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ABSTRACT 

A system architecture can be configured in ways that simplify both a system 

design and its development, by using established architectural principles such as 

independence and modularity. Despite systems design having been recognised 

as a discipline and a process as early as the mid-1900s, there are currently few 

methods available that address how these principles can be applied in practice. 

The literature search for this research has established a set of principles that can 

be used to develop a modular design, but has also shown that there are few 

formal methods available that will allow a system designer to apply such 

principles. This thesis examines what the key principles of modular architecture 

are and develops a process that enables the application of these principles to a 

system concept design. Key principles used are those of simplicity, 

independence, modularity and similarity. The concept of ‘context types’ is 

developed to allow the system designer to choose an architectural strategy that 

suits the system context. Another novel concept of ‘functional interaction types’ 

helps the system designer to identify critical interactions within the architecture 

that need to be addressed. Finally, the concept of functional interaction types is 

combined with existing measures of architectural ‘goodness’ to generate a 

method of evaluating the architecture that focusses on critical aspects. The 

process proposed is demonstrated by using a range of system examples and 

compared with the two of the most well-known methods currently available; 

Systematic Design and Axiomatic Design. 
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1 INTRODUCTION 

 Background 

Systems engineering, and systems design in particular, has been a recognised 

discipline for more than 50 years, but there are few methodologies in existence 

that allow the system designer to purposefully design system concepts to manage 

their quality attributes and the risk involved in the lifecycle. As 80% of whole-life 

costs are determined in the concept stage (Ehrlenspiel, Kiewert, & Lindemann, 

2007) and only 29% of projects developed achieve full compliance with 

requirements (Standish Group, 2015), early consideration of such aspects in 

concept design would seem important. 

The author has over thirty years of experience in the field of systems design and 

systems engineering; twenty with a prime contractor of engineering systems. 

Throughout this time, there have been few significant changes to the way system 

design is performed. The process typically involves a systematic partitioning of 

requirements over successive hierarchical levels of the system with little guidance 

on how the partitioning should be achieved, unless there is previous experience 

of similar designs to learn from. Some methods have been developed and 

introduced over the years, many of which are discussed in Tomiyama’s paper 

(Tomiyama et al., 2009), but these have struggled to gain acceptance in industry 

(Yang, 2007). However, arguably the need for a method or approach to designing 

effective systems has never been greater. 

Systems are becoming both more complex and complicated as the promise of 

performance benefits from increasing integration and interdependency are 

sought. However, the pursuit of  this often leads to unanticipated cause and effect 

(Perrow, 1999). The UK MOD and US DOD initiatives to develop systems of 

systems, represent examples of how increased dependencies are being used to 

increase capability, but even everyday examples such as the Ford Focus car offer 

examples of such increased ‘dynamic complexity’ (P. M. Senge, Kleiner, Roberts, 

Ross, & Smith, 1994). 

Design authorities are also increasingly being asked to take responsibility for the 

overall provision of a capability or service, rather than just provision of a product. 

Responsibility for anticipating and managing wider systemic effects is therefore 

increased. Technological advances lead to pressure to improve the time to 

market so as to keep up with market opportunities, and competitive pressures 

require that time and cost in development is optimised with regard to the 

capability of the product produced. 

The context of a system is changing more rapidly: technological advances are 

often disruptive requiring radical new solutions for which past experience is no 
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longer relevant (Clark, 1987). There is also a desire to utilise all available 

information and assets to best effect such as with the UK System of Systems 

Approach (SOSA) (Coffield, 2016). At the same time, stakeholder expectations 

are increased along with improvements in our engineering and processes, 

including areas of: 

 Safety, reliability and security 

 Cost in competitive environment 

 Latest technology 

 Reduced risk generally 

 Out of the box interoperability. 

The above challenges can be summarised as a need for dealing with increased 

scope, increased complication/complexity in both product design and enterprise 

approach and greater expectations of value, overall effectiveness and risk. With 

the increased need, what might be the reason for a lack of methods? Firstly, it is 

a difficult problem; “system” is a broadly applicable term that refers to concepts 

in many widely differing domains requiring different skills and experience to 

design. A system is characterised by many different parameters; it is a multi-

criteria problem where an objective “best” solution is hard to determine and justify. 

The aim of this research will be to develop a system design methodology that can 

be used to create system designs and specifically address the need to manage 

design effectiveness and lifecycle risk at the concept stage. The output of the 

concept stage is the systems architecture rather than a detailed design, and 

following a literature search, a modular approach is chosen as this represents a 

means of managing systems and controlling system behaviours more effectively.  

The research question will be: 

How can modular architectural principles be applied to early system concept 

design to manage system effectiveness and reduce lifecycle risk? 

In conducting the research it has been apparent that satisfactory solutions for the 

architecture of systems often require a variety of concepts from systems thinking. 

Therefore a further aim is that the approach will provide a means of unifying 

various strands of the systems theory and practice, so that they might be 

addressed and integrated within a common approach. These strands of theory 

and practice have originated, in part, to address problems that have been created 

by different contextual situations. Therefore in order to achieve a common 

approach systems of varying types and contexts will be examined. 

Note: the literature review for this research encompasses a period of almost a 

century and inevitably accepted terms have changed. This is the case for the 
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term complex. According to the Cynefin Framework (Snowden & Boone, 2007) 

complex is where “the relationship between cause and effect can only be 

perceived in retrospect”. Prior to this model complex was often also used to 

describe complicated, where “the relationship between cause and effect requires 

analysis or some other form of investigation and/or the application of expert 

knowledge”. In reviewing the literature historical terms will be used and it is 

suggested that this distinction is borne in mind when dealing with the term 

“complex”. 

 Thesis Structure 

Section 2 of this thesis describes the literature search informing the research; it 

addresses areas of definitions, existing systems design methodologies, 

architecting techniques, the effect on system context and means of architecture 

evaluation. 

Having identified the relevant literature, Section 3 develops the research 

objectives, a research question and the methodology that will be employed for 

the research. 

Sections 4, 5 and 6 describe the analysis behind the research for characterising 

the systems context, applying architectural principles in the different stages of 

development of the systems design and evaluation of the designed architecture. 

Section 7 summarises the proposed methodology from the earlier analysis as a 

set of prescribed steps that the systems designer should apply. This methodology 

is then applied to three design cases with different levels of complication.  

Section 8 presents two practical examples of how the proposed approach can be 

employed to problems of varying complication. Practical examples have been 

chosen to test the approach in different situations. The first example is a simple 

system used in a continuous professional development course run at Cranfield 

University, with a view to demonstrate the approach at a level that is easy to 

assimilate. A missile system example is then used to demonstrate the method for 

a more complicated application. A final example of household central heating is 

chosen as a design problem in order to compare the proposed method, the 

Critical interaction modular design methodology, with two well established 

methods that arguably represent the current state of the art; Axiomatic design 

and Systematic design. Central heating is chosen as it is an area that is well 

understood and there is plenty of design practice against which the results from 

each approach can be compared, and this is reported in Section 9. 

Section 10 presents the conclusions, makes suggestions of how research might 

continue in this area and contains some ‘lessons learnt’ about research as a 

result of this PhD study. 
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2 LITERATURE SEARCH 

 Overview 

A search of the literature has been performed to establish the current state of 

knowledge for this research and the results of this will be summarised in this 

chapter. The literature is arranged in sections to support the research as follows: 

 System process definitions: the processes of System Design and 

Systems Architecting are often used interchangeably within the literature. 

Establishing their similarities and differences is necessary to help in critical 

analysis of previous research 

 Systems Design methodologies: there are a number of documented 

Systems Engineering processes with different approaches to System 

Design that should be reviewed and assessed in terms of their scope, 

efficacy and the degree to which they are currently in used by the System 

Engineering community 

 System architecting techniques: will examine the current role of 

patterns, architecting strategies and specific architecting methods that can 

be employed in the systems design. 

 The impact of context on systems design: examines how the context of 

a problem can be seen to influence how a system should be architected 

and designed 

 System and architecture evaluation: will review how architectures are 

characterised and how this might be used to evaluate the particular merit 

of one architectural design against another. 

The literature will be analysed to determine the state of knowledge in the field to 

reveal particular areas of need and any current gaps that can be exploited by this 

research, At the conclusion of the thesis, these needs and gaps will be reviewed 

to establish how the research develops current thinking in this area and therefore 

contributes to the ‘body of knowledge’. 

 System process definitions 

 System process definition literature 

System design and system architecture are often used interchangeably. They are 

also used as both verbs and nouns; being parts of the System Engineering 

process, but also products of that process. This presents a potential source of 

confusion and the various terms are analysed in this section. 
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Systems engineering is a term that has been used for the last 70 years, but has 

only emerged as a discipline since 1990 with the creation of the International 

Council of Systems Engineering (INCOSE). The INCOSE definition of Systems 

Engineering is: 

“Systems engineering is an engineering discipline whose responsibility is 

creating and executing an interdisciplinary process to ensure that the 

customer and stakeholder's needs are satisfied in a high quality, 

trustworthy, cost efficient and schedule compliant manner throughout a 

system's entire life cycle.”  www.incose.org 

Whilst this is a detailed definition for the ‘what’, a view of the ‘how’ of Systems 

Engineering can be derived from the Merriam-Webster online dictionary: 

 Engineering is defined as “the work of designing and creating large 

structures or new products or systems by using scientific methods”, 

where 

 Designing is “to plan and make decisions about something that is being 

built or created”, and 

 Scientific is “knowledge about … the natural world based on facts learned 

through experiments and observation”. 

Therefore engineering, and specifically Systems engineering, might be restated 

as: 

“The work of planning and making decisions about building or creating 

systems by using methods based on evidence based (scientific) 

knowledge”.  

The reason for pursuing this line of ontological development is that it tells us that 

the system engineering activity is a process that should be followed, but one that 

requires an understanding of the system based on valid scientific or evidence 

based methods and techniques. There is support for this in the history of 

Mechanical engineering, where ‘Design Science’, arguably introduced by 

Redtenbacher in the 1850s (Pahl, Beitz, Feldhusen, & Grote, 2007), is defined 

as “scientific methods to analyse the structures of technical systems and their 

relationships with the environment”. Only later in the 1940s was a process and 

methodology associated with it. Pahl and Beitz’s methodology, Systematic 

design, dealt with electromechanical systems, but it was at this time when 

electronic and computer systems were only just being introduced and with it, the 

“traditional” engineering problem developed greater abstraction and 

complication. The need for systems engineering to cope with this increased 

complication was recognised in the late 1940s and early 1950s, and this was able 
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to draw upon developments in systems science, which has its origins earlier in 

the late 1920s. Therefore in the search of a methodology for systems design we 

should expect a process to be followed, but also an evidence based way of 

understanding the behaviour of the system being developed. The literature 

demonstrates that there is no shortage of process definitions (as explored in the 

next section), but a lack of definitions of how the system design should be 

designed. 

The genesis of systems engineering as a formal approach is generally recognised 

to have been in the early 1940s at Bell Laboratories (Buede, 2000),(Kelly, 1950). 

Fitts (Fitts & Washington, 1951) recognised the need to identify system functions 

and then address how they are allocated to the elements of the system; a 

fundamental element of the currently known concept of systems design. Chestnut 

(Chestnut, 1965) identified systems design as just one of the primary functions of 

systems development, along with: systems analysis, systems test, systems 

evaluation, systems operation and systems management. 

A review of electronic academic databases1 by searching on the terms of “system 

architecture” and “software architecture” gives an indication of when the 

terminology was present in the academic community. System architecture 

appears to have been introduced in 1969 (Hammond, 1969) and software 

architecture in 1971 (Spooner, 1971), though the principle of architecture in 

software, in all but name, was accepted to have been first identified in 1968 

(Dijkstra, 1968). 

In historical terms then, it seems clear that systems engineering and systems 

design pre-date the use of systems architecture by 20 years or more, but the 

terms of system and software architecture arose at about the same time. This is 

perhaps not surprising as the advent of software arguably provided increased 

flexibility of how functions could be managed within a system, and with it, the 

sense that this needed to be more formally controlled. In practice the term 

architecture has, until recently, been more associated with software than systems 

(Clements & Northrop, 1996).  

Ulrich (Ulrich, 1995) provides a definition of product architecture as “the scheme 

by which the function of the product is allocated to physical components”. This is 

similar to the definitions for systems design, but Hitchins (Hitchins, 2008), 

believes that there is a fundamental difference between the systems design 

process and architecting: 

“Systems Design is sometimes viewed as an esoteric, even arcane, 

practice; so much so, that teachers, references and books no longer refer 

                                            
1 INSPEC/ Elsevier, ISI Web of Knowledge, Scirus 
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to systems design choosing instead to talk about ‘architecting’, suggesting 

perhaps that design and architecting are substantially the same thing, 

which may not be entirely correct.” 

Hitchins offers the thought that a system architecture may represent different 

ways of viewing useful patterns within a system. 

“Some prefer the term ‘systems architect’ to ‘systems designer’ and there 

does seem to be some correspondence between the ideals and goals of 

the civil architect and those of the designer… However, systems 

architecture is less well understood. At its most basic, systems architecture 

is the pattern formed by linked clusters and subsystems. Since such 

clustering and linking can occur in many different ways, there are many 

different patterns, so many different system architectures…” 

He also feels the need for scientific justification behind systems architecture does 

not currently exist. 

“There ought to be a science of systems architecture, systems 

architronics, which would indicate the most appropriate architecture for 

systems in different situations, to assure the best system solution; no such 

science appears to have been formulated.” 

Hitchins believes that Systems Design has traditionally represented a limited view 

of patterns within a system (that is to say a mapping of functions to subsystems), 

whereas there may be more than one architectural view and different views might 

be employed in different situations to achieve different goals or criteria. He 

suggests that the notion of systems architecture is open to acceptance of different 

architectural views and their corresponding optimal solutions, though it says 

nothing about how these different views might be reconciled for a multi-criteria 

problem. 

Wasson (Wasson, 2006) on the other hand, does not use the term systems 

design, preferring to use systems architecture in its place. He refers to ‘system 

architecture levels of abstraction’ as ‘system, segment, product, subsystem, 

assembly…’, which is similar to a hierarchy of system within systems design. He 

also talks about logical entity relationships, physical entity relationships as 

architectural concepts and the partitioning, sequencing and evolution from logical 

to physical, which is a reiteration of the principles of the system design process. 

Wasson’s definition of system architecture as “…structure and framework that 

supports and/or enables the integrated elements of the system to provide the 

systems capabilities and perform missions”, perhaps suggests that architecting 

may have a role in organising how a system integrates within its wider system 

and environment. This outward looking approach contrasts with the traditional 
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system design process, which has tended to represent a top down, internally 

focused approach. 

The NASA Systems Engineering Handbook (NASA, 2007), for a long time a key 

reference for systems engineering, takes a more limited view of architecture, 

seeing it as just a part of the system design process. It quotes the US Department 

of Defense, who in turn quote IEEE SSTD 610.12, stating that an architecture 

can be understood as “the structure of components and the principles and 

guidelines governing the design and evolution over time.” Importantly perhaps, 

this determines that the architecture is the structure and relationships between 

elements, not the whole design. 

It can be seen that from the Hitchins and NASA standpoint: 

 system architecture is a concept used at the system design level, 

representing the structure, but not the whole design 

 system architecture introduces the concept of viewing a system in different 

ways, each view representing different patterns or architectures.  

Wasson expands upon this by proposing that system architecture can be used 

represent the way that a system needs to be designed to interoperate within its 

wider system. This latter concept might lead some to believe that system 

architecting is a higher level process compared with systems design or even 

systems engineering (Rechtin, 1992)(Maier, 1998). With the hierarchical nature 

of systems, it is tempting to suggest that there should always be a responsible 

designer at the higher level. However, in practice there will be a level at which 

the system is not ‘designed’ in an engineering sense. Instead, at this level, one 

can conceive of a framework that systems will integrate into, such as is the case 

with a system of systems (Maier, 1998). Establishing how the system would fit 

into this framework then becomes the responsibility of an architect requiring a 

different approach to that of traditional systems design; the need behind 

Architectural Frameworks such as DoDAF  and MoDAF. 

Software and systems design have taken a somewhat parallel path from the 

1960s. Software has arguably taken a more formal, structured approach, which 

may be because it is able to work with a representation that is largely functional 

and abstract. Over the years there has been much documented work on software 

architecture. Some of the early work in this area has been carried out by Carnegie 

Mellon University. In his work for establishing criteria for decomposing systems 

into modules, Morris and Parnas identified unconventional ways of arriving at 

decompositions that provided certain benefits to the designer (Morris & Parnas, 

1971). They argue that it is almost always incorrect to start decomposition on the 

basis of a functional flowchart, and that benefits can be achieved by beginning 
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with a list of difficult design decisions that are likely to change. Modules should 

then be designed to hide or internalise such decisions from others – a technique 

termed encapsulation. 

Later developments in the field of software architecture are detailed in Garlan and 

Shaws’ “An Introduction to Software Architecture” (Garlan & Shaw, 1993). This 

documents a number of common architectural styles, including 

 Pipes and filters 

 Data abstraction and Object-Oriented Organisation 

 Event based, Implicit Invocation 

 Layered systems 

 Repositories 

 Table driven Interpreters 

The authors recognise that these are styles that are perhaps particular to the 

software discipline, and recognises other styles that are used in different 

domains, a few of the important ones being: 

 Distributed processes (an example being the “client server” organisation) 

 State transition systems 

 Process control systems 

A feature of a style is that it determines the way patterns are made up by 

components, connectors and constraints. A summary of these is outlined in 

Shaw’s paper (Shaw, 1995), where she emphasises the importance of matching 

the architecture to the problem along with appropriate descriptions. However, 

patterns have different components and these components interact in different 

ways that need to be distinguished. Shaw contends that a shortcoming of 

conventional approaches is that they often don’t recognise this need. 

 Observations on systems process definitions 

The terms systems engineering and systems design have been in use since the 

1940s, but the terms systems and software architecture are more recent and 

emphasise that they address different concepts. The terms systems design and 

systems architecture are ambiguous in the literature. System design can mean 

both the process and the product and you are often said to be performing systems 

design when you create the system design: the systems design (artefact rather 

than process) is also often used interchangeably with the systems architecture. 

This does not help in the understanding of the process and so this research will 

use singular, widely accepted definitions for process and artefact: 
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 The process: systems design  - “Systems design is process of developing 

technical requirements, logical decompositions, and design solutions, 

resulting in a validated set of requirements and a validated design solution 

that satisfies a set of stakeholder expectations” (NASA, 2007) 

 The artefact: system architecture – “fundamental concepts or properties of 

a system in its environment embodied in its elements, relationships, and 

in the principles of its design and evolution…where an architecture is what 

is fundamental to a system — not necessarily everything about a system, 

but the essentials.” ISO/IEEE (ISO/IEC/IEEE, 2011) 

The introduction of the term system architecture has introduced further concepts, 

which were not addressed previously in system design: 

 that an architecture can describe patterns for more than function 

 system architecture can be used as a framework for systems that are not 

developed or owned by a single design authority i.e. a systems of systems 

and the basis behind architectural frameworks. 

The literature describes an apparent lack of science behind systems design and 

system architecture, which results in a lack of understanding of how system 

design process can produce an effective architecture. 

 System Design Methodologies 

 Existing methodologies 

As system design is part of the system engineering process, an understanding of 

the broader engineering process is required to appreciate what needs to be 

achieved as well as some of the constraints posed. 

In their book Engineering Design (Pahl et al., 2007) the authors document the 

development of engineering design from 1953 to 2002. They assert that these 

often independent developments resemble each other in many ways and that this 

similarity has led to a consensus approach on engineering design known as VDI 

guidelines 2222 and 2221.  Whilst accepting that the consensus approach is a 

unification of similar processes, Roozenburg and Cross (Roozenburg & Cross, 

1991) maintain that it is not a universally accepted approach, describing it as “a 

weak or heuristic” methodology based on “weak knowledge (experience)” 

requiring “interpretation by the designer of the vaguely defined ‘rules’ and terms, 

and, even if properly applied success is not guaranteed”. Their argument, 

supported by Finger and Dixon (Finger & Dixon, 1989a), is that this methodology 

and the many others that represent this consensus, present a process without 

defining the evidence based knowledge that will ensure a successful system; the 

what, but not the how. 
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Instead Finger and Dixon propose that a more useful methodology would be 

based on developments in “architectural and industrial design”. Hillier (Hillier, 

Musgrove, & O’Sullivan, 1972) originally proposed this, arguing that “we cannot 

escape from the fact that designers must, and do, pre-structure their problems in 

order to solve them”.  Finger and Dixon refer to such methodologies as ones that 

describe what attributes the product should have rather than how the process 

should proceed; examples given are those of Suh (Suh, 1997) and Taguchi 

(Taguchi, 1986). Roozenburg and Cross however readily admit that “there is no 

well-formulated ‘consensus’ model of the design process in architecture and 

industrial design” (Roozenburg & Cross, 1991). 

According to Wynn and Lawson abstract methodologies are “characterised by a 

small number of stages or activities and do not describe the specific steps or 

techniques which might be used to reach a solution” (Wynn & Clarkson, 2005), 

and are “…about as much help in navigating a designer through his task as a 

diagram showing how to walk would be to a one year old child...” (Lawson, 1980). 

These comments relate to abstract methodologies such as General Design 

Theory (GDT) (Yoshikawa, 1981) and Universal Design Theory (UDT)  

(Grabowski, Lossack, & El-Mejbri, 1999). 

There are many methodologies associated with design and there have also been 

many attempts to classify them in more detail. However, according to (Malmqvist 

& Axelsson, 1996) this has not resulted in a reduction of competing 

methodologies or the emergence of a particularly favoured option. Classifications 

from various sources are available in order to establish a view on the important 

aspects that a methodology of design should address (Wynn & Clarkson, 2005), 

(Evbuomwan & Sivaloganathan, 1996), (Tomiyama et al., 2009), (Finger & Dixon, 

1989a) and (Finger & Dixon, 1989b). These are used in the next section to 

generate a means to determine the completeness of a system design 

methodology. 

It is not possible to describe all methods here as many have been proposed over 

time (Pahl et al., 2007). Tomiyama (Tomiyama et al., 2009) lists a variety of 

systems engineering/design methodologies suggesting those that have made the 

greatest impact in both academia and in industry. However, a recent survey of 

design methods in industry (Yang, 2007) determined that many of the main 

methodologies in the academic world are not well appreciated or used within 

industry. For those methods highlighted by Tomiyama the relevant data is given 

in   
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Table 1. 
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Table 1: Comparison of popularity of systems design methodologies 

 Not familiar Used in work (not 
useful) 

Used in work 
(useful) 

Axiomatic design 81.4% 0.0% 3.5% 

Systematic 
design 

77.9% 0.0% 3.5% 

Pugh Concept 
Selection (Total 
design) 

68.6% 2.3% 12.8% 

TRIZ 79.1% 0.0% 2.3% 

 

Clearly usage of these methods within industry is at a very low level, and a 

motivation for the development of a methodology that has greater appeal to 

industry. In the absence of a recognised methodology in academia, what is the 

current practice employed by industry? In the author’s experience, the NASA 

Systems Engineering Handbook (NASA, 2007) has long been considered a 

reference text for systems engineering. This provides a description for systems 

design (Figure 1), but again describes more of what to do and not how to perform 

it. For instance, it describes the need to partition systems, but not guidance or 

rules about how this should be achieved. 

Similarly INCOSE, the international organisation advising on Systems 

Engineering, have published a Systems Engineering Handbook (Walden, 

Roedler, Forsberg, Hamelin, & Shortell, 2015). Whilst it references certain 

methods/techniques, these are merely examples and this description too 

provides a process description with little guidance on how it should be applied to 

different situations. Figure 2 summarises the process flow, but there is no 

evidence based methods that determine how to define, refine, synthesise, 

analyse or select favourable architectures. 
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Figure 1: Systems design process (NASA Systems Engineering Handbook) 

 

Figure 2: INCOSE system design process 

 Observations on current methodologies 

The literature has many process definitions, but many are vague and left free to 

the interpretation of the system designer and therefore relying on experience of 

similar designs. It has been argued that methods based on architecture can be 

more beneficial, but there is no consensus on what this should be and usage by 

industry is very low. The focus of many methodologies is on “what” needs to be 

done in system design to develop an architecture, rather than “how” it can be 

achieved.  

The widely differing approaches suggest the need of a way of classifying a 

methodology. Various classifications of systems engineering methodology have 

been identified (Evbuomwan & Sivaloganathan, 1996; Finger & Dixon, 1989a; 

Tomiyama et al., 2009; Wynn & Clarkson, 2005) with different authors adopting 

different categories and no one classification method covering all. The following 

categories emerge from combining the classification methods: 
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 Scope: how much of the lifecycle does it cover? This is important to see if 

the methodology can “stand-alone” or will need to be augmented/ 

combined with another methodology. 

 Starting point: what is the starting point for the problem to be solved? Not 

all problems start at the same point, so how flexible is the methodology to 

different problems? 

 Approach: what type of approach to the problem can be employed? The 

approach used will impact on its validity and on the requirements placed 

on the competencies of the user. For instance is it a process to actively 

influence the design toward an outcome or is it one to ensure whether an 

experienced person has followed the right steps to achieve an outcome? 

And what is its purpose; is it a prescription to follow or a description to 

educate? 

 Models: what are the steps of the process and how are they described?  

 Support: what support does the methodology provide? 

o Methods: how are individual tasks addressed? Methods provide a 

clear prescription of how the task should be performed. 

o Means: what means are employed to perform the tasks? Are there 

tools that can facilitate the process? 

o Representations: in what way is the information represented? 

Notations can improve the formality of the output 

 Aim: what does the methodology consider success to be? Is the process 

to optimise a design or assure a compliant solution? 

Each of the methodology classifications is mapped against these categories in   
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Table 2, showing the specific terms used in each case. The final row of the table 

contains a synthesis of all the classifications. This synthesised classification can 

be used to show how complete a methodology is. 
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Table 2: Classifications of system design methodologies 

 Scope Starting 
point  

Approach Models Support Aim 
 

Methods Tools Representations 

Wynn  Problem 
focussed, 
Solution 
focussed 

Abstract, 
Analytical, 
Procedural 
(design 
focused), 
Procedural 
(project 
focussed) 

Stage 
based, 
Activity 
based 

Methods 
for 
activities 

   

Evbuomwam  Routine/ 
non-
routine 
design, 
Re-
design of 
existing, 
Creation 
of new 
design 

Semantic 
school, 
Syntax 
school, 
Past-
experience 
school, 
Prescriptive, 
Descriptive 

 Methods 
for 
activities 

Computer 
based 

 Prescriptive 
models 
based on 
product 
attributes 

Tomiyama  New 
design, 
Improved 
design 

Managed 
process 

   Represent 
design 

 

Finger   Prescriptive, 
Descriptive 

 Analysis, 
Design 
for… 

Computer 
based 

Representation Prescriptive 
models of 
the design 
artefact 

Mackley Complete 
lifecycle 
or Partial 
lifecycle 

Problem 
solving or 
Solution 
improving 

Abstract or 
concrete, 
Procedural 
(design or 
project) or 
Analytical, 
Prescriptive 
or Exemplar 

Lifecycle 
stage 
based or 
Activity 
driven  

Method 
supported 

Tool 
supported 

Notation 
support 

Focus on 
improvement 
or assurance 

This classification will be used later to analyse existing systems design 

methodologies in terms of coverage and completeness. 

 System architecting techniques  

Architecture establishes patterns that can aid in the design process. According to 

Crawley (Crawley, Weck, & Eppinger, 2004), these can contribute to 

understanding, designing and managing complex systems. However, the ways in 

which elements of a system should be arranged as a pattern in order to influence 

either system features, attributes or properties are not evident. Literature has 

been found that has focussed on: 

 Intrinsic patterns that need to be respected within the design 

 Architecting strategies or rules that encourage good design 

 Architectural perspectives that aim to control particular attributes of the 

design 

 Architecting methods 
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 Patterns 

The “pattern” concept in architectural design is attributed to Alexander 

(Alexander, 1979), consisting of three parts: 

 A context that describes when a pattern is applicable 

 The problem (or “system conflicting forces”) that the pattern resolves in 

that context 

 A configuration that describes the physical relationships that solve the 

problem. 

The principle to have a set of pattern based designs that, in a given context, will 

behave in an appropriate way in order to satisfy a requirement. The pattern 

approach offers a “design” that is proven in one or more contexts, to be assessed 

for application in a new context. However, although a full design could be 

assessed as to whether it is fit for a given purpose, the fitness of the pattern will 

usually be approximate in one of three ways: 

 an incomplete knowledge of or partial fit with the new context 

 a different set of requirements to be met 

 a design which is often at least slightly different from the original pattern. 

There is a benefit of not starting from scratch in the design process and taking 

advantages of the proven qualities of the pattern. However the methods needed 

to extract patterns from existing designs in a way that captures their benefits need 

to be less onerous than methods involved in designing from scratch and the 

pattern has to be shown to be valid to the new context. 

Pattern design has received considerable interest in the field of software design 

(Coplien, 1997), (Price, 1999), (Gamma, Helm, Johnson, & Vlissides, 1993) 

where it is used in support of the Object Oriented Design approach. Examples 

can also be seen in the field of systems thinking where patterns in the form of 

Systems Archetypes have been identified (P. Senge, 1990; P. M. Senge et al., 

1994). In the latter, these archetypes are used as ways of diagnosing the 

behaviour of the system and its behaviour in context as indicative of imbalances 

in the implementation.  

 System Architecting Strategies 

Fricke and Schultz identify three fundamental architecting strategies (Fricke & 

Schulz, 2005): simplicity, independence and modularity 
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 Simplicity 

It is intuitive that reducing the complication of a system by concentrating purely 

on what is needed is a good strategy as it avoids the design, verification and 

maintenance associated with unnecessary artefacts, thereby reducing effort and 

cost. Fricke and Schultz identify the concept of design streamlining as a means 

of simplifying by minimising interfaces and secondary functions, and focusing on 

already existing functions where possible.  

Suh (Suh, 1990), takes this further by suggesting in his Information Axiom, that 

an architecture can be optimised by minimising the  information content of the 

design, thereby making it as simple as possible. The principle is that simpler 

designs involve less information and Suh suggests seven Corollaries to his 

Axioms, six of which relate to achieving these aims which are: 

 Minimisation of functional requirements  

 Integration of Physical parts  

 Use of standardisation  

 Use of symmetry 

 Largest tolerance (in stating requirements) 

 Uncoupled design with less information 

Again it is intuitive that reducing the information content can contribute to 

reducing the complication of a design, but it is perhaps harder to see how these 

could be used in calculations to provide objective support to the design process 

(Kim & Cochran, 2000). Two numerical methods are found in the literature. The 

first is Suh’s calculation of information content and the second is a measure used 

in the methodology TRIZ, where Altshuller defines a closely related measure to 

Simplicity as Ideality (Altshuller, 2002), where: 

Ideality = Sum of useful functions/[ Sum of harmful functions + Sum of 

costs] 

Equation 1: Ideality equation 

Gershenson and Prasad (Gershenson & Prasad, 1997) describe a related means 

of tackling complication in a manufacturing process, where “process similarity” is 

a way of grouping “components and sub-assemblies which undergo the same 

manufacturing processes”. Here it can be seen that similarity is a strategy for 

tackling complication as it reduces the effective information content by re-using 

the same information throughout the design. 
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The concept of simplicity is addressed from a slightly broader perspective in 

Maeda’s account (Maeda, 2006) defining 10 Laws and 3 Keys: 

“Ten Laws 

1. Reduce – the simplest way to achieve simplicity is through thoughtful 

reduction. 

2. Organise – organisation makes a system of many appear fewer 

3. Time – savings in time seem like simplicity 

4. Learn – knowledge makes everything simpler 

5. Differences – simplicity and complexity need each other 

6. Context – what lies in the periphery of simplicity is definitely not peripheral 

7. Emotion – more emotions are better than less 

8. Trust – in simplicity we trust 

9. Failure – some things can never be made simple 

10. The one – simplicity is about subtracting the obvious, and adding the 

meaningful 

Three Keys 

1. Away – more appears like less by simply moving it far, far away 

2. Open – openness simplifies complexity 

3. Power – use less, gain more” 

 Independence and modularity 

Suh (Suh, 1998) maintains that “there are two axioms that cover good design”, 

the Information Axiom has just been described, but his first axiom is to “Maintain 

the independence of the Functional Requirements”. Following the Independence 

principle helps to achieve minimal coupling in a system, which will simplify 

dependencies within the design – the benefits of this are clearly stated by Fricke 

and Schulz (Fricke & Schulz, 2005) “each system function or functional 

requirement has to be satisfied by an independent design parameter… changing 

a design parameter does not affect any related design parameters and thus not 

the proper operation of related functions”. Furthermore, achieving Independence 

is key to creating a “unified description” between functional and formal 

descriptions that Alexander (Alexander, 1964) maintains is key to dealing with 

complex systems. 

Simon (Simon, 1962) notes that the complexity of systems frequently takes the 

form of hierarchy, and that systems with hierarchy have the property of “near-
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decomposability”; that is to say that there are configurations where intra-

component linkages are generally stronger than inter-component ones. He 

argues that hierarchy: 

 Favours the evolution of complex systems 

 Exhibits relatively simple dynamic behaviour 

 Makes a system easier to describe and to understand how it should 

develop and evolve. 

Simon proves that hierarchy can help us to describe and understand the system 

in a way that enables us to both better manage its behaviour and minimise the 

effort required to do so; the fact that hierarchic systems can evolve far more 

quickly than non-hierarchic systems of comparable size is an important finding in 

terms of their development. A further important distinction of hierarchies is how 

they are described; Simon identifies that physical hierarchies are described 

primarily in spatial terms, whereas organisational hierarchies are defined 

primarily in terms of interactions. He asserts that these can be reconciled by 

defining hierarchy in terms of intensity of interaction, which is theme we will return 

to. It is noticeable that much of the literature on this and related subjects is to be 

found in management journals, which tends to reflect the lack of application to 

engineering problems. 

Simon maintains that the recognition of hierarchy and the near-decomposability 

of systems allows the analytical benefits of a reductionist approach whist 

encouraging a holistic view; “In the face of complexity, an in-principle reductionist 

may be at the same time a pragmatic holist”. So what represents a “near-

decomposable” boundary between component subsystems? Simon asserts that 

“(a) in a nearly decomposable system the short-run behaviour of each of the 

component subsystems is approximately independent of the short-run behaviour 

of the other components; (b) in the long run, the behaviour of any one of the 

components depends in only aggregate way on the behaviour of the other 

components”. This has resonance in a paper (Orton & Weick, 1990), where the 

authors identify that decomposition should be along the lines of “loose coupling”. 

Glassman, (Glassman, 1973) defines Loose Coupling as being present when 

systems have few variables in common or the variables they have in common are 

weak. In an attempt to qualify “weak” Weick, (Weick, 1982) suggested that this 

was when elements effect each other “suddenly (rather than constantly), 

negligibly (rather than significantly), indirectly (rather than directly) and eventually 

(rather than immediately). A key finding of Orton’s paper, however, was that 

“loose coupling” was a misunderstood concept. He maintained that systems 

should be designed as loosely coupled as possible and that practitioners saw 

coupling on a scale of tight- to loose- coupling. If loose coupling is considered 
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desirable then total decoupling would represent the optimal case, but this would 

no longer represent a system and presumably any benefit of synergies between 

the subsystems will have been lost. Orton preferred to establish a spectrum of 

coupling ranging from decoupled through loosely coupled to tightly coupled, 

where these represent varying attributes of responsiveness (representing 

determinacy and interdependence)  and distinctiveness (representing 

spontaneity, independence and indeterminacy). 

Modularity in practice has similarities with the principle of Independence. 

According to their book on Product Design and Development (K. Ulrich & 

Eppinger, 2008), a modular architecture is composed of “chunks”, where 

modularity is achieved where the architecture “has the following two properties: 

 Chunks implement one or a few functional elements in their entirety 

 The interactions between chunks are well defined and are generally 

fundamental to the primary functions of the product”. 

This definition implies that strict independence is not required for modularity, with 

chunks potentially relating to more than one functional requirement. However, an 

independent design would also be a modular one. 

Literature reviews (Campagnolo & Camuffo, 2009) and (Gershenson, Prasad, & 

Zhang, 2003) shed some light on the modularity; Campagnolo and Camuffo find 

that there are different types of modularity dealing with the product, the production 

system and the organisation and suggest that different drivers, be they technical 

or commercial, might drive different strategies in each dimension. Within product 

architecture there are also differing perspectives of function and lifecycle, of 

which Sako (Sako, 2003) observes that there can be difficulty in identifying a 

single optimal decomposition as different phases of the lifecycle have different 

objectives and each would potentially drive the architecture into different 

configurations. Another classification (Baldwin & Clark, 2004) identifies 

modularity in design, production and use.  

Bayliss and Clark, (Bayliss & Clark, 1997) maintain that the practice of modularity 

in design is well known in the computer industry where designers achieve 

modularity by dividing their designs into visible and hidden information. The 

visible information represent “design rules” that the designer of the module has 

to comply with, but leaving them free to implement the rest of the design (a 

process known as ‘information hiding’ (Parnas, 1972) in any way that they wish. 

The visible design rules consist of architecture (the modules and what their 

functions will be), interfaces (how they will interact, fit together, connect and 

communicate) and standards for testing conformity and measurement of 

performance. The authors however readily admit that the determination of the 

rules is a difficult task as it requires “the designers of the modular systems [to] 
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know a great deal about the inner workings of the overall product or process in 

order to develop the visible design rules” and “they have to specify those rules in 

advance”. The cases that Baldwin and Clark examine were also mainly related to 

appropriate work-share, allocation of tasks and reuse of components. These 

have clear potential benefits from a project management perspective, but it is as 

likely that modularity can have a beneficial effect on more technical areas such 

as system performance and effectiveness. The same authors point out that 

modularisation requires that “every important cross-module dependency must be 

understood and addressed via a design rule” and that the “density of 

dependencies matters”. They discuss that modularity showing promise in the one 

and two dimensional world of computers would seem an easier proposition than 

for most mechanical systems that have complicated, 3-dimensional designs to 

deal with  (Baldwin & Clark, 2004) 

Ericsson and Erixon (Ericsson & Erixon, 1999) describe a modular product 

platform design approach, where the product platform is a set of products “built 

from a common structure, consisting of a set of modules and interfaces. It 

produces company–specific deliverables that can be efficiently developed, 

marketed and produced…”. They assign metrics to various characteristics of the 

modular design as shown in Table 3 (for which some evaluation methods are 

provided). 

Table 3: Metrics for characteristics of modular design 

Product characteristic Effect 

Interface complexity Lead time in development 

Share of carryover Development costs 

Share of purchased modules Development capacity 

Assortment complexity Product costs 

Share of purchased modules System costs 

Number of modules in product Lead time 

Share of separately tested modules Quality 

Multiple use Variant flexibility 

Functional purity in modules Service/upgrading 

Material purity in modules Recyclability 

These metrics cover aspects of design, production, use and lifecycle with the 

implication that a modular design has implications on them all and these should 

be addressed. 

 Lifecycle Modularity & Similarity 

A number of researchers have referred to the concept of architecting for the 

lifecycle. An example of this is Lifecycle Modularity (Gershenson & Prasad, 

1997), which in addition to ensuring that there is independence throughout the 
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entire product lifecycle, requires that each module is also processed in the same 

manner during each lifecycle stage – this they term Similarity. Thus they define 

three facets of Lifecycle Modularity: 

 Attribute Independence 

 Process Independence 

 Process Similarity 

Here the independence discussed earlier (referred to here as Attribute 

Independence) has been addressed by the System Designer taking account of 

the measures required to sustain the product over its life e.g. use of components 

with adequate and compatible lifetimes. An example of process independence 

would be that if a component is chosen that may fail in the lifetime, then the 

corresponding processes of test, diagnosis, replacement and disposal should 

display both independence and similarity. Whilst this is easy to appreciate, in 

finding the reasons why we should embark on such an analysis, we need to 

examine the potential benefits i.e. asking the question “why should we improve 

Lifecycle Modularity”. 

Gu and Sosale (Gu & Sosale, 1999)2describe the following reasons for modular 

design across the lifecycle (against each is an indication of strategies that may 

be employed to achieve the modular design) 

 It enables parallel development - this requires independence in 
organisation, which can be achieved by functional independence and 
loose coupling of system components thereby facilitating individual teams 
to perform development in parallel 

 Efficient and flexible production – this is another form of organisational 
independence, where loose coupling of system components can allow 
flexibility in production and assembly 

 Increased standardisation – common can be enabled by functional 
independence, allowing economies of scale 

 Common services allowing more efficient maintenance action – benefits 
are provided by grouping of components based on frequency of failure, 
level of diagnosis, required maintenance action, and required line of 
maintenance (e.g. Line Replaceable Units) 

 Easier upgrade – functional independence and loose coupling between 
system components can be used to reduce impact on the rest of the 
system and cause minimal disruption during updates  

                                            
2 Also a similar work by (Huang, 2000) 
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 Easier reconfiguration – functional independence allows additional 
components or module to be easily added, increasing the utility of the 
product  

 Better recycling - identification and grouping of reusable components as 
well as grouping of components by material types from the perspective of 
recycling or disposal 

 Increased variety and customisation – functional independence and loose 
coupling of system components allows variants of the design for different 
needs/purposes 

Agreeing with the previous authors in a number of areas, Erickson and Erixon 
(Ericsson & Erixon, 1999) identify the following additional benefits of a modular 
approach to design, although some of these are as a result of sharing resources 
across the variants of a product enabled through a modular approach: 

 Shorter lead time in development and assembly due to reduction in 
interface complexity and concurrent assembly processes respectively 

 Reduced defects due to increased opportunity for testing at module level 

 Increased interchangeability due to reduced functional interfaces for 
independent designs 

The following being for products with variants only: 

 Greater development capacity and reduced system costs due to sharing 
of modules 

 Reduced development costs due to carryover from other programmes 

 Reduced product costs due to the potential sharing or production tools 
across product ranges 

 Increased flexibility if there are alternate module options. 

 Architectural Perspectives 

There is a small body of work that looks into architectural approaches that are 

designed in order to promote certain system attributes. Whilst this is apparently 

in its infancy, two authors talk about system perspectives (Woods & Rozanski, 

2005) and system aspects (Wijnstra, 2001) based around quality attributes. 

These consider that an architecture comprises both entities and relationships of 

a system and therefore, any aspect of the design that involves entities and 

relationships can be viewed as architectural. In a traditional systems design, 

functions are identified and the relationships between these functions include 

interfaces of information, resource and control flow; this represents an abstract 

architecture for which the quality attribute is the performance of the functionality. 

Using a similar line of argument, a case can be made for a safety architecture 

where the entities and relationships are those that are safety critical. 
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Architectures to address different quality attributes are likely to identify and favour 

different architectural dependencies and therefore it is unlikely that a single 

architectural solution will respect the potentially conflicting needs; an argument 

supported by Sako (Sako, 2003). Indeed, it is not clear that all potential strategies 

can result in a single “best” architecture, where for instance the optimal safety 

architecture can align with the optimal architecture for performance. Chung 

(Chung & Leite, 2009) promotes the idea of “soft goals” that indicates the 

subjective nature of quality and that implicitly recognises the trade-offs between 

non-functional parameters; that there cannot be a single “best” answer. Never the 

less, he maintains that identification of how different architectures contribute to 

these soft-goals is important. 

An indication of the difficulty in achieving a practical architectural strategy with 

the aim of optimising quality attributes is discussed by Alexander (Alexander, 

1964). Alexander contends that the concept of a quality attribute such as safety 

“…is convenient and helps hammer home the very general importance of keeping 

designs danger-free, but it is used in the statement of such dissimilar problems 

as the design of a tea kettle and the design of a highway interchange. As far as 

its meaning is concerned it is relevant to both. But as far as the individual structure 

of the two problems goes, it seems unlikely that the one word should successfully 

identify a principal component subsystem in each of these two very dissimilar 

problems”. It seems that although it is reasonably straightforward to identify 

architectures associated with Quality Attributes after a design is produced i.e. 

once a design is created we can determine if an item is safety critical, it is not so 

easy in the early stages where we are looking for direction on how to produce a 

safe design. Perhaps this shouldn’t be too much of a surprise as Quality Attributes 

are often termed as ‘Emergent Properties’. Alexander also goes on to say that a 

concept of creating a design for individual attributes will not help the designer 

unless it happens to correspond to the system’s subsystems. He states that “No 

complex adaptive system will succeed in adapting in a reasonable amount of time 

unless the adaptation can proceed subsystem by subsystem, each subsystem 

relatively independent of each other… the chances are small because the 

number of factors which must fall into simultaneously into place is enormous”. 

Many observers suggest that the way to design for Emergent Properties is to 

apply certain rules or heuristics developed on the basis of experience (Rechtin, 

1992). However these are often no more than broad statements that are difficult 

to interpret by the designer (for instance “keep it simple”). What we would hope 

for is a means of interpreting the structure of the design in a way that gave a view 

of its benefit to an emergent property. Klein et al (Klein et al., 1999) propose 

Attribute-Based Architectural Styles, which attempt to analyse existing designs 

from a preferred architectural standpoint. 
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It is evident that certain design strategies can lead to architectures that provide 

benefits from a design feature or quality attribute standpoint. There is however, 

not universal agreement as to what these quality attributes are. One view of this 

is provided by the international standard ISO25010 (ISO 25010:2011, 2011) and 

talks about Quality in Use and Product Quality. It is the latter that is of interest 

here, though the former Quality in Use will be relevant to later discussions on 

evaluation. Quality attributes defined are: 

 Functional suitability 

 Performance efficiency 

 Compatibility 

 Usability 

 Reliability 

 Security 

 Maintainability 

 Portability 

Further classifications can be found (Chung & Leite, 2009) including those by 

Roman (Roman, 1985) and Boehm (Boehm, Brown, & Lipow, 1976). The author 

also published a work (Mackley, 2005). For a complete set of quality attributes is 

seems that a combination of classifications is required. In the table presented 

earlier, precedence could be given to the international definition of quality 

attributes (ISO/IEC/IEEE, 2011) in creating a combined list, but where potentially 

important attributes are present in other definitions, these are added (Table 4).  

A drawback of any of these attribute classifications is that no relationships are 

shown between the attributes (Chung & Leite, 2009) and there is no obvious 

linkage to system architecture frameworks. This could make it difficult to identify 

the effect of architectural change or to identify the trade-offs or “side effects” 

(Bass, Klein, & Bachmann, 2002) involved in making such a change. As 

Alexander noted (Alexander, 1964), this can make it difficult for the systems 

designer to conceive solutions. Bachmann noted in his abstract (Bachmann, 

Bass, Klein, & Shelton, 2005): 

“First there must be some way to specify quality attribute requirements so that it 

can be determined whether the design architecture can achieve them. Secondly, 

there must be some way for modularising the knowledge associated with quality 

attributes so that the design method does not need to know how to reason about 

all the multiplicity of quality attributes that exist. Finally, there must be some way 
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for managing the interactions among the quality attributes so that either the 

requirements can be satisfied or the ones that cannot be satisfied are identified.” 

Klein (Klein et al., 1999) reasons that adopting Attribute-Based Architectural 

Styles can help address the performance of system quality attributes. Chung 

(Chung, Gross, & Yu, 1999) and Harrison (Harrison & Avgeriou, 2007) expand 

on this, but there is not agreement in the methods, with Chung showing links of 

Architectural Styles to attributes such as Modifiability, Interactivity, Reusability 

and Performance, and Harrison with a different set of attributes including 

Usability, Security, Maintainability, Efficiency, Reliability, Portability and 

Implementability. Klein identifies quality attribute measures for performance, 

which is arguably the most direct non-functional requirement to defining the 

functional behaviour of a system. This work identifies latency, throughput, nature 

of arrival of stimuli and resources required as being key parameters to 

achievement of performance, suggesting that an architecture should take this into 

account. 

Table 4: A definition of system quality attributes 

ISO 25010 (ISO/IEC, 

2011) 

Roman (Roman, 

1985) 

Boehm (Boehm, 

1978) 

Mackley 

(Mackley, 2005) 

Combined 
List 

Functional 
suitability 

 Functionality Effect Functional 
suitability 

Performance 
efficiency 

Performance 
requirements 

Performance  Performance 
efficiency 

Compatibility  Compatibility Compatibility Compatibility 

Usability Operating 
requirements 

Usability Operability Usability 

Reliability Reliability Reliability Reliability Reliability 

Security Security Security  Security 

Maintainability Maintainability Maintainability Maintainability Maintainability 

Portability Portability Portability  Portability 

  Supportability Supportability Supportability 

 Survivability  Survivability Survivability 

Interoperability   Interoperability Interoperability 

Availability Availability  Availability Availability 

Adaptability Enhanceability Adaptability Adaptability Adaptability 

  Predictability Predictability Predictability 

   Producibility Producibility 

   Safety Safety 

 Economic and 
political 
requirements 

 Acceptability 
(PESTLE) 

Acceptability 
(PESTLE) 

  Serviceability Serviceability Serviceability 

 

 Observations on architecture principles 

There are three basic principles for architecting (Fricke & Schulz, 2005). These 

are:  

 Simplicity  
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 Independence  

 Modularity.  

They are seen as “fundamental” as they offer the benefits of using order to tackle 

the challenges of complexity and complication. They are not a panacea in the 

sense that they can be used to help solve every problem – for instance a solution 

can only be made simpler if it is still able to meet its purpose. They also require 

means of application that focus on improving desired outcomes. 

Intuitively, appropriate simplifying of the design should reduce the difficulty of the 

design and development process. Closely related concepts of simplicity, 

streamlining, ideality and Suh’s information axiom, aim to provide guidance on 

how this can be achieved, but there is little help available to provide objective 

support to the system designer. Suh’s information content parameter and 

Altshuller’s Ideality calculation (Altshuller, 2002) are two candidate measures, 

and general heuristics, such as those of Maeda (Maeda, 2006) may be useful in 

conceiving ways of achieving simplicity. 

Independence is a specific means of decoupling functional elements of the 

design, as they are represented in the physical design. The potential advantage 

in terms of analysis of design development and modification is then obvious, but 

Simon and Orton counsel that total independence is effectively decoupling the 

design and this can exclude benefits of synergy that loose coupling can provide. 

Weick and Klien suggest characteristics of the interface that are desirable for 

loose coupling. 

Modularity attempts to create modules in the design that reduce the degree of 

interfaces or coupling between those modules. This makes modules easier to 

incorporate or remove/replace which provides benefits in design, production and 

use. It is a principle that is complemented by independence as both seek to 

reduce interaction between elements of the design. The degree to which 

modularity is desirable will depend upon the context and this needs to be 

assessed on a case by case basis. 

Notably, the literature on system architecting focuses on creating an ordered 

structure and simplifying where possible. Alexander and Simon convincingly 

argue that architectural strategies that aim to decouple the design are essential. 

However, a grossly simplified solution is unlikely to meet a complex need and, as 

Orton observes, a completely modular design to the extent that it is uncoupled is 

no longer a system and so it is unlikely to benefit from any resulting synergies. 

For instance, a strategy of functional independence is not necessarily going to 

align with an architecture designed from a safety or maintenance perspective and 

even if this was possible, in Alexander’s terms this will still not help unless the 
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designer can see the implication that his design decisions have on the high level 

systems attributes; Sako believes this unlikely (Sako, 2003). This is supported by 

Bachman who observes “there must be some way for managing the interactions 

among the quality attributes so that either the requirements can be satisfied or 

the ones that cannot be satisfied are identified.” Architectural perspectives are 

found to offer a way of viewing and designing the system in different ways 

according to the needs of different quality attributes. A difficulty here is that there 

is not a universal agreement on what the complete list of quality attributes is. 

However, a combination can be made from the various taxonomies. The abstract 

nature of Architectural Perspectives might be a source of concern for the 

designer, but in practice system design practitioners are already comfortable with 

the concept of the abstract functional architecture. More of an issue might be 

Alexander’s argument suggesting that a concept of different architectures for 

each attribute should be rejected if it doesn’t align closely with the physical 

design. However, Alexander states this in the belief that overlapping architectures 

cannot help the designer to make rational decisions; if it can be shown that the 

designer can act upon the analysis with a clear view of how it will improve the 

design, this can be acceptable. 

Architectural decisions (Tyree & Akerman, 2005) reflects on the fact that not all 

decisions of a design should be considered as architectural; some interactions 

should be considered as more important than others from an architectural point 

of view and as long as a joint architecture respects these then that should be 

considered a positive design. There is a need to identify where functions can 

easily be partitioned needs to be determined. It is proposed to address the latter 

point by the characterising functions and their implied interfaces using a concept 

called ‘Functional interaction types’. Langlois (Langlois, 2002) commented that: 

“In a world of change, modularity is generally worth the costs. The real 

issue is normally not whether to be modular, but how to be modular” and 

“how do we find the ‘natural’ encapsulation boundaries?” 

This is a fundamental question that needs to be addressed; how to produce a 

modular design, ensuring that it uses ‘natural’ boundaries to encapsulate the 

design in the most appropriate way.  

Finally, the principles of Fricke and Shultz refer to the system product, but other 

work (Gershenson & Prasad, 1997),  Gu (Gu & Sosale, 1999) identifies further 

Lifecycle Modularity principles of: 

 Attribute independence 

 Process independence 

 Process similarity. 
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There is overlap between these principles and if these are to be properly 

understood and applied, then a common terminology should be sought; this will 

be addressed. 

 Methods for System Architecting 

There are few methods that have been developed to aid with the process of 

system architecting with many systems engineering methodologies treating it as 

a creative activity, based on experience. An example is Total Design (Pugh, 

1991) where the mark of a good architecture is established by evaluating the 

system outcome and comparing it with either a requirement or other possible 

solutions; the result doesn’t demonstrate a good architecture, but only that the 

design (and by inference, the architecture) is good enough or better than the 

others proposed. Whilst this might be satisfactory in some situations it can be 

wasteful in that it requires a number of concepts to demonstrate and only when 

a solution is developed can there be confidence in the assessment. The method 

and as it doesn’t incorporate means to actively optimise the design its product 

may not be competitive against those that did. 

Two methods that look at improving the architecture by design are Axiomatic 

design and Design Structure Matrices. 

 Axiomatic Design (Suh) 

Suh presents a theory for systems design that applies to systems in general, be 

they machines, software, large systems or organisations (Suh, 1998). Two 

axioms are presented that are used to create a top down design. 

“Axiom 1: The Independence Axiom: Maintain the independence of the 

Functional Requirements (FRs). 

Axiom 2: The Information Axiom: Minimise the information context of the design.” 

These axioms are used to produce an architecture composed of three 

hierarchies; which in the case of systems represents (Suh, 1995): 

 Functional Requirement – function requirements of the system 

 Design Parameters – machines, components, subcomponents 

 Process Variables – resources (human, financial, materials etc.)  

The method is prescriptive, describing rules that must be followed in the 

determination of a “best” design. In specifying a prescriptive approach the author 

achieves clarity in application, but in the process of achieving an optimal solution 

there is a significant amount of calculation based on probabilities of satisfying 

requirements, which would be difficult to evaluate and validate (Frey & Dym, 



   
 

32 
 

2006).  In terms of validation, Suh offers his method as a set of axioms and 

corollaries and therefore claims that “there are general principles or self-evident 

truths that cannot be derived or proven to be true, but for which there are no 

counterexamples or exceptions” (Suh, 2001). In developing the system design 

Suh uses three types of interface or “junctions”. These are Control (which is in 

the sense of command or demand), Summation and Feedback. The latter 

represents an unacceptable situation as feedback between modules violates the 

Independence axiom and therefore is not permitted. 

By the author’s own admission the method has certain issues in the design of 

systems, largely down to its strict adherence to its axioms. These are issues with: 

 Addressing large and flexible systems 

 Situations where reuse is expected, 

 Unstable systems (where stability is termed as not being able to meet the 

independence axiom)  

 Human interaction, which can introduce unpredictable effects outside the 

design analysis  

A further issue is that, in pursuit of the “best” design, the method does not address 

the potential conflicting demands of quality attributes e.g. is a highly safe, 

modestly performing solution better than a highly performing moderately safe 

solution? By its definition only one “best” solution can exist, which in the reality of 

systems evaluation is not the case (as discussed in section 2.7.2). The issue of 

quality is addressed by Suh (Suh, 1995), but this is in the narrow confines of a 

predictable design that is robust and contains redundancy. 

According to Orton and Weick a system that is decoupled is no longer a system, 

but rather a collection of independent items (Orton & Weick, 1990). However, a 

“loosely” coupled system that approximates to and behaves as if it were an 

independent system is appropriate. Therefore a definition of what is an 

acceptable level of independence is required. Suh terms this as a designer 

specified tolerance, but there is no guidance on how this can be defined.  

 Design Structure Matrices 

Tools have been developed that examine the elements of a product or 

organisation and group them in terms of the degree of coupling of the mutual 

interactions. Steward (Steward, 1981) was perhaps one of the first proponents of 

the Design Structure Matrix which takes a mathematical approach to the 

determination of a modular structure, based on the number of interactions 

between the elements. This might be reasonably straightforward if all interfaces 

are equal, but this is rarely the case for real systems. Others (Steven D Eppinger 



   
 

33 
 

& Pimmler, 1994) and (Sosa, 2003) propose that, for a physical system, the 

strength of interaction should depend on whether there are significant interactions 

of the following certain types (i.e. energy, material, information, spatial, structural) 

and that values can be assigned to reflect this importance. Sharman takes this 

further, and uses the significance of the interaction in each case to derive an 

overall value of strength of dependency. Yassine et al (Yassine, Falkenburg, & 

Chelst, 1999) investigate various methods that have been devised based upon a 

single dependency measure: 

“Steward (Steward, 1981) discussed the use of numbers instead of marks in the 

DSM to represent the difficulty level of using an estimate. Smith and Eppinger 

(Smith & Eppinger, 1997) extended the basic representation of a DSM to 

accommodate numerical values that reflected the difficulty of performing tasks in 

the absence of predecessor information. Krishnan et al. (Krishnan, Eppinger, & 

Whitney, 1991) introduced the notion of a quality loss function to capture the 

decrease in quality of task results due to constraints imposed by a certain 

sequence of tasks. Sobieszczanski-Sobieski (Sobieszczanski-Sobieski, 1988) 

devised an algorithm that calculates the system sensitivity derivatives from a set 

of equations derived from the implicit function theorem. In a more recent paper, 

Smith and Eppinger  (Smith & Eppinger, 1997) used methods of feedback control 

theory to analyse and identify controlling features of the iteration process. The 

method called for the determination of the eigenvalues and eigenvectors for the 

Work Transformation Matrix (WTM) which is a DSM containing the strength of 

dependency between the tasks.” 

These authors then propose that dependencies are better represented by a two 

dimensional variable representing the sensitivity and variability of the interface. 

However, certain difficulties appear to remain: firstly that assignment of values 

appears to be subjective and secondly that the distinguishing characteristics have 

widely differing properties in different units that cannot be obviously combined. 

Further difficulties are in developing an automated algorithm (Sharman 2002), but 

this also reflects the difficulty encountered in representing complex relationships 

on a two dimensional matrix structure. Attempts to progress have focussed upon 

geometries within the matrix, but these geometries do not generally reflect the 

nature of the interfaces which is likely to be the most important aspect. 

 Literature update 

To ensure the currency of this research, a further search of the electronic 

databases at Cranfield University was performed subsequent to viva. This was 

performed on August 2nd 2018 using the terms “system”, “design”, “modular” and 

“architecture”. This yielded 495 results of which 244 were from 2010 to the 

present. This yielded four relevant publications. Three of these related to methods 
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to create a modular system design based upon weighted techniques using DSM 

or Quality Function Deployment methods and so should be seen as 

supplementing methods already reviewed (Bayrak, Collopy, Papalambros, & 

Epureanu, 2018; Francalanza, Mercieca, & Fenech, 2018; Wong, Qaisar, & 

Ryan, 2016). Sillitto’s book has an interesting and detailed view of the concepts, 

principles and practices surrounding the architecting of systems, which again 

refers to the use of N2 matrices (a method similar to that of DSM) as the main tool 

for clustering and choosing the architecture (Sillitto, 2014). 

 The impact of context on systems design  

 Systems design in context 

The context of a system arguably determines its requirement; its needs, its 

constraints, its conditions, its influences and its lifecycle. The requirements will 

affect the system design in the way that these requirements can be partitioned 

and allocated within the system and the system architecture in terms of the 

boundaries and corresponding interfaces that are chosen for the elements of that 

system. There are a number of concepts that can be found in the literature that 

can help to describe the influential aspects of the problem context. 

A good place to start is with Problem Types (Obeng, 1995), where Obeng 

identifies four problem types depending on the uncertainty in both objective and 

solution. His contention is that in managing projects there is a temptation to 

address them as if timescale, cost and performance can be accurately 

determined in advance. In reality, if there is uncertainty in the objective and/or 

solution, the approach needs to adapt and reflect that estimating these project 

management parameters is not obvious. Obeng’s work provides impetus for 

questioning whether all problems are of the same type; are there other potential 

influences on the approach that should be taken other than uncertainty in 

objective and solution. 

The starting point of the system design is also important in determining the 

approach. Formal, structured design techniques often start from a “clean sheet”, 

but Jackson argues that real engineers don’t start from clean sheets, with designs 

evolving conservatively over many generations; “Only once in a thousand car 

designs does the designer depart from the accepted structures by an innovation 

like front-wheel drive or a transversely positioned engine.” Jackson points out that 

this diverts attention away from “large structural” (or architectural) issues and 

leads him to suggest that more effort should be placed into developing and using 

lower level formal methods rather than methods for dealing with structural design 

(Jackson, 1998). Jackson’s view is reinforced by others with Cambridge 

academics Jarrett, Clarkson and Ekhert (Jarratt, Eckert, Caldwell, & Clarkson, 

2011) quoting (Cross & Roy, 1989): 
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“…most designing is actually a variation from or modification to an already-

existing product or machine.” 

and (Bucciarelli, 1994). 

“History matters – no design begins with an absolutely clean sheet of 

paper.” 

A ‘clean sheet’ approach can be applicable for a number of reasons. Whilst 

Jackson argues that a clean sheet approach is rare in traditional engineering, it 

is an approach that can be justified in situations where there is rapid growth in 

technology and a design can take little benefit from existing designs where the 

components and techniques are obsolete – this is often the case for computer 

design (Bell, 1991).  In considering flight path design for aircraft, a clean sheet 

design allows the designer to get away from a design that has evolved to meet 

the need at specific times and does not therefore necessarily address the need 

in an optimal way (Conker, Moch-Mooney, Niedringhaus, & Simmons, 2007). The 

need to sometimes remove measures that have been designed as evolutions to 

a system in order to make a fresh start is reinforced by Wolstenholme: 

“to get the best out of systemic policies it is necessary first to remove 

institutionalised, emergency coping mechanisms (fixes), created because 

of time delays and difficulties in cross boundary working” (Wolstenholme, 

2004b). 

Examination of system development in the military domain shows that systems 

are frequently developed from near clean sheets. This may be because of an 

imperative to obtain a capability that is superior to a would-be adversary, or 

because systems are designed and operated for long life-times and replacement 

of an obsolete system requires a complete rethink.  

Problems addressed by Soft Systems Analysis seem to be of an entirely different 

sort. Here the starting point is one of a feeling of unrest or dissatisfaction with the 

status quo. Instead of addressing a clear capability gap or need the problem is to 

address an unsatisfactory situation. In the early 1960s Jay Forrester applied the 

concept of System Dynamics to industrial organisation (Forrester & Cambridge, 

1961). This provided the basis for work (P. Senge, 1990), which used System 

Archetypes to describe the dynamics of business situations, by analysing a 

business as a system. The basic premise was that dynamic situations could be 

described in terms of reinforcing and balancing loops of cause and effect; 

archetypes were able to replicate the behaviour of ailing organisations and thus 

a diagnosis of the reasons for the problem can be achieved. The original set of 

around ten systems archetypes can be expressed as a reduced set of four 

archetypes (Wolstenholme, 2003), which themselves can be expressed as two 
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generic archetypes, the “Underachievement Archetype” and the “Out of Control 

Archetype” (Wolstenholme, 2004b). Wolstenholme maintains that when faced 

with underachievement problem archetype the solution requires remedial activity 

outside of the system boundary, but when faced with the out-of-control archetype 

problem, the expedient action is to find a fix within the system sphere of control 

(i.e. within its boundaries). Responding to a problem situation either by an internal 

modification to the system or by requiring additional activity externally would 

seem to cover all cases, but System Dynamics relies on the problem being 

predictable in order to correctly analyse it. 

In the Early 1970s there was a change in the approach to Systems Thinking. 

Midgley (Midgley, 2006) described this as a “second wave” in Systems Thinking, 

which criticised the previous attempts to model the system as if it were 

deterministic and not reflecting the needs and views of involved stakeholders. 

The second wave emphasised dialogue, mutual appreciation, subjective 

understandings and accommodation between perspectives. Key protagonists 

were Churchman (Churchman, 1968) and Checkland (Checkland, 1981a). This 

is an important move architecturally, because it emphasises the point that some 

interactions within the system are not “hard” and deterministic, but “soft” and 

subjective. These sorts of influences on interactions and interfaces within a 

system are likely to introduce additional factors that need to be considered in 

devising an architecture. In his account Midgely also recognises a “third wave” of 

Systems Thinking; Critical Systems Thinking. In particular this maintained that 

not everyone within a system was at liberty to participate within the system 

according to their will. Jackson and Keyes (Jackson & Keys, 1984), (Jackson, 

1994) expressed the difference by categorising Systems thinking as unitary, 

Pluralist and Coercive. 

Other types of situation that have attracted significant attention in the systems 

field are those of varying complexity and different levels of control and ownership. 

Both of these relate as much to type of solution as to the type of problem. Peter 

Senge (P. Senge, 1990) distinguishes between modular and integrated solutions, 

defining them as cases of detailed and dynamic complexity. This view of 

complexity has subsequently been updated by Snowden (Snowden & Boone, 

2007). 

Maier recognised that the way a system can and should be designed will depend 

on ownership of the elements of the system in both development and operation. 

Where systems are independent in both of these cases it can be termed a system 

of systems (Maier, 1998) and in such cases relationships are defined by service 

agreements and standardised interfaces. 
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 Observations on systems context 

Analysis of the context is key to identify the need that a system is expected to 

address. System design is responsible for partitioning the requirements to the 

components or subsystems of the design, but to do this a clear view is needed of 

both what is needed and what a system design needs to address.  

In this section it has been shown that a number of eminent systems thinkers have 

identified that there are different types of problem and that these need to be 

addressed in different ways. Some existing ‘types’ of problem have a bearing on 

the stakeholders, their needs and the way that a system should be organised. 

According to Midgely (Midgely & In, 2006), there are different “waves” of systems 

thinking, each applying to different types of situation; system dynamics, soft 

system methodologies and critical systems thinking. From this example we can 

see that different situations or context require different approaches. Identification 

of common factors that influence the choice of approach would help suggest how 

these different practices may be unified into a common approach. Such an 

approach should first identifies the type of problem to be addressed from an 

examination of the context, and then use this type to direct the line of systems 

activity and the requirements of an architecture. This research will develop the 

concept of “context type”, where different aspects of the context will require 

different approaches to and measures within the design. 

 System and architecture evaluation 

In proposing a process for developing an architecture, it will be necessary to 

evaluate the systems architecture and the systems design that is produced; that 

is evaluating the “goodness” of the architecture, and how the system design 

approach incorporates evaluation of the designed end product. 

 Evaluation of Architecture 

 Visualising and quantifying hierarchy and architecture 

Early techniques to illustrate architecture in a graphical format were developed 

by Warfield as binary matrices (Warfield, 1973). The N2 was then developed by 

Robert Lano to provide a mathematical technique that could be automated. 

Hitchins describes a method by which a single parameter score can be provided, 

which represents the distance of interfaces from the leading diagonal of the N2 

matrix (Hitchins, 1992). This provides a simple if crude indication of the 

“goodness” of the architecture.  

It is possible to assign different values to the matrix and Steward (Steward, 1981) 

considered this for the similar Design Structure Matrix (DSM). Yassine  (Yassine 

et al., 1999) advocates expert assigned values for sensitivity and variability to 
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clarify the strength of coupling and dependency between two elements in the 

matrix, but this is meant as an aid to a more definite clustering of the resulting 

DSM rather than a better evaluation. 

 Dependency/Visibility Ratio 

Sharman (Sharman, 2004) develops two important aspects of modularity which 

are directly obtained from Design Structure Matrices. Visibility is the degree to 

which a component is visible to the rest of the system and Dependency is the 

degree to which it is dependent on other parts of the system; the lower the 

visibility and dependency are the more modular the component is. 

 Types of Design Dependency 

Sosa, Pimmler and Eppinger suggest five types of design dependency that 

feature in systems, which are the Spatial type and four further Transfer types 

comprising Structural, Energy, Material and Information (Sosa, 2003), (Pimmler, 

1994). These are used to help determine the modularity or otherwise of a design. 

Independent experts are asked to score the criticality of the interface on a five 

point scale ranging from -2 to +2 for each category; a negative score showing an 

undesirable dependency. This technique of scoring, albeit based on expert 

opinion is very subjective and when subjective parameters are combined then 

arguably the experience of the experts can no longer be used to validate the 

output. This is a common issue of the subjective nature of weighting techniques 

that will be returned to in the next section on evaluation. 

Such an assessment is then used to distinguish a modular architecture from an 

integral architecture by performing a Chi square procedure to compare statistical 

similarity with a known integral or modular structure, there is no explicit guidance 

on what represents a model example of modular or integral structure, but in their 

research based upon amount of external interfaces. 

 Components of Modularity 

The same authors propose an alternative view of modularity of an architecture by 

taking a network approach (Sosa, Eppinger, & Rowles, 2007). They propose that 

Component modularity equals Actual component disconnectivity minus Maximum 

possible component disconnectivity. They propose three components of 

modularity as: 

 Degree Modularity – a normalised value that relates to the number of 

dependencies in and out that the component has i.e. the larger the 

number of components that affect or are affected by the design, the 

less modular it is 
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 Distance Modularity – a normalised value that relates to the distance 

from other components i.e. the more distant the more modular 

 Bridge Modularity  - again a normalised value, but that relates to the 

number of times a component lies on the path between two other 

components i.e. the more design dependencies that propagate through 

them, the less modular the component. 

Suh’s axioms provide another means of evaluation in terms of both the correct 

coupling criteria for the Independence Axiom (i.e. is it uncoupled or appropriately 

decoupled) and level of information obtained using the Information Axiom. TRIZ 

(Altshuller, 2002) offers the further metric of Ideality to ensure that unnecessary 

functionality is incorporated in the design. Only the Information content from 

Suh’s axiom attempts to express goodness of design resulting from the 

architecture, although this is often requires considerable mathematical 

calculation as is based on estimate of probability that may be difficult to support. 

The other measures attempt to define prerequisites for an architecture to support 

a good design, but not to evaluate whether this has been achieved. In the case 

of the Information Axiom, this evaluation is made for functional requirements only 

and there is no consideration of the non-functional requirements. Architectural 

evaluation is therefore often made on subjective expert opinion and a 

combination of factors that cannot be validated.  

A further method is also proposed for the evaluation of module concepts from a 

lifecycle context (Ericsson & Erixon, 1999). Only aspects that can benefit a single 

system product (rather than gaining advantages due to a family of variants) are 

considered and these are: 

 Lead time in development is reduced by less complex interfaces 

 Assembly times are reduced for modular designs 

 Quality is increased by number of parts separately tested and is inversely 

dependent on assembly time 

 Recyclability is improved by reducing the number of materials 

 Interchangeability is inversely dependent on number of functional 

interconnections 

Key complicating parameters emerging from this are assembly time, interface 

complexity (number and complexity of interfaces), for which strategies might be 

reducing number of different modules, reducing number of and simplifying of 

interfaces. 

Studies into design for assembly have shown that defect rate increases 

significantly with the assembly time. It is reasonable to assume that longer 
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assembly times are associated with more integrated designs and more complex 

interfaces. Whilst it is not possible to assess the expected assembly times in early 

concept design, it is reasonable to assume that an increase in modularity would 

in general reduce assembly times and therefore reduce the level of defects 

(Barkan & Hinckley, 1994). 

 Evaluation of systems 

A system design is difficult to evaluate as systems engineering deals with multi-

criteria problems seeking to take explicit account of multiple, conflicting criteria. 

Multi Criteria Decision Analyses come in three technique categories (Belton & 

Stewart, 2002): 

 Value Measurement models 

 Goal Level models 

 Outranking models 

Value measurement assigns values or weighting to criteria and a preference for 

a concept is formed from an aggregation of the values. It relies on a strong set of 

axioms to form a preference in order to impose “some form of discipline” in the 

building of preference models, help decision makers to understand their values 

and be able to justify final decisions and to include statements of acceptable 

trade-offs between criteria (Mendoza & Martins, 2006). However, for independent 

criteria, relative value will always be subjective and (Arrow, 1951), “there is no 

method of aggregating individual preferences over three or more alternatives that 

would satisfy several conditions for fairness and always produce a logical result”. 

Goal oriented methods are based on being able define outcome scenarios and 

requires the designer to specify goals for each criterion. To be able to achieve 

this, the designer often requires deeper understanding of the solution domain to 

understand trade-offs, which he typically achieves through past experience or 

feasibility studies. These requirements enable a systematic elimination of 

alternatives to leave only compliant solutions and there is an overriding principle 

of “satisfying” rather than optimising, allowing a down-selection of alternatives. 

Outranking is a method that relies on pairwise comparisons and perhaps the most 

frequently use method is the concordance-discordance principle (Belton and 

Stewart, 2006). This declares that an alternative x is at least as good as an 

alternative y if: 

• a majority of the attributes supports this assertion (concordance condition) 

and if 



   
 

41 
 

• the opposition of the other attributes (the minority) is not too “strong“ (non-

discordance condition) 

It is essentially a voting technique and a weakness compared to Value techniques 

is that this principle can allow contradictions that need addressing. For instance, 

it is possible that there is opposition to x being better than y at the same time as 

opposition of y being better than x, or that x is better than y is better than z, but 

that x is not better than z. 

 Observations on evaluation of system and architecture 

Evaluating a system is a multi-criteria problem and Arrow’s impossibility theorem 

states that there can be no ‘best’ solution. It is difficult to evaluate a design 

confidently at the concept stage, but by selecting an appropriate architecture it is 

possible to lay down a favourable structure for building the design.  

There are methods available that address the modularity of an architecture, but 

universally these methods are unable to judge the complication of interactions 

within the architecture and therefore it is difficult to evaluate whether a particular 

modular architecture is addressing complication as well as it could. A means of 

identifying the complication of interactions is required so that this can be fed back 

into the overall assessment of architecture.  

Whilst it is not possible to produce a detailed evaluation of a system from its 

architecture, there is evidence to suggest that certain designs of architecture will 

promote certain quality attributes and so such traits, if identified, could also help 

in assessing the quality of the architecture. 
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3 RESEARCH QUESTIONS, METHODOLOGY AND 

APPROACH 

The literature search has demonstrated that a system architecture is developed 

from the system design process and is a key element in terms of managing the 

behaviour and quality of a system. Surprisingly, there are few methodologies 

available to develop a system architecture and of these, no methods have 

achieved general acceptance in industry. It is this gap in knowledge that this 

research is designed to address. A methodology will be developed for the system 

design process that can apply modular architecture concepts in order to positively 

contribute to the effectiveness of the final design. 

System design must address systems of many types, having many diverse 

purposes, of many different sizes and organised and behaving in many different 

ways. This variety provides a significant challenge to any generic systems 

process and, just as with any systems problem, a boundary and scope need to 

be defined for this research. This research will concentrate on the process of 

system design as applied in the generation of concepts, rather than the process 

through the complete systems engineering lifecycle. The concept phase is 

arguably the most critical part of the engineering lifecycle, as decisions made 

here will determine the majority of the lifecycle costs of the future solution 

(Ehrlenspiel et al., 2007). The prime focus will be on the architectural 

considerations of systems design process i.e. the organisation of subsystems, 

their boundaries and interactions. Other parts of the system design process, such 

as requirements capture and evaluation are addressed, but primarily to allow 

generation of case examples and for their evaluation. 

The approach to systems design in this research is based on a premise that a 

system architecture, at a concept stage, can have a positive influence on the 

quality and behaviour of the final design. In particular, a modular architecture can 

reduce the complication of the design process in order to reduce the risks 

involved in system development. The aim will be to produce a compliant concept 

rather than seeking to optimise one or more performance parameters. However, 

a practitioner could use solutions generated to select an ‘optimum’ design. As a 

result, it is not guaranteed that this approach will come up with a “best” solution, 

though it is doubtful that a single best solution ever exists to a systems problem 

(section 2.7.2). The original concept of the research was that it might be possible 

to consider a system as a set of abstract design architectures each favouring a 

given quality attribute; choosing a solution that allows these architectures to align 

could simplify the system design problem. In reality, directly relating the features 

of a design to quality attributes, such as safety, in a coherent architectural 

strategy is unlikely to be achievable (Alexander, 1964). Instead the research 

proposes a set of fundamental functional elements or functional blocks that can 
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be managed by the designer to achieve the desired outcome and it is in 

maintaining the integrity of these functional blocks that an appropriate system 

design will emerge. 

For this thesis therefore, the hypothesis is that there is a means of positively 

influencing quality attributes and development risk associated with a design 

through the application of modular architectural principles. This research will 

therefore address the question: 

“How can modular architectural principles be applied to early system concept 

design to manage system effectiveness and reduce lifecycle risk?” 

Ideally it would be possible to demonstrate the efficacy of the proposed 

methodology by applying it to a problem and demonstrating that the developed 

methodology performed better than other available methodologies. In reality this 

approach has a number of issues: 

 Case studies of complicated systems design are complicated in 

themselves, often requiring multiple teams and many thousands of man-

hours of effort to address the design at a level to determine the attributes 

of the design. Therefore, performing such case study is not feasible in the 

context of this doctoral study  

 An individual system problem cannot be shown to be representative of all 

problems and therefore numerous studies would be required 

 Evidence would be needed that the design developed using this 

methodology is better than would have been provided with existing 

methods. This would require the detailed study of designs derived using 

other methodologies for comparison. Furthermore, objective evidence 

would be required that one system design was indeed better than another, 

but the nature of multi-criteria problems is that comparisons are always 

going to be subjective and therefore difficult to validate (Arrow, 1951). 

There is also an issue of scope; within a PhD study there is a limited time 

available. Even without developing a methodology from first principles, the 

application and assessment of such a methodology might form a research project 

in itself. Therefore the methodology of this research will rely on: 

 Employing principles that can be shown, by induction, to benefit from well-

established modular principles 

 Illustrating that the approach can be applied to a variety of design concepts 

to verify the application of the process to real-life situations 

 Comparing the utility and performance of the approach with similar and 

currently available methods. 
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For the latter, the developed system design methodology will be compared 

against two currently established methods applied to the same problem. For this 

comparison, the design of a central heating system has been chosen as it both 

relatively simple to facilitate the comparison, and of sufficient complication in 

terms of control, service and human factors to exercise important elements 

needed in a method. 

In developing a methodology a research design should address certain elements 

(Zehra, 2015). Accordingly aspects of study design, study population, data 

collection and variables considered are addressed below: 

a) Study design: combines observation in terms of identifying relevant 

architecture principles from current literature, with analytical activity of how 

these can be applied depending on the problem and the desired outcome. 

Finally, the utility of the approach will be demonstrated by case study and 

in comparison with other methodologies. 

b) Study population: in this research the study population is composed of the 

three different problem situations to which the proposed methodology can 

be applied and two other methodologies that this methodology can be 

compared against.  

c) How will population be identified?: the case studies have been chosen to 

represent different levels of complication, whilst accepting that their scope 

is limited by the time available in a doctoral study. Methodologies have 

been selected on having the same objectives as the proposed 

methodology and according to their level of acceptance in the systems 

engineering community. 

d) What data will be collected?: data will be in the form of qualitative evidence 

that relevant quality attributes are being addressed by proposed designs. 

e) Variables: the independent variables of this research are the 

methodologies used for comparison; the dependent or effect variables are 

those of system effectiveness (or quality attributes) and lifecycle risk 

Literature searches have been performed on systems design and architecture. 

This has been broadened to include an analysis of literature about the system 

context, as the contextual setting of a system problem is key to understanding 

the needs of the design. There are many existing methodologies, but no particular 

methodology has been adopted widely within industry or academia (refer to 

table). Tomiyama et al (Tomiyama et al., 2009), identify the most prominent ones 

as:  

 Systematic design (SAPD) by Pahl and Beitz (Pahl et al., 2007) as 

representative  of design focused methods (Roozenburg & Cross, 1991)  
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 Axiomatic design by Suh (Suh, 1997) as representing of attribute focused 

design  

 TRIZ by Altshuller due to its relative popularity in industry 

 Product design by Ulrich and Eppinger (K. Ulrich & Eppinger, 2008) due 

to its popularity in the US 

 Total design by Pugh due to its higher than average use in industry. 

Uhlmann (Ullman, 2003) has not been considered here as it is essentially a 

systematic design method along the lines of that of Pahl and Beitz. Within the 

scope of the title of this thesis, a methodology should be expected to:  

a. Address system design within a lifecycle context – that is the identification 

of both functional and non-functional requirements and ensuring 

appropriate systems architecture to address them in a cost effective and 

manageable way, considering the whole lifecycle. Activity models focus on 

a particular stage and can be incorporated within a framework provided by 

the stage model as long as it considers the implications of other stages of 

the lifecycle. 

b. Apply to different starting points of the process – not all problems start from 

a clean sheet of paper and a methodology will need to be able to work 

within the constraints of established designs and context. 

c. Be prescriptive – if such a process is to be adopted, it needs to be a clear 

and applicable process that does not require tacit knowledge. Descriptive 

models can identify good practice, but rely on the engineer to extract 

analogous concepts and apply them appropriately. If this method is to be 

widely adopted such capability should not be assumed. 

d. Incorporate method, tool and notation support where possible – adoption 

of the process will require it to be a clear and efficient way of developing 

and communicating a solution. If this requires support methods, notations 

and tools, then these need to be defined or at least conceptualised in a 

way that assures that they are realistically achievable. 

e. Focus on both actively improving design and reaching an assured level – 

in addition to an assurance that the design will meet its requirements, an 

engineer also requires that any given design intervention will achieve the 

desired improvements. Stage models focus on confirming that the 

necessary assurance is in place, but activity models tend to provide the 

measures that can be employed to ensure an improved design. 

Therefore against the classification method developed in   
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Table 2 of section 2.3, the criteria that should be expected to be met are given in 

Table 5. This will be returned to in making a comparison of methodologies in 

section 9.6. 

Table 5: Required characteristics of system design methodologies 

 

 

 

 

 

 

 

 

 

 

  

 Required characteristics of methodology 

Scope Concept phase 

Starting point Both problem and solution based starting points 

Approach Concrete, prescriptive (procedural and analytical) 

Models Either activity or stage based 

Aim Design improvement 

Support (to concept 
design): 

Desirable support 

Methods (relevant to 
concept stage) 

Yes 

Means Yes 

Notation Yes 
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4 THE SYSTEM DESIGN IN CONTEXT 

Characterising the context is important in identifying the required engineering 

activities including the architectural strategy. System design is about taking a 

problem or need and creating a system to satisfy it, where the “problem space” 

is largely determined by the system context of stakeholders, related systems and 

environmental conditions. Obeng suggests that there can be a tendency to 

address problems in the same way (Obeng, 1995), but that an approach should 

be tailored to the problem to be solved or the solution to be engineered. It is clear 

from the literature that there are a wide variety of problems that need to be 

addressed and this will require a systems design approach will that can to be 

tailored to this variety. To achieve an understanding of how to approach this, we 

should have a concept of: 

 A framework which identifies and orders the context of a problem and its 

solution 

 A notation to capture the contextual situation for the designer to respond 

to 

 An approach that allows architectural strategies to be applied according to 

type of problem or context to be dealt with 

 Frameworks and Notations 

All systems are open and therefore at any level of system design there needs to 

be consideration of how the system interacts with its higher level system or 

system of systems and therefore a need for a framework that provides this 

information (this may be an evolving context that is influenced by other 

developing solutions). Various ‘architecture frameworks’ have been developed 

and one such example is the Enterprise Architecture Framework, which is a 

framework that “can describe the underlying infrastructure, thus provide the 

groundwork for the hardware, software and networks to work together” 

(Urbaczewski & Mrdalj, 2006). There are a variety of frameworks that have been 

developed for different domains and attempts have been made to compare them 

to distil similarities in some of the most widely recognised examples (Urbaczewski 

& Mrdalj, 2006).  

At the highest level they each have a definition of views (or perspectives) that 

represent the stakeholders of the system and also a definition of required 

abstraction. Urbaczewski attempts to make a mapping between the views and 

abstraction for each architectural framework, but concludes that such a mapping 

cannot be confidently made. Despite the commonalities claimed by systems 

theory (Von Bertalanffy, 1950), architectural frameworks have been developed to 

reflect the immediate and practical realities of a given domain. 
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An architectural framework is intended to structure information pertinent to a 

system development in a way that facilitates its design and management. As with 

any architecture it should indicate key elements of information and how they 

relate to each other. In terms of a system, key elements are the capability that 

the system is intended to contribute to, the definition of the problem to be solved, 

the solution proposed and the lifecycle. The as-is capability can be used to define 

a capability gap that is then used to frames a new problem to be solved and 

system solution is the proposed to the problem. Creating or developing the 

solution may have impact which modify the problem situation, which requires the 

problem and solution to be considered together. Once decided upon, the solution 

will be realised and operated over a lifecycle, with progressing maturity. At 

suitable points in its lifecycle the enterprise will be at a suitable state of readiness 

to then benefit from the improvement in capability. This is represented pictorially 

in Figure 3. 

 

Figure 3: Proposed schematic of a generic architectural framework 

Key points from this model are: 

 The capability environment may itself be a system of systems and 

therefore, in order to maintain a clear baseline an attempt needs to be 

made to separate the need or capability gap from the system requirement  

 As the conception of a system solution may itself impact upon the problem 

space, these need to be developed together  

 The information about the system will evolve and need managing through 

the lifecycle, including contributing to design assurance 
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 In maturing, the system will go through a lifecycle and at various stages it 

will have different degrees of readiness (e.g. initial operating capability, 

final operating capability, mid-life update) 

Flood and Carson (Flood & Carson, 1983) provide a convenient concept for 

helping to define the context of a system which can be used to define the current 

capability and identify capability gaps (Figure 4). Influences and constraints on 

the system of interest (SOI) come from: 

 Wider System of Interest (WSOI) 

o Elements that interact or co-operate with the SOI and that are 

essential for the operation/ support of the SOI 

 Environment 

o Elements that involve direct non-cooperative action or influence on 

or by the SOI 

 Wider Environment  

o Elements with an indirect influence on the SOI through the 

environment 

 

Figure 4: System context diagram (Flood and Carson) 

This is convenient for a single system within the context, but in the case of a 

systems of systems, there may be two or more concurrently running problems 

and their solutions within a systems of systems would potentially have the same 

wider system or environment. This might involve a shared service whose capacity 

would be jointly influenced, or they might impact the same environment and a 

joint assessment of the consequence would then be needed. These potential 

issues will need to be recognised as potential evolutions of the capability gap 

defined for each individual system. 



   
 

50 
 

In order to elicit the requirements of the context, stakeholders can be idenitifed 

from Checkland’s CATWOE acronym; Client, Actor, Transformation, Welten-

shauung, Owner and Environment (Checkland, 1981b). Weltenshauung stake-

holders can be elaborated by the PESTLE  acronym for Political, Economic, 

Social, Technological, Legal and Environmental (Johnson, Scholes, & 

Whittington, 2008). Further stakeholders, from a capability provision perspective, 

can be derived from the UK MoD acronym TEPIDOIL; Training, Equipment, 

Personnel, Information, Doctrine, Organisation, Infrastructure, Logistics. 

This leads to three interconnected, but loosely coupled views, with a one to one 

mapping with the required abstractions Table 6.  

Table 6: Generic architectural framework views and abstractions 

View Abstraction Perspective Interaction issues 

Capability provision As-is capability and 
capability gap 

User/ Client Other systems will share 
services and have 
impact  

Systems design Problem statement, 
solution design and its 
maturity 

System 
Designer 

Requirement and 
solution will requiring 
validation against the 
capability gap 

System lifecycle 
management 

Lifecycle of the system 
solution and its 
readiness 

Owner Assessment of maturity 
will determine readiness 

This research will focus on the system design only and it will involve itself with an 

identification of a capability gap and address an early maturity of system solution 

consistent with a concept architecture design. It will therefore focus on a specific 

definition of the context. However, in doing so it should address the full context 

(associated with a complete set of stakeholders across the layers of Flood and 

Carson’s context model) and be aware of the issues relating to the broader 

capability and how it can change. Such issues are reduced if the system can be 

made more independent of its wider system to reduce the reliance on joint 

resources/services and by reducing the impact of its own activity. 

 Context and the functional requirement 

The requirement starts with the functional view as this defines the mission 

(Hitchins, 2008). However functional methods have a narrow perspective on a 

problem and non-functional requirements and the accompanying physical 

structure are also important. Arguably the purely functional view can be applied 

with some success for software development. Software engineering practices 

have had a significant driving influence on formalised techniques of systems 

design, but in software it is much easier to work in functional terms and produce 

an acceptable end product.  In systems where the function is attributed to more 

than the software, the non-functional requirements become more important with 
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the system being subject to many more environmental conditions that may impact 

the effectiveness of the solution. Alexander asserted that there is an intrinsic 

relationship between the context, requirement and the solution (Alexander, 

1964), and techniques for defining requirements that ignore their dependency on 

the context of the problem and the likely solutions, are liable to make unjustified 

simplifications. Therefore a vehicle for specifying functionality is needed and, 

according to Alexander, it should meet the following criteria: 

1. Has a necessary and sufficient definition of parameters to define a 

functional as a “black box” with inputs, outputs, resources and controls 

2. It is able to define the system context in a way that enables scenarios to 

be developed that allow non-functional performance to be evaluated 

3. It reflects the necessary aspects of the solution that enable elaboration of 

the solution architecture; see also (K. Ulrich, 1995) 

The SADT IDEF0 representation is preferred for this research, because it is 

widely recognised and it contains the necessary and sufficient “black box” 

parameters for functional definition. However, as it is just a functional notation, 

additional context needs to be provided. Flood and Carson’s concept of systems 

context (Flood & Carson, 1983) divides entities of the context into four levels 

according to the relationship each has with the system of interest. This 

representation is again preferred for its simplicity and by combining these two 

concepts, both points 1 and 2 above are addressed. The inclusion of 

“mechanisms” in the IDEF0 definition, and the identification of the system of 

interest boundary in Flood and Carson’s context model, provide a means of 

addressing point 3. As a combination of the ideas of SADT and the concepts of 

Flood and Carson’s Context Model, this diagram will be defined as a Functional 

Context Diagram (Figure 5). To ensure completeness, transformation, 

management and resource reflect the different functional drivers defined by 

Hitchins Generic Reference Model of complete functionality, and Checkland’s 

CATWOE is used for a complete set of stakeholders (Checkland & Poulter, 2006). 
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Figure 5: Functional Context Diagram 

 Context types related to definition of lifecycle approach 

The types identified below represent a combination of academic concepts 

reported in the literature and a collation of real-life engineering projects. Whilst 

they refer to types of problem, a problem is not exclusively of one type. In most 

cases it will be necessary to characterise a problem as being of many types, each 

of these influencing the system design approach that is required. They have been 

grouped in terms of the particular aspect of the System design process that they 

most closely relate to i.e. requirements, design or the overall lifecycle. A table 

summarising the way that this might influence the approach taken is then 

provided. 

Many shortfalls in problem solving can with hindsight be attributed to applying the 

wrong approach for the specific problem and its situation or context. Having 

identified a problem it can then be both a challenge to determine strategies that 

will succeed in its solution and also to communicate the value of what is proposed 

to gain acceptance of the way forward. The challenge here is to select an 

approach based upon both an understanding of the problem context and an 

identification of the severity of the problem in terms of the risk. 

The method described proposes Context types to help analyze a problem context 

(Mackley, 2015). The analysis of each type is reduced to a four-quadrant matrix, 

where a particular quadrant can be used to define the appropriate system thinking 

or systems engineering approach. Each quadrant is also related to the likely level 

of risk or difficulty in addressing the problem. The resulting level of risk is then 
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expressed graphically as a Kiviat diagram in order to present it in a way that can 

facilitate communication and understanding by a wider audience. 

First, a review is made of the current theory that can be used to develop an 

understanding of the types of context and lead to suggested approaches. Where 

appropriate these are expanded to generate a set of generic Context types 

described as four-quadrant matrices. New and complementary Context types are 

then proposed with the aim of providing a more complete analysis of the problem 

context. Finally an outline is given of how the Context types can be used to 

suggest problem solving strategies and indicate the level of complexity and risk 

involved. By describing how to address problem contexts of different types, the 

method presents a unification of existing systems thinking approaches to provide 

a problem solving approach that can be tailored to specific circumstances. 

 Existing concepts  

There are a number of existing concepts that allow a distinction to be made 

between different types of context and these are outlined below. 

 Problem types  

Problem types characterize a problem in terms of uncertainty in requirement and 

in solution (Obeng, 1995). 

 Painting-by-numbers (PBN) – clear objective and clear solution 

 Foggy – uncertain objective, uncertain solution 

 Movie – uncertain objective, clear solution 

 Quest – clear objective, uncertain solution 

Obeng defines a Painting-by-numbers problem as one where “you and most 

stakeholders are sure of both what to do and how it is done” based on similar 

experience. The fact that the problem is well defined and there is a clearly defined 

solution, means that technical, cost and timescale risk can be well identified; the 

challenge is perhaps to do it better. 

A Foggy type of problem is very different in that “you and most of your 

stakeholders are unsure of what is to be done and unsure of how it is to be 

achieved”. The secret of success here, according to Obeng is to “proceed very 

carefully, to proceed one step at a time”. 
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Figure 6: Problem type 

In the Movie type “you and most of your stakeholders are very sure about how 

the project should be conducted but not what is to be done”. Typical expertise 

and facilities are in place, either looking or waiting for the problem to be tackled. 

In a Movie, Obeng says that concentration should be on “finding yourself a good 

script and the movie will write itself”. 

For a Quest, “you and most of your stakeholders are sure of what should be 

done…however, you are unsure of how to achieve this”. The secret here, Obeng 

says, is to “get your knights fired up and send them off to seek [a solution] in 

parallel”. 

Obeng’s aim is to identify that not all problems are of the same type and used 

characteristics of uncertainty in both objective and solution to categorize them. In 

doing so he emphasizes that a single approach was not appropriate for all. His 

four types are already arranged as a four quadrant matrix as shown in Figure 6. 

Whilst this type frames the problem, strategies need to be evolved that address 

them and architectures designed in support of them. Painting-by-numbers is 

probably the easiest to address as it involves a clear requirement and a solution 

that has been established to work. In this case there is benefit around keeping 

the architecture the same as before with all the experience that provides into 

system properties and behaviour. If there is any change to be applied it is in 

improving performance, cost or timescale of development. Such a situation would 

seem to have a good fit with “lean" techniques. 

Whilst the Movie type reflects a solution that is known, or at least familiar it also 

has to address uncertainty in the objective. This will requires 

knowledge/assurance of how the proposed solution will suit potential scenarios 

that may arise. Therefore analysis should focus on devising configurations that 
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will perform best in the variety of potential scenarios. As there will always be 

uncertainty in how the design can cope with requirements that are not fully known, 

an architecture that can allow some adaptability or flexibility would be an 

advantage; service oriented architectures are examples of this 

A “quest” problem has a clear objective, but without a clear solution. In such an 

instance an approach that examines a number of different possible solutions will 

enable a better indication of what solutions and solution features will provide the 

right effectiveness. Different architectures are likely to be required in order to 

provide a useful variety of options to be considered. It is however conceivable 

that having a clear view of the objective will infer particular behaviour 

requirements from any solution that can lead to a favouring of certain archetypes 

that are known to provide these.  

A “foggy” problem on the other hand removes that clarity of requirement. In this 

case iteration is normally required between a progressive maturing of the 

objective requirements and the potential for their achievement through design. 

As understanding of the problem becomes clearer it should be expected that 

architectural strategies will be the first aspect of system design to be developed. 

There can be no presumption of architecture in the Foggy problem, only there 

expectation that it will evolve hand-in-hand with the requirement. 

In defining his problem types, Obeng has emphasised that a single approach is 

not appropriate for all and that an approach based on exploration would be 

required. Here it has been argued that more detailed strategies can be applied 

depending on the problem type and that the type also infers the architectural 

approach to be employed. 

 Management type 

In the early 1960s Jay Forrester applied the concept of System Dynamics to the 

industrial organization (Forrester & Cambridge, 1961). This provided the basis for 

further work (P. M. Senge et al., 1994) using System Archetypes to analyse a 

business as a system. The basis of his contention was that dynamic situations 

could be described in terms of reinforcing and balancing loops of cause and effect 

and that simulation using archetypes is able to replicate the behaviour of ailing 

organizations thus providing a diagnosis of the reasons for their malaise. The 

original set of around ten systems archetypes can be expressed as a reduced set 

of four; Underachievement, Relative Underachievement, Out-of-control and 

Relative Control archetypes (Wolstenholme, 2003). These represent situations 

where there is either a problem in terms of availability of resource or in terms of 

an inappropriate control action being applied (Wolstenholme, 2004a). In this 

context type an assumption is made that inappropriate control is applied 

unintentionally and therefore as a result of a lack of situational awareness.  
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Using axes of “lack of situational awareness” and “inadequacy of resource” the 

four quadrant matrix of Figure 7 can be identified. 

 

Figure 7: Management type 

 Values type 

The concept of Divergence of values (Jackson, 1994) consists of unitary, pluralist 

and conflicting/coercive situations: 

 Unitary - in that they all have a common goal and view of what is to be 

achieved and ultimately how.  

 Pluralist - in that stakeholders cannot agree on goals and tend to pursue 

their own objectives, but that there is mutual benefit in the collaboration.  

 Conflicting/Coercive - in that goals and objectives diverge, but that some 

group or groups get their way at the expense of others.  

These situations are interpreted as distinguishing between the number of 

different viewpoints, and the degree of conflict that exists between stakeholders. 

In a collaborative environment an increasing number of viewpoints change a 

situation from unitary to pluralist. However, where there are conflicting priorities 

increasing the number of viewpoints will turn a situation from a coercive or simple 

conflict into anarchy. The resulting context type is shown in Figure 8. 
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Figure 8: Values type 

 Complexity type 

This concept makes the distinction of what problems are complex (Snowden & 

Boone, 2007), defining four quadrants: 

 Simple – the relationship between cause and effect is obvious to all 

 Complicated – the relationship between cause and effect requires analysis 

or some other form of investigation and/or the application of expert 

knowledge 

 Complex – the relationship between cause and effect can only be 

perceived in retrospect 

 Chaotic – no relationship between cause and effect at systems level 

Snowden’s definitions make the distinction between difficulty in analysis which 

creates complicated problems and unpredictability of outcome that results in 

complex problems; the combination of the two resulting in a chaotic situation 

(Figure 9). 
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Figure 9: Complexity type 

 Co-ordination type 

Finally Meier (Maier, 1998) distinguishes between types of organization of a 

system from a unitary system to a system of systems, on the basis of operational 

and development independence of its components. His definition for a system-

of-systems is: 

"an  assemblage  of  components  which  individually  may  be  regarded  

as  systems, and  which  possesses  two  additional  properties:  

Operational Independence of the components: if the system-of-systems  is  

disassembled  into  its  component  systems  the  component systems 

must be able  to usefully operate  independently.  That is, the components 

fulfill customer-operator purposes on their own.  

Managerial  Independence  of the  components:  the component systems  

not  only  can  operate  independently, they  do  operate independently. 

The component systems are separately acquired and integrated, but 

maintain a continuing operational existence independent of the system-of-

systems.” 

Maier’s concept of system-of-systems contrasts with a unitary or centralized 

system; a system-of-systems displays both development and operational 

independence whereas the centralized system has neither of these. Considering 

solely development independence will lead to an off the shelf solution (i.e. 

assembled from separately developed components), whereas solely operational 

independence implies an asset management case (see Figure 10). 
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Figure 10: Coordination type 

 Further context types 

This section, additional context types have been developed to complement the 

five generated from current theory. To cover the variety of problem situations a 

total of eleven context types are described. In each case it is useful to keep in 

mind the question “how critical could this context type be to influencing the 

required approach of the problem solver?” 

 Evolution types 

Obeng’s Problem Type concept is an established way of addressing a particular 

problem at a given time, but often the challenge comes from how the problem 

changes over time. Important considerations are: how much has the requirement 

changed; what is the uncertainty of the requirement or in the solution as a result; 

when and how often does the problem need to be addressed to ensure 

continuous capability provision? 

The rate of change of requirement is important as this will tend to erode any spare 

capacity built into the system or may expose areas where the system currently 

has no inherent capability. This will determine how long it will be before the 

system is in capability deficit and will drive the time at which modification is 

required as well as the duration of modification activity that can be tolerated. For 

instance, in a rapidly changing environment, capability may need to be updated 

on a regular basis and the time taken to perform the update must be consistent 

with those challenging timescales in order to converge upon a solution before 

further updates are required. Equally the uncertainty in requirement is important 

as this will drive the type of approach needed to address the capability update 

and indicate the time that the activity is likely to take. Effectively this is predicting 
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the Problem type (Obeng, 1995) that is likely to be encountered at the time in the 

future when the modification will be required (Mackley, Deane, & John, 2010). 

For this type the axes of the four quadrant matrix are uncertainty in future 

objectives and uncertainty in future solution. If the future objectives and solution 

are clear, then the situation will be one of routine obsolescence management. 

This could be the situation for road vehicle rental firms; vehicle design has 

remained fairly invariant over many years and the users expectations are very 

much in line with what a current road vehicle can provide. However what if the 

future objectives or possible solutions were not known? Imagine that current 

vehicle solutions based on oil based fuels were becoming less economic and 

vehicles using alternative energy become more attractive – broadening the 

business to consider these would be seen as opportunity development. 

Conversely, if we imagined that the technologies of cars in the future are to 

become expensive and cars or their components become leased then this is more 

an area of service development (such as leasing of batteries for electric cars). A 

rapidly changing environment with novel and emerging solutions could be termed 

as represents capability development, resembling the approach often taken in 

military development, but would arguably fit well with mobile computing and 

communication solutions. Evolution types can thus be identified as in Figure 11. 

 

Figure 11: Evolution type 

 Response type 

The focus for this type is the urgency of the need. Depending on the complexity 

of the problem, a more or less urgent need will have a bearing on the approach 

taken. To characterize urgency a distinction is made between developing a 

solution under normal commercial conditions i.e. working in a viable and 

competitive situation, and an emergency situation where corners are allowed to 

be cut or significant extra resource is justified. Urgent but non-complex situations 
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can be addressed by cutting corners as the consequences of this can be 

evaluated. If a situation is both urgent and complex then simple measures are 

often not appropriate as they may have consequences that in themselves can 

have serious implications. In the matrix below the distinction is made between the 

former, similar to the Urgent operational requirement process employed by 

military organizations and the latter being a systemic emergency. An example of 

a systemic emergency might be an outbreak of a highly virulence strain of flu and 

its effect on a countries health service and economy. Routine and systemic 

development make up the four quadrants of Figure 12. 

 

Figure 12: Response type 

 Situation type 

It is clear that the starting point will have a significant bearing on the solution and 

so this aspect will be key in determining the approach required. The following 

situations might be encountered based on differences in uncertainty of design 

baseline and the degree of change required. 

The Situation Type involves consideration of what the starting point of the activity 

is. For instance this may be: 

 Design starting from a clean sheet, with little or no previously defined 

concept of design or legacy constraint (e.g. new capability acquisition). 

The truly clean sheet is not a common situation for the system designer, 

although it is perhaps more prevalent in some domains than others (e.g. 

defense).  

 An upgrade of capability, where the starting point is going to have a 

considerable bearing on the solution that might be chosen (e.g. mid-life 



   
 

62 
 

update). In this situation it will be normal to identify the “capability gap” that 

needs to be met.  

 A need for system review, to identify changes required to the system 

baseline to be fit for the existing purpose, rather than from the definition 

from stakeholders of a required change in capability.  

 Simply a reconfiguration of what is already in place, but used in a different 

way to solve the problem. In isolation this is a relatively simple case, but it 

can also describe a system-of-systems which provides challenges of its 

own (see Coordination type). 

The four quadrant matrix for Situation type is given in Figure 13.  

 

Figure 13: Situation type 

 Risk type 

Risk and maturity are key elements of a system development that should be 

considered together. With an immature system, achieving the desired system 

outcome without clear knowledge of probability of success or related 

consequences represents a risk. Equally, a relatively mature system can be a risk 

if there are severe consequences should it fail. Engineers work at trying to find a 

suitable balance between risk and maturity of a system design. The preference 

is a mature/low risk combination or a no brainer, but for higher risk situations a 

project may choose a mature solution to play it safe. If there is solution immaturity 

then low risk solutions represent calculated risks, with a high risk/immature 

solution being a gamble. 

The four quadrant matrix for Risk type could be drawn as in Figure 14. 
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Figure 14: Risk type 

 Target type 

Enterprises will often find themselves facing different types of target. Some 

enterprises are required to deliver to strict timescales and others might have a 

reputation based on the quality of their product or service. As shown in Figure 15, 

these represent orthogonal axes, where a high quality challenging target situation 

can be seen as an Olympic sprint compared with a relaxed timescale at a familiar 

and achievable quality being the stock in trade. Critical path and gold standard 

provide the remaining quadrants.  

 

Figure 15: Target type 

 Business area type 

A particular challenge for a business is to ensure it has the capability to deal with 

a problem, and in particular that it has a properly trained and prepared workforce. 
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A distinction can be made between the requirements that a given context places 

on expertise that is gained with professional qualifications on the one hand, 

compared with experience on the other. Whereas expertise might be acquired 

quickly, experience has to be accumulated over time: in some areas, expertise is 

in short supply and that introduces challenges of its own. Types of work are often 

referred to as “collar workers”, but the different “collars” do not always reflect the 

distinction of education and experience, so categories of low skill, professional, 

trades, gold collar have been chosen as in Figure 16. 

 

Figure 16: Business area 

 Combination types 

An analysis of the identified types shows that there are common axes. For 

instance, risk type compares risk against solution immaturity whereas Obeng’s 

problem types compare solution immaturity to objective uncertainty. This allows 

the combination to be described as a 3D matrix introducing types of; play it safe 

PBN, surefire success movie, critical quest, and freezing fog. This combination 

can be described as “Problem risk type” (Figure 17). 
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Figure 17: Problem risk type 

Also the types of response and complexity share an axis of complexity, which 

leads to urgency being compared with both unpredictability of outcome and 

difficulty of analysis. This introduces types of urgent operational requirement, 

balanced scorecard, tiger team, systemic development and systemic emergency. 

This is described as “Urgent complexity types” (Figure 18). 

 

Figure 18: Urgent complexity type 
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 Problem solving approach and risk evaluation 

The use of the four quadrant matrix for describing each context type, allows a 

spectrum of context to be identified. Each matrix is structured in such a way that 

risk increases as the value of any single axis increases. Figure 19 is numbered 

to provide a reference and, in coarse terms we might conclude that quadrant 1 

represents low risk, quadrant 4 represents high risk and quadrant 2 and 3 

indicating a medium risk. Thus an overall context risk might be evaluated by 

identifying where a given context falls for each of the types. 

 

Figure 19: Risk evaluation matrix 

For identifying risk it is important to ensure that all potential contributors are 

considered. There is perhaps no guaranteed way of determining that the list of 

context types addresses all elements of potential risk in a system solution to a 

problem and this is an area which deserves further analysis against more 

traditional risk indices. However, it is possible to identify key domains of a 

system’s problem and solution space that should be considered. Key domains of 

a system have been described as: product and producing domains (Mackley, 

2008); product, process and organization (S D Eppinger & Salminen, 2001); 

customer, functional, physical and process (Suh, 1990). These can be combined 

to give domains of requirement, solution, process and organization. Mapping the 

eleven context types to these four domains there is coverage in each domain with 

either two or three types each. 

The division is shown in Table 7. Table 7 also shows a simple illustration of the 

approach for two example problems. Imagine being asked to address problems 

facing the UK National Health Service, or being asked to work out a strategy for 

developing a new concept of airplane based on a new distributed propulsion 

concept. The table shows an analysis of both problems; the crosses represent 
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the problem of developing the new aircraft and the ticks represent the problem of 

addressing the challenges of the UK National Health Service (NHS). The risk 

profile for the distributed propulsion problem is analyzed as 4,5,2 and so seems 

to represent a medium risk, with a tendency to areas that are manageable rather 

than risky: the situation for the problem of the NHS shows a risk “profile” of 0,5,6 

which indicates no easy areas, with risk in almost half the areas being high. For 

distributed propulsion the risk is reasonably well distributed across the system 

domains and therefore requires a balanced approach: for the NHS there are 

significant organizational risks to overcome and these stand-out compared to 

risks of process, requirement and solution. 

Table 7: Characterizing risk: Examples 

Type Quadrant 1 Quadrant 2,3 Quadrant 4 

Process    

Problem 
Evolution 
Response 

 X √ 
X √ 
X 

 
 
√ 

Requirement    

Situation 
Divergence of values 
Management 

 
X 
X 

√ 
√ 

X 
 
√ 

Solution    

Risk 
Complexity 

 
 

X √ 
X 

 
√ 

Organization    

Coordination 
Target 
Business area 

X 
X 

 √ 
√ 
X √ 

Summary risk X (4) √(0) X (5) √ (5) X (2) √ (6) 

 

This can be effectively visualized using the Kiviat diagram (Figure 20), which 

gives an immediate pictorial view of what areas represent the greatest risk (with 

1, 2 and 3 being low, medium and high risk respectively). 
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Figure 20: Kiveat diagram of example risk scores 

The four quadrant matrices can be used to gain an idea of overall difficulty by 

considering each type individually and assessing the combination of the 

outcomes. However, this four quadrant notation has the risk of dividing up the 

problem without considering the interactions. As this is a qualitative tool to inform 

a strategic approach, these overlaps are considered small and are expected to 

be addressed in ensuring a coherent strategy for the whole problem. Some 

overlap in the context types can readily be identified by the Combination types, 

which reflect combinations of issues that should be addressed to identify their 

impact on the approach taken. In the examples given the Problem risk type 

results in a critical quest for both the UK NHS and new aircraft concept, whereas 

the Urgent complexity type emphasizes a systemic emergency for the NHS rather 

than a systemic development for the aircraft. 

Consideration of context type can have a bearing on the approach used; some 

examples are identified in Table 8. 
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Table 8: Architectural approach according to context type (sub-type numbers are as 
Figure 19) 

Type Sub-type Approach 

Problem 

types 

1. Painting by 

numbers 

Follow existing tried and tested process and retain existing 

architecture 

2. Quest Examination of solutions using an incremental approach; new 

architectures are to be evolved, but may take benefits from 

established patterns or archetypes 

3. Movie Scenarios need to be examined to establish use of existing assets. 

An existing architecture will be in place, but use of a Service 

Oriented Architecture will facilitate more flexibility asset 

management (Russell & Xu, 2007) 

4. Foggy Iterative and exploratory approach; a new architecture is to be 

evolved, but may take benefits from established patterns or 

archetypes 

Management 

type 

1. Manageable No particular action is required as the system solution is in 

functioning well in its context. 

2. Out of control The out of control situation means that there may be insufficient 

variety in the solution to control the variety of influence in the 

systems context. The solution involves increasing the variety in 

solution, as identified by Ashby in his theory of Requisite Variety 

(Ashby, 1991) 

3. Under-

achievement  

The under-achievement situation is generated in situations where 

there is inappropriate resources for the system to perform. The 

solution is to either establish an increase in available resources or 

to increase the system variety in a way that makes more efficient 

use of the available resources (Wolstenholme, 2004b). 

Architecturally the solution may benefit from widening the system 

boundary to enable a better policy on use of available resources. 

4. Overwhelming Solution requires both an increase in resource and variety to 

provide a system in balance with its context and avoid the out of 

control and under resourced outcomes (see strategies for out-of-

control and underachievement above) 

Values type 1. Unitary Approach can be based on Consensus, with a clear definition of 

boundary and architecture. It is perhaps the simplest case for 

systems engineering, where there is a clear overriding client 

objective and other stakeholder requirements are defined purely as 

constraints on the design. Trade-offs and architectural definition will 

generally be at the design level. 

2. Coercive Stakeholder views may appear unitary, but mask coercion. Ulrich`s 

Critical Heuristics (W. Ulrich, 1987) can be used to establish where 

the system boundaries ought to be. Regulation may subsequently 

be required to enforce an appropriate architecture. 

3. Pluralist In contrast to the Unitary case, there will be different driving 

perspectives on the objectives, and priorities will differ. The 

approach will be subject to agreement based on compromise. 

Discussions will need to be informed by trade-off studies at the 

requirements level and therefore require consideration of both the 

functional and physical architecture of the system.  Soft systems 
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Type Sub-type Approach 

methodologies (Checkland, 1981a) can be used to establish 

suitable compromises. 

4. Anarchy There is no sense of centralized objectives and responsibility, and 

therefore no coordinated strategies for achieving outcomes. No 

meaningful structure exists. Architectural rules and structure need 

to be established and enforced, addressing stakeholder views, but 

also establishing a view of social norms (such as law and order) 

Complexity 

type 

1. Simple The relationship between cause and effect is obvious to all 

2. Complicated The relationship between cause and effect requires analysis or 

some other form of investigation and/or the application of expert 

knowledge 

3. Complex The relationship between cause and effect can only be perceived in 

retrospect 

4. Chaotic No relationship between cause and effect at systems level 

Coordination 

type 

1. Centralised Encourages the use of a standard product lifecycle using a bespoke 

architecture. Both operational and managerial control over the 

system allows complete control of the system and its development. 

Whilst it is possible to mismanage there will not be independently 

generated influences from elements within the system architecture 

itself. 

2. Asset 

management 

Operational independence is provided by establishing a service 

agreement as the system requirement. The development of the 

service system and provision of the service should follow a service 

based lifecycle and employ a service oriented architecture. 

3. Off-the-shelf To cope with ownership/managerial independence the strategy 

should be to delegate development responsibility with clear 

guidelines. A top down modular approach using open standardised 

architecture is called for. 

4. Systems of 

systems 

Service oriented architecture can be employed. Agile processes are 

desirable in order to maximize flexibility in operation (Mackley et al., 

2010) 

Evolution 

Type 

1. Obsolescence 

management 

Assumes an existing architecture, although a modular architecture 

if chosen in the original concept, will reduce the burden associated 

with obsolescence management. 

2. Opportunity 

development 

Benefits from a service oriented architecture and required an 

analysis of the likely scenarios to be examined 

3. Service 

development 

Benefits from a service oriented architecture and required an 

analysis of the likely scenarios to be examined 

4. Capability 

development 

Examination of solutions to meet a capability gap. There should be 

no assumption of solution (MOD, 2005) 

Response 

type 

1. Routine Refer to complexity type for guidance. Dealing with the urgency 

dimension requires agile methods (Mackley et al., 2010) 
2. Systemic 

development 

3.Urgent operational 

requirement 
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Type Sub-type Approach 

4. Systemic 

emergency 

Situation 

type 

1. Reconfiguration Design is largely unchanged, but requalification is required for any 

new operational requirements. This requires examination of the use 

of the systems and the conditions involved to determine if there has 

been an extension to the performance envelope that will need to be 

re-qualified. 

 

2. Upgrade Upgrades will usually reflect a need to modify the system as 

elements have become obsolete, or because an insertion of new 

technology is desired. A modular design, with standardized 

interfaces will enable replacement of affected modules and result in 

a minimal requalification for the upgraded build standard. Upgrade 

is facilitated if it part of a pre-envisaged Incremental Development 

Lifecycle model. 

3. System review In cases where there is no scheduled system upgrade, but there are 

clear symptoms of the system performing beneath the desired 

performance levels the first step will be to diagnose an agree the 

appropriate way forward. In order to identify, analysis and diagnose 

the root causes of underperformance, it is appropriate to employ an 

issue or soft systems analysis such as the Rigorous Soft Method 

(Hitchins, 2008) or Soft Systems Methodology (Checkland, 1981a) 

4. Clean sheet Design from new using an exploratory, capability based approach. 

Suited to an initial approach of implementing a spiral based lifecycle 

and verified for completeness against methods such as complete 

systems methodologies such as Hitchins’ Generic Reference Model 

(Hitchins, 2008). 

Risk type 1. No-brainer Solutions to problem have relatively little risk exposure due to 

experience. This requires following the established process gained 

by experience. In cases of an established process, then “Lean” 

techniques can be considered to improve time, cost or quality. 

2. Calculated risk Despite lack of maturity, the relatively low level of risk means that a 

trial based approach is both acceptable and desirable as it can 

provide validated outcomes to converge on the solution. 

3. Play it safe Risk consequence requires an established, tried and tested 

approach. Tends to be highly procedural based on previous 

experience and changes to established architectures and design 

are resisted due to the effort and cost of requalification. 

4. Gamble This applies for situations where there is tangible risk to the system 

or its context and typically this would be a safety or security issue 

or other situations with significant implications on an enterprise. 

With the lack of confidence, fail safe measures need to be 

incorporated to limit the damage in case of unforeseen behaviour. 

Target type 

and 

Business 

area type 

Refer to the enterprise rather than the product system and so not considered 
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5 A MODULAR APPROACH TO SYSTEMS DESIGN 

 Basic principles of the System Design or Architecting 

process 

Architecture concentrates on arrangements of entities or elements rather than 

their detailed design; the intention is to put in place a framework for the detailed 

design activity in order to ensure a good solution.  A basic principle of the system 

design or is one of order. By applying order to a problem it is possible to: 

 understand how it works 

 provide benefit from the structure achieved 

 manage concurrent achievement of desired outcomes (Crawley et al., 
2004). 

The understanding of systems becomes more difficult as systems become more 

complex and hence the role of architecture becomes more important. Bar Yam 

(Bar-Yam, 1997) defines characteristics of a complex system as: 

 Elements (and their number) 

 Interactions (and their strength) 

 Formation/Operation (activities and their objectives/ timescales) 

 Diversity/Variability 

 Environment (and its demands) 

Here, Bar Yam identifies that the complexity of a system can be both in product 

and its producing systems, both of which need to be examined by the system 

designer for an effective solution (Mackley, 2008). In Bar Yam’s terms, the 

product architecture consists of elements, interactions and operational activities, 

whereas the producing system is similarly described by elements and 

interactions, but associated with development rather than operation. Whilst Bar 

Yam’s characteristics are instructive in highlighting that complexity is both in the 

system and its associated development processes, his definition does not make 

a distinction between them. Gershenson and Prasad (Gershenson & Prasad, 

1997) describe “attribute independence” and “process independence”, where the 

“attributes” refer to the physical attributes of a coffee maker and the “process” 

refers to the process of making it. Here “process similarity” is a means of grouping 

“components and sub-assemblies which undergo the same manufacturing 

processes”. The consideration of the product and its production as distinct 

systems allows architecting principles to be applied to the design of both. 

Therefore, in this research it is proposed to reduce the characteristics so that the 
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definitions can be employed identically to either product or process i.e. complexity 

of elements/activities, complexity of interactions, complexity due to variety 

(diversity/variability). Complexity due to environment is external to the system. 

The analysis of Table 9 allows a direct mapping between the complex system 

characteristics identified and the systems architecture principles discussed in 

Chapter 2 (simplicity, modularity and similarity, where independence is 

considered a strategy that promotes modularity). 

Table 9: The influence of architectural principles on Bar Yam’s system characteristics 
(product and process) 

 

Simplicity 
Modularity/ 

independence 
Similarity 

Complexity of 
Elements 

Simple elements 
reduce complexity 

Modularity does not 
reduce element 
complexity 

Similar elements do 
not reduce their 
individual element 
complexity 

Complexity of 
Interactions 

Similar elements do 
not in themselves 
reduce interaction 

Modularity reduces 
interaction 

Similar elements do 
not in themselves 
reduce interaction 

Complexity due 
to Variety 

Simplicity is not a 
guarantee of less 
variety 
 

Modularity is not a 
guarantee of less 
variety 

Similarity reduces 
variety 

The table indicates that the complex or complicated characteristics of both 

product and process can be addressed by clear and understood principles of 

architecting. The complexity of elements and their variety are often determined 

by suppliers and are not under the direct control of the system designer and it 

therefore might be argued that the greatest influence that the system designer 

can have is to influence the complexity or complication of the interactions. It is 

possible to see how interactions can be used to manage this by reference to the 

following figures, which depict functional coupling. 
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 Figure 21: Functional grouping without 
order 

Figure 22: Functional grouping with order 

Figure 21 and Figure 22 show a diagrammatic representation of a group of 

functions and their interactions. The first shows an apparently complicated 

network of interactions, but the second shows the same set of functions and 

interactions arranged in a much more orderly way. This is functional clustering, 

which is a key element of ensuring a modular design. This arranges functions into 

groups that minimise the amount of interaction outside of the group, which is an 

advantage both for the system in operation and also in development where one 

could imagine that the design activities associated with each group could be 

managed relatively independently, whilst checking the simple interfaces outside 

the group on a more occasional basis. Whilst the functional architecture is an 

abstract notion, it has a physical implication in that it describes an efficient way 

of organising the system design and development activity. 

When functions are subsequently allocated to subsystems then often the 

clustering is not preserved as in Figure 23. The misalignment between functional 

and physical elements then threatens to remove the benefits of order in the 

functional architecture by partitioning it in the physical design. Inspection will 

show that the number of interfaces between the physical elements is now 

increased, representing an increase in complication that will make the system 

design harder to manage.  
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Figure 23: Reduced order after allocation to subsystems 

If the functional and physical architectures were made to align, the benefits of a 

well-structured functional architecture could be returned, which is the principle 

behind functional independence. There is however no guarantee that other 

influences will allow such an alignment (Sako, 2003); for instance, a favourable 

solution for clustering for functional reasons might not be good for others. Whilst 

functional grouping is important, other influences can be drivers such as non-

functional, organisational and lifecycle influences: 

 Physical influence: groupings in terms of subsystems, units or modules of 

hardware or software that are developed independently as part of a system 

hierarchy 

 Non-functional influence: groupings of elements of the design that are 

associated with improving a specific quality attribute 

 Organisational influence: where the groupings of elements are such that 

analysis and development of elements of the design are facilitated 

 Lifecycle influence: an arrangement of elements of a design that suit 

different lifecycle stages; for instance, an arrangement for development 

may not suit the maintenance policy or disposal policy 

Put in another way, a design that is ordered according to function expedience, 

may not suit its non-functional management, its physical allocation, its 

organisational ownership or its lifecycle management. A way of arranging the 

various architectures with respect to each other is needed and as function reflects 

what the stakeholders require from the system then this is the most logical place 

to start. A method for addressing the functional partitioning problem is proposed 

in the next section: when this is addressed, the other domains can also be 

considered.  
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 System Design: Functional 

 Functional Interaction Types 

As identified in the previous section, a key aspect of architectural design that the 

system designer can influence, is the management of the complication of the 

interfaces. Attention should be given to this as early as possible in the system 

design process, but to do this requires sufficient understanding of how functions 

will behave, which is often not known at an early stage. Functional analysis is 

often described in terms of data flow diagrams that describe the data interface 

and sequence of activities (e.g. Yourdon, SysML), but these methods do not 

describe the nature of the function that is key to a system’s behaviour and to the 

way it can be analysed and managed. The earlier literature search has identified 

that many analysts view architecture as a matter of coupling and that this can be 

used to some benefit in using the method of Design Structure Matrices to produce 

a modular design Section 2.5.2. However, this doesn’t take into account the 

criticality of the interfaces or their behaviour; greater independence is expected 

to be achieved by virtue of reducing the number of interfaces without recognising 

that some interfaces are more important, or critical, than others. It is a contention 

of this thesis that functional interactions can be classified in a way that indicates 

their importance in architectural terms.  

The literature search has shown that interfaces have been characterised by what 

is transferred across the interface (energy, material, information, forces) or by 

spatial dependency (Steven D Eppinger & Pimmler, 1994)(Sosa, 2003). In the 

majority of cases researchers have attempted to assign a somewhat subjective 

numerical importance to each (Sosa, 2003) (Yassine et al., 1999). Importance of 

an interface is made without knowledge of its intricacies and hence challenges to 

the system design. Suh’s  stipulation that a feedback relationship is not 

considered acceptable for an external interface (Suh, 1997) is an attempt to 

understand such functional intricacies in terms of the effect it should have on 

system architecture. Different types of system provide candidates for the potential 

intricacies of interface. This research has identified that control systems, service 

systems, decision systems, command systems, critical systems and soft systems 

all have functional constructs types that need to be considered or prioritised. In 

reality a system design often incorporates more than one of these functional 

constructs, which will be defined as ‘functional interaction types’. They represent 

types that help to understand how the required functionality will be achieved, how 

it will behave and how it can be analysed and managed. They are important to 

the systems designer in order that he/she can formulate logical system concepts 

and differentiate between them on the basis of their interaction difficulty or 

importance.  



   
 

77 
 

The following types have been identified: 

 Chain interaction type – the appropriate execution and performance of a 
sequence of bespoke activities 

 Loop interaction type - control of a parameter or property according to a 
demanded value 

 Service interaction type – external provision of activity or resource 
according to agreement to potentially more than one client 

 Judgement type - determination of course of action based on various 
sources of available information 

 Human issue – issues of human interaction that influence the way that a 
system should be designed 

 Physical Interface type - functionality associated with interconnection and 
often transfer of energy 

For all of these types, an architectural partitioning of the system needs to avoid 

the inappropriate division of functionality.  

A chain interaction type is defined as the appropriate execution and performance 

of a sequence of bespoke activities. In a chain, it is important that the integrity of 

the chain is maintained, which could be viewed as a required reliability or trust 

between individual links in the chain. Threats to the chain interaction type would 

be a fault, interruption or unacceptable delay. Two subtypes have been identified 

and these are critical chains and functional chains. A critical chain requires an 

automatic and immediate response between an activity and its predecessor, 

regardless of other events, requiring singular purpose and priority in design. 

Creating an architectural interface along a critical chain would introduce 

complication to its behaviour: what potential delay might be introduced; what 

impact would this have; what would be the impact of a failure? If chosen in the 

wrong place it can lead to the creation of a complicated interface, making the 

specification of the required performance difficult to manage. Without appropriate 

safeguards, these chains will be mission or safety critical and therefore affect the 

reliability and safety characteristics of the system. A functional chain on the other 

hand consists of a set of functions where the dependency is ‘pull’ in nature (i.e. 

on demand), rather than the ‘push’ of a sequence chain. The pull nature reduces 

the degree of coupling and makes it amenable to system partitioning, but the 

functional association is one that should discourage partitioning across 

organisational boundaries, as the resulting functional allocation can be difficult to 

manage between organisations. Examples of chains in systems design are 

mission chains, supply chains, failure chains and safety chains. 
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A loop interaction type is a set of activities that control a sequence, parameter or 

property according to a set criterion or demanded value. Poor loop performance 

can lead to instability, inadequate response to events or residual errors. There 

are two sub-types that require different considerations, the first being the control 

loop where it is inadvisable to create an architectural interface within a highly 

performing control loop as delays introduced are likely to cause instability and 

affect performance. In missile design, this issue can be encountered when 

considering the centralisation of inertial measurement in a single Inertial 

Measurement Unit. This often requires communication of measurements across 

a databus to ‘distant parts’ of the missile and this process can introduce 

unacceptable latency in the data. As a result, certain inertial instruments may be 

duplicated in the distant location to “shorten” the loop, improve response and 

reduce latency. The second sub-type is the on-condition loop; functions that are 

logically connected by the need to fulfil a condition before an activity can or should 

progress. The need to consider them together is one of considering overall loop 

performance. Meeting the loop performance is normally one of adequate 

budgeting rather than continuous monitoring and changing loop parameters (as 

is the case with the control loop type). This makes it amenable to system 

partitioning, but the need to budget would favour constraining the design within a 

single organisation. Examples of loops within system include feedback loops 

such as guidance loops and control of system environmental factors. 

The service interaction type is an external provision of resource provided in 

accordance with an agreement and has potentially more than one client. A 

service is designed to comply with a predefined and agreed level specified by 

another organisation and therefore this is logically amenable to both system and 

organisational partitioning. However, where there is more than one client, this 

requires planning to ensure sufficient capacity. Considerations for the service 

interaction type are timeliness, availability, capability to provide the service and 

flexibility to interface tolerances. Threats to the type are shortage of resource, 

untimely provision and difficulties in planning. Examples of services in systems 

are in resource management, maintenance and ‘handover basket’ strategies; the 

latter is one where a set of tolerances around a required value are provided in 

order that a critical dependency is avoided i.e. any value within tolerance is 

acceptable, which is then more amenable to non-bespoke solutions. 

The human issue type includes issues of human interaction that influence the 

way that a system should be designed. Human issues require different 

approaches such as that of Soft Systems Methodology (Checkland, 1981a), 

which represents a different approach to the more traditional engineering 

methods. However, soft issues still manifest themselves as interface challenges. 

Waring identified several common issues (Waring, 1996) of which conflict, 

pressure, solidarity and knotty problem all represent different interface problems. 
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In architectural terms, parties that are in conflict should normally be kept apart to 

avoid the conflict escalating. Both pressure and knotty problems represent those 

that are difficult to resolve – complex/complicated interfaces that require scrutiny 

and cooperation; architecturally these are entities where it would be inadvisable 

to design or organise them apart from each other. However, solidarity is an 

indicator of single purpose and agreement – often parties in solidarity and with 

strong agreement allow them to be easily considered across organisational 

boundaries. 

The judgement type recognises the decision making element of a system (most 

likely human) and critically includes not just the decision-making element, but 

also the availability of suitable information required in order come to an 

appropriate decision. Such judgements are encountered in command and control 

structures, where appropriate situational awareness will be required to make the 

decision. Appropriately accurate and timely information will be required to make 

good decisions and so this is an issue that should be addressed architecturally.  

The issues raised in the consideration of these functional interaction types are 

undoubtedly important in the architectural decisions that a system designer has 

to make. In a system design process, it is not sufficient to identify functions in 

terms of their sequence and dataflow, but there is also a need to consider them 

in terms of their type and the challenges that this can infer. Such a determination 

will help to guide the choice of system architecture by preserving elements that 

require close coupling, whilst allowing more freedom in the remaining cases 

where close coupling is not needed.  

 Partitioning by functional interaction type 

Morris (Morris & Parnas, 1971) recognised the need to keep certain interfaces 

internal to subsystems (encapsulation), which requires an identification of what 

these interfaces are. Table 10 takes each of these types and summarises the ones 

that are amenable to partitioning in a systems design, and which ones aren’t, 

based upon their behavioural intricacies. As identified above, there are some 

types which are amenable to partitioning from a behavioural perspective, but 

where the need to coordinate the design means that it is advisable to keep the 

design activity within the same organisation structure in order to provide 

appropriate management to provide a coherent design.  

Whilst at this stage purely functional drivers are used to advise on partitioning in 

physical and organisational domains, appropriate management of functional 

drivers can also be envisaged to address non-functional performance, as the 

functional interaction types allow the appropriate management of behaviour 

across interfaces and hence promote benefits in terms of such quality attributes 

as performance, reliability and safety.  
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There is also legitimate concern over how different lifecycle stages should impact 

the system architecture, especially as organisational boundaries can be expected 

to vary over a system lifecycle.  In industry, movement from one lifecycle stage 

to the next is often dealt with as a service type of relationship (for instance a 

transfer from an engineering organisation to a customer support organisation) 

which helps to ensure that it is amenable to partitioning, but it is in danger of 

ignoring benefits that might be achieved for instance by feedback of in-service 

experience into an evolving design baseline; this is often referred to as “over the 

wall” (Steven D Eppinger, 1991)(Loch & Terwiesch, 1998).  

Table 10 summarises the functional interaction types and the advised rules to 

managing the interfaces according to the earlier discussion. Three columns are 

provided: a) interactions that require separation; b) interactions that should be 

kept in the same physical subsystem; and c) interactions that should be contained 

in the same organisation. When a functional design has been devised (in 

accordance with stakeholder requirements) then the system designer can use 

these rules to decide on appropriate subsystem boundaries and organisations in 

order to maintain appropriate functional interactions in the architecture. 

As described, these definitions allow the following categories for characterising a 

system architecture with a view to functional partitioning: 

 Unsuitable interactions – situations where functional interaction types 
suggest that a system interaction should be separated, which is applied to 
human conflict issues and the advised ‘un-sharing’ of shared services 

 Fundamental blocks – functional interactions that suggest a critical 
dependency  that should be kept together (push chains, control loops, 
shared services and complex/pressured human issues) 

 Organisational constructs – coupled functions that benefit from 
organisational structure (functional chains, on-condition loops and 
judgements) 

 Partitioning points – functions interactions that involve a natural break in 
cause and effect so are more amenable to partitioning (exclusive services, 
solidarity and agreement) 
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Table 10 Definition of Functional interaction types 

Type Definition a) Require 
separation
? 

b) Keep 
within 
subsystem 

c) Keep 
within 
organisn 

Additional advice Mitigation 

Service Shared A non-exclusive functional 
relationship that is made 
available to others according 
to an agreement 

   Ensure availability and capacity 
given conflicting demands of 
multiple users. Minimise sources 

Overcapacity 

Exclusive Exclusive provision at any 
one time of an agreed 
function 

X x x  N/A 

Chain Critical (or 
Push) 

A prescribed and automatic 
sequence of functions 

x   Keep chains short, consider in 
parallel. Approach depends on 
failure probability and impact 

Redundant failure 
mechanisms 

Functional 
(or pull) 

A functionally dependent 
association  

x x  Keep chains short, consider in 
parallel 

Establish performance 
budgets 

Loop Control Control of a parameter 
based on feedback based on 
the value of the output  

x   Ensure requisite variety, stability 
depends on response 

Stability of system to be 
established 

On-condition Control of activity according 
to a set condition 

x x  Balance loops to manage flows Establish performance 
budgets 

Human 
issues 
 

Complex 
(knotty), 
pressure 

A function that is provided to 
address a human issue 

x x   - 

Conflict  x x Establish precedence Arbitration 

Agreement 
(+solidarity, 
Trustworthy) 

x x x  N/A 

Judgement A function where choice is 
made between options on a 
way forward 

x x  Ensure adequate situational 
awareness, sufficient options 
and appropriate quality of 
information. 

Clear procedure on 
available options 
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The definition of functional interaction types is aimed at providing a novel way to 

help the system designer to establish where the partitions and boundaries of the 

architecture should be. In the literature, a decoupled or independent architecture 

can help to deal with complication by simplifying its interactions. However, it is 

also clear that and uncoupled or fully independent system is often not desirable; 

a system is often looked on favourably as “more than the sum of its parts”, but 

full independence would entail a product that is only the sum of its parts. Orton 

describes the appropriate use of independence as the pursuit of the “loosely 

coupled” system. The system designer’s role is therefore to ensure that elements 

of the system are decoupled and independent where the benefit outweighs any 

corresponding loss of opportunity. Whilst current architectural techniques focus 

on determining where architectural boundaries should be placed, functional 

interaction types also enable the designer to decide where boundaries should not 

be placed. The approach of only constraining decisions that are of a key 

architectural significance is supported by Tyree and Akermann in their paper 

(Tyree & Akerman, 2005). 

In the first step of systems design the system functions are identified and to create 

a modular architecture it is usually possible to identify closely related functions 

that can be analysed independently. If a critical dependency is allowed between 

groups of related functions, then the analysis and management of the function 

becomes more difficult. Subsequent allocation of functions to subsystems may 

cause critical dependencies across physical boundaries, which complicates the 

specification of the interfaces and subsequent integration. The partitioning of 

fundamental blocks and their critical interactions across functional boundaries 

(i.e. between functional chains) and across subsystem interfaces should 

therefore be avoided. 

The above strategies based on functional interaction types should be considered 

by the system designer in creating an architecture. Having created a view of the 

functional interactions, unsuitable interactions should be examined first and 

shared services should be avoided or turned into individual exclusive services 

where possible. Then fundamental blocks should be identified so that they are 

not inappropriately partitioned in either the physical design or within the 

development organisation. Organisational constructs can then be identified as 

groupings of the functional design that need to be developed together. Finally, 

partitioning points can also be considered when deciding on the system 

architecture.   
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Coupling isn’t just a static concept and there are dynamic and unpredictable 

dependencies that need to be considered at the interface that can provide both 

functional and non-functional benefits: 

 Independence and failure: longer chains make the task of system design 

harder as it reduces the options available to partition the design. Benefits 

can therefore be achieved by reducing chain length where possible. Where 

critical chains have to be split it should be ensured that no single fault 

failure along the chain should result in a failure at a physical subsystem 

interface  

 Parallel activities: dependence is created if activities are carried out in 

series. Therefore, activities that are not related in a chain should be 

considered to be in parallel where possible 

 Balance activities: activities designed in isolation may operate at different 

rates which can result in a mismatch in flows that can cause either a build-

up of stock or a failure to supply. Service agreements will need to be put 

in place, and the provider will need to allocate an appropriate stock level 

as part of the agreement 

 Identifying Functional interaction types in a system 

In order to help the system designer to identify functional interaction types in a 

system, are there generic types that occur within systems in general? For 

instance, partitioning by the rules of the previous section we would expect that 

there should be external interfaces of the following types: 

 Exclusive services 

 Human relationships of agreement, solidarity and conflict 

Within a given organisation interfaces for the following might be anticipated: 

 On-condition loops 

 Functional chains 

 Complex human relationships 

 Judgement 

Terms such as “supply chain” and OODA loop (Observe, Orient, Decide, Act) 

suggest that there might be generic instances that a system designer could 

search for. In order to identify these instances, a generic view of a system could 

enable such interactions to be identified. The Generic Reference Model (GRM) 

identifies a generic and complete set of functions that any system requires, 

comprising Mission, Viability and Resource management functions.  Stakeholder 
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needs are used to identify Mission functionality and further system functionality 

is generated for system viability and management of resources. Its focus on 

producing a complete functional picture means that it offers the prospect of 

forming a complete design, but can also be used to distinguish functional 

interaction types. 

Hitchin’s GRM, firstly can be used to distinguish between functionality driven by 

external influence and that generated from internal needs. These different 

functional areas are shown in Table 11. 

Table 11: Internally and externally stimulated functionality of the GRM 

 Internally stimulated Externally stimulated 

Mission None Inputs, cooperation 

Viability Synergy, maintenance, 
homeostasis, evolution 

Evolution, survival 

Resourcing Store, distribute, convert Acquire, dispose 

Already, the division between internally and externally stimulated functionality 

helps to identify the service types, as an external interface to a system will be 

under the responsibility of a different design authority and should not be allowed 

as a critical interaction. To gain further benefit from the model, further interactions 

need to be identified - Hitchins has not explicitly identified all of the relationships 

and their specific nature as he uses the model as a model of functional 

completeness rather than one for analysing functional structure. For this 

research, functional relationships within the model are explored, building on 

Hitchins’s work to represent the causal dependencies in Figure 24. The causal 

loop notation facilitates the visualisation of loops and chains in particular. The 

behavioural model, by its nature, involves decisions or judgements that are 

readily identifiable as dependencies to the rest of the model. Finally, as 

mentioned earlier, services will typically be identified at external interfaces of the 

model.  
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Figure 24: Influence diagram of relationships of Hitchins' Generic Reference Model 
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Some functional interaction types can be seen to relate very strongly to certain 

elements of the model as outlined in the Table 12. 

Table 12: Relationships between functional interaction types and the GRM 

GRM element GRM sub-
element 

Corresponding 
Functional Type 

Typical question to help identify 
functionality 

Behaviour Judgement What decisions are made? 

Mission Information Service with wider 
system 

What are the information 
requirements? 

Cooperation Service with wider 
system 

What external service 
agreements are required? 

Objectives, 
strategy, 
execution 

Functional Chain What chain of activities needs to 
be performed to complete 
mission? 

Loops (OODA) What decisions involve feedback 
of mission outcomes? 

Judgement What decisions are made as part 
of mission? 

Viability Evolution Service What is lifecycle management or 
impact of environmental threats? 

Survival Chain How to respond to urgent 
threatening events? 

Homeostasis Control loop What internal conditions need to 
be controlled? 

Maintenance 
 

Service What demand is there for 
maintenance activity? 

Synergy Functional Chain What chains exist across 
subsystems? 

Control loop What loops exist between 
subsystems? 

Judgement What decisions are made for 
reasons of synergy between 
subsystems? 

Resource 
Management 

Acquisition, 
Disposal 

Service with wider 
system 

What is relationship/ constraints 
with wider system from supply? 

All Chain How is supply managed from 
acquisition to disposal 

Judgement What decisions are made about 
resource management? 

 

Such a table can therefore be used to help check that functional interaction types 

have been comprehensively identified within the design. 
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 Applying function interaction types 

The concept of functional interaction types provides rules that a system designer 

should follow in partitioning a system architecture. According to the discussion of 

section 5.1, the system architect should first create a meaningful architecture 

from a functional point of view and then, in the interest of maintaining functional 

independence, try to preserve this in the physical architecture. The development 

of the functional architecture is then achieved by the identification of functional 

chains, defined in Table 10 as a functionally dependent association. A functional 

chain will consist of tightly coupled functions identified by clustering techniques 

such as N2 or DSM. Achieving the required system functions is key to meeting 

the system stakeholder needs and therefore to the system development. The 

functional architecture is also key to determining the behaviour of a system and 

the system designer should ensure that unsuitable interactions and fundamental 

blocks are preserved where possible by firstly the functional chains and 

subsequently by the choice of subsystem boundaries. 

If it is not possible to manage the unsuitable interactions or observe the 

fundamental blocks in all cases, which may be anticipated in a real design, then 

guidance is needed for the system designer on what action to take. When using 

DSMs, guidance is implicit in the clustering process, but this performs a 

somewhat arbitrary and subjective assignment of weights to each interface based 

upon its complexity or criticality. Suh takes a different approach with an analytical 

technique for applying his Information axiom. The basis of his concept is that 

there can be a parameter associated with any interface, information, that can be 

calculated and that the greater the information the more critical that interface is. 

However, this is often not an intuitive measure and the threshold at which an 

interface conveys too much information to be decoupled is not, and cannot be 

objectively determined (Suh, 1990). Therefore, in the literature there seems to be 

no such guidance on when decoupling might be performed across a critical 

interaction. For this research, a critical interaction is one where the needs of 

managing unsuitable interactions and fundamental blocks cannot be respected; 

reference to the earlier Table 10 identifies these as shared services, control 

loops, critical chains and complex and conflict human issues. The different 

function interaction types exhibit different behaviour and therefore it should be 

expected that they will require different criteria to evaluate whether decoupling 

can be applied; decoupling should only be accepted where a clear and 

manageable solution exists. Suggestions of solutions for each type is dealt with 

individually below and the case presented for each: 

 Shared service: The capacities of resources supplying the service should 

be sufficient to support a viable service in a worst case scenario. 
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 Control loop: Margin of stability is acceptable. Such a margin could be 

judged by sensitivity studies using initial simplified representations of the 

control systems employed. 

 Critical chain: Redundant mechanisms need to be in place for the event 

that a chain is compromised by failure (thus removing the need for detailed 

failure investigation), with a priority interrupt functionality designed at the 

interface to ensure timely response. 

 Human conflict issue: An agreement to an independent and binding, 

arbitrated solution is required. 

In such cases, the issue with splitting a fundamental block is mitigated and this 

should be taken into account in an evaluation of the architecture, on a case by 

case basis. 

 System Design: Physical  

 Architectural approaches to Physical design 

There are several factors that should be taken into account in influencing the 

physical architecture of the system. Firstly, the physical architecture will receive 

benefits from addressing the functional drivers outlined above; the benefits of 

which will be to greatly facilitate the physical design process by designing-out 

unnecessary complication. In doing this it may be possible to combine or 

modularise some of these functional elements; such benefits may include cost 

savings and increased reliability due to a reduction in parts. There may also be 

groupings of functionality that make sense from a physical rather than a functional 

perspective. For instance, if a number of chains call upon the same functionality, 

consideration can be given into creating that functionality as a shared service 

(with appropriate mitigation). 

Benefit can also be gained from using principles discussed by Suh (N P Suh, 

1990; see 3.2.4.1); the implications of these concepts and corollaries are 

restructured below in a way that is easier to reflect in design practice, as follows: 

 Remove unnecessary functionality 

 Specify largest acceptable functional tolerances 

 Streamline both parts and interfaces of the system (a reduction in parts 

that as a result increases coupling and therefore interfaces, should be 

avoided) 

 In evolving the design, focus on existing functions that are both useful and 

proven 
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 Choose design solutions that are simple to represent and make 

These are very practical aspects of design and their implications are clear – the 

design will become less complicated and there will be less interactions that the 

architecture needs to address; the concept of simplicity is one of preparing the 

design to be partitioned. Emerging from analysis of all of these architecting 

principles are two types of approach; firstly the design of the artefact themselves 

and secondly the way that they are allowed to integrate. 

Strategies that influence the design of artefacts are: 

 Specify largest acceptable tolerances (artefacts are less reliant on 

interface quality) 

 In evolving the design focus on existing functions and solutions that are 

both useful and proven (use mature and understood building blocks) 

 Choose design solutions that are both simple to represent and make (less 

complicated by design) 

Strategies that influence integration are: 

 Independence (mapping of solution to function is simpler and so, therefore, 

is integration) 

 Removal of unnecessary functionality (less functionality requires less 

integration) 

 Streamlining parts and influences of the system (less parts require less 

integration) 

Apart from the benefits from functional design there can also be benefits attached 

to strategies from the arrangement of internal elements and arrangement with 

respect to external elements. Whilst it is almost certainly not possible to 

determine an architecture that can guarantee that a design has particular quality 

attributes, architectural strategies might be employed to promote quality 

attributes and improved effectiveness of the design. This is addressed in the 

following section. 



   
 

90 
 

 Architectural strategies for improving quality attributes and 

achieving effectiveness 

Although formal architecting techniques are often not employed in practice, when 

they are, they focus upon the reduction of functional coupling when partitioning 

the design to the physical subsystem structure. Current approaches are of limited 

effectiveness as: 

 Methods for identifying functional coupling tend to be simplistic (as 

discussed earlier) 

 The design is considered only in its broadest sense as a functional to 

physical mapping; other ‘architectures’ could be used to control a systems 

performance in terms of safety, reliability, security, thermal properties etc.  

The use of function interaction types, provides a means to avoid the 

oversimplification of the first of these points. The second point has been 

discussed by others (Wijnstra, 2001; Woods & Rozanski, 2005), the latter 

proposes an ‘architectural perspective’ as a collection of guidance on achieving 

a specific quality attribute in a system. The guidance however is a set of 

guidelines and best practice rather than a set of architecting principles. Klein 

(Klein et al., 1999) suggests an approach of developing attribute based 

architectural styles. To establish these styles, activities required to improve each 

quality attribute are examined in order to establish useful principles and 

architecting techniques. This approach, apart from identifying important principles 

and techniques for a given attribute, can also help identify those that are common 

across many attributes. In this way the system designer can ensure that all 

relevant impacts of techniques being performed in pursuit of a specific quality 

attribute can be recognised.  

Various practitioners/researchers in this field have identified the need to “design 

for” certain design attributes. Suh talks about designing for manufacture (Suh, 

1990) and Ulrich and Eppinger about design for production (K. Ulrich & Eppinger, 

2008). Wasson takes a much more comprehensive view, suggesting that there 

are strategies that enable design for comfort, interoperability, reliability, 

availability, portability and more (Wasson, 2006). However, not all of these 

strategies relate to the design of the architecture. In order to understand the 

potential benefits, the nature of design and how it contributes to effectiveness 

need to be determined. A means of achieving this in practice was to ask four 

questions about design practice for each required attribute. These are 

summarised in Figure 25 as: 

 Enabler: architectural strategies that will result in an improvement in 

effectiveness 
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 Constraint: constraints that may prevent an improvement in effectiveness 

 Potential additional benefits: what other benefits might be derived from 

strategies employed 

 Potential negative consequences: where design may reduce the 

effectiveness of the solution in other areas 

 

Figure 25: Generic “design for” influence diagram 

This has been used to identify aspects of the design that can be used to improve 

or control the quality of the design, and which of these can be related in some 

way to architectural strategies. Examination of all quality attributes enables a 

synthesis of architectural areas/strategies that should be addressed to provide a 

balanced design. The list of quality attributes examined were those of Mackley 

(Mackley, 2005) as this was shown in the literature research to encompass all 

other methods. Where possible, in each case a detailed definition is provided 

from Wasson’s book (Wasson, 2006) which in turn reflect definitions from the US 

Department of Defence (DoD). 

As expected, there are some quality attributes that can be directly influenced by 

architectural influences, whereas other attributes cannot. It is recognised that 

such an approach cannot hope to capture all possible architectural strategies for 

improving system effectiveness, but is a structured and systematic method 

designed to identify as many as possible. 
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Design for Reliability “the ability of a system and its parts to perform its mission 

of a specific duration under specific operating conditions without failure, 

degradation, or demand on the support system” (Wasson, 2006) is as in 

 

Figure 26. 

 

 

Figure 26: Aspects of design for reliability 

From this, appropriate architectural strategies contributing to reliability, 

availability, maintainability and survivability are: 

 Use of redundancy to minimise impact of faults 

 Using environmental shielding to protect and extend life of components 

 Minimising the potential fault chain to reduce overall impact of an event 
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Design for Maintainability “the ability of an item to be retained in, or restored to, 

a specified condition when maintenance is performed by personnel having 

specified skill levels, using prescribed procedures and resources, at each 

prescribed level of maintenance and repair” is as in Figure 27. 

 

Figure 27: Aspects of design for Maintainability 
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From this, appropriate architectural strategies are: 

 A suitable general physical layout 

 Appropriate Line replaceable unit definition 

 Use of a Standardised architecture/interface definition 

 Supportive supply chain 

Design for safety “the application of engineering and management principles, 

criteria, and techniques to optimise safety within the constraints of operational 

effectiveness, time, and cost throughout all phases of the system lifecycle” is as 

in Figure 28. 

 

 

Figure 28: Aspects of design for safety 

From this, appropriate architectural strategies contributing to safety are: 

 Partitioning and isolation of components 

 Energy containment 
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Design for operability “the ease with which a user can learn to operate, prepare 

inputs for, and interpret outputs of a system or component (usability)” is as in 

Figure 29. 

 

 

Figure 29: Aspects of design for operability 

 

From this, appropriate architectural strategies contributing to operability are: 

 Physical layout for human manipulation 

 Presentation of information 

Design for compatibility is as in Figure 30. 

 

 

Figure 30: Aspects of design for compatibility 
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From this, appropriate architectural strategies contributing to compatibility are: 

 Standardisation 

 Tolerance 

 Protection 

Design for survivability “the capability of a system and its crew, if applicable, to 

avoid or withstand a hostile man-made, natural, and induced operating 

environment without suffering an abortive impairment of its ability to accomplish 

its designated mission” is as in Figure 31. 

 

 

 

Figure 31: Aspects of design for survivability 

 

From this, appropriate architectural strategies contributing to survivability are: 

 Size 

 Separation 

 Protection 
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Whilst this is a useful and informative analysis for each attribute in isolation, the 

question should be asked as to how these architectural strategies can be applied 

together. There is doubt as to whether all quality attributes lend themselves to 

the analysis of an architecture. Alexander was concerned about this in his book 

(Alexander, 1964) as discussed earlier. However, this analysis has shown that 

there are architectural strategies that can be seen to contribute to various system 

quality attributes for which examples are identified below: 

 Survivability by means of physical separation to protect redundant 
systems; by compression/size reduction to reduce probability of 
damage; by insulation against external sources of energy 

 Reliability by managing internal sources of energy 

 Safety by grouping safety critical items in one place for ease of 
management and by separation/insulation from sources of energy 

 Security by grouping elements in at various levels of security and 
controlled coupling  by access control 

 Maintainability by providing sufficient spacing for access 

 Environmental compatibility by creating physical separation/insulation 
or by managing adjacencies 

 Operability by close physical design layout 

These architectural strategies can be categorised as being of cohesive and 

dispersive influence3 (Hitchins, 2008): 

 Dispersive influence: system elements can need to be separated or 
insulated from each other 

 Cohesive: system elements can need to be: 

o Close or associated with each other 

o Connected to each other (such as design for energy transfer 
interactions4) 

Table 13 describes how dispersive and cohesive strategies can be used to 
influence quality attributes. 
 

                                            
3 Note: N squared analysis may be used to produce a dispersive or spatial assessment matrix 
with a score of 9=close, 5=no preference, 1=apart/insulated. If the necessary separation cannot 
be realised then insulation measures will be required 
4 Gu (Gu & Sosale, 1999)maintains that this is a function of the system. This method makes a 
distinction between functions required for the mission of the system and secondary functionality 
from specific design features. 
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Table 13: Design for influences in system design 

 Survival Maintain Operation Ext comp Safety Reliability Int comp 

Dispersive 
(separated/ 
decoupled) 

Distant Distant   Distant or 
Insulated  

Distant or 
insulated 

Insulated Distant or 
Insulated 

Cohesive 
(encapsulate-
ed) 

Close  Close Close or 
Conducting  

  Close or 
Conducting 

To the system designer this indicates that, in considering groupings of 
components, quality attributes of survival, operation, external and internal 
compatibility can be influenced. Effective separation between components allows 
influence of survival, maintenance, safety, reliability, external and internal 
compatibility. The aspiration is to achieve an architecting process that can aid in 
increasing the effectiveness of systems design. Alexander suggested that Quality 
Attributes were too abstract to allow clear cause and effect between design and 
these attributes; the point he made was that, without a clear link to the benefit 
achieved, the designer is unable to improve the design. The method described 
here has focussed on aspects that the systems designer can influence, which will 
provide the framework for system designs that address desired quality attributes. 

 Lifecycle Architectural Influences 

From the work of Gu (Gu & Sosale, 1999) we can also generate a set of desired 

architectural considerations from a Lifecycle perspective: 

 Organisation independence (including ownership) 

 Production Independence 

 Standardisation 

 Line/Lifecycle Replaceable Units 

 Reconfiguration 

 Recycling (including reuse and disposal).  

Modularity can benefit in each of these areas, but the benefit is dependent on 
different, though not necessarily mutually exclusive, groupings as follows: 

a) Organisation independence can be helped by grouping similar functions 
(functional independence) so that they can be developed independently 

b) Production independence can be helped by grouping similar technologies 
so that similar technologies can be produced together 

c) Standardisation allows reuse of modules with the associated benefits of 
scale – standard modules should be used where possible for similar 
functionality 

d) Line replaceable units will be more effective if they contain components 
that need to be removed for maintenance at the same time 
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e) Systems can more easily be reconfigured if they are functionally 
independent as change has minimal impact to surrounding systems 

f) Recycling is more easily achieved if similar components or materials can 
be grouped together. 

Bullets a) and e) will be addressed by the incorporation of a modular functional 
design, which leaves the following that can be used to address the lifecycle 
dimension: 

 Production independence – addressed by grouping  similar technologies 

 Line replaceable units – addressed by grouping components of similar 
maintenance policy 

 Recycling – addressed by grouping components of similar materials 

 Standardisation – addressed by using common modules where possible 
for similar functionality 

However, it may be useful to consider all of these elements to ensure they have 
been addressed in earlier steps of the process, particularly if there were trade-
offs earlier in the process that suggested a compromise to a principle. This would 
then include: 

 Organisation independence – grouping of similar functions 

 Reconfigurable – ensuring functional independence  

These strategies can be considered to the extent possible at the concept stage 

and the possibilities for doing this are expected to depend on the particular 

system in question. However, care has to be taken that such considerations don’t 

then invalidate the architecture already put in place based on functional and 

physical considerations. 
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6 EVALUATING THE SYSTEMS DESIGN 

 Overview 

The appropriate use of modular and independent architectural principles has 

been shown to offer benefits in terms of operational effectiveness and lifecycle 

management. The literature search has not identified a method that allows a 

satisfactory evaluation of an architecture, although parameters have been 

defined that could be used to determine desirable attributes of such an 

architecture. This research suggests that important considerations in architecture 

should be addressed as part of a structured process and that adherence to this 

process therefore will be an indication of quality. An evaluation could then focus 

upon how well each step of the process was performed. Necessarily then such a 

method will be bespoke, but may draw upon suitable evaluation parameters from 

the literature; in this section such parameters are identified. This approach is one 

of addressing and improving the quality of the system architecture; such an 

evaluation will still be required. Alexander (Alexander, 1964) suggested that a 

good architecture will produce an effective design, but that an exact relationship 

between architecture and achieved effectiveness cannot be determined. It can 

be concluded that an evaluation of the ‘quality’ of a system design can be 

achieved by an evaluation of its architecture, but a further evaluation of achieved 

effectiveness is also required to establish whether it meets its goals and 

objectives. In this section I will address how candidate architectures can be 

evaluated so that different architectures can be compared with each other and 

establish a best architecture. 

 Evaluation of architecture design 

The literature has shown various ways of evaluating an architecture in a 

quantitative sense (see section 2.7). There are methods that provide an overall 

score for “goodness” and methods that look at more detailed aspects of the 

architectural properties in an attempt to make a more detailed assessment.  

Two measures at an overall system level that were identified in the literature 

search were Altshuler’s Ideality (Altshuller, 2002) and Suh’s Information (Suh, 

1990), discussed in section 2.4.2.  Both of these parameters attempt to provide 

a measure of how simple or complex a solution is. Altshuler’s Ideality is useful in 

principle, in that it highlights the benefits of a solution that promotes useful 

functions over unnecessary or harmful functions and favours a solution where 

costs of functionality are minimised. However, the need to evaluate costs is 

difficult to satisfy in initial concept design. Suh’s Information is equated to the sum 

of the probabilities of satisfying the functional requirements. Calculation of 

information involves the setting of an allowable tolerance in achieving a function 



 

101 
 

and calculating the probability of meeting it. Such a probability is often difficult to 

determine and the importance attached to achievement of all functional 

requirements cannot be considered as being equal. 

N2 and Design Structure Matrices are useful tools in the analysis of architecture 

and various techniques have been developed to judge a system based on the 

way components are arranged in clusters (Section 2.7.1). Establishing the 

“energy” of the matrix can be a very quick and easy parameter to calculate and 

gives an indication of the coupling of the system.  

Further useful insight into the complication of an architecture can be achieved 

through the examination of “visibility” and “dependence” (Sharman, 2004). By 

looking at the incoming and outgoing flows of a component it is possible to gain 

some insight as to how modular it is. It is also able to identify system input and 

output components, whose contribution to the structure of the system is often 

difficult to influence. Whilst Design Structure Matrices can usefully show clusters 

within an architecture, it often become more difficult to interpret for large amounts 

of components. The visibility vs dependency diagram can provide a view of the 

contribution to a modular design of each component that is much easier to 

interpret. A modular system, will have components that are minimally visible and 

dependent internally, but may have input and output modules that are highly 

externally visible and dependent respectively.  

A more sophisticated way of measuring the modularity of an architecture involves 

the calculation of three parameters; degree modularity, distance modularity and 

bridge modularity (Sosa, 2007): 

 Degree modularity is defined as in-degree modularity (the number of 

components depended on) and out-degree modularity (the number of 

components that depend on it). These relate directly to visibility and 

dependence respectively and whereas the latter provide a useful visual 

evaluation, degree modularity provides a single overall modularity 

measure. In-degree modularity and out-degree modularity, appear to be 

equivalent concepts to Sharman’s dependence and visibility. Degree 

modularity is useful in determining the complication of coupling within a 

system, but it does not easily deal with individual interfaces of varying 

complication/complexity; Sosa does propose the concept of applying 

weightings to interfaces, but the choice of weighting is arbitrary and left to 

the designer. 
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 Distance modularity is a measure of modularity from a separation 

perspective. It evaluates the number of steps there is between one 

interconnected subsystem and another and therefore records how many 

subsystems are in the interaction path. Interestingly, the greater the 

distance disconnectivity the more modular a system is meant to be, but 

equally the greater chance of a single event propagating through a system. 

Whilst distance modularity recognises the importance of modules being 

separated from each other, modularity is as much about keeping the right 

elements together as it is about keeping others apart i.e. keeping certain 

components together in modules that are then separated. For instance, it 

is often desirable to separate redundant systems to avoid both being 

damaged in an attack, but improved survivability can also be achieved by 

reducing the presented area to a threat. 

 Bridge modularity refers to the number of times that a component lies on 

the optimal path between two other components. This is important as the 

failure of or subsequent removal of the intermediate component can 

prevent the interaction. Bridge modularity is useful as in indication of a 

systems ability to accept change as it evaluates how many system 

components are likely to be affected in some way. Such a situation would 

occur if a unit was removed and replaced with another, functionally similar, 

but not physically identical component – would the flow still be allowed to 

pass through? 

Complication may be driven by a few critical interfaces, as indicated by the 

concept of fundamental blocks. It is possible to assign values to particular 

interfaces to apply some indication of importance or priority and various proposals 

exist for this (Yassine et al., 1999), (Steward, 1981). However, the assignment of 

these weightings is at best by good judgement and therefore providing an 

objective analysis of the results is difficult. Various authors (Sosa, 2003) (Steven 

D Eppinger & Pimmler, 1994) discuss breaking down the problem to analyse the 

quality of the architecture in terms of its interaction type; spatial architecture, as 

well as structural, energy, information and material flows. Whilst these are without 

doubt important distinctions for the development of architectural properties, their 

individual merits cannot be considered comparable. Firstly, they are not 

independent (e.g. spatial separation will impact on structure as will energy impact 

on material flows), and they therefore cannot be combined to create a single order 

of merit. Secondly, there is no method proposed to allow an objective comparison 

of the benefits of the parameters, only a qualitative or subjective assessment can 

be made. 
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The existing candidates are compared with the steps of the Critical interaction 

modular design methodology to examine how they might be used to evaluate the 

effectiveness of a candidate architecture in Table 14. 

Table 14: Existing measures of modularity compared with Critical interaction modular 
design methodology steps (elaborated in Chapter 7) 

 

Whilst there are no satisfactory options available for the first two steps, it is 

possible to relate potentially useful measures to steps 3 and 4. Sosa’s measures 

are pertinent, but they do not distinguish between criticality of interactions in an 

objective way and the influence of spatial separation cannot be measured. The 

Critical interaction modular design methodology has a way of distinguishing 

between interactions as it determines those, associated with certain functional 

interaction types that are more difficult than others. This knowledge is used to 

influence the system design and the organisation associated with them to both 

reduce complication and manage this when it cannot be mitigated. Whilst it is 

difficult to compare the various functional interaction types associated with 

fundamental blocks, there is a clear increase in their complication compared with 

other functional interaction types. Making Juran’s assumption (Juran, 1954), that 

requires separation of the “vital few” from the trivial, it is proposed that these 

critical interactions are considered as the “vital few” in terms of increased 

complication of the system. This provides the opportunity to perform calculations 

of degree, distance and bridge modularity for critical interactions only – values 

derived would then indicate the modularity from the perspective of the most 

challenging interfaces.  

The definitions from Sosa (Sosa et al., 2007) are for a given component and here, 

a measure representing a system of components is required. Therefore taking an 

 Candidates Comment 

Step 1 - No candidate 

Step 2 Ideality, 
Information, 
Energy (N2) 

Ideality and Information are not tangible parameters 
at concept level, but Energy can give an overall 
system indication 

Step 3 Degree 
modularity, 

Dependence, 
Visibility, Energy 

(N2) 

Can be applied separately to flows (spatial, 
structural, material, energy, information), but does 
not recognise relative importance of interactions. 
Energy can be an indication at system level 

Distance 
modularity 

Does not address issues of physical distance 

Step 4 Useful in identifying extent of impact, but not 
importance 

Bridge modularity 
Identifies paths across subsystems, but not 
importance 
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average across all n components i of a system and considering only critical 

functional interaction types, Equation 2 and Equation 3 can be derived. 

 

Equation 2: Critical degree modularity 

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒅𝒆𝒈𝒓𝒆𝒆 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑪𝒅𝒎 = 𝐶𝑑𝑚𝑖
̅̅ ̅̅ ̅̅ ̅ 

𝒘𝒉𝒆𝒓𝒆: 

𝐶𝑑𝑚𝑖 = 1 −
∑ 𝑥𝑗𝑖

𝑛
𝑗=1,𝑖≠𝑗 + ∑ 𝑥𝑖𝑗

𝑛
𝑗=1,𝑖≠𝑗

2𝑥𝑚𝑎𝑥(𝑛 − 1)
 

𝒂𝒔: 𝑥𝑚𝑎𝑥 = (𝑛 − 1) 

𝐶𝑑𝑚𝑖 = 1 −
∑ 𝑥𝑗𝑖

𝑛
𝑗=1,𝑖≠𝑗 + ∑ 𝑥𝑖𝑗

𝑛
𝑗=1,𝑖≠𝑗

2(𝑛 − 1)2
 

𝒂𝒏𝒅: 

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠, 𝑖 

∑ 𝑥𝑗𝑖

𝑛

𝑗=1,𝑖≠𝑗
 is the 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑖𝑛𝑝𝑢𝑡𝑠 𝑡𝑜 𝑖 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1,𝑖≠𝑗
 𝑖𝑠 the 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑓𝑟𝑜𝑚 𝑖 

 
 

Equation 3: Critical distance modularity 

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑪𝒔𝒎 = 𝑪𝒔𝒎𝒊
̅̅ ̅̅ ̅̅ ̅  

𝒘𝒉𝒆𝒓𝒆: 

𝑪𝒔𝒎𝒊
̅̅ ̅̅ ̅̅ ̅ =  

∑ 𝑑(𝑖, 𝑗) + ∑ 𝑑(𝑗, 𝑖)𝑛
𝑗=1,𝑗≠𝑖

𝑛
𝑗=1,𝑗≠𝑖

2𝑛(𝑛 − 1)
 

𝒂𝒏𝒅: 

𝑑(𝑖, 𝑗) 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑖 𝑎𝑛𝑑 𝑗 

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠 
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However Distance modularity presents a difficulty when used purely for Critical 

interactions. In considering Degree modularity, the aim was to reduce the inputs 

and outputs to create a ‘score’ that is as low as possible; this is then subtracted 

from the value of 1. A value as close to 1 is preferred and the consideration of 

only Critical interfaces is consistent with this. However, for Distance modularity, 

a high ‘score’, as close to 1 is also preferred, but this is composed of scores from 

all interactions of all components. Consideration of purely Critical interactions in 

a modular design would create a low score, even for a modular design. Given 

that a further measure relating to separation of components will be proposed in 

Equation 5, it is proposed not to use Critical distance modularity as a parameter. 

Bridge modularity requires more careful consideration. Here the calculation is 

identifying the degree to which a component is a bridge between other interacting 

components. In order to evaluate this it would need to be shown that there is a 

critical path existing across the entire length of each interaction.  In fact, the 

critical interaction concept is less valid for consideration of the lifecycle 

maintenance perspective. The more a component is a bridge, the more its 

removal and replacement will require test involving other components regardless 

of whether it is a critical interaction or not, but there is not obviously going to be 

a difference in the level of disruption compared with other interactions. The 

equation is therefore for the average number of any interactions, across all 

subsystems n, in Equation 4. 

 

Equation 4: Bridge modularity 

𝑩𝒓𝒊𝒅𝒈𝒆 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑩𝒎 = 𝐵𝑚𝑖
̅̅ ̅̅ ̅̅  

 

𝑩𝒎𝒊 =
∑ 1 −

∑
𝑛𝑑𝑎𝑏(𝑖)

𝑛𝑑𝑎𝑏

𝑛
𝑖≠𝑎,𝑖≠𝑏,𝑎≠𝑏

𝑛[(𝑛 − 1)(𝑛 − 2)]
𝑛
𝑖=1

𝑛
 

𝒘𝒉𝒆𝒓𝒆: 

𝑛𝑑𝑎𝑏(𝑖) 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝑎𝑛𝑑 𝑏  𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑖 

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠 
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Measuring the benefits of spatial separation is not trivial as the degree of 

separation between components and the benefits derived from it will vary 

significantly when considering different quality attributes. In some cases, the 

benefit will be roughly proportional to distance and in others there may be a 

specific separation required for compliance (particularly in the case of safety and 

security). In this way the problem can be seen as a multi-criteria problem where 

some parameters are characterised by a goal (goal based approach) and some 

can be assigned a value (value measurement approach). In the goal based case 

an architecture can be described as compliant (acceptable) or non-compliant (not 

acceptable). For attributes that can have a value based approach then it is 

possible to calculate a value based on physical measurements of the system. For 

instance, in a later section a case study will be made of a central heating system 

(section 9.5.3). In this case, there is a need to separate the thermostat from the 

heat source to allow even full heating of the room and this should be in the furthest 

corner. It is possible then to assign and optimum value as the maximum distance 

and determine what proportion of that distance can be achieved in the design (as 

it may be limited by other factors such as built in wardrobes or windows). 

Similarly, a need to be adjacent can be recognised by an optimum separation of 

zero. Hence we have Equation 5. 

 

Equation 5: Dispersion index 

𝑫𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏 𝒊𝒏𝒅𝒆𝒙

=
∑

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑎
𝑖=1 + ∑ 1 −

𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑏
𝑖=1

𝑎 + 𝑏
  

𝒘𝒉𝒆𝒓𝒆: 

𝑎 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑣𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

𝑏 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜ℎ𝑒𝑠𝑖𝑣𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

 

These additions give candidate measures for steps 3 and 4, but others are 

needed to evaluate the first two steps. The first step of the process is to choose 

a system design strategy that addresses the particular challenges presented by 

the context type of the system. For instance, an architecture that has been 

designed as if the system was a unitary type, when in reality it is a coercive type 

is not going to address all the necessary issues. In this instance, the system 

boundary assumed is likely to be wrong as the solution is liable to support the 

dominant stakeholders, but marginalise others; starting with the wrong system 

boundary would be a poor architecting decision. The correct identification of 
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problem type and application of a suitable architecting strategy is either observed 

or not and is given by the Boolean variable of Equation 6. 

Equation 6: Suitability 

𝐒𝐮𝐢𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲 = 1 (suitable) 𝑜𝑟 0 (𝑢𝑛𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒)       

The second step determines the functional architecture. It does so by identifying 

functional flows and then structuring functional chains so as to minimise the 

amount of critical functional dependencies between chains. In reality this can be 

used to structure the design organisation in terms of functional development, but 

it also becomes a measure of the complication of the functional design. If 

functional chains are seen as functional ‘subsystems’ then degree modularity  can 

be calculated for functional chains, as the complication of the functional 

architecture can be linked to the proportion of interfaces that are critical. 

Therefore an indication of a well architected design could be: 

 

Equation 7: Critical functional modularity 

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑪𝒇𝒎 = 𝐶𝑓𝑚𝑖
̅̅ ̅̅ ̅̅ ̅ 

𝒘𝒉𝒆𝒓𝒆: 

𝐶𝑓𝑚𝑖 = 1 −
∑ 𝑥𝑗𝑖

𝑛
𝑗=1,𝑖≠𝑗 + ∑ 𝑥𝑖𝑗

𝑛
𝑗=1,𝑖≠𝑗

2(𝑛 − 1)2
 

𝒂𝒏𝒅: 

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑖𝑛𝑠, 𝑖 

∑ 𝑥𝑗𝑖

𝑛

𝑗=1,𝑖≠𝑗
 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑖𝑛𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑖𝑛𝑝𝑢𝑡𝑠 𝑡𝑜 𝑖 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1,𝑖≠𝑗
 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑖𝑛𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑓𝑟𝑜𝑚 𝑖 

 

The above equations give different ways of evaluating the modularity of an 

architecture. Two established techniques are used (degree modularity and bridge 

modularity) are related to key stages of the methodology; where applicable, the 

concept of critical interactions is incorporated to help establish the level of 

goodness of the architecture. Further equations are added to evaluate how well 

an architecture addresses the needs of the context and the balance between 

cohesion and dispersion.  

Measures of critical functional modularity, critical degree modularity and bridge 

modularity are based on a view that the modularity of an architecture depends on 
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its components. It is also important for the system designer to consider the 

external interfaces, especially in a system of systems, where the boundary 

inherently has more flexibility. Therefore a further measure is proposed which is 

the system boundary modularity, which determines the critical degree modularity 

at the boundary only; giving Equation 8. 

 

Equation 8: System boundary modularity 

𝑺𝒚𝒔𝒕𝒆𝒎 𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑺𝒃𝒎 = 𝐶𝑓𝑚𝑖
̅̅ ̅̅ ̅̅ ̅ 

𝒘𝒉𝒆𝒓𝒆: 

𝑆𝒚𝒔𝒕𝒆𝒎 𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑺𝒃𝒎 = 1 −
∑ 𝑥𝑗𝑖

𝑛
𝑗=1,𝑖≠𝑗 + ∑ 𝑥𝑖𝑗

𝑛
𝑗=1,𝑖≠𝑗

2(𝑛 − 1)2
 

𝒂𝒏𝒅: 

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚𝑠, 𝑖 

∑ 𝑥𝑗𝑖

𝑛

𝑗=1,𝑖≠𝑗
 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑖𝑛𝑝𝑢𝑡𝑠 𝑡𝑜 𝑖 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1,𝑖≠𝑗
 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑓𝑟𝑜𝑚 𝑖 

 

Arguably the benefit of the Critical interaction modular design methodology is in 

the application of a structured process, where the efficacy of each step can be 

evaluated using the associated parameters. However, if each parameter can be 

argued to be independent of each other then it would be possible to evaluate an 

aggregate score of all parameters to provide a best solution. The parameter for 

each step can be considered to be independent if the information given by one 

parameter does not give any information on the value of the other (Hyvärinen & 

Oja, 2000). Therefore, for each parameter in turn: 

 suitability is only a qualifying parameter 

 Critical degree modularity and System boundary modularity: the choice of 

functional chain boundaries is made independently of the boundaries of 

the system and subsystems and even with no critical dependencies 

between functional chains (low critical functional modularity) it is still 

possible to have many critical dependencies between system/subsystems 

or indeed none 
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 Bridge modularity: the choice of both functional and physical boundaries 

is independent of the needs for the lifecycle, and it is possible to have 

many critical interfaces between either functional or physical subsystems 

with either many or no ‘bridges’ through those subsystems 

 Dispersion index: the physical distance between two components of a 

system is independent of functional or physical boundaries and the space 

between components is only limited by physical design constraints and 

the system physical boundary. 

In summary, there are various levels of independent modularity measure: 

 Problem based - suitability 

 System level – system boundary modularity 

 Functional chain level – critical functional modularity 

 Subsystem level – dispersion index, bridge modularity and critical degree 

modularity 

With six independent evaluation parameters there will be difficulty in formulating 

an evaluation of architecture for the following reasons: 

 there is no way of determining a link between an architecture’s properties 

and the resulting system’s functional quality and non-functional 

performance; therefore goals for architectural ‘quality’ cannot be 

objectively set 

 as with most complicated or complex multi-criteria problems, there is no 

way to objectively determine the relative value associated with any given 

architectural measure. 

The method proposed is one that recognises these limitations, but has itself been 

validated in many different situations (Kahneman, 2011). The method relies on 

identifying key measures of goodness that are independent and assigning a score 

to each; each independent score is a assumed to be important and therefore no 

subjective weighting is assumed, but the individual scores are added to achieve 

an overall score. In this case, the relationship between the evaluation parameters 

and each step of the process means that the evaluation becomes an affirmation 

that that the approach has been applied, and applied well. Therefore a relative 

order of merit, the Relative Architectural Score or RAS can therefore be 

calculated as in Equation 9. 
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Equation 9: Relative Architectural Score 

𝑅𝐴𝑆 = {𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦}𝑝𝑟𝑜𝑏𝑙𝑒𝑚 + {𝑆𝑦𝑠𝑡𝑒𝑚 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑠𝑦𝑠𝑡𝑒𝑚 +

{𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑖𝑛 +

{𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 + 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 + 𝐵𝑟𝑖𝑑𝑔𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚

  

One possible issue of using this method is that Kahnemann suggests that an 

evaluation requires an indication of what ‘good’ and ‘bad’ are. Examination of 

each parameter indicates that, apart from the Boolean, system configurations 

could easily be envisaged that have scores that range all the way from value 0 to 

1. With no other information available, an assumption will be made that benefit is 

linear with the value of each parameter. This assertion can to some extent be 

tested in the latter case study sections. However, it should be noted that each 

case study is the result of applying the Critical interaction modular design 

methodology and therefore by definition should be modular and not displaying 

the full range of values that may be expected in a variety of designs. Valuable 

additional research would be to evaluate the scores of a range of integrated 

designs to establish what might be considered as ‘bad’ from a modular 

perspective; this may then be used to calibrate Kahnemann’s method as he 

suggests. 
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7 THE CRITICAL INTERACTION MODULAR DESIGN 

METHODOLOGY 

To incorporate the architecting strategies discussed previously, a methodology 

has been developed as part of this research; the Critical interaction modular 

design methodology. It is composed of five steps, which are shown in Figure 32. 

Boulding’s concept of systems hierarchy (Boulding, 1956), explains that systems 

can be described as a hierarchy, and this methodology is at the system level, 

developing the system design concept in order that there is an architecture for 

the subsequent detailed design. It is specifically at the concept stage and 

therefore concentrates on the steps leading up to the development and 

assessment of the architecture, but stops short of the steps necessary to evaluate 

the design itself. 

 

 

Figure 32 Critical interaction modular design methodology process steps 

 

 Step 1: Analyse the Context type and requirement:  

a) Establish context type (in order to choose problem solving approach, 

architectural strategy and risk) (Section 4.3) 

Situation type is particularly important as it will indicate the approach to be 

taken in each of the following steps. These are summarised in Table 15. 
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Table 15: Approach according to the Situation context type  

Situation type Steps to be followed 

Clean sheet In Step 3, Concept framework, 
creative options may be proposed 
providing that they each meet the 
fundamental blocks 

Upgrade Concept framework is available so 
reassess functional allocation within 
existing framework in Step 6 

System review Reassess context as an issue 
analysis to establish any gaps (Step 
1). Considering any gaps, analyse 
existing functional design to identify 
any fundamental block violations 
(Step 2). Based on a modification of 
current framework as required review 
concept (Steps 4). Evaluate as before 
(Step 5) 

Reconfiguration If architecture is not changed then 
only requires system requalification.  

 

b) Understand stakeholders and environment of the system in order identify 

all influences and capture requirements: 

o Record the needs of stakeholders and the nature of any human 

interaction e.g. using a rich picture format 

o Consider objects being acted on and systems interacted with; the latter 

to identify input, output, control and resources required 

o Consider the impact of the constraints and conditions of the 

location/environment  

o Record constraints imposed by system level design decisions 

(mechanisms) 

o Capture using Functional Context Diagrams (as Figure 33) 
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Figure 33: Functional context diagram 

 

 Step 2: Devise functional chain framework5 

a) Determine functional requirements and flows from the needs of the 

contextual analysis of step 1. 

b) Elaborate candidate mission functional chains according to 

Transformation viewpoints, starting with client functionality and observing 

the principle of Simplicity where possible 

c) Identify Function interaction types to determine: 

o Unsuitable iteractions 

 Shared services (SS) 

o Fundamental blocks 

 Critical chains (C) 

 Control loops (CL) 

 Human issues of complexity (HK) 

  

                                            
5 Exact process will be determined by Situation context type 
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o Partitioning opportunities 

 Exclusive services (ES) 

 Human conflict issues (HC) 

 Human agreement (HA) 

o Structural constructs 

 Loose dependence functional chains (F) 

 On-condition loops(L) 

 Judgements (J) 

d) Develop the functional architecture of functional chains according to Table 

10 of section 5.2.2, minimising the partitioning of fundamental blocks and 

trying to achieve a functionally independent design. Clustering methods 

such as N2 or DSM may be used to aid in the identification of candidate 

functional chains. 

e) Repeat  from a) whilst considering Viability, Resource and Management 

functions (Hitchins, 2008). 

 

 Step 3: Conceive the concept framework 

a) Elaborate functions to achieve a level of definition of function that allows 
subsystems to be proposed, and make a mapping of function architecture 
to physical architecture observing constraints of the functional interaction 
types 

b) Opportunities for similar functionality being performed by a common 
subsystem should be identified where possible 

c) Consider cohesive and dispersive influences on the physical design: 

o cohesive (association and conduction) for 

 survival, operation, external and internal compatibility  

o dispersive influences for 

 Survival, maintenance, external and internal compatibility, 
safety and reliability 

o any contradictions and resulting compromise trade-offs for 

 Survival, external and internal compatibility 
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d) Establish form appropriate to both function interaction types and other 
dispersive/cohesive drivers to devise subsystem boundaries  

 

Note: It is possible that the analysis of this step will disqualify a solution – for 
instance, in considering safety, a given architecture may be determined as 
unsafe. 

 

 Step 4: Lifecycle solution 

a) Mitigate any architectural conflicts across timeline, managing the effect of 
unavoidably ‘compromised’ architectural constructs by separation over 
time 

b) Establish a lifecycle solution, whilst not compromising principles already 
applied in the previous steps, “design for” additional lifecycle related 
benefits by: 

o Ensuring further functional independence and loose coupling of system 
components where possible to improve organisational independence, 
upgradeability, allow variety, improve re-configurability and 
standardisation 

o Grouping components based on required maintenance action (e.g. 
Line Replaceable Units) to improve maintainability 

o Grouping reusable components as well as grouping of components by 
material types to improve recyclability 

c) Standardisation enables common solution to achieving functionality, and 
the reduction of variety achieved reduced complication by similarity 

d) Any conflict with previous steps will have to be addressed according to 
relative merits 
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 Step 5: Evaluate architecture 

a) Calculate the relative merit of the architecture, which is given by the 
Relative architectural score (Equation 9): 

 

𝑅𝐴𝑆 = {𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦}𝑝𝑟𝑜𝑏𝑙𝑒𝑚 + {𝑆𝑦𝑠𝑡𝑒𝑚 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑠𝑦𝑠𝑡𝑒𝑚

+ {𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑎𝑖𝑛

+ {𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 + 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥

+ 𝐵𝑟𝑖𝑑𝑔𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦}𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 

Where: 

𝐒𝐮𝐢𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲 … … … … … … … … … … … … … . 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … …  Equation 6 

𝑺𝒚𝒔𝒕𝒆𝒎 𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚 … … . . 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … … Equation 8 

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚 … … 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … … Equation 7 

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒅𝒆𝒈𝒓𝒆𝒆 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚 … … … … 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … … Equation 2 

𝑫𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏 𝒊𝒏𝒅𝒆𝒙 … … … … … … … … … . 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … …. Equation 5 

𝑩𝒓𝒊𝒅𝒈𝒆 𝒎𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚 … … … … … … … … . 𝐢𝐬 𝐠𝐢𝐯𝐞𝐧 𝐛𝐲 … … … … Equation 4 

  



 

117 
 

8 APPLICATION OF METHODOLOGY TO CASE 

STUDIES 

In section 3 it has been proposed to apply the Critical interaction modular design 

methodology to two specific design problems to demonstrate its utility as a 

system concept design process (sections 8.1 and 8.2) and to compare its utility 

with other established methods (section 9). The application of the process to this 

varied set of cases has also helped to demonstrate areas where the developing 

process/approach could be improved and this has been fed back into the ongoing 

process design as part of the research. Two examples are conceived that range 

in their complication, the first being simple to clearly show the intent and progress 

of each step of the process, and the second an example to demonstrate the 

practicality of the methodology for a more complicated and typically encountered 

problem. The following subsections will therefore address: 

 A simple Lego Mindstorms system concept developed for a short course 

 A generic cruise missile design 

 A simple Lego Mindstorms system 

The following is for a system design that is used as part of a lifecycle management 

system course at the university. The Lego Mindstorms kits are used by students 

to build simple systems that need to be developed against a high level need, 

demonstrated and validated. Lego Mindstorms is used as it is simple and intuitive 

to use, whilst having a degree of complication as it can represent systems with 

sensors, actuators and software programming to manage the control and 

information interfaces. Students are asked to design a system by selecting 

various optional modifications of existing and baseline subsystems. The fact that 

it is a design used for the course is somewhat incidental, but the design being 

well understood was a useful starting point for an analysis of the basic system 

design. 

Blocks of Lego bricks consisting of 10 bricks of two sizes and four materials, are 

delivered by an external agent on a regular schedule for processing. These 

blocks are collected mechanically and transported to an operator for disassembly 

- some blocks are contaminated and need to be identified to the operator to be 

removed from further processing. A further transportation phase is anticipated to 

a place where the pallets are broken down into their constituent bricks and then 

mechanically sorted into piles according to material and size, before being 

removed by another external agent. Collection and sorting will be a continuous 

process, but during the operation there will need to be regular checks of battery 

levels and filter condition which will lead to the occasional need for replacement 

from the store. 
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The Pick-up vehicle (Figure 34) is designed to locate blocks of bricks, lift them 

and place them in a drop off area. It uses a sensor to identify contaminated 

blocks.  

 

Figure 34: Pick-up vehicle 

The pallets can then transported in a Transporter vehicle to a sorting area. 

Bricks are then loaded by an operator into a Sorting vehicle (Figure 35) to sort 

bricks in terms of material and size. Using its sensor and depending on the 

material of a brick, it will move a specified distance before depositing it in a pile 

on the ground; depending on the size, it will either move to the left or to the right.  

 

Figure 35: Sorter vehicle 

Operator interaction is expected to take the blocks of bricks delivered by the Pick-

up vehicle to the Transporter vehicle and then finally to take the transported block, 

break it into its individual parts for loading onto the Sorter to be mechanically 

sorted. Three operators are required, one to operate each machine. 
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 Step 1: Analyse the Context type and requirement 

a) Establish context type (in order to choose problem solving approach, 

architectural strategy and risk) 

Examination of the Context Types yields Table 16, which shows this as a “Movie” 

problem as much of the equipment is already available and the task is how it 

should be used. In doing so, the architecture can be analysed to suggest areas 

where it is good and areas where it can be improved upon. 

b) Understand stakeholders and environment of the system in order identify all 

influences and capture requirements 

This step is to provide the important contextual information that will influence the 

architectural design: 

 By object: pallet, brick (4 different colours/materials and 2 different sizes) 

 By subject: Operator actions, Pick-up machine, Sorting machine 

 By location/environment: Factory and conditions, Delivery of pallet (input), 

Removal of bricks (output) 

These can be shown diagrammatically on the Functional Context Diagram of 

Figure 36. 

 

Figure 36: Lego Mindstorms project: Functional context diagram 
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Table 16: Lego Mindstorms project: Context types 

Context Type Quadrant  Approach Architectural Strategy Risk 

Process     

Problem Movie Component 
equipment available; 
modifications might 
be required according 
to modified use 

Number of scenarios 
can be explored to 
determine how system 
components might be 
best used 

M 

Evolution Obsolescence 
management 

Solution design is 
expected largely 
static over lifetime, 
with changes limited 
to replacement of 
parts and possibly 
extension. 

Modular standardized 
parts to be employed 
for ease of 
replacement 

L 

Response Routine Standard project 
management 

No special measures 
required of architecture 

L 

Requirement     

Situation Upgrade Upgrade required to 
component designs 
and their integration  

Existing boundary of 
system and 
subsystems, with some 
modification at lower 
system levels and in 
integration of 
subsystems 

M 

Divergence 
of values 

Unitary Hard systems 
analysis 

Clear and fixed 
requirements can be 
assumed 

L 

Management Manageable Can progress with 
clear ownership and 
definition of external 
boundaries 

Can rely on clear 
definition and 
responsibilities at 
system boundary 

L 

Solution     

Risk Tried and 
tested 

Use of known 
solution, technology 
and process 

Can retain existing 
architecture where 
possible 

L 

Complexity Simple Requires 
development and use 
of simple and 
decoupled models  

Consistent with a clear 
boundary and modular 
design. 

L 

Organization     

Coordination Centralised Bespoke 
development is 
possible 

Can have clarity of 
external interfaces with 
clear flow-down of 
requirements 

L 

Target Critical path Time constrained to 
replace existing 
capability 

 M 

Business 
area 

Professional Skilled workforce, 
familiar with 
technologies involved 
(programming, 
sensors) 

 M 
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 Step 2: Devise functional chain framework 

a) Determine functional requirements and flows from the needs of the contextual 

analysis of step 1. 

b) Elaborate candidate mission functional chains according to Transformation 

viewpoints, starting with client functionality and observing the principle of 

Simplicity where possible 

A functional description can be developed from the client needs of this ‘movie’ 

problem, with the requirement to make use of existing machines. Starting with the 

transformation functionality, or what is (are) the primary purpose(s) of the system: 

Transformation  

 Blocks are delivered (five at a time) 

 Pick-up vehicle: 

o used to approach and pick up blocks 

o transport blocks (one at a time) 

o identify contaminated blocks 

o set down block for operator 

 Operator: 

o transfers block to transporter 

 Transporter takes block to sorting location 

 Operator: 

o unloads Transporter vehicle and disassembles block to 

constituent bricks 

o loads bricks to Sorting vehicle 

 Sorting vehicle: 

o sorts bricks into piles according to colour and size  

 Sorted bricks are collected 

Mission chains can be recorded for the existing system design and these are 

shown in Figure A - 1. 
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c) Identify Function interaction types (Section 5.2.1) 

d) Develop the functional architecture of functional chains according to Table 10 

of section 5.2.2, minimising the partitioning of fundamental blocks and trying 

to achieve a functionally independent design. Clustering methods such as N2 

or DSM may be used to aid in the identification of candidate functional chains. 

Analysis shows the following: 

 There are two exclusive service interactions “Deliver blocks” and “Collect 

bricks” functions (coloured red in diagram) 

 There is a pick-up  critical chain to pick up individual blocks (coloured 

blue in diagram) 

 There is a sorting critical chain (coloured blue in diagram) 

 There are three judgements associated with instigating/continuing loops 

based on power levels and service condition (coloured purple in diagram) 

 There are additional on-condition loops for transporting groups of 5 

blocks and dissembling blocks and sorting the bricks into piles 

Applying guidance of the developed method the following observations can be 

made: 

 Short critical chains: the pick-up chain can be divided into 5 separate 

chains – if there is a failure then this can be recovered quicker and the 

impact of failure is minimised.  

 Parallel activity: the critical chains, currently performed in sequence, can 

be performed in parallel to increase throughput 

 Balance of parallel operations: the critical chains are known to take the 

following times: 

o Pallet collection chain: 40s 

o Disassembly and load: 20s 

o Brick sort chain: 80s 

The time determining chain is the Brick sort chain at 80s. The other chains 

will need to be set to respect the same intervals or an accumulation of 

pallets will occur at other points of the line. 

 Respect external service bandwidth: the first and last chains form on-

condition loops with input and output functions. For pallet delivery, this will 

be one every 80s, though if there were predictable contamination rates 

then a faster input with some buffering of pallets for collection might be 

considered. For brick removal, the removal will need to be at an average 
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rate of 10 bricks per 80s (buffering at this stage can be considered as piles 

can be allowed to build up). 

 There is a possibility of using a common solution for transport, operator 

and brick recognition functionality. 

An alternative functional diagram, using the pickup vehicle for transport, a single 

operator in one location to allow parallel activity would therefore improve the 

design, as in Figure A - 2. 

e) Repeat  from a) whilst considering Viability, Resource and Management 

functions (Hitchins, 2008). 

Considering the resource, management and viability functions: 

Resource 

 Manage batteries 

Management 

 Operator control (already considered) including power-on and control 

Viability 

 Filter changes 

 Refurbishment (outside scope of this example) 

 Management of incident light conditions and noise levels (external action) 

These have been added in Figure A - 3 where the replacement of batteries and 

filters have been added for both options. But the revised functional solution 

would be represented as Figure A - 4. 

 Step 3: Conceive the concept framework 

a) Elaborate functions to achieve a level of definition of function that allows 
subsystems to be proposed, and make a mapping of function architecture to 
physical architecture observing constraints of the functional interaction types 
(Section 5.2.2) 

b) Opportunities for similar functionality being performed by a common 
subsystem should be identified where possible 

 
The existing subsystems are mapped onto the earlier functional descriptions as 
shown in Figure A - 5 and Figure A - 6 for each option. 
 
c) Consider cohesive and dispersive influences on the physical design (Section 

5.3) 
d) Establish form appropriate to both function interaction types and other 

dispersive/cohesive drivers to devise subsystem boundaries  
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Considerations are for: 

 Survivability: no hostile environment is envisaged and therefore no 
architectural strategy required 

 Reliability: no strategy envisaged as internal environments not expected 
to be challenging 

 Safety: automated machinery requires safety consideration. Possible 
safety issues therefore exist at pallet delivery, brick removal and at the 
operator to machine interface. Separation between operators and 
machines is necessary whilst the machines are moving and therefore 
remote operation (wireless option) for commands is essential. However, 
performance of operator judgements will require line of sight 

 Maintainability: not considered an architectural issue at this system level 
(is expected to be an issue at subsystem level) 

 Environmental compatibility: Consideration has to be given to spatial 
access for delivery of pallets and pick-up of bricks from external agencies. 
This is expected to be a line from input to output. The facility in which the 
machines are housed needs to allow line of sight for operators (i.e. no 
dividing walls). Potential contamination from contaminated pallets requires 
physical separation between good pallets and contaminated pallets/ 
equipment and decontamination procedures if necessary. If this is not 
possible to ensure by design, then management of these operations 
should not be separated i.e. they need to be managed together. 

 Operability: ergonomics and HCI issues will be expected at subsystem 
level. 

 Step 4: Lifecycle solution 

a) Mitigate any architectural conflicts across timeline, managing the effect of 
unavoidably ‘compromised’ architectural constructs by separation over time 

b) Establish a lifecycle solution, whilst not compromising principles already 
applied in the previous steps, “design for” additional lifecycle related benefits  

c) Standardisation enables common solution to achieving functionality, and the 
reduction of variety achieved reduced complication by similarity 

d) Any conflict with previous steps will have to be addressed according to relative 
merits 

A detailed analysis is difficult for a simple classroom example like this, but the 

following could be noted: 

 Production independence – there is no justification for production 

independence in this example. 

 Line replaceable units – at this level of the system, the individual systems 
can be considered as LRUs. Without a reliability analysis it will not be 
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possible to identify items that are more likely to need replacement than 
others (such an assessment might influence the architectural design). 
Therefore the only relevant replacement at the operational line level will 
be the replacement of the batteries and filters. Consideration could be 
given to whether these could be replaced at the same time, together or 
with common access. 

 Recycling – Lego must be the ultimate recyclable technology! No particular 

advantage can be gained here. 

 Standardisation – there are a number of elements in both candidate 
designs that promote standardisation. Firstly, the machines are made from 
the necessarily modular components of the Lego product. Common 
programmable control units and sensors will facilitate the functioning of the 
system. Components are standard when they need to be replaced. It 
should be noted however that Lego routinely subcontracts its components 
and these can have variations in build standard. 

 Reconfiguration – in theory this should have been ensured by functional 

independence in Step 2.  At the system level here, we might consider the 

machines. Combining multiple operations into a common platform is likely 

to reduce its desirability for more general use. The combination of pick-up 

and transport functions into a common vehicle is however not an issue this 

as the pick-up vehicle already had that capability. 

 Step 5: Evaluate architecture 

a) Calculate the relative merit of the architecture is given by the Relative 

architectural score (RAS) 

An evaluation of the architecture for both options is given in Table 17. 

Table 17: Lego Mindstorms example: Architecture assessment 

 Option 1 Option 2 

Context suitability Yes Yes 

Critical function 
modularity 

1 1 

Critical degree 
modularity 

0.859 0.833 

Dispersion index Compliant6 Compliant6 

Bridge modularity 0.923 0.933 

System boundary 
modularity 

1 1 

Relative architectural 
score 

3.935 3.905 

                                            
6 With wireless operation and physical isolation of the contaminated pallets 
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 Simple Lego Mindstorms example: Summary 

In this simple case, there appears to be a marginal advantage for Option 1. This 

is likely to be because Option 1 is divided into more components, with Option 2 

combining tasks of pick-up and transportation for one rather than two operators. 

However, the scores are very similar, and given this the observations of section 

6.2 should be considered and this would likely suggest, having created two 

designs that are intended to be modular, that architecture is not an important 

discriminator here compared with the lower wage costs of Option 2. 

Using this example, it has been possible to run through all steps of the process. 

It is a simple example, which facilitates a view of what is actually going on in the 

process. This simple view however comes with limitations: 

 It has only provided a limited exploration of critical interaction types. There 

are no examples of control loops that would provide an extra level of 

complication. In fact it is control loops that often create complicated issues 

across architectural boundaries. 

 It only treats the problem at one level of the system hierarchy. The next 

step would have been to take the process down to the subsystem level 

and apply it there and, at this level, control loops would be apparent 

 Application of approach to a generic cruise missile example 

 Step 1: Analyse Context type and requirements 

a) Establish context type (in order to choose problem solving approach, 

architectural strategy and risk) 

Examination of the context types yields Table 18. 

b) Understand stakeholders and environment of the system in order identify all 

influences and capture requirements 

This step is to provide the important contextual information that will influence the 

architectural design: 

 By object: air launched cruise missile, target, collateral 

 By subject: mission planner, pilot, headquarters and politicians 

 By location/environment: conditions, scenario, conventions and rules of 

engagement 

These can be shown diagrammatically on the Functional Context Diagram of 

Figure 37. 
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Table 18: Missile example: context types 

Context Type Quadrant  Approach Architectural Strategy Risk 

Process     

Problem Quest Explore options Number of solutions 
need to be compared 
to see what is possible 

M 

Evolution Obsolescence 
management 

Solution design is 
expected largely 
static over 
lifetime, with 
changes limited to 
replacement of 
parts and possibly 
extension. 

Modular standardized 
parts for replacement 

L 

Response Routine Standard project 
management 

No special measures 
required of architecture 

L 

Requirement     

Situation Clean sheet New design 
concept 

Need to define 
boundary and 
architecture from 
scratch 

H 

Divergence of 
values 

Unitary Hard systems 
analysis 

Clear requirements 
can be assumed 

L 

Management Manageable Can progress with 
clear ownership 
and definition of 
external 
boundaries 

Can rely on clear 
definition and 
responsibilities at 
system boundary 

L 

Solution     

Risk Play it safe Design according 
to safety and 
service related 
regulations 

Assume regulated 
boundary and the need 
to consider critical 
items in architecture 

M 

Complexity Complicated Large 
predominantly 
decoupled models 
can be developed 

Assume clear 
boundary and modular 
design. 

M 

Organization     

Coordination Centralised Bespoke 
development 

Can have clarity of 
external interfaces with 
clear flow-down of 
requirements 

L 

Target Critical path Time constrained 
to replace existing 
capability 

 M 

Business area Gold collar Highly skilled 
workforce 

 H 
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Figure 37: Missile example: Functional context diagram 

 Step 2: Devise functional chain framework 

a) Determine functional requirements and flows from the needs of the contextual 

analysis of step 1. 

b) Elaborate candidate mission functional chains according to Transformation 

viewpoints, starting with client functionality and observing the principle of 

Simplicity where possible 

A comprehensive, if considerably simplified for the purposes of this example, 

functional description can be developed from the client needs. The functionality 

can be described under transformation, resource, management and viability 

headings as follows: 

Transformation  

 Missions will need to be carefully planned (Mission planning) 

 The missile will need to be safely launched from and aircraft and may not 

be launched at an exact launch point (Launch) 

 The missile will fly a long range (Propulsion) 

 It will navigate autonomously to the target (Navigation) 

 The missile will follow a predefined route and the associated terrain 

(midcourse guidance) 

 Target recognition is required on final engagement (Terminal guidance) 
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 The missile will use explosives to destroy the target (Lethality) 

Resource 

 Fuel management 

 Electrical power management 

 Air flow management 

 Information management 

Management 

 Automated sequence of operations 

Viability 

 Test 

 Thermal management 

 

c) Identify Function interaction types 

d) Develop the functional architecture of functional chains according to Table 10 

of section 5.2.2, minimising the partitioning of fundamental blocks and trying 

to achieve a functionally independent design. Clustering methods such as N2 

or DSM may be used to aid in the identification of candidate functional chains. 

Starting with the Transformation functions, an analysis of coupling can be aided 

by using the N2 or DSM tool. If these functions were represented in a Design 

Structure Matrix the functional interfaces would be as Figure 38. 

 Transformation functions 

Ae Mp La Na Mi Te Fl Le Pr 

Aerodynamics         1 

Mission planning          

Launch  1  1   1   

Navigation  1        

Midcourse guidance  1 1 1   1   

Terminal guidance  1  1 1  1   

Flight control 1 1 1  1 1    

Lethality  1    1 1   

Propulsion 1         
Figure 38: Missile example: N2 of functional interaction (not clustered) 

Analysis either by hand or by the use of proprietary software for DSM, helps to 

show clusters of interactions (Figure 39). 



 

130 
 

 Transformational functions   

Le Fl Ae Pr La Mi Te Na Mp   

Lethality 1      1  1 3 

T
o

 

Flight control  1 1  1 1 1  1 5 

Aerodynamics  1 1 1      3 

Propulsion   1 1    1  3 

Launch  1   1   1 1 4 

Midcourse guidance  1   1 1  1 1 5 

Terminal guidance  1     1 1 1 4 

Navigation        1 1 2 

Mission plan         1 1 

 1 5 3 2 3 2 3 5 7   

 From   
Figure 39: Missile example: N2 of functional interaction (clustered) 

Plotting of Visibility vs Dependency (see section 6.2) we get Figure 40: 

 

Figure 40: Missile example: visibility vs dependency diagram 

The decomposition is far from clean, with Flight Control in particular being both 

highly visible and dependent. It is therefore important to further examine the 

nature of the interactions to establish the functional interaction types. 

Navigation, guidance and control 

There is no attempt here to create a detailed technical design of the missile 

guidance system, but a generic block diagram of missile guidance system in a 

three degree of freedom representation (attitude, height, distance) is given in 

Figure 41 (Lin, 1991). 

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

V
is

ib
ili

ty

Dependency

Le

Fl

Ae

Pr

La

Mi

Te

Na

Mp



 

131 
 

 

Figure 41: Missile example: generic missile system guidance schematic 

Immediately it is obvious that the missile guidance system is a coupled system 

with a number of control loops. For a cruise missile, a route can be determined in 

advance and launch and midcourse guidance is achieved by demands from 

comparing navigation position measurements with those required. In the terminal 

phase, homing guidance is performed based on the look angle and sightline rate, 

q. From a system design point of view this is not a very helpful architecture, as it 

suggests that most of the major functionality of the missile has to be considered 

and designed together – the control loop and critical chain relationships 

preventing logical partitions in Figure 42. 

Mission Planning Launch Guidance Midcourse Guidance Terminal Guidance Lethality

Navigation

Flight Control and propulsion

Navigation

Guidance flight 
control and 

lethality

ES
Mitigated critical 

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

 

Figure 42: Missile example: initial functional chain framework 
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The following are potential strategies: 

 The main purpose of the propulsion function is to maintain cruise speed to 

achieve time on target – some variation will be required to maintain speed 

through manoeuvre, due to drag, but as high ‘g’ manoeuvres are not 

required decoupling from the guidance functions can be considered. 

 There are often non-linear effects that make the design of the autopilot 

particularly challenging, however, if these non-linear effects can be 

controlled then decoupling of attitude control from the generation of 

guidance commands is facilitated. Non-linear effects can be due to varying 

velocities, changing mass properties and distributions and relative 

dynamics of missile and its aim-point/waypoint. For a cruise missile with a 

fixed aim-point, velocity is constant, mass distributions can be to a large 

extent controlled and waypoints/aim-points are typically stationary. In 

these circumstances the missile is more like an aircraft or UAV, and control 

strategies in these cases can allow a decoupling of the autopilot from the 

guidance system (Sadraey & Colgren, 2005). 

 The form of guidance changes throughout the mission due to different 

manoeuvres, flight conditions and information available. There is an 

opportunity to divide the functionality at the point that ‘handover’ from one 

form of guidance to the other occurs, on the assumption that is within a 

nominal handover ‘basket’: 

o handover to terminal guidance would be when the target is 

expected to be in the field of view with sufficient manoeuvre 

capability to engage it 

o for midcourse guidance it will be achieving a waypoint with sufficient 

accuracy to navigate the terrain below 

o for the launch phase it will be the accuracy of the launch aircraft 

achieving the launch point in order to engage with the planned route 

early enough.  

 The final part of the sequence can also be considered separately by 

considering that lethality is dependent on the end conditions of terminal 

guidance, but for a stationary target these can be defined as a “basket” of 

parameters that the terminal guidance must achieve to assure acceptable 

engagement geometry with the target to achieve the required lethality 

performance. 



 

133 
 

These strategies enable the following functional chains, as shown 

diagrammatically in Figure 43: 

 Navigation 

 Launch guidance 

 Midcourse guidance 

 Terminal guidance 

 Lethality 

 Flight control 

 Propulsion 

Dividing the functional chains in this way, has the potential to ease the 

management of the design. Using the strategies discussed, many of the issues 

associated with division of fundamental blocks have been mitigated and chains 

have been shortened. “Option 1” reflects the consequential partitioning of the 

functions: 

 Mission planning functions are decoupled as mission planning takes place 

in advance of the mission.  

 Launch guidance, midcourse guidance, terminal guidance and lethality 

have a chain relationship, but these have been decoupled by defining a 

“basket” of conditions to satisfy in order to pass to the next phase of the 

chain.  
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 Flight control has effectively been decoupled from the guidance loops 

allowing them to be developed independently. Propulsion and its control 

will exhibit coupling with the manoeuvres required by the attitude control 

autopilot, but constraining manoeuvre capability will enable this to be 

decoupled and concentrate on achieving time on target.  

Figure 43 indicates where the violations of fundamental blocks have been 

mitigated. Figure 44 shows the resulting simplified form. 

Launch Mission 
Planning

Midcourse Mission 
Planning

Terminal Mission 
Planning

Lethality Mission 
Planning

Launch Guidance

Midcourse Guidance

Terminal Guidance

Lethality

Navigation

Flight Control

Propulsion

Navigation

Launch

Midcourse

Terminal

Lethality

Flight control

Propulsion

CL CL CL

C

C

C

CL

ES
Mitigated critical 

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

 

Figure 43: Missile example: functional chain framework (option 1)  

Although Functional blocks have been compromised, tried and tested strategies 

have been employed to mitigate the risks. Broad functional chain structures are 

still maintained to ensure management of the decoupled blocks. At the same time 

the design definition has more structure to understand and develop. 
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The analysis for option 1 suggests: 

 7 functional chains (these relate to areas of similar function or discipline, 

where common approaches, design or methods might be employed by a 

team): 

o Navigation  

o Launch, Midcourse and Terminal guidance 

o Lethality 

o Flight control 

o Propulsion 

Launch Mission 
Planning

Midcourse Mission 
Planning

Terminal Mission 
Planning

Lethality Mission 
Planning

Launch Guidance

Midcourse 
Guidance

Terminal 
Guidance

Lethality

Navigation

Flight control

Navigation

Launch

Midcourse

Terminal

Lethality

Flight control

CL CL CL

PropulsionPropulsion

CL

ES
Mitigated critical 

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

 

Figure 44: Missile example: functional chain framework (option 1 simplified) 

 There were 9 violations of fundamental blocks between functional chains, 

but 7 of these have been identified and mitigated, with two violations 

remaining 

Option 2 offers an alternative, which differs from option 1 in that guidance chains 

are responsible for both attitude control and propulsion control for their phase. 

This simplifies the system design by removing many critical dependencies 

between chains rather than mitigating them as discussed for option 1. This would 

be advantageous if the coupling of propulsion and flight control with the guidance 

functions is significant. With the reduction in size, power requirements and cost 

of modern navigation sensors, it may be possible to consider independent 

navigation functions as well (to simplify further). 
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The analysis for this option 2 suggests: 

 5 functional chains: 

o Navigation  

o Launch, Midcourse and Terminal guidance 

o Lethality 

 There are now only 2 violations of functional blocks between functional 

chains 

 

Launch Mission 
Planning

Midcourse Mission 
Planning

Terminal Mission 
Planning

Lethality Mission 
Planning

Launch Guidance

Midcourse 
Guidance

Terminal 
Guidance

Lethality

NavigationNavigation

Launch

Midcourse

Terminal

Lethality

ES
Mitigated critical 

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

 

Figure 45: Missile example: functional chain framework (option 2) 

There are assumed to be no judgement types or human issues, as planning is 

subject to a fixed “tasking order” and flight path is considered here as 

predetermined. These types, if anywhere, will be determined in the mission 

preparation phase and human issues would be included if the decision process 

and rules of engagement were considered as part of the “tasking order”. 

So far we have considered the functions directly responsible for the client’s need 

- the primary “mission functions”. These need to be supported by secondary 

functions for resource management, system management and viability 

management. These are elaborated in the Table 19. 
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Table 19: Missile example: viability and resource functions 

Category Subcategory Function Subsystem 

Viability management Synergy Phase, state and 
mode control 

Mission controller, 
Airframe, 
communications 

Survival Not addressed Not addressed 

Maintenance Test function BITE 

Homeostasis Thermal 
management 
EMC management 

Structure, insulation 
Shielding, earthing, 
filtering 

Evolution Not addressed Not addressed 

Resource 
Management 

Fuel chain Thermal Battery, 
alternator and voltage 
conversion 
Fuel tank, pump, 
injector, engine, 
exhaust 

Air flow chain 

Electrical power chain 

Information management 

There are therefore further resource and viability management functional chains 

to consider. Resource functional chains are described in Figure 46. 

Acquire

Fuel

Air flow

Electrical power

Information

Store Distribute Convert Dispose

Acquire Store Distribute Convert Dispose

Acquire Store Distribute Convert Dispose

Acquire Store Distribute Convert
Ait tasking 

order

Fuel store

ES
Mitigated critical 

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

 

Figure 46: Missile example: viability and resource functional chains 

Viability chains can be thought of as follows: 

 Management – service 

 Test function – service 

 Thermal management – chain 

In the interest of keeping the levels of information at a manageable level for this 

analysis, resource management chains will be considered, but viability chains will 

be excluded. Inclusion of resource management chains requires a modification 

of the function chain interaction diagram for both suggested framework options, 

as in and Figure A - 7 and Figure A - 8. 
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 Step 3: Conceive the concept framework 

a) Elaborate functions to include functions that allow subsystems to be proposed 

and make a mapping of function to physical design observing constraints of the 

Functional interaction types 

b) Opportunities for similar functionality being performed by a common 

subsystem should be identified where possible 

To progress, the method requires elaboration of the functions implicit in the 

functional chain analysis of the previous step. This allows the selection of 

subsystems expected for the physical solution. Figure A - 9 shows a potential 

solution for option 1. The equivalent for option 2, is in Figure A - 10. It can clearly 

be seen that the attempt to simplify the functional framework has created a 

seemingly more complicated arrangement for the physical solution. However, it 

is the nature of the interactions rather than the number of them that determines 

the complication. The fact that the launch, midcourse and terminal phases are 

sequential and therefore demands are separated in time, should create a more 

manageable solution. 

c) Consider cohesive and dispersive influences on the physical design 

d) Establish Form appropriate to both function interaction types and other 

dispersive/cohesive drivers to devise subsystem boundaries within the broader 

functional framework. 

From a cohesive perspective: 

 Survival is important for a cruise missile, but there are important 

constraints on what is possible. A long range missile that is air launched is 

usually range limited by the size that can fit under the aircraft. 

Improvement of survivability through size reduction is therefore not an 

option. 

 The missile does not have a direct operator and so operation can only be 

addressed for the mission planning and in this case will be addressed by 

HCI design. 

 There is a need to locate elements in the design to be externally 

compatible with the environment: the seeker needs to be at the front of the 

missile to see the target; the actuators would be expected to be at the rear 

of the missile; the exhaust needs to be at the rear and the engine would 

be expected to be both adjacent and allowing enough room for the intake; 

the aircraft connection will be at the top near the midpoint of its length; 

inertial instruments would normally be around the aerodynamic centre 
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 Cohesion for internal compatibility will largely be centred around thermal 

management as sources of significant heat need to be close to parts with 

thermal capacity and thermal management is a particular challenge for 

long flight times. Significant sources of heat are the engine and thermal 

batteries and these should be near to the fuel tanks, which provide a 

thermal sink. Areas where conduction will be important are between 

systems for earthing, bonding and grounding  

 Structure requires cohesion. For a missile, the structure provides rigidity 

for mission operations, but also aids its ability to manage internal heat. 

Proximity to structure is important to all physical subsystems and is 

expected over the length and width of the frame. 

The following are also specific and important considerations that would apply to 

the design from a dispersive perspective: 

 For survival, there may be the expectation of separation between 

redundant mission critical systems. It is probable that a view will be taken 

that surviving a kinetic hit is not a priority as it is unlikely and no life is 

endangered if it does happen. 

 From a maintenance point of view there needs to be access to subsystems 

for maintenance. For a missile, space is at a premium and therefore a 

decision on access and space for maintenance will be a carefully 

considered analysis. 

 Electromagnetic compatibility will require adequate isolation of 

electromagnetic noise; noise is shielded and filtered both from an import 

and export perspective. 

 From a safety perspective, there will be expected to be isolation between 

the warhead and sources of heat, such as the engine or thermal battery. 

For safety there are also implications on design of the firing circuits for the 

warhead; apart from when the firing chain is activated, the components 

need to be isolated from each other. As the circuit only needs to be made 

when it is used, this can be a lifecycle solution (step 4). 

 In general, for reliability, it would be considered good design practice to 

build in reliability by isolation of sensitive components from adverse 

conditions. Therefore electrical components should be isolated from heat 

generating equipment such as the engine and thermal battery. In line with 

an independent design, the first assumption should be that heat is self-

contained at a subsystem level.  
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 Step 4: Lifecycle solution 

a) Mitigate any architectural conflicts across timeline, managing the effect of 
unavoidably ‘compromised’ architectural constructs by separation over time 

b) Establish a lifecycle solution, whilst not compromising principles already 
applied in the previous steps, “design for” additional lifecycle related benefits  

c) Standardisation enables common solution to achieving functionality, and the 
reduction of variety achieved reduced complication by similarity (section 5.1) 

d) Any conflict with previous steps will have to be addressed according to relative 
merits 

The first part of this step is to address architectural conflicts across the timeline. 

Conflicts have been identified in the previous two steps; by conflict it is meant 

that it has not been possible to observe the ideal design strategies. This will result 

in fundamental blocks straddling functional chains creating difficulties in analysis 

and in integration. However a further opportunity is to separate functionality in 

time over the mission or the lifecycle. Potential conflicts to be addressed for 

functional option 1 are in Table 20 and those for option 2 are in Table 21. 

Table 20: Missile example: addressing conflicts by lifecycle resolution (option 1) 

Potential conflicts Lifecycle resolution 

Mission planning to guidance Simplified model of missile available 
to mission planning 

Lethality firing chain Components keep separately as Line 
Replaceable Units until mission. 
Firing chain not completed until 
mission criteria have been completed 

 

Cruise missiles are mainly kept in storage in a benign environment and so need 

little maintenance. Ideally components of the missile will be consistent with the 

full design life and therefore without need for replacement. However, it is usual 

for explosive items to have a limited life and need replacing during the life of the 

missile. Therefore, explosive components should ideally be grouped together 

for ease of access and replacement. 

For a new concept it is often unlikely to have a detailed view on materials, but 

this would be possible for upgrades. For a missile, many components would be 

restricted in terms of classification and would require careful disposal – as there 

are not large numbers this is usually acceptable. 
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Table 21: Missile example: addressing conflicts by lifecycle resolution (option 2) 

Potential conflicts Lifecycle resolution 

Actuators and engine are common to 
all guidance functional chains.  

As the guidance functionality is 
treated in sequence there is no 
conflict of their service provided by 
actuator/engine to the rest of the 
missile. They are therefore effectively 
exclusive services and need to design 
to the most demanding case. 

Mission planning to guidance Simplified model of missile available 
to mission planning (as Option 1) 

Lethality firing chain Components keep separately as Line 
Replaceable Units until mission. Firing 
chain not completed until mission 
criteria have been completed (as 
Option 1) 

 Step 5: Evaluate architecture 

a) Calculate the relative merit of the architecture is given by the Relative 

architectural score (RAS) 

Evaluation at this stage does not include viability, management and test 

functionality as this will require a more detailed definition than is possible here. 

All frameworks will require this, but perhaps to a greater or lesser extent 

depending on the number of separate components in the design. 

To evaluate the architecture, seven criteria are evaluated in   
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Table 22. 
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Table 22: Missile example: architecture evaluation 

 Framework 1 Framework 2 

Context suitability Yes Yes 

Critical function 
modularity 

0.944 0.875 

Critical degree 
modularity 

0.973 0.969 

Dispersion index Not evaluated7 Not evaluated7 

Bridge modularity 0.998 0.998 

System boundary 
modularity 

1 1 

Relative architectural 
score 

3.915 3.842 

As with the Lego Mindstorms example in the previous section, both of these 

designs have been created using the method and therefore would expect to have 

good Relative architectural scores. The most significant difference is in the 

Critical degree modularity. This is due to the allocation of flight control design to 

each of the launch, midcourse and terminal guidance functional chains for this 

architecture. This creates slightly more critical interfaces, but may facilitate the 

appropriate design of algorithms by the relevant functional chain design 

authorities. 

  

                                            
7 Not possible to evaluate without a conceptual physical design of each missile, which is outside 
the scope of this research. 
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9 COMPARISON OF METHODOLOGIES 

 Candidate methods for comparison 

In section 3, a number of methods were identified as candidates for comparison 

with the Critical interaction modular design methodology, the approach being 

developed by this research. These were selected on the basis of prominence and 

popularity as: 

 Systematic design (SAPD) by Pahl and Beitz (Pahl et al., 2007) as 

representative  of design focused methods (Roozenburg & Cross, 1991)  

 Axiomatic design by Suh (Suh, 1997) as representing of attribute focused 

design  

 TRIZ by Altshuller due to its relative popularity in industry 

 Product design by Ulrich and Eppinger (K. Ulrich & Eppinger, 2008) due 

to its popularity in the US 

 Total design by Pugh due to its higher than average use in industry. 

An initial analysis of each method is carried out against the requirements of Table 

5, and this is summarised in Table 23. Comparison of the methodologies against 

the requirements shows that three candidates are potentially suitable for the 

comparison (shaded green), and two are not suitable (shaded red). The table 

shows an obvious divide between stage based models and activity based models. 

Stage models attempt to describe the entire lifecycle, emphasising the “stage 

gates” that are required to be achieved to assure good design. At the end of each 

stage there is a definition of what level of design maturity should have been 

achieved and what artefacts should have been produced. As a result, they are 

often at an outline level, leaving the engineer to work out how the design activity 

should be performed and its effectiveness should be achieved. This level of detail 

about the ‘how’ is usually contained within the activity based models, which tend 

to address a particular stage, defining activities to a greater depth and in a way 

that actively helps engineers achieve an effective design. Stage based models 

therefore concentrate on assurance while activity based models focus in more 

detail on the development and improvement of the design and what it can 

achieve. The distinctly different approaches make it desirable to have a candidate 

of both types. 

Of the activity based methodologies, Suh’s Axiomatic design is the only method 

that starts with a problem statement (TRIZ aims to improve existing or already 

conceived solutions). Also TRIZ is a collection of concepts rather than having a 

prescribed approach; therefore Suh’s Axiomatic Design is chosen as the activity 
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based methodology. Of the stage based models, Pugh’s Total Design does not 

employ an analytical approach in design preferring to develop many candidates 

and select a best - this lack of analysis means that Total design is not suitable for 

comparison. Product design and Systematic design are similar approaches and 

Systematic design is favoured as it is perhaps most established and represents 

a ‘unified approach’ that many stage based models adhere to.  

Table 23: Comparison of existing system design methodologies 

 

 Comparison of methods study for Central heating 

In this chapter, the methods chosen in Chapter 3 on Methodology are to be 

applied to a common problem in order to compare their utility in systems design 

compared with the approach designed for this research, which is referred to as 

the Critical interaction modular design methodology. The problem chosen is a 

domestic central heating system; the advantage of applying the process to a 

domestic architectural example is that it enables comparison with established and 

well-tried techniques. The systems of a domestic house are rich enough to 

examine many different functions of systems; services, control, chains, decisions 

and judgements.  It allows the opportunity to exercise all aspects of systems 

Required characteristics of 
methodology 

Systematic 
design 

Axiomatic 
Design 

TRIZ Product 
design 

Total 
design 

Scope Concept 
phase 

Yes (entire 
design 
process) 

Yes (concept 
phase only) 

Yes (concept 
phase only) 

Yes (entire 
design 
process) 

Yes (entire 
design 
process) 

Starting 
point 

Both problem 
and solution 
based starting 
points 

Yes  Yes  No (only 
solution 
based) 

Yes  No (only 
problem 
based) 

Approach Concrete, 
prescriptive 
procedural 
and analytical 

Yes Yes No (not 
prescriptive) 

Yes No (not 
analytical) 

Models Either activity 
or stage based 

Stage based Activity based Activity based Stage based Stage based 

Aim Design 
improvement 

Yes (by 
analysis) 

Yes (by 
analysis) 

Yes (by 
analysis) 

Yes (by 
analysis) 

Yes (by 
selection) 

Desirable Support (to 
concept design): 

     

Methods 
(relevant to 
concept 
stage) 

Yes Yes 
 
 
 
   

None Yes (TRIZ 
toolkit) 

Yes Yes 

Means Yes No No Yes 
(Innovation 
machine) 

No No 

Notation Yes Yes Yes No No No 
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design, but remain simple enough so that observations and conclusions can be 

readily achieved. The central heating system is a typical example and includes: 

 Services of energy supply and the supply of a media for achieving heat 

transfer 

 Control of temperature 

 Chains of heat exchange and exhaust of waste products 

 Human issues between user and owner stakeholders 

 Decisions about setting the required temperature versus heating costs and 

economic running of the system. 

The task of designing a central heating is applied to three candidate methods, 

one in each of the following sections: 

 Systematic design (section 9.3) 

 Axiomatic design (section 9.4) 

 Critical interaction modular design methodology (section 9.5) 

In each case, the methodology is analysed in terms of how the central heating 

problem is addressed in terms of: 

 Requirements analysis 

 Functional design 

 Systems design 

 Evaluation of solutions 

 Systematic Design solution 

 Requirement analysis 

Clarification of the task 

The method describes the following actions to clarify the task: 

a) Compile the requirements: 

 What objectives is the intended solution expected to satisfy? 

o What properties must it have? 

o What properties must in not have? 

o Determine quantitative and qualitative data for the checklist. 
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b) Specify demands and wishes clearly, ranking wishes as being major, 

medium or minor in importance 

c) Arrange requirements in clear order as follows: 

 Define the main objective and main characteristics 

 Split into identifiable subsystems, functions, assemblies etc or in 

accordance with the main headings of the checklist 

d) Determine that listed requirements are technically and economically 

achievable. 

e) Consider client, state of technology, standards and guidelines, future 

developments. 

Detailed guidance is not provided in terms of the stakeholders or the systems and 

conditions of the environment. The client is mentioned at e) with an inference that 

this is the source of requirements along with standards and guidelines. The client 

is the only explicit stakeholder for the generation of objectives for a), their 

importance for question b) and their ranking in question c). The method 

distinguishes two types of client; anonymous customer and specific customers in 

order to address a given market segment as well as the primary and specific 

customer. In c), there is also an assumption that the system can split into 

identifiable subsystems, suggesting that any architectural decisions can be made 

in a simplistic way. Equally, at d) an evaluation is required to ensure the 

requirements are achievable. The process described is just an outline and implies 

that concept design work will be required in order to answer the questions posed, 

but no specific guidance is given to achieve this. 

There is a detailed set of steps for generating the structure of a requirement 

specification, though there is an admission that at the early concept stage it is not 

possible to make precise requirements. The overall impression is an approach 

with a well-defined procedure, but not one that identifies the variety of sources of 

requirements and constraints. 

 Functional design 

Conceptual Design 

Abstraction and problem formulation 

A procedural set of questions are asked to enable the designer to abstract the 

solution neutral problem. These are to ask if the crux of the problem is: 

 To improve the technical functions 

 To reduce weight or space 
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 To significantly lower costs 

 To significantly shorten delivery times 

 To improve production methods 

Here we are talking about providing an improvement to heating functions of the 

house by installing a new central heating system which in this case could be 

“Ensuring centrally controlled gas heating of spaces of a house to achieve a 

specified level of temperature in each”. 

Systematic broadening of problem formulation 

Consider extensions of, or changes to, the task in order to test whether it is well 

defined by abstraction. In this case we may consider whether individual rooms 

need heating or whether: 

 a centralised heat source may be distributed around the house  

 an alternative to gas heating represents the best chance of a solution. 

In order to allow comparison with other methods, gas central heating system with 

heating sources in each room will be assumed for this example, unless the 

method (as will be the case for Axiomatic design) explicitly rejects it.  

Establish functional structures 

High level functionality is broken down into lower level sub-functions according to 

whether the design is original, adaptive (by analysis of the existing product) or 

variant (using established building blocks). As a newly installed system, this will 

be assumed as an original design. 

A functional structure is formed by considering “flows” of energy, material and 

signals, starting with what is considered to be the main flow then developing 

auxiliary flows. The main flow consists of sub-functions that directly contribute to 

the high level functions, whereas auxiliary flows contribute indirectly (these could 

be viability functions). Initial analysis may not provide sufficient detail to allow 

choice of architecture and so the method advises the following guidance in 

developing the functional structure relevant to this example: 

1. First derive a rough functional structure from functional relationships you 

can identify in the requirements list. 

2. Logical relationships may lead to functional structures 

3. Functional structures require flows of energy, material and signals to be 

addressed. Start with the main flow and iterate to achieve the auxiliary 

flows. 
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4. Several sub-functions recur in most structures (i.e. change, vary, connect, 

channel, store) 

5. From a rough structure, variants can be derived that allow alternative 

solutions 

6. Functional structures should be kept as simple as possible 

7. A selection procedure should be used in the early stages to identify only 

promising solutions 

In the case of central heating the main flows are arguably of heat energy and 

water material.  

Elaborating the water material flow would give: 

Water
Distribute 

water

Emergency 
water 

release
 

Elaborating the gas flow would give: 

Gas Burn gas Exhaust

 

Elaborating the electrical energy flow would give: 

Electricity
Power 
pump

Earth

Power 
heater

Power 
thermostat

Power 
controller

 

Elaborating the heat energy flow would give: 

Heat water
Radiate 

heat
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Elaborating the signal flow would give: 

Set temp
Compare 

temp
Initiate 
heating

Measure 
temp

 

Elaborating control flow would give: 

Control 
system

Start pump

Start 
heater

Start 
thermostat

 

A combined view of this functionality is made in Figure 47.
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Figure 47: Central heating functional architecture (Systematic design) 
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Figure 48: Central heating architecture design (Systematic design)
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Examining the guidance above is not clear how the ‘functional structure’ should 

be created from here. There is a distinction between original designs and variant 

designs and as this is a new system in the house then it has been considered an 

original design. However, installation of the system with a well-defined house 

space makes this a heavily constrained problem, but constrained by the 

environment and not existing solutions. It is likely that consideration of these 

constraints is a necessary part of developing the functionality, but this is not 

prescribed at this stage. There is therefore no progression possible until the 

working structures are considered. 

Logical considerations 

Constraints are used to establish the logical analysis of functional relationships 

in the design to construct relationships between subfunctions as AND, OR or 

NOT relationships. In this example it might be necessary to state that the boiler 

should not operate without either gas or water supply. 

 System design 

Develop working structures 

The emphasis of this step is to “determine a physical effect needed for the 

fulfilment of a given function and also its geometric and material characteristics” 

(Pahl et al., 2007); this is termed as a working principle, a group of which will be 

used to form a working structure. Counsel is given that “it is often difficult to make 

clear distinction between the physical effect and the form design features”. The 

end result is intended “to lead to several solution variants, that is, a solution field”. 

In the search for a working principle for each sub-function, there may be more 

than one option and the idea is that these can be systematically combined at a 

synthesis stage. Solutions may be proposed that fulfil more than one sub-

function, and in this way a functional architecture will emerge. 

Some structure in the process is introduced (a sort of structured brainstorming), 

with the following suggested as possible methods for proposing candidate 

working principles as: 

 conventional aids 

o literature 

o natural systems 

o existing technical systems 

o analogies 

o measurements and model tests 
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 methods with an intuitive bias 

o brainstorming 

o method 635 

o Delphi method 

o Synetics 

o Combination 

 Methods with a discursive bias….. 

Systematic combination is suggested as a method of bring together the working 

principles determined through this brainstorming. Use of a Morphological matrix 

can be used for this, but such a matrix will need to be generated in advance from 

candidate working principles. For an organisation that regularly produces a 

particular type of system, such a matrix might usefully be compiled to capture the 

organisational knowledge for this step of the process. 

Figure 48 is a suggested mapping of sub-functions generated earlier, onto 

candidate working principles. This seems a reasonable partitioning based upon 

the author’s experience and though there are other options there is no guidance 

to say which partitioning may be better than another from an architectural view; 

a decision is therefore delayed until a full evaluation of each concept options is 

possible, which could be much later in the design process. At this stage there has 

been no direction to consider the house structure as a driving environmental 

influence; how many radiators are required, where should the thermostats be 

placed in order to best control the temperature of the space? It could be stated in 

requirements, but these are architectural considerations and it should be for the 

designer to evaluate the options. An experienced heating engineer may well be 

able to choose a number of different control solutions to the problem, but a 

methodology should require such a step in the process. 

 “Design for” principles are not explicitly applied to the concept phase and are left 

to the “embodiment phase”. The implication is that these might have an impact 

later in the design process with any rework implications that this involves. 

Therefore, unless there is a specific requirement to be met for the attribute it may 

not be addressed in the concept decision process and could lead to a non-optimal 

concept. 

 Evaluation of solutions 

Concept evaluation 

A weighting technique is proposed, based on evaluation of goals rather than the 

design or architecture. The authors admit that at an early concept stage this may 
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only be an evaluation based upon the likelihood of meeting the requirements, 

especially essential ones. There is an emphasis on both technical, economic and 

safety characteristics and a recognition that parameters are likely to be qualitative 

rather than quantitative. Suggested evaluation criteria are given in Table 24. 

Table 24: Checklist with main headings for design evaluation during the conceptual 
phase (Pahl and Beitz) 

Main headings Examples 

Function Characteristics of essential auxiliary function that follow out of 
necessity from the chosen solution principle or concept variant 

Working principles Characteristics of the selected principle or principles with respect to 
simple and clear-cut functioning, adequate effect, few disturbing 
factors 

Embodiment Small number of components, low complexity, low space 
requirement, no special problems with layout or form design 

Safety Preferential treatment of direct safety techniques (inherently safe), 
no additional safety measures needed, industrial and environmental 
safety guaranteed 

Ergonomics Satisfactory man-machine relationship, no strain or impairment of 
health, good aesthetics 

Production Few and established production methods, no expensive equipment, 
small number of simple components 

Quality control Few tests and check needed, simple and reliable procedures 

Assembly Easy, convenient and quick, no special aids needed 

Transport Normal modes of transport, no risks 

Operation Simple operation, long service life, low wear, easy and simple 
handling 

Maintenance Little and simple upkeep and cleaning, easy inspection, easy repair 

Recycling Easy recovery of parts, safe disposal 

Costs No special running or associated costs, no scheduling risks 

At the concept stage there will be limited information available to properly 

evaluate these parameters and understanding of the system is often not 

advanced enough to have fully formulated requirements. As a result weighting 

factors are advised for extremely important requirements only, instead striving for 

an approximate balance of performance against all parameters. A score of 0-4 is 

applied, with an indication of associated maturity and terms are the summed to 

find an aggregate score. 

For the central heating example developed here, the evaluation parameters in 

each case might be as in the following   
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Table 25. It makes little sense to attempt specific values as this is a subjective 

evaluation, but comments are made in each case in terms of the feasibility of 

evaluation at this concept stage, for the concept identified. 
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Table 25: Evaluation parameters for a central heating concept (Systemic Design) 

Main 
headings 

Examples  

Function Characteristics of essential 
auxiliary function that follow out of 
necessity from the chosen solution 
principle or concept variant 

Experience shows that the solution should be 
achievable, but nothing in the architectural 
analysis can suggest what difficulties may be 
encountered for the working principles 
proposed for the required functions. Working 

principles 
Characteristics of the selected 
principle or principles with respect 
to simple and clear-cut functioning, 
adequate effect, few disturbing 
factors 

Embodiment Small number of components, low 
complexity, low space 
requirement, no special problems 
with layout or form design 

Safety critical elements of gas, hot water, 
pressurised system, exhaust products will 
enforce constraints for embodiment in the house. 

Safety Preferential treatment of direct 
safety techniques (inherently 
safe), no additional safety 
measures needed, industrial and 
environmental safety guaranteed 

As this is gas central heating, it should be 
possible to use components that are certified safe 
for purpose. System integration will be highly 
regulated and using established principles. 

Ergonomics Satisfactory man-machine 
relationship, no strain or 
impairment of health, good 
aesthetics 

Man-machine interface is in the controller. This 
can be established at subsystem level. 

Production Few and established production 
methods, no expensive 
equipment, small number of 
simple components 

Tools for installing equipment are not specialist, 
however production of the boiler will involve 
expensive process. 

Quality 
control 

Few tests and check needed, 
simple and reliable procedures 

Checks associated with gas and hot water 
circulation will be involved. Bespoke system will 
require bespoke application of quality procedures 
by skilled installers.  

Assembly Easy, convenient and quick, no 
special aids needed 

Bespoke system, with safety critical components 
will mean an involved and relatively expensive 
assembly process. 

Transport Normal modes of transport, no 
risks 

Normal modes of transportation can be assumed 
for the domestic components for the system. 

Operation Simple operation, long service life, 
low wear, easy and simple 
handling 

Simple operation can be expected 

Maintenance Little and simple upkeep and 
cleaning, easy inspection, easy 
repair 

Use of pressurised hot water system is subject to 
corrosion. Requires periodic service and checks. 
Repair is often difficult due to concealed pipe 
work. 

Recycling Easy recovery of parts, safe 
disposal 

No particular issues associated with disposal, 
metals should be easily recovered. 

Costs No special running or associated 
costs, no scheduling risks 

The boiler is a relatively expensive component. 
Regular servicing costs are not necessarily 
typical of electrical alternatives, but running cots 
are typically lower 

Without a more detailed assessment of the concept design, this evaluation will 

be of a generic nature and will give little indication of the technical difficulties in 

the functional design. Candidate options could be compared, but performance 
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and behavioural issues will only become clear when system models are created 

and used to evaluate performance. 

 Axiomatic Design Solution 

 Requirement Analysis 

No process is prescribed for this step and therefore Axiomatic Design must rely 

on support from other methods. Suh recognises that there may be constraints on 

the design due to boundary conditions, internal environmental requirements or 

design decisions (Suh, 2005), but does not indicate how these might be analysed. 

Suh refers to capturing a societal need with the requirement to capture this and 

to formalize it; starting from a solution neutral environment. The method is at best 

descriptive here, relying on users to derive their own process from examples. The 

author describes the need for creativity by “good” designers. The approach 

assumes that the designer should work with stakeholders to generate a set of 

requirements and then generate a set of functions that can be shown, by a 

mapping, to address those requirements. 

 Functional design 

Assuming that the previous step has outlined the Customer Attributes (CA), these 

need to be used to generate Functional Requirements (FR). Axiomatic design 

identifies the activity of mapping, but does not facilitate the generation of 

functional requirements. This is again left to the designer and it is explained that 

the process is both a creative and iterative one, with no single correct answer. 

However, at each level of decomposition of the functional requirement it has to 

be rationalised against a concept of physical design and a set of associated 

design parameters to ensure it can meet the Independence Axiom. If a concept 

that meets the axiom cannot be found then this indicates a badly chosen set of 

functional requirements: “when the Independence Axiom is violated by design 

decisions made, we should go back and redesign rather than proceeding with a 

flawed design” (Nam P. Suh, 2001). The lack of clarity of requirement definition 

is a potential weakness as if the primacy of requirements isn't established, it 

complicates the design process i.e. a compliant solution that doesn't meet the 

axioms may be rejected in favour of a non-compliant one that does. 

Without guidance as to a suitable requirement the following is taken: 

“Ensuring centrally controlled gas central heating of spaces of a house to achieve 

a specified level of temperature in each”  

This might then be used to generate the following Functional Requirements: 

 Heat the various spaces of a house 
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 Control the temperature of those spaces within a specified temperature 

range 

 Allow user setting of the required temperature range 

When proposing a set of Functional Requirements (FR), we are directed to 

observe Corollary 2, Minimisation of FRs. It might be argued that the need to 

specify a temperature range and the means of achieving it should be combined, 

which results in a reduction to two FRs: 

 Heat the various spaces of a house 

 Control the temperature of those spaces within a selected temperature 

range 

The next step is to determine the functional hierarchy, which may require 

conceptualisation of the physical design (a process referred to as “zig-zagging”). 

In this instance, we need to conceptualise the house as an existing structure of 

rooms and spaces. This allows us to decompose the FRs further and assign 

ranges and tolerances (illustrative values are used in this case)  for each: 

 Heat the various spaces of a house 

o Heat rooms x,y,z; tolerance/range – up to 25 Celsius  

 Control the temperature of those spaces within a selected temperature 

range 

o Set required temperatures in individual rooms – range 10 to 25 

Celsius 

o Control temperature of individual rooms - range 10 to 25 Celsius 

Tolerances are required as they form part of the compliance with Axiom 1; if the 

design to meet a given FR allows other FRs to remain within acceptable tolerance 

then Axiom 1 is satisfied. As confirmation of at least one valid design solution that 

meets Axiom 1 is required, this step cannot be completed without confirmation of 

the next step. In accordance with Suh’s corollaries it is also necessary to explicitly 

require heating and control of each room as they are independent requirements. 

For this analysis, therefore, two rooms will be assumed. 

 System Design 

A mapping is required between FRs and DPs. The choice of DPs is described as 

creative and non-unique. It is for the designer to propose a design and then 

compare it with the axioms, modifying it as necessary to achieve compliance. Suh 

(Suh, 2001) suggests that the DP for a system can be its components and so a 

heat source and control source is assumed for each room. Note that although this 
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may result in redundancy this should become clear from the subsequent analysis 

and can then be corrected for. 

The design matrix for this case would then be as in Figure 49. 

 Heat room 1 Heat room 2 Control room 
1 

Control room 
2 

Heat room 1 X    

Heat room 2  X   

Control room 
1 

X  X  

Control room 
2 

 X  X 

Figure 49: Design matrix central heating 

This is a triangular matrix in Suh’s terms, which represents a decoupled system. 

Corollary 7 clearly favours an uncoupled solution, which can be obtained from 

combining the two operations associated with each room, giving ‘diagonal’ matrix 

of Figure 50. 

 Heat and control room 1 Heat and control room 2 

Heat and control room 1 X  

Heat and control room 2  X 

Figure 50: Design matrix for Axiomatic Design’s optimum heating solution 

The FRs to reflect this will now be of the form: 

“Control the room temperature to within a selected temperature range of +/- 3 

Celsius” 

This can be addressed by having a heating source in each room, rather than a 

centralised boiler and heating pump. Such a measure would enable the 

temperature setting and measurement to be incorporated into the same physical 

part - as a solution it complies with Suh's Corollary 3 and enables a common 

design to be used in each room, which supports Corollary 4. However, a solution 

that has the thermostat as part of the unit would not seem an optimum design as 

this will allow localised heating within a room. A better solution is likely to having 

a thermostat that is in a different part of the room. Suh’s method does allow this, 

as for two solutions that satisfy the Independence Axiom, the Information Axiom 

can be a final arbitrator. With the thermostat separate from the radiator, there 

should be an increased probability of meeting the requirement to keep the whole 

room at a temperature.  
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The solution is likely to need an electric unit, as having a gas boiler in each room 

is undesirable from a safety, comfort and cost perspective; the room temperature 

will be controlled by appropriate setting of each radiator. So rather than a 

traditional central heating system this approach would suggest decentralising 

with an independent room based solution – such as Figure 51. 

 

Figure 51: Candidate solution for Axiomatic Design’s optimal heating solution 

This may seem an extreme interpretation of the method, but each room requires 

temperature to be controlled to independently set levels and according to different 

thermal parameters (due to size, windows, outside walls); this will involve 

independent measurement of each room and independent heating according to 

the measurement. The relationship between these functions is one of feedback 

and Suh’s method will not allow functional partitioning to proceed in such an 

instance. 

The next step of the method is to assess the ‘information’ required of each 

candidate solution. This is defined by the Information Axiom and requires the 

designer to assess the probability of meeting the FR requirements with the 

architectural solution. As defined earlier the solution needs to heat the room to a 

temperature and control it within 3 degrees centigrade. A consideration will be 

whether the radiator will have the heating capacity for the room; a simple analysis 

considering the size of the room and its insulation should determine this. If we 

assumed that achieving the intended solution was going to be difficult due to 

complex considerations of heat flow then we would conclude that the information 

level was high – what level would it need to be before a decoupled solution 

became more favourable? Suh recognises that this could be a possibility, but 

maintains that in uncoupled solution will always be more favourable. 
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The above solution is indeed a valid option, but other commonly used centralised 

heating systems are excluded from consideration by the method, even though 

they might represent a more economical solution. In reality, centralised systems 

are possible, but the method doesn't allow these to be explored due to its 

insistence on an uncoupled design where available. If an uncoupled solution 

doesn’t exist then the method requires a "near" uncoupled design, where either 

a clear performance analysis can be made or a clear decoupling strategy can be 

applied. This is often not the case in modern complex systems as admitted by the 

author (Suh, 1990). 

A final point is that this step is designed to address and provide particular DPs, 

and these are assumed to be independent. Therefore the method cannot deal 

with non-functional attributes and the trade-offs that these create. 

 Evaluation of solutions 

The method addresses Manufacturability. The method is extended to ensure that 

there is a one to one relationship between DVs and Process Variables (PV). This 

might be possible for components, but at a large scale system level such an 

interface will be too complex to be dealt with in this way. A particular DV might be 

associated with a subsystem or assembly, each of which could comprise multiple 

production techniques. 

 Critical interaction modular design methodology 

 Requirement analysis 

Step 1: Analyse the context type and requirement 

a) Establish context type (in order to choose problem solving approach, 

architectural strategy and risk) 

Context types are identified in Table 26. 
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Table 26: Central heating; Context types 

Context Type Quadrant  Approach Architectural Strategy Risk 

Process     

Problem PBN A systematic 
approach is 
possible drawing 
on a wealth of 
past experience in 
designing central 
heating systems 

Likely to follow 
precedent as many 
alternative 
architectures will have 
been devised that can 
help characterise the 
problem and solution  

L 

Evolution Obsolescence 
management 

Solution design is 
expected to be 
largely static over 
lifetime, with 
changes limited to 
replacement of 
parts and possibly 
future extensions. 

Modular, standardized 
parts should be 
considered for ease of 
replacement 

L 

Response Routine Standard project 
management 

No special measures 
are required of the 
process  

L 

Requirement     

Situation Clean sheet Explore 
requirements and 
options for new 
system  

A new architecture is 
required though 
constrained by the 
existing house 
structure 

H 

Divergence of 
values 

Pluralist A soft systems 
analysis can be 
employed to 
understand the 
various 
stakeholder views 

Stakeholder conflicts 
may need separation 
of elements in the 
solution due to 
differing value for 
money criteria 

M 

Management Manageable Can progress with 
clear ownership 
and definition of 
external 
boundaries 

Can rely on clear 
definition and 
responsibilities at the 
system boundary 

L 

Solution     

Risk Play it safe Design will be 
according to 
established safety 
and service 
related 
regulations 

Assume regulated 
requirements and 
measures at the 
system boundary, with 
the need to consider 
safety critical items in 
architecture 

M 

Complexity Simple  Simple models 
can be developed 
to understand the 
behaviour of the 
system 

A clear, well defined 
boundary can be 
assumed along with 
every possibility of a 
modular design 

L 

Organization     
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Context Type Quadrant  Approach Architectural Strategy Risk 

Coordination Centralised or 
off-the-shelf 

There can be a 
single design 
authority providing 
clarity of 
responsibility and 
design. COTS 
options can be 
considered. 

Central authority 
means that there can 
have clarity of external 
interfaces with clear 
flow-down of 
requirements 

L/M 

Target Stock-in-trade There will be clear 
expectations of 
what needs to be 
provided 

There will be clear 
architectural drivers 

L 

Business area Trade Specific and well 
qualified skills will 
be required in 
assembly and 
commissioning 

None M 

This step has helped to characterise the problem, the required solution and the 

organisation required to produce it. The risk associated with developing the 

design is medium to low; four context types being of a medium risk level and 

seven at a low level and just one at high. A system designed should be able to 

proceed with confidence that this is a reasonably well precedented problem with 

manageable and achievable solutions. 

b) Understand stakeholders and environment of the system in order identify all 

influences and capture requirements 

This step is also to provide the important contextual information that will influence 

the architectural design: 

 The boundary of the house could be at its external walls or the boundary 

to the land that the house is on 

 It is already built and composed of individual rooms, that are separated by 

internal doors, are reasonably well insulated from each other (by 

regulation), but that have different sizes, thermal properties and opening 

windows all of which creates different requirements for each space 

 The house is assumed as single ownership and therefore there will be a 

simple client relationship to general external utilities/services (not 

necessarily true when split into apartments) 

In this context, a means of independently controlling the temperature of each 

room space to a desired temperature is required. 
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A more detailed analysis of the context would yield: 

 By stakeholder (using CATWOE and PESTLE) 

o householder (owner) 

o occupants (clients) 

o service regulation (environment) 

o environmentalists (weltenshauung) 

 

Figure 52: Human issues in central heating 

  By object:  

o House; on two floors, its internal spaces need heating to a 

controlled temperature 

o Assumed use of a hydronic solution (heat transfer using water) 

o External supplies of gas, water and electricity 

 By location/environment: 

o Weather conditions 

o External heating sources, heat loss 

o Access to service supplies 

These can be shown diagrammatically on the Functional Context Diagram of 

Figure 53. 
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Figure 53: Functional Context Diagram for household central heating 

 Functional design 

Step 2: Devise the functional framework  

a) Determine functional requirements and flows from the needs of the contextual 

analysis of step 1. 

b) Elaborate candidate mission functional chains according to Transformation 

viewpoints, starting with client functionality and observing the principle of 

Simplicity where possible 

For the need of “independently controlling the temperature of the space in a 

house to a desired temperature”. The functionality of the transformation here is 

simple and so it is possible to examine further resource, management and 

viability functions at this stage.  

 Resource functions can be examined against the Hitchin GRM model, 

suggesting that resource function should address acquisition, storage, 

distribution, conversion and disposal of the resource: 

o For gas: provision of gas, metered and distributed by pipe, burnt 

and then expelled as exhaust  

o For water: provision of water, which is stored in a top up tank, 

distributed by pipe and disposed of when necessary by emergency 

water release 

o For electricity: provision of electricity, distributed by cable, 

converted to energy (of various forms) and disposed of to earth in 

an emergency case  
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 Management functions: 

o Control temperature by comparison of a measured temperature to 

a set level 

 Viability 

o Regulate heating by monitoring energy use in order to keep within 

a monthly budget 

These functional chains can be initially drawn out as Figure 54. 

Store 
water

Burn gas

Distribute 
electricity

Set 
temperature

Heat 
water

Measure 
energy use

Heat space

Water resource

Gas resource

Electricity resource

Manage 
temperature

Regulate heating

Provide 
water

Provide 
gas

Provide 
electricity

Distribute 
water

Emergency 
water 

release

Expel 
exhaust

Power 
systems

Earth 
electricity

Distribute 
gas

Measure 
temperature

Control 
temperature

Regulate 
energy use

Distribute 
heated water

Radiate heat

 

Figure 54: Initial functional chains of central heating example 

e) Identify Function interaction types 

f) Develop the functional architecture of functional chains according to Table 10 

of section 5.2.2, minimising the partitioning of fundamental blocks and trying 

to achieve a functionally independent design. 

However, to improve the functional structure the functional interaction types can 

be analysed as follows: 

 Distribution of heated water to radiators is a critical chain, but this also 

involves control of temperature in a control loop 

 Provision of gas as a shared service requires eventual disposal of 

exhausted gas as a critical chain  

 Provision of water as a shared service, including storage in a top up tank 

may require emergency water release as a critical chain as it is a 

pressurised system 
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 Provision of electricity as a shared service, is considered as energy that is 

either converted to useful action or requiring grounding, the latter of which 

is considered as a critical chain 

 Set temperature is a manual action requiring judgement based upon 

measured/experienced temperature 

 Regulation of heating is applied in order to control running costs 

(dominated by use of gas) and is a judgement 

 These is a potential conflict between the costs for the owner stakeholder 

vs warmth experienced by the client stakeholder, which could be seen as 

human conflict (Hc) 

With these considerations the above functional representation can be analysed 

with the additional understanding of the Function interaction types as in Figure A 

- 11. It should be noted that the functional chains have been modified; this is in 

order to reduce the incidence of fundamental blocks straddling the functional 

chain boundary. ‘Heat space’ has to recognise that heating radiators requires a 

hot water distribution critical chain, arranged in a control loop that is controlling 

the temperature to a set level. The setting of temperature requires a judgement 

that relies on experiencing the temperature in the space itself and therefore 

should not be separated from the room. The ‘Water resource’ functional chain is 

buffered from the ‘Heat space’ functional chain by the ‘store water’ function (which 

we might anticipate being a header tank). Water, gas and electricity provision are 

expected to be derived from public utility networks and therefore should be 

considered as shared services, but ones that can be relied upon in terms of 

capacity (the critical dependencies are therefore mitigated). The ‘Regulate 

heating’ functional chain function (related to the Owner stakeholder) has a 

possible human conflict with the Client stakeholder and therefore the functionality 

is expected to benefit from being separated; hence the Regulate heating chain is 

separated from the Heat space functional chain. The resulting functional chain 

arrangements only display a conflict in fundamental blocks where they exist at 

boundaries to the property. Those for incoming services are mitigated, as is the 

earth, for which there is a standardised procedure for domestic household 

applications. The remaining critical dependencies are for the boiler exhaust and 

the pressure relief valve – these cannot be mitigated as their features will depend 

upon the eventual design of the system. 
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 System design 

Step 3: Conceive the concept framework 

a) Elaborate functions to include functions that allow subsystems to be proposed 

and make a mapping of function to physical design observing constraints of the 

Functional interaction types 

b) Opportunities for similar functionality being performed by a common 

subsystem should be identified where possible 

As this is an installation of a system for heating in an existing building, an attempt 

must be made to determine the level of the house architecture at which the 

function of controlling the temperature needs to be considered; three levels of 

control can been considered: 

 Control of temperature at the whole house level 

 Control of temperature at the level of each floor 

 Control of temperature at the level of individual rooms 

If temperature is controlled at the level of the house, a temperature sensor would 

need to be consistently at the coldest place of house and therefore other rooms 

may be too hot. The system would then need to be balanced to try to account for 

the differences between rooms, but this would only suit typical conditions. A 

temperature sensor on each individual floor would provide better discrimination 

than at the house level and settings can be based on the different usage patterns 

of the two floors and the fact that heat rises. Such a configuration would be more 

appropriate for open plan floors, rather than with partitioned rooms, where 

temperature is allowed to equalise over the entire floor. The most appropriate 

solution to achieving control of temperature across all space in a house is to 

independently control each room to a level appropriate for each living space as 

required. Ideally, this assumes doors can be shut for no “leakage” when 

temperature regulation between rooms is required. This analysis implies that the 

‘heat space’ functional chain should ideally be applied at individual room level. 

The functional chains of water, gas and electricity provision are related to external 

services and as they provide shared services within the house and they are best 

considered at house level. The ‘regulate heating’ functional chain is servicing a 

household level issue of cost of ownership and therefore this could be considered 

to be regulated at the household level too. 
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Further considerations from a functional perspective are: 

 Independence and failure – chains cannot be shortened for this example 

(although exhaust, water pressure release and electrical grounding would 

benefit from employing short physical distances, as would the loops 

distributing water to each room that will be inferred in the next step of the 

process) 

 Balance activities - temperature control loops will need to account for 

ambient temperature variations and sizes of spaces in order to provide 

uniform heating. Where not subject to control action, loops need to be 

balanced so that they interoperate appropriately; in the case of hydronic 

central heating, water distribution loops are in parallel and they need to be 

balanced in order to manage pressure differentials in the system (Caleffi, 

2009). Various control philosophies may need to be explored for an 

optimal configuration (Tahersima, 2012). 

 Parallel activities – spaces will be heated in parallel 

c) Consider cohesive and dispersive influences on the physical design 

d) Establish Form appropriate to both function interaction types and other 

dispersive/cohesive drivers to devise subsystem boundaries within the broader 

functional framework. 

Components for the system to perform this functionality would be: external 

utilities (gas, electricity and water supply inlets), gas boiler, water pump, 

radiators, exhaust fan, pressure valve, earthing point, thermostat, and 

controller. 

An initial mapping of functions to these components is most likely to be that of 

Figure A - 12. 

It can be seen from Figure A - 12 that the critical interfaces at the external 

boundary of the house still exist in the physical domain. The impact of this on the 

system can however be considered to be mitigated due to the fact that the shared 

services for water, gas and electricity are subject to regulated interfaces which is 

designed, tried and tested to provide sufficient capability to deal with normal 

domestic usage. However the identified solution assumes a boiler component for 

each heated space – in a house with multiple rooms (assumed to be 10 in this 

example) this will not only require multiple boilers, but each boiler would require 

shared services of gas, electricity and water and significantly complicate the 

arrangement.  

A compromise solution is likely to be required and a number of options are 

available. Assuming a hydronic heating system (i.e. using a water based heat 
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transfer medium), the following are available as summarised in Table 27 (Taco 

Learning Center, 1998). 

Table 27: Options for hydronic system designs 

Potential solution 
types 

Central control Zone control Comments 

Series (single or 
multi circuit) 

Yes No Minimal piping, fittings and 
installation costs. Furthest 
radiator takes longer to 
warm up. 

Two pipe (reverse 
or direct return) 

Yes No Parallel circuit means 
more even heating of 
radiators 

Manifold (direct 
return) 

Yes Yes Valves used to provide 
independent temperature 
control for each chosen 
location 

Primary-secondary Yes Yes Valves and pumps used to 
provide independent 
temperature control and 
flow, providing better 
control overall. 

The first two centrally controlled options simply don’t have the variability in their 

control to be able to cope with changing conditions; as mentioned earlier, 

radiators could be balanced to suit a nominal set of conditions, but this can only 

be effective in those nominal conditions. Manifold and Primary-secondary options 

provide the necessary capability to control the temperature in individual rooms, 

which is achieved by individual temperature control loops and independently 

controlled hot water flows/chains. This leaves the decision as to whether the 

Manifold design (with its control of water flow by simple on/off positions of a valve 

from a plenum supply at pressure) or the Primary-secondary design with its 

independent flow-rate control should be preferred. The Primary-secondary 

design with its greater degree of control of the water loop flow for individual rooms 

can be used to speed the heating of a particular room, but at the disadvantage of 

more complicated control (complicating the shared service) and potentially at 

great cost of electricity. The Critical interaction modular design methodology 

would therefore select the simpler Manifold design on the basis that it provides 

the same functionality, but in a simpler way. If there were doubts about the 

performance of the Manifold system (for instance in cases where there was a 

wide difference in heating requirements between rooms), then both options could 

be retained for further analysis and comparison.  

In the UK the commonly employed method of providing zonal control is by the 

use of thermostatic valves on the radiators of a Two-pipe design. This is arguably 

a simpler method again than the Manifold design, but again complicates the 

nature of the shared service; from the perspective of the thermostatic valves, they 
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will be at different distances from the boiler and therefore will have to operate with 

water of different temperatures and from the perspective of the boiler it would 

have an ideal requirement to supply each valve according to different 

requirements. 

[Note: whilst independent flow-rate control is often used in the US, they are not 

commonly employed in the UK. When applying the method the author, with 

experience only of UK heating systems, was inclined to think that such an option 

was ideal, but not a practical proposition. However, the frequent use of similar 

concepts in the US suggests that the method is capable of challenging existing 

norms and allowing providing better options.] 

A schematic of an example Manifold design is given in Figure A - 13. This 

alternative architecture (without towel warmer to avoid complicating the diagram) 

is shown in Figure A - 14 and has achieved the use of a single boiler, which 

manage costs and will also provide a safer solution compared with the 

architecture of Figure A - 12 (as will be apparent in the next step). Instead of 

independently controlled heat sources, independent water loops for each room 

are provided by pressurised supply and return manifolds, which then assumes 

two shared service functional interactions (shown). In terms of fundamental 

blocks that have been partitioned across elements of the system, the architecture 

of Figure A - 14 shows the three mitigated shared services for the external utilities 

of gas, water and electricity. There are also the critical chains for removing 

exhaust fumes, relieving water pressure in a fault situation and grounding of 

electricity; whilst these critical chains will be needed in every design, the 

independent boiler in each room would require an exhaust fan for each room; 

further difficulties of this will be returned to when considering safety and external 

compatibility later in the process. A single boiler solution has however achieved 

a minimal set of critical chains for exhaust and grounding. 

 b) & c) Consider cohesive and dispersive influences to establish Form 
appropriate to Function Types and other dispersive/cohesive drivers 
 
A cohesive and dispersive influence assessment would suggest the following 

drivers:  

 External compatibility: analysis would suggest radiators should be located 

by windows and safety outlets should be on an external wall. This helps 

with heat circulation, but also the area beneath window is often ‘dead’ 

space from a furniture perspective 

 Safety: the boiler should be both close to the gas supply inlet and by an 

external wall for the exhaust outlet and safety reasons. Earth cabling 

should be in accordance with regulation. No such spatial limitations need 
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apply for water and electricity due to their ease of distribution and safe 

containment. Boilers should be kept out of living areas. 

 Internal compatibility: there should be a separation between the radiator 

and thermostat within a room. This prevents localised heating within a 

room and is a reason for not having thermostatic valves on radiators. 

An example schematic for a house is given in Figure 55. This shows a view as to 

the optimum placing of the boiler, radiators and thermostats for a building. This 

can then be used to aid the dispersion index calculation in the evaluation step. 
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Figure 55: Schematic of example placing of components in central heating system 
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Step 4: Lifecycle Solution 

a) Mitigate any architectural conflicts across timeline, managing the effect of 
unavoidably ‘compromised’ architectural constructs by separation over time 

b) Establish a lifecycle solution, whilst not compromising principles already 
applied in the previous steps, “design for” additional lifecycle related benefits  

c) Standardisation enables common solution to achieving functionality, and the 
reduction of variety achieved reduced complication by similarity (section 5.1) 

d) Any conflict with previous steps will have to be addressed according to relative 
merits 

From the previous steps of the approach, there are not anticipated to be poor 

architectural constructs that need to be separated over time. However, design 

for lifecycle could include the following measures: 

 Production Independence – items are Commercial off-the-shelf items 
(COTS), with the exception of a bespoke arrangement of interconnections 
(pipework and wiring) which will be bespoke to the build, and so the 
solution is inherently modular with has a high degree of production 
independence 

 Line Replaceable Units (LRU) – in a modular design consisting COTS 
items, these items can be LRUs. The individual elements of the system 
that may need replacing during the system life are likely to be: 

o the boiler and this could be line replaceable with the exhaust 
expulsion fan 

o pump 

 Organisation independence – utility ownership is established at the 
boundary of the property - they will require assurances of safe and suitable 
design. All other parts of the system are assumed to be under the single 
ownership of the householder. An exception would be if the property is 
leasehold with multiple ownership boundaries (such as apartments), which 
would lead to a requirement for an architecture that ensures independent 
supply/ metering 

 Standardisation – standard COTS items can be employed as the system 
design is a common one, with elements that are used in other system 
designs. Multiple spaces in a house enable similar modular components 
to be used. 

 Reconfiguration – this heating system is a centralised system and so 
reconfiguration is not anticipated as a driver. If it was, then there would be 
more of an argument for functional independence of the subsystems. With 
the current design, the decoupling of heating supply and control for each 
room does increase possibilities for reconfiguration 
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 Recycling (including reuse and disposal) – not applicable as choice of 
materials has not been made at this level of design 

In summary, the use of standard COTS items ensures a modular design allowing 
suitable strategies for LRUs to be chosen. Leasehold apartments could lead to a 
the need for further architectural boundaries to be imposed within the boundaries 
of the property for the purposes of metering. 

 Evaluate solutions 

a) Calculate the relative merit of the architecture is given by the Relative 

architectural score (RAS) 

The Modular Approach Methodology favours “primary-secondary” to provide 

effective, independent control of rooms of house. Simpler “two pipe” systems 

cannot provide the variability to cope with varied environmental conditions. An 

option of having a heat source (gas boiler) in each room is discounted for costs 

and safety reasons.  

Table 28: Architectural evaluation of central heating options (Critical interaction modular 
design methodology) 

 Option 1 Option 2 

Context suitability Yes Yes 

Critical function 
modularity 

0.81 0.89 

Critical degree 
modularity 

0.980 0.976 

Dispersion index Not a suitable design 0.757 

Bridge modularity 0.999 0.999 

System boundary 
modularity 

0.972 0.972 

Relative architectural 
score 

- 3.761 

 

Option 1 is not suitable as it suggested boilers in living spaces. Even if this hadn’t 

been an issue the dispersion index would have been low due to the desire for the 

boilers to be close to external walls for exhausted gases. Option 2 has a 

reasonable Relative architectural score, compared with the previous examples of 

chapter 8, but receives a lower score largely due to the need to centralise the 

boiler source for reasons of costs and safety.  

With only limited experience of the Critical interaction modular methodology to 

date, it has not been able to characterise what represents a ‘good’ score for each 

of the parameters or indeed therefore the Relative architectural score. The 

development of this understanding is a suggestion for further research identified 

in section 10.6.  
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 Discussion 

 A high level comparison 

Systematic Design and Axiomatic design were chosen as examples as they met 

criteria set for a methodology that would address the aims of the methodology 

being developed in this research. Table 29 shows that the Critical interaction 

modular design methodology developed also meets these criteria. The next 

sections analyse the performance of each of the methodologies to establish their 

strengths and weaknesses. 

Table 29: Comparison of methodologies 

A summary of the steps of each method against a generic description of the 

systems design process is given in Table 30. 

 

 

Required characteristics of 
methodology 

Systematic 
design 

Axiomatic 
Design 

Critical 
interaction 
modular design 
methodology 

Scope Concept phase Yes (entire design 
process) 

Yes (concept 
phase only) 

Yes (concept 
phase only) 

Starting 
point 

Both problem 
and solution 
based starting 
points 

Yes  Yes  Yes 

Approach Concrete, 
prescriptive 
procedural and 
analytical 

Yes Yes Yes 

Models Either activity or 
stage based 

Stage based Activity based Activity based 

Aim Design 
improvement 

Yes (by analysis) Yes (by analysis) Yes (by analysis) 

Desirable Support (to 
concept design): 

   

Methods 
(relevant 
to concept 
stage) 

Yes Yes 
 
 
 
   

None Yes 

Means Desirable No No No 

Notation Yes Yes Yes Yes 
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Table 30: Summary of processes to be compared 

  Critical interaction modular design methodology Axiomatic Design Systematic design 

Requirement 
analysis 

Step 1 "Analyse the context type and requirement" 
11 Context types are used to help inform an architectural strategy. 
The method prescribes process for a variety of start points (both 
new and existing)  
Structured approach 

a) Record stakeholder needs and nature of interaction 
b) Consider objects being acted on or systems interacted 

with 
c) Consider impact of location/ environment 
d) Record constraints imposed by system level decisions 

(mechanism) 
e) Capture using Functional Context Diagrams 

Advocates an optimum design so 
assumes a new design. Suggests 
that House of Quality can be used 
for existing design, but no attempt 
to prescribe its integration into the 
method. 
 
No attempt to prescribe problem 
definition 

"Clarifying the task and elaborating 
the solution" 

The method recognises three different 
starting points and these are 
discriminated within a prescriptive 
process. 
 
No structured/formal process for 
identification of requirements, but 
uses an outline set of questions. 
Defines means to abstract to a 
solution neutral problem 

Functional 
design 

Step 2: "Devise mission functional framework" 

a) Elaborate mission functional chains according to 
Transformation, Resource provision and Management 
Influence viewpoints  

b) Determine Function types  
c) Address completeness by elaborating Viability and 

Resourcing 

"Determination of FRs in 
Original Design" 

No prescription – left to 
“experience” of designer 

"Establishing function structures" 

Start with main flow, break down into 
sub-functions and examine logical 
interactions. Use material, energy and 
signal flow classifications 

Systems 
design 

Step 3: "Conceive concept framework" 

a) Consider dispersive (spatial/insulation/isolation including 
filtering) drivers between system elements  

b) Consider cohesive (conduction) drivers for elements as 
above 

c) Consider association drivers for elements 
d) Establish Form appropriate to Function Types and other 

dispersive/ cohesive drivers 
Step 4: "Reconcile against lifecycle solution" 
Address architectural conflicts across timeline 
Design for, according to: Organisation independence, Production 
independence, Standardisation, Line/ Lifecycle Replaceable Units, 
Reconfiguration, Recycling 

"Decomposition of the design" 
and "design helix" 

Map FRs to DPs, applying design 
axioms, corollaries and theories 
Not applicable 

Embodiment Design 

a) Combining solution 
principles to fulfil the overall 
function 

b) Selecting suitable 
combinations 

c) Firming up into concept 
variants 

d) Three basic rules (clarity, 
simplicity, safety) 

e) Embodiment design 
checklist 

Evaluate 
solution 

Step 5: Evaluate architecture 

Evaluation based on modularity indices 
Step 6: Evaluate system 

Satisfaction of Axioms Evaluating the concept variants 
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 Systematic Design 

Systematic Design clearly prescribes steps to perform during concept 

development. The step of clarification of the task is high level and does not 

develop key elements that may form a key part of the requirement. The only 

stakeholder referred to is the client and there is not explicit recognition of the 

constraints that will be applied by the environment. In this step there is an implicit 

assumption that the split of the system into subsystems, functions and 

assemblies is a straightforward task. The step of conceptual design encourages 

abstraction to a solution neutral problem, though this does not account for the 

constraints that would apply if this was not an original, but an adaptive or variant 

design. The seven steps to elaborate functional structures are clear and the 

concept of flows is a very effective way of elaborating functions and their 

interactions, although interactions are only distinguished in terms of material, 

energy and signal flows rather than behaviour. The flows made it easy to identify 

key areas of functionality required of the heating system. However, the exercise 

exposed that there is no guidance as to what might be an effective functional 

architecture. The search for candidate physical subsystems is conducted by 

various forms of structured brainstorming, with an assumption that an 

organisation will have already developed guidance, in the form of a morphological 

matrix, on how these components can be combined. The system designer then 

has a requirement to propose system architectures from potentially viable 

combinations, where guidance based on previous experience is called for. 

Filtering of potentially useful concepts is left to the evaluation stage and is at this 

stage that the failure to identify environmental constraints as part of the task 

clarification step will potentially result in a poor design. Concept evaluation is 

against a set of attributes, many of which cannot be determined without a detailed 

assessment of the concept design which may not be possible in early design 

stages. Criteria suggested tend to be based on standard “design for” practice and 

therefore heuristic in nature. Without functional models, or past experience, it will 

not be possible to evaluate the functional design. 

Strengths 

 Prescribed set of steps with supporting diagrammatic notations 

 Stresses a solution neutral approach 

 Flows are an effective concept for developing functional description 

Weaknesses 

 High level view of requirements with limited contextual identification 

 Not clear how to deal with existing solutions 
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 No guidance on partitioning of functionality 

 Assumes existing organisational knowledge for guidance on partitioning 

the system 

 Methods tend to be creative rather than analytical  

 Evaluation is of effectiveness of design rather than architecture, which is 

only likely to be possible when design has advanced and models are 

available 

The overall conclusion about this method is that there are useful techniques in 

helping to build a system definition, but lack of emphasis on requirements and 

analysis of functional design means that a system can only be evaluated when 

reasonably detailed concept models have been created and concept options are 

shared with stakeholders to validate or elaborate the initial requirement. 

 Axiomatic Design 

Axiomatic Design provides no guidance on how to identify requirements. There 

is a suggestion that the method of Quality Functional Deployment can be used to 

facilitate the discussion of the requirements and priorities with a potential 

customer, but there is no attempt to identify stakeholders or important influences 

of the system context. There is also no guidance on the development of the 

functional architecture as Suh’s axioms primarily relate to the way that function is 

partitioned to the system design and functional design is left to the ‘experience’ 

of the designer. Therefore it is concluded that for systems of moderate 

complication, the tools provided are not flexible enough to apply without the 

considerable support from traditional system design techniques. The 

Independence axiom puts a complete emphasis on functional independence in a 

way that favours uncoupling of the system and there is little flexibility in decision 

making - an independent design is paramount regardless of other factors or 

measures. The methods for establishing architectures are limited to consideration 

of functional partitioning and manufacturing only, with no obvious recognition of 

the need to consider non-functional parameters associated with the quality 

attributes of the system. Instead, the Information axiom is used as a method to 

assess the relative complexity of interfaces, but the method of calculation is not 

clear for complex systems and even simple mechanical interfaces involve a 

considerable level of calculation. The following are strengths and weakness 

identified and starred where observations coincide with Suh’s own analysis. 

Strengths: 

 Holds firmly to the established technique of ensuring functional 

independence 
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 There is a recognition of the need identify the complexity in an interface 

Weaknesses: 

 No guidance on generation of requirements or the functional design 

 Inflexible approach to architecture means that it may not suit large and 

flexible systems* 

 It does not accept inevitable compromises of reuse in legacy systems, 

preferring a rigid adherence to axioms*  

 It cannot deal with situations where the independence axiom cannot be 

met (Suh terms these “unstable systems”)* 

 There is no recognition of human interaction, which can introduce 

unpredictable effects outside the design analysis* 

 Critical interaction modular design methodology 

Unlike the previous methods, the Critical interaction modular design methodology 

takes a detailed view of the context in order to identify the requirements, and in 

doing so identifies potential architectural issues at the boundary of its system of 

interest. This is important as the system boundary should be seen as an integral 

part of the architecture as it forms a ‘subsystem’ boundary for its higher level 

system or system of systems. A key part of requirement identification is to be able 

to analyse characteristics of the context, context types, to determine relevant 

architectural strategies to be employed.  

There are a number of concepts for developing the functional design: identifying 

stakeholders, objects and mechanisms of the system; incorporating the Generic 

Reference Model (Hitchins, 2008) to identify a complete set of system functions 

whose use can be extended to analyse instances of functional interaction. An 

important tool is the functional interaction type concept, as this offers a way of 

assessing the relative difficulties associated with the functional interface to be 

able to identify suitable points for functional partitioning – the emphasis being on 

where not to draw a boundary (functional blocks) rather than where the boundary 

should be, leaving more options open to the system designer. The concept of 

being able to mitigate critical interactions allows a more flexible and pragmatic 

approach in comparison to the rigid decision process of Axiomatic design, able 

to deal with the inevitable trade-offs of system design. The functional interaction 

types also reflect the different natures of function in a system, which apart from 

the identification of feedback in Axiomatic design, is not recognised by the other 

methods. 
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In terms of physical design, apart from the logical partitioning according to the 

analysis of the functional interaction types, the Critical interaction modular design 

methodology allows for the designer to identify strategies of cohesion and 

dispersion in the physical architecture, which are directly related to particular 

system benefits in terms of quality attributes. Further consideration of lifecycle 

allows a further opportunity for critical interfaces to be mitigated across time, but 

also identifies through life benefits from specific architectural strategies. The 

consideration of how the architecture can positively influence non-functional 

requirements of design and lifecycle is unique across the three methodologies 

considered. 

Finally, the Critical interaction modular design methodology offers a means of 

evaluating the architecture design, which is not addressed by Systematic design 

and easier to implement than the Information Axiom of Axiomatic design. It 

focuses on interfaces as this is the main parameter that a system designer at any 

given level of the system can influence. A strength of the architectural evaluation 

method for Critical interaction modular design methodology is that its equations 

take established modularity measures (degree and bridge modularity) and use 

critical interactions as a means of identifying the behavioural complication 

associated with the interfaces. 

Strengths: 

 Strong emphasis on context and requirements and its impact on 

architecture for both new systems and those based on legacy 

 Flexible mechanism for structuring the functional design and development 

of the system that accounts for the complication of systems behaviour 

 Identification of how the system design can be used to have a positive  

impact on quality attributes and through life considerations, such as 

maintenance 

 Provides a means of assessing the quality of architecture, before models 

are developed to assess system effectiveness 

Weaknesses: 

 Method of assessment does not yet incorporate accurate views of what 

should be considered good and bad measures of modularity  
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10 Conclusions 

 Overview 

The benefits of employing the concept of modularity, and the associated 

principles of simplicity and independence, in systems design are well researched 

and documented. However, a search of the literature reveals a lack of 

methodologies to allow its exploitation, which is reflected in a low level of 

acceptance by industry. 

The research for this PhD has examined the nature of interactions within a 

systems architecture in order to provide guidance on how modularity could be 

implemented with the systems design process in order to achieve the certain 

desired benefits. This is incorporated in a methodology named Critical interaction 

modular design methodology.  

Validation of this methodology by applying it to a representative problem would 

be very difficult to achieve as there is currently no accepted way of evaluating an 

architecture and the evaluation of a systems design is a multi-criteria problem 

where a sense of value will be subjective, preventing an objective assessment of 

the output of the methodology.  Instead, this research has chosen to demonstrate 

the application of the methodology, justifying the logic of its individual steps 

against accepted principles. Several examples of different levels of complication 

are demonstrated and for the final example, the Critical interaction modular 

design methodology is compared with two of the main existing methodologies. 

 Current state of knowledge 

A search of the literature has been performed to establish the current state of 

knowledge for this research; to reveal areas of particular need and any current 

gaps that can be exploited. 

It is found that there are a variety of different views on what is meant by the 

systems design process and systems architecture; a system design process 

seeks to create an architecture by applying known architecture principles for a 

more favourable system design. There is a significant body of knowledge about 

the architecture principles of modularity, independence, simplicity and similarity. 

However, there is an apparent lack of science behind the practical application of 

these principles and a lack of understanding of the mechanism by which a system 

designer is able to contribute to an effective architecture. This may be why the 

theoretical benefits associated with a good architecture are not always achieved 

in practice and a practical approach is required. 

The literature on existing systems design methodologies has been reviewed to 

determine how they implement system architecting principles; their scope, 
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efficacy and the degree to which they are currently in used by the systems 

engineering community. The literature on system architecture shows the current 

role of patterns, architecting strategies and specific architecting methods and how 

they are being employed in systems design. However a survey in the literature 

has shown that there are no generally accepted systems design methodologies, 

with methods having a very low level of awareness and acceptance by industry.  

In the field of software much effort has gone into the generation of structured 

methods, but whilst these introduce a formal systematic approach they usually 

manage information rather than generate it, and do not generally address non-

functional requirements and the effect of the physical environment.  

Lack of acceptance of methods is likely to be, at least in part, due to the lack of 

identification of how a systems architect can design an architecture in order to 

achieve desired system attributes or outcomes. There is little in the literature that 

would allow an effective assessment of ‘quality’ of the architecture once it has 

been developed. 

 A proposed methodology for system architecture design 

The specific research question developed for this research was: 

“How can modular architectural principles be applied to the early system 

concept design to manage system effectiveness?” 

The methodology used in this research relies on three aspects: 

 Firstly, that a methodology that employs established beneficial 

architectural principles can itself be assumed, by induction, to benefit from 

these principles 

 Secondly, that showing a methodology can be applied across a variety of  

complicated problems is an indication of its suitability of application to 

problems in general 

 Thirdly, that favourable comparison of the methodology with the current 

leading methodologies in this field provides evidence of an advance in the 

field of knowledge. 

The methodology developed here has been developed on the foundations of a 

modular architectural approach, employing principles of simplicity, similarity, 

independence and modularity. Key in the application of architectural principles to 

systems problems, is how they can by employed to address functional, physical 

and behavioural challenges in such a way that a system designer understands 

the implications of an architectural decision on the solution outcomes. The 

proposed methodology characterises different types of problem or challenges 
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(context types) enabling guidance of how architectural principles can be used in 

different circumstances. The concept of context types also draws upon a variety 

of diverse systems engineering techniques, helping to provide a platform for a 

unified approach of systems engineering for addressing a variety of problems. 

A key concept developed by this research is that of functional interaction types. 

It recognises that different functionalities present varied degrees of challenge to 

the system designer. In recognising this, the system designer is able to identify 

fundamental blocks of functionality that should be grouped in the physical design 

and the development of which should not be shared across organisational 

boundaries. Appropriate management of these functional interaction types will 

simplify the analytical and developmental challenges for the system designer and 

the system respectively, reducing overall risk and leading to beneficial 

behavioural characteristics such as reliability and resilience. Principles of 

cohesion and dispersion can then be overlaid on the functional design to provide 

a favourable system design in terms of the quality attributes of survivability, 

reliability, safety, security, maintainability, environmental compatibility and 

operability. Further consideration is then given to elements of the system design 

that should be either associated or disassociated to address qualities that will 

promote better lifecycle properties. At each stage, observance of fundamental 

blocks, cohesive/ dispersive influences and association/dissociation may result 

in conflict, where consideration of separation in a temporal dimension can be 

employed. 

The purpose of this research has not been to produce a methodology that can 

derive an “optimal” architecture, but rather one that can suggest architectures 

that have been designed to favour certain quality attributes and reduce 

development risk. This research has argued that a system’s architecture is 

intrinsically linked to its quality attributes and therefore Arrow’s Impossibility 

Theorem (Arrow, 1951) suggests that there can be no such thing as a best 

system architecture in terms of the outcomes it achieves. A subset of possible 

architecture designs can be devised and evaluated in terms of both how well they 

address architectural principles and whether they will result in favourable 

outcomes. An evaluation of the quality of the architecture has been proposed, 

which builds on existing measures in the literature, to measure how well steps of 

the methodology have been performed. 
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 Case examples 

The research has looked at a number of case examples. 

The first example, a simple system derived from a Lego Mindstorms project used 

on a continuous professional development course, demonstrated a simple 

process line concept. This example was used to explore initial application of 

developing ideas for the method, and also to help develop elements of the 

method. 

The second example, based on a missile design, introduces a more complicated 

system that exercises many of the functional interaction types developed as part 

of this method. The complication of a missile design would normally occupy a 

specialist systems team of many engineers and so it has only been possible to 

address a small part of the design here, but enough to exercise the end-to-end 

concept design process. 

The third example involves the design of a central heating system and it is used 

to compare the performance of this method with the other major methods 

available to the systems engineer/ architect at this time. A simple example, it 

never-the-less demonstrates many functional interaction types and provides a 

manageable problem to compare analyses across the different methods 

The method has therefore been applied to simple and complicated examples and 

this has demonstrated that the method is straightforward in its application, 

capable of dealing with a range of system complication. 

 Method comparison 

The central heating example of Chapter 9, took a simple system concept that is 

both easy to comprehend and is also well developed in terms of possible 

architectural configurations that have already been widely deployed in building 

designs; this makes it possible to assess the different architectures that might be 

proposed by each method. 

The first conclusion from the analysis is that the existing methods only address 

part of the ‘front-end’ process of examining the context and deriving the 

requirements. At best Axiomatic design and Systematic design provide an outline 

of what needs to be addressed in determining requirements and addressing the 

functions needed. They also do not adequately address how to evaluate different 

designs in a systemic way.  

Axiomatic design has a much polarised view of what is acceptable, which allows 

little room for trade-off. As it cannot address the often conflicting drivers of 

different quality attributes, the favoured solution, based largely on functional 
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criteria, is quite likely to have undesirable properties when other quality measures 

are eventually addressed later in the process. The architecture of central heating 

system favoured by Axiomatic design was not ‘central’; the rules of the method 

strongly favour a decentralised, uncoupled solution where possible and only if 

this is not possible is a decoupled solution considered. The criteria used to 

discriminate between solution options (the Information axiom) is a single 

parameter and there is no guidance to how this single order of merit can represent 

the multi-attribute space (again, Arrow’s Impossibility theorem implies that 

combining multiple attributes with different stakeholder preferences in a single 

parameter of value is not possible). 

Systematic design provided a good method for developing the functional design 

from a requirement by the concept of functional flows. However, the development 

of an architecture was then seen as a largely creative step based upon past 

experience, the existence of which cannot be relied upon and the reliance on 

which will inevitably stifle innovation. The judgement of whether an architecture 

is a good one can only be made when the design has progressed to a stage 

where its quality attributes can be evaluated directly; this can therefore only be 

achieved late in the concept definition. Even at this stage, meeting desired quality 

attribute requirements will not guarantee a design that can be easily developed 

and operated through its life. In contrast, the Critical interaction modular design 

methodology, by employing a modular philosophy will simplify processes through 

the lifecycle and employs specific steps in it process to ensure this. 

To conclude about this comparison activity, both existing methodologies have 

little guidance on eliciting requirements and are not clear on how to deal with 

existing legacy systems and human interactions. Systematic design prescribes 

an effective concept to develop a functional description, but provides no guidance 

on partitioning of functionality and, using creative rather than analytical methods 

evaluation can only be of effectiveness late in the process. Axiomatic design has 

firm adherence to functional independence and the need to identify 

complexity/complication in interfaces, but provides no guidance on generation the 

functional design and has an inflexible approach to architecture that does not suit 

large and flexible systems. In contrast, the Critical interaction modular design 

methodology has a strong emphasis on context and requirements for both new 

and legacy systems. It employs a flexible mechanism for structuring the 

functional, physical and lifecycle designs for reducing complication and improving 

quality attributes and through life considerations, such as maintenance. Finally, it 

provides a means of assessing the quality of architecture, which can be 

performed before models are developed to assess system effectiveness. It is on 

this last point that the methodology has a weakness as has not been possible to 

establish accurate views of what should be considered good and bad measures 

of modularity; this should be the subject of further research.  
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 Reflection on Research Approach and areas for further work 

Research is a process of exploration; a foggy problem (Obeng, 1995) which is 

characterised by uncertainty in what the objective should be and what potential 

solutions are in meeting the objective. It means that a linear approach of 

performing a literature review, data collection, analysis and write-up is not always 

appropriate. Such an approach may be applicable when there is a mature body 

of knowledge to base research upon and a clear methodology to apply, such as 

experiments to achieve data to prove or disprove hypotheses. However study into 

the field of system architecture is not a mature science and the scale of problems 

required to exercise methods proposed make it difficult to achieve validation of 

approaches. Instead an approach of exploration using iteration and review has 

been employed where:  

 Ongoing research leads to new unanticipated areas of interest 

 Further literature search then demonstrates potential shortcomings of the 

ongoing research 

 There is a change focus of research in order to maintain a manageable 

scope within the context of a doctoral study. 

Whilst these circumstances cannot necessarily be foreseen, the effort and 

potential disruption to schedule needs to be provisioned for. The research started 

with a broad remit and this remit has been narrowed and focussed as areas that 

are of most interest and provide greatest contribution to knowledge became 

apparent. Correspondingly the title has changed from: 

“Conceiving an Innovative System Design Approach for Complex Systems in 

Modern Context” 

To: 

“A process for the application of modular architectural principles to system 

concept design for improved effectiveness”. 

The current title is more focussed in that it reflects a clearer view of focus that 

has developed over the term of the research in terms of intended strategy 

(modular concepts, rather than other possible architectural strategies), the stage 

of the process that it applies to (concept design, rather than the full systems 

process) and what is expected to be achieved (improvement of system 

effectiveness). 

The original intention was to investigate whether architectural principles existed 

(or could be developed) that would enable the designer to address the various 

measures of effectiveness of a system simultaneously; an initial concept was for 
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a set of aligned architectures, each one of which addressed a particular measure. 

However, it became clear that in all but a few fortuitous cases, a focus on a 

completely aligned architecture is likely to involve unacceptable compromises in 

overall performance and effectiveness. Instead a concept has been developed 

that identifies a number of key critical architectural constructs that need to be 

preserved in the systems design process. 

Perhaps the most difficult aspect to address has been the validation of the 

findings of the research. System design: 

 deals with many facets of system performance, effectiveness and design 

properties and as a result, examples tend to be large projects involving 

many man-years of experienced effort, which is outside of the scope of a 

doctoral study 

 is used across many domains of science and technology and to show 

application in all would be infeasible 

 deals with multiple criteria for success, for which methods of evaluation 

often lead to an oversimplified or subjective nature of evaluation and 

claims of validation are very difficult to substantiate.  

Development of a method that could be claimed to provide a valid evaluation 

would therefore be a research topic in its own right and likely to be far larger than 

the scope of a PhD study. Instead, this research has relied both on use of 

accepted principles from both research and practice of others and the 

demonstration of their application in example cases. In this regard, the 

demonstration of the method is not intended to provide validation, but to show 

how the methodology that has been researched and developed, copes with and 

manages typical system design problems. The case studies were chosen to be 

varied, but achievable. However, the very nature of the method developed is to 

create modular designs, and therefore the demonstrations do not provide a full 

view of how the evaluation methods perform when addressing highly integrated, 

non-modular designs. This would be suggested as part of further research into 

the method and in particular to calibrate what is perceived as ‘good’ and ‘bad’ in 

terms of the individual components of the Relative architectural score (Equation 

9). 

Firstly, the literature on systems complexity was used to identify that a prime 

focus should be on the interfaces of the architecture and that established 

concepts around modularity are a key tool in managing complication (section 5.1). 

No effective way of dealing with the relative complication of interfaces was 

identified in the literature and, by examination of typical system interfaces, the 

concept of functional interaction types has been proposed as a means of helping 

to establish which interfaces are likely to provide the most issues, from a 



 

190 
 

functional or behavioural perspective. The concept of functional interaction types 

provides the system designer with a means to decide on how to achieve a 

modular design. Known influences of spatial characteristics on architecture have 

been researched and incorporated in the method in order to facilitate to 

achievement of a good physical and lifecycle design. Finally existing methods of 

characterising architectural quality have been developed to incorporate the 

insights provided by the functional interaction types, and in particular critical 

interaction types, to develop an evaluation method that characterises the quality 

of the architecture in modular terms. As part of the development of the functional 

design and identification of the functional interaction types a notation has been 

devised. Whilst this has been developed along with the concept and improved to 

reflect issues encountered during this work, it would benefit from consideration of 

more examples and from the input from a variety of system designers to ensure 

that it is unambiguous in its notation and is easy to use. Such further work should 

lead to a more formally defined nomenclature and syntax definition. 

Different problem contexts were examined to understand how they influence the 

architectural decisions that a system designer should make, and this has led to 

the definition a new concept of context types. The system designer can use 

context types to determine architectural strategies, but it also creates a 

framework for unifying various strands of systems thinking into one methodology 

as it directs the designer to consider established principles of problems types, 

systems dynamics, soft systems thinking, critical systems thinking and systems 

of systems, as well as considerations for legacy systems, safety critical systems 

and urgent operational requirements (section 4.3). An area for further study is 

how the risk score proposed from the context types might be used to provide a 

qualitative indication of project risk. Whilst a method has been proposed for the 

relative evaluation of an architecture, a system will eventually need to be 

assessed by its performance and effectiveness also. Further study could develop 

a method for the evaluation of effectiveness, although it should be recognised 

that the means to do this may not be available in the earlier concept stages. The 

structure of the Functional context diagram proposed in this research lends itself 

to an evaluation of the system against performance (system of interest), 

interoperability (wider system of interest), compatibility (environment) and 

acceptability (wider environment) – with robustness over time. The author has 

used this to develop a method to identify completeness of evaluation and this 

concept could be developed to add the additional system evaluation step for the 

Critical interaction modular methodology (as identified in Figure 32). 

Further learning points from this research study have been the benefits that can 

be achieved by concerted and continuous effort. Effective research needs to 

maintain a coherent thought process in order to produce a coherent output. With 

part-time study it is sometimes difficult to maintain a line of thought from one 
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research session to another, and continuous effort through the thesis write-up 

stage is key to presenting a coherent story for similar reasons.  
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Figure A - 1: Lego Mindstorms example: Functional chain framework (option 1)
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Figure A - 2: Lego Mindstorms example: Functional chain framework (option 2) 
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Figure A - 3:  Lego Mindstorms example: Functional solution (option 1)  
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Figure A - 4: Lego Mindstorms example: Functional solution (option 2)  
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Figure A - 5: Lego Mindstorms example: Physical solution (option 1)  
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Figure A - 6: Lego Mindstorms example: Physical solution (option 2)  
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Figure A - 7: Missile example: functional solution (option 1)  
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Figure A - 8: Missile example: functional solution (option 2) 

  



 

220 
 

  



 

221 
 

Navigation

Launch

Midcourse

Terminal

Lethality

Propulsion, fuel and airflow

Establish global 
position

Establish position
Make inertial 

measurement

Determine way points 
to cruise phase

Launch guidance 
commands

Midcourse 
guidance 

commands

Acquire 
target

Track 
target

Target 
detection

Detonate 
warhead

Enable 
firing chain

Determine way points 
to terminal phase

Determine target model

Determine lethality 
parameters

Load fuel
Store 
fuel

Distribute 
fuel

Ignite 
fuel

Jet 
exhaust

Generate 
electricity

Store 
charge

Distribute 
charge

Power 
systems

Dispose 
of heat

Air 
tasking 
order

Inertial 
measurement

Actuate 
surfaces

Generate 
demandsFlight control

L L L

L

Capture 
air

Divert 
air

Accelerate 
air

ES
Mitigated critical 

dependency

Critical chain Control loop Shared service Exclusive serviceC CL SS ESOn-condition loopOL

 
Figure A - 9:  Missile example: physical solution (option 1) 
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Figure A - 10: Missile example: physical solution (option 2) 
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Figure A - 11: Central heating functional chains 
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Figure A - 12: Initial mapping of heating functions to components 
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Figure A - 13: Example of a manifold design hydronic central heating system 
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Figure A - 14: Alternative mapping of heating functions to components 
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