, which is a reiteration of the principles of the system design process.

Wasson’s definition of system architecture as “…structure and framework that

supports and/or enables the integrated elements of the system to provide the

systems capabilities and perform missions”, perhaps suggests that architecting

may have a role in organising how a system integrates within its wider system

and environment. This outward looking approach contrasts with the traditional

8

system design process, which has tended to represent a top down, internally

focused approach.

The NASA Systems Engineering Handbook (NASA, 2007), for a long time a key

reference for systems engineering, takes a more limited view of architecture,

seeing it as just a part of the system design process. It quotes the US Department

of Defense, who in turn quote IEEE SSTD 610.12, stating that an architecture

can be understood as “the structure of components and the principles and

guidelines governing the design and evolution over time.” Importantly perhaps,

this determines that the architecture is the structure and relationships between

elements, not the whole design.

It can be seen that from the Hitchins and NASA standpoint:

 system architecture is a concept used at the system design level,

representing the structure, but not the whole design

 system architecture introduces the concept of viewing a system in different

ways, each view representing different patterns or architectures.

Wasson expands upon this by proposing that system architecture can be used

represent the way that a system needs to be designed to interoperate within its

wider system. This latter concept might lead some to believe that system

architecting is a higher level process compared with systems design or even

systems engineering (Rechtin, 1992)(Maier, 1998). With the hierarchical nature

of systems, it is tempting to suggest that there should always be a responsible

designer at the higher level. However, in practice there will be a level at which

the system is not ‘designed’ in an engineering sense. Instead, at this level, one

can conceive of a framework that systems will integrate into, such as is the case

with a system of systems (Maier, 1998). Establishing how the system would fit

into this framework then becomes the responsibility of an architect requiring a

different approach to that of traditional systems design; the need behind

Architectural Frameworks such as DoDAF and MoDAF.

Software and systems design have taken a somewhat parallel path from the

1960s. Software has arguably taken a more formal, structured approach, which

may be because it is able to work with a representation that is largely functional

and abstract. Over the years there has been much documented work on software

architecture. Some of the early work in this area has been carried out by Carnegie

Mellon University. In his work for establishing criteria for decomposing systems

into modules, Morris and Parnas identified unconventional ways of arriving at

decompositions that provided certain benefits to the designer (Morris & Parnas,

1971). They argue that it is almost always incorrect to start decomposition on the

basis of a functional flowchart, and that benefits can be achieved by beginning

9

with a list of difficult design decisions that are likely to change. Modules should

then be designed to hide or internalise such decisions from others – a technique

termed encapsulation.

Later developments in the field of software architecture are detailed in Garlan and

Shaws’ “An Introduction to Software Architecture” (Garlan & Shaw, 1993). This

documents a number of common architectural styles, including

 Pipes and filters

 Data abstraction and Object-Oriented Organisation

 Event based, Implicit Invocation

 Layered systems

 Repositories

 Table driven Interpreters

The authors recognise that these are styles that are perhaps particular to the

software discipline, and recognises other styles that are used in different

domains, a few of the important ones being:

 Distributed processes (an example being the “client server” organisation)

 State transition systems

 Process control systems

A feature of a style is that it determines the way patterns are made up by

components, connectors and constraints. A summary of these is outlined in

Shaw’s paper (Shaw, 1995), where she emphasises the importance of matching

the architecture to the problem along with appropriate descriptions. However,

patterns have different components and these components interact in different

ways that need to be distinguished. Shaw contends that a shortcoming of

conventional approaches is that they often don’t recognise this need.

 Observations on systems process definitions

The terms systems engineering and systems design have been in use since the

1940s, but the terms systems and software architecture are more recent and

emphasise that they address different concepts. The terms systems design and

systems architecture are ambiguous in the literature. System design can mean

both the process and the product and you are often said to be performing systems

design when you create the system design: the systems design (artefact rather

than process) is also often used interchangeably with the systems architecture.

This does not help in the understanding of the process and so this research will

use singular, widely accepted definitions for process and artefact:

10

 The process: systems design - “Systems design is process of developing

technical requirements, logical decompositions, and design solutions,

resulting in a validated set of requirements and a validated design solution

that satisfies a set of stakeholder expectations” (NASA, 2007)

 The artefact: system architecture – “fundamental concepts or properties of

a system in its environment embodied in its elements, relationships, and

in the principles of its design and evolution…where an architecture is what

is fundamental to a system — not necessarily everything about a system,

but the essentials.” ISO/IEEE (ISO/IEC/IEEE, 2011)

The introduction of the term system architecture has introduced further concepts,

which were not addressed previously in system design:

 that an architecture can describe patterns for more than function

 system architecture can be used as a framework for systems that are not

developed or owned by a single design authority i.e. a systems of systems

and the basis behind architectural frameworks.

The literature describes an apparent lack of science behind systems design and

system architecture, which results in a lack of understanding of how system

design process can produce an effective architecture.

 System Design Methodologies

 Existing methodologies

As system design is part of the system engineering process, an understanding of

the broader engineering process is required to appreciate what needs to be

achieved as well as some of the constraints posed.

In their book Engineering Design (Pahl et al., 2007) the authors document the

development of engineering design from 1953 to 2002. They assert that these

often independent developments resemble each other in many ways and that this

similarity has led to a consensus approach on engineering design known as VDI

guidelines 2222 and 2221. Whilst accepting that the consensus approach is a

unification of similar processes, Roozenburg and Cross (Roozenburg & Cross,

1991) maintain that it is not a universally accepted approach, describing it as “a

weak or heuristic” methodology based on “weak knowledge (experience)”

requiring “interpretation by the designer of the vaguely defined ‘rules’ and terms,

and, even if properly applied success is not guaranteed”. Their argument,

supported by Finger and Dixon (Finger & Dixon, 1989a), is that this methodology

and the many others that represent this consensus, present a process without

defining the evidence based knowledge that will ensure a successful system; the

what, but not the how.

11

Instead Finger and Dixon propose that a more useful methodology would be

based on developments in “architectural and industrial design”. Hillier (Hillier,

Musgrove, & O’Sullivan, 1972) originally proposed this, arguing that “we cannot

escape from the fact that designers must, and do, pre-structure their problems in

order to solve them”. Finger and Dixon refer to such methodologies as ones that

describe what attributes the product should have rather than how the process

should proceed; examples given are those of Suh (Suh, 1997) and Taguchi

(Taguchi, 1986). Roozenburg and Cross however readily admit that “there is no

well-formulated ‘consensus’ model of the design process in architecture and

industrial design” (Roozenburg & Cross, 1991).

According to Wynn and Lawson abstract methodologies are “characterised by a

small number of stages or activities and do not describe the specific steps or

techniques which might be used to reach a solution” (Wynn & Clarkson, 2005),

and are “…about as much help in navigating a designer through his task as a

diagram showing how to walk would be to a one year old child...” (Lawson, 1980).

These comments relate to abstract methodologies such as General Design

Theory (GDT) (Yoshikawa, 1981) and Universal Design Theory (UDT)

(Grabowski, Lossack, & El-Mejbri, 1999).

There are many methodologies associated with design and there have also been

many attempts to classify them in more detail. However, according to (Malmqvist

& Axelsson, 1996) this has not resulted in a reduction of competing

methodologies or the emergence of a particularly favoured option. Classifications

from various sources are available in order to establish a view on the important

aspects that a methodology of design should address (Wynn & Clarkson, 2005),

(Evbuomwan & Sivaloganathan, 1996), (Tomiyama et al., 2009), (Finger & Dixon,

1989a) and (Finger & Dixon, 1989b). These are used in the next section to

generate a means to determine the completeness of a system design

methodology.

It is not possible to describe all methods here as many have been proposed over

time (Pahl et al., 2007). Tomiyama (Tomiyama et al., 2009) lists a variety of

systems engineering/design methodologies suggesting those that have made the

greatest impact in both academia and in industry. However, a recent survey of

design methods in industry (Yang, 2007) determined that many of the main

methodologies in the academic world are not well appreciated or used within

industry. For those methods highlighted by Tomiyama the relevant data is given

in

12

Table 1.

13

Table 1: Comparison of popularity of systems design methodologies

 Not familiar Used in work (not
useful)

Used in work
(useful)

Axiomatic design 81.4% 0.0% 3.5%

Systematic
design

77.9% 0.0% 3.5%

Pugh Concept
Selection (Total
design)

68.6% 2.3% 12.8%

TRIZ 79.1% 0.0% 2.3%

Clearly usage of these methods within industry is at a very low level, and a

motivation for the development of a methodology that has greater appeal to

industry. In the absence of a recognised methodology in academia, what is the

current practice employed by industry? In the author’s experience, the NASA

Systems Engineering Handbook (NASA, 2007) has long been considered a

reference text for systems engineering. This provides a description for systems

design (Figure 1), but again describes more of what to do and not how to perform

it. For instance, it describes the need to partition systems, but not guidance or

rules about how this should be achieved.

Similarly INCOSE, the international organisation advising on Systems

Engineering, have published a Systems Engineering Handbook (Walden,

Roedler, Forsberg, Hamelin, & Shortell, 2015). Whilst it references certain

methods/techniques, these are merely examples and this description too

provides a process description with little guidance on how it should be applied to

different situations. Figure 2 summarises the process flow, but there is no

evidence based methods that determine how to define, refine, synthesise,

analyse or select favourable architectures.

14

Figure 1: Systems design process (NASA Systems Engineering Handbook)

Figure 2: INCOSE system design process

 Observations on current methodologies

The literature has many process definitions, but many are vague and left free to

the interpretation of the system designer and therefore relying on experience of

similar designs. It has been argued that methods based on architecture can be

more beneficial, but there is no consensus on what this should be and usage by

industry is very low. The focus of many methodologies is on “what” needs to be

done in system design to develop an architecture, rather than “how” it can be

achieved.

The widely differing approaches suggest the need of a way of classifying a

methodology. Various classifications of systems engineering methodology have

been identified (Evbuomwan & Sivaloganathan, 1996; Finger & Dixon, 1989a;

Tomiyama et al., 2009; Wynn & Clarkson, 2005) with different authors adopting

different categories and no one classification method covering all. The following

categories emerge from combining the classification methods:

15

 Scope: how much of the lifecycle does it cover? This is important to see if

the methodology can “stand-alone” or will need to be augmented/

combined with another methodology.

 Starting point: what is the starting point for the problem to be solved? Not

all problems start at the same point, so how flexible is the methodology to

different problems?

 Approach: what type of approach to the problem can be employed? The

approach used will impact on its validity and on the requirements placed

on the competencies of the user. For instance is it a process to actively

influence the design toward an outcome or is it one to ensure whether an

experienced person has followed the right steps to achieve an outcome?

And what is its purpose; is it a prescription to follow or a description to

educate?

 Models: what are the steps of the process and how are they described?

 Support: what support does the methodology provide?

o Methods: how are individual tasks addressed? Methods provide a

clear prescription of how the task should be performed.

o Means: what means are employed to perform the tasks? Are there

tools that can facilitate the process?

o Representations: in what way is the information represented?

Notations can improve the formality of the output

 Aim: what does the methodology consider success to be? Is the process

to optimise a design or assure a compliant solution?

Each of the methodology classifications is mapped against these categories in

16

Table 2, showing the specific terms used in each case. The final row of the table

contains a synthesis of all the classifications. This synthesised classification can

be used to show how complete a methodology is.

17

Table 2: Classifications of system design methodologies

 Scope Starting
point

Approach Models Support Aim

Methods Tools Representations

Wynn Problem
focussed,
Solution
focussed

Abstract,
Analytical,
Procedural
(design
focused),
Procedural
(project
focussed)

Stage
based,
Activity
based

Methods
for
activities

Evbuomwam Routine/
non-
routine
design,
Re-
design of
existing,
Creation
of new
design

Semantic
school,
Syntax
school,
Past-
experience
school,
Prescriptive,
Descriptive

 Methods
for
activities

Computer
based

 Prescriptive
models
based on
product
attributes

Tomiyama New
design,
Improved
design

Managed
process

 Represent
design

Finger Prescriptive,
Descriptive

 Analysis,
Design
for…

Computer
based

Representation Prescriptive
models of
the design
artefact

Mackley Complete
lifecycle
or Partial
lifecycle

Problem
solving or
Solution
improving

Abstract or
concrete,
Procedural
(design or
project) or
Analytical,
Prescriptive
or Exemplar

Lifecycle
stage
based or
Activity
driven

Method
supported

Tool
supported

Notation
support

Focus on
improvement
or assurance

This classification will be used later to analyse existing systems design

methodologies in terms of coverage and completeness.

 System architecting techniques

Architecture establishes patterns that can aid in the design process. According to

Crawley (Crawley, Weck, & Eppinger, 2004), these can contribute to

understanding, designing and managing complex systems. However, the ways in

which elements of a system should be arranged as a pattern in order to influence

either system features, attributes or properties are not evident. Literature has

been found that has focussed on:

 Intrinsic patterns that need to be respected within the design

 Architecting strategies or rules that encourage good design

 Architectural perspectives that aim to control particular attributes of the

design

 Architecting methods

18

 Patterns

The “pattern” concept in architectural design is attributed to Alexander

(Alexander, 1979), consisting of three parts:

 A context that describes when a pattern is applicable

 The problem (or “system conflicting forces”) that the pattern resolves in

that context

 A configuration that describes the physical relationships that solve the

problem.

The principle to have a set of pattern based designs that, in a given context, will

behave in an appropriate way in order to satisfy a requirement. The pattern

approach offers a “design” that is proven in one or more contexts, to be assessed

for application in a new context. However, although a full design could be

assessed as to whether it is fit for a given purpose, the fitness of the pattern will

usually be approximate in one of three ways:

 an incomplete knowledge of or partial fit with the new context

 a different set of requirements to be met

 a design which is often at least slightly different from the original pattern.

There is a benefit of not starting from scratch in the design process and taking

advantages of the proven qualities of the pattern. However the methods needed

to extract patterns from existing designs in a way that captures their benefits need

to be less onerous than methods involved in designing from scratch and the

pattern has to be shown to be valid to the new context.

Pattern design has received considerable interest in the field of software design

(Coplien, 1997), (Price, 1999), (Gamma, Helm, Johnson, & Vlissides, 1993)

where it is used in support of the Object Oriented Design approach. Examples

can also be seen in the field of systems thinking where patterns in the form of

Systems Archetypes have been identified (P. Senge, 1990; P. M. Senge et al.,

1994). In the latter, these archetypes are used as ways of diagnosing the

behaviour of the system and its behaviour in context as indicative of imbalances

in the implementation.

 System Architecting Strategies

Fricke and Schultz identify three fundamental architecting strategies (Fricke &

Schulz, 2005): simplicity, independence and modularity

19

 Simplicity

It is intuitive that reducing the complication of a system by concentrating purely

on what is needed is a good strategy as it avoids the design, verification and

maintenance associated with unnecessary artefacts, thereby reducing effort and

cost. Fricke and Schultz identify the concept of design streamlining as a means

of simplifying by minimising interfaces and secondary functions, and focusing on

already existing functions where possible.

Suh (Suh, 1990), takes this further by suggesting in his Information Axiom, that

an architecture can be optimised by minimising the information content of the

design, thereby making it as simple as possible. The principle is that simpler

designs involve less information and Suh suggests seven Corollaries to his

Axioms, six of which relate to achieving these aims which are:

 Minimisation of functional requirements

 Integration of Physical parts

 Use of standardisation

 Use of symmetry

 Largest tolerance (in stating requirements)

 Uncoupled design with less information

Again it is intuitive that reducing the information content can contribute to

reducing the complication of a design, but it is perhaps harder to see how these

could be used in calculations to provide objective support to the design process

(Kim & Cochran, 2000). Two numerical methods are found in the literature. The

first is Suh’s calculation of information content and the second is a measure used

in the methodology TRIZ, where Altshuller defines a closely related measure to

Simplicity as Ideality (Altshuller, 2002), where:

Ideality = Sum of useful functions/[Sum of harmful functions + Sum of

costs]

Equation 1: Ideality equation

Gershenson and Prasad (Gershenson & Prasad, 1997) describe a related means

of tackling complication in a manufacturing process, where “process similarity” is

a way of grouping “components and sub-assemblies which undergo the same

manufacturing processes”. Here it can be seen that similarity is a strategy for

tackling complication as it reduces the effective information content by re-using

the same information throughout the design.

20

The concept of simplicity is addressed from a slightly broader perspective in

Maeda’s account (Maeda, 2006) defining 10 Laws and 3 Keys:

“Ten Laws

1. Reduce – the simplest way to achieve simplicity is through thoughtful

reduction.

2. Organise – organisation makes a system of many appear fewer

3. Time – savings in time seem like simplicity

4. Learn – knowledge makes everything simpler

5. Differences – simplicity and complexity need each other

6. Context – what lies in the periphery of simplicity is definitely not peripheral

7. Emotion – more emotions are better than less

8. Trust – in simplicity we trust

9. Failure – some things can never be made simple

10. The one – simplicity is about subtracting the obvious, and adding the

meaningful

Three Keys

1. Away – more appears like less by simply moving it far, far away

2. Open – openness simplifies complexity

3. Power – use less, gain more”

 Independence and modularity

Suh (Suh, 1998) maintains that “there are two axioms that cover good design”,

the Information Axiom has just been described, but his first axiom is to “Maintain

the independence of the Functional Requirements”. Following the Independence

principle helps to achieve minimal coupling in a system, which will simplify

dependencies within the design – the benefits of this are clearly stated by Fricke

and Schulz (Fricke & Schulz, 2005) “each system function or functional

requirement has to be satisfied by an independent design parameter… changing

a design parameter does not affect any related design parameters and thus not

the proper operation of related functions”. Furthermore, achieving Independence

is key to creating a “unified description” between functional and formal

descriptions that Alexander (Alexander, 1964) maintains is key to dealing with

complex systems.

Simon (Simon, 1962) notes that the complexity of systems frequently takes the

form of hierarchy, and that systems with hierarchy have the property of “near-

21

decomposability”; that is to say that there are configurations where intra-

component linkages are generally stronger than inter-component ones. He

argues that hierarchy:

 Favours the evolution of complex systems

 Exhibits relatively simple dynamic behaviour

 Makes a system easier to describe and to understand how it should

develop and evolve.

Simon proves that hierarchy can help us to describe and understand the system

in a way that enables us to both better manage its behaviour and minimise the

effort required to do so; the fact that hierarchic systems can evolve far more

quickly than non-hierarchic systems of comparable size is an important finding in

terms of their development. A further important distinction of hierarchies is how

they are described; Simon identifies that physical hierarchies are described

primarily in spatial terms, whereas organisational hierarchies are defined

primarily in terms of interactions. He asserts that these can be reconciled by

defining hierarchy in terms of intensity of interaction, which is theme we will return

to. It is noticeable that much of the literature on this and related subjects is to be

found in management journals, which tends to reflect the lack of application to

engineering problems.

Simon maintains that the recognition of hierarchy and the near-decomposability

of systems allows the analytical benefits of a reductionist approach whist

encouraging a holistic view; “In the face of complexity, an in-principle reductionist

may be at the same time a pragmatic holist”. So what represents a “near-

decomposable” boundary between component subsystems? Simon asserts that

“(a) in a nearly decomposable system the short-run behaviour of each of the

component subsystems is approximately independent of the short-run behaviour

of the other components; (b) in the long run, the behaviour of any one of the

components depends in only aggregate way on the behaviour of the other

components”. This has resonance in a paper (Orton & Weick, 1990), where the

authors identify that decomposition should be along the lines of “loose coupling”.

Glassman, (Glassman, 1973) defines Loose Coupling as being present when

systems have few variables in common or the variables they have in common are

weak. In an attempt to qualify “weak” Weick, (Weick, 1982) suggested that this

was when elements effect each other “suddenly (rather than constantly),

negligibly (rather than significantly), indirectly (rather than directly) and eventually

(rather than immediately). A key finding of Orton’s paper, however, was that

“loose coupling” was a misunderstood concept. He maintained that systems

should be designed as loosely coupled as possible and that practitioners saw

coupling on a scale of tight- to loose- coupling. If loose coupling is considered

22

desirable then total decoupling would represent the optimal case, but this would

no longer represent a system and presumably any benefit of synergies between

the subsystems will have been lost. Orton preferred to establish a spectrum of

coupling ranging from decoupled through loosely coupled to tightly coupled,

where these represent varying attributes of responsiveness (representing

determinacy and interdependence) and distinctiveness (representing

spontaneity, independence and indeterminacy).

Modularity in practice has similarities with the principle of Independence.

According to their book on Product Design and Development (K. Ulrich &

Eppinger, 2008), a modular architecture is composed of “chunks”, where

modularity is achieved where the architecture “has the following two properties:

 Chunks implement one or a few functional elements in their entirety

 The interactions between chunks are well defined and are generally

fundamental to the primary functions of the product”.

This definition implies that strict independence is not required for modularity, with

chunks potentially relating to more than one functional requirement. However, an

independent design would also be a modular one.

Literature reviews (Campagnolo & Camuffo, 2009) and (Gershenson, Prasad, &

Zhang, 2003) shed some light on the modularity; Campagnolo and Camuffo find

that there are different types of modularity dealing with the product, the production

system and the organisation and suggest that different drivers, be they technical

or commercial, might drive different strategies in each dimension. Within product

architecture there are also differing perspectives of function and lifecycle, of

which Sako (Sako, 2003) observes that there can be difficulty in identifying a

single optimal decomposition as different phases of the lifecycle have different

objectives and each would potentially drive the architecture into different

configurations. Another classification (Baldwin & Clark, 2004) identifies

modularity in design, production and use.

Bayliss and Clark, (Bayliss & Clark, 1997) maintain that the practice of modularity

in design is well known in the computer industry where designers achieve

modularity by dividing their designs into visible and hidden information. The

visible information represent “design rules” that the designer of the module has

to comply with, but leaving them free to implement the rest of the design (a

process known as ‘information hiding’ (Parnas, 1972) in any way that they wish.

The visible design rules consist of architecture (the modules and what their

functions will be), interfaces (how they will interact, fit together, connect and

communicate) and standards for testing conformity and measurement of

performance. The authors however readily admit that the determination of the

rules is a difficult task as it requires “the designers of the modular systems [to]

23

know a great deal about the inner workings of the overall product or process in

order to develop the visible design rules” and “they have to specify those rules in

advance”. The cases that Baldwin and Clark examine were also mainly related to

appropriate work-share, allocation of tasks and reuse of components. These

have clear potential benefits from a project management perspective, but it is as

likely that modularity can have a beneficial effect on more technical areas such

as system performance and effectiveness. The same authors point out that

modularisation requires that “every important cross-module dependency must be

understood and addressed via a design rule” and that the “density of

dependencies matters”. They discuss that modularity showing promise in the one

and two dimensional world of computers would seem an easier proposition than

for most mechanical systems that have complicated, 3-dimensional designs to

deal with (Baldwin & Clark, 2004)

Ericsson and Erixon (Ericsson & Erixon, 1999) describe a modular product

platform design approach, where the product platform is a set of products “built

from a common structure, consisting of a set of modules and interfaces. It

produces company–specific deliverables that can be efficiently developed,

marketed and produced…”. They assign metrics to various characteristics of the

modular design as shown in Table 3 (for which some evaluation methods are

provided).

Table 3: Metrics for characteristics of modular design

Product characteristic Effect

Interface complexity Lead time in development

Share of carryover Development costs

Share of purchased modules Development capacity

Assortment complexity Product costs

Share of purchased modules System costs

Number of modules in product Lead time

Share of separately tested modules Quality

Multiple use Variant flexibility

Functional purity in modules Service/upgrading

Material purity in modules Recyclability

These metrics cover aspects of design, production, use and lifecycle with the

implication that a modular design has implications on them all and these should

be addressed.

 Lifecycle Modularity & Similarity

A number of researchers have referred to the concept of architecting for the

lifecycle. An example of this is Lifecycle Modularity (Gershenson & Prasad,

1997), which in addition to ensuring that there is independence throughout the

24

entire product lifecycle, requires that each module is also processed in the same

manner during each lifecycle stage – this they term Similarity. Thus they define

three facets of Lifecycle Modularity:

 Attribute Independence

 Process Independence

 Process Similarity

Here the independence discussed earlier (referred to here as Attribute

Independence) has been addressed by the System Designer taking account of

the measures required to sustain the product over its life e.g. use of components

with adequate and compatible lifetimes. An example of process independence

would be that if a component is chosen that may fail in the lifetime, then the

corresponding processes of test, diagnosis, replacement and disposal should

display both independence and similarity. Whilst this is easy to appreciate, in

finding the reasons why we should embark on such an analysis, we need to

examine the potential benefits i.e. asking the question “why should we improve

Lifecycle Modularity”.

Gu and Sosale (Gu & Sosale, 1999)2describe the following reasons for modular

design across the lifecycle (against each is an indication of strategies that may

be employed to achieve the modular design)

 It enables parallel development - this requires independence in
organisation, which can be achieved by functional independence and
loose coupling of system components thereby facilitating individual teams
to perform development in parallel

 Efficient and flexible production – this is another form of organisational
independence, where loose coupling of system components can allow
flexibility in production and assembly

 Increased standardisation – common can be enabled by functional
independence, allowing economies of scale

 Common services allowing more efficient maintenance action – benefits
are provided by grouping of components based on frequency of failure,
level of diagnosis, required maintenance action, and required line of
maintenance (e.g. Line Replaceable Units)

 Easier upgrade – functional independence and loose coupling between
system components can be used to reduce impact on the rest of the
system and cause minimal disruption during updates

2 Also a similar work by (Huang, 2000)

25

 Easier reconfiguration – functional independence allows additional
components or module to be easily added, increasing the utility of the
product

 Better recycling - identification and grouping of reusable components as
well as grouping of components by material types from the perspective of
recycling or disposal

 Increased variety and customisation – functional independence and loose
coupling of system components allows variants of the design for different
needs/purposes

Agreeing with the previous authors in a number of areas, Erickson and Erixon
(Ericsson & Erixon, 1999) identify the following additional benefits of a modular
approach to design, although some of these are as a result of sharing resources
across the variants of a product enabled through a modular approach:

 Shorter lead time in development and assembly due to reduction in
interface complexity and concurrent assembly processes respectively

 Reduced defects due to increased opportunity for testing at module level

 Increased interchangeability due to reduced functional interfaces for
independent designs

The following being for products with variants only:

 Greater development capacity and reduced system costs due to sharing
of modules

 Reduced development costs due to carryover from other programmes

 Reduced product costs due to the potential sharing or production tools
across product ranges

 Increased flexibility if there are alternate module options.

 Architectural Perspectives

There is a small body of work that looks into architectural approaches that are

designed in order to promote certain system attributes. Whilst this is apparently

in its infancy, two authors talk about system perspectives (Woods & Rozanski,

2005) and system aspects (Wijnstra, 2001) based around quality attributes.

These consider that an architecture comprises both entities and relationships of

a system and therefore, any aspect of the design that involves entities and

relationships can be viewed as architectural. In a traditional systems design,

functions are identified and the relationships between these functions include

interfaces of information, resource and control flow; this represents an abstract

architecture for which the quality attribute is the performance of the functionality.

Using a similar line of argument, a case can be made for a safety architecture

where the entities and relationships are those that are safety critical.

26

Architectures to address different quality attributes are likely to identify and favour

different architectural dependencies and therefore it is unlikely that a single

architectural solution will respect the potentially conflicting needs; an argument

supported by Sako (Sako, 2003). Indeed, it is not clear that all potential strategies

can result in a single “best” architecture, where for instance the optimal safety

architecture can align with the optimal architecture for performance. Chung

(Chung & Leite, 2009) promotes the idea of “soft goals” that indicates the

subjective nature of quality and that implicitly recognises the trade-offs between

non-functional parameters; that there cannot be a single “best” answer. Never the

less, he maintains that identification of how different architectures contribute to

these soft-goals is important.

An indication of the difficulty in achieving a practical architectural strategy with

the aim of optimising quality attributes is discussed by Alexander (Alexander,

1964). Alexander contends that the concept of a quality attribute such as safety

“…is convenient and helps hammer home the very general importance of keeping

designs danger-free, but it is used in the statement of such dissimilar problems

as the design of a tea kettle and the design of a highway interchange. As far as

its meaning is concerned it is relevant to both. But as far as the individual structure

of the two problems goes, it seems unlikely that the one word should successfully

identify a principal component subsystem in each of these two very dissimilar

problems”. It seems that although it is reasonably straightforward to identify

architectures associated with Quality Attributes after a design is produced i.e.

once a design is created we can determine if an item is safety critical, it is not so

easy in the early stages where we are looking for direction on how to produce a

safe design. Perhaps this shouldn’t be too much of a surprise as Quality Attributes

are often termed as ‘Emergent Properties’. Alexander also goes on to say that a

concept of creating a design for individual attributes will not help the designer

unless it happens to correspond to the system’s subsystems. He states that “No

complex adaptive system will succeed in adapting in a reasonable amount of time

unless the adaptation can proceed subsystem by subsystem, each subsystem

relatively independent of each other… the chances are small because the

number of factors which must fall into simultaneously into place is enormous”.

Many observers suggest that the way to design for Emergent Properties is to

apply certain rules or heuristics developed on the basis of experience (Rechtin,

1992). However these are often no more than broad statements that are difficult

to interpret by the designer (for instance “keep it simple”). What we would hope

for is a means of interpreting the structure of the design in a way that gave a view

of its benefit to an emergent property. Klein et al (Klein et al., 1999) propose

Attribute-Based Architectural Styles, which attempt to analyse existing designs

from a preferred architectural standpoint.

27

It is evident that certain design strategies can lead to architectures that provide

benefits from a design feature or quality attribute standpoint. There is however,

not universal agreement as to what these quality attributes are. One view of this

is provided by the international standard ISO25010 (ISO 25010:2011, 2011) and

talks about Quality in Use and Product Quality. It is the latter that is of interest

here, though the former Quality in Use will be relevant to later discussions on

evaluation. Quality attributes defined are:

 Functional suitability

 Performance efficiency

 Compatibility

 Usability

 Reliability

 Security

 Maintainability

 Portability

Further classifications can be found (Chung & Leite, 2009) including those by

Roman (Roman, 1985) and Boehm (Boehm, Brown, & Lipow, 1976). The author

also published a work (Mackley, 2005). For a complete set of quality attributes is

seems that a combination of classifications is required. In the table presented

earlier, precedence could be given to the international definition of quality

attributes (ISO/IEC/IEEE, 2011) in creating a combined list, but where potentially

important attributes are present in other definitions, these are added (Table 4).

A drawback of any of these attribute classifications is that no relationships are

shown between the attributes (Chung & Leite, 2009) and there is no obvious

linkage to system architecture frameworks. This could make it difficult to identify

the effect of architectural change or to identify the trade-offs or “side effects”

(Bass, Klein, & Bachmann, 2002) involved in making such a change. As

Alexander noted (Alexander, 1964), this can make it difficult for the systems

designer to conceive solutions. Bachmann noted in his abstract (Bachmann,

Bass, Klein, & Shelton, 2005):

“First there must be some way to specify quality attribute requirements so that it

can be determined whether the design architecture can achieve them. Secondly,

there must be some way for modularising the knowledge associated with quality

attributes so that the design method does not need to know how to reason about

all the multiplicity of quality attributes that exist. Finally, there must be some way

28

for managing the interactions among the quality attributes so that either the

requirements can be satisfied or the ones that cannot be satisfied are identified.”

Klein (Klein et al., 1999) reasons that adopting Attribute-Based Architectural

Styles can help address the performance of system quality attributes. Chung

(Chung, Gross, & Yu, 1999) and Harrison (Harrison & Avgeriou, 2007) expand

on this, but there is not agreement in the methods, with Chung showing links of

Architectural Styles to attributes such as Modifiability, Interactivity, Reusability

and Performance, and Harrison with a different set of attributes including

Usability, Security, Maintainability, Efficiency, Reliability, Portability and

Implementability. Klein identifies quality attribute measures for performance,

which is arguably the most direct non-functional requirement to defining the

functional behaviour of a system. This work identifies latency, throughput, nature

of arrival of stimuli and resources required as being key parameters to

achievement of performance, suggesting that an architecture should take this into

account.

Table 4: A definition of system quality attributes

ISO 25010 (ISO/IEC,

2011)

Roman (Roman,

1985)

Boehm (Boehm,

1978)

Mackley

(Mackley, 2005)

Combined
List

Functional
suitability

 Functionality Effect Functional
suitability

Performance
efficiency

Performance
requirements

Performance Performance
efficiency

Compatibility Compatibility Compatibility Compatibility

Usability Operating
requirements

Usability Operability Usability

Reliability Reliability Reliability Reliability Reliability

Security Security Security Security

Maintainability Maintainability Maintainability Maintainability Maintainability

Portability Portability Portability Portability

 Supportability Supportability Supportability

 Survivability Survivability Survivability

Interoperability Interoperability Interoperability

Availability Availability Availability Availability

Adaptability Enhanceability Adaptability Adaptability Adaptability

 Predictability Predictability Predictability

 Producibility Producibility

 Safety Safety

 Economic and
political
requirements

 Acceptability
(PESTLE)

Acceptability
(PESTLE)

 Serviceability Serviceability Serviceability

 Observations on architecture principles

There are three basic principles for architecting (Fricke & Schulz, 2005). These

are:

 Simplicity

29

 Independence

 Modularity.

They are seen as “fundamental” as they offer the benefits of using order to tackle

the challenges of complexity and complication. They are not a panacea in the

sense that they can be used to help solve every problem – for instance a solution

can only be made simpler if it is still able to meet its purpose. They also require

means of application that focus on improving desired outcomes.

Intuitively, appropriate simplifying of the design should reduce the difficulty of the

design and development process. Closely related concepts of simplicity,

streamlining, ideality and Suh’s information axiom, aim to provide guidance on

how this can be achieved, but there is little help available to provide objective

support to the system designer. Suh’s information content parameter and

Altshuller’s Ideality calculation (Altshuller, 2002) are two candidate measures,

and general heuristics, such as those of Maeda (Maeda, 2006) may be useful in

conceiving ways of achieving simplicity.

Independence is a specific means of decoupling functional elements of the

design, as they are represented in the physical design. The potential advantage

in terms of analysis of design development and modification is then obvious, but

Simon and Orton counsel that total independence is effectively decoupling the

design and this can exclude benefits of synergy that loose coupling can provide.

Weick and Klien suggest characteristics of the interface that are desirable for

loose coupling.

Modularity attempts to create modules in the design that reduce the degree of

interfaces or coupling between those modules. This makes modules easier to

incorporate or remove/replace which provides benefits in design, production and

use. It is a principle that is complemented by independence as both seek to

reduce interaction between elements of the design. The degree to which

modularity is desirable will depend upon the context and this needs to be

assessed on a case by case basis.

Notably, the literature on system architecting focuses on creating an ordered

structure and simplifying where possible. Alexander and Simon convincingly

argue that architectural strategies that aim to decouple the design are essential.

However, a grossly simplified solution is unlikely to meet a complex need and, as

Orton observes, a completely modular design to the extent that it is uncoupled is

no longer a system and so it is unlikely to benefit from any resulting synergies.

For instance, a strategy of functional independence is not necessarily going to

align with an architecture designed from a safety or maintenance perspective and

even if this was possible, in Alexander’s terms this will still not help unless the

30

designer can see the implication that his design decisions have on the high level

systems attributes; Sako believes this unlikely (Sako, 2003). This is supported by

Bachman who observes “there must be some way for managing the interactions

among the quality attributes so that either the requirements can be satisfied or

the ones that cannot be satisfied are identified.” Architectural perspectives are

found to offer a way of viewing and designing the system in different ways

according to the needs of different quality attributes. A difficulty here is that there

is not a universal agreement on what the complete list of quality attributes is.

However, a combination can be made from the various taxonomies. The abstract

nature of Architectural Perspectives might be a source of concern for the

designer, but in practice system design practitioners are already comfortable with

the concept of the abstract functional architecture. More of an issue might be

Alexander’s argument suggesting that a concept of different architectures for

each attribute should be rejected if it doesn’t align closely with the physical

design. However, Alexander states this in the belief that overlapping architectures

cannot help the designer to make rational decisions; if it can be shown that the

designer can act upon the analysis with a clear view of how it will improve the

design, this can be acceptable.

Architectural decisions (Tyree & Akerman, 2005) reflects on the fact that not all

decisions of a design should be considered as architectural; some interactions

should be considered as more important than others from an architectural point

of view and as long as a joint architecture respects these then that should be

considered a positive design. There is a need to identify where functions can

easily be partitioned needs to be determined. It is proposed to address the latter

point by the characterising functions and their implied interfaces using a concept

called ‘Functional interaction types’. Langlois (Langlois, 2002) commented that:

“In a world of change, modularity is generally worth the costs. The real

issue is normally not whether to be modular, but how to be modular” and

“how do we find the ‘natural’ encapsulation boundaries?”

This is a fundamental question that needs to be addressed; how to produce a

modular design, ensuring that it uses ‘natural’ boundaries to encapsulate the

design in the most appropriate way.

Finally, the principles of Fricke and Shultz refer to the system product, but other

work (Gershenson & Prasad, 1997), Gu (Gu & Sosale, 1999) identifies further

Lifecycle Modularity principles of:

 Attribute independence

 Process independence

 Process similarity.

31

There is overlap between these principles and if these are to be properly

understood and applied, then a common terminology should be sought; this will

be addressed.

 Methods for System Architecting

There are few methods that have been developed to aid with the process of

system architecting with many systems engineering methodologies treating it as

a creative activity, based on experience. An example is Total Design (Pugh,

1991) where the mark of a good architecture is established by evaluating the

system outcome and comparing it with either a requirement or other possible

solutions; the result doesn’t demonstrate a good architecture, but only that the

design (and by inference, the architecture) is good enough or better than the

others proposed. Whilst this might be satisfactory in some situations it can be

wasteful in that it requires a number of concepts to demonstrate and only when

a solution is developed can there be confidence in the assessment. The method

and as it doesn’t incorporate means to actively optimise the design its product

may not be competitive against those that did.

Two methods that look at improving the architecture by design are Axiomatic

design and Design Structure Matrices.

 Axiomatic Design (Suh)

Suh presents a theory for systems design that applies to systems in general, be

they machines, software, large systems or organisations (Suh, 1998). Two

axioms are presented that are used to create a top down design.

“Axiom 1: The Independence Axiom: Maintain the independence of the

Functional Requirements (FRs).

Axiom 2: The Information Axiom: Minimise the information context of the design.”

These axioms are used to produce an architecture composed of three

hierarchies; which in the case of systems represents (Suh, 1995):

 Functional Requirement – function requirements of the system

 Design Parameters – machines, components, subcomponents

 Process Variables – resources (human, financial, materials etc.)

The method is prescriptive, describing rules that must be followed in the

determination of a “best” design. In specifying a prescriptive approach the author

achieves clarity in application, but in the process of achieving an optimal solution

there is a significant amount of calculation based on probabilities of satisfying

requirements, which would be difficult to evaluate and validate (Frey & Dym,

32

2006). In terms of validation, Suh offers his method as a set of axioms and

corollaries and therefore claims that “there are general principles or self-evident

truths that cannot be derived or proven to be true, but for which there are no

counterexamples or exceptions” (Suh, 2001). In developing the system design

Suh uses three types of interface or “junctions”. These are Control (which is in

the sense of command or demand), Summation and Feedback. The latter

represents an unacceptable situation as feedback between modules violates the

Independence axiom and therefore is not permitted.

By the author’s own admission the method has certain issues in the design of

systems, largely down to its strict adherence to its axioms. These are issues with:

 Addressing large and flexible systems

 Situations where reuse is expected,

 Unstable systems (where stability is termed as not being able to meet the

independence axiom)

 Human interaction, which can introduce unpredictable effects outside the

design analysis

A further issue is that, in pursuit of the “best” design, the method does not address

the potential conflicting demands of quality attributes e.g. is a highly safe,

modestly performing solution better than a highly performing moderately safe

solution? By its definition only one “best” solution can exist, which in the reality of

systems evaluation is not the case (as discussed in section 2.7.2). The issue of

quality is addressed by Suh (Suh, 1995), but this is in the narrow confines of a

predictable design that is robust and contains redundancy.

According to Orton and Weick a system that is decoupled is no longer a system,

but rather a collection of independent items (Orton & Weick, 1990). However, a

“loosely” coupled system that approximates to and behaves as if it were an

independent system is appropriate. Therefore a definition of what is an

acceptable level of independence is required. Suh terms this as a designer

specified tolerance, but there is no guidance on how this can be defined.

 Design Structure Matrices

Tools have been developed that examine the elements of a product or

organisation and group them in terms of the degree of coupling of the mutual

interactions. Steward (Steward, 1981) was perhaps one of the first proponents of

the Design Structure Matrix which takes a mathematical approach to the

determination of a modular structure, based on the number of interactions

between the elements. This might be reasonably straightforward if all interfaces

are equal, but this is rarely the case for real systems. Others (Steven D Eppinger

33

& Pimmler, 1994) and (Sosa, 2003) propose that, for a physical system, the

strength of interaction should depend on whether there are significant interactions

of the following certain types (i.e. energy, material, information, spatial, structural)

and that values can be assigned to reflect this importance. Sharman takes this

further, and uses the significance of the interaction in each case to derive an

overall value of strength of dependency. Yassine et al (Yassine, Falkenburg, &

Chelst, 1999) investigate various methods that have been devised based upon a

single dependency measure:

“Steward (Steward, 1981) discussed the use of numbers instead of marks in the

DSM to represent the difficulty level of using an estimate. Smith and Eppinger

(Smith & Eppinger, 1997) extended the basic representation of a DSM to

accommodate numerical values that reflected the difficulty of performing tasks in

the absence of predecessor information. Krishnan et al. (Krishnan, Eppinger, &

Whitney, 1991) introduced the notion of a quality loss function to capture the

decrease in quality of task results due to constraints imposed by a certain

sequence of tasks. Sobieszczanski-Sobieski (Sobieszczanski-Sobieski, 1988)

devised an algorithm that calculates the system sensitivity derivatives from a set

of equations derived from the implicit function theorem. In a more recent paper,

Smith and Eppinger (Smith & Eppinger, 1997) used methods of feedback control

theory to analyse and identify controlling features of the iteration process. The

method called for the determination of the eigenvalues and eigenvectors for the

Work Transformation Matrix (WTM) which is a DSM containing the strength of

dependency between the tasks.”

These authors then propose that dependencies are better represented by a two

dimensional variable representing the sensitivity and variability of the interface.

However, certain difficulties appear to remain: firstly that assignment of values

appears to be subjective and secondly that the distinguishing characteristics have

widely differing properties in different units that cannot be obviously combined.

Further difficulties are in developing an automated algorithm (Sharman 2002), but

this also reflects the difficulty encountered in representing complex relationships

on a two dimensional matrix structure. Attempts to progress have focussed upon

geometries within the matrix, but these geometries do not generally reflect the

nature of the interfaces which is likely to be the most important aspect.

 Literature update

To ensure the currency of this research, a further search of the electronic

databases at Cranfield University was performed subsequent to viva. This was

performed on August 2nd 2018 using the terms “system”, “design”, “modular” and

“architecture”. This yielded 495 results of which 244 were from 2010 to the

present. This yielded four relevant publications. Three of these related to methods

34

to create a modular system design based upon weighted techniques using DSM

or Quality Function Deployment methods and so should be seen as

supplementing methods already reviewed (Bayrak, Collopy, Papalambros, &

Epureanu, 2018; Francalanza, Mercieca, & Fenech, 2018; Wong, Qaisar, &

Ryan, 2016). Sillitto’s book has an interesting and detailed view of the concepts,

principles and practices surrounding the architecting of systems, which again

refers to the use of N2 matrices (a method similar to that of DSM) as the main tool

for clustering and choosing the architecture (Sillitto, 2014).

 The impact of context on systems design

 Systems design in context

The context of a system arguably determines its requirement; its needs, its

constraints, its conditions, its influences and its lifecycle. The requirements will

affect the system design in the way that these requirements can be partitioned

and allocated within the system and the system architecture in terms of the

boundaries and corresponding interfaces that are chosen for the elements of that

system. There are a number of concepts that can be found in the literature that

can help to describe the influential aspects of the problem context.

A good place to start is with Problem Types (Obeng, 1995), where Obeng

identifies four problem types depending on the uncertainty in both objective and

solution. His contention is that in managing projects there is a temptation to

address them as if timescale, cost and performance can be accurately

determined in advance. In reality, if there is uncertainty in the objective and/or

solution, the approach needs to adapt and reflect that estimating these project

management parameters is not obvious. Obeng’s work provides impetus for

questioning whether all problems are of the same type; are there other potential

influences on the approach that should be taken other than uncertainty in

objective and solution.

The starting point of the system design is also important in determining the

approach. Formal, structured design techniques often start from a “clean sheet”,

but Jackson argues that real engineers don’t start from clean sheets, with designs

evolving conservatively over many generations; “Only once in a thousand car

designs does the designer depart from the accepted structures by an innovation

like front-wheel drive or a transversely positioned engine.” Jackson points out that

this diverts attention away from “large structural” (or architectural) issues and

leads him to suggest that more effort should be placed into developing and using

lower level formal methods rather than methods for dealing with structural design

(Jackson, 1998). Jackson’s view is reinforced by others with Cambridge

academics Jarrett, Clarkson and Ekhert (Jarratt, Eckert, Caldwell, & Clarkson,

2011) quoting (Cross & Roy, 1989):

35

“…most designing is actually a variation from or modification to an already-

existing product or machine.”

and (Bucciarelli, 1994).

“History matters – no design begins with an absolutely clean sheet of

paper.”

A ‘clean sheet’ approach can be applicable for a number of reasons. Whilst

Jackson argues that a clean sheet approach is rare in traditional engineering, it

is an approach that can be justified in situations where there is rapid growth in

technology and a design can take little benefit from existing designs where the

components and techniques are obsolete – this is often the case for computer

design (Bell, 1991). In considering flight path design for aircraft, a clean sheet

design allows the designer to get away from a design that has evolved to meet

the need at specific times and does not therefore necessarily address the need

in an optimal way (Conker, Moch-Mooney, Niedringhaus, & Simmons, 2007). The

need to sometimes remove measures that have been designed as evolutions to

a system in order to make a fresh start is reinforced by Wolstenholme:

“to get the best out of systemic policies it is necessary first to remove

institutionalised, emergency coping mechanisms (fixes), created because

of time delays and difficulties in cross boundary working” (Wolstenholme,

2004b).

Examination of system development in the military domain shows that systems

are frequently developed from near clean sheets. This may be because of an

imperative to obtain a capability that is superior to a would-be adversary, or

because systems are designed and operated for long life-times and replacement

of an obsolete system requires a complete rethink.

Problems addressed by Soft Systems Analysis seem to be of an entirely different

sort. Here the starting point is one of a feeling of unrest or dissatisfaction with the

status quo. Instead of addressing a clear capability gap or need the problem is to

address an unsatisfactory situation. In the early 1960s Jay Forrester applied the

concept of System Dynamics to industrial organisation (Forrester & Cambridge,

1961). This provided the basis for work (P. Senge, 1990), which used System

Archetypes to describe the dynamics of business situations, by analysing a

business as a system. The basic premise was that dynamic situations could be

described in terms of reinforcing and balancing loops of cause and effect;

archetypes were able to replicate the behaviour of ailing organisations and thus

a diagnosis of the reasons for the problem can be achieved. The original set of

around ten systems archetypes can be expressed as a reduced set of four

archetypes (Wolstenholme, 2003), which themselves can be expressed as two

36

generic archetypes, the “Underachievement Archetype” and the “Out of Control

Archetype” (Wolstenholme, 2004b). Wolstenholme maintains that when faced

with underachievement problem archetype the solution requires remedial activity

outside of the system boundary, but when faced with the out-of-control archetype

problem, the expedient action is to find a fix within the system sphere of control

(i.e. within its boundaries). Responding to a problem situation either by an internal

modification to the system or by requiring additional activity externally would

seem to cover all cases, but System Dynamics relies on the problem being

predictable in order to correctly analyse it.

In the Early 1970s there was a change in the approach to Systems Thinking.

Midgley (Midgley, 2006) described this as a “second wave” in Systems Thinking,

which criticised the previous attempts to model the system as if it were

deterministic and not reflecting the needs and views of involved stakeholders.

The second wave emphasised dialogue, mutual appreciation, subjective

understandings and accommodation between perspectives. Key protagonists

were Churchman (Churchman, 1968) and Checkland (Checkland, 1981a). This

is an important move architecturally, because it emphasises the point that some

interactions within the system are not “hard” and deterministic, but “soft” and

subjective. These sorts of influences on interactions and interfaces within a

system are likely to introduce additional factors that need to be considered in

devising an architecture. In his account Midgely also recognises a “third wave” of

Systems Thinking; Critical Systems Thinking. In particular this maintained that

not everyone within a system was at liberty to participate within the system

according to their will. Jackson and Keyes (Jackson & Keys, 1984), (Jackson,

1994) expressed the difference by categorising Systems thinking as unitary,

Pluralist and Coercive.

Other types of situation that have attracted significant attention in the systems

field are those of varying complexity and different levels of control and ownership.

Both of these relate as much to type of solution as to the type of problem. Peter

Senge (P. Senge, 1990) distinguishes between modular and integrated solutions,

defining them as cases of detailed and dynamic complexity. This view of

complexity has subsequently been updated by Snowden (Snowden & Boone,

2007).

Maier recognised that the way a system can and should be designed will depend

on ownership of the elements of the system in both development and operation.

Where systems are independent in both of these cases it can be termed a system

of systems (Maier, 1998) and in such cases relationships are defined by service

agreements and standardised interfaces.

37

 Observations on systems context

Analysis of the context is key to identify the need that a system is expected to

address. System design is responsible for partitioning the requirements to the

components or subsystems of the design, but to do this a clear view is needed of

both what is needed and what a system design needs to address.

In this section it has been shown that a number of eminent systems thinkers have

identified that there are different types of problem and that these need to be

addressed in different ways. Some existing ‘types’ of problem have a bearing on

the stakeholders, their needs and the way that a system should be organised.

According to Midgely (Midgely & In, 2006), there are different “waves” of systems

thinking, each applying to different types of situation; system dynamics, soft

system methodologies and critical systems thinking. From this example we can

see that different situations or context require different approaches. Identification

of common factors that influence the choice of approach would help suggest how

these different practices may be unified into a common approach. Such an

approach should first identifies the type of problem to be addressed from an

examination of the context, and then use this type to direct the line of systems

activity and the requirements of an architecture. This research will develop the

concept of “context type”, where different aspects of the context will require

different approaches to and measures within the design.

 System and architecture evaluation

In proposing a process for developing an architecture, it will be necessary to

evaluate the systems architecture and the systems design that is produced; that

is evaluating the “goodness” of the architecture, and how the system design

approach incorporates evaluation of the designed end product.

 Evaluation of Architecture

 Visualising and quantifying hierarchy and architecture

Early techniques to illustrate architecture in a graphical format were developed

by Warfield as binary matrices (Warfield, 1973). The N2 was then developed by

Robert Lano to provide a mathematical technique that could be automated.

Hitchins describes a method by which a single parameter score can be provided,

which represents the distance of interfaces from the leading diagonal of the N2

matrix (Hitchins, 1992). This provides a simple if crude indication of the

“goodness” of the architecture.

It is possible to assign different values to the matrix and Steward (Steward, 1981)

considered this for the similar Design Structure Matrix (DSM). Yassine (Yassine

et al., 1999) advocates expert assigned values for sensitivity and variability to

38

clarify the strength of coupling and dependency between two elements in the

matrix, but this is meant as an aid to a more definite clustering of the resulting

DSM rather than a better evaluation.

 Dependency/Visibility Ratio

Sharman (Sharman, 2004) develops two important aspects of modularity which

are directly obtained from Design Structure Matrices. Visibility is the degree to

which a component is visible to the rest of the system and Dependency is the

degree to which it is dependent on other parts of the system; the lower the

visibility and dependency are the more modular the component is.

 Types of Design Dependency

Sosa, Pimmler and Eppinger suggest five types of design dependency that

feature in systems, which are the Spatial type and four further Transfer types

comprising Structural, Energy, Material and Information (Sosa, 2003), (Pimmler,

1994). These are used to help determine the modularity or otherwise of a design.

Independent experts are asked to score the criticality of the interface on a five

point scale ranging from -2 to +2 for each category; a negative score showing an

undesirable dependency. This technique of scoring, albeit based on expert

opinion is very subjective and when subjective parameters are combined then

arguably the experience of the experts can no longer be used to validate the

output. This is a common issue of the subjective nature of weighting techniques

that will be returned to in the next section on evaluation.

Such an assessment is then used to distinguish a modular architecture from an

integral architecture by performing a Chi square procedure to compare statistical

similarity with a known integral or modular structure, there is no explicit guidance

on what represents a model example of modular or integral structure, but in their

research based upon amount of external interfaces.

 Components of Modularity

The same authors propose an alternative view of modularity of an architecture by

taking a network approach (Sosa, Eppinger, & Rowles, 2007). They propose that

Component modularity equals Actual component disconnectivity minus Maximum

possible component disconnectivity. They propose three components of

modularity as:

 Degree Modularity – a normalised value that relates to the number of

dependencies in and out that the component has i.e. the larger the

number of components that affect or are affected by the design, the

less modular it is

39

 Distance Modularity – a normalised value that relates to the distance

from other components i.e. the more distant the more modular

 Bridge Modularity - again a normalised value, but that relates to the

number of times a component lies on the path between two other

components i.e. the more design dependencies that propagate through

them, the less modular the component.

Suh’s axioms provide another means of evaluation in terms of both the correct

coupling criteria for the Independence Axiom (i.e. is it uncoupled or appropriately

decoupled) and level of information obtained using the Information Axiom. TRIZ

(Altshuller, 2002) offers the further metric of Ideality to ensure that unnecessary

functionality is incorporated in the design. Only the Information content from

Suh’s axiom attempts to express goodness of design resulting from the

architecture, although this is often requires considerable mathematical

calculation as is based on estimate of probability that may be difficult to support.

The other measures attempt to define prerequisites for an architecture to support

a good design, but not to evaluate whether this has been achieved. In the case

of the Information Axiom, this evaluation is made for functional requirements only

and there is no consideration of the non-functional requirements. Architectural

evaluation is therefore often made on subjective expert opinion and a

combination of factors that cannot be validated.

A further method is also proposed for the evaluation of module concepts from a

lifecycle context (Ericsson & Erixon, 1999). Only aspects that can benefit a single

system product (rather than gaining advantages due to a family of variants) are

considered and these are:

 Lead time in development is reduced by less complex interfaces

 Assembly times are reduced for modular designs

 Quality is increased by number of parts separately tested and is inversely

dependent on assembly time

 Recyclability is improved by reducing the number of materials

 Interchangeability is inversely dependent on number of functional

interconnections

Key complicating parameters emerging from this are assembly time, interface

complexity (number and complexity of interfaces), for which strategies might be

reducing number of different modules, reducing number of and simplifying of

interfaces.

Studies into design for assembly have shown that defect rate increases

significantly with the assembly time. It is reasonable to assume that longer

40

assembly times are associated with more integrated designs and more complex

interfaces. Whilst it is not possible to assess the expected assembly times in early

concept design, it is reasonable to assume that an increase in modularity would

in general reduce assembly times and therefore reduce the level of defects

(Barkan & Hinckley, 1994).

 Evaluation of systems

A system design is difficult to evaluate as systems engineering deals with multi-

criteria problems seeking to take explicit account of multiple, conflicting criteria.

Multi Criteria Decision Analyses come in three technique categories (Belton &

Stewart, 2002):

 Value Measurement models

 Goal Level models

 Outranking models

Value measurement assigns values or weighting to criteria and a preference for

a concept is formed from an aggregation of the values. It relies on a strong set of

axioms to form a preference in order to impose “some form of discipline” in the

building of preference models, help decision makers to understand their values

and be able to justify final decisions and to include statements of acceptable

trade-offs between criteria (Mendoza & Martins, 2006). However, for independent

criteria, relative value will always be subjective and (Arrow, 1951), “there is no

method of aggregating individual preferences over three or more alternatives that

would satisfy several conditions for fairness and always produce a logical result”.

Goal oriented methods are based on being able define outcome scenarios and

requires the designer to specify goals for each criterion. To be able to achieve

this, the designer often requires deeper understanding of the solution domain to

understand trade-offs, which he typically achieves through past experience or

feasibility studies. These requirements enable a systematic elimination of

alternatives to leave only compliant solutions and there is an overriding principle

of “satisfying” rather than optimising, allowing a down-selection of alternatives.

Outranking is a method that relies on pairwise comparisons and perhaps the most

frequently use method is the concordance-discordance principle (Belton and

Stewart, 2006). This declares that an alternative x is at least as good as an

alternative y if:

• a majority of the attributes supports this assertion (concordance condition)

and if

41

• the opposition of the other attributes (the minority) is not too “strong“ (non-

discordance condition)

It is essentially a voting technique and a weakness compared to Value techniques

is that this principle can allow contradictions that need addressing. For instance,

it is possible that there is opposition to x being better than y at the same time as

opposition of y being better than x, or that x is better than y is better than z, but

that x is not better than z.

 Observations on evaluation of system and architecture

Evaluating a system is a multi-criteria problem and Arrow’s impossibility theorem

states that there can be no ‘best’ solution. It is difficult to evaluate a design

confidently at the concept stage, but by selecting an appropriate architecture it is

possible to lay down a favourable structure for building the design.

There are methods available that address the modularity of an architecture, but

universally these methods are unable to judge the complication of interactions

within the architecture and therefore it is difficult to evaluate whether a particular

modular architecture is addressing complication as well as it could. A means of

identifying the complication of interactions is required so that this can be fed back

into the overall assessment of architecture.

Whilst it is not possible to produce a detailed evaluation of a system from its

architecture, there is evidence to suggest that certain designs of architecture will

promote certain quality attributes and so such traits, if identified, could also help

in assessing the quality of the architecture.

42

3 RESEARCH QUESTIONS, METHODOLOGY AND

APPROACH

The literature search has demonstrated that a system architecture is developed

from the system design process and is a key element in terms of managing the

behaviour and quality of a system. Surprisingly, there are few methodologies

available to develop a system architecture and of these, no methods have

achieved general acceptance in industry. It is this gap in knowledge that this

research is designed to address. A methodology will be developed for the system

design process that can apply modular architecture concepts in order to positively

contribute to the effectiveness of the final design.

System design must address systems of many types, having many diverse

purposes, of many different sizes and organised and behaving in many different

ways. This variety provides a significant challenge to any generic systems

process and, just as with any systems problem, a boundary and scope need to

be defined for this research. This research will concentrate on the process of

system design as applied in the generation of concepts, rather than the process

through the complete systems engineering lifecycle. The concept phase is

arguably the most critical part of the engineering lifecycle, as decisions made

here will determine the majority of the lifecycle costs of the future solution

(Ehrlenspiel et al., 2007). The prime focus will be on the architectural

considerations of systems design process i.e. the organisation of subsystems,

their boundaries and interactions. Other parts of the system design process, such

as requirements capture and evaluation are addressed, but primarily to allow

generation of case examples and for their evaluation.

The approach to systems design in this research is based on a premise that a

system architecture, at a concept stage, can have a positive influence on the

quality and behaviour of the final design. In particular, a modular architecture can

reduce the complication of the design process in order to reduce the risks

involved in system development. The aim will be to produce a compliant concept

rather than seeking to optimise one or more performance parameters. However,

a practitioner could use solutions generated to select an ‘optimum’ design. As a

result, it is not guaranteed that this approach will come up with a “best” solution,

though it is doubtful that a single best solution ever exists to a systems problem

(section 2.7.2). The original concept of the research was that it might be possible

to consider a system as a set of abstract design architectures each favouring a

given quality attribute; choosing a solution that allows these architectures to align

could simplify the system design problem. In reality, directly relating the features

of a design to quality attributes, such as safety, in a coherent architectural

strategy is unlikely to be achievable (Alexander, 1964). Instead the research

proposes a set of fundamental functional elements or functional blocks that can

43

be managed by the designer to achieve the desired outcome and it is in

maintaining the integrity of these functional blocks that an appropriate system

design will emerge.

For this thesis therefore, the hypothesis is that there is a means of positively

influencing quality attributes and development risk associated with a design

through the application of modular architectural principles. This research will

therefore address the question:

“How can modular architectural principles be applied to early system concept

design to manage system effectiveness and reduce lifecycle risk?”

Ideally it would be possible to demonstrate the efficacy of the proposed

methodology by applying it to a problem and demonstrating that the developed

methodology performed better than other available methodologies. In reality this

approach has a number of issues:

 Case studies of complicated systems design are complicated in

themselves, often requiring multiple teams and many thousands of man-

hours of effort to address the design at a level to determine the attributes

of the design. Therefore, performing such case study is not feasible in the

context of this doctoral study

 An individual system problem cannot be shown to be representative of all

problems and therefore numerous studies would be required

 Evidence would be needed that the design developed using this

methodology is better than would have been provided with existing

methods. This would require the detailed study of designs derived using

other methodologies for comparison. Furthermore, objective evidence

would be required that one system design was indeed better than another,

but the nature of multi-criteria problems is that comparisons are always

going to be subjective and therefore difficult to validate (Arrow, 1951).

There is also an issue of scope; within a PhD study there is a limited time

available. Even without developing a methodology from first principles, the

application and assessment of such a methodology might form a research project

in itself. Therefore the methodology of this research will rely on:

 Employing principles that can be shown, by induction, to benefit from well-

established modular principles

 Illustrating that the approach can be applied to a variety of design concepts

to verify the application of the process to real-life situations

 Comparing the utility and performance of the approach with similar and

currently available methods.

44

For the latter, the developed system design methodology will be compared

against two currently established methods applied to the same problem. For this

comparison, the design of a central heating system has been chosen as it both

relatively simple to facilitate the comparison, and of sufficient complication in

terms of control, service and human factors to exercise important elements

needed in a method.

In developing a methodology a research design should address certain elements

(Zehra, 2015). Accordingly aspects of study design, study population, data

collection and variables considered are addressed below:

a) Study design: combines observation in terms of identifying relevant

architecture principles from current literature, with analytical activity of how

these can be applied depending on the problem and the desired outcome.

Finally, the utility of the approach will be demonstrated by case study and

in comparison with other methodologies.

b) Study population: in this research the study population is composed of the

three different problem situations to which the proposed methodology can

be applied and two other methodologies that this methodology can be

compared against.

c) How will population be identified?: the case studies have been chosen to

represent different levels of complication, whilst accepting that their scope

is limited by the time available in a doctoral study. Methodologies have

been selected on having the same objectives as the proposed

methodology and according to their level of acceptance in the systems

engineering community.

d) What data will be collected?: data will be in the form of qualitative evidence

that relevant quality attributes are being addressed by proposed designs.

e) Variables: the independent variables of this research are the

methodologies used for comparison; the dependent or effect variables are

those of system effectiveness (or quality attributes) and lifecycle risk

Literature searches have been performed on systems design and architecture.

This has been broadened to include an analysis of literature about the system

context, as the contextual setting of a system problem is key to understanding

the needs of the design. There are many existing methodologies, but no particular

methodology has been adopted widely within industry or academia (refer to

table). Tomiyama et al (Tomiyama et al., 2009), identify the most prominent ones

as:

 Systematic design (SAPD) by Pahl and Beitz (Pahl et al., 2007) as

representative of design focused methods (Roozenburg & Cross, 1991)

45

 Axiomatic design by Suh (Suh, 1997) as representing of attribute focused

design

 TRIZ by Altshuller due to its relative popularity in industry

 Product design by Ulrich and Eppinger (K. Ulrich & Eppinger, 2008) due

to its popularity in the US

 Total design by Pugh due to its higher than average use in industry.

Uhlmann (Ullman, 2003) has not been considered here as it is essentially a

systematic design method along the lines of that of Pahl and Beitz. Within the

scope of the title of this thesis, a methodology should be expected to:

a. Address system design within a lifecycle context – that is the identification

of both functional and non-functional requirements and ensuring

appropriate systems architecture to address them in a cost effective and

manageable way, considering the whole lifecycle. Activity models focus on

a particular stage and can be incorporated within a framework provided by

the stage model as long as it considers the implications of other stages of

the lifecycle.

b. Apply to different starting points of the process – not all problems start from

a clean sheet of paper and a methodology will need to be able to work

within the constraints of established designs and context.

c. Be prescriptive – if such a process is to be adopted, it needs to be a clear

and applicable process that does not require tacit knowledge. Descriptive

models can identify good practice, but rely on the engineer to extract

analogous concepts and apply them appropriately. If this method is to be

widely adopted such capability should not be assumed.

d. Incorporate method, tool and notation support where possible – adoption

of the process will require it to be a clear and efficient way of developing

and communicating a solution. If this requires support methods, notations

and tools, then these need to be defined or at least conceptualised in a

way that assures that they are realistically achievable.

e. Focus on both actively improving design and reaching an assured level –

in addition to an assurance that the design will meet its requirements, an

engineer also requires that any given design intervention will achieve the

desired improvements. Stage models focus on confirming that the

necessary assurance is in place, but activity models tend to provide the

measures that can be employed to ensure an improved design.

Therefore against the classification method developed in

46

Table 2 of section 2.3, the criteria that should be expected to be met are given in

Table 5. This will be returned to in making a comparison of methodologies in

section 9.6.

Table 5: Required characteristics of system design methodologies

 Required characteristics of methodology

Scope Concept phase

Starting point Both problem and solution based starting points

Approach Concrete, prescriptive (procedural and analytical)

Models Either activity or stage based

Aim Design improvement

Support (to concept
design):

Desirable support

Methods (relevant to
concept stage)

Yes

Means Yes

Notation Yes

47

4 THE SYSTEM DESIGN IN CONTEXT

Characterising the context is important in identifying the required engineering

activities including the architectural strategy. System design is about taking a

problem or need and creating a system to satisfy it, where the “problem space”

is largely determined by the system context of stakeholders, related systems and

environmental conditions. Obeng suggests that there can be a tendency to

address problems in the same way (Obeng, 1995), but that an approach should

be tailored to the problem to be solved or the solution to be engineered. It is clear

from the literature that there are a wide variety of problems that need to be

addressed and this will require a systems design approach will that can to be

tailored to this variety. To achieve an understanding of how to approach this, we

should have a concept of:

 A framework which identifies and orders the context of a problem and its

solution

 A notation to capture the contextual situation for the designer to respond

to

 An approach that allows architectural strategies to be applied according to

type of problem or context to be dealt with

 Frameworks and Notations

All systems are open and therefore at any level of system design there needs to

be consideration of how the system interacts with its higher level system or

system of systems and therefore a need for a framework that provides this

information (this may be an evolving context that is influenced by other

developing solutions). Various ‘architecture frameworks’ have been developed

and one such example is the Enterprise Architecture Framework, which is a

framework that “can describe the underlying infrastructure, thus provide the

groundwork for the hardware, software and networks to work together”

(Urbaczewski & Mrdalj, 2006). There are a variety of frameworks that have been

developed for different domains and attempts have been made to compare them

to distil similarities in some of the most widely recognised examples (Urbaczewski

& Mrdalj, 2006).

At the highest level they each have a definition of views (or perspectives) that

represent the stakeholders of the system and also a definition of required

abstraction. Urbaczewski attempts to make a mapping between the views and

abstraction for each architectural framework, but concludes that such a mapping

cannot be confidently made. Despite the commonalities claimed by systems

theory (Von Bertalanffy, 1950), architectural frameworks have been developed to

reflect the immediate and practical realities of a given domain.

48

An architectural framework is intended to structure information pertinent to a

system development in a way that facilitates its design and management. As with

any architecture it should indicate key elements of information and how they

relate to each other. In terms of a system, key elements are the capability that

the system is intended to contribute to, the definition of the problem to be solved,

the solution proposed and the lifecycle. The as-is capability can be used to define

a capability gap that is then used to frames a new problem to be solved and

system solution is the proposed to the problem. Creating or developing the

solution may have impact which modify the problem situation, which requires the

problem and solution to be considered together. Once decided upon, the solution

will be realised and operated over a lifecycle, with progressing maturity. At

suitable points in its lifecycle the enterprise will be at a suitable state of readiness

to then benefit from the improvement in capability. This is represented pictorially

in Figure 3.

Figure 3: Proposed schematic of a generic architectural framework

Key points from this model are:

 The capability environment may itself be a system of systems and

therefore, in order to maintain a clear baseline an attempt needs to be

made to separate the need or capability gap from the system requirement

 As the conception of a system solution may itself impact upon the problem

space, these need to be developed together

 The information about the system will evolve and need managing through

the lifecycle, including contributing to design assurance

49

 In maturing, the system will go through a lifecycle and at various stages it

will have different degrees of readiness (e.g. initial operating capability,

final operating capability, mid-life update)

Flood and Carson (Flood & Carson, 1983) provide a convenient concept for

helping to define the context of a system which can be used to define the current

capability and identify capability gaps (Figure 4). Influences and constraints on

the system of interest (SOI) come from:

 Wider System of Interest (WSOI)

o Elements that interact or co-operate with the SOI and that are

essential for the operation/ support of the SOI

 Environment

o Elements that involve direct non-cooperative action or influence on

or by the SOI

 Wider Environment

o Elements with an indirect influence on the SOI through the

environment

Figure 4: System context diagram (Flood and Carson)

This is convenient for a single system within the context, but in the case of a

systems of systems, there may be two or more concurrently running problems

and their solutions within a systems of systems would potentially have the same

wider system or environment. This might involve a shared service whose capacity

would be jointly influenced, or they might impact the same environment and a

joint assessment of the consequence would then be needed. These potential

issues will need to be recognised as potential evolutions of the capability gap

defined for each individual system.

50

In order to elicit the requirements of the context, stakeholders can be idenitifed

from Checkland’s CATWOE acronym; Client, Actor, Transformation, Welten-

shauung, Owner and Environment (Checkland, 1981b). Weltenshauung stake-

holders can be elaborated by the PESTLE acronym for Political, Economic,

Social, Technological, Legal and Environmental (Johnson, Scholes, &

Whittington, 2008). Further stakeholders, from a capability provision perspective,

can be derived from the UK MoD acronym TEPIDOIL; Training, Equipment,

Personnel, Information, Doctrine, Organisation, Infrastructure, Logistics.

This leads to three interconnected, but loosely coupled views, with a one to one

mapping with the required abstractions Table 6.

Table 6: Generic architectural framework views and abstractions

View Abstraction Perspective Interaction issues

Capability provision As-is capability and
capability gap

User/ Client Other systems will share
services and have
impact

Systems design Problem statement,
solution design and its
maturity

System
Designer

Requirement and
solution will requiring
validation against the
capability gap

System lifecycle
management

Lifecycle of the system
solution and its
readiness

Owner Assessment of maturity
will determine readiness

This research will focus on the system design only and it will involve itself with an

identification of a capability gap and address an early maturity of system solution

consistent with a concept architecture design. It will therefore focus on a specific

definition of the context. However, in doing so it should address the full context

(associated with a complete set of stakeholders across the layers of Flood and

Carson’s context model) and be aware of the issues relating to the broader

capability and how it can change. Such issues are reduced if the system can be

made more independent of its wider system to reduce the reliance on joint

resources/services and by reducing the impact of its own activity.

 Context and the functional requirement

The requirement starts with the functional view as this defines the mission

(Hitchins, 2008). However functional methods have a narrow perspective on a

problem and non-functional requirements and the accompanying physical

structure are also important. Arguably the purely functional view can be applied

with some success for software development. Software engineering practices

have had a significant driving influence on formalised techniques of systems

design, but in software it is much easier to work in functional terms and produce

an acceptable end product. In systems where the function is attributed to more

than the software, the non-functional requirements become more important with

51

the system being subject to many more environmental conditions that may impact

the effectiveness of the solution. Alexander asserted that there is an intrinsic

relationship between the context, requirement and the solution (Alexander,

1964), and techniques for defining requirements that ignore their dependency on

the context of the problem and the likely solutions, are liable to make unjustified

simplifications. Therefore a vehicle for specifying functionality is needed and,

according to Alexander, it should meet the following criteria:

1. Has a necessary and sufficient definition of parameters to define a

functional as a “black box” with inputs, outputs, resources and controls

2. It is able to define the system context in a way that enables scenarios to

be developed that allow non-functional performance to be evaluated

3. It reflects the necessary aspects of the solution that enable elaboration of

the solution architecture; see also (K. Ulrich, 1995)

The SADT IDEF0 representation is preferred for this research, because it is

widely recognised and it contains the necessary and sufficient “black box”

parameters for functional definition. However, as it is just a functional notation,

additional context needs to be provided. Flood and Carson’s concept of systems

context (Flood & Carson, 1983) divides entities of the context into four levels

according to the relationship each has with the system of interest. This

representation is again preferred for its simplicity and by combining these two

concepts, both points 1 and 2 above are addressed. The inclusion of

“mechanisms” in the IDEF0 definition, and the identification of the system of

interest boundary in Flood and Carson’s context model, provide a means of

addressing point 3. As a combination of the ideas of SADT and the concepts of

Flood and Carson’s Context Model, this diagram will be defined as a Functional

Context Diagram (Figure 5). To ensure completeness, transformation,

management and resource reflect the different functional drivers defined by

Hitchins Generic Reference Model of complete functionality, and Checkland’s

CATWOE is used for a complete set of stakeholders (Checkland & Poulter, 2006).

52

Figure 5: Functional Context Diagram

 Context types related to definition of lifecycle approach

The types identified below represent a combination of academic concepts

reported in the literature and a collation of real-life engineering projects. Whilst

they refer to types of problem, a problem is not exclusively of one type. In most

cases it will be necessary to characterise a problem as being of many types, each

of these influencing the system design approach that is required. They have been

grouped in terms of the particular aspect of the System design process that they

most closely relate to i.e. requirements, design or the overall lifecycle. A table

summarising the way that this might influence the approach taken is then

provided.

Many shortfalls in problem solving can with hindsight be attributed to applying the

wrong approach for the specific problem and its situation or context. Having

identified a problem it can then be both a challenge to determine strategies that

will succeed in its solution and also to communicate the value of what is proposed

to gain acceptance of the way forward. The challenge here is to select an

approach based upon both an understanding of the problem context and an

identification of the severity of the problem in terms of the risk.

The method described proposes Context types to help analyze a problem context

(Mackley, 2015). The analysis of each type is reduced to a four-quadrant matrix,

where a particular quadrant can be used to define the appropriate system thinking

or systems engineering approach. Each quadrant is also related to the likely level

of risk or difficulty in addressing the problem. The resulting level of risk is then

53

expressed graphically as a Kiviat diagram in order to present it in a way that can

facilitate communication and understanding by a wider audience.

First, a review is made of the current theory that can be used to develop an

understanding of the types of context and lead to suggested approaches. Where

appropriate these are expanded to generate a set of generic Context types

described as four-quadrant matrices. New and complementary Context types are

then proposed with the aim of providing a more complete analysis of the problem

context. Finally an outline is given of how the Context types can be used to

suggest problem solving strategies and indicate the level of complexity and risk

involved. By describing how to address problem contexts of different types, the

method presents a unification of existing systems thinking approaches to provide

a problem solving approach that can be tailored to specific circumstances.

 Existing concepts

There are a number of existing concepts that allow a distinction to be made

between different types of context and these are outlined below.

 Problem types

Problem types characterize a problem in terms of uncertainty in requirement and

in solution (Obeng, 1995).

 Painting-by-numbers (PBN) – clear objective and clear solution

 Foggy – uncertain objective, uncertain solution

 Movie – uncertain objective, clear solution

 Quest – clear objective, uncertain solution

Obeng defines a Painting-by-numbers problem as one where “you and most

stakeholders are sure of both what to do and how it is done” based on similar

experience. The fact that the problem is well defined and there is a clearly defined

solution, means that technical, cost and timescale risk can be well identified; the

challenge is perhaps to do it better.

A Foggy type of problem is very different in that “you and most of your

stakeholders are unsure of what is to be done and unsure of how it is to be

achieved”. The secret of success here, according to Obeng is to “proceed very

carefully, to proceed one step at a time”.

54

Figure 6: Problem type

In the Movie type “you and most of your stakeholders are very sure about how

the project should be conducted but not what is to be done”. Typical expertise

and facilities are in place, either looking or waiting for the problem to be tackled.

In a Movie, Obeng says that concentration should be on “finding yourself a good

script and the movie will write itself”.

For a Quest, “you and most of your stakeholders are sure of what should be

done…however, you are unsure of how to achieve this”. The secret here, Obeng

says, is to “get your knights fired up and send them off to seek [a solution] in

parallel”.

Obeng’s aim is to identify that not all problems are of the same type and used

characteristics of uncertainty in both objective and solution to categorize them. In

doing so he emphasizes that a single approach was not appropriate for all. His

four types are already arranged as a four quadrant matrix as shown in Figure 6.

Whilst this type frames the problem, strategies need to be evolved that address

them and architectures designed in support of them. Painting-by-numbers is

probably the easiest to address as it involves a clear requirement and a solution

that has been established to work. In this case there is benefit around keeping

the architecture the same as before with all the experience that provides into

system properties and behaviour. If there is any change to be applied it is in

improving performance, cost or timescale of development. Such a situation would

seem to have a good fit with “lean" techniques.

Whilst the Movie type reflects a solution that is known, or at least familiar it also

has to address uncertainty in the objective. This will requires

knowledge/assurance of how the proposed solution will suit potential scenarios

that may arise. Therefore analysis should focus on devising configurations that

55

will perform best in the variety of potential scenarios. As there will always be

uncertainty in how the design can cope with requirements that are not fully known,

an architecture that can allow some adaptability or flexibility would be an

advantage; service oriented architectures are examples of this

A “quest” problem has a clear objective, but without a clear solution. In such an

instance an approach that examines a number of different possible solutions will

enable a better indication of what solutions and solution features will provide the

right effectiveness. Different architectures are likely to be required in order to

provide a useful variety of options to be considered. It is however conceivable

that having a clear view of the objective will infer particular behaviour

requirements from any solution that can lead to a favouring of certain archetypes

that are known to provide these.

A “foggy” problem on the other hand removes that clarity of requirement. In this

case iteration is normally required between a progressive maturing of the

objective requirements and the potential for their achievement through design.

As understanding of the problem becomes clearer it should be expected that

architectural strategies will be the first aspect of system design to be developed.

There can be no presumption of architecture in the Foggy problem, only there

expectation that it will evolve hand-in-hand with the requirement.

In defining his problem types, Obeng has emphasised that a single approach is

not appropriate for all and that an approach based on exploration would be

required. Here it has been argued that more detailed strategies can be applied

depending on the problem type and that the type also infers the architectural

approach to be employed.

 Management type

In the early 1960s Jay Forrester applied the concept of System Dynamics to the

industrial organization (Forrester & Cambridge, 1961). This provided the basis for

further work (P. M. Senge et al., 1994) using System Archetypes to analyse a

business as a system. The basis of his contention was that dynamic situations

could be described in terms of reinforcing and balancing loops of cause and effect

and that simulation using archetypes is able to replicate the behaviour of ailing

organizations thus providing a diagnosis of the reasons for their malaise. The

original set of around ten systems archetypes can be expressed as a reduced set

of four; Underachievement, Relative Underachievement, Out-of-control and

Relative Control archetypes (Wolstenholme, 2003). These represent situations

where there is either a problem in terms of availability of resource or in terms of

an inappropriate control action being applied (Wolstenholme, 2004a). In this

context type an assumption is made that inappropriate control is applied

unintentionally and therefore as a result of a lack of situational awareness.

56

Using axes of “lack of situational awareness” and “inadequacy of resource” the

four quadrant matrix of Figure 7 can be identified.

Figure 7: Management type

 Values type

The concept of Divergence of values (Jackson, 1994) consists of unitary, pluralist

and conflicting/coercive situations:

 Unitary - in that they all have a common goal and view of what is to be

achieved and ultimately how.

 Pluralist - in that stakeholders cannot agree on goals and tend to pursue

their own objectives, but that there is mutual benefit in the collaboration.

 Conflicting/Coercive - in that goals and objectives diverge, but that some

group or groups get their way at the expense of others.

These situations are interpreted as distinguishing between the number of

different viewpoints, and the degree of conflict that exists between stakeholders.

In a collaborative environment an increasing number of viewpoints change a

situation from unitary to pluralist. However, where there are conflicting priorities

increasing the number of viewpoints will turn a situation from a coercive or simple

conflict into anarchy. The resulting context type is shown in Figure 8.

57

Figure 8: Values type

 Complexity type

This concept makes the distinction of what problems are complex (Snowden &

Boone, 2007), defining four quadrants:

 Simple – the relationship between cause and effect is obvious to all

 Complicated – the relationship between cause and effect requires analysis

or some other form of investigation and/or the application of expert

knowledge

 Complex – the relationship between cause and effect can only be

perceived in retrospect

 Chaotic – no relationship between cause and effect at systems level

Snowden’s definitions make the distinction between difficulty in analysis which

creates complicated problems and unpredictability of outcome that results in

complex problems; the combination of the two resulting in a chaotic situation

(Figure 9).

58

Figure 9: Complexity type

 Co-ordination type

Finally Meier (Maier, 1998) distinguishes between types of organization of a

system from a unitary system to a system of systems, on the basis of operational

and development independence of its components. His definition for a system-

of-systems is:

"an assemblage of components which individually may be regarded

as systems, and which possesses two additional properties:

Operational Independence of the components: if the system-of-systems is

disassembled into its component systems the component systems

must be able to usefully operate independently. That is, the components

fulfill customer-operator purposes on their own.

Managerial Independence of the components: the component systems

not only can operate independently, they do operate independently.

The component systems are separately acquired and integrated, but

maintain a continuing operational existence independent of the system-of-

systems.”

Maier’s concept of system-of-systems contrasts with a unitary or centralized

system; a system-of-systems displays both development and operational

independence whereas the centralized system has neither of these. Considering

solely development independence will lead to an off the shelf solution (i.e.

assembled from separately developed components), whereas solely operational

independence implies an asset management case (see Figure 10).

59

Figure 10: Coordination type

 Further context types

This section, additional context types have been developed to complement the

five generated from current theory. To cover the variety of problem situations a

total of eleven context types are described. In each case it is useful to keep in

mind the question “how critical could this context type be to influencing the

required approach of the problem solver?”

 Evolution types

Obeng’s Problem Type concept is an established way of addressing a particular

problem at a given time, but often the challenge comes from how the problem

changes over time. Important considerations are: how much has the requirement

changed; what is the uncertainty of the requirement or in the solution as a result;

when and how often does the problem need to be addressed to ensure

continuous capability provision?

The rate of change of requirement is important as this will tend to erode any spare

capacity built into the system or may expose areas where the system currently

has no inherent capability. This will determine how long it will be before the

system is in capability deficit and will drive the time at which modification is

required as well as the duration of modification activity that can be tolerated. For

instance, in a rapidly changing environment, capability may need to be updated

on a regular basis and the time taken to perform the update must be consistent

with those challenging timescales in order to converge upon a solution before

further updates are required. Equally the uncertainty in requirement is important

as this will drive the type of approach needed to address the capability update

and indicate the time that the activity is likely to take. Effectively this is predicting

60

the Problem type (Obeng, 1995) that is likely to be encountered at the time in the

future when the modification will be required (Mackley, Deane, & John, 2010).

For this type the axes of the four quadrant matrix are uncertainty in future

objectives and uncertainty in future solution. If the future objectives and solution

are clear, then the situation will be one of routine obsolescence management.

This could be the situation for road vehicle rental firms; vehicle design has

remained fairly invariant over many years and the users expectations are very

much in line with what a current road vehicle can provide. However what if the

future objectives or possible solutions were not known? Imagine that current

vehicle solutions based on oil based fuels were becoming less economic and

vehicles using alternative energy become more attractive – broadening the

business to consider these would be seen as opportunity development.

Conversely, if we imagined that the technologies of cars in the future are to

become expensive and cars or their components become leased then this is more

an area of service development (such as leasing of batteries for electric cars). A

rapidly changing environment with novel and emerging solutions could be termed

as represents capability development, resembling the approach often taken in

military development, but would arguably fit well with mobile computing and

communication solutions. Evolution types can thus be identified as in Figure 11.

Figure 11: Evolution type

 Response type

The focus for this type is the urgency of the need. Depending on the complexity

of the problem, a more or less urgent need will have a bearing on the approach

taken. To characterize urgency a distinction is made between developing a

solution under normal commercial conditions i.e. working in a viable and

competitive situation, and an emergency situation where corners are allowed to

be cut or significant extra resource is justified. Urgent but non-complex situations

61

can be addressed by cutting corners as the consequences of this can be

evaluated. If a situation is both urgent and complex then simple measures are

often not appropriate as they may have consequences that in themselves can

have serious implications. In the matrix below the distinction is made between the

former, similar to the Urgent operational requirement process employed by

military organizations and the latter being a systemic emergency. An example of

a systemic emergency might be an outbreak of a highly virulence strain of flu and

its effect on a countries health service and economy. Routine and systemic

development make up the four quadrants of Figure 12.

Figure 12: Response type

 Situation type

It is clear that the starting point will have a significant bearing on the solution and

so this aspect will be key in determining the approach required. The following

situations might be encountered based on differences in uncertainty of design

baseline and the degree of change required.

The Situation Type involves consideration of what the starting point of the activity

is. For instance this may be:

 Design starting from a clean sheet, with little or no previously defined

concept of design or legacy constraint (e.g. new capability acquisition).

The truly clean sheet is not a common situation for the system designer,

although it is perhaps more prevalent in some domains than others (e.g.

defense).

 An upgrade of capability, where the starting point is going to have a

considerable bearing on the solution that might be chosen (e.g. mid-life

62

update). In this situation it will be normal to identify the “capability gap” that

needs to be met.

 A need for system review, to identify changes required to the system

baseline to be fit for the existing purpose, rather than from the definition

from stakeholders of a required change in capability.

 Simply a reconfiguration of what is already in place, but used in a different

way to solve the problem. In isolation this is a relatively simple case, but it

can also describe a system-of-systems which provides challenges of its

own (see Coordination type).

The four quadrant matrix for Situation type is given in Figure 13.

Figure 13: Situation type

 Risk type

Risk and maturity are key elements of a system development that should be

considered together. With an immature system, achieving the desired system

outcome without clear knowledge of probability of success or related

consequences represents a risk. Equally, a relatively mature system can be a risk

if there are severe consequences should it fail. Engineers work at trying to find a

suitable balance between risk and maturity of a system design. The preference

is a mature/low risk combination or a no brainer, but for higher risk situations a

project may choose a mature solution to play it safe. If there is solution immaturity

then low risk solutions represent calculated risks, with a high risk/immature

solution being a gamble.

The four quadrant matrix for Risk type could be drawn as in Figure 14.

63

Figure 14: Risk type

 Target type

Enterprises will often find themselves facing different types of target. Some

enterprises are required to deliver to strict timescales and others might have a

reputation based on the quality of their product or service. As shown in Figure 15,

these represent orthogonal axes, where a high quality challenging target situation

can be seen as an Olympic sprint compared with a relaxed timescale at a familiar

and achievable quality being the stock in trade. Critical path and gold standard

provide the remaining quadrants.

Figure 15: Target type

 Business area type

A particular challenge for a business is to ensure it has the capability to deal with

a problem, and in particular that it has a properly trained and prepared workforce.

64

A distinction can be made between the requirements that a given context places

on expertise that is gained with professional qualifications on the one hand,

compared with experience on the other. Whereas expertise might be acquired

quickly, experience has to be accumulated over time: in some areas, expertise is

in short supply and that introduces challenges of its own. Types of work are often

referred to as “collar workers”, but the different “collars” do not always reflect the

distinction of education and experience, so categories of low skill, professional,

trades, gold collar have been chosen as in Figure 16.

Figure 16: Business area

 Combination types

An analysis of the identified types shows that there are common axes. For

instance, risk type compares risk against solution immaturity whereas Obeng’s

problem types compare solution immaturity to objective uncertainty. This allows

the combination to be described as a 3D matrix introducing types of; play it safe

PBN, surefire success movie, critical quest, and freezing fog. This combination

can be described as “Problem risk type” (Figure 17).

65

Figure 17: Problem risk type

Also the types of response and complexity share an axis of complexity, which

leads to urgency being compared with both unpredictability of outcome and

difficulty of analysis. This introduces types of urgent operational requirement,

balanced scorecard, tiger team, systemic development and systemic emergency.

This is described as “Urgent complexity types” (Figure 18).

Figure 18: Urgent complexity type

66

 Problem solving approach and risk evaluation

The use of the four quadrant matrix for describing each context type, allows a

spectrum of context to be identified. Each matrix is structured in such a way that

risk increases as the value of any single axis increases. Figure 19 is numbered

to provide a reference and, in coarse terms we might conclude that quadrant 1

represents low risk, quadrant 4 represents high risk and quadrant 2 and 3

indicating a medium risk. Thus an overall context risk might be evaluated by

identifying where a given context falls for each of the types.

Figure 19: Risk evaluation matrix

For identifying risk it is important to ensure that all potential contributors are

considered. There is perhaps no guaranteed way of determining that the list of

context types addresses all elements of potential risk in a system solution to a

problem and this is an area which deserves further analysis against more

traditional risk indices. However, it is possible to identify key domains of a

system’s problem and solution space that should be considered. Key domains of

a system have been described as: product and producing domains (Mackley,

2008); product, process and organization (S D Eppinger & Salminen, 2001);

customer, functional, physical and process (Suh, 1990). These can be combined

to give domains of requirement, solution, process and organization. Mapping the

eleven context types to these four domains there is coverage in each domain with

either two or three types each.

The division is shown in Table 7. Table 7 also shows a simple illustration of the

approach for two example problems. Imagine being asked to address problems

facing the UK National Health Service, or being asked to work out a strategy for

developing a new concept of airplane based on a new distributed propulsion

concept. The table shows an analysis of both problems; the crosses represent

67

the problem of developing the new aircraft and the ticks represent the problem of

addressing the challenges of the UK National Health Service (NHS). The risk

profile for the distributed propulsion problem is analyzed as 4,5,2 and so seems

to represent a medium risk, with a tendency to areas that are manageable rather

than risky: the situation for the problem of the NHS shows a risk “profile” of 0,5,6

which indicates no easy areas, with risk in almost half the areas being high. For

distributed propulsion the risk is reasonably well distributed across the system

domains and therefore requires a balanced approach: for the NHS there are

significant organizational risks to overcome and these stand-out compared to

risks of process, requirement and solution.

Table 7: Characterizing risk: Examples

Type Quadrant 1 Quadrant 2,3 Quadrant 4

Process

Problem
Evolution
Response

 X √
X √
X

√

Requirement

Situation
Divergence of values
Management

X
X

√
√

X

√

Solution

Risk
Complexity

X √
X

√

Organization

Coordination
Target
Business area

X
X

 √
√
X √

Summary risk X (4) √(0) X (5) √ (5) X (2) √ (6)

This can be effectively visualized using the Kiviat diagram (Figure 20), which

gives an immediate pictorial view of what areas represent the greatest risk (with

1, 2 and 3 being low, medium and high risk respectively).

68

Figure 20: Kiveat diagram of example risk scores

The four quadrant matrices can be used to gain an idea of overall difficulty by

considering each type individually and assessing the combination of the

outcomes. However, this four quadrant notation has the risk of dividing up the

problem without considering the interactions. As this is a qualitative tool to inform

a strategic approach, these overlaps are considered small and are expected to

be addressed in ensuring a coherent strategy for the whole problem. Some

overlap in the context types can readily be identified by the Combination types,

which reflect combinations of issues that should be addressed to identify their

impact on the approach taken. In the examples given the Problem risk type

results in a critical quest for both the UK NHS and new aircraft concept, whereas

the Urgent complexity type emphasizes a systemic emergency for the NHS rather

than a systemic development for the aircraft.

Consideration of context type can have a bearing on the approach used; some

examples are identified in Table 8.

69

Table 8: Architectural approach according to context type (sub-type numbers are as
Figure 19)

Type Sub-type Approach

Problem

types

1. Painting by

numbers

Follow existing tried and tested process and retain existing

architecture

2. Quest Examination of solutions using an incremental approach; new

architectures are to be evolved, but may take benefits from

established patterns or archetypes

3. Movie Scenarios need to be examined to establish use of existing assets.

An existing architecture will be in place, but use of a Service

Oriented Architecture will facilitate more flexibility asset

management (Russell & Xu, 2007)

4. Foggy Iterative and exploratory approach; a new architecture is to be

evolved, but may take benefits from established patterns or

archetypes

Management

type

1. Manageable No particular action is required as the system solution is in

functioning well in its context.

2. Out of control The out of control situation means that there may be insufficient

variety in the solution to control the variety of influence in the

systems context. The solution involves increasing the variety in

solution, as identified by Ashby in his theory of Requisite Variety

(Ashby, 1991)

3. Under-

achievement

The under-achievement situation is generated in situations where

there is inappropriate resources for the system to perform. The

solution is to either establish an increase in available resources or

to increase the system variety in a way that makes more efficient

use of the available resources (Wolstenholme, 2004b).

Architecturally the solution may benefit from widening the system

boundary to enable a better policy on use of available resources.

4. Overwhelming Solution requires both an increase in resource and variety to

provide a system in balance with its context and avoid the out of

control and under resourced outcomes (see strategies for out-of-

control and underachievement above)

Values type 1. Unitary Approach can be based on Consensus, with a clear definition of

boundary and architecture. It is perhaps the simplest case for

systems engineering, where there is a clear overriding client

objective and other stakeholder requirements are defined purely as

constraints on the design. Trade-offs and architectural definition will

generally be at the design level.

2. Coercive Stakeholder views may appear unitary, but mask coercion. Ulrich`s

Critical Heuristics (W. Ulrich, 1987) can be used to establish where

the system boundaries ought to be. Regulation may subsequently

be required to enforce an appropriate architecture.

3. Pluralist In contrast to the Unitary case, there will be different driving

perspectives on the objectives, and priorities will differ. The

approach will be subject to agreement based on compromise.

Discussions will need to be informed by trade-off studies at the

requirements level and therefore require consideration of both the

functional and physical architecture of the system. Soft systems

70

Type Sub-type Approach

methodologies (Checkland, 1981a) can be used to establish

suitable compromises.

4. Anarchy There is no sense of centralized objectives and responsibility, and

therefore no coordinated strategies for achieving outcomes. No

meaningful structure exists. Architectural rules and structure need

to be established and enforced, addressing stakeholder views, but

also establishing a view of social norms (such as law and order)

Complexity

type

1. Simple The relationship between cause and effect is obvious to all

2. Complicated The relationship between cause and effect requires analysis or

some other form of investigation and/or the application of expert

knowledge

3. Complex The relationship between cause and effect can only be perceived in

retrospect

4. Chaotic No relationship between cause and effect at systems level

Coordination

type

1. Centralised Encourages the use of a standard product lifecycle using a bespoke

architecture. Both operational and managerial control over the

system allows complete control of the system and its development.

Whilst it is possible to mismanage there will not be independently

generated influences from elements within the system architecture

itself.

2. Asset

management

Operational independence is provided by establishing a service

agreement as the system requirement. The development of the

service system and provision of the service should follow a service

based lifecycle and employ a service oriented architecture.

3. Off-the-shelf To cope with ownership/managerial independence the strategy

should be to delegate development responsibility with clear

guidelines. A top down modular approach using open standardised

architecture is called for.

4. Systems of

systems

Service oriented architecture can be employed. Agile processes are

desirable in order to maximize flexibility in operation (Mackley et al.,

2010)

Evolution

Type

1. Obsolescence

management

Assumes an existing architecture, although a modular architecture

if chosen in the original concept, will reduce the burden associated

with obsolescence management.

2. Opportunity

development

Benefits from a service oriented architecture and required an

analysis of the likely scenarios to be examined

3. Service

development

Benefits from a service oriented architecture and required an

analysis of the likely scenarios to be examined

4. Capability

development

Examination of solutions to meet a capability gap. There should be

no assumption of solution (MOD, 2005)

Response

type

1. Routine Refer to complexity type for guidance. Dealing with the urgency

dimension requires agile methods (Mackley et al., 2010)
2. Systemic

development

3.Urgent operational

requirement

71

Type Sub-type Approach

4. Systemic

emergency

Situation

type

1. Reconfiguration Design is largely unchanged, but requalification is required for any

new operational requirements. This requires examination of the use

of the systems and the conditions involved to determine if there has

been an extension to the performance envelope that will need to be

re-qualified.

2. Upgrade Upgrades will usually reflect a need to modify the system as

elements have become obsolete, or because an insertion of new

technology is desired. A modular design, with standardized

interfaces will enable replacement of affected modules and result in

a minimal requalification for the upgraded build standard. Upgrade

is facilitated if it part of a pre-envisaged Incremental Development

Lifecycle model.

3. System review In cases where there is no scheduled system upgrade, but there are

clear symptoms of the system performing beneath the desired

performance levels the first step will be to diagnose an agree the

appropriate way forward. In order to identify, analysis and diagnose

the root causes of underperformance, it is appropriate to employ an

issue or soft systems analysis such as the Rigorous Soft Method

(Hitchins, 2008) or Soft Systems Methodology (Checkland, 1981a)

4. Clean sheet Design from new using an exploratory, capability based approach.

Suited to an initial approach of implementing a spiral based lifecycle

and verified for completeness against methods such as complete

systems methodologies such as Hitchins’ Generic Reference Model

(Hitchins, 2008).

Risk type 1. No-brainer Solutions to problem have relatively little risk exposure due to

experience. This requires following the established process gained

by experience. In cases of an established process, then “Lean”

techniques can be considered to improve time, cost or quality.

2. Calculated risk Despite lack of maturity, the relatively low level of risk means that a

trial based approach is both acceptable and desirable as it can

provide validated outcomes to converge on the solution.

3. Play it safe Risk consequence requires an established, tried and tested

approach. Tends to be highly procedural based on previous

experience and changes to established architectures and design

are resisted due to the effort and cost of requalification.

4. Gamble This applies for situations where there is tangible risk to the system

or its context and typically this would be a safety or security issue

or other situations with significant implications on an enterprise.

With the lack of confidence, fail safe measures need to be

incorporated to limit the damage in case of unforeseen behaviour.

Target type

and

Business

area type

Refer to the enterprise rather than the product system and so not considered

72

5 A MODULAR APPROACH TO SYSTEMS DESIGN

 Basic principles of the System Design or Architecting

process

Architecture concentrates on arrangements of entities or elements rather than

their detailed design; the intention is to put in place a framework for the detailed

design activity in order to ensure a good solution. A basic principle of the system

design or is one of order. By applying order to a problem it is possible to:

 understand how it works

 provide benefit from the structure achieved

 manage concurrent achievement of desired outcomes (Crawley et al.,
2004).

The understanding of systems becomes more difficult as systems become more

complex and hence the role of architecture becomes more important. Bar Yam

(Bar-Yam, 1997) defines characteristics of a complex system as:

 Elements (and their number)

 Interactions (and their strength)

 Formation/Operation (activities and their objectives/ timescales)

 Diversity/Variability

 Environment (and its demands)

Here, Bar Yam identifies that the complexity of a system can be both in product

and its producing systems, both of which need to be examined by the system

designer for an effective solution (Mackley, 2008). In Bar Yam’s terms, the

product architecture consists of elements, interactions and operational activities,

whereas the producing system is similarly described by elements and

interactions, but associated with development rather than operation. Whilst Bar

Yam’s characteristics are instructive in highlighting that complexity is both in the

system and its associated development processes, his definition does not make

a distinction between them. Gershenson and Prasad (Gershenson & Prasad,

1997) describe “attribute independence” and “process independence”, where the

“attributes” refer to the physical attributes of a coffee maker and the “process”

refers to the process of making it. Here “process similarity” is a means of grouping

“components and sub-assemblies which undergo the same manufacturing

processes”. The consideration of the product and its production as distinct

systems allows architecting principles to be applied to the design of both.

Therefore, in this research it is proposed to reduce the characteristics so that the

73

definitions can be employed identically to either product or process i.e. complexity

of elements/activities, complexity of interactions, complexity due to variety

(diversity/variability). Complexity due to environment is external to the system.

The analysis of Table 9 allows a direct mapping between the complex system

characteristics identified and the systems architecture principles discussed in

Chapter 2 (simplicity, modularity and similarity, where independence is

considered a strategy that promotes modularity).

Table 9: The influence of architectural principles on Bar Yam’s system characteristics
(product and process)

Simplicity
Modularity/

independence
Similarity

Complexity of
Elements

Simple elements
reduce complexity

Modularity does not
reduce element
complexity

Similar elements do
not reduce their
individual element
complexity

Complexity of
Interactions

Similar elements do
not in themselves
reduce interaction

Modularity reduces
interaction

Similar elements do
not in themselves
reduce interaction

Complexity due
to Variety

Simplicity is not a
guarantee of less
variety

Modularity is not a
guarantee of less
variety

Similarity reduces
variety

The table indicates that the complex or complicated characteristics of both

product and process can be addressed by clear and understood principles of

architecting. The complexity of elements and their variety are often determined

by suppliers and are not under the direct control of the system designer and it

therefore might be argued that the greatest influence that the system designer

can have is to influence the complexity or complication of the interactions. It is

possible to see how interactions can be used to manage this by reference to the

following figures, which depict functional coupling.

74

 Figure 21: Functional grouping without
order

Figure 22: Functional grouping with order

Figure 21 and Figure 22 show a diagrammatic representation of a group of

functions and their interactions. The first shows an apparently complicated

network of interactions, but the second shows the same set of functions and

interactions arranged in a much more orderly way. This is functional clustering,

which is a key element of ensuring a modular design. This arranges functions into

groups that minimise the amount of interaction outside of the group, which is an

advantage both for the system in operation and also in development where one

could imagine that the design activities associated with each group could be

managed relatively independently, whilst checking the simple interfaces outside

the group on a more occasional basis. Whilst the functional architecture is an

abstract notion, it has a physical implication in that it describes an efficient way

of organising the system design and development activity.

When functions are subsequently allocated to subsystems then often the

clustering is not preserved as in Figure 23. The misalignment between functional

and physical elements then threatens to remove the benefits of order in the

functional architecture by partitioning it in the physical design. Inspection will

show that the number of interfaces between the physical elements is now

increased, representing an increase in complication that will make the system

design harder to manage.

After functional clustering

B

A

E

F

G

I

H

J

DC

Functional clusters

- simple external interfaces

within cluster

- closely related elements

- high internal COHESION

Before functional clustering

B

A

E

F

G

I

H

J

D

C

Functions

- apparently complex interactions

75

Figure 23: Reduced order after allocation to subsystems

If the functional and physical architectures were made to align, the benefits of a

well-structured functional architecture could be returned, which is the principle

behind functional independence. There is however no guarantee that other

influences will allow such an alignment (Sako, 2003); for instance, a favourable

solution for clustering for functional reasons might not be good for others. Whilst

functional grouping is important, other influences can be drivers such as non-

functional, organisational and lifecycle influences:

 Physical influence: groupings in terms of subsystems, units or modules of

hardware or software that are developed independently as part of a system

hierarchy

 Non-functional influence: groupings of elements of the design that are

associated with improving a specific quality attribute

 Organisational influence: where the groupings of elements are such that

analysis and development of elements of the design are facilitated

 Lifecycle influence: an arrangement of elements of a design that suit

different lifecycle stages; for instance, an arrangement for development

may not suit the maintenance policy or disposal policy

Put in another way, a design that is ordered according to function expedience,

may not suit its non-functional management, its physical allocation, its

organisational ownership or its lifecycle management. A way of arranging the

various architectures with respect to each other is needed and as function reflects

what the stakeholders require from the system then this is the most logical place

to start. A method for addressing the functional partitioning problem is proposed

in the next section: when this is addressed, the other domains can also be

considered.

After allocation to subsystems

B
A

E

F

G

I

H

J

DC

Subsystems

- increased interface complexity

76

 System Design: Functional

 Functional Interaction Types

As identified in the previous section, a key aspect of architectural design that the

system designer can influence, is the management of the complication of the

interfaces. Attention should be given to this as early as possible in the system

design process, but to do this requires sufficient understanding of how functions

will behave, which is often not known at an early stage. Functional analysis is

often described in terms of data flow diagrams that describe the data interface

and sequence of activities (e.g. Yourdon, SysML), but these methods do not

describe the nature of the function that is key to a system’s behaviour and to the

way it can be analysed and managed. The earlier literature search has identified

that many analysts view architecture as a matter of coupling and that this can be

used to some benefit in using the method of Design Structure Matrices to produce

a modular design Section 2.5.2. However, this doesn’t take into account the

criticality of the interfaces or their behaviour; greater independence is expected

to be achieved by virtue of reducing the number of interfaces without recognising

that some interfaces are more important, or critical, than others. It is a contention

of this thesis that functional interactions can be classified in a way that indicates

their importance in architectural terms.

The literature search has shown that interfaces have been characterised by what

is transferred across the interface (energy, material, information, forces) or by

spatial dependency (Steven D Eppinger & Pimmler, 1994)(Sosa, 2003). In the

majority of cases researchers have attempted to assign a somewhat subjective

numerical importance to each (Sosa, 2003) (Yassine et al., 1999). Importance of

an interface is made without knowledge of its intricacies and hence challenges to

the system design. Suh’s stipulation that a feedback relationship is not

considered acceptable for an external interface (Suh, 1997) is an attempt to

understand such functional intricacies in terms of the effect it should have on

system architecture. Different types of system provide candidates for the potential

intricacies of interface. This research has identified that control systems, service

systems, decision systems, command systems, critical systems and soft systems

all have functional constructs types that need to be considered or prioritised. In

reality a system design often incorporates more than one of these functional

constructs, which will be defined as ‘functional interaction types’. They represent

types that help to understand how the required functionality will be achieved, how

it will behave and how it can be analysed and managed. They are important to

the systems designer in order that he/she can formulate logical system concepts

and differentiate between them on the basis of their interaction difficulty or

importance.

77

The following types have been identified:

 Chain interaction type – the appropriate execution and performance of a
sequence of bespoke activities

 Loop interaction type - control of a parameter or property according to a
demanded value

 Service interaction type – external provision of activity or resource
according to agreement to potentially more than one client

 Judgement type - determination of course of action based on various
sources of available information

 Human issue – issues of human interaction that influence the way that a
system should be designed

 Physical Interface type - functionality associated with interconnection and
often transfer of energy

For all of these types, an architectural partitioning of the system needs to avoid

the inappropriate division of functionality.

A chain interaction type is defined as the appropriate execution and performance

of a sequence of bespoke activities. In a chain, it is important that the integrity of

the chain is maintained, which could be viewed as a required reliability or trust

between individual links in the chain. Threats to the chain interaction type would

be a fault, interruption or unacceptable delay. Two subtypes have been identified

and these are critical chains and functional chains. A critical chain requires an

automatic and immediate response between an activity and its predecessor,

regardless of other events, requiring singular purpose and priority in design.

Creating an architectural interface along a critical chain would introduce

complication to its behaviour: what potential delay might be introduced; what

impact would this have; what would be the impact of a failure? If chosen in the

wrong place it can lead to the creation of a complicated interface, making the

specification of the required performance difficult to manage. Without appropriate

safeguards, these chains will be mission or safety critical and therefore affect the

reliability and safety characteristics of the system. A functional chain on the other

hand consists of a set of functions where the dependency is ‘pull’ in nature (i.e.

on demand), rather than the ‘push’ of a sequence chain. The pull nature reduces

the degree of coupling and makes it amenable to system partitioning, but the

functional association is one that should discourage partitioning across

organisational boundaries, as the resulting functional allocation can be difficult to

manage between organisations. Examples of chains in systems design are

mission chains, supply chains, failure chains and safety chains.

78

A loop interaction type is a set of activities that control a sequence, parameter or

property according to a set criterion or demanded value. Poor loop performance

can lead to instability, inadequate response to events or residual errors. There

are two sub-types that require different considerations, the first being the control

loop where it is inadvisable to create an architectural interface within a highly

performing control loop as delays introduced are likely to cause instability and

affect performance. In missile design, this issue can be encountered when

considering the centralisation of inertial measurement in a single Inertial

Measurement Unit. This often requires communication of measurements across

a databus to ‘distant parts’ of the missile and this process can introduce

unacceptable latency in the data. As a result, certain inertial instruments may be

duplicated in the distant location to “shorten” the loop, improve response and

reduce latency. The second sub-type is the on-condition loop; functions that are

logically connected by the need to fulfil a condition before an activity can or should

progress. The need to consider them together is one of considering overall loop

performance. Meeting the loop performance is normally one of adequate

budgeting rather than continuous monitoring and changing loop parameters (as

is the case with the control loop type). This makes it amenable to system

partitioning, but the need to budget would favour constraining the design within a

single organisation. Examples of loops within system include feedback loops

such as guidance loops and control of system environmental factors.

The service interaction type is an external provision of resource provided in

accordance with an agreement and has potentially more than one client. A

service is designed to comply with a predefined and agreed level specified by

another organisation and therefore this is logically amenable to both system and

organisational partitioning. However, where there is more than one client, this

requires planning to ensure sufficient capacity. Considerations for the service

interaction type are timeliness, availability, capability to provide the service and

flexibility to interface tolerances. Threats to the type are shortage of resource,

untimely provision and difficulties in planning. Examples of services in systems

are in resource management, maintenance and ‘handover basket’ strategies; the

latter is one where a set of tolerances around a required value are provided in

order that a critical dependency is avoided i.e. any value within tolerance is

acceptable, which is then more amenable to non-bespoke solutions.

The human issue type includes issues of human interaction that influence the

way that a system should be designed. Human issues require different

approaches such as that of Soft Systems Methodology (Checkland, 1981a),

which represents a different approach to the more traditional engineering

methods. However, soft issues still manifest themselves as interface challenges.

Waring identified several common issues (Waring, 1996) of which conflict,

pressure, solidarity and knotty problem all represent different interface problems.

79

In architectural terms, parties that are in conflict should normally be kept apart to

avoid the conflict escalating. Both pressure and knotty problems represent those

that are difficult to resolve – complex/complicated interfaces that require scrutiny

and cooperation; architecturally these are entities where it would be inadvisable

to design or organise them apart from each other. However, solidarity is an

indicator of single purpose and agreement – often parties in solidarity and with

strong agreement allow them to be easily considered across organisational

boundaries.

The judgement type recognises the decision making element of a system (most

likely human) and critically includes not just the decision-making element, but

also the availability of suitable information required in order come to an

appropriate decision. Such judgements are encountered in command and control

structures, where appropriate situational awareness will be required to make the

decision. Appropriately accurate and timely information will be required to make

good decisions and so this is an issue that should be addressed architecturally.

The issues raised in the consideration of these functional interaction types are

undoubtedly important in the architectural decisions that a system designer has

to make. In a system design process, it is not sufficient to identify functions in

terms of their sequence and dataflow, but there is also a need to consider them

in terms of their type and the challenges that this can infer. Such a determination

will help to guide the choice of system architecture by preserving elements that

require close coupling, whilst allowing more freedom in the remaining cases

where close coupling is not needed.

 Partitioning by functional interaction type

Morris (Morris & Parnas, 1971) recognised the need to keep certain interfaces

internal to subsystems (encapsulation), which requires an identification of what

these interfaces are. Table 10 takes each of these types and summarises the ones

that are amenable to partitioning in a systems design, and which ones aren’t,

based upon their behavioural intricacies. As identified above, there are some

types which are amenable to partitioning from a behavioural perspective, but

where the need to coordinate the design means that it is advisable to keep the

design activity within the same organisation structure in order to provide

appropriate management to provide a coherent design.

Whilst at this stage purely functional drivers are used to advise on partitioning in

physical and organisational domains, appropriate management of functional

drivers can also be envisaged to address non-functional performance, as the

functional interaction types allow the appropriate management of behaviour

across interfaces and hence promote benefits in terms of such quality attributes

as performance, reliability and safety.

80

There is also legitimate concern over how different lifecycle stages should impact

the system architecture, especially as organisational boundaries can be expected

to vary over a system lifecycle. In industry, movement from one lifecycle stage

to the next is often dealt with as a service type of relationship (for instance a

transfer from an engineering organisation to a customer support organisation)

which helps to ensure that it is amenable to partitioning, but it is in danger of

ignoring benefits that might be achieved for instance by feedback of in-service

experience into an evolving design baseline; this is often referred to as “over the

wall” (Steven D Eppinger, 1991)(Loch & Terwiesch, 1998).

Table 10 summarises the functional interaction types and the advised rules to

managing the interfaces according to the earlier discussion. Three columns are

provided: a) interactions that require separation; b) interactions that should be

kept in the same physical subsystem; and c) interactions that should be contained

in the same organisation. When a functional design has been devised (in

accordance with stakeholder requirements) then the system designer can use

these rules to decide on appropriate subsystem boundaries and organisations in

order to maintain appropriate functional interactions in the architecture.

As described, these definitions allow the following categories for characterising a

system architecture with a view to functional partitioning:

 Unsuitable interactions – situations where functional interaction types
suggest that a system interaction should be separated, which is applied to
human conflict issues and the advised ‘un-sharing’ of shared services

 Fundamental blocks – functional interactions that suggest a critical
dependency that should be kept together (push chains, control loops,
shared services and complex/pressured human issues)

 Organisational constructs – coupled functions that benefit from
organisational structure (functional chains, on-condition loops and
judgements)

 Partitioning points – functions interactions that involve a natural break in
cause and effect so are more amenable to partitioning (exclusive services,
solidarity and agreement)

81

Table 10 Definition of Functional interaction types

Type Definition a) Require
separation
?

b) Keep
within
subsystem

c) Keep
within
organisn

Additional advice Mitigation

Service Shared A non-exclusive functional
relationship that is made
available to others according
to an agreement

 Ensure availability and capacity
given conflicting demands of
multiple users. Minimise sources

Overcapacity

Exclusive Exclusive provision at any
one time of an agreed
function

X x x N/A

Chain Critical (or
Push)

A prescribed and automatic
sequence of functions

x Keep chains short, consider in
parallel. Approach depends on
failure probability and impact

Redundant failure
mechanisms

Functional
(or pull)

A functionally dependent
association

x x Keep chains short, consider in
parallel

Establish performance
budgets

Loop Control Control of a parameter
based on feedback based on
the value of the output

x Ensure requisite variety, stability
depends on response

Stability of system to be
established

On-condition Control of activity according
to a set condition

x x Balance loops to manage flows Establish performance
budgets

Human
issues

Complex
(knotty),
pressure

A function that is provided to
address a human issue

x x -

Conflict x x Establish precedence Arbitration

Agreement
(+solidarity,
Trustworthy)

x x x N/A

Judgement A function where choice is
made between options on a
way forward

x x Ensure adequate situational
awareness, sufficient options
and appropriate quality of
information.

Clear procedure on
available options

82

The definition of functional interaction types is aimed at providing a novel way to

help the system designer to establish where the partitions and boundaries of the

architecture should be. In the literature, a decoupled or independent architecture

can help to deal with complication by simplifying its interactions. However, it is

also clear that and uncoupled or fully independent system is often not desirable;

a system is often looked on favourably as “more than the sum of its parts”, but

full independence would entail a product that is only the sum of its parts. Orton

describes the appropriate use of independence as the pursuit of the “loosely

coupled” system. The system designer’s role is therefore to ensure that elements

of the system are decoupled and independent where the benefit outweighs any

corresponding loss of opportunity. Whilst current architectural techniques focus

on determining where architectural boundaries should be placed, functional

interaction types also enable the designer to decide where boundaries should not

be placed. The approach of only constraining decisions that are of a key

architectural significance is supported by Tyree and Akermann in their paper

(Tyree & Akerman, 2005).

In the first step of systems design the system functions are identified and to create

a modular architecture it is usually possible to identify closely related functions

that can be analysed independently. If a critical dependency is allowed between

groups of related functions, then the analysis and management of the function

becomes more difficult. Subsequent allocation of functions to subsystems may

cause critical dependencies across physical boundaries, which complicates the

specification of the interfaces and subsequent integration. The partitioning of

fundamental blocks and their critical interactions across functional boundaries

(i.e. between functional chains) and across subsystem interfaces should

therefore be avoided.

The above strategies based on functional interaction types should be considered

by the system designer in creating an architecture. Having created a view of the

functional interactions, unsuitable interactions should be examined first and

shared services should be avoided or turned into individual exclusive services

where possible. Then fundamental blocks should be identified so that they are

not inappropriately partitioned in either the physical design or within the

development organisation. Organisational constructs can then be identified as

groupings of the functional design that need to be developed together. Finally,

partitioning points can also be considered when deciding on the system

architecture.

83

Coupling isn’t just a static concept and there are dynamic and unpredictable

dependencies that need to be considered at the interface that can provide both

functional and non-functional benefits:

 Independence and failure: longer chains make the task of system design

harder as it reduces the options available to partition the design. Benefits

can therefore be achieved by reducing chain length where possible. Where

critical chains have to be split it should be ensured that no single fault

failure along the chain should result in a failure at a physical subsystem

interface

 Parallel activities: dependence is created if activities are carried out in

series. Therefore, activities that are not related in a chain should be

considered to be in parallel where possible

 Balance activities: activities designed in isolation may operate at different

rates which can result in a mismatch in flows that can cause either a build-

up of stock or a failure to supply. Service agreements will need to be put

in place, and the provider will need to allocate an appropriate stock level

as part of the agreement

 Identifying Functional interaction types in a system

In order to help the system designer to identify functional interaction types in a

system, are there generic types that occur within systems in general? For

instance, partitioning by the rules of the previous section we would expect that

there should be external interfaces of the following types:

 Exclusive services

 Human relationships of agreement, solidarity and conflict

Within a given organisation interfaces for the following might be anticipated:

 On-condition loops

 Functional chains

 Complex human relationships

 Judgement

Terms such as “supply chain” and OODA loop (Observe, Orient, Decide, Act)

suggest that there might be generic instances that a system designer could

search for. In order to identify these instances, a generic view of a system could

enable such interactions to be identified. The Generic Reference Model (GRM)

identifies a generic and complete set of functions that any system requires,

comprising Mission, Viability and Resource management functions. Stakeholder

84

needs are used to identify Mission functionality and further system functionality

is generated for system viability and management of resources. Its focus on

producing a complete functional picture means that it offers the prospect of

forming a complete design, but can also be used to distinguish functional

interaction types.

Hitchin’s GRM, firstly can be used to distinguish between functionality driven by

external influence and that generated from internal needs. These different

functional areas are shown in Table 11.

Table 11: Internally and externally stimulated functionality of the GRM

 Internally stimulated Externally stimulated

Mission None Inputs, cooperation

Viability Synergy, maintenance,
homeostasis, evolution

Evolution, survival

Resourcing Store, distribute, convert Acquire, dispose

Already, the division between internally and externally stimulated functionality

helps to identify the service types, as an external interface to a system will be

under the responsibility of a different design authority and should not be allowed

as a critical interaction. To gain further benefit from the model, further interactions

need to be identified - Hitchins has not explicitly identified all of the relationships

and their specific nature as he uses the model as a model of functional

completeness rather than one for analysing functional structure. For this

research, functional relationships within the model are explored, building on

Hitchins’s work to represent the causal dependencies in Figure 24. The causal

loop notation facilitates the visualisation of loops and chains in particular. The

behavioural model, by its nature, involves decisions or judgements that are

readily identifiable as dependencies to the rest of the model. Finally, as

mentioned earlier, services will typically be identified at external interfaces of the

model.

85

Figure 24: Influence diagram of relationships of Hitchins' Generic Reference Model

Collect
information

Set/ reset
objectives

Strategise &
plan

Execute plan Cooperate

Survival

Maintenance Synergy

Homeostasis

Evolution

Acquire

Store Distribute

Convert
Discard

excess/waste

Environment

Cognition

Selection

Response

Knowledge Belief Constraints

Motivation

Behavioural
options

Viability

Resource

Mission

Behaviour

Resources

Control of
resource

Resources.

Awareness of
resources

Further
options

Activities

Effect

Information

Information,Information.

Related
systems

Resource,

Interfacing

Revised
objectivesRevised intent

Self
Awareness

Revised
intent.

Environment. Waste

Input
resources

86

Some functional interaction types can be seen to relate very strongly to certain

elements of the model as outlined in the Table 12.

Table 12: Relationships between functional interaction types and the GRM

GRM element GRM sub-
element

Corresponding
Functional Type

Typical question to help identify
functionality

Behaviour Judgement What decisions are made?

Mission Information Service with wider
system

What are the information
requirements?

Cooperation Service with wider
system

What external service
agreements are required?

Objectives,
strategy,
execution

Functional Chain What chain of activities needs to
be performed to complete
mission?

Loops (OODA) What decisions involve feedback
of mission outcomes?

Judgement What decisions are made as part
of mission?

Viability Evolution Service What is lifecycle management or
impact of environmental threats?

Survival Chain How to respond to urgent
threatening events?

Homeostasis Control loop What internal conditions need to
be controlled?

Maintenance

Service What demand is there for
maintenance activity?

Synergy Functional Chain What chains exist across
subsystems?

Control loop What loops exist between
subsystems?

Judgement What decisions are made for
reasons of synergy between
subsystems?

Resource
Management

Acquisition,
Disposal

Service with wider
system

What is relationship/ constraints
with wider system from supply?

All Chain How is supply managed from
acquisition to disposal

Judgement What decisions are made about
resource management?

Such a table can therefore be used to help check that functional interaction types

have been comprehensively identified within the design.

87

 Applying function interaction types

The concept of functional interaction types provides rules that a system designer

should follow in partitioning a system architecture. According to the discussion of

section 5.1, the system architect should first create a meaningful architecture

from a functional point of view and then, in the interest of maintaining functional

independence, try to preserve this in the physical architecture. The development

of the functional architecture is then achieved by the identification of functional

chains, defined in Table 10 as a functionally dependent association. A functional

chain will consist of tightly coupled functions identified by clustering techniques

such as N2 or DSM. Achieving the required system functions is key to meeting

the system stakeholder needs and therefore to the system development. The

functional architecture is also key to determining the behaviour of a system and

the system designer should ensure that unsuitable interactions and fundamental

blocks are preserved where possible by firstly the functional chains and

subsequently by the choice of subsystem boundaries.

If it is not possible to manage the unsuitable interactions or observe the

fundamental blocks in all cases, which may be anticipated in a real design, then

guidance is needed for the system designer on what action to take. When using

DSMs, guidance is implicit in the clustering process, but this performs a

somewhat arbitrary and subjective assignment of weights to each interface based

upon its complexity or criticality. Suh takes a different approach with an analytical

technique for applying his Information axiom. The basis of his concept is that

there can be a parameter associated with any interface, information, that can be

calculated and that the greater the information the more critical that interface is.

However, this is often not an intuitive measure and the threshold at which an

interface conveys too much information to be decoupled is not, and cannot be

objectively determined (Suh, 1990). Therefore, in the literature there seems to be

no such guidance on when decoupling might be performed across a critical

interaction. For this research, a critical interaction is one where the needs of

managing unsuitable interactions and fundamental blocks cannot be respected;

reference to the earlier Table 10 identifies these as shared services, control

loops, critical chains and complex and conflict human issues. The different

function interaction types exhibit different behaviour and therefore it should be

expected that they will require different criteria to evaluate whether decoupling

can be applied; decoupling should only be accepted where a clear and

manageable solution exists. Suggestions of solutions for each type is dealt with

individually below and the case presented for each:

 Shared service: The capacities of resources supplying the service should

be sufficient to support a viable service in a worst case scenario.

88

 Control loop: Margin of stability is acceptable. Such a margin could be

judged by sensitivity studies using initial simplified representations of the

control systems employed.

 Critical chain: Redundant mechanisms need to be in place for the event

that a chain is compromised by failure (thus removing the need for detailed

failure investigation), with a priority interrupt functionality designed at the

interface to ensure timely response.

 Human conflict issue: An agreement to an independent and binding,

arbitrated solution is required.

In such cases, the issue with splitting a fundamental block is mitigated and this

should be taken into account in an evaluation of the architecture, on a case by

case basis.

 System Design: Physical

 Architectural approaches to Physical design

There are several factors that should be taken into account in influencing the

physical architecture of the system. Firstly, the physical architecture will receive

benefits from addressing the functional drivers outlined above; the benefits of

which will be to greatly facilitate the physical design process by designing-out

unnecessary complication. In doing this it may be possible to combine or

modularise some of these functional elements; such benefits may include cost

savings and increased reliability due to a reduction in parts. There may also be

groupings of functionality that make sense from a physical rather than a functional

perspective. For instance, if a number of chains call upon the same functionality,

consideration can be given into creating that functionality as a shared service

(with appropriate mitigation).

Benefit can also be gained from using principles discussed by Suh (N P Suh,

1990; see 3.2.4.1); the implications of these concepts and corollaries are

restructured below in a way that is easier to reflect in design practice, as follows:

 Remove unnecessary functionality

 Specify largest acceptable functional tolerances

 Streamline both parts and interfaces of the system (a reduction in parts

that as a result increases coupling and therefore interfaces, should be

avoided)

 In evolving the design, focus on existing functions that are both useful and

proven

89

 Choose design solutions that are simple to represent and make

These are very practical aspects of design and their implications are clear – the

design will become less complicated and there will be less interactions that the

architecture needs to address; the concept of simplicity is one of preparing the

design to be partitioned. Emerging from analysis of all of these architecting

principles are two types of approach; firstly the design of the artefact themselves

and secondly the way that they are allowed to integrate.

Strategies that influence the design of artefacts are:

 Specify largest acceptable tolerances (artefacts are less reliant on

interface quality)

 In evolving the design focus on existing functions and solutions that are

both useful and proven (use mature and understood building blocks)

 Choose design solutions that are both simple to represent and make (less

complicated by design)

Strategies that influence integration are:

 Independence (mapping of solution to function is simpler and so, therefore,

is integration)

 Removal of unnecessary functionality (less functionality requires less

integration)

 Streamlining parts and influences of the system (less parts require less

integration)

Apart from the benefits from functional design there can also be benefits attached

to strategies from the arrangement of internal elements and arrangement with

respect to external elements. Whilst it is almost certainly not possible to

determine an architecture that can guarantee that a design has particular quality

attributes, architectural strategies might be employed to promote quality

attributes and improved effectiveness of the design. This is addressed in the

following section.

90

 Architectural strategies for improving quality attributes and

achieving effectiveness

Although formal architecting techniques are often not employed in practice, when

they are, they focus upon the reduction of functional coupling when partitioning

the design to the physical subsystem structure. Current approaches are of limited

effectiveness as:

 Methods for identifying functional coupling tend to be simplistic (as

discussed earlier)

 The design is considered only in its broadest sense as a functional to

physical mapping; other ‘architectures’ could be used to control a systems

performance in terms of safety, reliability, security, thermal properties etc.

The use of function interaction types, provides a means to avoid the

oversimplification of the first of these points. The second point has been

discussed by others (Wijnstra, 2001; Woods & Rozanski, 2005), the latter

proposes an ‘architectural perspective’ as a collection of guidance on achieving

a specific quality attribute in a system. The guidance however is a set of

guidelines and best practice rather than a set of architecting principles. Klein

(Klein et al., 1999) suggests an approach of developing attribute based

architectural styles. To establish these styles, activities required to improve each

quality attribute are examined in order to establish useful principles and

architecting techniques. This approach, apart from identifying important principles

and techniques for a given attribute, can also help identify those that are common

across many attributes. In this way the system designer can ensure that all

relevant impacts of techniques being performed in pursuit of a specific quality

attribute can be recognised.

Various practitioners/researchers in this field have identified the need to “design

for” certain design attributes. Suh talks about designing for manufacture (Suh,

1990) and Ulrich and Eppinger about design for production (K. Ulrich & Eppinger,

2008). Wasson takes a much more comprehensive view, suggesting that there

are strategies that enable design for comfort, interoperability, reliability,

availability, portability and more (Wasson, 2006). However, not all of these

strategies relate to the design of the architecture. In order to understand the

potential benefits, the nature of design and how it contributes to effectiveness

need to be determined. A means of achieving this in practice was to ask four

questions about design practice for each required attribute. These are

summarised in Figure 25 as:

 Enabler: architectural strategies that will result in an improvement in

effectiveness

91

 Constraint: constraints that may prevent an improvement in effectiveness

 Potential additional benefits: what other benefits might be derived from

strategies employed

 Potential negative consequences: where design may reduce the

effectiveness of the solution in other areas

Figure 25: Generic “design for” influence diagram

This has been used to identify aspects of the design that can be used to improve

or control the quality of the design, and which of these can be related in some

way to architectural strategies. Examination of all quality attributes enables a

synthesis of architectural areas/strategies that should be addressed to provide a

balanced design. The list of quality attributes examined were those of Mackley

(Mackley, 2005) as this was shown in the literature research to encompass all

other methods. Where possible, in each case a detailed definition is provided

from Wasson’s book (Wasson, 2006) which in turn reflect definitions from the US

Department of Defence (DoD).

As expected, there are some quality attributes that can be directly influenced by

architectural influences, whereas other attributes cannot. It is recognised that

such an approach cannot hope to capture all possible architectural strategies for

improving system effectiveness, but is a structured and systematic method

designed to identify as many as possible.

92

Design for Reliability “the ability of a system and its parts to perform its mission

of a specific duration under specific operating conditions without failure,

degradation, or demand on the support system” (Wasson, 2006) is as in

Figure 26.

Figure 26: Aspects of design for reliability

From this, appropriate architectural strategies contributing to reliability,

availability, maintainability and survivability are:

 Use of redundancy to minimise impact of faults

 Using environmental shielding to protect and extend life of components

 Minimising the potential fault chain to reduce overall impact of an event

Design for

reliability

Unintended
- cost, space,

mass, energy use

Intended
- Availability

- Survivability
- Maintainability

Enablers
- Redundancy (Von Alven, 1964)

- Environmental shielding(Kapur &
Pecht, 2014)

- Fault isolation(Isermann, 2006)
Derating

Constraints
- External environmental influence
- Point in lifecycle
- Usage cycle

Design for

reliability

Unintended
- cost, space,

mass, energy use

Intended
- Availability

- Survivability
- Maintainability

Enablers
- Redundancy (Von Alven, 1964)

- Environmental shielding(Kapur &
Pecht, 2014)

- Fault isolation(Isermann, 2006)
Derating

Constraints
- External environmental influence
- Point in lifecycle
- Usage cycle

93

Design for Maintainability “the ability of an item to be retained in, or restored to,

a specified condition when maintenance is performed by personnel having

specified skill levels, using prescribed procedures and resources, at each

prescribed level of maintenance and repair” is as in Figure 27.

Figure 27: Aspects of design for Maintainability

94

From this, appropriate architectural strategies are:

 A suitable general physical layout

 Appropriate Line replaceable unit definition

 Use of a Standardised architecture/interface definition

 Supportive supply chain

Design for safety “the application of engineering and management principles,

criteria, and techniques to optimise safety within the constraints of operational

effectiveness, time, and cost throughout all phases of the system lifecycle” is as

in Figure 28.

Figure 28: Aspects of design for safety

From this, appropriate architectural strategies contributing to safety are:

 Partitioning and isolation of components

 Energy containment

95

Design for operability “the ease with which a user can learn to operate, prepare

inputs for, and interpret outputs of a system or component (usability)” is as in

Figure 29.

Figure 29: Aspects of design for operability

From this, appropriate architectural strategies contributing to operability are:

 Physical layout for human manipulation

 Presentation of information

Design for compatibility is as in Figure 30.

Figure 30: Aspects of design for compatibility

96

From this, appropriate architectural strategies contributing to compatibility are:

 Standardisation

 Tolerance

 Protection

Design for survivability “the capability of a system and its crew, if applicable, to

avoid or withstand a hostile man-made, natural, and induced operating

environment without suffering an abortive impairment of its ability to accomplish

its designated mission” is as in Figure 31.

Figure 31: Aspects of design for survivability

From this, appropriate architectural strategies contributing to survivability are:

 Size

 Separation

 Protection

97

Whilst this is a useful and informative analysis for each attribute in isolation, the

question should be asked as to how these architectural strategies can be applied

together. There is doubt as to whether all quality attributes lend themselves to

the analysis of an architecture. Alexander was concerned about this in his book

(Alexander, 1964) as discussed earlier. However, this analysis has shown that

there are architectural strategies that can be seen to contribute to various system

quality attributes for which examples are identified below:

 Survivability by means of physical separation to protect redundant
systems; by compression/size reduction to reduce probability of
damage; by insulation against external sources of energy

 Reliability by managing internal sources of energy

 Safety by grouping safety critical items in one place for ease of
management and by separation/insulation from sources of energy

 Security by grouping elements in at various levels of security and
controlled coupling by access control

 Maintainability by providing sufficient spacing for access

 Environmental compatibility by creating physical separation/insulation
or by managing adjacencies

 Operability by close physical design layout

These architectural strategies can be categorised as being of cohesive and

dispersive influence3 (Hitchins, 2008):

 Dispersive influence: system elements can need to be separated or
insulated from each other

 Cohesive: system elements can need to be:

o Close or associated with each other

o Connected to each other (such as design for energy transfer
interactions4)

Table 13 describes how dispersive and cohesive strategies can be used to
influence quality attributes.

3 Note: N squared analysis may be used to produce a dispersive or spatial assessment matrix
with a score of 9=close, 5=no preference, 1=apart/insulated. If the necessary separation cannot
be realised then insulation measures will be required
4 Gu (Gu & Sosale, 1999)maintains that this is a function of the system. This method makes a
distinction between functions required for the mission of the system and secondary functionality
from specific design features.

98

Table 13: Design for influences in system design

 Survival Maintain Operation Ext comp Safety Reliability Int comp

Dispersive
(separated/
decoupled)

Distant Distant Distant or
Insulated

Distant or
insulated

Insulated Distant or
Insulated

Cohesive
(encapsulate-
ed)

Close Close Close or
Conducting

 Close or
Conducting

To the system designer this indicates that, in considering groupings of
components, quality attributes of survival, operation, external and internal
compatibility can be influenced. Effective separation between components allows
influence of survival, maintenance, safety, reliability, external and internal
compatibility. The aspiration is to achieve an architecting process that can aid in
increasing the effectiveness of systems design. Alexander suggested that Quality
Attributes were too abstract to allow clear cause and effect between design and
these attributes; the point he made was that, without a clear link to the benefit
achieved, the designer is unable to improve the design. The method described
here has focussed on aspects that the systems designer can influence, which will
provide the framework for system designs that address desired quality attributes.

 Lifecycle Architectural Influences

From the work of Gu (Gu & Sosale, 1999) we can also generate a set of desired

architectural considerations from a Lifecycle perspective:

 Organisation independence (including ownership)

 Production Independence

 Standardisation

 Line/Lifecycle Replaceable Units

 Reconfiguration

 Recycling (including reuse and disposal).

Modularity can benefit in each of these areas, but the benefit is dependent on
different, though not necessarily mutually exclusive, groupings as follows:

a) Organisation independence can be helped by grouping similar functions
(functional independence) so that they can be developed independently

b) Production independence can be helped by grouping similar technologies
so that similar technologies can be produced together

c) Standardisation allows reuse of modules with the associated benefits of
scale – standard modules should be used where possible for similar
functionality

d) Line replaceable units will be more effective if they contain components
that need to be removed for maintenance at the same time

99

e) Systems can more easily be reconfigured if they are functionally
independent as change has minimal impact to surrounding systems

f) Recycling is more easily achieved if similar components or materials can
be grouped together.

Bullets a) and e) will be addressed by the incorporation of a modular functional
design, which leaves the following that can be used to address the lifecycle
dimension:

 Production independence – addressed by grouping similar technologies

 Line replaceable units – addressed by grouping components of similar
maintenance policy

 Recycling – addressed by grouping components of similar materials

 Standardisation – addressed by using common modules where possible
for similar functionality

However, it may be useful to consider all of these elements to ensure they have
been addressed in earlier steps of the process, particularly if there were trade-
offs earlier in the process that suggested a compromise to a principle. This would
then include:

 Organisation independence – grouping of similar functions

 Reconfigurable – ensuring functional independence

These strategies can be considered to the extent possible at the concept stage

and the possibilities for doing this are expected to depend on the particular

system in question. However, care has to be taken that such considerations don’t

then invalidate the architecture already put in place based on functional and

physical considerations.

100

6 EVALUATING THE SYSTEMS DESIGN

 Overview

The appropriate use of modular and independent architectural principles has

been shown to offer benefits in terms of operational effectiveness and lifecycle

management. The literature search has not identified a method that allows a

satisfactory evaluation of an architecture, although parameters have been

defined that could be used to determine desirable attributes of such an

architecture. This research suggests that important considerations in architecture

should be addressed as part of a structured process and that adherence to this

process therefore will be an indication of quality. An evaluation could then focus

upon how well each step of the process was performed. Necessarily then such a

method will be bespoke, but may draw upon suitable evaluation parameters from

the literature; in this section such parameters are identified. This approach is one

of addressing and improving the quality of the system architecture; such an

evaluation will still be required. Alexander (Alexander, 1964) suggested that a

good architecture will produce an effective design, but that an exact relationship

between architecture and achieved effectiveness cannot be determined. It can

be concluded that an evaluation of the ‘quality’ of a system design can be

achieved by an evaluation of its architecture, but a further evaluation of achieved

effectiveness is also required to establish whether it meets its goals and

objectives. In this section I will address how candidate architectures can be

evaluated so that different architectures can be compared with each other and

establish a best architecture.

 Evaluation of architecture design

The literature has shown various ways of evaluating an architecture in a

quantitative sense (see section 2.7). There are methods that provide an overall

score for “goodness” and methods that look at more detailed aspects of the

architectural properties in an attempt to make a more detailed assessment.

Two measures at an overall system level that were identified in the literature

search were Altshuler’s Ideality (Altshuller, 2002) and Suh’s Information (Suh,

1990), discussed in section 2.4.2. Both of these parameters attempt to provide

a measure of how simple or complex a solution is. Altshuler’s Ideality is useful in

principle, in that it highlights the benefits of a solution that promotes useful

functions over unnecessary or harmful functions and favours a solution where

costs of functionality are minimised. However, the need to evaluate costs is

difficult to satisfy in initial concept design. Suh’s Information is equated to the sum

of the probabilities of satisfying the functional requirements. Calculation of

information involves the setting of an allowable tolerance in achieving a function

101

and calculating the probability of meeting it. Such a probability is often difficult to

determine and the importance attached to achievement of all functional

requirements cannot be considered as being equal.

N2 and Design Structure Matrices are useful tools in the analysis of architecture

and various techniques have been developed to judge a system based on the

way components are arranged in clusters (Section 2.7.1). Establishing the

“energy” of the matrix can be a very quick and easy parameter to calculate and

gives an indication of the coupling of the system.

Further useful insight into the complication of an architecture can be achieved

through the examination of “visibility” and “dependence” (Sharman, 2004). By

looking at the incoming and outgoing flows of a component it is possible to gain

some insight as to how modular it is. It is also able to identify system input and

output components, whose contribution to the structure of the system is often

difficult to influence. Whilst Design Structure Matrices can usefully show clusters

within an architecture, it often become more difficult to interpret for large amounts

of components. The visibility vs dependency diagram can provide a view of the

contribution to a modular design of each component that is much easier to

interpret. A modular system, will have components that are minimally visible and

dependent internally, but may have input and output modules that are highly

externally visible and dependent respectively.

A more sophisticated way of measuring the modularity of an architecture involves

the calculation of three parameters; degree modularity, distance modularity and

bridge modularity (Sosa, 2007):

 Degree modularity is defined as in-degree modularity (the number of

components depended on) and out-degree modularity (the number of

components that depend on it). These relate directly to visibility and

dependence respectively and whereas the latter provide a useful visual

evaluation, degree modularity provides a single overall modularity

measure. In-degree modularity and out-degree modularity, appear to be

equivalent concepts to Sharman’s dependence and visibility. Degree

modularity is useful in determining the complication of coupling within a

system, but it does not easily deal with individual interfaces of varying

complication/complexity; Sosa does propose the concept of applying

weightings to interfaces, but the choice of weighting is arbitrary and left to

the designer.

102

 Distance modularity is a measure of modularity from a separation

perspective. It evaluates the number of steps there is between one

interconnected subsystem and another and therefore records how many

subsystems are in the interaction path. Interestingly, the greater the

distance disconnectivity the more modular a system is meant to be, but

equally the greater chance of a single event propagating through a system.

Whilst distance modularity recognises the importance of modules being

separated from each other, modularity is as much about keeping the right

elements together as it is about keeping others apart i.e. keeping certain

components together in modules that are then separated. For instance, it

is often desirable to separate redundant systems to avoid both being

damaged in an attack, but improved survivability can also be achieved by

reducing the presented area to a threat.

 Bridge modularity refers to the number of times that a component lies on

the optimal path between two other components. This is important as the

failure of or subsequent removal of the intermediate component can

prevent the interaction. Bridge modularity is useful as in indication of a

systems ability to accept change as it evaluates how many system

components are likely to be affected in some way. Such a situation would

occur if a unit was removed and replaced with another, functionally similar,

but not physically identical component – would the flow still be allowed to

pass through?

Complication may be driven by a few critical interfaces, as indicated by the

concept of fundamental blocks. It is possible to assign values to particular

interfaces to apply some indication of importance or priority and various proposals

exist for this (Yassine et al., 1999), (Steward, 1981). However, the assignment of

these weightings is at best by good judgement and therefore providing an

objective analysis of the results is difficult. Various authors (Sosa, 2003) (Steven

D Eppinger & Pimmler, 1994) discuss breaking down the problem to analyse the

quality of the architecture in terms of its interaction type; spatial architecture, as

well as structural, energy, information and material flows. Whilst these are without

doubt important distinctions for the development of architectural properties, their

individual merits cannot be considered comparable. Firstly, they are not

independent (e.g. spatial separation will impact on structure as will energy impact

on material flows), and they therefore cannot be combined to create a single order

of merit. Secondly, there is no method proposed to allow an objective comparison

of the benefits of the parameters, only a qualitative or subjective assessment can

be made.

103

The existing candidates are compared with the steps of the Critical interaction

modular design methodology to examine how they might be used to evaluate the

effectiveness of a candidate architecture in Table 14.

Table 14: Existing measures of modularity compared with Critical interaction modular
design methodology steps (elaborated in Chapter 7)

Whilst there are no satisfactory options available for the first two steps, it is

possible to relate potentially useful measures to steps 3 and 4. Sosa’s measures

are pertinent, but they do not distinguish between criticality of interactions in an

objective way and the influence of spatial separation cannot be measured. The

Critical interaction modular design methodology has a way of distinguishing

between interactions as it determines those, associated with certain functional

interaction types that are more difficult than others. This knowledge is used to

influence the system design and the organisation associated with them to both

reduce complication and manage this when it cannot be mitigated. Whilst it is

difficult to compare the various functional interaction types associated with

fundamental blocks, there is a clear increase in their complication compared with

other functional interaction types. Making Juran’s assumption (Juran, 1954), that

requires separation of the “vital few” from the trivial, it is proposed that these

critical interactions are considered as the “vital few” in terms of increased

complication of the system. This provides the opportunity to perform calculations

of degree, distance and bridge modularity for critical interactions only – values

derived would then indicate the modularity from the perspective of the most

challenging interfaces.

The definitions from Sosa (Sosa et al., 2007) are for a given component and here,

a measure representing a system of components is required. Therefore taking an

 Candidates Comment

Step 1 - No candidate

Step 2 Ideality,
Information,
Energy (N2)

Ideality and Information are not tangible parameters
at concept level, but Energy can give an overall
system indication

Step 3 Degree
modularity,

Dependence,
Visibility, Energy

(N2)

Can be applied separately to flows (spatial,
structural, material, energy, information), but does
not recognise relative importance of interactions.
Energy can be an indication at system level

Distance
modularity

Does not address issues of physical distance

Step 4 Useful in identifying extent of impact, but not
importance

Bridge modularity
Identifies paths across subsystems, but not
importance

104

average across all n components i of a system and considering only critical

functional interaction types, Equation 2 and Equation 3 can be derived.

Equation 2: Critical degree modularity

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒅𝒆𝒈𝒓𝒆𝒆 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑪𝒅𝒎 = 𝐶𝑑𝑚𝑖
̅̅ ̅̅ ̅̅ ̅

𝒘𝒉𝒆𝒓𝒆:

𝐶𝑑𝑚𝑖 = 1 −
∑ 𝑥𝑗𝑖

𝑛
𝑗=1,𝑖≠𝑗 + ∑ 𝑥𝑖𝑗

𝑛
𝑗=1,𝑖≠𝑗

2𝑥𝑚𝑎𝑥(𝑛 − 1)

𝒂𝒔: 𝑥𝑚𝑎𝑥 = (𝑛 − 1)

𝐶𝑑𝑚𝑖 = 1 −
∑ 𝑥𝑗𝑖

𝑛
𝑗=1,𝑖≠𝑗 + ∑ 𝑥𝑖𝑗

𝑛
𝑗=1,𝑖≠𝑗

2(𝑛 − 1)2

𝒂𝒏𝒅:

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠, 𝑖

∑ 𝑥𝑗𝑖

𝑛

𝑗=1,𝑖≠𝑗
 is the 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑖𝑛𝑝𝑢𝑡𝑠 𝑡𝑜 𝑖

∑ 𝑥𝑖𝑗

𝑛

𝑗=1,𝑖≠𝑗
 𝑖𝑠 the 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑓𝑟𝑜𝑚 𝑖

Equation 3: Critical distance modularity

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑪𝒔𝒎 = 𝑪𝒔𝒎𝒊
̅̅ ̅̅ ̅̅ ̅

𝒘𝒉𝒆𝒓𝒆:

𝑪𝒔𝒎𝒊
̅̅ ̅̅ ̅̅ ̅ =

∑ 𝑑(𝑖, 𝑗) + ∑ 𝑑(𝑗, 𝑖)𝑛
𝑗=1,𝑗≠𝑖

𝑛
𝑗=1,𝑗≠𝑖

2𝑛(𝑛 − 1)

𝒂𝒏𝒅:

𝑑(𝑖, 𝑗) 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑖 𝑎𝑛𝑑 𝑗

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠

105

However Distance modularity presents a difficulty when used purely for Critical

interactions. In considering Degree modularity, the aim was to reduce the inputs

and outputs to create a ‘score’ that is as low as possible; this is then subtracted

from the value of 1. A value as close to 1 is preferred and the consideration of

only Critical interfaces is consistent with this. However, for Distance modularity,

a high ‘score’, as close to 1 is also preferred, but this is composed of scores from

all interactions of all components. Consideration of purely Critical interactions in

a modular design would create a low score, even for a modular design. Given

that a further measure relating to separation of components will be proposed in

Equation 5, it is proposed not to use Critical distance modularity as a parameter.

Bridge modularity requires more careful consideration. Here the calculation is

identifying the degree to which a component is a bridge between other interacting

components. In order to evaluate this it would need to be shown that there is a

critical path existing across the entire length of each interaction. In fact, the

critical interaction concept is less valid for consideration of the lifecycle

maintenance perspective. The more a component is a bridge, the more its

removal and replacement will require test involving other components regardless

of whether it is a critical interaction or not, but there is not obviously going to be

a difference in the level of disruption compared with other interactions. The

equation is therefore for the average number of any interactions, across all

subsystems n, in Equation 4.

Equation 4: Bridge modularity

𝑩𝒓𝒊𝒅𝒈𝒆 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑩𝒎 = 𝐵𝑚𝑖
̅̅ ̅̅ ̅̅

𝑩𝒎𝒊 =
∑ 1 −

∑
𝑛𝑑𝑎𝑏(𝑖)

𝑛𝑑𝑎𝑏

𝑛
𝑖≠𝑎,𝑖≠𝑏,𝑎≠𝑏

𝑛[(𝑛 − 1)(𝑛 − 2)]
𝑛
𝑖=1

𝑛

𝒘𝒉𝒆𝒓𝒆:

𝑛𝑑𝑎𝑏(𝑖) 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝑎𝑛𝑑 𝑏 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑖

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠

106

Measuring the benefits of spatial separation is not trivial as the degree of

separation between components and the benefits derived from it will vary

significantly when considering different quality attributes. In some cases, the

benefit will be roughly proportional to distance and in others there may be a

specific separation required for compliance (particularly in the case of safety and

security). In this way the problem can be seen as a multi-criteria problem where

some parameters are characterised by a goal (goal based approach) and some

can be assigned a value (value measurement approach). In the goal based case

an architecture can be described as compliant (acceptable) or non-compliant (not

acceptable). For attributes that can have a value based approach then it is

possible to calculate a value based on physical measurements of the system. For

instance, in a later section a case study will be made of a central heating system

(section 9.5.3). In this case, there is a need to separate the thermostat from the

heat source to allow even full heating of the room and this should be in the furthest

corner. It is possible then to assign and optimum value as the maximum distance

and determine what proportion of that distance can be achieved in the design (as

it may be limited by other factors such as built in wardrobes or windows).

Similarly, a need to be adjacent can be recognised by an optimum separation of

zero. Hence we have Equation 5.

Equation 5: Dispersion index

𝑫𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏 𝒊𝒏𝒅𝒆𝒙

=
∑

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑎
𝑖=1 + ∑ 1 −

𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑏
𝑖=1

𝑎 + 𝑏

𝒘𝒉𝒆𝒓𝒆:

𝑎 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑣𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝑏 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜ℎ𝑒𝑠𝑖𝑣𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

These additions give candidate measures for steps 3 and 4, but others are

needed to evaluate the first two steps. The first step of the process is to choose

a system design strategy that addresses the particular challenges presented by

the context type of the system. For instance, an architecture that has been

designed as if the system was a unitary type, when in reality it is a coercive type

is not going to address all the necessary issues. In this instance, the system

boundary assumed is likely to be wrong as the solution is liable to support the

dominant stakeholders, but marginalise others; starting with the wrong system

boundary would be a poor architecting decision. The correct identification of

107

problem type and application of a suitable architecting strategy is either observed

or not and is given by the Boolean variable of Equation 6.

Equation 6: Suitability

𝐒𝐮𝐢𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲 = 1 (suitable) 𝑜𝑟 0 (𝑢𝑛𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒)

The second step determines the functional architecture. It does so by identifying

functional flows and then structuring functional chains so as to minimise the

amount of critical functional dependencies between chains. In reality this can be

used to structure the design organisation in terms of functional development, but

it also becomes a measure of the complication of the functional design. If

functional chains are seen as functional ‘subsystems’ then degree modularity can

be calculated for functional chains, as the complication of the functional

architecture can be linked to the proportion of interfaces that are critical.

Therefore an indication of a well architected design could be:

Equation 7: Critical functional modularity

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑪𝒇𝒎 = 𝐶𝑓𝑚𝑖
̅̅ ̅̅ ̅̅ ̅

𝒘𝒉𝒆𝒓𝒆:

𝐶𝑓𝑚𝑖 = 1 −
∑ 𝑥𝑗𝑖

𝑛
𝑗=1,𝑖≠𝑗 + ∑ 𝑥𝑖𝑗

𝑛
𝑗=1,𝑖≠𝑗

2(𝑛 − 1)2

𝒂𝒏𝒅:

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑖𝑛𝑠, 𝑖

∑ 𝑥𝑗𝑖

𝑛

𝑗=1,𝑖≠𝑗
 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑖𝑛𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑖𝑛𝑝𝑢𝑡𝑠 𝑡𝑜 𝑖

∑ 𝑥𝑖𝑗

𝑛

𝑗=1,𝑖≠𝑗
 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑖𝑛𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑓𝑟𝑜𝑚 𝑖

The above equations give different ways of evaluating the modularity of an

architecture. Two established techniques are used (degree modularity and bridge

modularity) are related to key stages of the methodology; where applicable, the

concept of critical interactions is incorporated to help establish the level of

goodness of the architecture. Further equations are added to evaluate how well

an architecture addresses the needs of the context and the balance between

cohesion and dispersion.

Measures of critical functional modularity, critical degree modularity and bridge

modularity are based on a view that the modularity of an architecture depends on

108

its components. It is also important for the system designer to consider the

external interfaces, especially in a system of systems, where the boundary

inherently has more flexibility. Therefore a further measure is proposed which is

the system boundary modularity, which determines the critical degree modularity

at the boundary only; giving Equation 8.

Equation 8: System boundary modularity

𝑺𝒚𝒔𝒕𝒆𝒎 𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑺𝒃𝒎 = 𝐶𝑓𝑚𝑖
̅̅ ̅̅ ̅̅ ̅

𝒘𝒉𝒆𝒓𝒆:

𝑆𝒚𝒔𝒕𝒆𝒎 𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑺𝒃𝒎 = 1 −
∑ 𝑥𝑗𝑖

𝑛
𝑗=1,𝑖≠𝑗 + ∑ 𝑥𝑖𝑗

𝑛
𝑗=1,𝑖≠𝑗

2(𝑛 − 1)2

𝒂𝒏𝒅:

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚𝑠, 𝑖

∑ 𝑥𝑗𝑖

𝑛

𝑗=1,𝑖≠𝑗
 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑖𝑛𝑝𝑢𝑡𝑠 𝑡𝑜 𝑖

∑ 𝑥𝑖𝑗

𝑛

𝑗=1,𝑖≠𝑗
 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑓𝑟𝑜𝑚 𝑖

Arguably the benefit of the Critical interaction modular design methodology is in

the application of a structured process, where the efficacy of each step can be

evaluated using the associated parameters. However, if each parameter can be

argued to be independent of each other then it would be possible to evaluate an

aggregate score of all parameters to provide a best solution. The parameter for

each step can be considered to be independent if the information given by one

parameter does not give any information on the value of the other (Hyvärinen &

Oja, 2000). Therefore, for each parameter in turn:

 suitability is only a qualifying parameter

 Critical degree modularity and System boundary modularity: the choice of

functional chain boundaries is made independently of the boundaries of

the system and subsystems and even with no critical dependencies

between functional chains (low critical functional modularity) it is still

possible to have many critical dependencies between system/subsystems

or indeed none

109

 Bridge modularity: the choice of both functional and physical boundaries

is independent of the needs for the lifecycle, and it is possible to have

many critical interfaces between either functional or physical subsystems

with either many or no ‘bridges’ through those subsystems

 Dispersion index: the physical distance between two components of a

system is independent of functional or physical boundaries and the space

between components is only limited by physical design constraints and

the system physical boundary.

In summary, there are various levels of independent modularity measure:

 Problem based - suitability

 System level – system boundary modularity

 Functional chain level – critical functional modularity

 Subsystem level – dispersion index, bridge modularity and critical degree

modularity

With six independent evaluation parameters there will be difficulty in formulating

an evaluation of architecture for the following reasons:

 there is no way of determining a link between an architecture’s properties

and the resulting system’s functional quality and non-functional

performance; therefore goals for architectural ‘quality’ cannot be

objectively set

 as with most complicated or complex multi-criteria problems, there is no

way to objectively determine the relative value associated with any given

architectural measure.

The method proposed is one that recognises these limitations, but has itself been

validated in many different situations (Kahneman, 2011). The method relies on

identifying key measures of goodness that are independent and assigning a score

to each; each independent score is a assumed to be important and therefore no

subjective weighting is assumed, but the individual scores are added to achieve

an overall score. In this case, the relationship between the evaluation parameters

and each step of the process means that the evaluation becomes an affirmation

that that the approach has been applied, and applied well. Therefore a relative

order of merit, the Relative Architectural Score or RAS can therefore be

calculated as in Equation 9.

110

Equation 9: Relative Architectural Score

𝑅𝐴𝑆 = {𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦}𝑝𝑟𝑜𝑏𝑙𝑒𝑚 + {𝑆𝑦𝑠𝑡𝑒𝑚 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑠𝑦𝑠𝑡𝑒𝑚 +

{𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑖𝑛 +

{𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 + 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 + 𝐵𝑟𝑖𝑑𝑔𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚

One possible issue of using this method is that Kahnemann suggests that an

evaluation requires an indication of what ‘good’ and ‘bad’ are. Examination of

each parameter indicates that, apart from the Boolean, system configurations

could easily be envisaged that have scores that range all the way from value 0 to

1. With no other information available, an assumption will be made that benefit is

linear with the value of each parameter. This assertion can to some extent be

tested in the latter case study sections. However, it should be noted that each

case study is the result of applying the Critical interaction modular design

methodology and therefore by definition should be modular and not displaying

the full range of values that may be expected in a variety of designs. Valuable

additional research would be to evaluate the scores of a range of integrated

designs to establish what might be considered as ‘bad’ from a modular

perspective; this may then be used to calibrate Kahnemann’s method as he

suggests.

111

7 THE CRITICAL INTERACTION MODULAR DESIGN

METHODOLOGY

To incorporate the architecting strategies discussed previously, a methodology

has been developed as part of this research; the Critical interaction modular

design methodology. It is composed of five steps, which are shown in Figure 32.

Boulding’s concept of systems hierarchy (Boulding, 1956), explains that systems

can be described as a hierarchy, and this methodology is at the system level,

developing the system design concept in order that there is an architecture for

the subsequent detailed design. It is specifically at the concept stage and

therefore concentrates on the steps leading up to the development and

assessment of the architecture, but stops short of the steps necessary to evaluate

the design itself.

Figure 32 Critical interaction modular design methodology process steps

 Step 1: Analyse the Context type and requirement:

a) Establish context type (in order to choose problem solving approach,

architectural strategy and risk) (Section 4.3)

Situation type is particularly important as it will indicate the approach to be

taken in each of the following steps. These are summarised in Table 15.

112

Table 15: Approach according to the Situation context type

Situation type Steps to be followed

Clean sheet In Step 3, Concept framework,
creative options may be proposed
providing that they each meet the
fundamental blocks

Upgrade Concept framework is available so
reassess functional allocation within
existing framework in Step 6

System review Reassess context as an issue
analysis to establish any gaps (Step
1). Considering any gaps, analyse
existing functional design to identify
any fundamental block violations
(Step 2). Based on a modification of
current framework as required review
concept (Steps 4). Evaluate as before
(Step 5)

Reconfiguration If architecture is not changed then
only requires system requalification.

b) Understand stakeholders and environment of the system in order identify

all influences and capture requirements:

o Record the needs of stakeholders and the nature of any human

interaction e.g. using a rich picture format

o Consider objects being acted on and systems interacted with; the latter

to identify input, output, control and resources required

o Consider the impact of the constraints and conditions of the

location/environment

o Record constraints imposed by system level design decisions

(mechanisms)

o Capture using Functional Context Diagrams (as Figure 33)

113

Figure 33: Functional context diagram

 Step 2: Devise functional chain framework5

a) Determine functional requirements and flows from the needs of the

contextual analysis of step 1.

b) Elaborate candidate mission functional chains according to

Transformation viewpoints, starting with client functionality and observing

the principle of Simplicity where possible

c) Identify Function interaction types to determine:

o Unsuitable iteractions

 Shared services (SS)

o Fundamental blocks

 Critical chains (C)

 Control loops (CL)

 Human issues of complexity (HK)

5 Exact process will be determined by Situation context type

114

o Partitioning opportunities

 Exclusive services (ES)

 Human conflict issues (HC)

 Human agreement (HA)

o Structural constructs

 Loose dependence functional chains (F)

 On-condition loops(L)

 Judgements (J)

d) Develop the functional architecture of functional chains according to Table

10 of section 5.2.2, minimising the partitioning of fundamental blocks and

trying to achieve a functionally independent design. Clustering methods

such as N2 or DSM may be used to aid in the identification of candidate

functional chains.

e) Repeat from a) whilst considering Viability, Resource and Management

functions (Hitchins, 2008).

 Step 3: Conceive the concept framework

a) Elaborate functions to achieve a level of definition of function that allows
subsystems to be proposed, and make a mapping of function architecture
to physical architecture observing constraints of the functional interaction
types

b) Opportunities for similar functionality being performed by a common
subsystem should be identified where possible

c) Consider cohesive and dispersive influences on the physical design:

o cohesive (association and conduction) for

 survival, operation, external and internal compatibility

o dispersive influences for

 Survival, maintenance, external and internal compatibility,
safety and reliability

o any contradictions and resulting compromise trade-offs for

 Survival, external and internal compatibility

115

d) Establish form appropriate to both function interaction types and other
dispersive/cohesive drivers to devise subsystem boundaries

Note: It is possible that the analysis of this step will disqualify a solution – for
instance, in considering safety, a given architecture may be determined as
unsafe.

 Step 4: Lifecycle solution

a) Mitigate any architectural conflicts across timeline, managing the effect of
unavoidably ‘compromised’ architectural constructs by separation over
time

b) Establish a lifecycle solution, whilst not compromising principles already
applied in the previous steps, “design for” additional lifecycle related
benefits by:

o Ensuring further functional independence and loose coupling of system
components where possible to improve organisational independence,
upgradeability, allow variety, improve re-configurability and
standardisation

o Grouping components based on required maintenance action (e.g.
Line Replaceable Units) to improve maintainability

o Grouping reusable components as well as grouping of components by
material types to improve recyclability

c) Standardisation enables common solution to achieving functionality, and
the reduction of variety achieved reduced complication by similarity

d) Any conflict with previous steps will have to be addressed according to
relative merits

116

 Step 5: Evaluate architecture

a) Calculate the relative merit of the architecture, which is given by the
Relative architectural score (Equation 9):

𝑅𝐴𝑆 = {𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦}𝑝𝑟𝑜𝑏𝑙𝑒𝑚 + {𝑆𝑦𝑠𝑡𝑒𝑚 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑠𝑦𝑠𝑡𝑒𝑚

+ {𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑖𝑛

+ {𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 + 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥

+ 𝐵𝑟𝑖𝑑𝑔𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚

Where:

𝐒𝐮𝐢𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲 … … … … … … … … … … … … … . 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … … Equation 6

𝑺𝒚𝒔𝒕𝒆𝒎 𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚 … … . . 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … … Equation 8

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚 … … 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … … Equation 7

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒅𝒆𝒈𝒓𝒆𝒆 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚 … … … … 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … … Equation 2

𝑫𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏 𝒊𝒏𝒅𝒆𝒙 … … … … … … … … … . 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … …. Equation 5

𝑩𝒓𝒊𝒅𝒈𝒆 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚 … … … … … … … … . 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … … Equation 4

117

8 APPLICATION OF METHODOLOGY TO CASE

STUDIES

In section 3 it has been proposed to apply the Critical interaction modular design

methodology to two specific design problems to demonstrate its utility as a

system concept design process (sections 8.1 and 8.2) and to compare its utility

with other established methods (section 9). The application of the process to this

varied set of cases has also helped to demonstrate areas where the developing

process/approach could be improved and this has been fed back into the ongoing

process design as part of the research. Two examples are conceived that range

in their complication, the first being simple to clearly show the intent and progress

of each step of the process, and the second an example to demonstrate the

practicality of the methodology for a more complicated and typically encountered

problem. The following subsections will therefore address:

 A simple Lego Mindstorms system concept developed for a short course

 A generic cruise missile design

 A simple Lego Mindstorms system

The following is for a system design that is used as part of a lifecycle management

system course at the university. The Lego Mindstorms kits are used by students

to build simple systems that need to be developed against a high level need,

demonstrated and validated. Lego Mindstorms is used as it is simple and intuitive

to use, whilst having a degree of complication as it can represent systems with

sensors, actuators and software programming to manage the control and

information interfaces. Students are asked to design a system by selecting

various optional modifications of existing and baseline subsystems. The fact that

it is a design used for the course is somewhat incidental, but the design being

well understood was a useful starting point for an analysis of the basic system

design.

Blocks of Lego bricks consisting of 10 bricks of two sizes and four materials, are

delivered by an external agent on a regular schedule for processing. These

blocks are collected mechanically and transported to an operator for disassembly

- some blocks are contaminated and need to be identified to the operator to be

removed from further processing. A further transportation phase is anticipated to

a place where the pallets are broken down into their constituent bricks and then

mechanically sorted into piles according to material and size, before being

removed by another external agent. Collection and sorting will be a continuous

process, but during the operation there will need to be regular checks of battery

levels and filter condition which will lead to the occasional need for replacement

from the store.

118

The Pick-up vehicle (Figure 34) is designed to locate blocks of bricks, lift them

and place them in a drop off area. It uses a sensor to identify contaminated

blocks.

Figure 34: Pick-up vehicle

The pallets can then transported in a Transporter vehicle to a sorting area.

Bricks are then loaded by an operator into a Sorting vehicle (Figure 35) to sort

bricks in terms of material and size. Using its sensor and depending on the

material of a brick, it will move a specified distance before depositing it in a pile

on the ground; depending on the size, it will either move to the left or to the right.

Figure 35: Sorter vehicle

Operator interaction is expected to take the blocks of bricks delivered by the Pick-

up vehicle to the Transporter vehicle and then finally to take the transported block,

break it into its individual parts for loading onto the Sorter to be mechanically

sorted. Three operators are required, one to operate each machine.

119

 Step 1: Analyse the Context type and requirement

a) Establish context type (in order to choose problem solving approach,

architectural strategy and risk)

Examination of the Context Types yields Table 16, which shows this as a “Movie”

problem as much of the equipment is already available and the task is how it

should be used. In doing so, the architecture can be analysed to suggest areas

where it is good and areas where it can be improved upon.

b) Understand stakeholders and environment of the system in order identify all

influences and capture requirements

This step is to provide the important contextual information that will influence the

architectural design:

 By object: pallet, brick (4 different colours/materials and 2 different sizes)

 By subject: Operator actions, Pick-up machine, Sorting machine

 By location/environment: Factory and conditions, Delivery of pallet (input),

Removal of bricks (output)

These can be shown diagrammatically on the Functional Context Diagram of

Figure 36.

Figure 36: Lego Mindstorms project: Functional context diagram

120

Table 16: Lego Mindstorms project: Context types

Context Type Quadrant Approach Architectural Strategy Risk

Process

Problem Movie Component
equipment available;
modifications might
be required according
to modified use

Number of scenarios
can be explored to
determine how system
components might be
best used

M

Evolution Obsolescence
management

Solution design is
expected largely
static over lifetime,
with changes limited
to replacement of
parts and possibly
extension.

Modular standardized
parts to be employed
for ease of
replacement

L

Response Routine Standard project
management

No special measures
required of architecture

L

Requirement

Situation Upgrade Upgrade required to
component designs
and their integration

Existing boundary of
system and
subsystems, with some
modification at lower
system levels and in
integration of
subsystems

M

Divergence
of values

Unitary Hard systems
analysis

Clear and fixed
requirements can be
assumed

L

Management Manageable Can progress with
clear ownership and
definition of external
boundaries

Can rely on clear
definition and
responsibilities at
system boundary

L

Solution

Risk Tried and
tested

Use of known
solution, technology
and process

Can retain existing
architecture where
possible

L

Complexity Simple Requires
development and use
of simple and
decoupled models

Consistent with a clear
boundary and modular
design.

L

Organization

Coordination Centralised Bespoke
development is
possible

Can have clarity of
external interfaces with
clear flow-down of
requirements

L

Target Critical path Time constrained to
replace existing
capability

 M

Business
area

Professional Skilled workforce,
familiar with
technologies involved
(programming,
sensors)

 M

121

 Step 2: Devise functional chain framework

a) Determine functional requirements and flows from the needs of the contextual

analysis of step 1.

b) Elaborate candidate mission functional chains according to Transformation

viewpoints, starting with client functionality and observing the principle of

Simplicity where possible

A functional description can be developed from the client needs of this ‘movie’

problem, with the requirement to make use of existing machines. Starting with the

transformation functionality, or what is (are) the primary purpose(s) of the system:

Transformation

 Blocks are delivered (five at a time)

 Pick-up vehicle:

o used to approach and pick up blocks

o transport blocks (one at a time)

o identify contaminated blocks

o set down block for operator

 Operator:

o transfers block to transporter

 Transporter takes block to sorting location

 Operator:

o unloads Transporter vehicle and disassembles block to

constituent bricks

o loads bricks to Sorting vehicle

 Sorting vehicle:

o sorts bricks into piles according to colour and size

 Sorted bricks are collected

Mission chains can be recorded for the existing system design and these are

shown in Figure A - 1.

122

c) Identify Function interaction types (Section 5.2.1)

d) Develop the functional architecture of functional chains according to Table 10

of section 5.2.2, minimising the partitioning of fundamental blocks and trying

to achieve a functionally independent design. Clustering methods such as N2

or DSM may be used to aid in the identification of candidate functional chains.

Analysis shows the following:

 There are two exclusive service interactions “Deliver blocks” and “Collect

bricks” functions (coloured red in diagram)

 There is a pick-up critical chain to pick up individual blocks (coloured

blue in diagram)

 There is a sorting critical chain (coloured blue in diagram)

 There are three judgements associated with instigating/continuing loops

based on power levels and service condition (coloured purple in diagram)

 There are additional on-condition loops for transporting groups of 5

blocks and dissembling blocks and sorting the bricks into piles

Applying guidance of the developed method the following observations can be

made:

 Short critical chains: the pick-up chain can be divided into 5 separate

chains – if there is a failure then this can be recovered quicker and the

impact of failure is minimised.

 Parallel activity: the critical chains, currently performed in sequence, can

be performed in parallel to increase throughput

 Balance of parallel operations: the critical chains are known to take the

following times:

o Pallet collection chain: 40s

o Disassembly and load: 20s

o Brick sort chain: 80s

The time determining chain is the Brick sort chain at 80s. The other chains

will need to be set to respect the same intervals or an accumulation of

pallets will occur at other points of the line.

 Respect external service bandwidth: the first and last chains form on-

condition loops with input and output functions. For pallet delivery, this will

be one every 80s, though if there were predictable contamination rates

then a faster input with some buffering of pallets for collection might be

considered. For brick removal, the removal will need to be at an average

123

rate of 10 bricks per 80s (buffering at this stage can be considered as piles

can be allowed to build up).

 There is a possibility of using a common solution for transport, operator

and brick recognition functionality.

An alternative functional diagram, using the pickup vehicle for transport, a single

operator in one location to allow parallel activity would therefore improve the

design, as in Figure A - 2.

e) Repeat from a) whilst considering Viability, Resource and Management

functions (Hitchins, 2008).

Considering the resource, management and viability functions:

Resource

 Manage batteries

Management

 Operator control (already considered) including power-on and control

Viability

 Filter changes

 Refurbishment (outside scope of this example)

 Management of incident light conditions and noise levels (external action)

These have been added in Figure A - 3 where the replacement of batteries and

filters have been added for both options. But the revised functional solution

would be represented as Figure A - 4.

 Step 3: Conceive the concept framework

a) Elaborate functions to achieve a level of definition of function that allows
subsystems to be proposed, and make a mapping of function architecture to
physical architecture observing constraints of the functional interaction types
(Section 5.2.2)

b) Opportunities for similar functionality being performed by a common
subsystem should be identified where possible

The existing subsystems are mapped onto the earlier functional descriptions as
shown in Figure A - 5 and Figure A - 6 for each option.

c) Consider cohesive and dispersive influences on the physical design (Section

5.3)
d) Establish form appropriate to both function interaction types and other

dispersive/cohesive drivers to devise subsystem boundaries

124

Considerations are for:

 Survivability: no hostile environment is envisaged and therefore no
architectural strategy required

 Reliability: no strategy envisaged as internal environments not expected
to be challenging

 Safety: automated machinery requires safety consideration. Possible
safety issues therefore exist at pallet delivery, brick removal and at the
operator to machine interface. Separation between operators and
machines is necessary whilst the machines are moving and therefore
remote operation (wireless option) for commands is essential. However,
performance of operator judgements will require line of sight

 Maintainability: not considered an architectural issue at this system level
(is expected to be an issue at subsystem level)

 Environmental compatibility: Consideration has to be given to spatial
access for delivery of pallets and pick-up of bricks from external agencies.
This is expected to be a line from input to output. The facility in which the
machines are housed needs to allow line of sight for operators (i.e. no
dividing walls). Potential contamination from contaminated pallets requires
physical separation between good pallets and contaminated pallets/
equipment and decontamination procedures if necessary. If this is not
possible to ensure by design, then management of these operations
should not be separated i.e. they need to be managed together.

 Operability: ergonomics and HCI issues will be expected at subsystem
level.

 Step 4: Lifecycle solution

a) Mitigate any architectural conflicts across timeline, managing the effect of
unavoidably ‘compromised’ architectural constructs by separation over time

b) Establish a lifecycle solution, whilst not compromising principles already
applied in the previous steps, “design for” additional lifecycle related benefits

c) Standardisation enables common solution to achieving functionality, and the
reduction of variety achieved reduced complication by similarity

d) Any conflict with previous steps will have to be addressed according to relative
merits

A detailed analysis is difficult for a simple classroom example like this, but the

following could be noted:

 Production independence – there is no justification for production

independence in this example.

 Line replaceable units – at this level of the system, the individual systems
can be considered as LRUs. Without a reliability analysis it will not be

125

possible to identify items that are more likely to need replacement than
others (such an assessment might influence the architectural design).
Therefore the only relevant replacement at the operational line level will
be the replacement of the batteries and filters. Consideration could be
given to whether these could be replaced at the same time, together or
with common access.

 Recycling – Lego must be the ultimate recyclable technology! No particular

advantage can be gained here.

 Standardisation – there are a number of elements in both candidate
designs that promote standardisation. Firstly, the machines are made from
the necessarily modular components of the Lego product. Common
programmable control units and sensors will facilitate the functioning of the
system. Components are standard when they need to be replaced. It
should be noted however that Lego routinely subcontracts its components
and these can have variations in build standard.

 Reconfiguration – in theory this should have been ensured by functional

independence in Step 2. At the system level here, we might consider the

machines. Combining multiple operations into a common platform is likely

to reduce its desirability for more general use. The combination of pick-up

and transport functions into a common vehicle is however not an issue this

as the pick-up vehicle already had that capability.

 Step 5: Evaluate architecture

a) Calculate the relative merit of the architecture is given by the Relative

architectural score (RAS)

An evaluation of the architecture for both options is given in Table 17.

Table 17: Lego Mindstorms example: Architecture assessment

 Option 1 Option 2

Context suitability Yes Yes

Critical function
modularity

1 1

Critical degree
modularity

0.859 0.833

Dispersion index Compliant6 Compliant6

Bridge modularity 0.923 0.933

System boundary
modularity

1 1

Relative architectural
score

3.935 3.905

6 With wireless operation and physical isolation of the contaminated pallets

126

 Simple Lego Mindstorms example: Summary

In this simple case, there appears to be a marginal advantage for Option 1. This

is likely to be because Option 1 is divided into more components, with Option 2

combining tasks of pick-up and transportation for one rather than two operators.

However, the scores are very similar, and given this the observations of section

6.2 should be considered and this would likely suggest, having created two

designs that are intended to be modular, that architecture is not an important

discriminator here compared with the lower wage costs of Option 2.

Using this example, it has been possible to run through all steps of the process.

It is a simple example, which facilitates a view of what is actually going on in the

process. This simple view however comes with limitations:

 It has only provided a limited exploration of critical interaction types. There

are no examples of control loops that would provide an extra level of

complication. In fact it is control loops that often create complicated issues

across architectural boundaries.

 It only treats the problem at one level of the system hierarchy. The next

step would have been to take the process down to the subsystem level

and apply it there and, at this level, control loops would be apparent

 Application of approach to a generic cruise missile example

 Step 1: Analyse Context type and requirements

a) Establish context type (in order to choose problem solving approach,

architectural strategy and risk)

Examination of the context types yields Table 18.

b) Understand stakeholders and environment of the system in order identify all

influences and capture requirements

This step is to provide the important contextual information that will influence the

architectural design:

 By object: air launched cruise missile, target, collateral

 By subject: mission planner, pilot, headquarters and politicians

 By location/environment: conditions, scenario, conventions and rules of

engagement

These can be shown diagrammatically on the Functional Context Diagram of

Figure 37.

127

Table 18: Missile example: context types

Context Type Quadrant Approach Architectural Strategy Risk

Process

Problem Quest Explore options Number of solutions
need to be compared
to see what is possible

M

Evolution Obsolescence
management

Solution design is
expected largely
static over
lifetime, with
changes limited to
replacement of
parts and possibly
extension.

Modular standardized
parts for replacement

L

Response Routine Standard project
management

No special measures
required of architecture

L

Requirement

Situation Clean sheet New design
concept

Need to define
boundary and
architecture from
scratch

H

Divergence of
values

Unitary Hard systems
analysis

Clear requirements
can be assumed

L

Management Manageable Can progress with
clear ownership
and definition of
external
boundaries

Can rely on clear
definition and
responsibilities at
system boundary

L

Solution

Risk Play it safe Design according
to safety and
service related
regulations

Assume regulated
boundary and the need
to consider critical
items in architecture

M

Complexity Complicated Large
predominantly
decoupled models
can be developed

Assume clear
boundary and modular
design.

M

Organization

Coordination Centralised Bespoke
development

Can have clarity of
external interfaces with
clear flow-down of
requirements

L

Target Critical path Time constrained
to replace existing
capability

 M

Business area Gold collar Highly skilled
workforce

 H

128

Figure 37: Missile example: Functional context diagram

 Step 2: Devise functional chain framework

a) Determine functional requirements and flows from the needs of the contextual

analysis of step 1.

b) Elaborate candidate mission functional chains according to Transformation

viewpoints, starting with client functionality and observing the principle of

Simplicity where possible

A comprehensive, if considerably simplified for the purposes of this example,

functional description can be developed from the client needs. The functionality

can be described under transformation, resource, management and viability

headings as follows:

Transformation

 Missions will need to be carefully planned (Mission planning)

 The missile will need to be safely launched from and aircraft and may not

be launched at an exact launch point (Launch)

 The missile will fly a long range (Propulsion)

 It will navigate autonomously to the target (Navigation)

 The missile will follow a predefined route and the associated terrain

(midcourse guidance)

 Target recognition is required on final engagement (Terminal guidance)

129

 The missile will use explosives to destroy the target (Lethality)

Resource

 Fuel management

 Electrical power management

 Air flow management

 Information management

Management

 Automated sequence of operations

Viability

 Test

 Thermal management

c) Identify Function interaction types

d) Develop the functional architecture of functional chains according to Table 10

of section 5.2.2, minimising the partitioning of fundamental blocks and trying

to achieve a functionally independent design. Clustering methods such as N2

or DSM may be used to aid in the identification of candidate functional chains.

Starting with the Transformation functions, an analysis of coupling can be aided

by using the N2 or DSM tool. If these functions were represented in a Design

Structure Matrix the functional interfaces would be as Figure 38.

 Transformation functions

Ae Mp La Na Mi Te Fl Le Pr

Aerodynamics 1

Mission planning

Launch 1 1 1

Navigation 1

Midcourse guidance 1 1 1 1

Terminal guidance 1 1 1 1

Flight control 1 1 1 1 1

Lethality 1 1 1

Propulsion 1
Figure 38: Missile example: N2 of functional interaction (not clustered)

Analysis either by hand or by the use of proprietary software for DSM, helps to

show clusters of interactions (Figure 39).

130

 Transformational functions

Le Fl Ae Pr La Mi Te Na Mp

Lethality 1 1 1 3

T
o

Flight control 1 1 1 1 1 1 5

Aerodynamics 1 1 1 3

Propulsion 1 1 1 3

Launch 1 1 1 1 4

Midcourse guidance 1 1 1 1 1 5

Terminal guidance 1 1 1 1 4

Navigation 1 1 2

Mission plan 1 1

 1 5 3 2 3 2 3 5 7

 From
Figure 39: Missile example: N2 of functional interaction (clustered)

Plotting of Visibility vs Dependency (see section 6.2) we get Figure 40:

Figure 40: Missile example: visibility vs dependency diagram

The decomposition is far from clean, with Flight Control in particular being both

highly visible and dependent. It is therefore important to further examine the

nature of the interactions to establish the functional interaction types.

Navigation, guidance and control

There is no attempt here to create a detailed technical design of the missile

guidance system, but a generic block diagram of missile guidance system in a

three degree of freedom representation (attitude, height, distance) is given in

Figure 41 (Lin, 1991).

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

V
is

ib
ili

ty

Dependency

Le

Fl

Ae

Pr

La

Mi

Te

Na

Mp

131

Figure 41: Missile example: generic missile system guidance schematic

Immediately it is obvious that the missile guidance system is a coupled system

with a number of control loops. For a cruise missile, a route can be determined in

advance and launch and midcourse guidance is achieved by demands from

comparing navigation position measurements with those required. In the terminal

phase, homing guidance is performed based on the look angle and sightline rate,

q. From a system design point of view this is not a very helpful architecture, as it

suggests that most of the major functionality of the missile has to be considered

and designed together – the control loop and critical chain relationships

preventing logical partitions in Figure 42.

Mission Planning Launch Guidance Midcourse Guidance Terminal Guidance Lethality

Navigation

Flight Control and propulsion

Navigation

Guidance flight
control and

lethality

ES
Mitigated critical

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

Figure 42: Missile example: initial functional chain framework

132

The following are potential strategies:

 The main purpose of the propulsion function is to maintain cruise speed to

achieve time on target – some variation will be required to maintain speed

through manoeuvre, due to drag, but as high ‘g’ manoeuvres are not

required decoupling from the guidance functions can be considered.

 There are often non-linear effects that make the design of the autopilot

particularly challenging, however, if these non-linear effects can be

controlled then decoupling of attitude control from the generation of

guidance commands is facilitated. Non-linear effects can be due to varying

velocities, changing mass properties and distributions and relative

dynamics of missile and its aim-point/waypoint. For a cruise missile with a

fixed aim-point, velocity is constant, mass distributions can be to a large

extent controlled and waypoints/aim-points are typically stationary. In

these circumstances the missile is more like an aircraft or UAV, and control

strategies in these cases can allow a decoupling of the autopilot from the

guidance system (Sadraey & Colgren, 2005).

 The form of guidance changes throughout the mission due to different

manoeuvres, flight conditions and information available. There is an

opportunity to divide the functionality at the point that ‘handover’ from one

form of guidance to the other occurs, on the assumption that is within a

nominal handover ‘basket’:

o handover to terminal guidance would be when the target is

expected to be in the field of view with sufficient manoeuvre

capability to engage it

o for midcourse guidance it will be achieving a waypoint with sufficient

accuracy to navigate the terrain below

o for the launch phase it will be the accuracy of the launch aircraft

achieving the launch point in order to engage with the planned route

early enough.

 The final part of the sequence can also be considered separately by

considering that lethality is dependent on the end conditions of terminal

guidance, but for a stationary target these can be defined as a “basket” of

parameters that the terminal guidance must achieve to assure acceptable

engagement geometry with the target to achieve the required lethality

performance.

133

These strategies enable the following functional chains, as shown

diagrammatically in Figure 43:

 Navigation

 Launch guidance

 Midcourse guidance

 Terminal guidance

 Lethality

 Flight control

 Propulsion

Dividing the functional chains in this way, has the potential to ease the

management of the design. Using the strategies discussed, many of the issues

associated with division of fundamental blocks have been mitigated and chains

have been shortened. “Option 1” reflects the consequential partitioning of the

functions:

 Mission planning functions are decoupled as mission planning takes place

in advance of the mission.

 Launch guidance, midcourse guidance, terminal guidance and lethality

have a chain relationship, but these have been decoupled by defining a

“basket” of conditions to satisfy in order to pass to the next phase of the

chain.

134

 Flight control has effectively been decoupled from the guidance loops

allowing them to be developed independently. Propulsion and its control

will exhibit coupling with the manoeuvres required by the attitude control

autopilot, but constraining manoeuvre capability will enable this to be

decoupled and concentrate on achieving time on target.

Figure 43 indicates where the violations of fundamental blocks have been

mitigated. Figure 44 shows the resulting simplified form.

Launch Mission
Planning

Midcourse Mission
Planning

Terminal Mission
Planning

Lethality Mission
Planning

Launch Guidance

Midcourse Guidance

Terminal Guidance

Lethality

Navigation

Flight Control

Propulsion

Navigation

Launch

Midcourse

Terminal

Lethality

Flight control

Propulsion

CL CL CL

C

C

C

CL

ES
Mitigated critical

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

Figure 43: Missile example: functional chain framework (option 1)

Although Functional blocks have been compromised, tried and tested strategies

have been employed to mitigate the risks. Broad functional chain structures are

still maintained to ensure management of the decoupled blocks. At the same time

the design definition has more structure to understand and develop.

135

The analysis for option 1 suggests:

 7 functional chains (these relate to areas of similar function or discipline,

where common approaches, design or methods might be employed by a

team):

o Navigation

o Launch, Midcourse and Terminal guidance

o Lethality

o Flight control

o Propulsion

Launch Mission
Planning

Midcourse Mission
Planning

Terminal Mission
Planning

Lethality Mission
Planning

Launch Guidance

Midcourse
Guidance

Terminal
Guidance

Lethality

Navigation

Flight control

Navigation

Launch

Midcourse

Terminal

Lethality

Flight control

CL CL CL

PropulsionPropulsion

CL

ES
Mitigated critical

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

Figure 44: Missile example: functional chain framework (option 1 simplified)

 There were 9 violations of fundamental blocks between functional chains,

but 7 of these have been identified and mitigated, with two violations

remaining

Option 2 offers an alternative, which differs from option 1 in that guidance chains

are responsible for both attitude control and propulsion control for their phase.

This simplifies the system design by removing many critical dependencies

between chains rather than mitigating them as discussed for option 1. This would

be advantageous if the coupling of propulsion and flight control with the guidance

functions is significant. With the reduction in size, power requirements and cost

of modern navigation sensors, it may be possible to consider independent

navigation functions as well (to simplify further).

136

The analysis for this option 2 suggests:

 5 functional chains:

o Navigation

o Launch, Midcourse and Terminal guidance

o Lethality

 There are now only 2 violations of functional blocks between functional

chains

Launch Mission
Planning

Midcourse Mission
Planning

Terminal Mission
Planning

Lethality Mission
Planning

Launch Guidance

Midcourse
Guidance

Terminal
Guidance

Lethality

NavigationNavigation

Launch

Midcourse

Terminal

Lethality

ES
Mitigated critical

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

Figure 45: Missile example: functional chain framework (option 2)

There are assumed to be no judgement types or human issues, as planning is

subject to a fixed “tasking order” and flight path is considered here as

predetermined. These types, if anywhere, will be determined in the mission

preparation phase and human issues would be included if the decision process

and rules of engagement were considered as part of the “tasking order”.

So far we have considered the functions directly responsible for the client’s need

- the primary “mission functions”. These need to be supported by secondary

functions for resource management, system management and viability

management. These are elaborated in the Table 19.

137

Table 19: Missile example: viability and resource functions

Category Subcategory Function Subsystem

Viability management Synergy Phase, state and
mode control

Mission controller,
Airframe,
communications

Survival Not addressed Not addressed

Maintenance Test function BITE

Homeostasis Thermal
management
EMC management

Structure, insulation
Shielding, earthing,
filtering

Evolution Not addressed Not addressed

Resource
Management

Fuel chain Thermal Battery,
alternator and voltage
conversion
Fuel tank, pump,
injector, engine,
exhaust

Air flow chain

Electrical power chain

Information management

There are therefore further resource and viability management functional chains

to consider. Resource functional chains are described in Figure 46.

Acquire

Fuel

Air flow

Electrical power

Information

Store Distribute Convert Dispose

Acquire Store Distribute Convert Dispose

Acquire Store Distribute Convert Dispose

Acquire Store Distribute Convert
Ait tasking

order

Fuel store

ES
Mitigated critical

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

Figure 46: Missile example: viability and resource functional chains

Viability chains can be thought of as follows:

 Management – service

 Test function – service

 Thermal management – chain

In the interest of keeping the levels of information at a manageable level for this

analysis, resource management chains will be considered, but viability chains will

be excluded. Inclusion of resource management chains requires a modification

of the function chain interaction diagram for both suggested framework options,

as in and Figure A - 7 and Figure A - 8.

138

 Step 3: Conceive the concept framework

a) Elaborate functions to include functions that allow subsystems to be proposed

and make a mapping of function to physical design observing constraints of the

Functional interaction types

b) Opportunities for similar functionality being performed by a common

subsystem should be identified where possible

To progress, the method requires elaboration of the functions implicit in the

functional chain analysis of the previous step. This allows the selection of

subsystems expected for the physical solution. Figure A - 9 shows a potential

solution for option 1. The equivalent for option 2, is in Figure A - 10. It can clearly

be seen that the attempt to simplify the functional framework has created a

seemingly more complicated arrangement for the physical solution. However, it

is the nature of the interactions rather than the number of them that determines

the complication. The fact that the launch, midcourse and terminal phases are

sequential and therefore demands are separated in time, should create a more

manageable solution.

c) Consider cohesive and dispersive influences on the physical design

d) Establish Form appropriate to both function interaction types and other

dispersive/cohesive drivers to devise subsystem boundaries within the broader

functional framework.

From a cohesive perspective:

 Survival is important for a cruise missile, but there are important

constraints on what is possible. A long range missile that is air launched is

usually range limited by the size that can fit under the aircraft.

Improvement of survivability through size reduction is therefore not an

option.

 The missile does not have a direct operator and so operation can only be

addressed for the mission planning and in this case will be addressed by

HCI design.

 There is a need to locate elements in the design to be externally

compatible with the environment: the seeker needs to be at the front of the

missile to see the target; the actuators would be expected to be at the rear

of the missile; the exhaust needs to be at the rear and the engine would

be expected to be both adjacent and allowing enough room for the intake;

the aircraft connection will be at the top near the midpoint of its length;

inertial instruments would normally be around the aerodynamic centre

139

 Cohesion for internal compatibility will largely be centred around thermal

management as sources of significant heat need to be close to parts with

thermal capacity and thermal management is a particular challenge for

long flight times. Significant sources of heat are the engine and thermal

batteries and these should be near to the fuel tanks, which provide a

thermal sink. Areas where conduction will be important are between

systems for earthing, bonding and grounding

 Structure requires cohesion. For a missile, the structure provides rigidity

for mission operations, but also aids its ability to manage internal heat.

Proximity to structure is important to all physical subsystems and is

expected over the length and width of the frame.

The following are also specific and important considerations that would apply to

the design from a dispersive perspective:

 For survival, there may be the expectation of separation between

redundant mission critical systems. It is probable that a view will be taken

that surviving a kinetic hit is not a priority as it is unlikely and no life is

endangered if it does happen.

 From a maintenance point of view there needs to be access to subsystems

for maintenance. For a missile, space is at a premium and therefore a

decision on access and space for maintenance will be a carefully

considered analysis.

 Electromagnetic compatibility will require adequate isolation of

electromagnetic noise; noise is shielded and filtered both from an import

and export perspective.

 From a safety perspective, there will be expected to be isolation between

the warhead and sources of heat, such as the engine or thermal battery.

For safety there are also implications on design of the firing circuits for the

warhead; apart from when the firing chain is activated, the components

need to be isolated from each other. As the circuit only needs to be made

when it is used, this can be a lifecycle solution (step 4).

 In general, for reliability, it would be considered good design practice to

build in reliability by isolation of sensitive components from adverse

conditions. Therefore electrical components should be isolated from heat

generating equipment such as the engine and thermal battery. In line with

an independent design, the first assumption should be that heat is self-

contained at a subsystem level.

140

 Step 4: Lifecycle solution

a) Mitigate any architectural conflicts across timeline, managing the effect of
unavoidably ‘compromised’ architectural constructs by separation over time

b) Establish a lifecycle solution, whilst not compromising principles already
applied in the previous steps, “design for” additional lifecycle related benefits

c) Standardisation enables common solution to achieving functionality, and the
reduction of variety achieved reduced complication by similarity (section 5.1)

d) Any conflict with previous steps will have to be addressed according to relative
merits

The first part of this step is to address architectural conflicts across the timeline.

Conflicts have been identified in the previous two steps; by conflict it is meant

that it has not been possible to observe the ideal design strategies. This will result

in fundamental blocks straddling functional chains creating difficulties in analysis

and in integration. However a further opportunity is to separate functionality in

time over the mission or the lifecycle. Potential conflicts to be addressed for

functional option 1 are in Table 20 and those for option 2 are in Table 21.

Table 20: Missile example: addressing conflicts by lifecycle resolution (option 1)

Potential conflicts Lifecycle resolution

Mission planning to guidance Simplified model of missile available
to mission planning

Lethality firing chain Components keep separately as Line
Replaceable Units until mission.
Firing chain not completed until
mission criteria have been completed

Cruise missiles are mainly kept in storage in a benign environment and so need

little maintenance. Ideally components of the missile will be consistent with the

full design life and therefore without need for replacement. However, it is usual

for explosive items to have a limited life and need replacing during the life of the

missile. Therefore, explosive components should ideally be grouped together

for ease of access and replacement.

For a new concept it is often unlikely to have a detailed view on materials, but

this would be possible for upgrades. For a missile, many components would be

restricted in terms of classification and would require careful disposal – as there

are not large numbers this is usually acceptable.

141

Table 21: Missile example: addressing conflicts by lifecycle resolution (option 2)

Potential conflicts Lifecycle resolution

Actuators and engine are common to
all guidance functional chains.

As the guidance functionality is
treated in sequence there is no
conflict of their service provided by
actuator/engine to the rest of the
missile. They are therefore effectively
exclusive services and need to design
to the most demanding case.

Mission planning to guidance Simplified model of missile available
to mission planning (as Option 1)

Lethality firing chain Components keep separately as Line
Replaceable Units until mission. Firing
chain not completed until mission
criteria have been completed (as
Option 1)

 Step 5: Evaluate architecture

a) Calculate the relative merit of the architecture is given by the Relative

architectural score (RAS)

Evaluation at this stage does not include viability, management and test

functionality as this will require a more detailed definition than is possible here.

All frameworks will require this, but perhaps to a greater or lesser extent

depending on the number of separate components in the design.

To evaluate the architecture, seven criteria are evaluated in

142

Table 22.

143

Table 22: Missile example: architecture evaluation

 Framework 1 Framework 2

Context suitability Yes Yes

Critical function
modularity

0.944 0.875

Critical degree
modularity

0.973 0.969

Dispersion index Not evaluated7 Not evaluated7

Bridge modularity 0.998 0.998

System boundary
modularity

1 1

Relative architectural
score

3.915 3.842

As with the Lego Mindstorms example in the previous section, both of these

designs have been created using the method and therefore would expect to have

good Relative architectural scores. The most significant difference is in the

Critical degree modularity. This is due to the allocation of flight control design to

each of the launch, midcourse and terminal guidance functional chains for this

architecture. This creates slightly more critical interfaces, but may facilitate the

appropriate design of algorithms by the relevant functional chain design

authorities.

7 Not possible to evaluate without a conceptual physical design of each missile, which is outside
the scope of this research.

144

9 COMPARISON OF METHODOLOGIES

 Candidate methods for comparison

In section 3, a number of methods were identified as candidates for comparison

with the Critical interaction modular design methodology, the approach being

developed by this research. These were selected on the basis of prominence and

popularity as:

 Systematic design (SAPD) by Pahl and Beitz (Pahl et al., 2007) as

representative of design focused methods (Roozenburg & Cross, 1991)

 Axiomatic design by Suh (Suh, 1997) as representing of attribute focused

design

 TRIZ by Altshuller due to its relative popularity in industry

 Product design by Ulrich and Eppinger (K. Ulrich & Eppinger, 2008) due

to its popularity in the US

 Total design by Pugh due to its higher than average use in industry.

An initial analysis of each method is carried out against the requirements of Table

5, and this is summarised in Table 23. Comparison of the methodologies against

the requirements shows that three candidates are potentially suitable for the

comparison (shaded green), and two are not suitable (shaded red). The table

shows an obvious divide between stage based models and activity based models.

Stage models attempt to describe the entire lifecycle, emphasising the “stage

gates” that are required to be achieved to assure good design. At the end of each

stage there is a definition of what level of design maturity should have been

achieved and what artefacts should have been produced. As a result, they are

often at an outline level, leaving the engineer to work out how the design activity

should be performed and its effectiveness should be achieved. This level of detail

about the ‘how’ is usually contained within the activity based models, which tend

to address a particular stage, defining activities to a greater depth and in a way

that actively helps engineers achieve an effective design. Stage based models

therefore concentrate on assurance while activity based models focus in more

detail on the development and improvement of the design and what it can

achieve. The distinctly different approaches make it desirable to have a candidate

of both types.

Of the activity based methodologies, Suh’s Axiomatic design is the only method

that starts with a problem statement (TRIZ aims to improve existing or already

conceived solutions). Also TRIZ is a collection of concepts rather than having a

prescribed approach; therefore Suh’s Axiomatic Design is chosen as the activity

145

based methodology. Of the stage based models, Pugh’s Total Design does not

employ an analytical approach in design preferring to develop many candidates

and select a best - this lack of analysis means that Total design is not suitable for

comparison. Product design and Systematic design are similar approaches and

Systematic design is favoured as it is perhaps most established and represents

a ‘unified approach’ that many stage based models adhere to.

Table 23: Comparison of existing system design methodologies

 Comparison of methods study for Central heating

In this chapter, the methods chosen in Chapter 3 on Methodology are to be

applied to a common problem in order to compare their utility in systems design

compared with the approach designed for this research, which is referred to as

the Critical interaction modular design methodology. The problem chosen is a

domestic central heating system; the advantage of applying the process to a

domestic architectural example is that it enables comparison with established and

well-tried techniques. The systems of a domestic house are rich enough to

examine many different functions of systems; services, control, chains, decisions

and judgements. It allows the opportunity to exercise all aspects of systems

Required characteristics of
methodology

Systematic
design

Axiomatic
Design

TRIZ Product
design

Total
design

Scope Concept
phase

Yes (entire
design
process)

Yes (concept
phase only)

Yes (concept
phase only)

Yes (entire
design
process)

Yes (entire
design
process)

Starting
point

Both problem
and solution
based starting
points

Yes Yes No (only
solution
based)

Yes No (only
problem
based)

Approach Concrete,
prescriptive
procedural
and analytical

Yes Yes No (not
prescriptive)

Yes No (not
analytical)

Models Either activity
or stage based

Stage based Activity based Activity based Stage based Stage based

Aim Design
improvement

Yes (by
analysis)

Yes (by
analysis)

Yes (by
analysis)

Yes (by
analysis)

Yes (by
selection)

Desirable Support (to
concept design):

Methods
(relevant to
concept
stage)

Yes Yes

None Yes (TRIZ
toolkit)

Yes Yes

Means Yes No No Yes
(Innovation
machine)

No No

Notation Yes Yes Yes No No No

146

design, but remain simple enough so that observations and conclusions can be

readily achieved. The central heating system is a typical example and includes:

 Services of energy supply and the supply of a media for achieving heat

transfer

 Control of temperature

 Chains of heat exchange and exhaust of waste products

 Human issues between user and owner stakeholders

 Decisions about setting the required temperature versus heating costs and

economic running of the system.

The task of designing a central heating is applied to three candidate methods,

one in each of the following sections:

 Systematic design (section 9.3)

 Axiomatic design (section 9.4)

 Critical interaction modular design methodology (section 9.5)

In each case, the methodology is analysed in terms of how the central heating

problem is addressed in terms of:

 Requirements analysis

 Functional design

 Systems design

 Evaluation of solutions

 Systematic Design solution

 Requirement analysis

Clarification of the task

The method describes the following actions to clarify the task:

a) Compile the requirements:

 What objectives is the intended solution expected to satisfy?

o What properties must it have?

o What properties must in not have?

o Determine quantitative and qualitative data for the checklist.

147

b) Specify demands and wishes clearly, ranking wishes as being major,

medium or minor in importance

c) Arrange requirements in clear order as follows:

 Define the main objective and main characteristics

 Split into identifiable subsystems, functions, assemblies etc or in

accordance with the main headings of the checklist

d) Determine that listed requirements are technically and economically

achievable.

e) Consider client, state of technology, standards and guidelines, future

developments.

Detailed guidance is not provided in terms of the stakeholders or the systems and

conditions of the environment. The client is mentioned at e) with an inference that

this is the source of requirements along with standards and guidelines. The client

is the only explicit stakeholder for the generation of objectives for a), their

importance for question b) and their ranking in question c). The method

distinguishes two types of client; anonymous customer and specific customers in

order to address a given market segment as well as the primary and specific

customer. In c), there is also an assumption that the system can split into

identifiable subsystems, suggesting that any architectural decisions can be made

in a simplistic way. Equally, at d) an evaluation is required to ensure the

requirements are achievable. The process described is just an outline and implies

that concept design work will be required in order to answer the questions posed,

but no specific guidance is given to achieve this.

There is a detailed set of steps for generating the structure of a requirement

specification, though there is an admission that at the early concept stage it is not

possible to make precise requirements. The overall impression is an approach

with a well-defined procedure, but not one that identifies the variety of sources of

requirements and constraints.

 Functional design

Conceptual Design

Abstraction and problem formulation

A procedural set of questions are asked to enable the designer to abstract the

solution neutral problem. These are to ask if the crux of the problem is:

 To improve the technical functions

 To reduce weight or space

148

 To significantly lower costs

 To significantly shorten delivery times

 To improve production methods

Here we are talking about providing an improvement to heating functions of the

house by installing a new central heating system which in this case could be

“Ensuring centrally controlled gas heating of spaces of a house to achieve a

specified level of temperature in each”.

Systematic broadening of problem formulation

Consider extensions of, or changes to, the task in order to test whether it is well

defined by abstraction. In this case we may consider whether individual rooms

need heating or whether:

 a centralised heat source may be distributed around the house

 an alternative to gas heating represents the best chance of a solution.

In order to allow comparison with other methods, gas central heating system with

heating sources in each room will be assumed for this example, unless the

method (as will be the case for Axiomatic design) explicitly rejects it.

Establish functional structures

High level functionality is broken down into lower level sub-functions according to

whether the design is original, adaptive (by analysis of the existing product) or

variant (using established building blocks). As a newly installed system, this will

be assumed as an original design.

A functional structure is formed by considering “flows” of energy, material and

signals, starting with what is considered to be the main flow then developing

auxiliary flows. The main flow consists of sub-functions that directly contribute to

the high level functions, whereas auxiliary flows contribute indirectly (these could

be viability functions). Initial analysis may not provide sufficient detail to allow

choice of architecture and so the method advises the following guidance in

developing the functional structure relevant to this example:

1. First derive a rough functional structure from functional relationships you

can identify in the requirements list.

2. Logical relationships may lead to functional structures

3. Functional structures require flows of energy, material and signals to be

addressed. Start with the main flow and iterate to achieve the auxiliary

flows.

149

4. Several sub-functions recur in most structures (i.e. change, vary, connect,

channel, store)

5. From a rough structure, variants can be derived that allow alternative

solutions

6. Functional structures should be kept as simple as possible

7. A selection procedure should be used in the early stages to identify only

promising solutions

In the case of central heating the main flows are arguably of heat energy and

water material.

Elaborating the water material flow would give:

Water
Distribute

water

Emergency
water

release

Elaborating the gas flow would give:

Gas Burn gas Exhaust

Elaborating the electrical energy flow would give:

Electricity
Power
pump

Earth

Power
heater

Power
thermostat

Power
controller

Elaborating the heat energy flow would give:

Heat water
Radiate

heat

150

Elaborating the signal flow would give:

Set temp
Compare

temp
Initiate
heating

Measure
temp

Elaborating control flow would give:

Control
system

Start pump

Start
heater

Start
thermostat

A combined view of this functionality is made in Figure 47.

151

Gas Burn gas
Expel

exhaust

Heat water
Radiate

heat

Water
Distribute

water

Emergency
water

release

Set temp
Compare

temp
Initiate
heating

Measure
temp

Electricity
Power
pump

Earth

Power
heater

Power
thermostat

Power
controller

Control
system

Start pump

Start
heater

Start
thermostat

Exhaust

Water

Figure 47: Central heating functional architecture (Systematic design)

152

Gas Burn gas
Expel

exhaust

Heat water
Radiate

heat

Water
Distribute

water

Emergency
water

release

Set temp
Compare

temp
Initiate
heating

Measure
temp

Electricity
Power
pump

Earth

Power
heater

Power
thermostat

Power
controller

Control
system

Start pump

Start
heater

Start
thermostat

Exhaust

Water

Figure 48: Central heating architecture design (Systematic design)

153

Examining the guidance above is not clear how the ‘functional structure’ should

be created from here. There is a distinction between original designs and variant

designs and as this is a new system in the house then it has been considered an

original design. However, installation of the system with a well-defined house

space makes this a heavily constrained problem, but constrained by the

environment and not existing solutions. It is likely that consideration of these

constraints is a necessary part of developing the functionality, but this is not

prescribed at this stage. There is therefore no progression possible until the

working structures are considered.

Logical considerations

Constraints are used to establish the logical analysis of functional relationships

in the design to construct relationships between subfunctions as AND, OR or

NOT relationships. In this example it might be necessary to state that the boiler

should not operate without either gas or water supply.

 System design

Develop working structures

The emphasis of this step is to “determine a physical effect needed for the

fulfilment of a given function and also its geometric and material characteristics”

(Pahl et al., 2007); this is termed as a working principle, a group of which will be

used to form a working structure. Counsel is given that “it is often difficult to make

clear distinction between the physical effect and the form design features”. The

end result is intended “to lead to several solution variants, that is, a solution field”.

In the search for a working principle for each sub-function, there may be more

than one option and the idea is that these can be systematically combined at a

synthesis stage. Solutions may be proposed that fulfil more than one sub-

function, and in this way a functional architecture will emerge.

Some structure in the process is introduced (a sort of structured brainstorming),

with the following suggested as possible methods for proposing candidate

working principles as:

 conventional aids

o literature

o natural systems

o existing technical systems

o analogies

o measurements and model tests

154

 methods with an intuitive bias

o brainstorming

o method 635

o Delphi method

o Synetics

o Combination

 Methods with a discursive bias…..

Systematic combination is suggested as a method of bring together the working

principles determined through this brainstorming. Use of a Morphological matrix

can be used for this, but such a matrix will need to be generated in advance from

candidate working principles. For an organisation that regularly produces a

particular type of system, such a matrix might usefully be compiled to capture the

organisational knowledge for this step of the process.

Figure 48 is a suggested mapping of sub-functions generated earlier, onto

candidate working principles. This seems a reasonable partitioning based upon

the author’s experience and though there are other options there is no guidance

to say which partitioning may be better than another from an architectural view;

a decision is therefore delayed until a full evaluation of each concept options is

possible, which could be much later in the design process. At this stage there has

been no direction to consider the house structure as a driving environmental

influence; how many radiators are required, where should the thermostats be

placed in order to best control the temperature of the space? It could be stated in

requirements, but these are architectural considerations and it should be for the

designer to evaluate the options. An experienced heating engineer may well be

able to choose a number of different control solutions to the problem, but a

methodology should require such a step in the process.

 “Design for” principles are not explicitly applied to the concept phase and are left

to the “embodiment phase”. The implication is that these might have an impact

later in the design process with any rework implications that this involves.

Therefore, unless there is a specific requirement to be met for the attribute it may

not be addressed in the concept decision process and could lead to a non-optimal

concept.

 Evaluation of solutions

Concept evaluation

A weighting technique is proposed, based on evaluation of goals rather than the

design or architecture. The authors admit that at an early concept stage this may

155

only be an evaluation based upon the likelihood of meeting the requirements,

especially essential ones. There is an emphasis on both technical, economic and

safety characteristics and a recognition that parameters are likely to be qualitative

rather than quantitative. Suggested evaluation criteria are given in Table 24.

Table 24: Checklist with main headings for design evaluation during the conceptual
phase (Pahl and Beitz)

Main headings Examples

Function Characteristics of essential auxiliary function that follow out of
necessity from the chosen solution principle or concept variant

Working principles Characteristics of the selected principle or principles with respect to
simple and clear-cut functioning, adequate effect, few disturbing
factors

Embodiment Small number of components, low complexity, low space
requirement, no special problems with layout or form design

Safety Preferential treatment of direct safety techniques (inherently safe),
no additional safety measures needed, industrial and environmental
safety guaranteed

Ergonomics Satisfactory man-machine relationship, no strain or impairment of
health, good aesthetics

Production Few and established production methods, no expensive equipment,
small number of simple components

Quality control Few tests and check needed, simple and reliable procedures

Assembly Easy, convenient and quick, no special aids needed

Transport Normal modes of transport, no risks

Operation Simple operation, long service life, low wear, easy and simple
handling

Maintenance Little and simple upkeep and cleaning, easy inspection, easy repair

Recycling Easy recovery of parts, safe disposal

Costs No special running or associated costs, no scheduling risks

At the concept stage there will be limited information available to properly

evaluate these parameters and understanding of the system is often not

advanced enough to have fully formulated requirements. As a result weighting

factors are advised for extremely important requirements only, instead striving for

an approximate balance of performance against all parameters. A score of 0-4 is

applied, with an indication of associated maturity and terms are the summed to

find an aggregate score.

For the central heating example developed here, the evaluation parameters in

each case might be as in the following

156

Table 25. It makes little sense to attempt specific values as this is a subjective

evaluation, but comments are made in each case in terms of the feasibility of

evaluation at this concept stage, for the concept identified.

157

Table 25: Evaluation parameters for a central heating concept (Systemic Design)

Main
headings

Examples

Function Characteristics of essential
auxiliary function that follow out of
necessity from the chosen solution
principle or concept variant

Experience shows that the solution should be
achievable, but nothing in the architectural
analysis can suggest what difficulties may be
encountered for the working principles
proposed for the required functions. Working

principles
Characteristics of the selected
principle or principles with respect
to simple and clear-cut functioning,
adequate effect, few disturbing
factors

Embodiment Small number of components, low
complexity, low space
requirement, no special problems
with layout or form design

Safety critical elements of gas, hot water,
pressurised system, exhaust products will
enforce constraints for embodiment in the house.

Safety Preferential treatment of direct
safety techniques (inherently
safe), no additional safety
measures needed, industrial and
environmental safety guaranteed

As this is gas central heating, it should be
possible to use components that are certified safe
for purpose. System integration will be highly
regulated and using established principles.

Ergonomics Satisfactory man-machine
relationship, no strain or
impairment of health, good
aesthetics

Man-machine interface is in the controller. This
can be established at subsystem level.

Production Few and established production
methods, no expensive
equipment, small number of
simple components

Tools for installing equipment are not specialist,
however production of the boiler will involve
expensive process.

Quality
control

Few tests and check needed,
simple and reliable procedures

Checks associated with gas and hot water
circulation will be involved. Bespoke system will
require bespoke application of quality procedures
by skilled installers.

Assembly Easy, convenient and quick, no
special aids needed

Bespoke system, with safety critical components
will mean an involved and relatively expensive
assembly process.

Transport Normal modes of transport, no
risks

Normal modes of transportation can be assumed
for the domestic components for the system.

Operation Simple operation, long service life,
low wear, easy and simple
handling

Simple operation can be expected

Maintenance Little and simple upkeep and
cleaning, easy inspection, easy
repair

Use of pressurised hot water system is subject to
corrosion. Requires periodic service and checks.
Repair is often difficult due to concealed pipe
work.

Recycling Easy recovery of parts, safe
disposal

No particular issues associated with disposal,
metals should be easily recovered.

Costs No special running or associated
costs, no scheduling risks

The boiler is a relatively expensive component.
Regular servicing costs are not necessarily
typical of electrical alternatives, but running cots
are typically lower

Without a more detailed assessment of the concept design, this evaluation will

be of a generic nature and will give little indication of the technical difficulties in

the functional design. Candidate options could be compared, but performance

158

and behavioural issues will only become clear when system models are created

and used to evaluate performance.

 Axiomatic Design Solution

 Requirement Analysis

No process is prescribed for this step and therefore Axiomatic Design must rely

on support from other methods. Suh recognises that there may be constraints on

the design due to boundary conditions, internal environmental requirements or

design decisions (Suh, 2005), but does not indicate how these might be analysed.

Suh refers to capturing a societal need with the requirement to capture this and

to formalize it; starting from a solution neutral environment. The method is at best

descriptive here, relying on users to derive their own process from examples. The

author describes the need for creativity by “good” designers. The approach

assumes that the designer should work with stakeholders to generate a set of

requirements and then generate a set of functions that can be shown, by a

mapping, to address those requirements.

 Functional design

Assuming that the previous step has outlined the Customer Attributes (CA), these

need to be used to generate Functional Requirements (FR). Axiomatic design

identifies the activity of mapping, but does not facilitate the generation of

functional requirements. This is again left to the designer and it is explained that

the process is both a creative and iterative one, with no single correct answer.

However, at each level of decomposition of the functional requirement it has to

be rationalised against a concept of physical design and a set of associated

design parameters to ensure it can meet the Independence Axiom. If a concept

that meets the axiom cannot be found then this indicates a badly chosen set of

functional requirements: “when the Independence Axiom is violated by design

decisions made, we should go back and redesign rather than proceeding with a

flawed design” (Nam P. Suh, 2001). The lack of clarity of requirement definition

is a potential weakness as if the primacy of requirements isn't established, it

complicates the design process i.e. a compliant solution that doesn't meet the

axioms may be rejected in favour of a non-compliant one that does.

Without guidance as to a suitable requirement the following is taken:

“Ensuring centrally controlled gas central heating of spaces of a house to achieve

a specified level of temperature in each”

This might then be used to generate the following Functional Requirements:

 Heat the various spaces of a house

159

 Control the temperature of those spaces within a specified temperature

range

 Allow user setting of the required temperature range

When proposing a set of Functional Requirements (FR), we are directed to

observe Corollary 2, Minimisation of FRs. It might be argued that the need to

specify a temperature range and the means of achieving it should be combined,

which results in a reduction to two FRs:

 Heat the various spaces of a house

 Control the temperature of those spaces within a selected temperature

range

The next step is to determine the functional hierarchy, which may require

conceptualisation of the physical design (a process referred to as “zig-zagging”).

In this instance, we need to conceptualise the house as an existing structure of

rooms and spaces. This allows us to decompose the FRs further and assign

ranges and tolerances (illustrative values are used in this case) for each:

 Heat the various spaces of a house

o Heat rooms x,y,z; tolerance/range – up to 25 Celsius

 Control the temperature of those spaces within a selected temperature

range

o Set required temperatures in individual rooms – range 10 to 25

Celsius

o Control temperature of individual rooms - range 10 to 25 Celsius

Tolerances are required as they form part of the compliance with Axiom 1; if the

design to meet a given FR allows other FRs to remain within acceptable tolerance

then Axiom 1 is satisfied. As confirmation of at least one valid design solution that

meets Axiom 1 is required, this step cannot be completed without confirmation of

the next step. In accordance with Suh’s corollaries it is also necessary to explicitly

require heating and control of each room as they are independent requirements.

For this analysis, therefore, two rooms will be assumed.

 System Design

A mapping is required between FRs and DPs. The choice of DPs is described as

creative and non-unique. It is for the designer to propose a design and then

compare it with the axioms, modifying it as necessary to achieve compliance. Suh

(Suh, 2001) suggests that the DP for a system can be its components and so a

heat source and control source is assumed for each room. Note that although this

160

may result in redundancy this should become clear from the subsequent analysis

and can then be corrected for.

The design matrix for this case would then be as in Figure 49.

 Heat room 1 Heat room 2 Control room
1

Control room
2

Heat room 1 X

Heat room 2 X

Control room
1

X X

Control room
2

 X X

Figure 49: Design matrix central heating

This is a triangular matrix in Suh’s terms, which represents a decoupled system.

Corollary 7 clearly favours an uncoupled solution, which can be obtained from

combining the two operations associated with each room, giving ‘diagonal’ matrix

of Figure 50.

 Heat and control room 1 Heat and control room 2

Heat and control room 1 X

Heat and control room 2 X

Figure 50: Design matrix for Axiomatic Design’s optimum heating solution

The FRs to reflect this will now be of the form:

“Control the room temperature to within a selected temperature range of +/- 3

Celsius”

This can be addressed by having a heating source in each room, rather than a

centralised boiler and heating pump. Such a measure would enable the

temperature setting and measurement to be incorporated into the same physical

part - as a solution it complies with Suh's Corollary 3 and enables a common

design to be used in each room, which supports Corollary 4. However, a solution

that has the thermostat as part of the unit would not seem an optimum design as

this will allow localised heating within a room. A better solution is likely to having

a thermostat that is in a different part of the room. Suh’s method does allow this,

as for two solutions that satisfy the Independence Axiom, the Information Axiom

can be a final arbitrator. With the thermostat separate from the radiator, there

should be an increased probability of meeting the requirement to keep the whole

room at a temperature.

161

The solution is likely to need an electric unit, as having a gas boiler in each room

is undesirable from a safety, comfort and cost perspective; the room temperature

will be controlled by appropriate setting of each radiator. So rather than a

traditional central heating system this approach would suggest decentralising

with an independent room based solution – such as Figure 51.

Figure 51: Candidate solution for Axiomatic Design’s optimal heating solution

This may seem an extreme interpretation of the method, but each room requires

temperature to be controlled to independently set levels and according to different

thermal parameters (due to size, windows, outside walls); this will involve

independent measurement of each room and independent heating according to

the measurement. The relationship between these functions is one of feedback

and Suh’s method will not allow functional partitioning to proceed in such an

instance.

The next step of the method is to assess the ‘information’ required of each

candidate solution. This is defined by the Information Axiom and requires the

designer to assess the probability of meeting the FR requirements with the

architectural solution. As defined earlier the solution needs to heat the room to a

temperature and control it within 3 degrees centigrade. A consideration will be

whether the radiator will have the heating capacity for the room; a simple analysis

considering the size of the room and its insulation should determine this. If we

assumed that achieving the intended solution was going to be difficult due to

complex considerations of heat flow then we would conclude that the information

level was high – what level would it need to be before a decoupled solution

became more favourable? Suh recognises that this could be a possibility, but

maintains that in uncoupled solution will always be more favourable.

162

The above solution is indeed a valid option, but other commonly used centralised

heating systems are excluded from consideration by the method, even though

they might represent a more economical solution. In reality, centralised systems

are possible, but the method doesn't allow these to be explored due to its

insistence on an uncoupled design where available. If an uncoupled solution

doesn’t exist then the method requires a "near" uncoupled design, where either

a clear performance analysis can be made or a clear decoupling strategy can be

applied. This is often not the case in modern complex systems as admitted by the

author (Suh, 1990).

A final point is that this step is designed to address and provide particular DPs,

and these are assumed to be independent. Therefore the method cannot deal

with non-functional attributes and the trade-offs that these create.

 Evaluation of solutions

The method addresses Manufacturability. The method is extended to ensure that

there is a one to one relationship between DVs and Process Variables (PV). This

might be possible for components, but at a large scale system level such an

interface will be too complex to be dealt with in this way. A particular DV might be

associated with a subsystem or assembly, each of which could comprise multiple

production techniques.

 Critical interaction modular design methodology

 Requirement analysis

Step 1: Analyse the context type and requirement

a) Establish context type (in order to choose problem solving approach,

architectural strategy and risk)

Context types are identified in Table 26.

163

Table 26: Central heating; Context types

Context Type Quadrant Approach Architectural Strategy Risk

Process

Problem PBN A systematic
approach is
possible drawing
on a wealth of
past experience in
designing central
heating systems

Likely to follow
precedent as many
alternative
architectures will have
been devised that can
help characterise the
problem and solution

L

Evolution Obsolescence
management

Solution design is
expected to be
largely static over
lifetime, with
changes limited to
replacement of
parts and possibly
future extensions.

Modular, standardized
parts should be
considered for ease of
replacement

L

Response Routine Standard project
management

No special measures
are required of the
process

L

Requirement

Situation Clean sheet Explore
requirements and
options for new
system

A new architecture is
required though
constrained by the
existing house
structure

H

Divergence of
values

Pluralist A soft systems
analysis can be
employed to
understand the
various
stakeholder views

Stakeholder conflicts
may need separation
of elements in the
solution due to
differing value for
money criteria

M

Management Manageable Can progress with
clear ownership
and definition of
external
boundaries

Can rely on clear
definition and
responsibilities at the
system boundary

L

Solution

Risk Play it safe Design will be
according to
established safety
and service
related
regulations

Assume regulated
requirements and
measures at the
system boundary, with
the need to consider
safety critical items in
architecture

M

Complexity Simple Simple models
can be developed
to understand the
behaviour of the
system

A clear, well defined
boundary can be
assumed along with
every possibility of a
modular design

L

Organization

164

Context Type Quadrant Approach Architectural Strategy Risk

Coordination Centralised or
off-the-shelf

There can be a
single design
authority providing
clarity of
responsibility and
design. COTS
options can be
considered.

Central authority
means that there can
have clarity of external
interfaces with clear
flow-down of
requirements

L/M

Target Stock-in-trade There will be clear
expectations of
what needs to be
provided

There will be clear
architectural drivers

L

Business area Trade Specific and well
qualified skills will
be required in
assembly and
commissioning

None M

This step has helped to characterise the problem, the required solution and the

organisation required to produce it. The risk associated with developing the

design is medium to low; four context types being of a medium risk level and

seven at a low level and just one at high. A system designed should be able to

proceed with confidence that this is a reasonably well precedented problem with

manageable and achievable solutions.

b) Understand stakeholders and environment of the system in order identify all

influences and capture requirements

This step is also to provide the important contextual information that will influence

the architectural design:

 The boundary of the house could be at its external walls or the boundary

to the land that the house is on

 It is already built and composed of individual rooms, that are separated by

internal doors, are reasonably well insulated from each other (by

regulation), but that have different sizes, thermal properties and opening

windows all of which creates different requirements for each space

 The house is assumed as single ownership and therefore there will be a

simple client relationship to general external utilities/services (not

necessarily true when split into apartments)

In this context, a means of independently controlling the temperature of each

room space to a desired temperature is required.

165

A more detailed analysis of the context would yield:

 By stakeholder (using CATWOE and PESTLE)

o householder (owner)

o occupants (clients)

o service regulation (environment)

o environmentalists (weltenshauung)

Figure 52: Human issues in central heating

 By object:

o House; on two floors, its internal spaces need heating to a

controlled temperature

o Assumed use of a hydronic solution (heat transfer using water)

o External supplies of gas, water and electricity

 By location/environment:

o Weather conditions

o External heating sources, heat loss

o Access to service supplies

These can be shown diagrammatically on the Functional Context Diagram of

Figure 53.

166

Figure 53: Functional Context Diagram for household central heating

 Functional design

Step 2: Devise the functional framework

a) Determine functional requirements and flows from the needs of the contextual

analysis of step 1.

b) Elaborate candidate mission functional chains according to Transformation

viewpoints, starting with client functionality and observing the principle of

Simplicity where possible

For the need of “independently controlling the temperature of the space in a

house to a desired temperature”. The functionality of the transformation here is

simple and so it is possible to examine further resource, management and

viability functions at this stage.

 Resource functions can be examined against the Hitchin GRM model,

suggesting that resource function should address acquisition, storage,

distribution, conversion and disposal of the resource:

o For gas: provision of gas, metered and distributed by pipe, burnt

and then expelled as exhaust

o For water: provision of water, which is stored in a top up tank,

distributed by pipe and disposed of when necessary by emergency

water release

o For electricity: provision of electricity, distributed by cable,

converted to energy (of various forms) and disposed of to earth in

an emergency case

167

 Management functions:

o Control temperature by comparison of a measured temperature to

a set level

 Viability

o Regulate heating by monitoring energy use in order to keep within

a monthly budget

These functional chains can be initially drawn out as Figure 54.

Store
water

Burn gas

Distribute
electricity

Set
temperature

Heat
water

Measure
energy use

Heat space

Water resource

Gas resource

Electricity resource

Manage
temperature

Regulate heating

Provide
water

Provide
gas

Provide
electricity

Distribute
water

Emergency
water

release

Expel
exhaust

Power
systems

Earth
electricity

Distribute
gas

Measure
temperature

Control
temperature

Regulate
energy use

Distribute
heated water

Radiate heat

Figure 54: Initial functional chains of central heating example

e) Identify Function interaction types

f) Develop the functional architecture of functional chains according to Table 10

of section 5.2.2, minimising the partitioning of fundamental blocks and trying

to achieve a functionally independent design.

However, to improve the functional structure the functional interaction types can

be analysed as follows:

 Distribution of heated water to radiators is a critical chain, but this also

involves control of temperature in a control loop

 Provision of gas as a shared service requires eventual disposal of

exhausted gas as a critical chain

 Provision of water as a shared service, including storage in a top up tank

may require emergency water release as a critical chain as it is a

pressurised system

168

 Provision of electricity as a shared service, is considered as energy that is

either converted to useful action or requiring grounding, the latter of which

is considered as a critical chain

 Set temperature is a manual action requiring judgement based upon

measured/experienced temperature

 Regulation of heating is applied in order to control running costs

(dominated by use of gas) and is a judgement

 These is a potential conflict between the costs for the owner stakeholder

vs warmth experienced by the client stakeholder, which could be seen as

human conflict (Hc)

With these considerations the above functional representation can be analysed

with the additional understanding of the Function interaction types as in Figure A

- 11. It should be noted that the functional chains have been modified; this is in

order to reduce the incidence of fundamental blocks straddling the functional

chain boundary. ‘Heat space’ has to recognise that heating radiators requires a

hot water distribution critical chain, arranged in a control loop that is controlling

the temperature to a set level. The setting of temperature requires a judgement

that relies on experiencing the temperature in the space itself and therefore

should not be separated from the room. The ‘Water resource’ functional chain is

buffered from the ‘Heat space’ functional chain by the ‘store water’ function (which

we might anticipate being a header tank). Water, gas and electricity provision are

expected to be derived from public utility networks and therefore should be

considered as shared services, but ones that can be relied upon in terms of

capacity (the critical dependencies are therefore mitigated). The ‘Regulate

heating’ functional chain function (related to the Owner stakeholder) has a

possible human conflict with the Client stakeholder and therefore the functionality

is expected to benefit from being separated; hence the Regulate heating chain is

separated from the Heat space functional chain. The resulting functional chain

arrangements only display a conflict in fundamental blocks where they exist at

boundaries to the property. Those for incoming services are mitigated, as is the

earth, for which there is a standardised procedure for domestic household

applications. The remaining critical dependencies are for the boiler exhaust and

the pressure relief valve – these cannot be mitigated as their features will depend

upon the eventual design of the system.

169

 System design

Step 3: Conceive the concept framework

a) Elaborate functions to include functions that allow subsystems to be proposed

and make a mapping of function to physical design observing constraints of the

Functional interaction types

b) Opportunities for similar functionality being performed by a common

subsystem should be identified where possible

As this is an installation of a system for heating in an existing building, an attempt

must be made to determine the level of the house architecture at which the

function of controlling the temperature needs to be considered; three levels of

control can been considered:

 Control of temperature at the whole house level

 Control of temperature at the level of each floor

 Control of temperature at the level of individual rooms

If temperature is controlled at the level of the house, a temperature sensor would

need to be consistently at the coldest place of house and therefore other rooms

may be too hot. The system would then need to be balanced to try to account for

the differences between rooms, but this would only suit typical conditions. A

temperature sensor on each individual floor would provide better discrimination

than at the house level and settings can be based on the different usage patterns

of the two floors and the fact that heat rises. Such a configuration would be more

appropriate for open plan floors, rather than with partitioned rooms, where

temperature is allowed to equalise over the entire floor. The most appropriate

solution to achieving control of temperature across all space in a house is to

independently control each room to a level appropriate for each living space as

required. Ideally, this assumes doors can be shut for no “leakage” when

temperature regulation between rooms is required. This analysis implies that the

‘heat space’ functional chain should ideally be applied at individual room level.

The functional chains of water, gas and electricity provision are related to external

services and as they provide shared services within the house and they are best

considered at house level. The ‘regulate heating’ functional chain is servicing a

household level issue of cost of ownership and therefore this could be considered

to be regulated at the household level too.

170

Further considerations from a functional perspective are:

 Independence and failure – chains cannot be shortened for this example

(although exhaust, water pressure release and electrical grounding would

benefit from employing short physical distances, as would the loops

distributing water to each room that will be inferred in the next step of the

process)

 Balance activities - temperature control loops will need to account for

ambient temperature variations and sizes of spaces in order to provide

uniform heating. Where not subject to control action, loops need to be

balanced so that they interoperate appropriately; in the case of hydronic

central heating, water distribution loops are in parallel and they need to be

balanced in order to manage pressure differentials in the system (Caleffi,

2009). Various control philosophies may need to be explored for an

optimal configuration (Tahersima, 2012).

 Parallel activities – spaces will be heated in parallel

c) Consider cohesive and dispersive influences on the physical design

d) Establish Form appropriate to both function interaction types and other

dispersive/cohesive drivers to devise subsystem boundaries within the broader

functional framework.

Components for the system to perform this functionality would be: external

utilities (gas, electricity and water supply inlets), gas boiler, water pump,

radiators, exhaust fan, pressure valve, earthing point, thermostat, and

controller.

An initial mapping of functions to these components is most likely to be that of

Figure A - 12.

It can be seen from Figure A - 12 that the critical interfaces at the external

boundary of the house still exist in the physical domain. The impact of this on the

system can however be considered to be mitigated due to the fact that the shared

services for water, gas and electricity are subject to regulated interfaces which is

designed, tried and tested to provide sufficient capability to deal with normal

domestic usage. However the identified solution assumes a boiler component for

each heated space – in a house with multiple rooms (assumed to be 10 in this

example) this will not only require multiple boilers, but each boiler would require

shared services of gas, electricity and water and significantly complicate the

arrangement.

A compromise solution is likely to be required and a number of options are

available. Assuming a hydronic heating system (i.e. using a water based heat

171

transfer medium), the following are available as summarised in Table 27 (Taco

Learning Center, 1998).

Table 27: Options for hydronic system designs

Potential solution
types

Central control Zone control Comments

Series (single or
multi circuit)

Yes No Minimal piping, fittings and
installation costs. Furthest
radiator takes longer to
warm up.

Two pipe (reverse
or direct return)

Yes No Parallel circuit means
more even heating of
radiators

Manifold (direct
return)

Yes Yes Valves used to provide
independent temperature
control for each chosen
location

Primary-secondary Yes Yes Valves and pumps used to
provide independent
temperature control and
flow, providing better
control overall.

The first two centrally controlled options simply don’t have the variability in their

control to be able to cope with changing conditions; as mentioned earlier,

radiators could be balanced to suit a nominal set of conditions, but this can only

be effective in those nominal conditions. Manifold and Primary-secondary options

provide the necessary capability to control the temperature in individual rooms,

which is achieved by individual temperature control loops and independently

controlled hot water flows/chains. This leaves the decision as to whether the

Manifold design (with its control of water flow by simple on/off positions of a valve

from a plenum supply at pressure) or the Primary-secondary design with its

independent flow-rate control should be preferred. The Primary-secondary

design with its greater degree of control of the water loop flow for individual rooms

can be used to speed the heating of a particular room, but at the disadvantage of

more complicated control (complicating the shared service) and potentially at

great cost of electricity. The Critical interaction modular design methodology

would therefore select the simpler Manifold design on the basis that it provides

the same functionality, but in a simpler way. If there were doubts about the

performance of the Manifold system (for instance in cases where there was a

wide difference in heating requirements between rooms), then both options could

be retained for further analysis and comparison.

In the UK the commonly employed method of providing zonal control is by the

use of thermostatic valves on the radiators of a Two-pipe design. This is arguably

a simpler method again than the Manifold design, but again complicates the

nature of the shared service; from the perspective of the thermostatic valves, they

172

will be at different distances from the boiler and therefore will have to operate with

water of different temperatures and from the perspective of the boiler it would

have an ideal requirement to supply each valve according to different

requirements.

[Note: whilst independent flow-rate control is often used in the US, they are not

commonly employed in the UK. When applying the method the author, with

experience only of UK heating systems, was inclined to think that such an option

was ideal, but not a practical proposition. However, the frequent use of similar

concepts in the US suggests that the method is capable of challenging existing

norms and allowing providing better options.]

A schematic of an example Manifold design is given in Figure A - 13. This

alternative architecture (without towel warmer to avoid complicating the diagram)

is shown in Figure A - 14 and has achieved the use of a single boiler, which

manage costs and will also provide a safer solution compared with the

architecture of Figure A - 12 (as will be apparent in the next step). Instead of

independently controlled heat sources, independent water loops for each room

are provided by pressurised supply and return manifolds, which then assumes

two shared service functional interactions (shown). In terms of fundamental

blocks that have been partitioned across elements of the system, the architecture

of Figure A - 14 shows the three mitigated shared services for the external utilities

of gas, water and electricity. There are also the critical chains for removing

exhaust fumes, relieving water pressure in a fault situation and grounding of

electricity; whilst these critical chains will be needed in every design, the

independent boiler in each room would require an exhaust fan for each room;

further difficulties of this will be returned to when considering safety and external

compatibility later in the process. A single boiler solution has however achieved

a minimal set of critical chains for exhaust and grounding.

 b) & c) Consider cohesive and dispersive influences to establish Form
appropriate to Function Types and other dispersive/cohesive drivers

A cohesive and dispersive influence assessment would suggest the following

drivers:

 External compatibility: analysis would suggest radiators should be located

by windows and safety outlets should be on an external wall. This helps

with heat circulation, but also the area beneath window is often ‘dead’

space from a furniture perspective

 Safety: the boiler should be both close to the gas supply inlet and by an

external wall for the exhaust outlet and safety reasons. Earth cabling

should be in accordance with regulation. No such spatial limitations need

173

apply for water and electricity due to their ease of distribution and safe

containment. Boilers should be kept out of living areas.

 Internal compatibility: there should be a separation between the radiator

and thermostat within a room. This prevents localised heating within a

room and is a reason for not having thermostatic valves on radiators.

An example schematic for a house is given in Figure 55. This shows a view as to

the optimum placing of the boiler, radiators and thermostats for a building. This

can then be used to aid the dispersion index calculation in the evaluation step.

174

Radiator

Thermostat

Boiler

Figure 55: Schematic of example placing of components in central heating system

175

Step 4: Lifecycle Solution

a) Mitigate any architectural conflicts across timeline, managing the effect of
unavoidably ‘compromised’ architectural constructs by separation over time

b) Establish a lifecycle solution, whilst not compromising principles already
applied in the previous steps, “design for” additional lifecycle related benefits

c) Standardisation enables common solution to achieving functionality, and the
reduction of variety achieved reduced complication by similarity (section 5.1)

d) Any conflict with previous steps will have to be addressed according to relative
merits

From the previous steps of the approach, there are not anticipated to be poor

architectural constructs that need to be separated over time. However, design

for lifecycle could include the following measures:

 Production Independence – items are Commercial off-the-shelf items
(COTS), with the exception of a bespoke arrangement of interconnections
(pipework and wiring) which will be bespoke to the build, and so the
solution is inherently modular with has a high degree of production
independence

 Line Replaceable Units (LRU) – in a modular design consisting COTS
items, these items can be LRUs. The individual elements of the system
that may need replacing during the system life are likely to be:

o the boiler and this could be line replaceable with the exhaust
expulsion fan

o pump

 Organisation independence – utility ownership is established at the
boundary of the property - they will require assurances of safe and suitable
design. All other parts of the system are assumed to be under the single
ownership of the householder. An exception would be if the property is
leasehold with multiple ownership boundaries (such as apartments), which
would lead to a requirement for an architecture that ensures independent
supply/ metering

 Standardisation – standard COTS items can be employed as the system
design is a common one, with elements that are used in other system
designs. Multiple spaces in a house enable similar modular components
to be used.

 Reconfiguration – this heating system is a centralised system and so
reconfiguration is not anticipated as a driver. If it was, then there would be
more of an argument for functional independence of the subsystems. With
the current design, the decoupling of heating supply and control for each
room does increase possibilities for reconfiguration

176

 Recycling (including reuse and disposal) – not applicable as choice of
materials has not been made at this level of design

In summary, the use of standard COTS items ensures a modular design allowing
suitable strategies for LRUs to be chosen. Leasehold apartments could lead to a
the need for further architectural boundaries to be imposed within the boundaries
of the property for the purposes of metering.

 Evaluate solutions

a) Calculate the relative merit of the architecture is given by the Relative

architectural score (RAS)

The Modular Approach Methodology favours “primary-secondary” to provide

effective, independent control of rooms of house. Simpler “two pipe” systems

cannot provide the variability to cope with varied environmental conditions. An

option of having a heat source (gas boiler) in each room is discounted for costs

and safety reasons.

Table 28: Architectural evaluation of central heating options (Critical interaction modular
design methodology)

 Option 1 Option 2

Context suitability Yes Yes

Critical function
modularity

0.81 0.89

Critical degree
modularity

0.980 0.976

Dispersion index Not a suitable design 0.757

Bridge modularity 0.999 0.999

System boundary
modularity

0.972 0.972

Relative architectural
score

- 3.761

Option 1 is not suitable as it suggested boilers in living spaces. Even if this hadn’t

been an issue the dispersion index would have been low due to the desire for the

boilers to be close to external walls for exhausted gases. Option 2 has a

reasonable Relative architectural score, compared with the previous examples of

chapter 8, but receives a lower score largely due to the need to centralise the

boiler source for reasons of costs and safety.

With only limited experience of the Critical interaction modular methodology to

date, it has not been able to characterise what represents a ‘good’ score for each

of the parameters or indeed therefore the Relative architectural score. The

development of this understanding is a suggestion for further research identified

in section 10.6.

177

 Discussion

 A high level comparison

Systematic Design and Axiomatic design were chosen as examples as they met

criteria set for a methodology that would address the aims of the methodology

being developed in this research. Table 29 shows that the Critical interaction

modular design methodology developed also meets these criteria. The next

sections analyse the performance of each of the methodologies to establish their

strengths and weaknesses.

Table 29: Comparison of methodologies

A summary of the steps of each method against a generic description of the

systems design process is given in Table 30.

Required characteristics of
methodology

Systematic
design

Axiomatic
Design

Critical
interaction
modular design
methodology

Scope Concept phase Yes (entire design
process)

Yes (concept
phase only)

Yes (concept
phase only)

Starting
point

Both problem
and solution
based starting
points

Yes Yes Yes

Approach Concrete,
prescriptive
procedural and
analytical

Yes Yes Yes

Models Either activity or
stage based

Stage based Activity based Activity based

Aim Design
improvement

Yes (by analysis) Yes (by analysis) Yes (by analysis)

Desirable Support (to
concept design):

Methods
(relevant
to concept
stage)

Yes Yes

None Yes

Means Desirable No No No

Notation Yes Yes Yes Yes

178

Table 30: Summary of processes to be compared

 Critical interaction modular design methodology Axiomatic Design Systematic design

Requirement
analysis

Step 1 "Analyse the context type and requirement"
11 Context types are used to help inform an architectural strategy.
The method prescribes process for a variety of start points (both
new and existing)
Structured approach

a) Record stakeholder needs and nature of interaction
b) Consider objects being acted on or systems interacted

with
c) Consider impact of location/ environment
d) Record constraints imposed by system level decisions

(mechanism)
e) Capture using Functional Context Diagrams

Advocates an optimum design so
assumes a new design. Suggests
that House of Quality can be used
for existing design, but no attempt
to prescribe its integration into the
method.

No attempt to prescribe problem
definition

"Clarifying the task and elaborating
the solution"

The method recognises three different
starting points and these are
discriminated within a prescriptive
process.

No structured/formal process for
identification of requirements, but
uses an outline set of questions.
Defines means to abstract to a
solution neutral problem

Functional
design

Step 2: "Devise mission functional framework"

a) Elaborate mission functional chains according to
Transformation, Resource provision and Management
Influence viewpoints

b) Determine Function types
c) Address completeness by elaborating Viability and

Resourcing

"Determination of FRs in
Original Design"

No prescription – left to
“experience” of designer

"Establishing function structures"

Start with main flow, break down into
sub-functions and examine logical
interactions. Use material, energy and
signal flow classifications

Systems
design

Step 3: "Conceive concept framework"

a) Consider dispersive (spatial/insulation/isolation including
filtering) drivers between system elements

b) Consider cohesive (conduction) drivers for elements as
above

c) Consider association drivers for elements
d) Establish Form appropriate to Function Types and other

dispersive/ cohesive drivers
Step 4: "Reconcile against lifecycle solution"
Address architectural conflicts across timeline
Design for, according to: Organisation independence, Production
independence, Standardisation, Line/ Lifecycle Replaceable Units,
Reconfiguration, Recycling

"Decomposition of the design"
and "design helix"

Map FRs to DPs, applying design
axioms, corollaries and theories
Not applicable

Embodiment Design

a) Combining solution
principles to fulfil the overall
function

b) Selecting suitable
combinations

c) Firming up into concept
variants

d) Three basic rules (clarity,
simplicity, safety)

e) Embodiment design
checklist

Evaluate
solution

Step 5: Evaluate architecture

Evaluation based on modularity indices
Step 6: Evaluate system

Satisfaction of Axioms Evaluating the concept variants

179

 Systematic Design

Systematic Design clearly prescribes steps to perform during concept

development. The step of clarification of the task is high level and does not

develop key elements that may form a key part of the requirement. The only

stakeholder referred to is the client and there is not explicit recognition of the

constraints that will be applied by the environment. In this step there is an implicit

assumption that the split of the system into subsystems, functions and

assemblies is a straightforward task. The step of conceptual design encourages

abstraction to a solution neutral problem, though this does not account for the

constraints that would apply if this was not an original, but an adaptive or variant

design. The seven steps to elaborate functional structures are clear and the

concept of flows is a very effective way of elaborating functions and their

interactions, although interactions are only distinguished in terms of material,

energy and signal flows rather than behaviour. The flows made it easy to identify

key areas of functionality required of the heating system. However, the exercise

exposed that there is no guidance as to what might be an effective functional

architecture. The search for candidate physical subsystems is conducted by

various forms of structured brainstorming, with an assumption that an

organisation will have already developed guidance, in the form of a morphological

matrix, on how these components can be combined. The system designer then

has a requirement to propose system architectures from potentially viable

combinations, where guidance based on previous experience is called for.

Filtering of potentially useful concepts is left to the evaluation stage and is at this

stage that the failure to identify environmental constraints as part of the task

clarification step will potentially result in a poor design. Concept evaluation is

against a set of attributes, many of which cannot be determined without a detailed

assessment of the concept design which may not be possible in early design

stages. Criteria suggested tend to be based on standard “design for” practice and

therefore heuristic in nature. Without functional models, or past experience, it will

not be possible to evaluate the functional design.

Strengths

 Prescribed set of steps with supporting diagrammatic notations

 Stresses a solution neutral approach

 Flows are an effective concept for developing functional description

Weaknesses

 High level view of requirements with limited contextual identification

 Not clear how to deal with existing solutions

180

 No guidance on partitioning of functionality

 Assumes existing organisational knowledge for guidance on partitioning

the system

 Methods tend to be creative rather than analytical

 Evaluation is of effectiveness of design rather than architecture, which is

only likely to be possible when design has advanced and models are

available

The overall conclusion about this method is that there are useful techniques in

helping to build a system definition, but lack of emphasis on requirements and

analysis of functional design means that a system can only be evaluated when

reasonably detailed concept models have been created and concept options are

shared with stakeholders to validate or elaborate the initial requirement.

 Axiomatic Design

Axiomatic Design provides no guidance on how to identify requirements. There

is a suggestion that the method of Quality Functional Deployment can be used to

facilitate the discussion of the requirements and priorities with a potential

customer, but there is no attempt to identify stakeholders or important influences

of the system context. There is also no guidance on the development of the

functional architecture as Suh’s axioms primarily relate to the way that function is

partitioned to the system design and functional design is left to the ‘experience’

of the designer. Therefore it is concluded that for systems of moderate

complication, the tools provided are not flexible enough to apply without the

considerable support from traditional system design techniques. The

Independence axiom puts a complete emphasis on functional independence in a

way that favours uncoupling of the system and there is little flexibility in decision

making - an independent design is paramount regardless of other factors or

measures. The methods for establishing architectures are limited to consideration

of functional partitioning and manufacturing only, with no obvious recognition of

the need to consider non-functional parameters associated with the quality

attributes of the system. Instead, the Information axiom is used as a method to

assess the relative complexity of interfaces, but the method of calculation is not

clear for complex systems and even simple mechanical interfaces involve a

considerable level of calculation. The following are strengths and weakness

identified and starred where observations coincide with Suh’s own analysis.

Strengths:

 Holds firmly to the established technique of ensuring functional

independence

181

 There is a recognition of the need identify the complexity in an interface

Weaknesses:

 No guidance on generation of requirements or the functional design

 Inflexible approach to architecture means that it may not suit large and

flexible systems*

 It does not accept inevitable compromises of reuse in legacy systems,

preferring a rigid adherence to axioms*

 It cannot deal with situations where the independence axiom cannot be

met (Suh terms these “unstable systems”)*

 There is no recognition of human interaction, which can introduce

unpredictable effects outside the design analysis*

 Critical interaction modular design methodology

Unlike the previous methods, the Critical interaction modular design methodology

takes a detailed view of the context in order to identify the requirements, and in

doing so identifies potential architectural issues at the boundary of its system of

interest. This is important as the system boundary should be seen as an integral

part of the architecture as it forms a ‘subsystem’ boundary for its higher level

system or system of systems. A key part of requirement identification is to be able

to analyse characteristics of the context, context types, to determine relevant

architectural strategies to be employed.

There are a number of concepts for developing the functional design: identifying

stakeholders, objects and mechanisms of the system; incorporating the Generic

Reference Model (Hitchins, 2008) to identify a complete set of system functions

whose use can be extended to analyse instances of functional interaction. An

important tool is the functional interaction type concept, as this offers a way of

assessing the relative difficulties associated with the functional interface to be

able to identify suitable points for functional partitioning – the emphasis being on

where not to draw a boundary (functional blocks) rather than where the boundary

should be, leaving more options open to the system designer. The concept of

being able to mitigate critical interactions allows a more flexible and pragmatic

approach in comparison to the rigid decision process of Axiomatic design, able

to deal with the inevitable trade-offs of system design. The functional interaction

types also reflect the different natures of function in a system, which apart from

the identification of feedback in Axiomatic design, is not recognised by the other

methods.

182

In terms of physical design, apart from the logical partitioning according to the

analysis of the functional interaction types, the Critical interaction modular design

methodology allows for the designer to identify strategies of cohesion and

dispersion in the physical architecture, which are directly related to particular

system benefits in terms of quality attributes. Further consideration of lifecycle

allows a further opportunity for critical interfaces to be mitigated across time, but

also identifies through life benefits from specific architectural strategies. The

consideration of how the architecture can positively influence non-functional

requirements of design and lifecycle is unique across the three methodologies

considered.

Finally, the Critical interaction modular design methodology offers a means of

evaluating the architecture design, which is not addressed by Systematic design

and easier to implement than the Information Axiom of Axiomatic design. It

focuses on interfaces as this is the main parameter that a system designer at any

given level of the system can influence. A strength of the architectural evaluation

method for Critical interaction modular design methodology is that its equations

take established modularity measures (degree and bridge modularity) and use

critical interactions as a means of identifying the behavioural complication

associated with the interfaces.

Strengths:

 Strong emphasis on context and requirements and its impact on

architecture for both new systems and those based on legacy

 Flexible mechanism for structuring the functional design and development

of the system that accounts for the complication of systems behaviour

 Identification of how the system design can be used to have a positive

impact on quality attributes and through life considerations, such as

maintenance

 Provides a means of assessing the quality of architecture, before models

are developed to assess system effectiveness

Weaknesses:

 Method of assessment does not yet incorporate accurate views of what

should be considered good and bad measures of modularity

183

10 Conclusions

 Overview

The benefits of employing the concept of modularity, and the associated

principles of simplicity and independence, in systems design are well researched

and documented. However, a search of the literature reveals a lack of

methodologies to allow its exploitation, which is reflected in a low level of

acceptance by industry.

The research for this PhD has examined the nature of interactions within a

systems architecture in order to provide guidance on how modularity could be

implemented with the systems design process in order to achieve the certain

desired benefits. This is incorporated in a methodology named Critical interaction

modular design methodology.

Validation of this methodology by applying it to a representative problem would

be very difficult to achieve as there is currently no accepted way of evaluating an

architecture and the evaluation of a systems design is a multi-criteria problem

where a sense of value will be subjective, preventing an objective assessment of

the output of the methodology. Instead, this research has chosen to demonstrate

the application of the methodology, justifying the logic of its individual steps

against accepted principles. Several examples of different levels of complication

are demonstrated and for the final example, the Critical interaction modular

design methodology is compared with two of the main existing methodologies.

 Current state of knowledge

A search of the literature has been performed to establish the current state of

knowledge for this research; to reveal areas of particular need and any current

gaps that can be exploited.

It is found that there are a variety of different views on what is meant by the

systems design process and systems architecture; a system design process

seeks to create an architecture by applying known architecture principles for a

more favourable system design. There is a significant body of knowledge about

the architecture principles of modularity, independence, simplicity and similarity.

However, there is an apparent lack of science behind the practical application of

these principles and a lack of understanding of the mechanism by which a system

designer is able to contribute to an effective architecture. This may be why the

theoretical benefits associated with a good architecture are not always achieved

in practice and a practical approach is required.

The literature on existing systems design methodologies has been reviewed to

determine how they implement system architecting principles; their scope,

184

efficacy and the degree to which they are currently in used by the systems

engineering community. The literature on system architecture shows the current

role of patterns, architecting strategies and specific architecting methods and how

they are being employed in systems design. However a survey in the literature

has shown that there are no generally accepted systems design methodologies,

with methods having a very low level of awareness and acceptance by industry.

In the field of software much effort has gone into the generation of structured

methods, but whilst these introduce a formal systematic approach they usually

manage information rather than generate it, and do not generally address non-

functional requirements and the effect of the physical environment.

Lack of acceptance of methods is likely to be, at least in part, due to the lack of

identification of how a systems architect can design an architecture in order to

achieve desired system attributes or outcomes. There is little in the literature that

would allow an effective assessment of ‘quality’ of the architecture once it has

been developed.

 A proposed methodology for system architecture design

The specific research question developed for this research was:

“How can modular architectural principles be applied to the early system

concept design to manage system effectiveness?”

The methodology used in this research relies on three aspects:

 Firstly, that a methodology that employs established beneficial

architectural principles can itself be assumed, by induction, to benefit from

these principles

 Secondly, that showing a methodology can be applied across a variety of

complicated problems is an indication of its suitability of application to

problems in general

 Thirdly, that favourable comparison of the methodology with the current

leading methodologies in this field provides evidence of an advance in the

field of knowledge.

The methodology developed here has been developed on the foundations of a

modular architectural approach, employing principles of simplicity, similarity,

independence and modularity. Key in the application of architectural principles to

systems problems, is how they can by employed to address functional, physical

and behavioural challenges in such a way that a system designer understands

the implications of an architectural decision on the solution outcomes. The

proposed methodology characterises different types of problem or challenges

185

(context types) enabling guidance of how architectural principles can be used in

different circumstances. The concept of context types also draws upon a variety

of diverse systems engineering techniques, helping to provide a platform for a

unified approach of systems engineering for addressing a variety of problems.

A key concept developed by this research is that of functional interaction types.

It recognises that different functionalities present varied degrees of challenge to

the system designer. In recognising this, the system designer is able to identify

fundamental blocks of functionality that should be grouped in the physical design

and the development of which should not be shared across organisational

boundaries. Appropriate management of these functional interaction types will

simplify the analytical and developmental challenges for the system designer and

the system respectively, reducing overall risk and leading to beneficial

behavioural characteristics such as reliability and resilience. Principles of

cohesion and dispersion can then be overlaid on the functional design to provide

a favourable system design in terms of the quality attributes of survivability,

reliability, safety, security, maintainability, environmental compatibility and

operability. Further consideration is then given to elements of the system design

that should be either associated or disassociated to address qualities that will

promote better lifecycle properties. At each stage, observance of fundamental

blocks, cohesive/ dispersive influences and association/dissociation may result

in conflict, where consideration of separation in a temporal dimension can be

employed.

The purpose of this research has not been to produce a methodology that can

derive an “optimal” architecture, but rather one that can suggest architectures

that have been designed to favour certain quality attributes and reduce

development risk. This research has argued that a system’s architecture is

intrinsically linked to its quality attributes and therefore Arrow’s Impossibility

Theorem (Arrow, 1951) suggests that there can be no such thing as a best

system architecture in terms of the outcomes it achieves. A subset of possible

architecture designs can be devised and evaluated in terms of both how well they

address architectural principles and whether they will result in favourable

outcomes. An evaluation of the quality of the architecture has been proposed,

which builds on existing measures in the literature, to measure how well steps of

the methodology have been performed.

186

 Case examples

The research has looked at a number of case examples.

The first example, a simple system derived from a Lego Mindstorms project used

on a continuous professional development course, demonstrated a simple

process line concept. This example was used to explore initial application of

developing ideas for the method, and also to help develop elements of the

method.

The second example, based on a missile design, introduces a more complicated

system that exercises many of the functional interaction types developed as part

of this method. The complication of a missile design would normally occupy a

specialist systems team of many engineers and so it has only been possible to

address a small part of the design here, but enough to exercise the end-to-end

concept design process.

The third example involves the design of a central heating system and it is used

to compare the performance of this method with the other major methods

available to the systems engineer/ architect at this time. A simple example, it

never-the-less demonstrates many functional interaction types and provides a

manageable problem to compare analyses across the different methods

The method has therefore been applied to simple and complicated examples and

this has demonstrated that the method is straightforward in its application,

capable of dealing with a range of system complication.

 Method comparison

The central heating example of Chapter 9, took a simple system concept that is

both easy to comprehend and is also well developed in terms of possible

architectural configurations that have already been widely deployed in building

designs; this makes it possible to assess the different architectures that might be

proposed by each method.

The first conclusion from the analysis is that the existing methods only address

part of the ‘front-end’ process of examining the context and deriving the

requirements. At best Axiomatic design and Systematic design provide an outline

of what needs to be addressed in determining requirements and addressing the

functions needed. They also do not adequately address how to evaluate different

designs in a systemic way.

Axiomatic design has a much polarised view of what is acceptable, which allows

little room for trade-off. As it cannot address the often conflicting drivers of

different quality attributes, the favoured solution, based largely on functional

187

criteria, is quite likely to have undesirable properties when other quality measures

are eventually addressed later in the process. The architecture of central heating

system favoured by Axiomatic design was not ‘central’; the rules of the method

strongly favour a decentralised, uncoupled solution where possible and only if

this is not possible is a decoupled solution considered. The criteria used to

discriminate between solution options (the Information axiom) is a single

parameter and there is no guidance to how this single order of merit can represent

the multi-attribute space (again, Arrow’s Impossibility theorem implies that

combining multiple attributes with different stakeholder preferences in a single

parameter of value is not possible).

Systematic design provided a good method for developing the functional design

from a requirement by the concept of functional flows. However, the development

of an architecture was then seen as a largely creative step based upon past

experience, the existence of which cannot be relied upon and the reliance on

which will inevitably stifle innovation. The judgement of whether an architecture

is a good one can only be made when the design has progressed to a stage

where its quality attributes can be evaluated directly; this can therefore only be

achieved late in the concept definition. Even at this stage, meeting desired quality

attribute requirements will not guarantee a design that can be easily developed

and operated through its life. In contrast, the Critical interaction modular design

methodology, by employing a modular philosophy will simplify processes through

the lifecycle and employs specific steps in it process to ensure this.

To conclude about this comparison activity, both existing methodologies have

little guidance on eliciting requirements and are not clear on how to deal with

existing legacy systems and human interactions. Systematic design prescribes

an effective concept to develop a functional description, but provides no guidance

on partitioning of functionality and, using creative rather than analytical methods

evaluation can only be of effectiveness late in the process. Axiomatic design has

firm adherence to functional independence and the need to identify

complexity/complication in interfaces, but provides no guidance on generation the

functional design and has an inflexible approach to architecture that does not suit

large and flexible systems. In contrast, the Critical interaction modular design

methodology has a strong emphasis on context and requirements for both new

and legacy systems. It employs a flexible mechanism for structuring the

functional, physical and lifecycle designs for reducing complication and improving

quality attributes and through life considerations, such as maintenance. Finally, it

provides a means of assessing the quality of architecture, which can be

performed before models are developed to assess system effectiveness. It is on

this last point that the methodology has a weakness as has not been possible to

establish accurate views of what should be considered good and bad measures

of modularity; this should be the subject of further research.

188

 Reflection on Research Approach and areas for further work

Research is a process of exploration; a foggy problem (Obeng, 1995) which is

characterised by uncertainty in what the objective should be and what potential

solutions are in meeting the objective. It means that a linear approach of

performing a literature review, data collection, analysis and write-up is not always

appropriate. Such an approach may be applicable when there is a mature body

of knowledge to base research upon and a clear methodology to apply, such as

experiments to achieve data to prove or disprove hypotheses. However study into

the field of system architecture is not a mature science and the scale of problems

required to exercise methods proposed make it difficult to achieve validation of

approaches. Instead an approach of exploration using iteration and review has

been employed where:

 Ongoing research leads to new unanticipated areas of interest

 Further literature search then demonstrates potential shortcomings of the

ongoing research

 There is a change focus of research in order to maintain a manageable

scope within the context of a doctoral study.

Whilst these circumstances cannot necessarily be foreseen, the effort and

potential disruption to schedule needs to be provisioned for. The research started

with a broad remit and this remit has been narrowed and focussed as areas that

are of most interest and provide greatest contribution to knowledge became

apparent. Correspondingly the title has changed from:

“Conceiving an Innovative System Design Approach for Complex Systems in

Modern Context”

To:

“A process for the application of modular architectural principles to system

concept design for improved effectiveness”.

The current title is more focussed in that it reflects a clearer view of focus that

has developed over the term of the research in terms of intended strategy

(modular concepts, rather than other possible architectural strategies), the stage

of the process that it applies to (concept design, rather than the full systems

process) and what is expected to be achieved (improvement of system

effectiveness).

The original intention was to investigate whether architectural principles existed

(or could be developed) that would enable the designer to address the various

measures of effectiveness of a system simultaneously; an initial concept was for

189

a set of aligned architectures, each one of which addressed a particular measure.

However, it became clear that in all but a few fortuitous cases, a focus on a

completely aligned architecture is likely to involve unacceptable compromises in

overall performance and effectiveness. Instead a concept has been developed

that identifies a number of key critical architectural constructs that need to be

preserved in the systems design process.

Perhaps the most difficult aspect to address has been the validation of the

findings of the research. System design:

 deals with many facets of system performance, effectiveness and design

properties and as a result, examples tend to be large projects involving

many man-years of experienced effort, which is outside of the scope of a

doctoral study

 is used across many domains of science and technology and to show

application in all would be infeasible

 deals with multiple criteria for success, for which methods of evaluation

often lead to an oversimplified or subjective nature of evaluation and

claims of validation are very difficult to substantiate.

Development of a method that could be claimed to provide a valid evaluation

would therefore be a research topic in its own right and likely to be far larger than

the scope of a PhD study. Instead, this research has relied both on use of

accepted principles from both research and practice of others and the

demonstration of their application in example cases. In this regard, the

demonstration of the method is not intended to provide validation, but to show

how the methodology that has been researched and developed, copes with and

manages typical system design problems. The case studies were chosen to be

varied, but achievable. However, the very nature of the method developed is to

create modular designs, and therefore the demonstrations do not provide a full

view of how the evaluation methods perform when addressing highly integrated,

non-modular designs. This would be suggested as part of further research into

the method and in particular to calibrate what is perceived as ‘good’ and ‘bad’ in

terms of the individual components of the Relative architectural score (Equation

9).

Firstly, the literature on systems complexity was used to identify that a prime

focus should be on the interfaces of the architecture and that established

concepts around modularity are a key tool in managing complication (section 5.1).

No effective way of dealing with the relative complication of interfaces was

identified in the literature and, by examination of typical system interfaces, the

concept of functional interaction types has been proposed as a means of helping

to establish which interfaces are likely to provide the most issues, from a

190

functional or behavioural perspective. The concept of functional interaction types

provides the system designer with a means to decide on how to achieve a

modular design. Known influences of spatial characteristics on architecture have

been researched and incorporated in the method in order to facilitate to

achievement of a good physical and lifecycle design. Finally existing methods of

characterising architectural quality have been developed to incorporate the

insights provided by the functional interaction types, and in particular critical

interaction types, to develop an evaluation method that characterises the quality

of the architecture in modular terms. As part of the development of the functional

design and identification of the functional interaction types a notation has been

devised. Whilst this has been developed along with the concept and improved to

reflect issues encountered during this work, it would benefit from consideration of

more examples and from the input from a variety of system designers to ensure

that it is unambiguous in its notation and is easy to use. Such further work should

lead to a more formally defined nomenclature and syntax definition.

Different problem contexts were examined to understand how they influence the

architectural decisions that a system designer should make, and this has led to

the definition a new concept of context types. The system designer can use

context types to determine architectural strategies, but it also creates a

framework for unifying various strands of systems thinking into one methodology

as it directs the designer to consider established principles of problems types,

systems dynamics, soft systems thinking, critical systems thinking and systems

of systems, as well as considerations for legacy systems, safety critical systems

and urgent operational requirements (section 4.3). An area for further study is

how the risk score proposed from the context types might be used to provide a

qualitative indication of project risk. Whilst a method has been proposed for the

relative evaluation of an architecture, a system will eventually need to be

assessed by its performance and effectiveness also. Further study could develop

a method for the evaluation of effectiveness, although it should be recognised

that the means to do this may not be available in the earlier concept stages. The

structure of the Functional context diagram proposed in this research lends itself

to an evaluation of the system against performance (system of interest),

interoperability (wider system of interest), compatibility (environment) and

acceptability (wider environment) – with robustness over time. The author has

used this to develop a method to identify completeness of evaluation and this

concept could be developed to add the additional system evaluation step for the

Critical interaction modular methodology (as identified in Figure 32).

Further learning points from this research study have been the benefits that can

be achieved by concerted and continuous effort. Effective research needs to

maintain a coherent thought process in order to produce a coherent output. With

part-time study it is sometimes difficult to maintain a line of thought from one

191

research session to another, and continuous effort through the thesis write-up

stage is key to presenting a coherent story for similar reasons.

192

REFERENCES

Alexander, C. (1964). Notes on the synthesis of form. harvard paperbacks.

Alexander, C. (1979). The Timeless Way of Building. New York Oxford
University Press.

Altshuller, G. (2002). 40 Principles: TRIZ keys to innovation (Vol. 1). Technical
Innovation Center, Inc.

Arrow, K. J. (1951). Social Choice and Individual Values. The Economic Journal
(Vol. 2).

Ashby, W. R. (1991). Requisite variety and its implications for the control of
complex systems. In Facets of Systems Science (pp. 405–417). Springer.

Bachmann, F., Bass, L., Klein, M., & Shelton, C. (2005). Designing software
architectures to achieve quality attribute requirements. IEE Proceedings-
Software, 152(4), 153–165.

Baldwin, C., & Clark, K. (2004). Modularity in the design of complex engineering
systems. Complex Engineered Systems, 175–205.

Barkan, P., & Hinckley, M. (1994). Benefits and limitations of structured
methodologies in product design. In S. Dasu & C. Eastman (Eds.),
Management of Design Engineering and management perspectives (pp.
163–178). Kluwer Academic Publishers.

Bass, L., Klein, M., & Bachmann, F. (2002). Quality attribute design primitives
and the attribute driven design method.

Bayliss, C. Y., & Clark, K. B. (1997). Managing in an age of modularity. Harvard
Business Review, 46–58.

Bayrak, A. E., Collopy, A. X., Papalambros, P. Y., & Epureanu, B. I. (2018).
Multiobjective optimization of modular design concepts for a collection of
interacting systems. Structural and Multidisciplinary Optimization, 57(1),
83–94.

Bell, T. (1991). Incredible shrinking computers. Spectrum, IEEE.

Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: an integrated
approach. Springer Science & Business Media.

Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative Evaluation of
Software Quality. In Proceedings of the 2nd International Conference on
Software Engineering (pp. 592–605). Los Alamitos, CA, USA: IEEE
Computer Society Press.

Boulding, K. E. (1956). General Systems Theory--The Skeleton of Science.
Management Science, 2(3), 197–208.

193

Bucciarelli, L. (1994). Designing engineers.

Buede, D. (2000). The Engineering Design of Systems: Models and Methods.
Wiley.

Campagnolo, D., & Camuffo, A. (2009). What really drives the adoption of
modular organizational forms? An institutional perspective from Italian
industry-level data. Industry and Innovation, 16(3), 291–314.

Checkland, P. (1981a). Systems Thinking, System practice. Chichester Wiley.

Checkland, P. (1981b). Systems Thinking, Systems Practice.

Checkland, P., & Poulter, J. (2006). Learning for action : a short definitive
account of soft systems methodology and its use, for practitioners, teachers
and students. Wiley.

Chestnut, H. (1965). Systems Engineering Tools. New York Wiley.

Chung, L., Gross, D., & Yu, E. (1999). Architectural Design to Meet Stakeholder
Requirements. In P. Donohoe (Ed.), Software architecture (Vol. 12, pp.
545–564). Springer US.

Chung, L., & Leite, J. do P. (2009). On non-functional requirements in software
engineering. In A. T. Borgida, V. K. Chaudhri, P. Giorgini, & E. S. Yu (Eds.)
(pp. 363–379). Berlin, Heidelberg: Springer Berlin Heidelberg.

Churchman, C. (1968). The Systems Approach. New York: Delacourt Press.

Clark, K. B. (1987). Managing technology in international competition: The case
of product development in response to foreign entry. Division of Research,
Harvard Business School.

Clements, P. C., & Northrop, L. M. (1996). Software Architecture: An Executive
Overview. Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst.

Coffield, B. (2016). The System of Systems Approach (SOSA). INSIGHT, 19(3),
39–42.

Conker, R. S., Moch-Mooney, D. A., Niedringhaus, W. P., & Simmons, B.
(2007). New Process for “Clean Sheet” Airspace Design and Evaluation. In
7th US/Europe ATM Seminar (pp. 1–10).

Coplien, J. (1997). Idioms and patterns as architectural literature. IEEE
Software.

Crawley, E., Weck, O. de, & Eppinger, S. (2004). The influence of architecture
in engineering systems (monograph).

Cross, N., & Roy, R. (1989). Engineering design methods (Vol. 4). Wiley New
York.

Dijkstra, E. W. (1968). The structure of the “THE” multiprogramming system. In

194

The origin of concurrent programming (pp. 139–152). Springer.

Ehrlenspiel, K., Kiewert, A., & Lindemann, U. (2007). Cost-efficient design.

Eppinger, S. D. (1991). Model-based Approaches to Managing Concurrent
Engineering. Journal of Engineering Design, 2(4), 283–290.

Eppinger, S. D., & Pimmler, T. U. (1994). Integration Analysis of Product
Decomposition. In ASME Design Theory and Methodology Conference (pp.
1–10).

Eppinger, S. D., & Salminen, V. (2001). Patterns of Product Development
Interactions. In S. Culley (Ed.), 13th International Conference on
Engineering Design, ICED 01 (pp. 283–290). Professional Engineering
Publ.

Ericsson, A., & Erixon, G. (1999). Controlling design variants: modular product
platforms. Society of Manufacturing Engineers.

Evbuomwan, N., & Sivaloganathan, S. (1996). A survey of design philospohies,
models, methods and systems. Journal of Engineering Manufacture, 301–
320.

Finger, S., & Dixon, J. (1989a). A review of research in mechanical engineering
design. Part I: Descriptive, prescriptive, and computer-based models of
design processes. Research in Engineering Design, 1, 51–67.

Finger, S., & Dixon, J. R. (1989b). A review of research in mechanical
engineering design. Part II: Representations, analysis, and design for the
life cycle. Research in Engineering Design.

Fitts, P. M., & Washington, D. C. (1951). Human Engineering for an Effective Air
Navigation and Traffic Control System. National Research Council.

Flood, R., & Carson, E. (1983). Dealing with Complexity: An Introduction to the
Theory and Application of Systems Science. Springer.

Forrester, J., & Cambridge, M. A. (1961). Industrial Dynamics. Productivity
Press.

Francalanza, E., Mercieca, M., & Fenech, A. (2018). Modular System Design
Approach for Cyber Physical Production Systems. Procedia CIRP, 72,
486–491.

Frey, D. D., & Dym, C. L. (2006). Validation of design methods: lessons from
medicine. Research in Engineering Design, 17(1), 45–57.

Fricke, E., & Schulz, A. P. (2005). Design for changeability (DfC): Principles to
enable changes in systems throughout their entire lifecycle. Systems
Engineering, 8(4), 342–359.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design Patterns:

195

Abstraction and Reuse of Object-Oriented Design. Lecture Notes in
Computer Science, 707(Mvc), 406–431.

Garlan, D., & Shaw, M. (1993). An Introduction to Software Architecture. In
Advances in Software Engineering and Knowledge Engineering (Vol. 1, pp.
1–40).

Gershenson, J., & Prasad, G. (1997). Modularity in product design for
manufacturability. International Journal of Agile Manufacturing, 1(1), 99–
110.

Gershenson, J., Prasad, G., & Zhang, Y. (2003). Product modularity: Definitions
and benefits. Journal of Engineering Design, 14(3), 295–313.

Grabowski, H., Lossack, R., & El-Mejbri, E. (1999). Towards a universal design
theory. In Integration of process knowledge into design support systems
(pp. 47–56). Springer.

Gu, P., & Sosale, S. (1999). Product modularization for life cycle engineering.
Robotics and Computer-Integrated Manufacturing, 15(5), 387–401.

Hammond, F. (1969). System Architecture for an information process utility.
IEEE Computer Group News.

Harrison, N. B., & Avgeriou, P. (2007). Leveraging Architecture Patterns to
Satisfy Quality Attributes. Lecture Notes in Computer Science, 4758, 263–
270.

Hillier, B., Musgrove, J., & O’Sullivan, P. (1972). knowledge and design.
Environmental Design: Research and Practice.

Hitchins, D. (1992). Putting systems to work (Vol. 325). Wiley Chichester.

Hitchins, D. (2008). Systems Engineering: A 21st Century Systems
Methodology. Wiley.

Huang, C.-C. (2000). Overview of modular product development. Proceedings-
National Science Council Republic of China Part a Physical Science and
Engineering, 24(3), 149–165.

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms
and applications. Neural Networks, 13(4), 411–430.

ISO/IEC/IEEE. (2011). ISO/IEC/IEEE 42010: Systems and software engineering
— Architecture description. International Organization for Standardization,
International Electrotechnical Commission.

ISO 25010:2011. (2011). Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models. ISO - International Organization for
Standardization.

196

Jackson, M. (1994). Critical systems thinking: beyond the fragments. System
Dynamics Review, 10(2–3), 213–229.

Jackson, M. (1998). Formal methods and traditional engineering. Journal of
Systems and Software, 40(3), 191–194.

Jackson, M., & Keys, P. (1984). Towards a system of systems methodologies.
Journal of the Operational Research Society, 473–486.

Jarratt, T. A. W., Eckert, C. M., Caldwell, N. H. M., & Clarkson, P. J. (2011).
Engineering change: An overview and perspective on the literature.
Research in Engineering Design, 22(2), 103–124.

Johnson, G., Scholes, K., & Whittington, R. (2008). Exploring corporate
strategy: text & cases. Pearson Education.

Juran, J. M. (1954). Universals in management planning and controlling.
Management Review, 43(11), 748–761.

Kahneman, D. (2011). Thinking, fast and slow. Penguin.

Kelly, M. J. (1950). The Bell Telephone Laboratories--An Example of an
Institute of Creative Technology. Proceedings of the Royal Society B:
Biological Sciences.

Kim, Y.-S., & Cochran, D. S. (2000). Reviewing TRIZ from the perspective of
axiomatic design. Journal of Engineering Design, 11(1), 79–94.

Klein, M. H., Kazman, R., Bass, L., Carriere, J., Barbacci, M., & Lipson, H.
(1999). Attribute-based architecture styles. In Software Architecture (pp.
225–243). Springer.

Krishnan, V., Eppinger, S. D., & Whitney, D. E. (1991). Towards a cooperative
design methodology: analysis of sequential decision strategies.

Langlois, R. N. (2002). Modularity in technology and organization. Journal of
Economic Behavior & Organization, 49(1), 19–37.

Lawson, B. (1980). How designers think: the design process demystified.
Routledge.

Lin, C.-F. (1991). Modern Navigation, Guidance, and Control Processing.
Prentice Hall series in advanced navigation, guidance, and control, and
their applications. Prentice Hall.

Loch, C. H., & Terwiesch, C. (1998). Communication and Uncertainty in
Concurrent Engineering. Management Science, 44(8), 1032–1048.

Mackley, T. (2005). 4.3.1 Generic Measures of Effectiveness for Systems.
INCOSE International Symposium, 15(1), 610–622.

Mackley, T. (2008). The role of lifecycle systems in the through-life engineering
of system solutions. INCOSE International Symposium, 691–705.

197

Mackley, T. (2015). A problem solving method using Context Types. In IEEE
international conference in Systems Engineering (pp. 438–445).

Mackley, T., Deane, J., & John, P. (2010). Addressing the time dimension and
agility in the provision of capability. In 2010 5th International Conference on
System of Systems Engineering, SoSE 2010.

Maeda, J. (2006). The Laws of Simplicity. MIT Press.

Maier, M. W. (1998). Architecting Principles for Systems-of-Systems. Systems
Engineering, 1(4), 267–284.

Malmqvist, & Axelsson. (1996). a comparative analysis of the theory of inventive
problem solving and the systematic approach of Pahl and Beitz. In
Proceedings of ASME DTM’.

Mendoza, G. A., & Martins, H. (2006). Multi-criteria decision analysis in natural
resource management: a critical review of methods and new modelling
paradigms. Forest Ecology and Management, 230(1), 1–22.

Midgely, G., & In, B. (2006). Systems Thinking in Evaluation. In Evaluation Pp
American Evaluation Association, 0–11.

Midgley, G. (2006). Systems thinking for evaluation. Systems Concepts in
Evaluation: An Expert Anthology, 11–34.

MOD. (2005). The Acquisition Handbook: A Guide to Achieving Defence
Capability, Faster, Cheaper, Better and More Effectively Integrated (6th
ed.). London.

Morris, R., & Parnas, D. L. (1971). On the Ciriteria to Be Used in Decomposing
Systems into Modules. Carnegie-Mellon University.

NASA. (2007). NASA Systems Engineering Handbook. Systems Engineering,
6105(June), 360.

Obeng, E. (1995). All Change! The Project Leader’s Secret Handbook.

Orton, J. D., & Weick, K. E. (1990). Loosely Coupled Systems: A
Reconceptualization. The Academy of Management Review.

Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2007). Engineering Design: A
Systematic Approach. (K. Wallace & L. T. M. Blessing, Eds.), Springer (Vol.
3). Springer.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12), 1053–1058.

Perrow, C. (1999). Normal Accidents: Living with High Risk Technologies. New
Brunswick. NJ: Rutgers University Press.

Price, J. (1999). Christopher Alexander’s pattern language. IEEE Transactions
on Professional Communication, 42(2), 117–122.

198

Pugh, S. (1991). Total design: integrated methods for successful product
engineering. Addison Welsey.

Rechtin, E. (1992). The art of systems architecting. IEEE Spectrum, 29(10), 66–
69.

Roman, G. C. (1985). A Taxonomy of Current Issue in Requirements
Engineering. Computer, 18(4), 14–23.

Roozenburg, N. F. M., & Cross, N. G. (1991). Models of the design process:
integrating across the disciplines. Design Studies, 12(4), 215–220.

Russell, D., & Xu, J. (2007). Service oriented architectures in the provision of
military capability. In UK e-Science All Hands Meeting. Citeseer.

Sadraey, M., & Colgren, R. (2005). UAV flight simulation: credibility of linear
decoupled vs. nonlinear coupled equations of motion. In AIAA Modeling
and Simulation Technologies Conference and Exhibit (pp. 15–18).

Sako, M. (2003). Modularity and outsourcing: the nature of co-evolution of
product architecture and organisation architecture in the global automotive
industry. The Business of Systems Integration, 229–253.

Senge, P. (1990). The Fifth Discipline: The Art of Practice of the Learning
Organisation. New York Doubleday Currency.

Senge, P. M., Kleiner, A., Roberts, C., Ross, R. B., & Smith, B. J. (1994). The
Fifth Discipline Fieldbook. In The Fifth Discipline Fieldbook: Strategies and
Tools for Building a Learning Organization (p. 593). Doubleday.

Sharman, D. (2004). Characterising Complex Product Architectures. Systems
Engineering Vol 7 No, 1 SRC-G, p35-59.

Shaw, M. (1995). Patterns for software architectures. In Procedings of
conference for Pattern languages of program design (Vol. 1, pp. 453–462).
Addison-Wesley.

Sillitto, H. (2014). Architecting systems : concepts, principles and practice.
College Publications.

Simon, H. (1962). The Architecture of Complexity. Proceedings of the American
Philosophical Society, 6.

Smith, R. P., & Eppinger, S. D. (1997). Identifying controlling features of
engineering design iteration. Management Science, 43(3), 276–293.

Snowden, D. J., & Boone, M. E. (2007). A framework for decision making.
Harvard Business Review, (November), 15–17.

Sobieszczanski-Sobieski, J. (1988). Optimization by decomposition: a step from
hierarchic to non-hierarchic systems. In NASA/Air Force Symposium on
Recent Advances in Multidisciplinary Analysis and Optimization.

199

Sosa. (2003). Indentifying Modular and Integrative Systems and their Impact on
Design Team Interactions. Journal of Mechanical Design, 240–252.

Sosa, M. E., Eppinger, S. D., & Rowles, C. M. (2007). A network approach to
define modularity of components in complex products. Journal of
Mechanical Design, 129(11), 1118–1129.

Spooner, C. (1971). A Software Architecture for the 1970s: Part I - The General
Approach. In Software - Practice and Experience (p. Vol 1 p5-37). Oxford
University Press.

Steward, D. V. (1981). Design Structure System: A Method for Managing the
Design of Complex Systems. IEEE Transactions on Engineering
Management, EM-28(3), 71–74.

Suh, N. (1990). The Principles of Design.

Suh, N. (1995). Design and operation of large systems. Journal of
Manufacturing Systems.

Suh, N. (1997). Design of Systems. CIRP Annals - Manufacturing Technology.

Suh, N. (1998). Axiomatic Design Theory for Systems. Research in Engineering
Design - Theory, Applications, and Concurrent Engineering, 10(4), 189–
209.

Suh, N. (2001). Axiomatic Design: Advances and Applications. Oxford
University Press.

Taguchi, G. (1986). Introduction to Quality Engineering. Asian productivity
association.

Tomiyama, T., Gu, P., Jin, Y., Lutters, D., Kind, C., & Kimura, F. (2009). Design
methodologies: Industrial and educational applications. CIRP Annals -
Manufacturing Technology, 58(2), 543–565.

Tyree, J., & Akerman, A. (2005). Architecture decisions: Demystifying
architecture. IEEE Software, 22(2), 19–27.

Ullman, D. (2003). The mechanical design process (Third). McGraw-Hill Higher
Education.

Ulrich, K. (1995). The Role of Product Architecture in the Manufacturing Firm.
Research Policy.

Ulrich, K., & Eppinger, S. D. (2008). Product Design and Development.
McGraw-Hill Higher Education, (4), 1–368.

Ulrich, W. (1987). Critical heuristics of social systems design. European Journal
of Operational Research.

Urbaczewski, L., & Mrdalj, S. (2006). A comparison of enterprise architecture
frameworks. Issues in Information Systems, 7(2), 18–23.

200

Von Bertalanffy, L. (1950). The theory of open systems in physics and biology.
Science, 111(2872), 23–29.

Walden, D., Roedler, G., Forsberg, K., Hamelin, R., & Shortell, T. (2015).
Systems engineering handbook: A guide for system life cycle processes
and activities. Wiley.

Warfield, J. N. (1973). On Arranging Elements of a Hierarchy in Graphic Form.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(2).

Waring, A. (1996). Practical systems thinking. Cengage Learning EMEA.

Wasson, C. (2006). System Analysis, Design, and Development: Concepts,
principles and practices (First). Wiley-Interscience.

Weick, K. E. (1982). Management of organizational change among loosely
coupled elements. Change in Organizations, Vol 375, 408.

Wijnstra, J. G. (2001). Quality attributes and aspects of a medical product
family. In System Sciences, 2001. Proceedings of the 34th Annual Hawaii
International Conference on (p. 10–pp). IEEE.

Wolstenholme, E. (2003). Towards the defintion and use of a core set of
archetypal structures in systems dynamics. System Dynamics Review Vol,
19(1), 7–26.

Wolstenholme, E. (2004a). Using generic system archetypes to support system
thinking. System Dynamics Review.

Wolstenholme, E. (2004b). Using generic system archetypes to support thinking
and modelling. System Dynamics Review, 20(4), 341–356.

Wong, H., Qaisar, S. U., & Ryan, M. J. (2016). Assessing design dependencies
in modular systems. In 2016 Annual IEEE Systems Conference (SysCon)
(pp. 1–8). IEEE.

Woods, E., & Rozanski, N. (2005). Using architectural perspectives. In Software
Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP Conference on
(pp. 25–35). IEEE.

Wynn, D., & Clarkson, J. (2005). Models of designing. In J. Clarkson & C.
Eckhart (Eds.), Design process and improvement: A review of design (pp.
34–59). Springer.

Yang, M. C. (2007). Design methods, tools and outcome measures: a survey of
practitioners. In Proceedings of IDETCCIE 2007 (pp. 217–225).

Yassine, A., Falkenburg, D., & Chelst, K. (1999). Engineering design
management: an information structure approach. International Journal of
Production Research, 37(13), 2957–2975.

Yoshikawa, H. (1981). General design theory and a CAD system. Man-Machine

201

Communication in CAD/CAM.

Zehra, N. (2015). Research Methodology. medworldonline.com.

202

203

APPENDICES

Appendix A Oversized figures

204

205

Approach
block

Transport
block

Recognise
block

Release
block

Load
Block &

start

Collect
bricks

Deliver
blocks

Sort brick
& return

Detect
brick

Recognise
brick

Transport

Pick-up

Sort

Start
pick-up

Transport
block

Disassemble,
load & start

Unload &
return

transporter

Discard
contaminant

Discard
contaminent

Pick-up
return

Figure A - 1: Lego Mindstorms example: Functional chain framework (option 1)

206

207

Approach
block

Transport
block

Recognise
block

Release
block

Collect
bricks

Deliver
blocks

Sort brick
& return

Detect
brick

Recognise
brick

Pick-up

Sort

Start
pick-up

Disassemble,
load & start

Discard
contaminant

Discard
contaminent

Pick-up
return

Figure A - 2: Lego Mindstorms example: Functional chain framework (option 2)

208

209

Collect
bricks

Deliver
blocks

Transport

Pick-up

Sort

Discard
contaminent

Acquire
batteries

Store
batteries

Acquire
filters

Distribute
filters

Provide energy

Service

Check/replace
battery & filter

Transport
block

Unload &
return

transporter

Sort brick
& return

Detect
brick

Recognise
brick

Disassemble,
load & start

Check/replace
battery & filter

Power sorter

Power
transport

Power pick-up

Check/replace
battery & filter

Load
Block &

start

Approach
block

Transport
block

Recognise
block

Release
block

Start
pick-up

Discard
contaminant

Pick-up
return

Distribute
batteries

Store
filters

Dispose
filters

Dispose
batteries

Figure A - 3: Lego Mindstorms example: Functional solution (option 1)

210

211

Collect
bricks

Deliver
blocks

Pick-up

Sort

Discard
contaminent

Acquire
batteries

Store
batteries

Acquire
filters

Distribute
filters

Provide energy

Service

Check/replace
battery & filter

Sort brick
& return

Detect
brick

Recognise
brick

Disassemble,
load & start

Check/replace
battery & filter

Power sorter

Power pick-up

Approach
block

Transport
block

Recognise
block

Release
block

Start
pick-up

Discard
contaminant

Pick-up
return

Distribute
batteries

Store
filters

Dispose
filters

Dispose
batteries

Figure A - 4: Lego Mindstorms example: Functional solution (option 2)

212

213

Collect
bricks

Deliver
blocks

Transport

Pick-up

Sort

Discard
contaminent

Acquire
batteries

Acquire
filters

Provide energy

Service
Dispose
filters

Dispose
batteries

Store
batteries

Distribute
filters

Check/replace
battery & filter

Transport
block

Unload &
return

transporter

Sort brick
& return

Detect
brick

Recognise
brick

Disassemble,
load & start

Check/replace
battery & filter

Power sorter

Power
transport

Power pick-up

Check/replace
battery & filter

Load
Block &

start

Approach
block

Transport
block

Recognise
block

Release
block

Start
pick-up

Discard
contaminant

Pick-up
return

Distribute
batteries

Store
filters

Figure A - 5: Lego Mindstorms example: Physical solution (option 1)

214

215

Collect
bricks

Deliver
blocks

Pick-up

Sort

Discard
contaminent

Acquire
batteries

Acquire
filters

Provide energy

Service

Store
batteries

Distribute
filters

Check/replace
battery & filter

Sort brick
& return

Detect
brick

Recognise
brick

Disassemble,
load & start

Check/replace
battery & filter

Power sorter

Power pick-up

Approach
block

Transport
block

Recognise
block

Release
block

Start
pick-up

Discard
contaminant

Pick-up
return

Distribute
batteries

Store
filters

Dispose
filters

Dispose
batteries

Figure A - 6: Lego Mindstorms example: Physical solution (option 2)

216

217

Functional Framework 1

Navigation

Launch

Midcourse

Terminal

Lethality

Propulsion, fuel and airflow

Establish global
position

Establish position
Make inertial

measurement

Determine way points
to cruise phase

Launch guidance
commands

Midcourse
guidance

commands

Acquire
target

Track
target

Target
detection

Detonate
warhead

Enable
firing chain

Determine way points
to terminal phase

Determine target model

Determine lethality
parameters

Load fuel
Store
fuel

Distribute
fuel

Ignite
fuel

Jet
exhaust

Capture
air

Generate
electricity

Store
charge

Distribute
charge

Power
systems

Dispose
of heat

Air
tasking
order

Inertial
measurement

Actuate
surfaces

Generate
demandsFlight control

Divert
air

Accelerate
air

L L L

L

ES
Mitigated critical

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

Figure A - 7: Missile example: functional solution (option 1)

218

219

Functional Framework 2

Determine way points to cruise phase

Determine way points to terminal

phase

Determine target model

Determine lethality parameters

Navigation

Launch

Midcourse

Terminal

Lethality

Fuel, airflow and power

Establish global
position

Establish position
Make inertial

measurement

Launch
guidance

commands

Target
detection

Detonate
warhead

Enable
firing chain

Actuation
Launch
Flight

control

Load fuel
Store
fuel

Generate
electricity

Store
charge

Distribute
charge

Power
systems

Dispose
of heat

Distribute
fuel

Ignite
fuel

Jet
exhaust

Midcourse
guidance

commands
Actuation

Midcourse
Flight

control

Distribute
fuel

Ignite
fuel

Jet
exhaust

Terminal
guidance

commands
Actuation

Terminal
Flight

control

Distribute
fuel

Ignite
fuel

Jet
exhaust

Capture
air

Divert
air

Accelerate
air

Capture
air

Divert
air

Accelerate
air

Capture
air

Divert
air

Accelerate
air

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

Figure A - 8: Missile example: functional solution (option 2)

220

221

Navigation

Launch

Midcourse

Terminal

Lethality

Propulsion, fuel and airflow

Establish global
position

Establish position
Make inertial

measurement

Determine way points
to cruise phase

Launch guidance
commands

Midcourse
guidance

commands

Acquire
target

Track
target

Target
detection

Detonate
warhead

Enable
firing chain

Determine way points
to terminal phase

Determine target model

Determine lethality
parameters

Load fuel
Store
fuel

Distribute
fuel

Ignite
fuel

Jet
exhaust

Generate
electricity

Store
charge

Distribute
charge

Power
systems

Dispose
of heat

Air
tasking
order

Inertial
measurement

Actuate
surfaces

Generate
demandsFlight control

L L L

L

Capture
air

Divert
air

Accelerate
air

ES
Mitigated critical

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

Figure A - 9: Missile example: physical solution (option 1)

222

223

Determine way points to cruise phase

Determine way points to terminal

phase

Determine target model

Determine lethality parameters

Navigation

Launch

Midcourse

Terminal

Lethality

Fuel, airflow and power

Establish global
position

Establish position
Make inertial

measurement

Launch
guidance

commands

Target
detection

Detonate
warhead

Enable
firing chain

Launch
Flight

control

Load fuel
Store
fuel

Generate
electricity

Store
charge

Distribute
charge

Power
systems

Dispose
of heat

Midcourse
guidance

commands
Actuation

Midcourse
Flight

control

Distribute
fuel

Ignite
fuel

Jet
exhaust

Terminal
guidance

commands

Terminal
Flight

control

Capture
air

Divert
air

Accelerate
air

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

Figure A - 10: Missile example: physical solution (option 2)

224

225

Store
water

Burn gas

Power
systems

User set
temperature

Heat
waterHeat space

Gas resource

Electricity resource

Regulate heating

Provide
water

Provide
gas

Provide
electricity

Emergency
water

release

Expel
exhaust

Distribute &
measure gas

Measure
temperature

Control
temperature

Regulate
energy use

Distribute
water

Radiate heat

Water resource SS

SS

SS

SS

SS

C Critical chain CL Control loop SS Shared service J Judgement Hc Human conflict ES Exclusive service

ES
Mitigated critical

dependency

Exhaust

Water

Earth
electricity

C

SS

Pump water

SS SS

Figure A - 11: Central heating functional chains

226

227

Heat space

Gas resource

Electricity resource

Regulate heating

Water resource

SS

For house spaces 1 to n

Distribute &
measure gas

Burn gas

Heat
water

Distribute
water

Radiate heat

Emergency
water

release

Expel
exhaust

User set
temperature

Measure
temperature

Control
temperature

Regulate
energy use

Provide
gas

Provide
water

Provide
electricity

SS

Store
water

Exhaust

Water

Earth
electricity

SS

SS

Power
systems

SS

C Critical chain CL Control loop SS Shared service J Judgement Hc Human conflict ES Exclusive service

ES
Mitigated critical

dependency

C

SS

SS

Figure A - 12: Initial mapping of heating functions to components

228

229

Figure A - 13: Example of a manifold design hydronic central heating system

230

231

Heat space

Electricity resource

Regulate heating

C

Water resource

C Critical chain CL Control loop SS Shared service J Judgement Hc Human conflict

SS

SS

For house spaces 1 to n

SS Burn gas

Heat
water

Expel
exhaust

Regulate
energy use

SS

Store
water

Power
systems

Measure gas
Provide

gas

SS
Provide
water

Provide
electricity

ES Exclusive service

Exhaust

Water

Earth

ES
Mitigated critical

dependency

Distribute
water

Measure
temperature

Radiate heat

Control
temperature

User set
temperature

Pump water

Emergency
water

release

SS

SS

Figure A - 14: Alternative mapping of heating functions to components

232

233

