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Abstract

Air travel demand and the associated fuel emissions are expected to keep increasing in the
following decades, forcing the aerospace industry to find ways to revolutionise the design
process to achieve step-like performance improvements and emission reduction goals. A
promising approach towards that goal is multidisciplinary design. To maximise the bene-
fits, interdisciplinary synergies have to be investigated early in the design process. Efficient
multidisciplinary optimisation tools are required to reliably identify a set of promising de-
sign directions to support engineering decision making towards the new generation of air-
craft.

To support these needs, a novel optimisation methodology is proposed aiming in ex-
ploiting multidisciplinary trends in the conceptual stage, exploring the design space and
providing a pareto set of optimum configurations in the minimum cost possible. This
is achieved by a combination of the expected improvement surrogate based optimisation
plan, a novel Kriging modification to allow the use of multifidelity tools and a multiob-
jective suboptimisation process infill formulation implemented within an multidisciplinary
design optimisation architecture.

A series of analytical test cases were initially used to develop the methodology and ex-
amine its performance under a set of criteria like global optimality, computational efficiency
and dimensionality scaling. These were followed by two industrially relevant aerodynamic
design cases, the RAE2822 transonic airfoil and the GARTEUR high lift configuration,
investigating the effect of the constraint handling methods and the low fidelity tool. The
cost reductions and exploration characteristics achieved by the method were quantified in
realistic unconstrained, constrained and multiobjective problems.

Finally, an aerostructural optimisation study of the NASA Common Research Model
was used as a representative of a complex multidisciplinary design problem. The results
demonstrate the framework’s capabilities in industrial problems, showing improved results
and design space exploration but with lower costs than similarly oriented methods. The
effect of the multidisciplinary architecture was also examined.
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ȳi Disciplinary state variables
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C H A P T E R 1

Introduction

Αρχή ἠμιση παντός...

Πλἀτων

1.1 Background to this Study

It is universally accepted that the growth tendency of the airline industry will continue
during at least the first half of the 21st century. With different businesses, logistic models

and ideas emerging, the exact characteristics of the future commercial aviation market are
not entirely understood, as there might be a tendency to shift from the hub towards a point-
to-point transport. In an effort to reduce the uncertainty of the future airline industry market,
the Industry Affairs Committee (IAC) of the International Air Transport Association (IATA)
issued a research study [1] to identify risks and opportunities that the aviation industry may
face until 2035.

Whatever the future holds, one thing is certain: more and more passengers will use
aircraft for their travel. Consequently, the fuel consumption is also expected to increase in
the following decades. This unfortunately results to a significant increase in CO2 and NOx

emissions, posing environmental threats that need to be addressed vigorously. In this spirit,
the European Commission defined the ACARE 2050 [2] vision for the emissions of future
commercial transport aircraft. Among others, a target of reducing fuel consumption and
CO2 emissions by 75% is set. To achieve this goal, around 20% to 25% reduction has to be
attained through the improvement the airframe.

During the past decades, the aircraft industry has been successful in improving their de-
signs in a series of aspects, including fuel and noise emissions, costs, safety etc. However,
in the recent years it has become apparent that improvements follow an asymptotic trend. A
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2 1.1 Background to this Study

lot of research effort and cost translates only to small improvement in the aforementioned
fields. A fresh approach towards aircraft design is necessary to perform the technological
leap required to achieve the ACARE 2050 goals.

In order to revolutionise the industrial design procedures, one should act early in the
design process and steer towards new innovative configurations. Therefore, conceptual
studies should become more extensive as well as reliable to support these ambitious design
goals. There is also the need for a more physical understanding of the compromises made
by engineers during early tradeoff studies. Engineering tools should provide not only design
suggestions but also the maximum amount of reliable information possible so that designers
can confidently decide based on how a system design direction will affect other aircraft sub-
systems. Once again, the reliable assessment of several engineering concepts at an early
stage is critical for the success of the final configuration. The process should therefore use
a series of different objectives in which the potential designs should be optimised.

An important factor that should be considered if a performance jump is to be achieved,
is interdisciplinary synergies. The aircraft is a complicated system composed by a series of
sub-systems affecting each other. The new aircraft development procedures should com-
prehend how the sub-systems interact with each other and use this interaction to guide the
iterative design process. Early design and feasibility studies shall focus on the aircraft
as a system, taking into account disciplinary goals driven by a series of multidisciplinary
objectives.

Although currently investigated by various research groups and slowly emerging in the
industry, truly multidisciplinary studies are still not a standard industrial practice; the var-
ious disciplines are still sequentially optimised given a leading discipline, especially in
complex problems. To perform such studies — especially since these should be reliable in
the conceptual stage — new design and optimisation tools have to be developed according
to the above considerations. Such engineering capabilities should also reduce the compu-
tational and elapsed time costs associated with these complex multidisciplinary operations.
Expensive physical procedures like wind tunnel experiments have to be minimised but of
course not withdrawn, since if exploited properly they can support computational tools in
their challenging task.

Multidisciplinary optimisation tools have also to be adjusted to the geographical needs
of the industry. Companies tend to globally expand, with the design being currently per-
formed under remote areas. An efficient multidisciplinary tool and design process should
require the minimum amount of interdisciplinary information exchange to avoid costs re-
lated to the communication between groups of different technological expertise. As a part
of this aerospace engineering effort towards innovative and efficient configurations, this
work aims in the development of a numerical optimisation methodology to support design
studies based on the above considerations.
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1.2 Aims and Objectives

The aim of this thesis is to develop and evaluate an optimisation methodology that can be
used to efficiently and reliably guide the early stage design of an aerospace configuration
(e.g. transonic wing) towards a set of objectives. The numerical tool has to take into ac-
count multidisciplinary interactions between the sub-system disciplines to achieve a higher
performance than the one achieved with the current design methods. To achieve this goal,
the following steps have to be taken:

1. Use a surrogate based optimisation plan to reduce the analysis-related computational
costs, taking advantage of the low dimensionality of the conceptual design studies.

2. Develop a multifidelity method to further decrease computational costs while still
providing high fidelity results that correspond to a preliminary design stage.

3. Evaluate the effect of the low fidelity analysis tool in the convergence and cost at-
tributes of the developed optimisation methodology.

4. Adjust the methodology into a multiobjective formulation so that it can be used for
design problems that involve conflicting objectives.

5. Assess and improve the methodology using a series of analytical and aerospace-
related test cases.

6. Embed the method within a greater multidisciplinary design and optimisation formu-
lation and demonstrate the capabilities of the complete multidisciplinary optimisation
methodology in the aerostructural design of a transonic wing configuration.

7. Compare and assess the use of different multidisciplinary architectures that are suit-
able for aerostructural optimisation.

1.3 Contribution to Knowledge

The work described in this thesis uses a series of sub-methods or concepts that have been
specifically developed as a consequence of the needs of this particular research and to the
author’s best knowledge they are an addition to the existing methodologies. These include:

• The development of a methodology that applies appropriate ideas from surrogate
based optimisation, multifidelity and multiobjective optimisation. The methodology
uses these existing concepts as building blocks to compose a novel framework that
exploits their most promising attributes with the respect to the targets specified.
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• The novel application of the developed method in the context of multidisciplinary
optimisation. None of the similar methods has been applied for complex industrial
level multidisciplinary design problems, or as a part of a multidisciplinary optimisa-
tion architecture. In addition, a comparison study between two different architectures
that use this optimisation methodology is conducted.

• The use of a multidisciplinary optimisation in the conceptual design stage through an
exploratory optimisation scheme. It is common practice in the literature for multi-
disciplinary studies to be performed in the detailed design stage. However, if applied
in early stages (as in this work), the exploration attributes of the methodology takes
fully advantage of the interdisciplinary synergies identified.

• The development of a modified Kriging model that is tailored to the needs of mul-
tifidelity optimisation. This is proposed as a novel alternative to the more costly
Co-Kriging method which is the standard practice within a multifidelity data envi-
ronment. A modification on the mean squared error formulation to accommodate for
the uncertainty induced by low fidelity analyses is also suggested. Under this mod-
ification, Radial Basis Function models used to correct the error associated with the
low fidelity data can be also used to calculate the mean squared error of the error
model itself. This is necessary if the modified Kriging model is to be used within a
multifidelity Expected Improvement surrogate based optimisation formulation. The
Radial Basis Function error model correction is proven to be conditionally superior
to the Kriging error model correction when used within this modified Kriging model
context.

• A simple yet effective infill sampling criterion to decide whether a low or high fidelity
analysis should be performed to improve the design space understanding, while con-
sidering the computational cost requirements. This takes advantage of the already
generated error surrogate model and allows flexibility of use depending on the engi-
neer’s needs and the design stage within which is applied.

1.4 Thesis Outline

The thesis is structured as follows:

Chapter 2 discusses in more depth the traditional aircraft design process and the need
for shifting to a multidisciplinary approach in order to improve the performance of the new
generation of aircraft, hence posing the research problem. It subsequently offers a review of
the theory as well as the cutting edge of the literature related to multifidelity, multiobjective,
multidisciplinary and surrogate based optimisation.

Chapter 3 initially provides a set of detailed specifications for the optimisation method-
ology, based on the problem described earlier. The developed methodology is then pre-
sented in detail throughout the rest of the chapter.
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Chapter 4 uses a series of test cases of successively increasing complexity to demon-
strate the optimisation methodology. 1D and 2D cases are being used to visually explain
the surrogate model-related modifications as well as to fine-tune optimisation parameters.
The extended Rosenbrock function is used to assess the scalability characteristics of the
methodology. The analytic Sellar test function includes all the attributes of a multidisci-
plinary optimisation problem allowing the assessment of the methodology in such an envi-
ronment. It is also used to perform a comparison between two different multidisciplinary
formulations.

Chapter 5 demonstrates the framework in an industrially relevant transonic airfoil de-
sign problem using the RAE2822 configuration. An unconstrained, constrained and mul-
tiobjective formulation of this problem are presented. The author’s methodology is com-
pared against other optimisation approaches and a parametric study is also conducted. In
particular, the effect of the error correction metamodel, low fidelity analysis tool, constraint
handling method as well as constraint metamodel is evaluated.

Chapter 6 is dedicated to the comparison of the methodology against a similar multi-
objective surrogate based optimisation methodology developed within our research group.
The assessment of the methods is based on their performance in the GARTEUR high-lift
and the RAE2822 transonic airfoil test cases.

Chapter 7 demonstrates the methodology in a complex and expensive multidisciplinary
design optimisation problem, for which the framework has originally been developed. The
Common Research Model wing configuration has been used, featuring the characteris-
tics of a realistic transonic wing aerostructural design problem. Following the findings of
Chapter 4, the methodology is implemented in two different architectures, becoming a self-
contained multidisciplinary framework in its own right, and the efficiency of each of the
architectures is discussed.

Chapter 8 offers a comprehensive summary of the findings of the work. Reflecting on
the literature as well as the performance of the methodology, suggestions for future work
in multidisciplinary optimisation are provided.
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C H A P T E R 2

Optimisation Methods and Multidisciplinary
Design in Aeronautical Engineering

...give me sight beyond sight!!!

Lion-O

This chapter begins with an overview of a typical aircraft design process in an attempt
to clarify the respective needs of the aerospace industry. It is then followed by a pre-

sentation of the fundamental theoretical aspects of optimisation, as well as the cutting edge
approaches and methods used by researchers in the present day. The literature review was
performed, and presented, with a critical eye focusing on the PhD aims, as well what can
be used or modified to progress this scientific area. As such, when discussing the theory
and the research advances in the field, considerations regarding the applicability of each
approach are provided. This acts as an explicit reasoning as to why each approach might
be more appropriate over others1 for this particular work requirements. These support the
choice of the methodologies employed by the framework, as well as the foundation behind
the development of any new methodologies during this PhD thesis.

This PhD work focused in the development of an increased reliability conceptual to/and
preliminary design framework for rapid optimisation of aeronautical related systems (wings
etc.). This had also to take into account the interdependence and interaction of the various
subsystems within in a Multidisciplinary Design Optimisation (MDO) environment.

Therefore, the existing methodologies which the literature review is focused on and are
employed by the computational framework, as well as any developed methodology, follow
three principal directions:

• The minimisation of computational costs, without affecting the final design (ideally
1An overview of the method can implicitly provide such information, however a separate more explicit

explanation was considered necessary for increased clarification.

7
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global minimum) or the reliability (fidelity) of its performance.

• It should be embedded in a multidisciplinary framework to account for the coupling
of the aerospace related engineering systems (aerodynamics and structures will be
considered in this study).

• It should not just provide the optimum design under given conditions but also provide
a reliable and extensive insight on the design space so that it can be a guide and
contributor to design decision making in an industrial aeronautical environment.

2.1 Aircraft Design Process

2.1.1 Aircraft Development - A Historical Overview

The formal birth of aviation is traced in the beginnings of the 20th century. After the first
powered flight — and boosted by World War I — aerospace engineering took off to greater
speeds, maneuverability and altitude. From a physics point of view, this translates to a vari-
ety of conditions and engineering problems which characterised each aerospace era. In the
19th century, the problem opposing powered heavier than air flight was two fold. Although
the fundamentals of fluid mechanics were well established from the work of pre-era mathe-
maticians, the formulation of the equations themselves was not appropriate to provide clear
design directions. Hence, experimentation in form of trial and error was the typical way
for the pioneers to achieve viable flying solutions. Significant contribution in this direction
was provided by sir G.Cayley (who "invented" the conventional aircraft configuration) (see
Fig.2.1) and O.Lilienthal (see Fig.2.2) among others. By the end of the 19th century, the
"correct" design direction was known. However, a second problem proved to be a bar-
rier: engine power. Aerodynamics design was effective enough to support human weight.
However, this dictated heavy structural designs, followed by heavy motors of insufficient
power. Only when engines were powerful and light enough did the complete system of
aerodynamics, structures and propulsion provide an overall good design to achieve flight.
This is a typical example of the interdisciplinary connection in a complex engineering sys-
tem such as the aircraft. Hence, it was shown from an early stage, that the secret to an
efficient design was not only considering each engineering discipline (aerodynamics, struc-
tures etc.) alone, but also their interactions with the other disciplines. This allowed a more
efficient compromise, a more revealing design process and finally, superior configurations.
Technological advances provided more powerful and light engines, as well as lighter and
"stronger" structures. The simultaneous advance of aerodynamics through the development
of analysis tools propelled the design further. After a few decades, — and with the advent
of the jet engine — this disciplinary synergy allowed aircraft to fly in transonic speeds.
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Figure 2.1: The conventional aircraft config-
uration conceived by G.Cayley, featuring a
lifting surface and conventional empennage.

Figure 2.2: O. Lilienthal performed an ex-
tensive series of experiments with various
glider designs. The results were monitored
in a scientific manner and were later used
by the Wright brothers.

2.2 Current Design Approach and the Need for Multidis-
ciplinary Design

Aerospace engineering involves high correlated disciplines. The typical design procedure
requires the assessment, via an analysis method (experimental, theoretical or computa-
tional), of a disciplinary performance followed by a redesign driven by the feedback pro-
vided by the analysis. In short, this design loop is guided to efficient design directions
by experienced engineers who exploit the physical feedback provided by experiments or
computational analyses, in a process similar to the one shown in Fig.2.3.

Of course this is just a simplistic depiction of the procedure since in reality the industrial
processes are way more complicated than this. The aircraft is a complex system consist-
ing of many different subsystems interacting with each other. Especially when considering
aviation safety requirements and certification regulations which make aviation a very slow
moving industry, the requirements in human resources are increased. Therefore, for better
management, coordination and efficiency of the engineering work, aerospace manufactur-
ers follow a strategy of distributing the work into many groups and subgroups. These are
associated with disciplinary and subdisciplinary analysis and design work, generating their
own expertise and using their own disciplinary analysis tools. Nowadays, given the ease
of communication and information transfer, these engineering groups may be distributed
even across countries, working isolated and communicating mainly in predefined review
meetings which demand interdisciplinary information exchange.

Hence, each discipline involved in an engineering system is designed by the respective
engineering group until it reaches the required level of maturity. In the following stages,
the design becomes progressively more mature and detailed until it reaches convergence.

In a computational design study or an optimisation environment, engineering experi-
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Figure 2.3: Typical design process: Multiple disciplines work in parallel using their own tools to
perform disciplinary analysis and design.

ence is assisted by an optimisation framework. An important difference between a tradi-
tional and a computational design process, is the understanding and involvement of the
physical background of a system’s discipline. An experienced engineer, on top of being
able to foresee the required design changes to improve disciplinary efficiency through un-
derstanding of the physics involved, can also predict how these changes may impact other
disciplines. Hence, the engineer may consciously proceed in a direction which will not
maximise the efficiency of his discipline, but will maximise the efficiency of the overall
engineering system. A typical example of this, is quality and cost. When designing a
product to meet the highest quality and performance standards, cost discipline is inevitably
driven by performance. Therefore, even when minimizing the cost for a given performance,
the cost will still be higher than another product for which performance and cost are con-
currently considered. The product then will not be overall in the market as one with the
disciplinary tradeoff (for slightly less quality will have significantly lower costs2).Multiple
disciplines should not be confused with constraints, for the latter do not provide separate
physical information in the design nor the system, rather just criteria as to which design is
acceptable and which is not3. The experience of a technical director and the communica-

2This multidisciplinary design concept has a common ground with multiobjective optimisation discussed
later.

3In early MDO efforts, or cases where no major computational resources are available, constraints are
used as a surrogate to MDO, to produce a more meaningful design. For example, structural calculations may
provide a wing thickness. However, in this case aerodynamics and structure disciplines are not optimised
concurrently or coupled together. Rather, a simple criterion decides whether a potential aerodynamic design
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tion between disciplinary groups of different disciplines is now replaced by an algorithm.
Hence, an automatic computation method of interdisciplinary communication should be
used, so that it is the the overall efficiency of the system which is optimised and not each
single discipline. A typical aeronautical example (considered in the present PhD thesis as
well), is a design involving the interaction between aerodynamics and structures. When the
subsystems are not coupled (as in sequential approach), aerodynamic design is followed
by structural design using aerodynamic loads as an input (see Fig.2.4). This is an iterative
procedure dictated by aerodynamics, and as such the final design will have the optimum
aerodynamic efficiency (e.g. elliptic lift distribution) and the best structural design possible,
constrained by the aerodynamic shape.

(a) A typical sequential design procedure. In
each step, after an aerodynamics optimisation,
the structures are optimised to match the desire
aeordynamic shape. Common design variables
have fixed values dictated by aerodynamics [3].

(b) A coupled design procedure. For a specific
design point which includes aerodynamic, struc-
tural and common variables, aerodynamics and
structural analyses are performed simultaneously
until this Multidisciplinary Analysis (MDA) con-
verges [3].

Figure 2.4: Sequential versus Multidisciplinary Optimisation.

When two or more disciplines are designed simultaneously, information is exchanged
between them, and the final result is the optimised system. In this case, it might be that
neither discipline has been optimised, however, the coupled system is free to reach its max-
imum efficiency (see Figs.2.5, 2.6). This is illustrated by an aero-structural design example.
In such a system, aerodynamics’ variables also have an impact to structures and vice versa.
Hence, by changing the lift distribution and the wing thickness, a structural analysis (or
even sizing) has to be performed, providing new structural displacements, affecting the
aerodynamic performance. After a Multidisciplinary Analysis (MDA) cycle is performed,
the design point and the respective objective function values are used to feed the optimisa-
tion process. In this simple Multidisciplinary Optimisation (MDO) case, the optimisation
process does not use a single disciplinary analysis to evaluate the merit function, but an
MDA iterative procedure.

should be accepted or not.
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Figure 2.5: In the case of aerodynamics driven sequential optimisation, aerodynamic optimality
is satisfied and the lift distribution is always elliptic. When information from the structures to
the aerodynamic discipline is provided (coupling of the disciplines), the resulting lift distribution
optimises the coupled system [3].

2.3 Contemporary Optimisation Elements

An optimisation process applied to an industrially realistic aerospace design problem is way
more complex than the optimisation of a mathematical function. The fact that in most cases
the objective function is not a result of simple analytical calculations, combined with the
need to minimise computational costs, led to the development of various techniques which
require additional optimisation building elements. This section presents these elements
within the process of aerospace design, also providing an overview of the respective state
of the art research work. Potential gaps, research limits as well as applications of such
methodologies are identified. This review allows the educated selection of the elements that
are most appropriate for implementation within the author’s unified methodology (Chapter
3). Furthermore, required modifications and extensions of these methods are identified,
some of which are included in this unified framework4.

2.3.1 Geometry Parameterisation

An aircraft design process, like any physical product design, in order to allow parametric
changes of it, requires a robust and strict mathematical way of representing geometry in
terms of design variables5. In a conventional design procedure, CAD engineers are respon-
sible for manually applying the geometric changes dictated by the aircraft development.
Hence, there is a physical interface between design and geometry update. However, in
MDO, the very nature of the design optimisation process demands an automated genera-
tion of the updated geometry or its changes.

4Others are suggested for future research work.
5By parameterisation, we refer to the definition of a geometry as a result of given parameters.
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Figure 2.6: Direct comparison of a range maximisation problem. When designed sequentially, the
wing does not reach the performance of the multidisciplinary optimised one, despite its superior
aerodynamic efficiency [3].

Sobester and Forrester [4] provide general guidelines for setting an efficient geometry
parameterisation. Typically, this includes the minimisation of the number of design vari-
ables to unambiguously describe a given geometrical parameterisation range, as well as
the avoidance of parameters that cause geometrical discontinuities. Following such sug-
gestion, the — unfortunately contradicting — attributes that an optimisation framework
should possess [4] are conciseness, robustness and flexibility.

Geometry parameterisation techniques are grouped into categories depending on their
attributes. These include discrete methods, polynomial methods, analytical methods, CAD-
based methods and Free Form Deformation methods. In typical engineering practice, poly-
nomial methods are of wide use. In this, objects like OML (Outer Mold Line) are composed
by simple elements like curves, which are then parameterised by mathematical operations
(known as the 2 and 1

2 dimensionality concept). Namely, parameterised curves and shapes
are then "extruded" along other parameterised curves, to produce the final 3D geometry.

In an ascending order of complexity, the family of polynomial methods for curve and
surface parameterisation [4, 5] includes Bernstein, Bézier and Rational Bézier Curves,
Bézier Splines, B-Splines and Knots and Nonuniform B-Splines, Nonuniform Rational B-
Splines (NURBS) as well as Ferguson’s Splines [6]. Parameterisation of curves is used
extensively for the development of airfoil sections, fuselage sections as well as guiding
curves for the aforementioned sections. For completeness purposes, the PARSEC method
is also mentioned. It uses mathematical expressions to directly represent an airfoil. This
approach is limited to 2D cases (airfoils) and as such it cannot be used in this research work
which requires a more generalized technique.

In 3D geometry problems like wing design, OML surfaces parameterisation techniques
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are of main interest. Following the 2 and 1
2 dimensionality concept, which uses an already

designed curve, different ways of translation along guiding curves are possible to generate
a surface. These include [4] Lofted Surfaces, Translated Surfaces, COONS surfaces, Bézier
surfaces, B-Splines Surfaces, NURBS Surfaces.

The above methods focus on ways to use control point positions to generate and param-
eterise geometries. There is another class of methods that use an already defined geometry
(the datum geometry) with the design variables parameterising its changes. The Hicks -
Henne Bump function method falls in this category, parameterising the changes in the form
of bumps superimposed in the datum geometry curve. This is an easy to apply method with
the advantage of maintaining a smooth geometry when the datum geometry is smooth as
well. However, it lacks flexibility and its form is not intuitive to allow its use in complex
geometries.

Another popular method is the Free Form Deformation [7] (FFD) by T.W. Sederberg.
A grid of control points defines an FFD box, which includes the geometry of interest as
shown in Fig.??. The control points perturb the geometry using Bézier curves and Bernstein
polynomials. Each control point movement defines a design variable and allows the direct
calculation of the new geometrical coordinates using the following expression for a 2D
shape (surface) in 3D space:

S(u, t, s) =

m∑
i=0

n∑
j=0

p∑
k=0

ai jk fi(u)g j(t)hk(s) (2.3.1)

In this, S (u, t, s) represents the coordinates of a deformed point originating at (u, t, s),
and m, n, p define the grid of control points in the x, y, z direction. Instead of the Bernstein
polynomials fi(u),g j(t),hk(s), several modifications using other forms can be done.

One of the advantages of the method is that it can deform locally while permitting a
variable degree of continuity with the undeformed regions. Flexibility is attained even with
a low number of design variables when control points are distributed depending on the local
flexibility needs. It is a highly intuitive method in terms of the effect that each control point
movement has on the geometry. For gradient based optimisation methods, this approach
can also provide sensitivities of the surface mesh to the design variables [9], [10]. The
fact that it maintains the grid topology, makes the FFD compatible with mesh deformation
tools6 and can be used as one as well (more on grid deformation methods in the following
section). An additional advantage over the rest of the methods is the direct definition of
sections of the geometry that are desired to be unchanged, simply by letting the respective
sections out of the FFD box. Changes are then performed only in the part of the geometry
inside the FFD box. A disadvantage is the difficulty to predict the optimum positions,

6This approach can be used in any geometric entity like computational grids which require "parameteri-
sation" as well.
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Figure 2.7: Example of an FFD application in a BWB aircraft. Increased control is obtained in
areas of interest via control points refinement. Furthermore, an FFD box can be inserted inside
another FFD box [8]

number of control points and bounds of design variables to cover the desired design space.
However, this is an inherent negative characteristics of parameterisation techniques.

The method was developed in 1986 as a solution to the problem of "defining solid
geometric models of objects bounded by free-form surfaces [7]". In his paper, Sederberg
also included a method to provide smooth connectivity of kth degree of continuity between
the geometry of the respective various planes of the FFD box (see Fig.2.8). This is done by
freezing the k cells adjacent to the control point of interest.

Figure 2.8: FFD boxes and continuity around a solid object [7]

Four years afterwards, S.Coquillart [11] extended the method. He highlighted the need
for a refinement technique for small bumps, pointing out the hierarchical B-Splines refine-
ment approach with three chunks in each FFD sub-cube. He stressed that a parallepipedi-
cally shaped FFD box does not provide flexible deformation for complex shapes, proposing
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the modified "EFFD" method that allows the FFD box to take any arbitrary shape as well
as composite lattices.

In 1992, Hsu, Hughes and Kaufmann [12] noted that some shapes are not generated in
an intuitive way. Within an optimisation context, this could be a problem since it relates
to the bounds of each variable (control point) so that a novel geometry can be attained. In
their proposal the FFD equations are solved inversely. With the new position of a surface
point is defined, the required control points’ positions are updated. Such an approach leads
to an undetermined system (since infinite combinations of control point movements can set
the point to the exact location), but the accepted solution is the one related to the minimum
least square error. Of course, such a method cannot be used in this interactive way inside
the framework of an automatic optimisation loop7. However, this inverse characteristic
could be used to determine the bounds of the design variables given the desired deformed
geometrical extremes.

H.J. Lamousin and W.N. Waggenspack, Jr. [13] also recognised that FFD lattices should
not be uniform proposing a new procedure. This is an extension of the EFFD approach into
more general shapes based on NURBS. Their approach requires from the user to select a
set of points, topology (say mesh elements) to model the embedding object.

Samareh [14] applied FFD for Aerodynamic Shape Optimisation (ASO). He outlined
various methods of geometry parameterisation and their attributes, focusing on CAD meth-
ods Feature Based Solid Modelling (FBSM tools) and the FFD approach. The incompati-
bility of CAD approaches with gradient based optimisers is noted, as in FBSM it is difficult
to compute grid point sensitivities to design vectors. On the other hand, FFD was found to
be appropriate for the conceptual/preliminary design stage with a defined topology and for
not excessive changes required.

Another popular method is the Class Shape Transformation (CST) proposed by B.M.
Kulfan [15, 16] and J.E Bussoletti of Boeing Commercial airplane group. It is a method
specifically developed for aerospace applications (e.g. airfoils, wings, cowlings, fairings
etc.) with the distinctive characteristic of distinguishing the shape of interest in thematic
parts. For example, an airfoil is divided in an upper and lower section, leading edge (LE)
section, aft section and trailing edge (TE) thickness; and described using different class
functions and respectively grouped design variables, superimposed to create the complete
expression of the upper and lower section. This method and its improvement [17] are highly
flexible within its aerospace application region, as it can transcend families of airfoils or
have increased control inside an airfoil family. Depending on the application however, (as
in the present work), novel geometries might also be of interest, raising a doubt regarding
its potential in such cases.

As a final note on aerospace design parameterisation, standardized geometrical con-
cepts and variables like span, surface area, twist, sweep etc., can be used as a design vari-

7In fact, it can potentially be used in the emerging field of interactive optimisation
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able. However, although intuitive and widely used in specific areas of the industry, these
methods severely limit the scope of the designs. In order to unconstrainedly explore the de-
sign space for new and potentially novel configurations, one should deviate from the secure
but restricting use of these concepts and use surface geometric representation in a purer
form, as the one described in this section.

For a brief but informative overview of the geometry parameterisation methods, the
interested reader is referenced to the review paper of Samareh [18]. In this work, shape
parameterisation techniques especially for MDO purposes are being discussed and the spe-
cial needs of Multidisciplinary Shape Optimisation (MSO) and Computational Structural
Mechanics (CSM) are pointed out. The introduction of more disciplines (e.g. structures)
creates extra numerical setup requirements to the optimisation procedure. An example of
this is the case where the OML geometry is connected to the inner structural geometry of
a wing and so do the grids (further details are provided in the next section). For a more
thorough presentation as well as comparisons on the assets and the results produced by the
various methods, [19–23] are suggested.

Taking into account the above, and considering the complex 3D design cases asso-
ciated with MDO, it is evident that our attention should be focused in the FFD or CST
method. The Hicks-Henne bump function method is not appropriate since the FFD and
CST methods are more intuitive and flexible while providing the necessary smoothness.
FFD’s deviation from the standard concepts of aerodynamic design (contrasting to CST),
allows novel design exploration. Novel geometry exploration is therefore assisted by the
generality of the approach and in a sense it is suitable for both local and global exploration.

During this thesis, the FFD method was used for the geometric parameterisation. An-
other important attribute of the method is its applicability in computational grids. As dis-
cussed in the next section, for complex 3D aerodynamic models, the parameterisation of
the geometry alone is not sufficient since it would demand the costly regeneration of the
computational mesh. FFD can parameterise the changes of both the geometry and the grid,
and this is the way it is being used throughout the computationally expensive cases of the
present work (e.g. Chapter 7). FFD is an extensively used concept that has shown its
appropriateness for a conventional transport aircraft as well as a supersonic platform [24]
design. Ronzheimer [25] has used it for simple airfoil cases, unconventional geometries
(VELA), as well as MDO wing geometries (CFD/CSM) displaying its potential to handle
aerodynamics and structure deformations simultaneously. The concept of the initial geom-
etry being parameterised based on deformation rather than on geometric building blocks,
is sensible since it resembles the design procedure. Concurrently, as Samareh [18] points
out, it reduces the number of required shape design variables and provides good flexibility
without lacking in conciseness. The changes due to a control point movement also have a
"design meaning" since they directly provide qualitative information on what changes are
more beneficial for the design.



18 2.3 Contemporary Optimisation Elements

2.3.2 Mesh (Re)generation and Deformation

In aerodynamics simulations (CFD) where numerical methods are required to solve a dis-
cretised set of equations, a computational grid is generated around the geometry8. During
the optimisation process a geometry is analysed (assessed), followed by the description of
a new geometry which in turn should be analysed again and so on. This pattern requires the
consecutive use of computational grids around the updated geometry to conduct the dis-
ciplinary analyses. The simplest approach in order to tackle this requirement is simply to
regenerate the grid for every new geometry. However, this is not always an efficient strategy
since generating a grid is computationally expensive especially in complex 3D geometries
[27], as well as being a potential source of inconsistency due to topology and connectivity
changes.

Grids are categorized into structured and unstructured types, and similarly, grid defor-
mation methods for structured and unstructured grids have been developed [18].

Structured Grids

For structured grids, interpolation has been extensively used. Gaitonde’s [28] framework
involves a transfinite interpolation (TFI) for which the effect that type blending functions
have on the quality of the grid is displayed. Soni’s [29] blending function based on arc
length, proved to be robust and effective for regeneration or deformation of grids. Jones
and Samareh [30] extended Soni’s approach for cases where multiblock grids have to be
regenerated or deformed. Hartwich [31] used a slave-master concept to semi-automate the
grid generation process and a Gaussian distribution function to preserve the integrity of the
grids.

Moigne [32] used a flexible grid approach for an adjoint-based optimisation framework
where the inner cells are deformed along the grid lines that start from the geometry and end
to the boundary(see Fig.2.9). Attenuation is used to diffuse the nodes’ displacement across
the grid lines. This is calculated based on the "arc length position of the nodes across the
grid line" and is necessary to establish zero node displacements in the boundaries.

More recently, Kenway and Martins [33] used the linear elasticity method within a wing
optimisation study. In fact, a blend of a linear elasticity method and an algebraic method
was used to deform the grid in the best possible quality. Every mesh edge was replaced
with a spring constant, inversely proportional to its length. In the algebraic warping, the
initial original distribution of interior points was used, which although fast, was not robust
especially for rotational deformations (see Fig.2.10). Also, this created problems in blocked
mesh since perturbations were attenuated only inside the block. To avoid poor quality,

8Here, the focus is not on the mathematics and practices of this scientific art. For an overview of the
theory behind mesh generation see [26]
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Figure 2.9: Original and Deformed grid around a wing [32].

the farfield boundaries had to be extended (which may be difficult or costly in complex
geometries).

Figure 2.10: Grid becomes invalid when algebraic warping is used for large rotational deformations
[33].

The linear elasticity approach can lead to a good quality deformed grids even for large
deformations, however it comes with a high computational cost. With a hybrid scheme,
a linear elasticity-based scheme is employed for coarse grids, handling the low-frequency
perturbations while algebraic warping is used for small, high-frequency perturbations. This
allows high quality grids with reduced computational expenses.

Unstructured Grids

Before proceeding further to these methods, let us first point out that the FFD parameteri-
sation method discussed in the previous section can be also used to deform grids in a way
similar to its application on geometries. Furthermore, it is insensitive to grid topology and
can be used for both structured and unstructured methods with the same formulation.

For unstructured grids, a large number of concepts have been proposed, mostly based on
physics-inspired concepts like the spring analogy, linear elasticity, stiffness tension models,
even methods based on heat conduction.
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To avoid a costly regeneration of 3D grids, Botkin [34] performed a local regridding
for specific edges and faces depending on the design variables that change their value.
Farhat and Lin [35], used a moving reference frame that was attached to selected nodes,
in order to perform transient and aeroelastic problems9 (more on the aeroelastic problems’
requirements in a following section). Another approach uses the concept of linear springs
[36, 37] to model the nodes movement providing a pseudo-stiffness to the grid. The method
was displayed in an aerolastic application for the standard AGARD wing 445.6. Although
a promising idea, in fine meshes this can result in significant grid deformations after a few
flow and grid iterations, often causing convergence issues. This was due to nodes being
moved and placed very close after the grid deformation iterations. As a result, high levels
of skewness — or even negative volumes — would exist causing numerical instabilities.
Cell size has to be minimized dictating a significant decrease of time step (through CFL
condition).

Degand et al. followed a different approach, paralleling grid deformation to torsional
spring deformations [38]. This skips the invalid deformations due to crossovers of points
through cell edges and the method was later extended to 3D [39]. Although slightly more
complicated (triangle faces were used inside the tetra cell), nodes avoided crossover with
tetra faces. A similar method for 2D as well as 3D cases was developed by Murayama et
al. [40].

Similarly, Xia [41] applied a stiffness tension model that uses the cell volume to avoid
the generation of negative volumes, an approach which proved to be efficient and robust.
Nielsen [42] improved the robustness of the spring analogy methods by proposing a method
based on modified linear elasticity theory. Later, in 2009 Dwight [43] developed his own
version of the linear elasticity method with both cases tested showing robustness potential.

Like Degand et al, Crumpton and Giles [44] followed the physical phenomena analogy
to model grid deformation. Instead of springs, they used the heat conduction equation.
Information regarding cell volume "stiffness" was provided in the form of the k conduction
coefficient.

Liu et al. [45] employed the Delaunay graph mapping technique. This proved to be less
computationally expensive and more effective than the spring analogy approaches method.

Following a different path, Beckert and Wendland [46] employed the concept of meta-
modelling to appropriately deform unstructured meshes. Specifically, they used RBF for
Fluid Structure Interaction (FSI) problems, as the method can be extended to tackle the
volume deformation requirements arising from aerostructural optimisation (see section
2.10.2). A de Boer et al. [47] also used an RBF-based deformation technique which
was not computationally expensive while not requiring grid connectivity information as
well. Fundamental information on RBF models is provided in a following section within
surrogate modelling context.

9Aeroelastic computations have essentially the same grid needs with MDO optimisation that concerns
aerodynamics and structures.
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2.3.3 Sampling

As a means of reducing the computational expenses associated with costly analyses, a fam-
ily of optimisation or data learning methodologies construct analytical functions (meta-
models) which model the outcome of the analyses for a given design. To create an initial
model of the function of interest, we first need to compute this function in a set of points
in the design space, called Training Data (TD). Sampling10, is the statistical discipline of
determining the locations of points in the design space that are most appropriate for the
initial construction of the surrogate model. The quality of the model generated is directly
dependent on the training data. Hence, the goal of the sampling process is to provide the
basis for an optimum quality surrogate, while keeping the required number of analyses at
minimum.

Due to the deterministic character of computational experiments, sampling for opti-
misation differs from traditional design of experiments [48]. A typical example of this
difference is avoiding to sample in the design space boundaries. A problem arises from
the use of computational experiments within an optimisation problem is the treatment of
constraints. The difficulty here is caused by our inability to know the non-feasible design
space areas a-priori. As it will be seen in Chapter 3 however, this does not really obstruct
the optimisation process, since training data in infeasible regions provide feedback as to
where these regions are on the design space.

Sampling plans often use a criterion to assess how well the distribution of points is
performed. Optimising this criterion results to a set of initial data distributed in a way to
provide the maximum amount of information out of a given number of sampling points.
Over the years, many sampling methods have been developed, or adjusted from classical
Design of Experiments (DoE). Some of the most popular include Monte Carlo, Sobol [49],
Latin Hypercube Sampling (LHS), Orthogonal Arrays and Minimum discrepancy methods

Fang et al. [50] provide a review of Uniform methods comparing LHS with the uniform
design (UD) approach. In LHS, the points are randomly located in the vicinity of the bin
while in UD, the training data are deterministically located (in the center). The points can
be also defined in the nodes, as showed on the right part of Fig.2.11. Both methods are
equivalent in a discrete design space. The Orthogonal Arrays (OA) method can be con-
sidered as a generalisation of the LHS methods. In [51], Tang combines the LHS methods
with the advantages of OA.

Sampling can either be a one-shot or a stagewise process, known as Bayesian learning
process. In the former, all training data result from a single Sampling process in the start of
the optimisation. The trained surrogate model is then used to locate the optimum design. In
a stagewise (or adaptive) sampling process, well defined criteria are used to introduce new
training points in stages. In this manner, information is enriched by the feedback acquired

10The word "Sampling" is more commonly found in computational literature than Design of Computational
Experiments.
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during the optimisation process.

Liem et al. [52] argue that an adaptive sampling plan is more effective to adequately ap-
proximate the design space, especially in cases where the number of required training data
is not known. Following a Bayesian method, they identified sample points using Halton
[53, 54] sampling, based on exploration criteria. In [55], Nair et al. used adaptive sam-
pling in conjunction with LHS. Following the initial training of the metamodel using small
numbers of TD, LHS was used to provide a longer set of TD. For each point, the posterior
prediction variance based on the initial surrogate was calculated.

The potential of adaptive sampling plans is displayed in [56] where a Bayesian approach
is used with Infill Sampling Criteria (ISC) to detect the new TD. Although more complex
and costly since it requires an optimisation (suboptimisation process) for every new input
value, it is shown that it is overall more efficient than a single stage sampling plan.

Figure 2.11: Standard LHS and LHS using a metric. In the second case the location of the point in
the bin is predefined [57].

It can be concluded that the requirements of an efficient sampling process to train a
metamodel through the whole design space (global surrogate), include uniformity, space
filling characteristics and low computational cost11 (low number of training data points).

Introduced by McKay, Beckman and Conover [58] as a new way to produce uniform
training data, LHS has shown to be very efficient in disciplines that desire global data
learning elements. To increase uniformity, metrics were introduced spawning several adap-
tations. One of the most popular metrics comes from Johnson [59] which uses the concept
of Minimax and Maximin designs (Mm). In this approach the minimum distance between
points is maximised. Later, Morris and Mitchell [60] proposed a new metric for LHS plans
arguing that the classic maximin (Mm) metric of Johnson is not robust in special cases.

Currin et al. [61] assessed the LHS method in a Bayesian framework using the cross
validation and maximum likelihood approach (see section 2.3.5) confirming its uniformity
characteristics.

11In terms of space filling and uniformity characteristics, the full factorial approach is optimum solution,
however, the associated cost makes this approach extremely costly.
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Since training data feed the surrogate models, it is interesting to examine how sampling
plans interact with different metamodelling techniques. Such an investigation for various
sampling methods and surrogate models was performed by Simpson and Lin [62]. The in-
teraction between the sampling method and the number of training data was also examined.

The efficiency of the surrogate models is increased when adaptive sampling is em-
ployed. Therefore, although important for the initial stages of the optimisation, ultimately
the initial sampling is not critical for its success.

2.3.4 Variable Screening

A large number of design variables allows a wider and more flexible optimisation problem.
However, the process is negatively affected by what is generally referred to as a curse of
dimensionality. High dimensionality leads to an increase in computational expenses oc-
curring from increased sampling analyses requirements, surrogate model training costs and
the optimisation exploration procedure (with the notable exception of adjoint based gradi-
ent algorithm optimisers). It also increases the multimodality of the problem, implicitly
deteriorating the metamodel’s efficiency. Therefore, reducing the dimensionality has a sig-
nificantly positive impact on the optimisation framework. The groups of methods aiming
in this is referred to as screening. Effective screening however is challenging in a complex
and multimodal design space as the effect of the design variables might not be obvious.
Screening methods differ in the assumptions used regarding the input-output relation and
number of design variables as shown in Fig.2.12. The screening method should be effec-
tive in identifying dominant variables as well as being robust to metamodel techniques and
design space characteristics.

The most common screening methods proposed, include Group screening [73], One
factor at a time designs [74] (OAT), Fractional factorial design, Elementary Effects [64,
65], Iterated Fractional Factorial Designs (IFFD) [66], Edge design [67], Sequential Bifur-
cation [68] and its extensions [69, 70], Screening via analysis of variance and visualisation
[71]. A method using partial derivatives has also been introduced [64] to identify the impor-
tance of the variables. In 2006, Schonlay and Welch [71] presented their approach which
is based on Gaussian approximation to model the input-output relationship of the function.
Goldsman and Nelson [72] and Kleijnen [73] provide an overview of the Screening and
Selection Procedure methods (SSPs) and the Multiple-Comparison Procedures (MCPs).

Building on the concept of screening, that is the progressive identification of the domi-
nant design variables and the subsequent drop of the inactive ones, a review on the works of
Constanine et al., J. Alonso, F. Palacios, T.W. Lukaczyk on the topic of Active Subspaces
was conducted. This interesting concept is well presented in [75] and an extension of it is
proposed in [76]. Its distinctive feature is that it does not depend on providing informa-
tion on the importance of each separate design direction as other screening approaches do
to reduce the dimensionality. Design space dimensionality is reduced by identifying lin-
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Figure 2.12: Appropriate choice of screening method is dependent on the number of design vari-
ables [74].

ear combinations of more than one basis vectors in the design space (active subspaces), in
which the objective function shows significant variations, thus resulting to new non basis
vector — linearly dependent on the fundamental design directions. Therefore, the basis
axes do not correspond to a single design variable anymore. They form a new basis of
reduced dimensionality, at which each basis vector corresponds to a linear combination of
the initial basis. The initial design variables values are therefore "changing together". A
recent application of this method can be found in [77].

2.3.5 Metamodelling Techniques

The use of models of reduced complexity and surrogate modelling in engineering optimi-
sation dates back at least to 1974 and the work of Schmit et al [78] in structural optimi-
sation. As discussed earlier, with the sampling complete, the data can be used to train
the metamodel [63], This is essentially nothing but performing an interpolation or regres-
sion through the training data to allow a cheap estimation of the objective function and the
constraints for any point in the design space.

Based on their collaboration with the initial sampling and potential bayesian surrogate
update process, metamodels can be categorized into global or local, according to the re-
gion of validity on the design space. A global model is generated using a space filling
sampling technique, covering the whole design space with reasonable accuracy. In the lo-
cal approach, training data are generated in the vicinity of the datum geometry with the
accuracy of the model there being higher but to a limited region extend and improving only
across the optimisation direction path through infill data.

Note how this distinction refers to the DoE-Surrogate-Update plan and not the model
alone. The choice of a global or local approach of course depends on the aims of the
designer as well as the chosen optimiser. The metamodel training costs is another factor
that affects the choice of metamodelling plan especially in the case where frequent updates
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are performed.

In turn, the metamodelling plan involves the choice of interpolating or fitting the data.
When surrogate models are used in conjunction with physical experiments and traditional
DoE methods, random error and noise (due to experimental uncertainties) is introduced
in the sampling data. However, the majority of computational analyses (as the ones used
in optimisation) are deterministic. Hence, even when error is present (e.g. physical mod-
elling error), this is consistent in all analyses performed during the optimisation process,
which within this scope are considered to be accurate. Therefore, surrogate based calcu-
lations should reproduce the data and as such, interpolation methods are better suited for
optimisation purposes.

The surrogates can also be divided into black box and physics based approximations.
The former do not require any physics related information, only the set of data. They
are easier to use, exhibiting a broader scope of application knowledge of the governing
equations of the analysis problems.

The most common surrogate modelling approaches used in engineering problems are
Response Surface Models (RSM) and Polynomial Regression, Radial Basis Functions (RBF),
Support Vector Regression (SVR) and Kriging. RSM and RBF methods fall in the category
of generalized linear metamodels, since they use a linear summation of functions.

The factors that dictate the choice of the surrogate are its flexibility to capture the de-
sired function, computational cost, ability to provide information regarding important pa-
rameters12 or any other extra information.

Flexibility usually comes with the price of computational cost but it may overall be
advantageous over a model which although cheaper, fails to capture the important aspects
of the desired function.

Although RSM has perhaps been the most extensively used [79] approach in engineer-
ing, nowadays its use is limited since it lacks the flexibility of other methods. Also, if high
order polynomials are used to increase its flexibility, it becomes unstable. It is also impor-
tant to state that this method, being a regression, may experience problems in modelling
deterministic functions, as mentioned by Sacks [48].

Moving Least Squares

The Moving Least Squares (MLS) method could be considered as an extension of a poly-
nomial regression or interpolation. The novelty of this concept is that it allowsthe definition
of various levels of importance in the training data, for the calculation of the polynomial
coefficients. Hence, each sampling point has a weighting factor (e.g. if wi = 0 then the ith

12It can be essentially used as a screening method as well.
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point has zero effect on the surrogate model generation [80].

Radial Basis Functions

The main characteristic of this method is the basis function (kernel) which is expressed as
function of the euclidean distance between the design points,

φ = φ(‖x − xc‖) (2.3.2)

where xc is the center of the basis function around which the radially symmetric func-
tion is imposed. Hence, xc are the sampled positions in the design space. For N training
data points, the surrogate function has the form,

ŷ =

N∑
i=1

αiφ(‖x − xc‖) (2.3.3)

RBF methods can be distinguished based on the kernel function used, which among
others involve,

· Linear: φ = ‖x − xc‖

· Cubic: φ = ‖x − xc‖
3

· Gaussian: φ = exp (−θ‖x − xc‖
2)

· Multiquadric: φ =
√

1 + θ‖x − xc‖
2

· C4-Mátern: φ = exp (−‖x − xc‖) · (3 + 3θ‖x − xc‖ + (θ‖x − xc‖)2)

The training of the RBF model refers to the evaluation of the α parameters. This is done
using the training data x j and the interpolating condition,

y j = ŷ j =

N∑
i=1

aiφ(‖xj − xi‖) (2.3.4)

The coefficients are calculated by solving the determined NxN system. In a matrix form
this is expressed as,

Φa = y (2.3.5)



2.3 Contemporary Optimisation Elements 27

where Φ is called the Gram matrix.

The appropriate choice of kernels is crucial for the quality of the design space repre-
sentation. For example, in [81], it is shown that multiquadric kernels produce the most
accurate results on the examined problems. The condition of Eq.2.3.4 generates a sym-
metric Gram matrix. In order for the parameters to be determined, Gram matrix should
be nonsingular and the kernel function positive definite, a condition satisfied in most cases
when the Guassian or Multiquadric kernels are used. In this case, Cholesky decomposition
is the fastest way to solve Eq.2.3.5. If nonsingularity is not guaranteed, the superimposition
of a polynomial term can reform the linear system so that Eq.2.3.5 can be solved.

Some of the kernel functions — like the Gaussian and Multiquadric —, feature the
shape parameter θ. This controls the method’s generalisation and smoothness by defin-
ing the domain of influence of each kernel. This parameter can be defined based on the
experience of the user, the desired region of the kernel effect or can even result from an op-
timisation as in the work of Wang [82]. Other approaches use the Cross validation method13

(leave - k - out) as a metric to drive the θ optimisation. The use of optimisation and cross
validation significantly increase the computational cost.

Although Eq.2.3.4 dictates an interpolation through the training data, the method can
also perform a regression if the dataset is noisy. In this case, Eq.2.3.5 is transformed into,

(Φ + λI)a = y (2.3.6)

where the regularisation parameter λ controls the distance between the "real" value and the
one provided by the surrogate. RBF is a cheap method, however it is still affected by
dimensionality as well as the size of the training data set.

The accuracy of the method can be improved if the interpolating condition of Eq.2.3.4
is augmented with data defining the slope of the function (that is, the "trend" of the function
in the vicinity of the data), as in the Hermitian RBF (see Fig.2.13). For N training data and
P design variables Eq.2.3.4 becomes,

y j = ŷ j =

N∑
i=1

aiφ(‖xj − xi‖) +

N∑
i=1

P∑
j=1

aia j
∂φ(‖xj − xi‖)

∂x j
(2.3.7)

Now the system unknowns are N(P + 1) requiring the inclusion of the gradient condi-
tions to become determined.

∇yi = ∇ŷ (2.3.8)

Of course, the computational cost for generating this model is increased due to cost
relating to the gradient computation. If an efficient method for computing the objective

13This is defined in section 2.3.5
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Figure 2.13: Standard RBF and Hermitian RBF [57]. Notice how the addition of extra information
(gradient) improves the function approximation.

function sensitivity is available (like Automatic Differentiation or Adjoint analysis), then
this cost penalty is minimised. In a similar manner 2nd order derivative information can be
provided. However, a Hessian matrix is usually very costly to calculate and as such, it is
more efficient to invest the computational budget in function evaluations instead. Gradient
information can be introduced to other metamodelling techniques as well. Examples in-
clude the Gradient Enhanced Kriging (GEK) and the polynomial regression method shown
by van Keulen [83].

Mullur and Messac [84] reasoned that since the RBF method is uniquely defined by
an algebraic system solution, its flexibility and freedom is reduced, not allowing the de-
signer to impose his own requirements. In their Extended-RBF method (E-RBF), they
superimposed a summation of non-radial basis functions in Eq.2.3.3, using the difference
in coordinate distance instead of the euclidean distance. Extra parameters are introduced,
making the algebraic undetermined. In this case, an optimisation process is required to
estimate the parameters.

Finally, an important consideration when using RBF is the issue of the numerical stabil-
ity of the RBF model, as a function of the shape parameter. The works of M. Mongillo [85]
and B. Fornberg et al. [86] provide excellent companions for such a study. A direct impact
of these numerical examinations is the implementation of the Mátern functions in the RBF
models as well as a concise shape parameter formulation to match their approach14.

14In fact, their findings were observed in my own work, as well as the lowest shape parameter values that
would not induce instabilities.
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Support Vector Regression

The Support Vector Regression (SVR) is a special case of the Support Vector Machine
(SVM) technique by Vapnik [87]. It is an interesting method that performs regression which
can be adjusted and used accordingly. The unique feature is that it allows the definition of
a range in which the sampling data are trusted without affecting the SVR prediction (see
Fig.2.14). This is particularly useful when a random error element or computational noise
are present (i.e. oscillatory convergence and problems in data accuracy in general). The
points that lie between the surrogate hypersurface and the predefined range are ignored and
only the training data laying outside this range are used (the support vectors). For more
information on the method, the reader is referenced to [87] and [88].

Figure 2.14: Support vector regression [57].

Kriging

The (Ordinary) Kriging method (also referred to as Gaussian Process Interpolation/Regres-
sion), is a more complex and flexible approach than the standard RBF. Its engineering use
originates from a paper by Sacks [48] and it has been quite popular since, as it provides a
higher accuracy as well as an estimation of the error of the model itself. Its founding idea
is that training data are a "realisation of a stochastic process" [57] and that the model gen-
erated, is the one most likely to have produced the training data results. It uses a Gaussian
assumption to estimate the correlation between training data based on their euclidean dis-
tance, similarly to Gaussian kernel-based RBF. Contrary to standard RBF however, Kriging
requires an optimisation to fine-tune the smoothness and shape parameters (referred to as
hyperparameters), a process that increases the cost of the method. The value of the shape
parameter θ (defined as in the RBF kernels) provides information on the correlation be-
tween training data points for each dimension and as such, on high "active" the respective
design variable is. Therefore, the θ value can potentially be exploited for screening method
as well.
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In the case of a noisy design space (due to discretisation error or oscillatory conver-
gence), a modification similar to regressive RBF can be formulated, by using a regression
constant λ15.

Following the development and use of Kriging in engineering problems, several modifi-
cations have been proposed. The Universal Kriging [89] is similar to the Ordinary Kriging
but no longer treats the mean value parameter as constant across the design space. This
allows to capture trends in the data with higher accuracy. In practice though, knowledge
of these trends are not usually known a priori. To improve over the drawbacks of Univer-
sal Kriging, the Blind Kriging (BK) was proposed by Joseph [90] as a direct modification
over the former. Another variant is the Detrended Kriging (DK). This is a linear regression
model which is combined with Ordinary Kriging.

Martin and Simpson [91] compare Ordinary Kriging, Universal Kriging and Detrended
Kriging in cases (ranging from 1D to 5D), using Maximum Likelihood Estimation (MLE)
and Cross Validation as metrics to trim the hyperparameters. In the high dimensionality
case, the Ordinary Kriging was proven to be the most efficient.

Simpson et al. [92] present the difficulties of using Kriging in global MDO by using
the aerospike nozzle of the venture star X-33 shuttle, which is described by three design
variables, and a 25 points orthogonal array sampling plan.

Kriging is perhaps the most expensive metamodelling technique due to its hyperpa-
rameters tuning requirements. Toal, Bressloff and Keane [93] examined the effect of five
Kriging tuning in redesigning a RAE2822 pressure distribution from a NACA0015 air-
foil, also showing Kriging’s complexity and its dependence with problem dimensionality.
The latter proved to be of major importance when choosing the optimum tuning strategy.
Increasing the number of design variables allows for a potentially better design but over a
critical number of dimensions, the problem gets too complex to be efficiently explored with
the given computational budget.

Jin et al. [94] performed an extensive metamodelling comparison using five different
criteria and fourteen test cases categorized based on dimensionality, linearity as well as
noisy and smooth behaviour. It was evident that in overall performance, RBF and Kriging
were superior to the other models. RBF showed optimum accuracy and robustness char-
acteristics with the problem scaling having little impact on the model. For large sampling
cases, Kriging performed slightly better than RBF, with RBF however being more robust.

15This might be critical for the success of the optimisation algorithm because when smoothing the design
space the optimiser is less likely to stuck in a noise induced local minimum.
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Physics Based Approximations: Scaling and Reduced Basis Methods

All methods discussed until this point did not assume or require any physical information,
using the data as black box results. If the disciplinary analysis source code is available,
one can access any physics related information. In such cases, the models generated can
either use physics information to predict the objective function or directly approximate
the physics involved. However, the necessity of source code access and the fact that each
approximation method is tailored only to a specific analysis code limits the operational
range of this approach. A simple way to exploit physical information is to use the concept
of scaling [95], that can be improved by the inclusion of 1st and even 2nd order information.

Another physics based approximation approach includes the family of the Reduced
Basis Methods for linear and nonlinear problems. Here, the generated surrogate model
approximates the field variables (i.e. pressure) instead of the objective function. This
approach can be very computationally efficient, also showing global characteristics due to
the satisfaction of the governing equations. Many formulations have been developed and
typical applications relative to this PhD thesis include structures [96] and aerodynamics
[97].

Partitioning of Surrogate models: Mixture of Experts

The potential gains of using multiple surrogates within the same single design space is ex-
plored by the concept of partitioning and Mixture of Experts [98] (MOE). The basis behind
these methods is that by splitting the design space into subspaces, each associated with the
respective metamodel, a more robust and detailed description of the design space can be
attained compared to a single global model. Masoudnia and Ebrahimpour [99] provide an
overview of the basics of the method. The two main ideas are Combination, where a formu-
lation incorporates information from all surrogate models, and Selection, where assessment
criteria are used to select the most appropriate metamodel for each subspace region. In the
latter approach, N subspaces are stochastically partitioned, trained by different metamod-
els. The major requirements are: the choice of the surrogates, the Gating function that
splits the data appropriately, and a Probabilistic model to combine the experts and gating
functions. The methods for combining the outputs of the experts can Non-Trainable or
Trainable.

The categorisation of the various MOE methods is based on the partitioning strategy.
Depending on the model training algorithm, the method is split into Mixture of Implicitly
Localised Experts (MILE) and Mixture of Explicitly Localised Experts (MELE) [99].

In [52], Liam, Mader and Martins propose the partition of design space in multiple
subspaces that use GEK, Universal Kriging and RBF techniques. The partitioning they
are using employs clustering algorithms from [100], performing local expert training in
each subregion. The method is applied for a mission optimisation based on a Boeing 777
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wing. The mixture of two GEK models was more accurate than the respective mixture
of Kriging, while the global approach and the exploration sampling for GEK and Kriging
could not converge.

Metamodelling Assessment Methods

Martin and Simpson [91] define two characteristics that a surrogate model should possess:
ability to reproduce the data and to approximate. Quantifying model efficiency is beneficial
for its improvement, through its parameters tuning and most appropriate method selection.
In analytical test cases this is examined by direct comparison with the true function in
the form of Maximum Error and Root Mean Squared Error (RMSE) etc. However, in
real design problems this cannot be performed due to the cost of calculating the objective
function. The appropriate assessment methods depends on the surrogate approach. For
example, methods like RMSE are based on the deviation between the function value and the
surrogate prediction in the training data points. This is an efficient approach for regression
metamodels but it cannot be used when interpolation is performed, since by definition
the function values and the surrogate values are identical in the training data. In these
cases the cross validation/leave-k-out method may be an effective choice. Given N training
data points, q equal subsets are generated, each involving N − k data (k random points
are removed). The model is then the surrogate generated and the resulting values in the
positions of the k data points are calculated, allowing the quantification of its accuracy. A
special case of cross validation is when k = 1. In this case, the method is called "leave-one-
out".

The efficiency of metamodelling assessment methods for various potential metamod-
els, was studied by Meckesheimer et al. [101]. They examine how well various assessment
techniques perform on Kriging, RBF and Low-Order polynomials (LOP). The leave-one-
out method was found to be more effective for RBF and LOP, also showing lower compu-
tational cost.

2.4 Surrogate Based Optimisation

Following its training, the metamodel is used to guide the optimisation process. However,
after the initial sampling, the surrogate model is not accurate enough to support an optimi-
sation procedure towards the true optimum16. Hence, it needs to be updated and improved
while simultaneously guiding the process. Surrogate Based Optimisation (SBO) methods,
use adaptive bayesian sampling techniques to accomplish this goal [102]. The process of
sampling a new point is referred to as infill process. The infill sampling defines how to
update the metamodel and which infill design point should be used. Analysis is then per-

16Unless an excessive number of sampling points is used. But this is never the case in real industrial plans.
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formed on this point, sampling is performed and the surrogate is updated as shown in the
example of Fig.2.15. Through an SBO methodology our goal is to: improve the meta-
model accuracy — and consequently our confidence to the point found as optimum —,
while simultaneously guide the optimisation process.

Figure 2.15: Overview of a typical optimisation using surrogate models [103]. The true problem
f is solved by creating the approximate model a, into which optimisation is performed. The true
function is called again in order to update and improve the validity of the surrogate.

Overall, the methods to manage surrogate models for optimisation purposes can be
categorized as follows:

• Exploitation Methods: These approaches take advantage of the metamodels to locally
improve their accuracy. The improvement of the models is only performed along the
path of the optimisation process. Hence, these approaches lead to a local minimum.

• Exploration Methods: Here, computational effort is put to improve the global accu-
racy of the metamodel. With the surrogate considered globally accurate, the opti-
miser is used to explore the design space and provide global optimality.

• Balanced Exploitation/Exploration: A balance between the two aforementioned ap-
proaches is sought.

Jones [104] provides a great review of seven different methods of using surrogate mod-
els within an optimisation process. The methods are categorized based on the type of the
metamodel (interpolation/regression), the approach (one/two stage) and the ability to reach
the global optimum region. Popular approaches include the Trust Region (TR), Statisti-
cal Lower Bound (SLB), Expected Improvement (EI), Probability of Improvement (PI) and
Goal Seeking methods. Out of these, a quick review of the TR and EI methods is provided,
as they are more relevant and representative of the concept for local and global optimisation
respectively, as well as more promising within the scope and goals of the present work.
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Trust Region Approach

The Trust Region method applied within an infill strategy originates from nonlinear pro-
gramming [105]. Here, the surrogate model is generated only within a limited region
(around the current design point) in which it is trusted to be accurate. The original TR
method provided a strictly defined estimator of how well a quadratic Taylor series approx-
imates the function of interest. In SBO context, more complex approximation techniques
such as RBF or Kriging are used without discarding nevertheless, the main concept of the
method. The surrogate model predictor s is minimised within a bounded region defined by
the euclidean distance ‖a‖, around the current suboptimisation starting point x.

min
x∈D

y(x + t) (2.4.1)

which is bounded by,
‖s‖ ≤ δk (2.4.2)

In this, δk refers to the trust region hyper-radius and so for the current iteration k, the
model is trusted only within this area. After each infill sampling analysis, the trust region
δk is increased if the model was accurate, shrunk if the model was inaccurate or remain un-
changed in any other case. The assessment of the model is based on the difference between
its prediction and the function value. The increase or decrease of the trust region, as well
as the condition under which a prediction is considered to be accurate or not, is defined
by coefficients set by the user. Therefore, the method is adjusted based on experience and
can be tailored to the task at hand. Suggestions and more information on the method are
provided by Alexandrov [103]. For a short discussion on a formulation that tackles both
unconstrained and constrained problems see [57]. An implementation of the Trust Region
method for variable fidelity tools, was done by Alexandrov et al. [106] and is presented in
a following section.

Probability of Improvement and Expected Improvement Approach

The Kriging metamodel technique is based on a Gaussian correlation assumption between
the training data, and allows the estimation of its mean squared error. By combining the
function prediction with the mean squared error preidiction, a series of infill sampling cri-
teria are developed [88]. The simplest is the concept of the Statistical Lower Bound which
involves the suboptimisation process,

min
x∈D

ŷ(x) − ksx) (2.4.3)

where ŷ is the Kriging predictor, k is a defined constant and s is the error associated
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with the model. Such an approach does not lead to dense iterates and is not guaranteed
to sufficiently explore the design space to lead towards the global optimum region. A
way to improve this and simulatenously balance between exploration and exploitation, is
provided by the Probability of Improvement. In this method, information on the uncertainty
of the Kriging model is again inserted through the MSE estimation. A formulation for
the probability of a potential design point in the design space to be improved [107] is
developed17. The infill process is performed for the design point in which the probability of
the current minimum value to be improved is maximised. In this case, dense iterations may
be performed. If an improvement cannot be found following the search, then the method
has the inherent attribute of exploring other regions, thus searching more globally. This is
provided by the uncertainty information that steers the method to reduce it in undersampled
regions. The drawback of this method is that when bad or sparse sampling is used, the
method may fail. The hyperparameter values are not representative of the design space,
resulting to unreliable function and error estimation, especially for deceptive functions.

Taking the PI formulation a step further, the actual expected function improvement can
be estimated and thus the Expected Improvement is of interest. Under this infill criterion,
the infill design point would be the one showing the potential of improving the current
minimum the most (see Fig.2.16). This approach is very similar to the PI method, and their
shared characteristics which are briefly stated below:

• There is no requirement for input definition regarding a desired improvement.

• The global optimum area is located without excessive exploration. However, after its
determination, consecutive local searches around the current best increase make the
method inefficient. In this stage, one should switch to a local method.

17More information and a complete mathematical formulation of this is presented in Chapter 3.
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Figure 2.16: In the expected improvement (EI) criterion, the point which shows the maximum
potential improvement is used as the next sampling point [107].

2.5 Using Variable Fidelity Analysis Tools

Within an optimisation process, disciplinary analysis can be performed by various numer-
ical tools of corresponding fidelity levels [108–110]. The difference in fidelity may be the
result of:

• Physical modelling approach

• Different order of discretisation in the respective numerical schemes (numerical order
or grid resolution)

• Different levels of convergence [111]
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The decrease in the solution accuracy is usually (but not always) followed by a reduction
of computational cost18. Therefore, with the existence of MF tools, it is of our interest to
examine how we can exploit them within an optimisation framework in order to reduce
the high computational expenses associated with high fidelity (HF) tools. The goal is to
efficiently incorporate physical information so that we achieve convergence similar to a HF
optimisation, but with less computational cost.

In the MF context, it is assumed that the expensive HF result is accurate, and the cheap
low fidelity (LF) method is associated to an error. Typically, the relation between the two
is expressed as,

yHF = ZρyLF + Zd (2.5.1)

where yHF and yLF are the high and low fidelity tool outputs respectively and Zρ and Zd

are factors. When Zρ = 1, Zd simply expresses the error of the cheap tool for a given design
point. In the case where Zd = 0, Zρ expresses the ratio between the HF and LF values. The
first case is probably more extensively used within the MF methods, with the LF tool error
expressed as,

Zd = yHF − yLF (2.5.2)

In this approach, an error correction surrogate model is used to correct a LF evaluation
to approximate the true function. For the training of the error model, both HF and LF data
are required to define the error data set. When the error is a smooth function, good accuracy
is achieved without the need for too many training data. As a result, using and correcting
an LF tool is more efficient than using an HF tool and surrogate19. This data fusion method
is computationally efficient especially if the LF tool is significantly cheaper than the HF
one.

2.5.1 Treed Metamodelling

Nelson and Alonso [112] proposed a flexible way of using metamodels (Kriging) and MF
tools. They suggest that is beneficial to use both LF and HF tools in the sampling process
depending on their design space validity. In their work, HF tools are used in areas of the
design space where high fidelity is required and LF analysis is used in cases where HF
and LF would show similar results. A design space partitioning to allow global optimum
convergence by data enrichment in the search direction is proposed. This method, called

18This occasionally creates the misunderstanding that a LF tool is one which is cheap. Although usually
this is the case, the term "low fidelity" refers to the reliability of the tool, that is the confidence that we have
in the results. In fact, there may be cases where a fast tool is actually of a higher reliability, so this should be
termed as high fidelity. In most cases however, HF results are associated with higher computational expenses.

19In cases where the error is not a smooth function, the correction process can be expensive and inaccurate
and an MF approach is not recommended.
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TreedGaussianProcess (TGP), also allows a parallel training of the design subspaces. A
challenge in their partitioning strategy is the lack of information required to form local
Kriging models, in order to avoid discontinuities at boundaries. Their partitioned surrogates
are initially updated by local infill in locations of possible extrema and as the optimisation
process proceeds a more space filling infill method is used (uniform sampling, LHS, Monte
Carlo etc.). The advantage of their approach is parallelisation which has a significant impact
especially in higher dimensionality problems.

2.5.2 Space Mapping

Space Mapping [113] is an MF technique that follows a different approach. It does not use
the predescribed data fusion technique and surrogate modelling. Instead, the LF results are
being distorted so its minimum and maximum values are aligned with the respective HF
results. For a more extensive review of the method see [114]. For the way of determining
the space mapping function see [115]. Based on the Space Mapping approach, Bakr et al.
[116] modified the method to use it in a Trust Region framework. Here, the corrected LF
tool is used as a surrogate for the HF function. Another modification of the method is the
global space mapping. For more information see Bandler et al. [117].

2.5.3 Multifidelity Trust Region Optimisation

In [106], Alexandrov et al. use multiple fidelity tools to guarantee that the optimum point
would coincide with the one located by a pure HF optimisation process. They use a 1st order
approximation and their model management optimisation (AMMO) framework illustrated
in Fig.2.17. A trust region approach employs a locally accurate surrogate model, based on
both LF and HF simulations.

Their linear approximation has essentially the form of a 1st order scaling method that
can be summarized as a Trust Region-based use of the scaling metamodelling approach.
They ensure that although the LF model does not provide the true optimum, it still pro-
vides the proper search direction. This is achieved by consistency between their 1st order
surrogate model and the HF function, that is, the local trends of LF are similar to HF. The
efficiency of AMMO, like in any MF methodology, depends on the ability of the LF model
to predict the trends of the HF tool.

2.5.4 Co-Kriging and Multifidelity Expected Improvement Criterion

The Co-Kriging method refers to the modification of Kriging to incorporate training data of
multiple fidelity. Following its training, which is more costly than Kriging due to extra hy-
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Figure 2.17: Conventional optimisation approach (top) versus MF (AMMO) approach [106].

perparameters optimisation associated with the LF tool correction, Co-Kriging can be used
in a way similar to Kriging within an SBO context as reviewed by Jones [104]. An example
of a Co-Kriging application is shown by Forrester [118] using the Expected Improvement
approach as an infill criterion. Since the MF data involved noise, a regression Co-Kriging
was used, with 2 levels of filtering (two regularisation λ diagonal constants). It is shown
that using multiple levels of fidelity increased the accuracy of the optimisation results while
significantly reducing computational costs. It was suggested that in case where the HF tool
is too expensive, more computational expenses should be invested in the infill sampling
rather than the initial sampling. Gradients can also be used to improve the accuracy around
the training data [119].

Different levels of analysis convergence can also act like variable fidelity tools, as ex-
amined by Forrester et al. [111] for a NASA aerofoil test case. In this, partially converged
CFD simulations are used as a LF tool and the "number of simulations and the level of con-
vergence necessary to perform accurate optimisation" is examined. Overall it was shown
that using more partially converged simulations produce a higher accuracy surrogate than
using fewer fully converged simulations. The true (HF) function is approximated using the
concept from Eq.2.5.1. Infill analyses use only HF simulations based on the EI criterion.
A robust and accurate assessement of their surrogate model was conducted a posteriori, by
comparing the surrogate predicted values with the ones obtained by the true function. The
correlation coefficient r2 by Edwards [120], spanning from 0 (no correlation) to 1 (exact
match of data), was used.

Dev Rajnarayan, Alex Haas and Ilan Kroo [121] have used the Expected Improvement
method within a multifidelity environment and an additive surrogate model formulation
similar to the one used in this PhD work (see Chapter 3). Their application was however
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limited to a single discipline and single objective aerodynamic design problem.

2.6 Constraints in Optimisation

In industrial applications, the design space is usually constrained (see an example of this
in Fig.2.18). In that case, we aim at minimizing the objective function given that a design
quantity should be equal (equality constraints) or higher (inequality constraints) than a
specific value20. The problem is expressed as,

min
x∈D

f (x)

subject to H j = h j(x) − htarget = 0, j = 1, · · · , n
Gi = gi(x) − glimit ≥ 0, i = 1, · · · ,m

(2.6.1)

The satisfaction of equality constraints has more mathematical than engineering value.
In engineering design, equality constraints may never be satisfied with a slight infeasibility
being tolerated. In such a case, the equality constraint is transformed into an inequality one
as ‖h j(x) − htarget‖ ≤ ε, where ε is a predefined tolerance.

Like the objective function, the constraint function values are not known prior to the
disciplinary analysis (in fact in most cases, the objective function and the constraint func-
tions values result from the very same disciplinary analysis). In the special case where it is
known that a constraint quantity is highly dependent on a specific design variable, feasible
values of this variable can be initially estimated. On a second stage, optimisation with this
design variable being inactive can be performed.

Several ideas have been examined in the literature, with the main methods found in
engineering problems including Penalty methods, Lagrange multipliers as well as some
concepts being used within SBO. Other methods which are not discussed here include the
Feasible direction method and Chromosome repair method [122, 123].

2.6.1 Penalty Methods

The penalty methods is a simple concept aiming to diverge an optimisation algorithm away
from infeasible regions. When any of the constraints is violated, a high value (penalty) is
added to the objective value which is returned to the optimiser. The most basic approach
is perhaps the One pass external function method, where high value is simply added to the

20A typical aerodynamics optimisation case is to minimize CD given CL ≥ CLvalue .
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Figure 2.18: Example of a 2D design space with two constraints c1, c2 [3]. Here, constraint number
two is active.

Objective Function (OF) value when the constraint is violated. The disadvantages of this
method however, is that it does not provide any further information to assist optimisation,
while introducing a function discontinuity which can pose significant difficulties for gra-
dient based optimisation methods. To overcome such drawbacks, several variations have
been developed. A follow-up idea is to assess the level of infeasibility and define the penalty
value depending on it. Furthermore, in an optimisation including several constraints, the
number of violated constraints can also be introduced in the penalty formulation. Combin-
ing both of the above concepts, the value returned to the optimiser will take the form,

fcon(x) = f (x) +

n∑
j=1

P j‖H j(x)‖ +

m∑
i=1

Pi‖Gv,i(x)‖ (2.6.2)

where H j and Gv,i are the equality and inequality constraints’ violation, while P j, Pi are
the respective scale function which can be either constant or a function of the infeasibility.

In the interior penalty methods, a penalty may be even applied to feasible design
points which are very close to the constraint boundary in order to reduce the disconti-
nuities near the constraint boundaries while providing information regarding the infeasible
region. Based on the penalty function used, it can be a logarithmic barrier or inverse bar-
rier penalty method. The significant disadvantage of this approach is that the optimum
point located might be offset from the actual optimum.

The penalty value applied may not only be dependent on the design space position but
also on the optimisation stage in which it is applied. In the case of Sequential Uncon-
strained Minimisation Techniques, the penalty takes a low value in the initial stage of the
optimisation when more space exploration is desired. In the final stages, where more local
search is performed, the penalties have higher values [124].
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2.6.2 Lagrangian Methods

In the Lagrangian approach, the objective function is directly perturbed before its evalua-
tion. The expressions of the constraint functions are implemented in the OF as,

L(x, λh, λg, s) = f (x) −
n∑

j=1

λ jH j(x) −
m∑

i=1

λi
[
Gi(x) − α2

i
]

(2.6.3)

where L is the Lagrangian function. Following the same notation as Eq.2.6.1, H j and
G j are the constraint functions, λ are the Lagrange multipliers, while αi are slack variables,
which in this case turn the inequality to equality constraints as, Gi − α

2
i = 0. To define

the new OF, the two set of multipliers are evaluated using the Karun-Kush-Tacker (KKT)
conditions which are the necessary conditions for a stationary point21. Since the KKT
conditions require the derivative of the function, the Lagrangian method is best suited for
gradient based optimisation algorithms in which the OF sensitivities will have already be
computed.

This approach can be combined with the penalty methods simply by adding a penalty in
the Lagrangian expression. For more information on the Lagrangian approach see Nocedal
and Wright [125]. Alexandrov et al. [106] used a Lagrangian approach in their Multi
Fidelity Optimisation method presented earlier.

2.6.3 Sequential Quadratic Programming

Sequential Quadratic Programming [126] [127] (SQP) is perhaps the most common method
for tackling constraints in a gradient based optimisation algorithm. The idea behind SQP is
to model the Lagrangian function as a quadratic function with linear constraints22.

2.6.4 Managing Constraints in Surrogate Based Optimisation

Constraint handling in SBO typically uses generic methods like the penalty methods or
more specialised ones by extending the SBO methodologies [128]. In an SBO framework,
as with the objective functions, the constraint functions are modelled using surrogates. If
possible, the feasibility of the design point should be checked before performing a costly
sampling analysis. Ideally, if the exact constraint function is cheap to evaluate, then no

21A stationary point is a point in the design space for which the first order derivative of the OF is zero. For
a point to be a local minimum, the sufficient conditions include second order derivative requirements as well.

22Usually this approximation is used in a Trust Region approach where the quadratic approximation is only
valid in the trust radius.
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surrogate has to be used at this stage. In case its cost is equivalent to the objective function
computation — or in the common case were the constraint values result from the same
disciplinary analysis as the objective function — then a more complex approach has to be
used to cheaply examine if the design point is feasible.

When a global SBO approach like PI or EI is used, the minimum is simply replaced by
the minimum feasible value. The use of Kriging or Co-Kriging models, allows the estima-
tion of the probability of the constraints not being violated. Under this concept, the new
infill point is the one that simultaneously satisfies both the infill criteria (e.g. TR minimum,
PI, EI) and the constraints’ feasibility prediction. Since PI and EI infill are using probabilis-
tic criteria based on the Kriging error estimator, the probability of a design point obeying
the constraints can be explicitly included in the infill plan. The accuracy of this probability
estimation is assessed with the error estimator of the respective constraint surrogate. Hence,
a design point showing high expected improvement based on an accurate OF surrogate but
with an inaccurate constraint surrogate, might be non-feasible. The probability of a design
point being feasible is expressed as a probability of improvement over the constraint limit.
By combining this expression with the OF probability of improvement, an expression of the
probability of a feasible design point improving the OF is calculated. In the same manner,
the probability of obeying the constraints is fused with the expected improvement criterion.
Both cases can be considered as a two stage balanced exploration/exploitation scheme for
a constrained problem. This approach is illustrated in Fig.2.19.
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Figure 2.19: Initial surrogate build-up and first infill point for a constrained SBO EI approach [107].
The bold line is the true function, the dashed line is the surrogate prediction and the thin line is the
constraint surrogate. The constraint limit is shown in dash-dot line.

Since the statistical condition of improving the OF —given the feasibility condition—
is expressed as a product of two probabilities, the infill criterion might not be very straight-
forward. Consider a case where a point has a high potential of improving the function (or a
potential of high improvement) but a low probability of feasibility. On the other hand, con-
sider a case of a point with a very low potential of improving the function (or a potential of
low improvement) but a high probability of feasibility. These two may lead to similar infill
criterion value. The final choice can be considered arbitrary or in a sense defined by the
objectives of the designers. More information on this formulation is available on Chapter
3. The resulting behaviour of this criterion is discussed in more detail in Chapter 5.
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2.7 Multiobjective Optimisation

In typical industrial applications, a single objective is not sufficient for quantifying the
performance of a system. There are usually more than one criteria associated with its
performance, that are typically conflicting. As such, efficient engineering design aims in
developing configurations with good tradeoff characteristics and in getting knowledge of
the performance of the system in different objectives. Especially in cases where a design
direction for efficient tradeoff is not obvious, information regarding the performance on
different criteria is critical for supporting the decision making and guiding the design.

2.7.1 The Concept of Dominance

With a product being assessed by many figures of merit, in most cases a design cannot be
objectively declared as superior over another. In such design problems, the concept of dom-
inance is employed which forms the foundation of most Multiobjective (MO) optimisation
algorithms [129]. Provided N objective functions, a design point is dominant over another
when it simply performs better in all N objectives. When a design is superior over another
in one objective but lacks in another, the two designs are considered equal and are called
non dominated. Therefore, a non dominated point is a design point which is superior over
the rest of the designs in at least one objective. Several Multiobjective optimisation algo-
rithms (such as Evolutionary Algorithms or other population based algorithms), initiate the
optimisation process by multiple datum geometries and use the concept of dominance to
assess whether the new sampled point is "better" than the current optimum set. MO opti-
misation cases do not provide a single optimum design point, but a locus of non dominated
points called the Pareto Front.

2.7.2 The Weighted Superposition Method

The concept of dominance is used by MO optimisation frameworks. However, we can also
transform the MO problem into a single objective one (SO) so that single objective opti-
miser can be used. Since each point in the pareto front is better than any other pareto point
in one of the objectives, it is implied that this point is the optimum in a problem defined
by a single objective function, composed by the weighted superposition of the multiple ob-
jectives [130, 131]. For example, in a typical aerodynamics optimisation problem in which
case the objectives are the aerodynamic coefficients, the use of weighting coefficients w1

and w2 can compose the single objective as,

I = w1CL + w2CD (2.7.1)
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Figure 2.20: A typical Pareto Front consisting of non dominated points. These points can also be
identified with a series of a, b combinations and a single objective function.

It can be observed that the pareto front is essentially the locus of the optimum points
resulting from problems expressed by I functions and therefore can be reconstructed by
a set of different w1,w2 optimisation studies (see Fig.2.20). This inverse approach to the
Multiobjective optimisation problem involves the a priori definition of the desired w1,w2

coefficients whose ratio represents the design direction. The single objective optimiser will
then find the single optimum based on this design philosophy. This approach is efficient
when the design orientation is provided (namely, already identified by the engineers fol-
lowing the initial design stages). However, this is not the case in the early design phase,
when extensive design and objective space exploration is desired to extend the maximum
information from tradeoff studies. In this case, a costly multi objective optimisation form-
ing a pareto front is required. Also, as reported in [107], a drawback of the weighted OF
approach is its inability to locate the true minimum when the pareto front is convex. It
could be summarized that MO methods are best suited for conceptual design or novel de-
sign explorations, where engineering tradeoff feedback is required, whereas the weighted
OF approach is appropriate for final design finetuning studies.

Work towards a multiobjective pareto tradeoff analysis in multidisciplinary problems
has been performed by Mastroddi and Gemma [132] using aerodynamic efficiency, weight
and range as objective functions. The problem was not solved by an explicit MO optimiser,
but on normalized parametric studies Weighted Global Criterion (WGC) using SNOPT
gradient based optimiser.

The weighting superposition method in multiobjective problems can be also used in
optimisation cases involving multiple design conditions23. Nemec et al. [133] performed

23Under a superposition method, an objective can be considered as a design condition and vice versa. In
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a MO and multipoint optimisation for the high lift section NLR7301 and RAE2822, using
the weighted coefficient concept for CL, CD so that they are close to a priori set targets. CD

was used in the O.F. only when CD > CDtarget.

Multipoint optimisation can be also formulated as an MF optimisation problem, as in
the work by Toal and Keane [134]. In this, weighted superposition results of all design
conditions are considered as high fidelity whereas low fidelity data are the result of a single
condition.

2.7.3 Multiobjective Methods in Surrogate Based Optimisation

When the optimisation framework is not based on surrogate modelling, the process is
straightforward since the methodology that produces the pareto front is already defined
in the optimiser algorithm. However, in an SBO framework specific formulation arrange-
ments are required to form a pareto front.

For the N objectives, N metamodels are generated based on the training data set. In
this standard MO SBO formulation of the PI criterion, it is not the point of the maximum
probability of improvement that is sought. The infill point is the one with the maximum
probability of being a new member of the pareto set or an improvement on any existing
member of the set (see an example that feature two objective functions and two metamodels
in Fig.2.21). The probability that a design point will dominate a single member i of the front
over all N objectives Y is calculated as,

P(Y1 < Y i
1 ∩ Y2 < Y i

2 ∩ · · ·YN < Y i
N) (2.7.2)

This standard method does not require the computation of multiple infill points during
every sampling iteration. When a single design point is evaluated, the method inherently
tries to improve the pareto front. However, this infill criterion may not be able to provide
sufficiently wide design space exploration resulting to a not equally populated pareto front.
More information about this formulation is presented in the next chapter, where also a
simple alternative to address the problem of the objective space exploration is proposed.

fact, multipoint problem can be formulated and solved as multiobjective problem using either the superposi-
tion method or the pareto dominance concept.
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Figure 2.21: Multiobjective Expected Improvement criterion [107]. In this case two objectives are
being considered.

2.8 Optimisation Algorithms

The optimisation algorithms can be considered as the heart of any optimisation process.
In the straightforward case involving only a single method of analysis and no surrogate
modelling, the optimiser —given a design point— provides the next design point for anal-
ysis. In more complicated procedures which involve analysis tools of variable fidelity as
well as surrogate modelling, the use of the optimiser is not straightforward, nevertheless it
remains the core of the process. In the SBO case, the optimiser is used to solve the subop-
timisation problem; to find the infill point based on the employed SBO plan. The function
and efficiency of the optimiser is critical for the behaviour and success of an optimisation
framework, and it should be selected according to the optimisation requirements.

The optimisers can be categorized based on features such:

• Deterministic, heuristic or stochastic. An optimiser is deterministic when for a given
input (datum point), the output is always the same every time the process is repeated.
The heuristic methods follow this one-to-one relationship between inputs and outputs
but make use of a specific pattern to proceed from the current optimum to the next
point. Stochastic methods involve an element of randomness in the optimisation
process. If performed many times from the same datum, the final result and the path
followed will not be identical.

• Gradient based or Gradient free. Gradient based algorithms require the sensitivity
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of the objective function over the design variables in order to calculate the search
direction in the design space. These fall in the deterministic category. Gradient free
methods only require the computation the function evaluation (and not its gradient)
and can be either heuristic or stochastic.

• Global or Local optimisers. Global optimisers perform an exploration of the de-
sign space aiming the location of the global optimum area. Local optimisers search
directly for an improvement near the current point, usually exploiting gradient infor-
mation, and as such may stuck in a strong or weak local optimum.

• Single or Multiobjective

2.8.1 Gradient Free Algorithms

Gradient free algorithms are easier to implement and under specific conditions they may
guarantee global optimality. However, since they are provided with a probabilistic search
direction as well as aiming in more extensive design space exploration, they are more com-
putationally expensive. Their ultimate goal is to guarantee global convergence with the
minimum function calls.

Genetic Algorithms

Genetic Algorithms (GA) fall in the category of Evolutionary Algorithms [135, 136], which
like many of the gradient free optimisers, use a physical selection procedure inspired by
everyday life, nature laws etc. Genetic algorithms in particular are based on the theory of
evolution of living organisms using three basic components; Survival of the fittest, Repro-
duction process for the propagations of the genetic traits, Mutation.

GA use an initial population assessing the various designs "simultaneously". After
each iteration the population is changed according to the promising design directions. An
advantage of such methods is their stochastic element (through mutation) which helps avoid
local optima even for deceiving functions, while it can be used for continuous, discrete or
integer design variables. However, the requirement of large number of population members
combined with the slow convergence and the multiple operations when defining the new
population, make these methods highly expensive when used to call functions like CFD
analyses. It can handle both single as well as multi objective problems, with the latter
being a more sensible application as global exploration favours tradeoff studies. GA use
the concept of dominance to construct a ranking of the population members.

Antointe [137] employed a GA framework to perform an environmental MO optimi-
sation involving the minimisation of cost, fuel, NOx and CO2. Typical population ranking
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was used as a means for tackling the MO nature of the problem while constraints were
satisfied using penalty methods.

Particle Swarm Optimisation

Particle Swarm Optimisation [138] (PSO) is a stochastic method that can be adjusted to
local or global characteristics. It uses the concept of a swarm behaviour and intelligence.
Agents (usually referred as "birds") move in the design space searching for the optimum.
Each iteration provides a new design point for each agent, hence a "movement" from an old
point to a new one. The movement is adjusted by cognitivism (self-experience) and social
cognition (social interaction) parameters. The cognitivism is essentially a weighting factor
defining the importance of the optimum design encountered by specific agent affecting the
next design point sought by the same agent. Social cognition is provided again by a factor
adjusting the impact of the optimum that any agent of the swarm has encountered. The
movement of an agent i in search of the next design point is expressed by,

xi
k+1 = xi

k +

(
wui

k + c1r1
(pi

k − xi
k)

∆t
+ c2r2

(pg
k − xi

k)
∆t

)
(2.8.1)

where, w is a factor representing inertia, c1 and c2 are the factors representing the cog-
nitive and social learning and r1 and r2 are the respective random numbers inducing the
stochastic element. ∆t is a factor that eventually controls how far in the design space any
agent will be able to move given its velocity ui

k. pi
k represents the best solution that agent i

has encountered while pg
k is the best solution found so far by the swarm.

This is a method that it is easy to develop, implement, adjust or modify and it can
perform a wide design space exploration. Although the basic method is unconstrained,
constraints can be easily implemented with the Lagrangian or the penalty function methods.
PSO can be extended to MO problems, using the concept of dominance. A typical example
is the Multi Objective Particle Swarm Optimisation (MOPSO) algorithm [139] that selects
the leader of the swarm using the concept of pareto dominance, classifying it as a Pareto
Dominance MOPSO type — see [140] for an overview of other approaches.

Nelder-Mead method

The Nelder-Mead method [141] (also known as the Non-linear Simplex method) is a heuris-
tic approach which uses a sequence of geometrical operations to estimate the optimum of
a function. It has the potential to identify the global minimum region in low dimensional
design cases (typically less than fifteen). In higher dimensionality problems it becomes
inefficient, especially when used to call costly analysis problems. It can be classified be-
tween local and global methods due to its limited exploration attributes originating from its
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pattern based process not involving statistic elements.

TABU Search

TABU Search [142, 143] is not a standalone algorithm like the ones previously presented.
It refers to a "macroscopic" method that guides a heuristic pattern so that the design space
can be explored beyond local optimum. The heuristic approach typically used by this
framework is the Hooke and Jeeves [144] method, performing a pattern pattern (called the
move) which explores the neighbourhood of a design point referred to as N(x). In TABU
Search, moves are performed in a modified neighbourhood N∗(x) and only moves that
reduce the OF are permitted [145]. The modified neighbourhood is the result of an adaptive
selective memory structure (short and long memory structure). Three flexible, distinctive
and of different life span memories create the tabu list: Short term, Intermediate term and
Long term memory. An attribute memory approach is also used in which the memory
structures are fed not by the solution but by the solution properties (attributes). Attribute
memory includes, Recency and Frequency memory. To move to promising regions, the
actions of intensification and diversification are used controlling the local/global behaviour.

The Single Objective TABU Search of Tilley and Connor [146] was extended to a Mul-
tiobjective TABU Search algorithm (MOTS) by Jaeggi et al. [147]. A modification was
also proposed, called PRMOTS (Path Relinking Multiobjective Tabu Search) featuring a
variable selection scheme aiming in reducing the dimensionality by dropping inactive de-
sign variables. In both MOTS and PRMOTS constraints are tackled with penalty functions.
MOTS was used by Trapani [148] for the aerodynamic optimisation of a multielement Gar-
teur airfoil configuration to maximise lift and minimise drag. MOTS was compared against
the well established NSGA-II code dominating the respective NSGA-II results, also show-
ing a wider pareto front.

2.8.2 Gradient Based Algorithms

Gradient based algorithms are very efficient in terms of required iterations, since the gra-
dient provides additional "physical" information to guide the optimisation process. Such
methods however cannot provide the exploration required in the early stages of the design.
Nevertheless, they provide an efficient approach for local fine-tuning in detailed design
stages.

For a given design, the OF (primal) is evaluated, followed by a sensitivity analysis of
the OF over the design variables depending on the characteristics of the problem. This
is a vast research area all by itself, including various methods and submethods. Some of
these are very briefly discussed in the following section. Using the sensitivity (gradient), a
search direction dk is calculated so that the current design vector can be updated towards
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this direction as in the following relation,

xk+1 = xk + αkdk (2.8.2)

Gradient based algorithms are categorised based on the method used to calculate the
search direction using the sensitivity information. The final stage of the process is to cal-
culate how far along this direction should the next design be — provided by αk.

This iterative procedure (shown in Fig.2.22) is ceased when the optimality criteria
(Karuhn-Kush-Tucker conditions for constrained problems) are met. These include the
1st order optimality conditions which state that the gradient of the function f is zero24,

∂ f
∂xi

= 0, for every design variable i (2.8.3)

In order to characterize a design point as a local optimum, the 2nd order (curvature condi-
tions) should be satisfied. That is, the Hessian matrix H (square and symmetric matrix) of
the 2nd order partial derivatives should be positive definite.

Figure 2.22: A typical gradient based optimisation process. An analysis and the computation of the
gradient (sensitivity analysis) feeds a method to provide the search direction. Given that, line search
is performed and the procedure keeps iterating until conditions are satisfied [3].

24This is a sufficient condition for a point to be stationary.
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Sensitivity Analysis

Methods which provide the gradient of a function on a design point, that is the dependence
of an output to a n-dimensional input, fall in the scope of sensitivity analysis. Here, the
interest is in calculating the vector,

∇ f (x) =

n∑
i=1

∂ f
∂xi

ei (2.8.4)

and the sensitivity of the active constraints in a similar fashion. The research focus is on
computing the derivatives as efficiently as possibly while keeping high levels of accuracy.
There are four main approaches in sensitivity analysis [149]: Finite Difference, Complex-
Step Derivative, Automatic Differentiation and Direct/Adjoint Methods

Finite Difference is perhaps the easiest approach, based on a Taylor series expansion to
approximate the partial derivatives. This requires the calculation of the function variation
over all n variables and the total cost is n + 1 times the calculation of f . In this method,
the step size is an important issue. The truncation error needs to be minimised, but if the
step size becomes too small, cancellation errors become dominant. In this case, further
reduction of the step size leads to an increase of the approximation error. The complex-
step method [150] is a step towards the solution of this problem, where the change in the
OF value is expressed in complex number terms.

Automatic Differentiation [125](AD) is an approach that can reach analytical computa-
tion accuracy as it uses the chain rule of derivation when this is implemented in the code. It
can be used either in forward or backward mode depending on the direction of propagation
of the derivatives of the chain rule. It involves a decomposition of the operations performed
when a gradient of a function is analytically computed. Although AD is superior to expen-
sive finite difference methods, its use is limited to studies where the analysis source code
available.

Martins et al. [150], provide an overview of the complex step approach and its connec-
tion to AD. It was shown how problems of complex step method can be solved with the
AD concept (complex step is equivalent to the forward mode of AD - but with an easier
implementation).

A simple forward mode AD without need for extensive modifications was introduced
by Lyu et al. [151] to allow for aerodynamic simulations involving turbulence modelling.
In their verification test case — an ONERA M6 test case with six design variables and 21
constraints — the aerodynamic gradients differ by 10−9 and the spatial gradients differ by
10−4 to the complex step obtained sensitivities.

Direct/Adjoint methods [152] belong in the analytic sensitivity category and when avail-
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able, they can be the most accurate of all methods. A limiting factor however is their de-
pendency on the disciplinary analysis governing equations. The mathematical formulation
of the adjoint-based sensitivity method can become very complex involving quantities like
the surface and volume mesh sensitivity with respect to the surface mesh as well as the flow
adjoint, depending on the sensitivity of the flow solution to the volume mesh. Each of these
terms require specific techniques to be evaluated. Such a presentation extends the scope
and purpose of this chapter and it is not included.

Nevertheless, it can be said that the choice of a direct or adjoint method to calculate the
sensitivity of the function over the design variables, depends on the number of functions
compared to the number of design variables. As typically the design variables are more than
the objective function considered (they are actually way more), the adjoint formulation is
more efficient. In fact, the big advantage of the adjoint based optimisation is that the cost of
the sensitivity analysis is independent of dimensionality. This is what makes it appealing in
the final stages of a design when detailed design studies are performed, including hundreds
or thousands of design variables25.

Mader et al. [153] propose ADjoint, a combination of AD and adjoint, in an effort to
avoid their drawbacks. ADjoint is consistent, can handle complex problems and can be used
for many sets of governing equations without significant changes. It also reduces memory
requirements. Results from ADjoint are validated against results from the complex step
approach.

The typical cost of solving the adjoint equations is comparable to solving a complete
RANS CFD simulations. Adjoint methods are also classified to continuous or discrete de-
pending on the order of their differentiation and discretisation process. The discrete adjoint
method is more common and well established in the aerodynamics design community . An
extensive overview of sensitivity analysis is provided in [152], followed by suggestions on
dealing with Hessian approximation for aeronautical cases.

Gradient Based Optimisers - Calculating Search Direction

Given the gradient g of the OF at a design point xk in iteration k, the search direction
is calculated. The simplest way to calculate the search direction is the Steepest Descent
method where the search direction is simply the negative normalised gradient as,

dk = −
g(xk)
‖g(xk)‖

(2.8.5)

This method converges linearly, performing a normal zig-zag path towards the optimum.
A simple improvement over this method is the Conjugate Gradient that uses data from

25Obviously increasing the number of variables would have an effect in other stages of the optimisation
process. It would increase the design space, the cost of creating a surrogate (in case of a hybrid surrogate/-
gradient based optimisation), as well as increasing the multimodality of the design space.
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previous search directions to accelerate the convergence26. The property of conjugacy
(dT

i Adj = 0 for i , j) is used. This directs the optimisation to be aligned with the axes of the
ellipsis (when matrix A is positive definite). The method is also known as Fletcher-Reeves
for non linear functions.

Newton methods introduce 2nd order information near the design point, in the form of
Hessian matrix and as such they provide a quadratic approximation near the current design
point. Of course, this approximation is only accurate near the design point.

Being higher order methods and introducing more information on the design trends,
they are more effective, requiring fewer iterations to converge. However, the method is
negatively affected by potential ill-conditioning problems of the Hessian matrix as well as
the very high costs of its computation.

To detour this problem, quasi-Newton methods have been developed. These provide
ways to approximate the Hessian matrix [125], and are categorized based in their approach.
Common methods include the Davidson-Fletcher-Powell (DFP) method, the Broyden-Fletcher-
Goldhurb-Shanno (BFGS) method and the Symmetric Rank-1 Update (SR1) method. Per-
haps the most effective and commonly used method is the BFGS method.

Line Search

Given a search direction dk, an appropriate step length αk should be used so that Eq.2.8.2
can be applied to locate the next design point. A very small step length might not provide
sufficient decrease while a too large one might lead to overshoot and produce a very slight
decrease (if any). This is the case where the local minimum is overpassed and the derivative
of the function in the search direction is no longer negative.

A suboptimisation problem is required to determine the optimum step length αk by
minimizing f (xk + αkdk). Methods that solve this optimisation problems are called exact
and are very costly. Inexact methods like Backtracking use guess steps which can guarantee
that neither short nor long steps will be used. To secure a proper step value, several criteria
can be used, including the Sufficient Decrease criterion, Curvature criterion, Wolfe and
Strong Wolfe conditions as well as the Goldstein conditions [125].

2.9 Multidisciplinary Design Optimisation

The beginning of this chapter briefly displayed the need for switching from a sequential to
multidisciplinary design approach. This section provides a more elaborate discussion on

26For the first iteration, steepest descent is used.
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the way multidisciplinary design and optimisation problems can be formulated.

A methodology that defines how the various disciplinary analyses or optimisation prob-
lems should interact in order to exchange information required for the MDO, is called
architecture (also referred to as formulation). The architectures are split into two main
categories:

· Monolithic architectures

· Distributed architectures

Monolithic architectures use a single optimisation stage, which during each iteration
call what essentially is some kind of MDA process and returns the functions of interest.
This approach includes the simplest and perhaps easiest to implement concepts. However,
a significant requirement for their use is the existence of an easy and direct way to exchange
information between the various disciplines to satisfy their consistency requirements. Fur-
thermore, the implementation demands good load balancing as well as limited disciplinary
information exchange in order to be efficient. This requirement makes such an option im-
practical for the aeronautical industry which has highly distributed structure in a global
scale. Major aeronautical industries (AIRBUS, Boeing etc.) have independent departments
— scattered around the world — each specializing into a disciplinary design. Hence, an
approach that allows the groups to work independently while minimizing the quantity and
frequency of exchanged information is preferred. In such cases, distributed architectures
are more convenient as they use a system-level optimiser that guides the subsystem (dis-
ciplinary) optimisers. Hence, the disciplinary analyses and optimisation processes can be
performed independently with less frequent exchange of disciplinary information required.
Distributed architectures can be classified in:

• Non-hierarchic: Data are exchanged with no well defined hierarchy and feedback
between the disciplines.

• Hierarchical: Well defined hierarchy between data exchange and no feedback is avail-
able between the disciplines.

• Hybrid

An overview of these approaches for a typical aerostructural problem is shown in
Figs.2.23, 2.24.
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Figure 2.23: Monolithic architectures. MDO
uses a single optimisation problem introducing
a coupled MDA [57].

Figure 2.24: Distributed architecture. The
problem is decomposed into multiple subop-
timisation problems [57].

2.9.1 Generic Problem Formulation

With multiple disciplines present, the design variables x vector can be split into subvectors,
each containing the local variables of the ith discipline (xi) as well as the vector of the shared
variables x0. The state variables of each discipline is represented by ȳi. The exchange of
information between the ith discipline and the other disciplines is done by the coupling (or
response) variables yi, which is a subset of ȳi since not all outputs of a disciplines are useful
to others. Also a mechanism to transform yi to useful format is required. A typical example
of that is the transfer of pressure or lift force information from the surface CFD mesh cells
to the CSM ones. To allow parallel computations, these state variables may be copied into
target variables ŷi. Of course, although processed in parallel, yi and ŷi should have the same
values. Hence, consistency constraints cc

i = ŷi − yi should hold.

Mathematically, the MDO problem is formulated as:

min
x∈D

f0(x, y) +

N∑
i=1

fi(x0, xi, yi)

w.r.t. x, ŷ, y, ȳ
subject to c0(x, y) ≥ 0

ci(x0, xi, yi) ≥ 0, for i=1,· · · ,N
cc

i = ŷi − yi = 0, for i=1,· · · ,N
Ri(x0, xi, yt

j,i, ȳi, yi) = 0, for i=1,· · · ,N

(2.9.1)

where f0 is a shared objective (or a vector of shared objectives in the case of MO op-
timisation), and fi are local objective functions. c0, ci and cc

i are the system, disciplinary
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and consistency constraints respectively (presented in vector form). Ri are the disciplinary
analysis residuals.

2.9.2 Monolithic Architectures

The most common monolithic architectures found in the aerospace related literature in-
clude:

· All at once [154] (AAO). It solves the general formulation of the problem but is rarely
used due to its complexity.

· Simultaneous Analysis and Design [155] (SAND). Here, the consistency constraints cc
i

are dropped.

· Individual Discipline Feasible (IDF). The IDF architecture27 is defined by dropping the
disciplinary analysis constraints present in the AAO scheme. In the event of a sudden
stop in the procedure, the last resulting design would not satisfy multidisciplinary
feasibility.

· Multidisciplinary Feasibile (MDF). The disciplinary analysis constraints as well as the
consistency constraints are removed [154]. This is perhaps the simplest approach and
it involves an MDA in which the disciplines are sequentially solved (typically using
a non-linear Gauss-Seidel loop [156]) (see Fig.2.25). Variations can be developed
depending on the order of execution of the disciplines affecting the convergence rate,
and the iterative MDA process stops once disciplinary feasibility has been achieved.
Fig.2.25 shows the optimisation sequence of this architecture in an XDSM [157] for-
mat, a currently accepted way to consistently present MDO architectures.

27It can be also seen as Distributed Analysis Optimisation (DAO) in the literature.
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Figure 2.25: MDF architecture. Analyses are iteratively until convergence as a part of an MDA. In
this example, the Gauss-Seidel loop is used [158].

2.9.3 Distributed Architectures

Distributed architectures are developed based on a monolithic analogue, either IDF or MDF.
IDF-based distributed architectures are classified in either penalty or multilevel based. Hy-
brid architectures, exhibiting characteristics of both MDF and IDF formulations, can also
be developed.

· Concurrent Subspace Optimisation (CSSO). CSSO [159] decomposes the MDO into a
number of disciplinary suboptimisation problems which have disentangled variables.
The system level uses a series of coefficients for each discipline to extract information
regarding the design variables. Surrogate modelling has also been implemented [160]
while modifications have been proposed for MO problems [161].

· Bilevel Integrated System Synthesis (BLISS). In BLISS [162], local design variables are
used in a disciplinary level while the shared design variables are used in the sys-
tem level. An MDA is required to force interdisciplinary feasibility (see Fig.2.27).
It is typically applied with gradient based optimisers, with BLISS/A and BLISS/B
having been proposed depending on the sensitivity analysis method used. Surrogate
modelling can also employed in the computation of sensitivity.

· BLISS-2000. This is an improvement over the original BLISS, proposed by Sobieski
[163] and it does not require an MDA to restore design feasibility. In the optimum
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design point, coupling variable targets provide the consistency. Information provided
between the various disciplines is based on surrogate models. The effect of each
discipline is controlled by weighting coefficients acting on the state variables. This
method is more flexible and efficient as it allows the parallel execution of the various
disciplines surrogate models.

· MDO of Independent Subspaces (MDOIS). This architecture is designed for cases where
no shared objectives f0, shared constraints c0 or shared design variables are present.
Disciplines are only connected through the coupled state variables. An MDA is per-
formed after the subproblems convergence, to guide them to a new design. Its non-
realistic assumptions make it inappropriate for use in current complex aeronautical
problems.

· Asymmetric Subspace Optimisation (ASO). ASO [164] is efficient in cases where the
computational costs of the various disciplines are not well scaled (such an aerody-
namic analysis versus a structural analysis). There is a reduction on the optimisation
and MDA costs by defining a disciplinary optimisation of the cheap discipline within
the MDA (see Fig.2.26). The system-level design variables are reduced and there is
a better load balancing within the ASO/MDA loop.

· Collaborative Optimisation (CO). CO belongs to the distributed IDF and multilevel fam-
ily of architectures. It is appropriate in cases where there is small coupling bandwidth
(low number of shared variables) [165]. Here, independent disciplinary optimisation
problems are formulated. The system optimiser minimises the OF, while the disci-
plinary optimiser minimises interdisciplinary inconsistency. It has been applied in
many aeronautical related problems but it is characterized by poor performance.

· Enhanced Collaborative Optimisation (ECO). This is a modification of the CO formu-
lation. The objectives of the system level and disciplinary subproblem optimisation
are reversed. In the disciplinary subproblem, the system objective is minimized.

· Quasiseparable Decomposition (QSD). QSD [166] is suitable for the generic case of
problems where objectives and constraints are only a function of the shared design
variables and the shared coupling variables. This is a bilevel method for which the
solutions of the disciplinary subproblems form constraints of the system problem.

· Analytical Target Cascading (ATC). ATC was originally developed as a design method
by minimising the difference between the design and the target. It was reformulated
[167] so it could be used as an MDO architecture. The OF includes an addition of
disciplinary penalty relaxation functions and a penalty relaxation of the global design
constraints. Constraints are typically tackled by weighted penalty functions, with
the modifications focusing mostly on the choice of the penalty function. It has been
extensively used in the automotive sector while there are some aerospace applications
as well.

· Inexact Penalty Decomposition/Exact Penalty Decomposition (IPD/EPD). IPD/EPD can
be applied to problems where no shared OF and constraints are present. Therefore, a
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disciplinary subproblem is solved subject to disciplinary constraints. The disciplinary
OF is augmented by penalty functions, penalising the inconsistency between the dis-
cipline and the system information. The choice of penalty functions, defines whether
the formulation is classified as IPD or EPD and has an impact on the method’s effi-
ciency and convergence rate.

Figure 2.26: Diagram for ASO [158].

Figure 2.27: Diagram for BLISS [158].
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For a detailed up-to-date review of the MDO architectures, see [158]. Also, [168, 169]
provide information on MO MDO formulations, as well as an efficiency-based comparison
between some of the most popular architectures to the aerospace industry.

2.10 Aerostructural Optimisation Requirements and Con-
siderations

This section presents some requirements that arise specifically in aerostructural optimisa-
tion cases and they directly or indirectly originate from the aerostructural MDA loop. They
include the coupling of the aerodynamics and structures through the transfer of aerody-
namic loads and structural displacements as well as the estimation of the structural weight,
required to enforce meaningful final wing designs.

2.10.1 The Aerostructural Coupling Problem

Monolithic and MDF-based distributed MDO architectures, require a multidisciplinary
analysis that when converged, provides the global quantities that are used as objective func-
tions or constraints of the MDO problem. In aerospace MDO applications, this typically
involves the CD and the weight, as the most common MDA is an aerostructural analysis.
The static aerostructural analysis associated with this type of design problems is essentially
a specific case of a fluid-structure interaction (FSI) problem. Such types of MDA require
the exchange of information between the involved disciplines, during the analysis process.
The two major solving methods for such problems are:

• Monolithic (Fully Coupled) approach

• Partitioned (Loosely Coupled) approach

In the Fully Coupled approach, the physical problem is solved by a single analysis code
able to handle both the structural and the fluid simulation. Typically, in this computational
setup there exists a single grid for both the structural and the fluid discipline. Exchange
of boundary condition information (fluid-generated forces and structural displacements)
is done automatically within a single solver in these conformal grids, so the analysis in
each time — or pseudo time — step is performed in a synchronized manner. In the Loosely
Coupled approach, the multidisciplinary analysis is split into two distinctive analysis codes.
Each one involves its own computational domain and the grid in the disciplinary interface is
typically non-conformal. Therefore, a surface exists in which the nodes of the fluid grid do
not coincide with the nodes of the structural grid as shown in Fig.2.28. This demands the
development of an additional algorithm whose main purpose is to properly distribute the
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quantities of interest between the aerodynamic and structural grid. This approach has been
more popular the recent years due to the development of many disciplinary analysis codes
and software as well as specialized mesh generation tools. The loads/deformation mapping
procedure requires the satisfaction of at least the following two physical conditions:

• Conservation of energy over the interface

• Conservation of forces

Further important considerations include the numerical accuracy, the conservation of
numerical order of the associated solvers and of course efficiency.

Figure 2.28: Non matching grids. The aerodynamic and structural grids as a general rule do not
share the same nodes [170]

Energy preservation is achieved through the virtual work of the fluid acting on the aero-
dynamic surface Γaero, which should be equal to the virtual work of the structure (due to
displacements) Γstr. This condition results to a fundamental equation regarding the defor-
mation projection of the structural grid on the aerodynamic surface grid,

uaero = Hustr (2.10.1)

This correlates directly the displacements on the aerodynamic mesh uaero (due to struc-
tural deformation) to the displacements of the structural mesh ustr obtained by the structural
analysis solver. The matrix H is the transformation matrix, and the methods are categorized
depending on how this matrix is constructed. The aerodynamic forces are projected to the
structural surface grid in a similar manner.
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Focusing more on this partitioned approach, many methods have been developed to
approximate the forces and deformation between the two grid types. A de Boer et al. [170]
provided a brief overview of some of the methods used to estimate the transformation
matrix.

An obvious and straightforward approach is simply to discard the whole concept of
approximating the forces/deformations with interpolation models, and use only the values
in the existing grid nodes. In this method, called Nearest Neighbour Interpolation (NNI)
[171], the quantities of interest on the desired grid node have the value of the closest mesh
node of the other discipline. The only advantage of such an approach is its simplicity, but
when the grids are not close to matching (as is almost always the case), the transfer between
the forces and deformation leads to significant errors.

A more complicated approach is constructed by describing H with the use of appropri-
ate basis and weighting functions and the Galerkin method. This ultimately leads to the
expression of H as a product of two matrices [172–174]. Depending on the way these ma-
trices are generated, this process splits into Gauss interpolation and Intersection method.
A method that has been extensively used since its in introduction is the method of Brown
[175] based on rigid links.

Another approach that has been recently popular among researchers due to its simplicity
and accuracy, is using RBF functions for generating the interpolation models [176–178].
In an aeroelastic deformation case, the transformation matrix results from the product of
the matrix containing all the correlation vectors between the aerodynamic nodes (for which
we seek the displacement) and the structural nodes Mfs, with inverse of the structural Gram
matrix M−1

ss . In a matrix formulation, this reads:

H = MfsM−1
ss (2.10.2)

It might be important to note that the selection of the kernel function significantly influ-
ences the final result. Popular kernel functions have already been reported, however some
might not always be appropriate. In this application, one would require a function that
provides some local control, so that the forces or displacements taken into account for the
approximation in a specific node are limited to the close neighbour nodes. This means that
the function values should be inversely proportional to the radius. Therefore, choices like
linear or cubic kernels are completely inappropriate within this context. There are two more
important benefits associated with such an RBF methodology. Under these conditions, the
grid points are essentially "sets of point clouds" and no grid connectivity information is
necessary. Therefore they can be used within any type of grids. A further advantage is that
rigid body motion28 can be recovered by including a p-order polynomial in the radial basis

28A typical example of such a motion is one corresponding to a full aircraft configuration gust response,
in which the fuselage is free to move in 3D space. Such an application is out of the scope of the present PhD
work.
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function. This augments the sizes of the required matrix but the computational expenses
are not significant.

A comparison of the methods, performed above by A. de Boer [170] reveals that the
order of accuracy is 1 for the NNI method and 2 for all the rest apart from the RBF based,
which has an order of accuracy of 2.5. As expected, the error of the method depends on how
fine the non-conformal grids are, but the general trend is that RBF presents more accurate
forces/deformation mapping without an increase of the computation time.

Further approaches for tackling this mapping problem are briefly reviewed in [179].
The Constant Volume Tetrahedron (CVT) method proposed by Goura [180] is also an-
other promising and completely different approach. The Boundary Element Method [181]
(BEM) is another unique approach, in which the gap between the structure mesh (e.g. sur-
face of the skin of a wingbox) and the aerodynamic surface mesh, is considered to act like
an elastic material.

Finally, another flexible method has been developed recently by Samareh [182]. Like
the ones discussed previously, the method uses a matrix formulation that conserves energy
and moment, while being independent of the mesh topology. In a similar manner to A. de
Boer’s results, the accuracy depends a lot on the mesh discretisation refinement.

For a more general overview of various approaches to tackle the interface problem, the
reader is referred to the review paper of Guru P. Guruswamy [183].

2.10.2 Volume Mesh Deformation due to Structural Deformation

Following the structural analysis, the deformed structure should provide the updated aero-
dynamic OML shape — deformed due to its aerodynamic loads — through interpolation
of the non-conformal mesh nodes as discussed above. However, once the new wing surface
mesh is defined, the volume mesh has to be deformed to adapt to the deformation of the
surface boundary .

To satisfy this requirement, Rendall and Allen [179] take advantage of the promising
characteristics of their RBF based approach and extend it to create a unified methodol-
ogy for FSI. In this, apart from using the RBF for the loads/deformation mapping, they
foresee its potential in grid deformation (as briefly stated in section 2.3.2). In a manner
similar to displacement interpolation, a displacement of aerodynamic surface node due to
aerodynamic shape parameterisation also leads to the need of deforming the volume mesh
accordingly — that is performing interpolation to calculate the volume grid node displace-
ment. Therefore, the RBF methodology for deforming the volume mesh due to shape para-
materisation is essentially the same as the one due to structurally originating aerodynamic
shape deformation. It is only its application that changes29. The displacement uaerov of the

29Conceptually as a process, and as a required element of multidisciplinary optimisation, surface and
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aerodynamic volume node is described by:

uaerov = Luaero = LHustr = Kustr (2.10.3)

Here, L is a transformation matrix providing the volume mesh node displacements vec-
tor uaerov given the aerodynamic surface nodes displacements vector uaero. H is the trans-
formation matrix, transforming the structural node displacements ustr into aerodynamic
surface node displacements as in Eq.2.10.1. The total transformation matrix K is the result
of the product between L and H and it relates the volume mesh deformation directly to the
structural grid displacements.

The last section of this chapter deals with the overview of LF tools and the classification
of weight estimation methods for aerostructural applications. Further information regarding
typical setup of structural and aerostructural cases can be found in [184–189].

2.10.3 Low Fidelity Aerostructural Analysis Tools

A well known LF tool for aerostructural analysis is ASWING by Mark Drela [190]. This
is a development over his initial work found in [191], with the ability to simulate the per-
formance and response of the full aircraft configuration. Therefore, apart from performing
static aeroelastic analysis, it can also predict other dynamic phenomena like flutter and gust
response. It is appropriate for preliminary design and has been successfully tested when
used in the development of Deadalus human powered aircraft.

Recently, an LF aerostructural analysis tool was proposed by Lambert et al. [192]. Its
main characteristic is its structure which can accommodate any LF aerodynamic solver to
calculate the aero loads. These loads are then projected to a Beam Structural Model (BSM)
solved in Nastran. Its main application falls in the emerging High Aspect Ratio (HAR)
designs. As such, it uses a non-linear structural analysis so that it accounts for the large tip
displacements associated with HAR wings.

2.10.4 Structural Weight Estimation Methods

The objective function derived from the structural part of the MDA is the weight of the
structure required to withstand the aerodynamically defined loads, typically in a 2.5g ma-
neuver. The weight of the wing structure should be calculated during each design point
analysis, and therefore a LF and a HF weight estimation tool (if a MF methodology is

volume mesh deformation to adapt to structural deformation are still distinguished from the mesh deformation
required by the design parameterisation.
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used) needs to be adjusted with the respective structural design. Ideally, the weight esti-
mation process should be sensitive to the structural and coupled design variables. In an
opposite case, the optimiser will identify a subset of inactive design variables. Apart from
leading to non meaningful designs, this will create numerical instabilities in the case of
SBO.

Traditionally, weight estimation for the conceptual design stage uses statistical data
which correlate the weight of the wing or the aircraft with significant aircraft characteristics
(wingspan, number of passengers etc.) — known as Class I methods. However, for a
use in conceptual and conceptual to preliminary aerostructural optimisation or trade-off

studies, models need to be more accurate and sensitive to an already defined (within some
maturity) structure design. Such methods comprise the Class II and Class III categories.
Here, aspects of the design are taken into account, and in detailed estimations of Class III,
FEM models are used for increased accuracy. A historic review of the various methods
developed is available in [193]. As Elham points out, a Class II and1/2 is defined, and the
respective methods use both analytical and empirical approaches leading to a wide range
of attained accuracy. Elham [194] proposes EMWET, a weight estimation methodology
that uses an analytical approach — based on typical strength of materials theory — for the
wingbox and an empirical method for the rib weight. This LF tool is designed for use in
rapid MDO, as a LF weight estimation tool [195].

In his PhD thesis, Dababneh [193] provides an overview of mass estimation methods
and directly connects the given aero loads to the weight of the structure using a Nastran
structural sizing application. To account for the variable fidelity effect, the methodology is
applied to four different wingbox models of increasing fidelity.
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C H A P T E R 3

Optimisation Methodology

Let’s get dangerous!!!

Drake Mallard

In the present chapter, the needs raised by multidisciplinary design are described and then
a detailed and systematic overview of the developed optimisation methodology to satisfy

those needs is provided. It involves some basic ideas and mathematical formulations which
are currently being used as standalone tools from the optimisation community. These func-
tion as the building blocks of this framework and are presented first. They are accompanied
by the author’s ideas and modifications to adapt the framework to our pre-specified design
needs. Finally, the unified optimisation methodology developed by the author is presented.

3.1 Desired Optimisation Attributes

The previous chapter provided an overview of a typical aircraft design process as well as
the various optimisation methods currently under development from research groups and
their use for the design of aeronautic configurations. Evidently, regardless of the various
attributes any optimisation tool may possess, if it is to be used in the industry it should be
as fast as possible. Of course, as one can argue, this is quite a vague requirement as optimi-
sation computational expenses depend on the method, which in turn depends on the design
need that the tool aims in covering. However, what can be said with confidence is that for
each application, an optimisation tool should be fast to allow the engineers to perform many
design studies in a reasonable wall clock time to extract information required for the design
process. This is particularly true in the conceptual design stage, when the design space is
more extensive and requires efficient exploration studies to suggest potential design solu-
tions. Therefore, the formulation and the inherent attributes of the optimisation approach
might change the way the tool is used, as well as the duration of the industrial studies. A

69
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MO method provides a set of optimum designs and requires fewer number of job execu-
tions to provide sufficient design information. The repetition of the optimisation study in
this case aims in providing additional pareto front points as well as new designs dominat-
ing earlier pareto points. A single MO job is more computationally expensive than any
respective SO process, with the latter however requiring more repetitions to provide similar
amount of information. In an early development phase, extracting as much design informa-
tion as possible is crucial, with the goal being to rapidly and reliably assess multiple design
possibilities. Hence, an explorative gradient free MO formulation is more appropriate in
the scope of this design stage. Multidisciplinary design involves disciplinary interactions
and design change propagation [196] by definition. As such, it should be considered in
the early design stage where disciplinary synergies can be identified and exploited. The
interdisciplinary interactions increase the extent and complexity of the design stage; there
are more potential design directions that have to be examined by the engineers in the con-
ceptual stage. Therefore, the need for fast MO optimisation in multidisciplinary design
problems is even higher.

Having established the importance of a MO formulation and computational efficiency,
it should be stressed that the use of low fidelity analysis is only one of the ways to get
results fast, but certainly not the best. Short wall clock times are the result of the use of low
cost analysis models, but this is a deceptive benefit as it comes with the expense of design
reliability. The reduction of the analysis fidelity raises the issue of performance uncertainty.
This is by no means acceptable in conceptual multidisciplinary design procedures as it
usually means a lack of understanding and configurations that in the long run are far from
optimum. Hence, there is the need to keep optimisation costs low while maintaining a high
level of reliability, to avoid additional costs associated with redesign and fixes during the
preliminary and detailed design stage.

3.2 Methodology Requirements

3.2.1 Requirements to Tackle Early Design Stage Needs

Following these needs, an efficient optimisation framework for early design stages should
possess the following attributes:

1. Design space exploration and ability to identify the dominant design directions that lead
to global optimality.

2. Multiobjective formulation that can identify the optimum tradeoff between the objec-
tives, providing a pareto set.

3. Reliability. The design directions provided in the form of the pareto set, should be of a
high level of fidelity that corresponds to later design stages.



3.2 Methodology Requirements 71

4. Low computational costs — despite the above specifications — to allow its effective use
within the conceptual design processes.

5. User friendly. The framework should act as a complete standalone optimisation black
box that can accommodate any kind of heavy analysis design problems. It would
therefore be an efficient alternative to costly standalone MO gradient free optimisers.

It is widely understood and accepted in the optimisation research community that a
methodology cannot achieve its goals without being inefficient in other aspects. In this
sense, a method that covers the requirements above displays the following limitations:

1. Although providing design directions for global optimality and the global optimum area
should be expected, the actual global optimum point cannot be located by an explo-
ration scheme.

2. A fine-tuning optimisation framework that is efficient in local search is required to locate
the actual global optimum point, after the global optimum region has been identified.
This "optimisation pattern" is in total agreement with the successive design freedom
reduction observed during the design process (conceptual design followed by more
detailed design with a narrower design space).

3. As with any exploratory optimisation study, its cost will be higher than a local one.
This is due to the need for dense infill sampling as well as the inherent attribute of
exploration schemes to allow for — some — stochastic moving in the design space
even after initially locating promising design directions.

3.2.2 Attributes for Efficient Implementation in Multidisciplinary Prob-
lems

In multidisciplinary design problems, the methodology developed is being used within the
standard MDO architectures. This is a novel optimisation direction as typically MDO prob-
lems involve gradient based algorithms which require a low number iterations to reach con-
vergence to a local optimum. In the presence of few objectives and constraints but many
design variables as in detailed design, adjoint-based optimisers are indeed very efficient
— when sufficient convergence of the primal and adjoint equations can be achieved [197].
However, this framework is specifically designed to satisfy the early stage needs outlined
above. Consequently, it should reduce the costs associated with the coupled MDO design
space exploration while providing design directions of high reliability to accelerate the
transition cycle between the conceptual and preliminary design stage. Within an MDO ar-
chitecture its use is appropriate and efficient as an MDO process guide through the system
level. The elements composing the method have been specifically selected in such a way
so that the framework can make use of any analysis tool or type, which essentially acts as
a black box analysis, called by a black box optimisation tool.
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This feature makes the framework flexible, allowing its easy implementation even in in-
dustrial environments characterized by geographically remote design groups that use their
own internally developed software. Distributed MDO architectures are more appealing in
these cases, since the optimisation process is split within the design entities. The optimisa-
tion methodology has been specifically developed to maximise its efficiency in such MDO
applications. In distributed architectures, the system level still calls heavy analysis prob-
lems — combination of MDA and disciplinary optimisation problems —, but the associated
dimensionality is reduced. This increases the effiency of surrogate modelling methods [88]
making them useful even in such complex optimisation problems.

That is a novel approach on MDO that utilises concepts aiming in:

· Reduction of the analysis-related costs

· Shortening design cycle periods

· Reliability in the design directions

· Satisfaction of the design exploration needs

In addition, a truly multiobjective formulation which is novel in MDO, is of great in-
terest for the industry and especially in the conceptual stages, as it provides more design
information and complete tradeoff studies. Following this need, this methodology was de-
veloped to tackle multiobjective problems as well.

3.3 Methodology Overview

With the requirements of the methodology clearly identified, one can develop the necessary
formulation. This is done by a well defined "assembly" of some of the methods presented
in the previous chapter, which are considered appropriate based on the specifications.

To satisfy the requirements outlined earlier, the proposed methodology features a com-
bination of the following optimisation approaches.

· Use of surrogate models to predict the trends of the objective and constraint func-
tions. The advantage of using metamodels is that the cost of generating and exploring
a surrogate is lower than using function calls. This potential gain however is limited
on the special case of relatively low dimensionality problems with small number of
training data points. A conceptual design optimisation study falls within this cate-
gory since, what is sought at this stage is the dominant design variables and trends.
Detailed fine tuning cases cannot be handled efficiently by the use of surrogates.
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· A method [104] that can make efficient use of the surrogate models providing design
space exploration and global optimality without investing excessive computational
resources.

· An optimiser that is efficient in solving the suboptimisation problem introduced by
the use of a surrogate based optimisation plan. It should be able to perform MO
global search.

· Use of analysis models of variable fidelity. Fast low fidelity tools should be used
to accelerate the iterative sampling process, but the design directions should be reli-
able. Only configurations examined with high fidelity analysis tools are considered
reliable.

The proposed methodology constitutes the core of the optimisation framework to be
used within an MDO environment/formulation. In a loosely coupled plan, this translates to
performing multidisciplinary analyses once a new infill design point has been identified by
the method.

3.3.1 Geometry Parameterisation and Mesh Deformation

The geometry parameterisation is performed using the FFD method. As discussed in sec-
tion 2.3.1, it was evident that FFD can cover the 2D and 3D geometry parameterisation
needs regardless of the geometry for which it will be applied to (conventional or novel). It
is a fast and robust method that provides a high level of flexibility without the need for an
excessive number of control points. This approach is very popular in free source or com-
mercial preprocessing software, which makes it easily accessible in industrial environment
as well. An important aspect is that the same method can also be implemented for the CFD
mesh deformation required for each new design. In fact, it works as a CAD free method
which is actually what an aerodynamic optimisation algorithm requires. A direct parame-
terisation of the aerodynamic surface mesh (OML) is sufficient, with no further needs for
geometry parameterisation. As such, seeking a dedicated mesh deformation algorithm —
like the ones presented in the previous chapter — is avoided. The mesh deformation re-
quired to map the structural displacements in the deformation of the aerodynamic surface
raises other requirements and a different method is being used. More on this on section
7.2.7.

3.3.2 Surrogate modelling in a Multifidelity Context

First, let us define the optimisation problem in its generalised unconstrained form. Our
goal is to minimise a function (or a set of functions) of interest f ∈ O, as defined in equation
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(3.3.1).
min
x∈D

f(x). (3.3.1)

Here, x is a design point, a vector of dimension n and D is a subset of Rn, where n ≥ 1. O
is a subset of Rl, where l ≥ 1 is the objective space size.

The above problem — already defined in a form that can be solved by a black box
gradient free optimiser — can be transformed into a different formulation with the imple-
mentation of surrogate models and MF analysis methods, as described in the sections that
follow.

For simplicity, consider a single objective space l = 1 so that vector of functions f
essentially becomes a scalar function f . Suppose the existence of a set of analysis tools of
variable fidelity used to calculate f , whose results by convention are thereafter represented
by y. State of the art MF approaches suggest that the results from LF and HF tools, yLF and
yHF respectively, can be superimposed according to the relationship below [107],

yHF(x) = yLF(x) + e(x) (3.3.2)

This relation implies that the HF result is considered to be "the truth", with the LF
results being associated with an error and not providing further information [198]. A typi-
cal application of this decomposition within an SBO framework [104] is the Trust Region
[199–201] (TR) approach. It involves the generation of a locally accurate error surrogate
to correct the LF analysis value according to Eq.3.3.2. However, such an optimisation
methodology is not appropriate for our needs for two main reasons. It does not provide the
exploration characteristics required in a conceptual design stage. Furthermore, it demands
a high number of LF analyses since the LF tool is directly called by the optimiser during
the suboptimisation stage. Such an approach, even for low cost LF tools, becomes pro-
hibitively expensive within an MO MDO study. To minimize the suboptimisation costs, the
LF results have to be replaced by surrogate model predictions. Metamodels and their occa-
sional training is cheaper for a reasonable number of training data points. Then, during the
suboptimisation process, the optimiser calls a surrogate model predictor which is of course
way cheaper than a LF analysis. Therefore, in order to secure that the metamodels predict
the HF results, MF information should be directly implemented in the surrogate generated
using Eq.3.3.2.

Ideally, one would implement this in an RBF model, which would be very cheap to
construct. However, it is an important requirement that the SBO plan can provide sufficient
design space exploration. Exploratory methods like PI or EI require information regarding
the uncertainty of the metamodel itself, in a form of a mean squared error, which can be
estimated when a Gaussian correlation is assumed. Therefore, a Kriging model has to be
used as basis of the method1.

1Mathematically speaking, RBF can still be used to support a PI/EI SBO plan when a Gaussian kernel is
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A popular metamodel that can exploit the available MF data — and can also do so
within an explorative SBO plan — is Co-Kriging [118]. Unlike Kriging, it uses both LF
and HF point correlation to compose a unified MF covariance matrix. Unfortunately, such
an approach includes the tuning of extra hyperparameters, increasing the likelihood estima-
tion cost quadratically to the order of the matrix. Therefore, it is considered that Co-Kriging
covariance matrix operations make the metamodel generation too expensive for real indus-
trial MDO applications at which we aim.2

Instead, to reduce computational expenses while still approximating the HF function
and aiming for global HF optimality, a novel MF modified Kriging based model (MF mod-
Kriging) has been developed. The computationally efficient RBF model cannot provide
global exploration within an SBO framework [88]. The following paragraphs present the
modification of the ordinary Kriging model so that it can be used like Co-Kriging when
MF information is available, but without its increased associated training costs.

As stated earlier, only HF results are considered to be accurate within the numerical
framework3. Most simulations use LF tools and do not provide additional information [198]
to the search, but are only used to efficiently guide it. However, LF results are associated
with a non constant error. Therefore, for our Kriging modification to be efficient based on
the aforementioned accuracy requirements, it needs to perform as an interpolation through
HF points and as a regression through LF ones, as shown in the qualitative 1D example of
Fig.3.1. The regression has to be dependent on the predicted error of each LF data point.
This error is either estimated by a simple RBF [107] or a Kriging model using Eq.3.3.2,
given a sampling of both LF and HF observations in common points. For this, the space
filling Latin Hypercube Sampling (LHS) method with a Morris-Mitchell maximin approach
[59, 60] is used.

The sampling requires m points analysed only using the LF tool at xLF , and n new points
analysed with both the LF and HF tool at xHF , where typically — but not necessarily —
n < m. As such, we define the complete objective value vector y, and the Error vector e

used as this also assumes a Gaussian correlation between the training data. However, the use of a constant
shape parameter associated with RBF, makes the metamodelling predictions and its MSE prediction less
accurate in a challenging multimodal MDO related design. In the error space nevertheless, RBF can be used
with greater confidence if this space is smoother.

2The validity of this assumption is examined in following chapters by comparing this approach with a
Co-Kriging based one.

3That is, only HF results are considered reliable for the engineer in the sense described in section 3.2.
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Figure 3.1: A qualitative display of the MF Kriging model requirement in a 1D example. Interpo-
lation is performed through the HF data but LF data are fitted since they are subject to error.

consisting of n data, derived by Eq.3.3.2
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 (3.3.3)

Given the training vector e including the error observations, the cheapest way to esti-
mate the LF tool error is by using an RBF model. For this, in matrix form we have,

Φa = e (3.3.4)

When Gaussian kernel functions are used, the Gram matrix Φ consists of elements of
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the form,
φi j = exp

(
−θ‖xj − xi‖

)p
(3.3.5)

where the smoothness parameter p is set to p = 2. Alternatively, to the author’s experi-
ence Mátern functions provide an accurate and robust choice [85]. The parameters vector
α is determined by performing a Cholesky decomposition and back-substitution4.

Given the vector solution a, the error RBF model is trained. The error associated with
the use of the LF tool can be now estimated in any design point of the design space. Later
in this chapter it is shown how this error estimation metamodel is important in MF modK-
riging.

To demonstrate this, initially suppose an ordinary Kriging, with the correlation matrix,

Ψ =


Corr[y(x1), y(x1)] Corr[y(x1), y(x2)] · · · Corr[y(x1), y(xn)]
Corr[y(x2), y(x1)] · · · · · · Corr[y(x2), y(xn)]

...
...

. . .
...

Corr[y(xn), y(x1)] Corr[y(xn), y(x2)] · · · Corr[y(xn), y(xn)]

 (3.3.6)

The elements of this matrix estimate the correlation of the data points by modelling the
function as a Gaussian process:

Corr[y(xi), y(xj)] = exp

− d∑
l=1

θl‖x j,l − xi,l‖
pl

 (3.3.7)

Here, d is the number of the design variables and θl and pl are the shape and smoothing
parameters respectively, that need to be defined.

We generate the Kriging predictor by optimising the set of µ, σ2, θl, pl parameters. The
mean µ and variance σ2 are easily optimised in a deterministic manner. Finding the opti-
mum shape and smooth parameter (θ̂l and p̂l) however, requires a stochastic optimisation
process aiming at maximizing the Likelihood Estimation function5 λ given by,

4The appropriate method of solving the system actually depends on the properties of the symmetric Gram
matrix. Most kernel functions create a positive definite Gram matrix which is most efficiently solved by
a Cholesky decomposition. If the matrix is not positive definite, the generic LU decomposition method
applies. In the case of ill-conditioned matrices resulting by poor spacing between the training data, SVD
decomposition can be used.

5Intuitively this means that the optimum parameters are the ones that most likely have produced the
sampling data.
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λ = −
n
2

log
(
σ̂2

)
−

1
2

log |Ψ| (3.3.8)

Therefore, the hyperparameters optimisation problem is defined by,

θ̂l, p̂l = arg min
θ,p

λ

Finally, the Kriging predictor takes the form,

ŷ(x) = µ̂ +ψTΨ−1(y − 1) (3.3.9)

where ψ is the correlation vector associated with the point to be predicted.

3.3.3 Surrogate Based Optimisation in a Multifidelity Context

The Kriging predictor is not used directly since we apply the Kriging model to provide the
next sampling point under the EI [104] plan. This approach can lead to global optimality
without prohibitively costly design space exploration. A balance is attained as the search is
based both on the most promising design points (according to the predictor y) as well as the
uncertainty generated from unexplored regions. To quantify this uncertainty, information
is required regarding the metamodel’s Mean Squared Error (MSE), given by,

ŝ2(x) = σ2
[
1 −ψTΨ−1ψ +

1 − 1TΨ−1ψ

1TΨ−11

]
(3.3.10)

MSE is zero in training data points and it increases between them due to value un-
certainty. The above formulation is used to construct an estimator of the probability of
improvement as well as the expected improvement of the objective function in any de-
sign space point, given the current minimum value ymin. In any point where ŝ(x) , 0, the
probability of improvement is expressed as,

PI = Φ

(
ymin − ŷ(x)

ŝ(x)

)
(3.3.11)
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and the expected improvement is expressed as,

EI = (ymin − ŷ(x)) Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin − ŷ(x)

ŝ(x)

)
(3.3.12)

where Φ is the cumulative distribution function

Φ(x) =
1
2

+
1
2

er f
(
x/
√

2
)

(3.3.13)

and φ is the probability density function.In Eq.3.3.11,3.3.13, er f is the error function
expressed as,

er f (x) =
1
√
π

∫ x

−x
exp−t2/2 (3.3.14)

The infill point x∗ ∈ D is then the solution of the suboptimisation problem,

x∗ = arg
(
max
x∈D

EI
)

(3.3.15)

3.3.4 Multifidelity Treatment in Kriging Model

So far, the ordinary Kriging has been presented as commonly found in literature and exten-
sively used by various research groups. However, this cannot accommodate data resulting
from MF analyses. The MF Kriging modification developed proposes a simple way to su-
perimpose LF and HF information within the model. Additionally, this MF information is
introduced in the Kriging predictor (Eq.3.3.9) and MSE (Eq.3.3.10), therefore transforming
the EI method into an MF EI method.

During this work, a way for a Kriging model to incorporate MF data was examined.
This was done by simply adding the error prediction defined earlier, for each LF point in
the correlation matrix diagonal. This approach makes the diagonal error term function-
ing as a regularisation parameter in similar way to a constant parameter being added in
the diagonal to fit noisy signals. Physically, this means that we consider the inaccuracy
of the LF model to be inducing noise in the objective function space. Research and ap-
plications using this approach proved its efficiency and success in improving the objective
function approximation. However, it was observed that in high error values (in relation to
the diagonal correlation matrix term), the method becomes numerically unstable. The MSE
quantity cannot be calculated and subsequently, the method cannot be used robustly in a
EI SBO context. This forced the development of an alternative modification where the MF
information is not inserted in the correlation matrix.
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In this MF modKriging method, the correlation matrix is defined using only the LF
training data of our MF vector y, so that:

Ψ =


Corr[yLF(x1), yLF(x1)] · · · Corr[yLF(x1), yLF(xm+n)]
Corr[yLFx2), yLF(x1)] · · · Corr[yLF(x2), yLF(xm+n)]

...
. . .

...
Corr[yLF(xm+n), yLF(x1)] · · · Corr[yLF(xm+n), yLF(xm+n)]

 (3.3.16)

The Kriging predictor ŷ now takes the following form:

ŷ(x) = µ̂ + ψTΨ−1(y − 1) + e(x) (3.3.17)

where µ̂ is the Kriging optimised mean value calculated as,

µ̂ =
1TΨ−1y
1TΨ−11

(3.3.18)

The HF information is recovered by e(x), which is the surrogate prediction of the LF
tool error, defined by Eq.3.3.2. Therefore, Kriging predictor now interpolates the HF points
and fits the LF ones depending on their predicted error. However, since the EI estimation
is dependent on MSE as well, complete HF information recovery in the EI space demands
the alteration of the MSE equation as:

ŝ2(x) = σ2
[
1 −ψTΨ−1ψ +

1 − 1TΨ−1ψ

1TΨ−11
]

+ se (3.3.19)

where the model variation σ2 is given by,

σ2 =
(y − 1µ)TΨ−1(y − 1µ)

n
(3.3.20)

with n being the number of sampling data points. In Eq.3.3.19, the se term is the MSE
of the error metamodel, essentially expressing the uncertainty that arises when using the
LF tool correction metamodel itself. The MSE quantity is typically provided by Krig-
ing models through Gaussian based correlation matrix operations, as above. Therefore, se

is formulated in a straightforward way if a Kriging model is used for the LF error pre-
diction. However, as originally defined in the requirements, the optimisation framework
should have the minimum computational costs. As such, we often use RBF for the LF
error prediction. In this case, by using a Gaussian kernel we can relate the Gram matrix
to the Correlation matrix used in Kriging models. By comparing Eq.3.3.5 and Eq.3.3.7 we
observe that Gram matrix is identical to the Correlation matrix in the special case that: (i)
we define the training data points to be correlated with each other in the same way for all
design coordinates (isotropic model), and (ii) this correlation coincides with the correla-
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tion defined in the Gaussian RBF kernel through the constant shape parameters θ and p.
Namely, for a case where θ = θ1 = θ2, · · · θd and p = 2, the following holds,

Ψ = Φ (3.3.21)

This essentially implies that the RBF model used to express the error of the LF tool
has the aforementioned, defined correlation characteristics. Therefore, we can use it to
predict a distribution of the MSE, with exactly the same "assumptions" used in any RBF
interpolation model (that is, isotropic shape parameter). As such, se can now be calculated
as,

se = σ2
[
1 −ψTΨ−1ψ +

1 − 1TΨ−1ψ

1TΨ−11

]
= σe

[
1 − φTΦ−1φ +

1 − 1TΦ−1φ

1TΦ−11

]
(3.3.22)

where the variance of the error model σ2
e can be calculated using eqs.3.3.10,3.3.20, by

setting Ψ = Φ and ψ = φ.

In the generic case where a Kriging model has θ1 , θ2, · · · θd, its predicted MSE distri-
bution will divert from the one similarly predicted by RBF. Nevertheless, such a prediction
disagreement is of exactly the same nature as the disagreement between an RBF and a
trained Kriging model value predictor.

The importance of using Eq.3.3.19 and Eq.3.3.22 lies in the fact that they restore a zero
MSE value to the HF data points and a finite value to the LF ones. Apart from fitting LF
data according to their predicted errors and interpolating HF data, the method can now
distinguish between the uncertainty characteristics of the LF/HF points in terms of MSE,
and eventually EI (which is our value of interest). The loss of LF/HF data correlation (as
exploited in Co-Kriging) is compensated by the reduction of the overall model training
costs.

3.3.5 Multifidelity Infill Sampling Plan

Evidently, this use of MF data to modify the metamodel representation deviates from other
popular methods like trust region and space mapping [103, 202]. Furthermore, contrary to
typical EI practice, our infill points are not always sampled using the HF tool. The decom-
position of Eq.3.3.2 that uses a global error model provides an alternative a more efficient
infill sampling plan possibility. A straightforward plan is developed, which allows the en-
gineer to adapt the method to his needs and to the stage of the design process to which the
optimisation tool is used. The solution of the suboptimisation problem leads to a potential
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(a) Infill tool fidelity criterion.

(b) Versatility of the criterion, to adapt to the desired design stage.

Figure 3.2: MF infill sampling approach.

LF or HF infill analysis. If the error predicted on the infill point is lower than an error
threshold defined by the engineer, then the LF tool is considered to be "accurate enough" in
this area of the design space and LF analysis is performed. Hence, computational expenses
are avoided for points for which the LF tool is reliable enough for the purpose of the re-
spective design stage. The LF analysis would provide sufficient information since LF and
HF tools would show no significant difference. Nevertheless, when a predefined number
of successive LF infill samplings is surpassed, both HF and LF infill sampling analysis is
performed. It is critical to ensure that the error estimation surrogate is updated frequently
enough to allow for reliable predictions in all interesting areas. Failure in updating the error
surrogate would lead to an excessive number of LF infill samplings, as the predicted error
may be very low in unexplored areas6. Furthermore, bad error prediction significantly de-
teriorates the reliability of the y predictor, tricking EI into exploring fictionally promising
points7.

This flexible infill sampling methodology makes the tool appropriate for an industrial

6This is true in RBF models with kernel functions that approach zero in an asymptotic manner, like a
Guassian kernel. It does not hold in linear or cubic kernel cases.

7A poor error model can deceive the EI plan, leading to inefficient exploration or convergence to LF
optimality.
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environment. Since the error and iteration limits can be explicitly defined, the engineer is
allowed to use the tool either for conceptual or detailed design. High error threshold and
iterations limits lead to a quick optimum tradeoff study in a conceptual design stage. The
inverse would be preferable in later design stage studies. This approach is illustrated in
Fig.3.2.

3.3.6 Single Objective Suboptimisation Process

When the methodology is applied to single objective problems, the suboptimisation process
simply refers to finding the point in the design space with the maximum predicted expected
improvement — as in Eq.3.3.15. That is,

x∗ = arg
(
max
x∈D

EI
)

Any explorative global optimiser can be used at this stage, as the EI space is multimodal.
Therefore, to avoid sampling a local optimum related point extensive search is required.
Typical options for this include any stochastic algorithm like PSO, MIDACO etc. During
the course of this work, the efficiency of various optimisers had been assessed, including
ALPSO, NSGA2, MIDACO, ALHSO and Nelder-Mead non linear simplex algorithms.
Out of these ALPSO and Nelder-Mead were found superior in terms of cost and result.
However, it has to be noted that the cost and efficiency of a gradient free algorithm is
not critical. One of the benefits of the presented methodology is that these — costly —
global algorithms now act on the simple algebraic EI expression and not on an expensive
analysis. Therefore, any gradient free optimiser can be used without cost penalties. As it
will be shown in more detail in following section, the imposition of the constraints takes
place during this stage as well. Again, this is beneficial because the constraint functions
are similarly and cheaply calculated and the feasible design space is efficiently identified
during the suboptimisation process.

3.3.7 Multiobjective Suboptimisation Process

The multiobjective suboptimisation process is a very similar procedure in a sense that we
are seeking a point or a set of points to be promising in terms of EI. However, there at least
two ways with which we can tackle this problem:

· By considering the probability of new design dominating at least a single member of
the pareto front, as overviewed in Forrester [88].
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· A simple and efficient approach that we propose, which favours the widening of the
pareto front, a critical characteristic for early stage MDO as outlined in our require-
ments.

Expected Improvement for Improving the Current Pareto Front

In this approach, an expression for the probability P of a new sampling point improving I
the current pareto front is being used. For example, given two objective function values y1

and y2, and m members of the pareto front y∗1, y
∗
2 · · · , y

∗
m, this is provided by:

P[Y1(x) < y1
∗ ∩ Y2(x) < y2

∗] =Φ

y∗(i)1 − ŷ1(x)
s1(x)


+

m−1∑
i=1

Φ

y∗(i+1)
1 − ŷ1(x)

s1(x)

 − Φ

y∗(i)1 − ŷ1(x)
s1(x)




× Φ

y∗(i+1)
2 − ŷ2(x)

s2(x)


+

1 − Φ

y∗(m)
1 − ŷ1(x)

s1(x)


 Φ

y∗(m)
2 − ŷ2(x)

s2(x)



(3.3.23)

with Φ being the cumulative distribution function.

The expected improvement is now calculated as,

E[I(x∗)] = P[I(x∗)]
√(

Ȳ1(x) − y∗1(x∗)
)2

+
(
Ȳ2(x) − y∗2(x∗)

)2
(3.3.24)
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Y1 and Y2 are expressed by,

Ȳ1(x) =



ŷ1(x)Φ

y∗(i)1 − ŷ1(x)
s1(x)

 − s1(x)φ

y∗(i)1 − ŷ1(x)
s1(x)


+

m−1∑
i=1



ŷ1(x)Φ

y∗(i+1)
1 − ŷ1(x)

s1(x)

 − s1(x) − φ

y∗(i+1)
1 − ŷ1(x)

s1(x)


−

ŷ1(x)Φ

y∗(i)1 − ŷ1(x)
s1(x)

 − s1(x) − φ

y∗(i)1 − ŷ1(x)
s1(x)




× Φ

y∗(i+1)
2 − ŷ2(x)

s2(x)


+

ŷ1(x)Φ

y∗(m)
1 − ŷ1(x)

s1(x)

 − s1(x) − φ

y∗(m)
1 − ŷ1(x)

s1(x)


× Φ

y∗(m)
2 − ŷ2(x)

s2(x)





/P[I(x∗)]

(3.3.25)

where φ is the probability density function.

As in the single objective process, the new infill point is provided by,

x∗ = arg
(
max
x∈D

EI
)

This method is used as a basis for comparison with our simple approach presented in
the following section. The different infill approaches are assessed in terms of pareto front
quality and computational efficiency.

Pareto Expected Improvement Parallel Infill Approach

In our implementation, for an MO problem involving p objectives the suboptimisation
problem is explicitly expressed by,

x1
∗, x2

∗..xk
∗ = arg

(
max
x∈D

EI1 vs max
x∈D

EI2 vs .. max
x∈D

EIp

)
(3.3.26)

Therefore, a pareto front of this cheap MO optimisation problem, provides k infill points
which can be then sampled in parallel. This more than compensates for any potential
expenses due to the MO search. Such an explicit MO suboptimisation process approach is
not typically found in MO SBO methods [107], however in our experience it is this explicit
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formulation that guarantees a wide pareto front. On top of this, allowing parallel infill
analyses, it improves the surrogate model’s accuracy in the cost of a single analysis .

Multiobjective Particle Swarm Optimisation

The MO EI maximisation problem is solved using our own implementation of Multiobjec-
tive Particle Swarm Optimisation (MOPSO) code developed specifically for the needs of
this thesis. It is a Multiobjective (MO) version [139] of the PSO algorithm which when
applied in the suboptimisation process, provides the dominant points based on the maxi-
mum EI of each objective. The leader of the swarm is selected using the concept of pareto
dominance classifying it as a pareto dominance MOPSO type (see [140] for an overview
of other approaches). In our implementation, a selection method is added to the ones al-
ready proposed in [139], able to provide a point to promote diversity and guarantee a wide
and uniformly distributed EI pareto front. The optimiser was validated using Fonseca and
Fleming function to ensure pareto uniformity and global optimality.

3.3.8 Constraints Handling Formulations

The complete optimisation methodology described in the precedent sections is summarized
in Fig.3.3. This displays a typical single or multiobjective optimisation problem that utilises
single or multifidelity analysis tools and surrogate modelling.
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Figure 3.3: Flowchart describing the suggested MF SBO methodology.
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Of course, in realistic design applications an optimisation problem will rarely — if ever
— be free of constraints. Although the inclusion of constraints in such a problem is not
distinctive in Fig.3.3, constrained problems can be tackled by the exact same methodology.
This is true because constraint functions are treated in the surrogate generation level and
suboptimisation process similarly to the objective function(s).

Suppose a typical constrained optimisation problem as described below:

min
x∈D

f (x)

subject to g1(x) ≥ g1,min

g2(x) ≥ g2,min

...

gn(x) ≥ gn,min

(3.3.27)

Within the proposed surrogate based optimisation method, metamodels are generated
for the constraint functions in a way similar to that of the objective function(s). This is a
computationally efficient and elegant approach especially in the typical aerospace design
case where the constraints are provided by the same analysis tool that calculate the objective
function. In this case, a set of data is generated from every design candidate, followed by
metamodel generation for the objective function and the constraints.

The constraint value predictions are exploited within the suboptimisation process, in
order to steer its solution towards a feasible promising infill point. In this process, there
are two main ways in which information from the constraints’ models can predict the new
point:

· Penalty methods

· Probability of feasibility

Penalty Methods

This approach falls in the general category of penalty methods but specifically applied
within an SBO environment. In this, a penalty is applied to points for which any of the
constraints’ surrogate models’ estimations violates the respective constraint.

A penalty can be applied in various forms [107], but experience has showed that simply
penalizing the point by setting its EI prediction to zero, is effective. This way, the sub-
optimisation process is steered to design vectors that are feasible according to the current
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metamodel predictions. This is a very simple to implement, yet powerful method. Its ability
to work using any metamodel (for instance, cheap RBF instead of Kriging), makes it very
attractive for the applications for which the whole optimisation methodology is developed.

On the downside, this method is strongly dependent on the initial constraint surrogate
accuracy. Suppose a simple RBF constraint model which is not accurate due to limited
(or badly distributed) training data points: the SBO plan will gradually sample points to
the area currently believed to contain the optimum. In this case, unexplored areas will be
under-sampled leading to inaccurate constraint estimations with no mechanism enforcing
a sampling in the unexplored region. This condition will sustain itself: during the subop-
timisation process points that should not be penalized might be penalized (or the opposite)
and a potentially promising yet unexplored design space region will not be visited. There-
fore, the local knowledge of the constraint function in this area will not be improved. This
potentially increases the initial sampling requirements, which then translates to cost.

Probability of Feasibility

The second method requires a Kriging surrogate for the constraints, which as presented in
this chapter allows the calculation of probability of improvement (PI) within the subopti-
misation process. In Eq.3.3.11, one can substitute the constraint i limit gi(x) instead of the
current minimum value ymin. This creates the probability of feasibility (PF) [107] for the
constraint function i. This essentially refers to the probability that any examined design has
to satisfy the constraint i. Therefore, by including the probability of feasibility of all the
constraints, as well as the expected improvement of the objective function, the infill plan is
altered, to create the Feasible Expected Improvement Criterion (FEIC). In the general case
of n constraints, the suboptimisation problem becomes,

x∗ = arg
(
max
x∈D

(PF1xPF2x · · · xPFnxEI)
)

(3.3.28)

Hereafter, to avoid any abbreviation-related confusion, this method is simply referred
to as "Feasibility".

The infill point is the one maximizing this combined criterion and the improvement
is steered towards regions that are predicted to be feasible and promising. The drawback
discussed in the penalty method approach is not present in the feasibility method. This is
because in addition to EI, PFi uses also information from the MSE of the model itself. This
is a mechanism that counterbalances the attraction of the promising regions and enforces
the sampling of unexplored regions, in which the constraint function is not sufficiently ac-
curate. The result is a constraint metamodel that not only favours global search, but being
more accurate also leads to higher success in infill sampling designs in terms of feasibility,
during the optimisation process. This approach has shown to be robust and effective, how-
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ever there is additional cost associated to the mandatory generation of a Kriging model for
the constraint.

A Discussion on the Mehaviour of the Methods

For industrial applications that require computationally expensive analyses, a knowledge
of the behaviour of each approach and its effect on the optimisation convergence, is es-
sential for the success of each design problem. Usually, such problems are dominated by
constraints —which are typically active at the minimum—, increasing the importance of a
good understanding on the way convergence and feasibility is achieved. This is especially
the case in optimisation studies with limited budget where both final result but also feasi-
bility during the optimisation convergence is desired. Therefore, there is a need to assess
and compare these constraint handling approaches, a task presented in Chapter 5 within
the scope of a typical airfoil design problem. The following paragraphs provide a brief
description of their performance attributes, based on the their fundamental characteristics
and the methods are displayed in Fig.3.4.

Regarding the Penalty method, it can be said, that it is more dependent on the sam-
pling success and less robust than the Feasibility method. The suboptimisation process
is steered towards points on the limit of the constraint (in active constrained problems),
which due to the surrogate model’s inaccuracy may prove to be infeasible when analysed.
Whether or not the constraint is indeed satisfied, depends on the accuracy of the surrogate
model. Especially in high dimensionality problems and when cheap RBF models are used,
the accuracy is not sufficient to ensure a high rate of infill feasibility success. However,
when more training points populate the promising area, the improvement of the constraint
models’ accuracy translates to more successful infill sampling. In the penalty method the
suboptimisation process still depends solely on the EI as a search criterion and as such the
point sampled is more influenced by the EI prediction.

In the feasibility method however, PFi and EI have equal influence on the suboptimi-
sation. As such, a point very likely to satisfy the constraints (high PFi terms) but moderate
EI, might provide a higher product in Eq.3.3.15, than a point featuring high EI but moder-
ate PIi terms. When using the probability of a point being feasible as one of the subprocess
metrics to maximise, the latter is steered towards infill points well within the feasible pre-
dicted design space. As a result, feasibility method tends to be more conservative, providing
infill points with higher success rate in terms of constraint feasibility than penalty method
does during the optimisation.

While penalty method is more aggressive and less successful in terms of feasibility
rates, when sampling points are indeed feasible they tend to exhibit better objective func-
tion values since the method leads to active constraint regions. Therefore, especially in
problems where the constraints are active at the optimum, the penalty method is expected
to provide better final results but in a later stage in the optimisation process. The feasibility
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method on the other hand is suitable in providing feasible improvements earlier. How-
ever, it tends to reach a plateau quickly, since the infill points are too conservative for any
objective function improvement to occur, especially in active constrained problems.

The topology of the constraint functions is also a significant factor on deciding which
method to use. A flat or linear function cannot be approximated by Kriging — due to
numerical instability reasons— and as such the Feasibility method fails for such problems.
Such a problem is encountered in the Sellar test case presented in in Chapter 4.

Based on the above information, an interactive approach to optimisation is suggested.
In the initial stages of optimisation feasibility should be used, only to be switched to the
penalty method when a plateau is reached.

As a final note, in the cases where the constraint values result from MF tools, the con-
straint metamodel should be able to accommodate MF data. Therefore, the MF modRBF8

or MF modKriging presented in this chapter should be used instead of RBF or ordinary
Kriging.

(a) Penalty method: Zero EI applied to points pre-
dicted as infeasible.

(b) Feasibility: Suboptimisation process
acting directly on the probability of a point
being a feasible improvement.

Figure 3.4: Constraint handling methods, acting during the suboptimisation process.

3.4 Implementation on Multidisciplinary Problems

The paragraphs preceding this section refer to the details of the development of a self con-
taining black box type optimisation methodology. As mentioned earlier, the method is
flexibly structured to accommodate any type of problem (SO or MO, SF or MF), while

8The RBF model can be easily modified to an additive MF modRBF, similarly to the way MF modKriging
was modified. In Eq.3.3.17, the Kriging predictor is simply replaced by the RBF predictor.
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combining various cost-efficient methodologies related to global exploration and optimisa-
tion, as required in preliminary design studies. In addition, it is adaptable to any design
stage, engineering workflow or formulation, especially involving industrial inhouse analy-
sis and optimisation software. In this sense, its main role is in the system level optimiser
of a distributed architecture based MDO but can also act simply as an optimiser of a mono-
lithic formulation, calling multidisciplinary analyses of variable fidelity (see Fig.3.5).

Figure 3.5: In its simplest form in monolithic MDO formulations, the methodology can act as a
black box optimiser acting on variable fidelity industrially defined MDA workflows.

Nevertheless, it is well established that the efficiency of the method is affected by the
selected MDO architecture. Apart from its distinctive character, each architecture’s per-
formance is dependent on the optimisation framework used in the system level. Hence,
following current research on MDO architectures for various applications, is interesting to
examine how these architectures adapt to this system level optimiser approach.

In this sense, this research thesis focuses in the performance assessment of standard ar-
chitectures — now making their way into aerospace design — that employ the optimisation
method developed.

The examined architectures are:

· Monolithic: MDF

· Distributed: ASO

ASO is essentially a hybrid between typical distributed architectures and MDF, and is
developed from a simple modification of MDF. It is a formulation well suited for aerostruc-
tural problems [164], like the ones this thesis aims at, due to their inherent poor load bal-
ancing.

A typical — industrial scale — aerostructural problem is described in Fig.3.6.
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Figure 3.6: Description of an industrial aerostructural optimisation process. The multidisciplinary
analysis involves the convergence of all related disciplines to provide the objective function and
constraints. For ASO architecture, structural analysis is substituted by structural sizing.

Monolithic Architectures

In the monolithic category, only MDF is examined due to good performance as well as its
simplicity and adaptability to any optimisation framework. This choice — popular among
among other researchers and engineers — also lies in the fact that contrary to IDF, a mul-
tidisciplinary feasible solution is always attained. This is an important attribute of an opti-
misation framework for any industrial design workflow.

In this case, the methodology works as the single optimiser calling a black box function
which is simply the expensive MDA process. It is an efficient approach since the goal of the
optimiser was to minimise the number of HF MDA calls. The main source of computational
cost comes from converging the MDA (a mandatory cost if physically feasible solutions are
desired in every iteration). In high dimensionality, training the Kriging model(s) becomes
a significant cost as well.

A detailed flowchart of the methodology applied in a typical MDO problem based on
MDF, is shown in Fig.3.7.
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Figure 3.7: In MDF, the methodology acts directly on the interface of a (predefined) multidis-
ciplinary analysis. Upon multidisciplinary convergence, objective function and constraints of the
appropriate fidelity are provided.

Distributed Architectures

The optimisation methodology was originally developed mainly for being applied within
a distributed architecture environment. The adaptability of the methodology communicat-
ing with interfaces of predefined analysis and optimisation tools is exploited in such an
architecture, which by definition uses such inhouse software. Apart from this "method-
ology characteristics match", combining a distributed architecture with a global surrogate
based optimiser like the one presented, shares another significant advantage as well: the
reduce of dimensionality. Architectures like ASO and Bi-Level reduce the dimensionality
of the system level optimiser, as the local (disciplinary) design variables are used only in
disciplinary optimisation processes, which are defined as black boxes in existing industrial
procedures. Therefore, the optimiser (working in system level) not only interacts with the
interfaces these processes but its dimensionality is also reduced. This is crucial for expen-
sive and challenging design problems for which the surrogate based procedure should be as
efficient as possible. The inherent fact that inhouse disciplinary analysis and optimisation
tools are used in such architectures, makes the whole design methodology more flexible and
attractive for industrial applications which invest a lot of human and financial resources in
the development of these processes. The implementation of the developed optimisation
methodology within ASO is illustrated in Fig.3.8.
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Figure 3.8: In ASO, the methodology exploits existing industrial analysis and disciplinary opti-
misation tools. At least one discipline performs an optimisation with respect to its local design
variables. Thus, the global variables in the system level are reduced, improving the efficiency of the
methodology.

3.5 Summary

This chapter presented the methodology developed to tackle the problem of accelerating
early design stages by efficiently exploiting HF information. The methodology was de-
signed to support decision making in the conceptual to preliminary phase, through the
provision of reliable design directions in the form of a pareto front. More specifically, it
aims in exploring the design possibilities of multidisciplinary optimisation problems like
aerostructural design without the costs which prohibit such applications in the conceptual
stage. The framework uses multifidelity tools within an expected improvement surrogate
based optimisation plan to accelerate the process. A novel modification of the ordinary
Kriging metamodel was introduced, improving the design space as well as as the expected
improvement space in the presence of multifidelity data to avoid the Co-Kriging costs.
It also exploits the error correction metamodel to introduce a simple yet effective infill
sampling condition, decreasing the costs of the required infill analyses. An alternative to
the standard multiobjective expected improvement suboptimisation problem was also pro-
posed, to facilitate parallel infill analyses and widen the objective space exploration.
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C H A P T E R 4

Methodology Demonstration in Small Scale
Problems

If you’re not confused, you’re not
paying attention.

Tom Peters

Succeeding the presentation of the methodology, this chapter aims in displaying its ap-
plication in various test cases. As a first demonstration, analytical cases were se-

lected. Their purpose is threefold: They are cases associated with low computational costs
and such as they are suited for the process of troubleshooting and finetuning a research
methodology. The analytical minimum is known, while results are available from other
researchers. Therefore, the method’s behaviour can be easily assessed. Finally, low dimen-
sionality problems (1D, 2D) allow for the necessary visualisation of the design space, so
that the modification made on the surrogate model can be understood.

4.1 Framework Demonstration

The presented methodology is assessed and fine-tuned on a 1D and 2D test case commonly
used in the literature. The 1D case demonstrates the modified surrogate’s discussed at-
tributes in a clearly visualized manner. The 2D case uses the Branin function to illustrate
the ability of MF modKriging in providing global optimality under the selected SBO plan
even in a sparse sampling.

97
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4.1.1 1D - Test Case

The simple 1D problem is described by the following analytical function, which acts as the
HF function we want to approximate.

f (x) = (6x − 2)2 sin(12x − 4) (4.1.1)

This allows to visualize the effect of the error model (and its shape parameter) near the
LF points. We also showcase how EI distribution changes when MF modified Kriging
is used. Figs.4.1,4.2, clearly show that ordinary Kriging is not suitable when MF tools
are available and the proposed modification leads to a more accurate representation of the
design space as well as a more "efficient" EI distribution. When ordinary Kriging is used,
the LF points and HF points are both interpolated since no MF information is provided.
In our modified version however, the HF points are interpolated and LF points are fitted,
providing a better estimation of the design space. The effect of the shape parameter is
also apparent. For too low θ values, the kernel function tends to be very wide. In these
cases, the error information is highly diffused and may decrease the predictor accuracy.
However, in high dimensionality problems, this is rarely the case. The points are not quite
dense and even very low shape parameters cannot "diffuse" the error to such an extent so as
to decrease the predictor accuracy, unless the HF sampling is not "space filling" enough1.
Moreover, an appropriate θ value can be a priori determined (or when Kriging is used for
the error correction it is automatically calculated).

To emphasize the error model effect, the LF and HF points were deliberately selected
in an "unlucky" manner, also assuming a challenging non-monotone error distribution. In
low x regions, the LF tool underestimates the true values but the opposite happens in high
regions. Despite that, the surrogate exploits the error information successfully.

Fig.4.2 describes the improved EI as a function of the shape parameter. MF modKrig-
ing increases the dominance of the global optimum versus the local ones in this multimodal
EI space. This accelerates the convergence of a global stochastic optimiser like the one em-
ployed in this framework. We explain that by acknowledging the effect of the error MSE
in the EI space: the objective value predictions affect MSE, however MSE also uses infor-
mation inherent to the correlation matrix (θLF , pLF) which is not altered in MF modKriging
(as the matrix here does not include LF/HF correlation information). Therefore, informa-
tion regarding the uncertainty of LF points could only be provided through the additional
error MSE term as discussed in the previous section. As such, when the error MSE term is
used in Eq.3.3.10, the MSE of a LF point is no longer zero, as in reality the LF analysis is
associated with an error. This corrects the EI space, so that LF points have now a finite EI
value as shown in Fig.4.2.

1Using LHS sampling in this work does not allow such a condition.
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Figure 4.1: Comparison of ordinary Kriging
versus MF modKriging. The regression of the
LF points improve the accuracy of the approxi-
mation.

Figure 4.2: Comparison of the negative ex-
pected improvement as resulting from Kriging
and the modified Kriging for various shape pa-
rameters.

4.1.2 2D - Test Case

Problem Formulation

The performance of the MF modified Kriging model within an optimisation process is
assessed using the multimodal 2D Branin [88] function described by:

f (x1, x2) = 2
(( x2 − 5.1x2

1

4π2 + 5
x1

π
− 6

)2
+ 10

(
1−

1
8π

)
cos(x1) + 10

)
, x1 ∈ [−5, 10], x2 ∈ [0, 15]

(4.1.2)

We are using the above test function as a LF tool analysis. The function features 3 global
minima, an attribute which makes it appropriate for testing the convergence properties of
the method. Its value is doubled so that it scales with the modified Branin function below,
used as a HF tool analysis:

f (x1, x2) =
(
x2−

5.1x2

4π2 + 5
x1

π
−6

)2
+ 10(1−

1
8π

) cos(x1) + 5x1 + 1, x1 ∈ [−5, 10], x2 ∈ [0, 15]
(4.1.3)

This function has a wider global optimum area, allowing a direct comparison of how the
design space topology affects the optimisation convergence.

The LF analysis introduces multimodality which serves to showcase how the MF mod-
ified Kriging properly exploits LF data while avoiding getting stuck in a local minimum
or an LF global minimum instead of the HF one. To demonstrate the methodology’s be-
haviour in high dimensionality problems with sparse sampling, a total of 5 HF and 16 LF
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points were used in our sampling.

Kriging Modification Effect on Design Space Prediction

Capturing the LF tool error trends is critical for the success of any MF methodology, in-
cluding the currently presented one. To ensure this, we compare the true error of the low
fidelity function (analytical error) to an RBF prediction of the error using five Training
Data. Fig.4.3.d displays that even a such simple and cheap model with sparse data suffices
in predicting a smooth and accurate error distribution. By comparing Fig.4.3.a and Fig.4.4,
a close match between our metamodel trend predictions and the HF analytical function
is also observed. Therefore, LF information was effectively exploited, providing the MF
modKriging model with a correct representation of the LF tool error. Furthermore, the
latter is the reason behind a HF function approximation that is free of any LF associated
minima.

Fine Tuning the Parameters of the Methodology

Multiple optimisation studies were performed to assess the methodology and the use of
the error MSE term within the EI calculation as well as to fine-tune the subprocess and
hyperparameters tuning optimiser details. Each case was executed a minimum of 5 times
to ensure reliability since factors like "sampling luck" had to be cancelled out. For clarity,
fewer results are shown.

Tuning the Kriging hyperparameters requires a gradient free [93] optimiser to locate
the global maximum of the likelihood function and the respective costs are not prohibitive
to provide a reasonably accurate Kriging representation. In a highly dimensional problem
with many training data points extensive exploration should be avoided however, as training
becomes a significant cost of the SBO. Out of four pyOpt [203] optimisers examined and
the SciPy implementation of the Nelder-Mead Non-Linear Simplex algorithm (N-M), N-M
and MIDACO proved to be the most robust and efficient. Since N-M was slightly cheaper,
it was selected for tuning MF modKriging.

The suboptimisation process requires a global optimiser since the EI evaluation cost is
negligible and the maximum EI point is sought in a multimodal space. It was found that the
ALPSO and MIDACO algorithms were the most effective exploration algorithms leading
to the best infill design points sharing similar computational expenses. For the remaining
of this work, ALPSO is used.

Within the MF modified Kriging, HF information (which in industry is considered to be
information from a later design stage) is introduced earlier in the design stage through the
error model. This leads to a more efficient infill sampling process, and a faster convergence,
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(a) HF function - Unimodal Modified Branin func-
tion.

(b) LF Braning function

(c) Analytical error distribution between the HF and
LF Branin function.

(d) Error representation with a C4 Mátern based RBF
model using 5 TD and θ = 1.0 .

Figure 4.3: Modified Branin function contours, acting as high and low fidelity functions. The
analytical error of the LF function is also compared against the RBF model prediction. Four HF
(square) points are used in the error model generation.

confirmed by the findings of Fig.4.5. Regardless of the initial objective function value
(which depends on the "luck" of the initial sampling), the modified Kriging provides more
robust infill sampling. MF modKriging using 5 HF/16 LF training points was more efficient
than the MF method using ordinary Kriging with 21 HF training points. Referencing again
Fig.4.2, the optimiser knows more about the design space, has less uncertainty in some of its
areas, reduces the respective MSE, which in turn makes the EI distribution more accurate.
In most cases, as the one shown, the MF methodology equipped by MF modKriging could
reach almost HF optimality in fewer infill iterations. Co-Kriging is similarly effective,
having fewer but more drastic reductions in the OF. However, this simple 2D case is not
appropriate to reliably compare it with MF modKriging since the major source of both
methods’ cost lies in the tuning of the hyperparameters in higher dimensionality problems.
More insight is provided in the next test case. The MF infill plan described previously
leads to wider plateaus in convergence history as only a HF infill is accepted as a reliable
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Figure 4.4: High Fidelity function representation using MF modKriging. Four HF (square) and 16
LF (triangle) points are used.

improvement. Despite that, since the number of HF infill points is reduced, the total elapsed
time is decreased even if the infill iterations required for optimality are increased.

The effect of the error MSE term is displayed in Fig.4.6 as well. Evidently, introducing
the "artificial" MSE term is not critical for the convergence of the method. However, if
introduced it provides extra information regarding the uncertainty of the LF error correction
model, leading to faster convergence.

4.2 Scalability Characteristics

A multidisciplinary problem can rapidly scale up to very high dimensional design spaces,
depending on the number of design variables required to describe a discipline, and of course
the number of disciplines. Since the methodology developed is based on surrogate mod-
elling, it is very sensitive to the dimensionality of the problem. The curse of dimensionality
primarily translated as increased initial sampling costs and Kriging training costs, as well
as high suboptimisation costs, raises a barrier making the method inefficient when a num-
ber of design variables has been exceeded. This is because the computational cost (in terms
of elapsed time) to train and search the metamodel can become equivalent or even higher
than a HF analysis. Additionally, increasing the dimensionality deteriorates the final results
for a given computational budget2. Furthermore, in a conceptual stage it is important to use
only a dominant subset of the potential design variables. In this work, since the method-
ology aims in multidisciplinary applications among others, it is critical to examine how it

2As shown, even when increasing the computational budget, the results till deteriorate, especially for a
non-exploitative optimisation scheme.
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Figure 4.5: Convergence history comparison of HF, MF ordinary, MF modified Kriging and Co-
Kriging.

behaves with the dimensionality scale up. We can therefore assess what can be realistically
achieved by the method while maintaining its efficiency in its application range.

We conduct this scalability analysis by using the Rosenbrock function [204] which is a
reasonable choice, since:

· In its original 2-Dimensional form, it provides a challenging problem with the optimum
located in a narrow flat valley.

· In its extended form, it can be used to examine the scalability characteristics of the opti-
misation framework. This is especially important for a surrogate based optimisation
methodology, which is very sensitive to the dimensionality of the problem.

The extended Rosenbrock function, here used as the HF function, is described by:

fHF =

n−1∑
i=0

100(xi+1 − x2
i )2 + (1 − xi)2 (4.2.1)

It features a global minimum of fHF = 0 in xi = 1

Since the methodology requires multifidelity analyses, we need to define a LF "version"
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Figure 4.6: Effect of implementing the Error MSE term within the modified Kriging.

of this function. This should not change the main characteristics and trends of the original
one but be inaccurate in terms of value. This is achieved with the use of scaling coefficients,
inserting an error within the bounds typically observed between aerospace numerical tools.

fLF =

n−1∑
i=0

105(1.05xi+1 − 0.98x2
i ) ∗ (0.95xi+1 − 1.03x2

i ) + 0.93(1− xi) ∗ 1.08(1− xi) (4.2.2)

The challenges of the Rosenbrock function are twofold:

· It features a flat and narrow valley leading to the global optimum. The reduced objective
functions values and the small function gradients makes it difficult for optimisation
methods to descend to the optimum point.

· In high dimensions, the property of unimodality vanishes [205], as local minimum appear.

The framework’s scalability attribute is assessed by successively increasing the dimen-
sionality of the extended Rosenbrock function, varying N from N = 2 to N = 64. The
quantification of the method’s scalability is based on the optimum value identified, the HF
calls required as well as the euclidean distance from the true optimum. Since this SBO
approach is non-deterministic, the standard deviation of the required computational costs
is also taken into account. Due to the non-deterministic elements of the method as well as
its explorative behaviour, the accurate identification is not guaranteed, especially in high
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dimensions. Therefore, the method is assessed based on the number of HF calls required
to reach a specific reduction ratio, given the maximum value of each dimensional case.
For the needs of this analysis, two levels of reduction ratios are set as "good enough",
fopt/ fmax = 2x10−3 and fopt/ fmax = 5x10−4. Although the distance from the optimum is
calculated in addition to the required number of HF calls, the former cannot be similarly
considered as a figure of merit since (as shown) is not representative of the quality of the
final result.

The methodology is compared against ALPSO optimiser, the HF Expected Improve-
ment (EI) approach and a Co-Kriging based MF EI process. The effect of the error correc-
tion model (RBF or Kriging) is also assessed [206]. Each problem is solved five times to
minimise the effects of the stochastic elements of the method. For each case, the number
of HF points in the initial sampling is equal to the dimensionality, with the LF points used
being triple than the HF ones. The sampling cost is included in the analysis.

From Fig.4.7.a it is evident than when the dimensionality is increased more than 8-D,
a very low function cannot be obtained. In fact, especially when Co-Kriging is used as the
MF surrogate, the method fails in cases more complicated than 2-D. The rest of the methods
depict an almost linear increase of the required HF calls, with the HF EI approach requiring
more computational resources in the 4-D than in the 2-D case. ALPSO can ultimately locate
the optimum in all problems, but its cost is prohibitive even for low to middle fidelity MDO
purposes.

The increase of the dimensionality leads to an increase of the maximum deviation of the
required cost observed by our multiple runs. This is a direct result of the methods searching
until the minimum is successfully located.

When a lower improvement is considered sufficient for our exploration needs, as in Fig.
4.7.c, then the interest is focused in finding the design trends. In this case, all methods
except for MF EI Co-Kriging, can locate a satisfying improvement. Here, a few interesting
observations can be made. Low dimensionality problems require a cost that may be similar
or even a bit higher than the one of middle dimensionality cases. This unexpected trend
results from the methods exploiting the initial sampling after a low number of infill sam-
plings. When converged though, they reduce the OF to a value significantly lower than the
limit set —which is not the case in higher dimensions. High dimensionality is associated
with a linear cost increase. The reason behind this consistent convergence behaviour, is that
the respective sampling can provide sufficient information about the trends of the function.
Therefore, with the function being smooth and having a flat hypersurface, one infill sam-
pling is enough to lead to the satisfying improvement of fopt/ fmax = 2x10−3. Following this
improvement however, and despite the fact that all following infill samplings are robust in
providing low values, a reduction ratio of 5x10−4 cannot be achieved. The inherent explo-
ration attribute of the EI method, although necessary for MF conceptual studies, dictates a
continuous search through the high dimensional design space3. As such following a few in-

3Of course such an exploration will never be complete, since dense exploration in high dimensions is
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fill samplings, an exploitation oriented method would be more efficient, taking advantage of
the trends near the optimum point. Nevertheless, if the interest is to identify design trends
with a reduced uncertainty early in the design stage, then this approach consistently satis-
fies this requirement. Furthermore, this linear cost increase trend makes it easy to predict
the total costs of the problem, which in turn suggests a feasible and efficient parameterisa-
tion strategy. For instance, given a typical computational budget for an early stage tradeoff

study, the above analysis suggests that out particular multidisciplinary problem should not
exceed 40 design variables.

The average distance in terms of normalized euclidean metric for each case is shown
in Figs.4.7.b, d. As a general trend, with the increase of the dimensionality the distance
between the resulting points and the optimum is also increased. This is not observed in
very low dimensionality. There is no direct correlation between the HF calls required, the
minimum value found and the distance from the global optimum. A small euclidean norm
does not imply a similarly low value, as this correlation depends on the topology of the
design space. Therefore, in such complex non-linear (and potentially multimodal [205])
design spaces, this norm cannot be used as reliable performance metric in future studies.

4.3 Sellar Multidisciplinary Optimisation Test Function

As an initial investigation of how an SBO-MF method is adapted and how it would behave
for a multidisciplinary problem, a simple analytical case is required. This allows a quick
implementation of the method, adapting our black box framework (acting as a system level
optimiser) to the problem interface, developed for demonstrating the case [206]. A collec-
tion of different MDO test functions were used by Tedford and Martins [207] as an effort
to compare and benchmark different MDO formulations.

From these test problems, the Sellar [160] function was chosen. It features the char-
acteristics of a true multidisciplinary problem, involving global and local design variables,
state variables and constraints. This makes it perfect for the development and assessment of
different MDO formulations and their implementations in a new optimisation methodology.

infeasible due to the curse of dimensionality.
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(a) Cost increase to reach fopt/ fmax = 5x10−4. (b) Normalized distance from true optimum for point
where fopt/ fmax = 5x10−4.

(c) Cost increase to reach fopt/ fmax = 2x10−3. (d) Normalized distance from true optimum for point
where fopt/ fmax = 2x10−3.

Figure 4.7: Scalability analysis using Rosenbrock function.
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4.3.1 Sellar Problem Mathematical Formulation

The Sellar problem used in this work is described by:

min
x∈D

x2
1 + z2 + y1 + e−y2

with respect to z1, z2, x1

subject to g1(y1) = y1/3.16 − 1 ≥ 0
g2(y2) = 1 − y2/24 ≥ 0
− 10 ≤ z1 ≤ 10
0 ≤ z2 ≤ 10
0 ≤ x1 ≤ 10

Discipline 1 y1 = z2
1 + z2 + x1 − 0.2y2

Discipline 2 y2 =
√

y1 + z1 + z2

(4.3.1)

The LF variation of this problem is generated by slightly altering the discipline sub-
problems, by introducing scaling coefficients. Therefore, the LF disciplinary problems
become:

Discipline 1 y1 = 0.95z2
1 + 1.02z2 + 0.91x1 − 1.15 ∗ 0.2y2

Discipline 2 y2 = 1.15
√

y1 + 0.95z1 + 1.02z2
(4.3.2)

In this problem, the global design variables are z1 and z2, with the local variable being
x1, affecting only discipline 1.

The difference between the Sellar problem used4 and the original one lies in the objec-
tive function. In this version, it is the local variable x1 used in the nonlinear deisgn variable
term of the objective function. In the original problem from Sellar [160], the global vari-
able z1 was used for the respective term. The various formulations should be treated with
caution, as different authors also use different notation. Here, the OpenMDAO notation is
used. In the problem formulation that we tackle, the global minimum value is f = 3.18339
and in the optimum point the constraint associated with discipline 1 is active.

4.3.2 Sellar Problem Multidisciplinary Optimisation Formulation in
this Surrogate Based Optimisation-Multifidelity Context

The Sellar function is used as a template to examine how disciplinary interaction affects
-or not- the behaviour of the methodology. The latter is developed and implemented in a

4It can be found in the OpenMDAO site, http://openmdao.org/releases/0.13.0/docs/
tutorials/mdao/intro.html.

http://openmdao.org/releases/0.13.0/docs/tutorials/mdao/intro.html
http://openmdao.org/releases/0.13.0/docs/tutorials/mdao/intro.html
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flexible way so that any HPC workflow (single disciplinary or multidisciplinary) can be
attached to it. This is essential especially for big multinational industrial environments,
in which distributed MDO architectures are appropriate. As such, industrial disciplinary
tools are completely autonomous and any design framework should be able to treat them
as a black box. To examine how the optimisation methodology is affected by the mul-
tidisciplinary formulation of the problem, MDF and ASO architectures are implemented
and compared in terms of computational costs. These processes are extensively described
by Figs. 4.8,4.9 using the concept of XDSM diagrams, developed specifically for MDO
problems.
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Figure 4.8: Sellar XDSM flowchart for MDF formulation.
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Figure 4.9: Sellar XDSM flowchart for ASO formulation.
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The process begins by an LHS sampling followed by the training of the Kriging model.
The suboptimisation procedure provides the next infill point; the one that maximises the
expected improvement. The infill analysis which follows (treated as a black box in the
industry) is the element which diversifies the two formulations. In MDF, disciplines 1 and
2 are iteratively solved within a simple MDA whereas in ASO the disciplinary analysis 1
is substituted by an optimisation with respect to x. This process is sometimes referred to in
this work as ASO loop (instead of MDA loop).

4.3.3 Results

Our interest is to examine the convergence behaviour for both the objective function as
well as the constraints, including an evaluation of the respective computational costs. For a
complete study, we compare our MF EI methods against two other approaches: a gradient
free optimiser (ALPSO) and the HF EI approach. All of the methods act on the system
level. In the case of the ASO formulation, ALPSO and SLSQP has been employed for the
disciplinary optimisation in order to examine the effect of this subprocess to the efficiency
of the formulation.

Figure 4.10: Convergence comparison between MDO formulation and methodology. Results rep-
resent the mean convergence behaviour of these non-deterministic methods.

From Fig.4.10, it is evident that ALPSO optimiser requires more computational re-
sources to locate the minimum, which in the case of MDF cannot be located at all. When
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the SBO methodology is applied, no more than ten HF MDA calls are required to reach a
satisfactory convergence, regardless of the approach or the MDO formulation. In the case
of MDF, the HF EI is more efficient compared to the MF approach, which still locates the
optimum area. The opposite is true when ASO is being used, as the MF approach requires
almost half of the HF MDA called by HF EI. Regarding the MDO formulation, ASO is
consistently superior over MDF. However, it should be stressed that the above speaks only
half the truth. When comparing different MDO formulations, the number of required HF
MDA calls is representative of the true computational cost only in the case that the rest
of disciplinary calls — or as in the case of ASO, optimisation — are of negligible cost.
This is not always the case, but when this criterion is met, ASO is indeed more efficient
than MDF as it improves disciplinary analysis load balance [164] as well as reducing the
dimensionality of the system level optimisation problem. However, in cases where the
discipline optimised in the inner disciplinary optimisation (in this case discipline 1) is not
significantly cheaper to analyse than the other disciplines, ASO stops being efficient. In
the present case, if discipline 1 represents a cheap discipline so that the inner disciplinary
optimisation has a computational cost similar to discipline 2 analysis, ASO would be supe-
rior to MDF. This is the case in an aerostructural optimisation; a structural analysis is far
cheaper than an aerodynamic analysis, with the respective disciplinary optimisation cost
being in the order of magnitude of an aerodynamic analysis. Of course, the cost of the
optimiser in the disciplinary process is also of great importance, affecting the total number
of disciplinary calls. ALPSO — being a global method — requires at least an order of
magnitude more disciplinary iterations than SLSQP. In the context of aerostructural opti-
misation, this would make an ALPSO based disciplinary optimisation inefficient for the
ASO formulation. Therefore, it leads to no surprise that local gradient based optimisers
are more appropriate for this role, as they require fewer iterations while being robust in
dimensionality increase in the case of adjoint based methods.

Since this problem is a constrained one, including constraints for each of the disciplines,
it is very important to examine in detail how each of the two different mdo formulations
tackles constraints to converge to a feasibile solution.

• In the case of the MDF architecture, a single optimisation process exists: the MF
EI methodology, acting in the system level. Therefore, the constraints are imposed
through the expected improvement suboptimisation process either using penalty or
feasibility method, as discussed in Chapter 3. The system level therefore provides
the next infill point which is a point most promising of improving the objective and
satisfying the constraints at the same time.

• In the case of the ASO architecture, the optimisation process is split in the system
and the disciplinary level as displayed in Fig.4.9. The system level suggests only a
part of the new design, the one affected by the global design variables (in this case z1

and z2). The rest is defined from the convergence of the disciplinary process. Simi-
larly, the system level (acting on the reduced dimensionality design space) can only
force the satisfaction of the constraint associated with the discipline involving only
global variables (in this case discipline 2). The feasibility of constraint 1 depends
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(a) MDF formulation. (b) ASO formulation.

Figure 4.11: MDA convergence comparison for MDF and ASO architectures.

on discipline 1, which is optimised with respect to the local variable x during the
disciplinary process.

To sum this up, in MDF the system level enforces both constraints while in ASO it
is the disciplinary process who takes care of enforcing constraint 1. Since constraint 1
is active in the optimum point of this problem, the behaviour of the constraint handling
method has a significant effect to the overall performance of the problem. The convergence
of the constraints is presented in Figs.4.11 and discussed for the two architectures.

4.3.4 A Note on Constraints

MDF formulation typically requires a number of iterations before the challenging con-
straint 1 is satisfied. This is due to the initially inaccurate RBF models and the aggressive
nature of the penalty method, as discussed in Chapter 35. After satisfying this, the RBF
models are accurate enough to provide feasible infill points. Following the convergence
of the objective function, oscillations are present in the constraints’ values. Since the EI
method has provided a significant improvement of the objective function (due to its mild
exploitation attributes), an exploration is initiated to the rest of the design space for further
potential solutions. In the ASO case constraint 1 is satisfied directly from the first iteration.
This is because it is explicitly calculated in the disciplinary level in every MDA iteration.
Therefore, the disciplinary variable x is chosen so that it optimises the discipline 1 given
that in each loop the design point satisfies the constraint 1. The constraint 1 value is con-
stant to 0 in every iteration showing that constraint 1 is indeed active in the optimum. With
the x variable defined and "frozen" by the disciplinary optimisation, EI method provides
more limited exploration as proven by the almost constant value of constraint 2.

It is noted that in this problem, the feasibility method was not examined since it re-
5This behaviour is also observed and discussed more elaborately in the next chapter.
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quires training a Kriging process to approximate each of the constraint function. Since the
constraints are linear, Kriging becomes unstable and fails due to matrix singularities. The
RBF based penalty method is employed instead.

4.3.5 A Note on the Multidisciplinary Analysis Loop

In Figs.4.8,4.9, the two different sampling procedures were overviewed. As mentioned,
MDA is an inherently iterative procedure and its treatment separates the MDF and ASO.
In ASO, discipline 1 is not analysed but optimised with respect to the local variable x.
Nevertheless, the rest of the iterative process is unchanged. Two of the most common
mathematical approaches to iteratively solve a coupled system of functions6 are the Jacobi
and the nonlinear Gauss-Seidel method. Their application in MDO problems has been
analysed by Kennedy and Martins [156] and the reader is referred to their work for details
of these two solution methods. In short, in Jacobi the updates of the state variables follow
this progression:

yn+1
1 = f (yn

2)

yn+1
2 = f (yn

1)
(4.3.3)

Here, disciplines 1 and 2 can be solved concurrently since they depend on the previous
iteration n solution of the coupling discipline.

In Gauss-Seidel, the solution of the coupled system takes the form,

yn+1
1 = f (yn

2)

yn+1
2 = f (yn+1

1 )
(4.3.4)

In this approach, the solution takes advantage of the existence of the solution of dis-
cipline in the n + 1 step. Updated information is inserted in the system accelerating the
process. However, this approach demands a sequential iterative procedure. In the case of
ASO, the yn+1

1 analysis is simply an optimisation given the corresponding state variable of
discipline 2, yn

2.

The Sellar function is being used as a test case to gain feedback before proceeding to
a heavy aerostructural optimisation. Therefore, in Fig.4.12 the performance of these two
MDA solution techniques is compared for both MDF and ASO architectures.

It is evident that despite the sequential nature of the Gauss-Seidel method, it is more
computationally efficient since the updated information drastically accelerates the conver-
gence. Therefore, it is the system solver method being used in the aerostructural optimisa-
tion case presented in Chapter 7. What is equally interesting, is the effect of the architecture

6Or for that matter, disciplinary analyses as in MDO.
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(a) MDF formulation, Jacobi. (b) MDF formulation, Gauss-Seidel.

(c) ASO formulation, Jacobi. (d) ASO formulation, Gauss-Seidel.

Figure 4.12: MDA convergence comparison of Jacobi and Gauss-Seidel method for MDF and ASO
architectures.
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to the convergence of the MDA/ASO loop. The disciplinary optimisation has a positive im-
pact on the convergence of the coupled analysis. However, this cannot be considered as
true for any multidisciplinary problem since it depends on the effect of the local variable
on the discipline as well as the dependency between the disciplines.

4.4 Summary

This chapter served as a preliminary test for the methodology that was presented in Chap-
ter 3. In this, the method is applied in simple analytical problems of known solution. A
1D and 2D cases were used as a first step, to examine the process and fine-tune some of
its parameters. This low dimensionality allowed the comprehensive visualisation of design
space so that its surrogate prediction could be compared against the real analytical func-
tion. It was shown that the method is successful in depicting the key characteristics of the
design space, making efficient use of the error information. The local optimum associated
with the low fidelity Branin function was avoided and the method consistently converged
to the real high fidelity global minimum. The ultimate goal of the methodology is multi-
disciplinary optimisation and specifically aerostructural problems. To avoid formulating an
aerostructural problem of excessively high dimensionality, the methodology was assessed
using the extended Rosenbrock function which can be scaled up to arbitrary dimensional-
ity. It was observed that the multifidelity method proposed (based on the proposed Kriging
modification) was more robust than a multifidelity one based on the standard Co-Kriging
model. For an in-depth and efficient design space exploration to be ensured, no more than
30-40 design variables should be used. As a first multidisciplinary design optimisation
application, the analytical Sellar function was employed to examine how efficiently the
methodology guides such a coupled problem. Another goal was to compare how the mul-
tidisciplinary feasible and asymmetric subspace optimisation architectures perform when
used in conjunction with this framework. The methodology was designed to be especially
efficient within an asymmetric subspace architecture acting as the system level optimiser,
to take advantage of the system level dimensionality reduction associated with this multi-
disciplinary architecture. This was confirmed by the Sellar function studies as the method
performance was superior when used with an asymmetric subspace optimisation architec-
ture than when used with multidisciplinary feasible.
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C H A P T E R 5

Industrially Related Application in Aerodynamic
Shape Optimisation Problems

Once you’re in it you’re in it. Because
you commit yourself to such a level
where there’s no compromise. You give
everything you have. Absolutely
everything. And sometimes you find
even more...

Ayrton Senna

Tthe methodology has been so far demonstrated in simple problems and therefore, what
naturally follows is its application in industrially relevant problems. As a first step,

an aerodynamic design problem was selected involving a common airfoil test case. This
gives the opportunity to examine all the possible variations and formulations of the opti-
misation framework without the need for excessive computational requirements, while still
providing valuable feedback from a fairly complex and real life design problem. The prob-
lem itself can be also formulated accordingly so that the performance in unconstrained,
constrained and multiobjective optimisation cases can be assessed.

5.1 The Transonic Airfoil Design Problem

Following the development of the jet engine and its implementation in transport aircraft,
operational speeds increased significantly. Conventional transport aircraft aimed in fly-
ing in the maximum possible speed to minimise the flight duration. However, flying in
the transonic flow regime is associated with aerodynamic design problems that had to be
addressed. At speeds higher than a Critical Mach Number, the local acceleration of the
flow in the conventional wing design of the time caused strong normal shocks in the upper
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surface. As a result, drag increases massively beyond the Drag Divergence Mach Number
(see Fig.5.1). Therefore, drag was significantly high and could not allow further aircraft
acceleration1. The drag associated with these Mach numbers had to be decreased by a re-
duction of the shock strength. This was achieved by a radical new airfoil design called
the supercritical airfoil. In these configurations, the maximum thickness of the airfoil is
moved considerably further from the leading edge (LE) than in a conventional airfoil. This
provided a more progressive and smooth flow acceleration along the chord, significantly
reducing the strength of the shock. Another design approach used to tackle the drag rise
problem was the wing sweep. Essentially, this had the same net effect on the flow around
the airfoil. Qualitatively, it can be seen either as means to reduce the chord direction flow
component or a way to reduce the t/c thickness of the wing. These were novel design
concepts originating from a deep understanding of the underlying flow physics and had a
massive impact to other disciplines such as structures and control.

Figure 5.1: Drag rise in transonic flows.

5.2 RAE2822 Test Case

Following this transonic design challenge, and to demonstrate the methodology’s potential
in tackling similar airfoil design problems, the popular RAE2822 airfoil has been used
as a test case. The aim of this work is initially to assess the methodology in a single-
disciplinary problem, focusing mainly on its design space exploration capabilities and of
course its computational efficiency.

1In fact drag force was so high that the wing structure would require design modifications to withstand
the forces acted in these Mach regions.
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5.2.1 Problem Formulation

The test case is formulated as a typical industrial transonic airfoil design problem and the
physical conditions correspond to actual aircraft operating conditions. These are shown in
Table 5.1.

The problem is set up in a way to allow the demonstration of both a SO and an explicit
MO formulation of the proposed methodology, using Lift and Drag as functions of interest,
in a coefficient form as follows:

f1 = −Cl, f2 = Cd (5.2.1)

Unconstrained Drag Minimisation

Here, the high fidelity function f2 is defined in a d-dimensional design space Rd 7→ R1

where the design variables take values x ∈ D ⊂ Rd so that the problem is formulated as,

min
x∈D

Cd

This simple problem serves as a demonstrator of the methodology’s fast and global
exploration attributes with the results being assessed in terms of the final optimum point
OF value and the corresponding computational cost. Since surrogate training does not
come to a negligible cost, the total elapsed time is used as a metric instead of the required
HF iterations number. The method is compared against a direct HF analysis optimisation
driven by an ALPSO optimiser, a HF EI SBO method (performing only HF analyses), an
EI SBO method that uses ordinary Kriging— interpolating both LF and HF data — and a
Co-Kriging based EI SBO approach.

Lift Constrained Drag Minimisation

The SO formulation of the aerodynamic optimisation problem is extended by including lift
constraints, as shown below:

min
x∈D

Cd

subject to Cl ≥ 0.5

This is a more realistic design application, testing the method within standard industrial
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procedures. Such a case is important as it allows the assessment and comparison of the con-
straint handling approaches implemented in the methodology. The effect that the constraint
handling methods have to the methodology’s convergence behaviour might be critical for
industrial applications. Usually, these design problems are dominated by constraints, and
their computational cost demands a good understanding on the way convergence and fea-
sibility is achieved. This is especially the case in optimisation studies with limited budget
where both final result but also feasibility during the optimisation convergence is desired.

In this sense, the two methods presented in section 3.3.8 have been implemented to han-
dle the constraints within the suboptimisation process. In the first approach, a penalty of
EI = 0 is applied to points for which the surrogate model’s Cl estimation violates the con-
straints. This is sufficient to guide the suboptimisation process to feasible regions according
to the current metamodel. For the second approach, the probability of Cl being less than the
limit is calculated using the probability of improvement formulation of Eq.3.3.11 (proba-
bility of feasibility (PF) [107]). Therefore, the suboptimisation process uses the generic
form of Eq.3.3.15, which when applied to this single constraint problem, solves Eq.5.2.2.

x∗ = arg max
x∈D

PFxEI (5.2.2)

where the probability of feasibility for an inequality constraint problem of g(x) ≤ gc is
expressed as,

PF(x) =
1
2
(
1 + er f (

gc − g(x)

ŝ(x)
√

2
)
)

(5.2.3)

Multiobjective Optimisation

The problem of designing for cruising conditions is typically defined as a lift constrained
optimisation problem of drag minimisation. However, an MO formulation can be also of
great benefit within an industrial environment. First of all, the presented methodology
constitutes the core of a numerical framework to be extended to MDO problems. In MDO,
multiple disciplines are associated with multiple — conflicting — objectives. Therefore,
we optimise under these conflicting objectives in a cheaper formulation. Furthermore, an
MO formulation provides significantly more information than a constrained SO. Several
potential optimum configurations are readily available in the engineer’s disposal while the
pareto front can also feed later-stage local tradeoff studies. Both constitute an element very
important for decision making.
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5.2.2 Geometry Parameterisation

For this airfoil design problem, Free Form Deformation (FFD) shape parameterisation [7]
was used. The control points displacement define the deformation of the surface in the X,Y
direction. The bound values are of course dependent on the design requirements and they
cannot be strictly and uniquely defined. That is why in this implementation the engineer
can explicitly select the bounds desired. To simulate complexity of industrial applications,
eight active control points were used creating a 16D design space as shown in Fig.5.2.

Table 5.1: Physical conditions for RAE2822 case

Condition Value Units
Angle of Attack 2.31 deg
Mach Number 0.729 -
Reynolds number 6.5x106

Pressure 108987 Pa
Temperature 255.55 K

Figure 5.2: RAE 2822 Airfoil. In this test case
eight active Control Points are used.
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Figure 5.3: C-type mesh generated around the RAE2822 airfoil.

5.2.3 Analysis Tools

The brief introduction of section 5.1 on the challenges of transonic airfoil design, clearly
showed the impact that an airfoil’s thickness distribution has on its performance. Therefore,
the analysis tools should be sensitive to the airfoil thickness, otherwise the mechanism dom-
inating wave drag would be absent. In the latter case, the process would be falsely guided
to designs which when assessed with a more reliable tool would prove to be completely
inefficient for transonic flight2.

High Fidelity Tool

HF analyses are performed using the commercial solver ANSYS Fluent [208], providing
the global aerodynamic coefficients. We use a structured C-type grid (see Fig. 5.3) and
fully resolve the boundary layer with a y+ value in the order of 1. A grid validation [209]
study ensured that an intermediate grid featuring 38000 cells was appropriate. Special

2This problem is mostly associated with the thickness sensitivity of the LF tool, as HF analyses usually
employ RANS CFD simulations.
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care was also taken to ensure the grid robustness to geometry changes that arise across the
optimisation process. Here, we used grid renegeration instead of deformation since it does
not pose significant computational cost. An implicit density based Roe-FDS solver with a
2nd order upwind discretisation scheme was used and Sutherland’s model for the dynamic
viscosity was employed. Turbulence effects, are modelled using k-ω SST [210] as to the
author’s experience it provides the optimum results in attached slender body aerodynamic
flows. The maximum number of iterations performed for convergence was set to 3000. To
ensure robustness, in cases where limited cycle oscillations are present in the solution, the
final result was averaged using values from the last 50 iterations.

Low Fidelity Tool

Since the accuracy and the cost of the LF tool is very important for the success of any MF
method, three different LF analyses were used to examine their impact on convergence. An
accurate, robust but expensive LF tool was provided by a partially converged [111] ANSYS
Fluent simulation, stopped after 800 iterations and using the same numerical setup as the
HF tool. Despite its accuracy, the inconsistency of the results — inherent to the concept
of partially converged simulations — imposes a challenging multimodal error space. To
take this to the extreme, we use another LF tool of decreased accuracy, by stopping the
analysis earlier in the convergence (500 iterations). This LF tool imposes an even more
challenging error distribution as it is neither accurate nor smooth. The final examined LF
tool is VGK [211], a viscous corrected solver based on the method of Garabedian and Korn
[212]. It is accurate in cases for which it has been calibrated. However, it is not as robust as
the previous two tools for optimisation applications, since it can be only used in attached
boundary layer cases. This, combined with the reduced cost, provides feedback on how
the convergence history is affected by a cheap tool which is appropriate only to a limited
region of the design space. More discussion on this is provided in the following paragraph.

A Note on the Limit and Effect of the Low Fidelity Tool

The choice and use of the LF tool in a multifidelity framework will be seen as a factor of
significant impact on the final results. The ability to show similar design trends with HF
analysis tool is only one of the requirements. What is equally important in order for a LF
tool to be useful, is to share the same design space range applicability with the HF tool and
to be robust. It should be able to provide reasonable results (of HF-like trends too) any-
where in the design space — where the HF is also used — without diverging. This is not
always possible since LF tools are in many cases developed using data corresponding only
to a specific physical conditions domain, making the tool highly inaccurate in other condi-
tions. Their proper use is then especially challenging in frameworks that intend to explore
the design space, as the described one. The significant difference of the possible designs
lead to different physical conditions around the airfoil (shock waves, flow separation etc.)
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which the LF tool is not designed to tackle. As such, it can either provide completely mis-
leading information, or not provide any information at all. The above are confirmed by
the results that follow, in which VGK is used as a LF tool in a wide range of geometries
that lead to physical conditions which are out of its applicability (strong shocks). These
conditions are usually associated with poor performance of such geometries, and hence the
LF tool might actually be accurate and robust in the area near the pareto optimum points3.
However, the loss of information interacts with the exploration scheme reducing its effi-
ciency. A simple turnaround to this problem is the application of penalty values in poor
or non-robust design space regions. The effective solution though is the use of appropriate
and more reliable LF tools — which supports decision to assess two different LF methods
in the present work.

5.3 Results

As stated earlier, the nature of this SBO method, demands its assessment to be in terms
of total elapsed time. To further demonstrate the capabilities of the method to handle ex-
pensive cases efficiently, we additionally impose equivalent costs to the analyses described
above. As such, we set an HF analysis elapsed time cost of 4hrs and a LF one of 20mins.
It is stressed that only HF improvements are considered "accurate", accepted and presented
in the convergence history. LF improvements are not presented despite being "accurate
enough" in some of the points, with the LF results being used only for surrogate model
augmentation.

5.3.1 Unconstrained Drag Minimisation

Figs.5.4,5.5 summarize the findings of the unconstrained aerodynamics shape optimisation
study. In this, our proposed method is compared against alternative approaches. For the
sake of this comparison, the partially converged Fluent simulation (800 iterations) was used
as a LF tool in the MF methods.

It is evident that when ALPSO calls the CFD analyses directly, the convergence is slow
and reaches a plateau significantly higher than the minimum Cd value that can be attained.
This is not a result of low particle number as both 30 and 100 swarm populations were tried
with similar results. It can be explained in particle velocity terms. A less aggressive setup
with lower particle velocities would not get stuck to a local minimum. However, this would
increase the cost of the already inefficient — compared to the other methods — optimisa-
tion process. The same ALPSO setup was successfully used during the suboptimisation

3It should be noted that a wide/narrow pareto front does not necessarily correspond to a wide/narrow de-
sign space exploration. The former refers to the objective space whose characteristics should not be confused
with the ones of the latter.
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Table 5.2: Unconstrained case - Methodologies examined

Nr. OF Model LF tool LF correction
1 - - -
2 Kriging - -
3 Kriging Fluent -
4 modKriging Fluent Kriging
5 modKriging VGK Kriging
6 Co-Kriging Fluent -
7 Co-Kriging VGK -
8 modKriging Fluent RBF
9 modKriging VGK RBF

10 modKriging∗ VGK Kriging
∗Training only after HF samplings

process of the HF EI, MF ordinaryKriging EI and MF modKriging EI approaches. In the
MF cases, the effect of the initial sampling was examined [213] and two sampling plans
were used: one with only 16 HF points and with 16 HF and 32 LF points. The HF EI case
used a sampling of 48 HF points. All SBO cases were able to explore the design space
more effectively, as they did not stuck to a local optimum like the direct ALPSO approach
and showed significantly better Cd minimum values. The HF SBO method was effective in
ultimately finding a good optimum value. However, the computational cost associated with
the HF initial sampling, made it inefficient compared to the MF methods. The ordinary
Kriging, in conjunction with MF data within an EI SBO plan, could not guide the optimisa-
tion process to a similarly good final value. This result is in complete qualitative agreement
with the findings of the simple 2D case. In this sense, our proposed MF modKriging EI
method is more efficient than MF ordinaryKriging. The modification demonstrated in the
previous chapters improved the design space approximation and EI distribution according
to our predictions, leading to a faster and more robust convergence. It is observed that in
every case ran, MF modKriging EI could find an optimum within a 5% deviation from the
HF EI optimum, but with less than 50% of the required elapsed time. In this simple design
test case, Co-Kriging proved to be the most efficient method. Despite the fewer improve-
ments during the optimisation process, Co-Kriging provided more efficient infill samplings
since it takes into account the correlation between LF and HF data.
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Figure 5.4: Elapsed time based convergence comparison of several methods for the simple airfoil
case.

The above observations become even more apparent when the cost of the HF and LF
tool increases, as shown in Fig.5.5. Here, the MF methods offer a distinct advantage over
the HF ALPSO, HF EI and MF ordinaryKriging approaches, which following the initial
sampling, display slow convergence. This is a direct consequence of the infill HF cost
against the LF one, which is efficiently exploited by MF modKriging and Co-Kriging.
Since MF surrogate models are corrected and HF information is embedded within them, the
number of HF infill calls required is reduced, more infill samplings now use LF analyses,
decreasing the total computational costs. This is valid especially in cases where the LF tool
is accurate enough to follow the trends of the HF objective. In cases where the LF tool
is very inaccurate, the cost related to training the error correction might make the method
inefficient as more HF training points might be required.

The effect of the LF tool, the error correction model as well as the frequency of the
Kriging training is illustrated in Figs.5.6,5.7. Regarding the error correction model, it was
observed that Kriging was more efficient in correcting the surrogate predictions, a fact more
profound in the early stages of the optimisation and especially when VGK is used as a LF
tool. The reason behind this effect is that as the number of TD increases, the training of the
model becomes more expensive in terms of elapsed time. In later stages of the optimisation
however, the high number of existing TD does not demand the use of the accurate but
expensive Kriging model. Instead, the simple but fast RBF model is sufficient. In a similar
fashion, avoiding Kriging training in the early stages of the process does not show any
benefit. In fact, convergence is delayed. Early in the process, any new infill point provide
valuable information that changes the design space estimation a lot compared to infill points
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Figure 5.5: Elapsed time based convergence comparison of several methods when considering that
the RAE2822 convergence corresponds to that of a hypothetical MDO problem. This is done by
substituting the airfoil analysis cost by the MDO analysis cost assumption made in section 5.3.

in later stages, which do not have the same impact. Therefore, the need for Kriging training
is higher in the initial stages in order to guide towards convergence. Furthermore, the cost
associated with the hyperparameters tuning is higher when more TD are available and as
such, skipping Kriging training in later stages of the optimisation process would be more
efficient.

As a general trend observed in this particular problem, VGK serves as a more efficient
LF tool than Fluent. VGK provides the correct OF trends, steering the optimisation quickly
towards the optimum region. Moreover, with the exception of the Co-Kriging case, one
can notice that a better final result is reached using VGK as a LF tool instead of Fluent.
This reduced physics tool can still steer the process towards the global HF optimum, as the
design space where the optimum is located, is well within the validity range of the tool.
Fig.5.10 shows the typical progress of the optimisation convergence. It is evident that in
this unconstrained case, the major mechanism behind drag reduction is the thickness re-
duction which attenuates the strength of the shock on the upper surface of the airfoil (see
Fig.5.9). As stated earlier, in physical conditions that include weak shocks and limited flow
separation VGK is robust, providing accurate and consistent results. This thickness reduc-
tion is accompanied by a slight increase of the aft reflex which reduces the lift generated by
the airfoil. This decreases the strength of the shock waves even more, therefore assisting
wave drag reduction. It is expected that when the LF tool is not accurate (as is the case
of the partially converged Fluent analysis termed as "BAD LF Tool" in Fig.5.8(a)), or/and
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Figure 5.6: Effect of the LF tool, error correction model and Kriging tuning skipping in the elapsed
time convergence for the simple airfoil problem.

with OF trends are challenging, the convergence rate is reduced. This hypothesis is investi-
gated by comparing the convergence history of the proposed MF modKriging method when
using both Fluent LF tools. Indeed, when this randomness is induced in the error space, the
benefits of an MF approach as discussed above are not present anymore. Apart from the
extra HF infill points required during the process, it is quite interesting to notice that even
Kriging as an error corrector model was not efficient in approximating this challenging er-
ror space, with the results being poor compared to the MF methodology that uses a proper
LF tool.
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Figure 5.7: Effect of the LF tool, error correction model and Kriging tuning skipping in the elapsed
time convergence for a potential MDO problem when considering that the RAE2822 convergence
corresponds to that of a hypothetical MDO problem. This is done by substituting the airfoil analysis
cost by the MDO analysis cost assumption made in section 5.3.

(a) Typical Cd CFD convergence for various random
airfoil configurations.

(b) A bad LF tool leads to poor convergence and re-
quires more TD.

Figure 5.8: Definition of the partially converged analysis as a LF tool and the effect of using a
solution well within the initial convergence oscillations.

In terms of optimum shapes, shown in Fig5.9, it is evident that the case calling HF CFD



132 5.3 Results

directly does not make full use of this unconstrained case possibilities. It is stuck in a lo-
cal optimum associated with supercritical airfoil design (similar to the datum), decreasing
Cd mainly by a slight shock intensity reduction. On the other hand, all SBO approaches
were able to find a better physical mechanism to improve the airfoil’s efficiency. Since
no lift or pitching moment constraints were present, the SBO methods exploited the FFD
parameterisation by generating a thinner reflexed airfoil with no camber and lift, featuring
significantly lower wave drag. This demonstrates the ability of the EI approach to success-
fully explore the design space in order to provide physical mechanism-related feedback to
the engineer. All SBO cases converged to very similar designs, being essentially differen-
tiated by the value of the lower middle Control Point (CP) design variable. This difference
is most prominent in the Co-Kriging approach which provided the best final result among
all methods.

Figure 5.9: Comparison of the resulting geometries and corresponding Cp distributions in the un-
constrained case.



5.3 Results 133

Figure 5.10: Typical airfoil configuration convergence for the unconstrained drag minimisation
problem. As we move from the red configuration to the blue one, drag is decreased.

5.3.2 Lift-Constrained Drag Minimisation

Similarly to the unconstrained case, we compare the SBO approaches to the ALPSO-based
optimisation (calling only HF analyses) and the HF EI based one. Since it is important to
assess the effectiveness of the constraint handling plans for future constrained MDO appli-
cations, the SBO cases examine both the Penalty and the PF EI (Feasibility) formulation.
The ALPSO cases are explicitly driven by hard penalties and as in the unconstrained cases,
the optimiser was stuck in a local optimum.

As shown in Figs.5.11,5.12, our proposed MF method showed great overall potential
for expensive problems as it can provide a quick and reliable improvement suggestions
to design engineers. In terms of final Cd values, the HF EI approach is slightly superior
as it shows approximately 5% improvement over the MF EI result. However, for real
industrial problems with cost comparable to multidisciplinary problems, this improvement
translates into up to 3 times the computational cost. Furthermore, since the MF EI cases
never reached the cost of the HF EI optimisation, additional and more extended runs are
allowed to be performed to examine their behaviour in similar elapsed time costs.
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(a) Convergence of the airfoil design problem.

(b) Convergence of the airfoil design problem assuming costs similar to mul-
tidisciplinary optimisation.

Figure 5.11: Convergence comparison of the examined optimisation methodologies. Partially con-
verged fluent simulations were used as the low fidelity tool. The lift constraint was tackled with
the feasibility method and the surrogate model used to approximate the constraint function was the
multifidelity modified Kriging.
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(a) Convergence of the airfoil design problem.

(b) Convergence of the airfoil design problem assuming costs similar to mul-
tidisciplinary optimisation.

Figure 5.12: Convergence comparison of the examined optimisation methodologies.In this, VGK
was used as the low fidelity tool. The lift constraint was tackled with the feasibility method and the
surrogate model used to approximate the constraint function was the multifidelity modified Kriging.
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Table 5.3: Constrained case - Methodologies examined

Nr. OF Model LF tool LF correction Constr. Constr. Model
1 - - - - -
2 Kriging - - Feasibility Kriging
3 Kriging - - Penalty Kriging
4 modKriging Fluent Kriging Feasibility modKriging
5 modKriging Fluent Kriging Penalty modKriging
6 modKriging VGK Kriging Feasibility modKriging
7 modKriging VGK Kriging Penalty modKriging
8 modKriging VGK RBF Feasibility modKriging
9 modKriging VGK RBF Penalty modKriging

10 modKriging VGK Kriging Penalty modRBF
11 Co-Kriging Fluent - Feasibility modKriging
12 Co-Kriging Fluent - Penalty modKriging
13 Co-Kriging VGK - Feasibility modKriging
14 Co-Kriging VGK - Penalty modKriging
15 Co-Kriging VGK - Penalty modRBF
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For both the HF and all the MF cases, it was observed that penalty methods consistently
resulted to marginally feasible infill designs. As such, a higher percentage of infill points
was infeasible compared to the feasibility method which behaved differently. Starting from
higher Cl values (and higher feasible points percentage), the feasibility method gradually
approached the constraints boundary while lowering the objective function values. Nev-
ertheless, the penalty approach consistently provided better final configurations in all the
cases examined as shown in Fig.5.13. Regardless of the constraint handling approach, the
superiority of the proposed method is especially apparent in the case where the analysis
cost is high. This is a direct consequence of the fewer HF infill points required. However,
the fact that makes the method more appealing than the Co-Kriging based one, is that for
this case which requires two surrogate models (for the OF and the constraint), the training
costs are significantly reduced. This is a result of the fewer hypertuning parameters in our
Kriging method (in contrast to Co-Kriging, no correlation parameter is used). However,
most elapsed time savings arise from the inherent ability of our method to avoid a Kriging
model for the error correction and use RBF instead. This replacement comes with no sig-
nificant loss of information since the RBF is used appropriately, to restore the error MSE
information required by EI, as discussed earlier.
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(a) Convergence of the airfoil design problem.

(b) Convergence of the airfoil design problem assuming costs similar to mul-
tidisciplinary optimisation.

Figure 5.13: Convergence comparison between the two constraint handling approaches. In this,
VGK was used as the low fidelity tool. Multifidelity modified Kriging was used to approximate the
constraint function.
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In addition to this, there is also the potential for further cost reduction that can be
attained by using RBF as the constraint surrogate model in the penalty method cases, as ev-
ident in Fig.5.14. Although this reduction is present in both our method and the Co-Kriging
based one when penalty method is being used, the effect of the constraint model replace-
ment proves significant when it is compared against the feasibility cases which demand the
use of Kriging models. In this sense, the combination of RBF and penalty method accel-
erates the convergence, a fact associated with both the aggressive character of the penalty
method and the constraint model training cost reduction.
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(a) Convergence of the airfoil design problem.

(b) Convergence of the airfoil design problem assuming costs similar to mul-
tidisciplinary optimisation.

Figure 5.14: Convergence comparison between two metamodelling approaches for the estimation
of the constraint function. In this, VGK was used as the low fidelity tool. Results from the penalty
method are plotted.
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The effect of the LF tool cannot be evaluated in a definitive manner by these results. As
shown in Fig.5.15, fluent partially converged simulations prove to be more robust compared
to a reduced physics model like VGK when the conservative feasibility method is being
used. However, with the use of the more aggressive penalty method (shown in Fig.5.16), the
different LF tool options do not show a clear trend regarding their associated convergence
rates. Further work and discussion on the effect of the LF tool, especially in the context of
design space exploration, is presented in the next section.

Overall, the most significant outcome that can be claimed with confidence from the
above, is the superiority of the multifidelity approach over traditional single fidelity EI
method. This is particularly the case when analysis models of high computational cost are
involved in the optimisation process. The design improvements attained by the HF method
cannot be surpassed by the MF ones. However, the drag decrease achieved by the MF
EI modKriging method is consistently within 5% from the HF one, requiring significantly
reduced computational resources.

The optimum geometries displayed in Fig.5.17, share similarities to the unconstrained
case. The local optimum configuration associated with the ALPSO driven optimisation is
a supercritical design with slightly higher camber than the unconstrained case, to account
for lifting constraints. As in the unconstrained case, the HF/MF EI methods explore the
constrained space more efficiently, leading to similar configurations characterized by lower
thickness, slight camber and aft reflex. Evidently, the difference between the HF and MF
optimum configurations lie in the lower section. The comparison of the pressure distri-
bution of these airfoils underline the high sensitivity of the flow characteristics to small
changes in the geometry. Notice how the HF and the MF modKriging configurations share
an almost identical upper surface but the lower surface is different as it originates from
different camber distribution. The increased LE camber and thickness of the MF modK-
riging configuration leads to a higher suction, causing a shock. Another shock is formed
slightly downstream, where the critical Cp is met. This is not the case however for the
HF configuration which by having a slightly different camber distribution, features a single
shock.
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(a) Convergence of the airfoil design problem.

(b) Convergence of the airfoil design problem assuming costs similar to mul-
tidisciplinary optimisation.

Figure 5.15: Convergence comparison between two low fidelity analysis tool possibilities. Results
are based on the feasibility method.
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(a) Convergence of the airfoil design problem.

(b) Convergence of the airfoil design problem assuming costs similar to mul-
tidisciplinary optimisation.

Figure 5.16: Convergence comparison between two low fidelity analysis tool possibilities. Results
are based on the penalty method.
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Figure 5.17: Comparison of the resulting geometries and corresponding Cp distributions in the
constrained case.

5.3.3 Multiobjective Optimisation

Comparison of EI infill Sampling Methodologies

Before proceeding to the results of the multiobjective formulation of the airfoil design
problem, it should be defined which formulation of the infill sampling process is being
used. For this, a comparison of the standard methodology of EI for improving the pareto
front (see [88] and Eq.3.3.24), against our parallel infill EI methodology of section 3.3.7 is
performed.

The methods are compared in Fig.5.18 in terms of their respective pareto front results,
for a defined computational budget. Since the only difference between the methods is found
in the suboptimisation process, the sampling, surrogate training and infill analyses costs are
identical. Therefore, the comparison is based on the number of high fidelity infill analyses4.

4The suboptimisation problem of EI maximisation is and EI pareto front generation is solved by ALPSO
and MOPSO algorithms respectively. For this dimensionality, the observed difference between the two in
terms of elapsed time was negligible.
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Figure 5.18: Comparison of the multiobjective formulations of expected improvement as presented
in section 3.4.7.

The standard infill methodology can locate highly efficient tradeoff points in the mid Cl

region — close to the datum point. In the low and high Cl objective space however, it is
evident that this EI formulation does not exhibit the desired exploration characteristics. On
the other hand, the proposed parallel formulation develops a wide pareto front of efficient
configurations especially in the low Cl region. This is an expected result as the standard
"EI for improving the Pareto Front" method is designed to achieve just that, find new domi-
nating designs. This does not necessarily mean that the new designs will be associated with
an extended design or objective space exploration, rather than just being dominant over the
previous ones. As such, a more balanced exploitation/exploration behaviour is observed.
In our newly proposed approach however, the points used for infill sampling are explicitly
selected to be the ones which are not only promising but also diverse in terms of objec-
tive function value. Since the main application of the methodology described in Chapter
3 requires efficient conceptual design (and objective) space exploration, all multiobjective
applications demonstrated will be using our suggested suboptimisation process. Another
significant advantage of our method is its inherent characteristic to provide multiple infill
points, in this case it is set to three. Therefore, since these points are analysed in parallel,
the effective computational cost is only a third of that of the standard method. Having es-
tablished the behaviour of both approaches, it should be stated that there is the potential
for a hybrid methodology using these two in sequence. Within such a concept, the pro-
posed parallel infill can be initially used to satisfy exploration requirements followed by
the other method after a "wide-enough" has been developed. This will provide a more local
refinement, improving the performance of the wide pareto front points.
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Parallel EI Infill

The MO formulation of this aero shape optimisation problem, solves the suboptimisation
problem explicitly, providing a pareto front of possible infill points. The direct HF analysis
based optimisation steered by MOPSO, quickly creates a dense front. However, later in
the optimisation process no further improvements were observed and similarly to the re-
spective single objective cases, this approach is stuck to a final plateau. Furthermore, the
pareto front is quite narrow compared to the HF and MF cases which is an important factor
to consider, as the main drive behind an MO formulation is to explore various decision so-
lutions — especially in the low Cl,Cd regime. Nevertheless, it could provide slightly better
designs in the moderate Cl region than the HF and MF approach. Both the HF and our
proposed MF modKriging method however, showed better exploration attributes leading to
more diverse designs. Apart from this benefit, our approach also improved the designs in
high and low Cl regions with less than half of the cost of MOPSO case. In the Cl 0.7 − 1.2
region, the MF pareto front was coarser than the HF one, with inferior OF values. In higher
Cl cases though, the Cd values were significantly lower than the ones resulting from the HF
case. The improvement in the computational cost (reduction to half of the original elapsed
time), further supports the use of the MF method. The Co-Kriging based MF method could
not lead to a wide pareto front, with the high Cl region being especially limited. This is
mostly apparent in designs with higher Cl than that of the datum, since the lower Cl region
featured results similar to our MF modKriging based method. As a general trend, VGK
narrows the pareto front, especially in high Cl values as the physical conditions including
strong shocks and separated flow make the tool inaccurate. This is a direct result of the
design space region associated with highly cambered unconventional configurations (see
Fig.5.19.a). It is observed regardless of the method and the error correction model. The
MO suboptimisation tries to explore the design space in a wide area of potential solutions,
examining the possibility of thick and cambered airfoils. However, this is a region in which
VGK is not robust nor accurate, and since the LF tool is failing, no information is pro-
vided to the surrogate model. One would argue that the design for which VGK fails are
not promising and as such no need for exploration in this design space region is necessary.
This might be the case in many of the design points. However, even inefficient configura-
tions provide necessary information back to the surrogate model so that the optimisation
is steered towards the efficient geometries. If the LF tool fails to provide any output then
the extend and accuracy of both the surrogate model and the error correction model suffers.
As a consequence, the suboptimisation process is prevented from exploring the promising
regions. Therefore, such a LF rool cannot support reliable design space exploration in the
conceptual design process. In such cases, a HF SBO method is more robust in providing
a wider pareto front and should be preferred. Nevertheless, it is evident that the narrow
pareto front is associated with superior OF values when the VGK is used, with the effect
being more pronounced in the case of the Co-Kriging based method.

By comparing the corresponding values of the pareto front (see Fig.5.19) to the final
results from the single objective cases, one can understand that the cost increase does not
allow neither optimiser to reach global optimality for all pareto front points — at least in
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our predefined computational resources. This however was not the purpose of the presented
methodology. Following this cost efficient exploration of the conceptual design space,
the engineer can use the pareto configurations for further local fine-tuning tradeoff studies
depending on the needs of the design.

Table 5.4: Multiobjective case - Methodologies examined

Nr. OF Model LF Tool Error Model HF Calls/El. time (mins)
1 - - - 1000 / 8000
2 Kriging - - 410 / 8000
3 modKriging Fluent Kriging 129 / 4961
4 modKriging Fluent RBF 156 / 4388
5 modKriging VGK Kriging 227 / 7711
6 modKriging VGK RBF 170 / 7129
7 Co-Kriging Fluent - 220 / 7000
8 Co-Kriging VGK - 370 / 7199

(a) Comparison of the various methods, with par-
tially converged analyses as an LF tool.

(b) Effect of the LF tool and the error correction
model.

Figure 5.19: Pareto front comparison of the CFD based, HF EI, MF EI modKriging and MF EI
Co-Kriging methods, and their sensitivity to the LF tool and the error correction model (where
applicable).

5.4 Summary

Following the demonstration of the methodology in analytical problems, this chapter pre-
sented an industrially relevant application. The transonic airfoil design problem was for-
mulated as an unconstrained, constrained and multiobjective optimisation study using the
RAE2822 configuration as the baseline airfoil. Free form deformation parameterisation
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was used to describe the deformation of the geometry using eight control points spread
uniformly across the chord. Since each control point was associated with both X and Y
displacements, the problem was described by 16 design variables. The low fidelity analy-
ses were performed with both the VGK tool and the concept of partially converged RANS
simulations of two different stages. Thus, the effect of the low fidelity tool inaccuracy and
inability to follow the high fidelity trends could also be examined. For the high fidelity
calls, RANS simulations were used. The framework was compared against ALPSO opti-
miser calling high fidelity CFD analyses directly, a high fidelity expected improvement and
a multifidelity (Co-Kriging-based) expected improvement method. The unconstrained test
case demonstrated the superior exploration attributes of the surrogate based optimisation
methods over the gradient free approach which was also more computationally expensive.
Both the high fidelity and multifidelity methods showed similar final results but the mul-
tifidelity framework required almost 30% of the computational budget. A similar trend
was observed in the constrained problem, with the multifidelity approach providing de-
signs slightly inferior to the high fidelity ones, but with significantly lower elapsed time
costs. The constraint handling mechanism also showed an impact on the convergence be-
haviour. The penalty method was more aggressive, locating superior designs but only late
in the optimisation study. The feasibility method on the other hand was more conserva-
tive, providing feasible designs with higher consistency but falling short in terms of final
performance. In the multiobjective problem, the proposed multiobjective infill strategy
was compared against the standard multiobjective expected improvement infill strategy for
pareto improvement, demonstrating its objective space exploration superiority. The pro-
posed multiobjective framework was compared against an inhouse implementation of the
MOPSO algorithm calling directly high fidelity CFD analyses, as well as the standard high
fidelity multiobjective expected improvement (with our proposed infill strategy). The mul-
tifidelity methodology displayed similar objective space exploration characteristics with
the high fidelity one but with reduced costs. When VGK was used as a low fidelity tool,
these exploration attributes were reduced, but the tradeoff configurations associated with
the middle region of the pareto front were improved.
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C H A P T E R 6

Comparison Between Trust Region and
Expected Improvement Methods

Pride makes for a good servant but a
bad boss...

Uncle Jesse

In the initial stages of the design, perhaps the most important attribute an optimisation tool
might offer to the designer, would be to provide information, thus acting as a very efficient

trade study tool. As outlined in Chapter 3, to take full advantage of its elements and provide
insight to support decision making, a conceptual/preliminary optimisation methodology
should use a multiobjective (MO) formulation. Equally important is the reliability and
design trends consistency in order to properly drive the design in these stages.

Although MO optimisation methods have been used in the aerospace industry [214,
215], tools based solely on gradient free MO optimisers might lead to very high compu-
tational expenses [216]. In response to that, there has been an effort to reduce the cost by
using surrogate modelling techniques. Their effect is profound when metamodels substitute
expensive [217] or challenging analyses. Their use is not limited in decreasing the com-
putational requirements associated with high fidelity (HF) analysis but to guide the design
[218] as well, as in Surrogate Based Optimisation (SBO) problems. Typical applications of
metamodelling based methods involve aerospace applications [92, 128] like airfoil design
[97]. Effort to develop more sophisticated metamodelling techniques focus on the accuracy
and flexibility [84, 98] of the models.

To satisfy the needs for computational efficiency as well as provision of design-related
information, a research methodology such as the one described in this work requires con-
tinuous evaluation to provide feedback to the researcher. In this sense, the methodology
suggested by the author is compared against a similar multifidelity (MF) surrogate based
approach developed by J. Demange of the same research group.

149
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The latter is a trust region (TR) based framework [200] that uses a metamodel to correct
the low fidelity (LF) aerodynamic solver steering the method to high fidelity optimality. In
contrast to the methodology proposed in the present PhD work which aims in the efficient
global exploration of the design space in the conceptual stage, the trust region method
developed by Dr. Demange focuses on the exploitation of the information provided by
the surrogates to perform local improvements. The TR method does not require gradi-
ents information [219, 220] nor an initial sampling. Both methods use their respective
multiobjective formulation, employing our inhouse implementation of the multiobjective
particle swarm optimisation (MOPSO) algorithm [139] and a Multiobjective Tabu Search
[145, 147] (MOTS) framework. The aim of this comparison is to display the appropri-
ateness of each approach and their dependency to the problem under consideration [221].
To further assess these methods, we also compare them against a gradient free method, a
high fidelity-only SBO method using the expected improvement (EI) criterion and a MF
EI method using Co-Kriging to handle the MF data. Two common industrial aerodynamic
design problems are being used as test cases: the first design problem involves take-off per-
formance maximisation, formulated as a Clmax and lift-over-drag ratio maximisations, of the
Garteur high lift three elements configuration [222]. This is a problem involving six design
variables and a challenging aerodynamic analysis. The second design scenario resembles a
typical transonic airfoil design for cruising conditions, based on the RAE2822 airfoil [213]
presented in the previous chapter. Here, Cl and Cd are used as objectives.

6.1 Surrogate Based Optimisation Methodology

6.1.1 Trust Region

The trust region method to be described was developed by my colleague J. Demange as a
part of his PhD work. Dr. Demange is acknowledged for his contribution on this chapter
by sharing the details of his method as well as his results in order to make the comparison
of the two methodologies possible.

In Demange’s method, the fundamental optimisation problem of Eq.6.1.1 is solved by
a derivative-free trust region method presented by Conn et al. [219]. Instead of directly
optimising directly the high-fidelity (HF) problem, an approximation model y of the HF
function is used. At any iteration k, the following subproblem is solved under a trust region
δk:

min
x∈δk

ŷk(x). (6.1.1)

The trust region can be considered as a hypersphere centered on the initial point of the
subproblem but in Demange et al. [199], a second definition based on the number of im-
provements of the corrected model is used. The model ŷk : Tk → R

l is defined by Eq.6.1.2
at iteration k. It is formed by the sum of a Kriging surrogate model ek approximating the
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error of the LF function based on Eq.3.3.2, and the LF function fLF itself.

ŷk(x) = fLF(x) + ek(x) (6.1.2)

It was shown by Demange [200] that an RBF or Kriging model is not sufficient to
achieve a pareto front as wide as the one resulting from an optimisation acting directly on
the HF function. Therefore, a Co-Kriging model is preferred when more than 2(n + 1)
high-fidelity points are available for training. In this case, equation Eq.6.1.2 is replaced for
Eq.6.1.3:

ŷk(x) = mk(x) (6.1.3)

withmk(x) being the Co-Kriging model, implemented according to Forrester et al [88].
Since this model is an extension of Kriging to include multiple levels of fidelity, it uses
both HF and LF data. It no longer predicts the error, but directly the corrected function.
To solve the subproblem of Eq.6.1.1, the Multiobjective Tabu Search [145, 147] (MOTS)
optimiser is used. This is a MO version of the tabu search algorithm described in section
2.8.1. A summary of Demange’s method is presented in the flowchart 6.1.

Ratio of Improvement and Trust Region Management

The ratio of improvements ρk = [ρ(1)
k , ρ(2)

k , . . . , ρ(l)
k ] is calculated for each point provided by

the suboptimiser and each objective as follows:

ρ(i)
k =

f (i)
HF(xk) − f (i)

HF(xs)

m(i)
k (xk) −m

(i)
k (xs)

, i ∈ [1, . . . , l]. (6.1.4)

Each point of suboptimisation’s pareto front is analysed using the HF tool and the op-
timisation pareto front is updated accordingly. The ratio of improvement is extended to
include multiple objectives as follows:

• For each candidate point pk = f (1)
HF(xk), . . . , f (l)

HF(xk)] in the objective space,

– If the number of objectives with a ratio of improvement greater than ρbad is
higher or equal to the trigger n f , the point pk is marked as moderate.

– If the number of objectives with a ratio of improvement strictly greater than
ρgood is higher or equal to the trigger n f , the point pk is marked as good.

– Otherwise, the point is marked as bad.

• If the number of points pk marked as:
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Figure 6.1: Multiobjective multifidelity trust region optimisation framework [200]
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– Moderate is greater than the trigger np, the overall iteration is considered mod-
erate.

– Good is greater than the trigger np, the overall iteration is considered good.

– Otherwise the iteration is considered bad.

The trust region is then increased or shrank by γs according to the status of the current
iteration as in Eq.6.1.5:

δk+1 =


δk − γs |{pmoderate}| < np (bad prediction)
δk |{pmoderate}| ≥ np (moderate prediction)
δk + γe

∣∣∣∣{pgood

}∣∣∣∣ ≥ np (good prediction).
(6.1.5)

The current pareto front is then merged with the overall one and the total pareto points
number is calculated. If at least one point improves the pareto front, the new starting point
is chosen from the overall pareto front. This selection is biased towards low-density parts of
the pareto front, to promote objective space exploration. The Euclidean distances between
each consecutive point from the pareto front are used as weighting factors for the selection.
If no point improves the pareto front, the suboptimisation is restarted from the same point
but with the corrected function now being more accurate.

6.1.2 Hypervolume Indicator

Pareto front plots are effective in showing a method’s design space exploration efficiency
for a given number of CFD calls. However, they lack information regarding the evolution
of the pareto front during these infill analyses. The hypervolume indicator [223] aims
at providing such information. It represents the hyper-volume (surface for 2 objectives)
objective space dominated by the pareto front and bounded by a reference point provided
by the user. Depending on this reference point location, the indicator reflects the importance
to the number of points forming the pareto front (diversity) and its pareto-optimality, or to
the extreme points of the pareto front.

Fig.6.2 describes the hypervolume indicator. The normalised front consists of the red
points which are pareto equivalent. The point of reference used is slightly less optimal
than the nadir point. Therefore, information from the most extreme points is used and the
volume is then computed based on the coloured area. The process of selecting the reference
point [223] rp = (r1, r2) among mp pareto points is summarised in Eq.6.1.6.

|r1| = |r2| > 2 extremes points favoured
|r1| = |r2| ∈

[
1 +

√
2

mp−1 , 1 +
√

2
]

diversity favoured (6.1.6)
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Figure 6.2: Hypervolume definition from a normalised Pareto Front and a reference point rp.

In order to compare multiple pareto fronts based on the concept of the hypervolume
indicator, contribution rate has to be introduced. For np Pareto fronts (PF1, . . . , PFnp) the
procedure is formulated as follows:

1. All the pareto fronts are combined into a single dominant surrogate Pareto Front,
PFs which is containing only the non-dominated points.

2. For each front, only the intersection between PFi and PFs: PF′i = PFi ∩ PFs are
kept.

3. The surrogate Pareto front and the PF′i are normalised.

4. The hypervolume indicator is calculated for each PF′i and PFs, relative to the same
reference point rp.

5. The contribution rate cr is computed for each PF′i according to Eq.6.1.7.

cr =
Ih(PF′i )

Ihs
. (6.1.7)

As this ratio approaches the value of 1, the Pareto front approaches surrogate Pareto Front.
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Figure 6.3: GARTEUR configuration

Parameters Notation Value
Reynolds number Re 4.10 · 106

Mach number M 0.20
Fixed Angle Of Attack αClmax 24 [deg]
Trigger for bad prediction ρbad 0.0
Trigger for good prediction ρgood 0.0
Trust region shrink value γs 2
Trust region expansion value γe 2
Number of objectives required n f 1
Number of points required np 2
Initial trust region size δ0 6

Table 6.1: High-Lift optimisation parameters

6.2 Garteur High-Lift Configuration

6.2.1 Problem Formulation and Geometry Parameterisation

The Garteur configuration is a 2D multielement airfoil composed of a single-slotted slat and
a flap. The design variables of this test case are the slat and flap positions and deflection
angles with a positive orientation shown in Fig. 6.3. The optimisation problem aims in
triming their position and their respective deflection angles in order to maximize takeoff

performance. The flow conditions [222] are shown in Table 6.1 and the optimisation is
performed at fixed angle of attack taken as the angle of attack at maximum lift αClmax .

High-lift devices are used during takeoff and landing, when both lift and drag gener-
ated are critical [224]. In addition to obvious lift considerations during takeoff and climb,
drag should also be taken into account to fulfil these requirements. Similarly, drag has the
significant effect of intentionally slowing the aircraft down when reaching the ground. The
optimisation is considering both competing objectives. As such, a multiobjective formula-
tion is used to obtain a pareto front solution instead of a single compromise optimum. In
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this way, the objectives are formulated as in Eq.6.2.1 [225].

f (1) = −
Cl

Cldatum

, f (2) =
Cd

Cddatum

(6.2.1)

6.2.2 Aerodynamic Analysis

High Fidelity Tool

As in the study of Chapter 5, Fluent [226] is being used as the HF tool since it is con-
sidered as the most accurate tool available for this analysis. The mesh is generated with
Icemcfd [227] and mesh regeneration is preferred over mesh deformation due to the large
movements of the slat and flap as well as the low cost of generating the mesh. The robust
meshing of this configuration took into account that the boundary layer must be accu-
rately resolved to correctly predict the complex features involved in high-lift conditions.
As in the typical practice within the aerospace industry, Reynolds Averaged Navier Stokes
(RANS) simulations are being used [228] in conjunction with with Spalart-Allmaras tur-
bulence model [214]. Second order Upwind discretisation scheme is used only after the
first 500 iterations as the simulation starts with a first order scheme to ensure stability. The
flow is considered converged when residuals fall below 10−5, or when 2000 iterations are
exceeded1. Since this strict convergence cannot always be achieved, especially in these
high lift conditions in which flow separates forming vortical structures, the lift and drag
coefficients are averaged over the last 100 iterations. Validation of this model against wind
tunnel data was performed by Demange et al. [199], and a typical evaluation cost in the
machine used (GRID - 8 CPUs parallel processing) ranges between 10 to 20 minutes.

Low Fidelity Tool

As a LF tool, the coupled viscid-inviscid MSES [229] software provided by Professor
Drela, MIT is used. In this, the Euler equations are coupled with a multiequation inte-
gral formulation and the coupling is being performed with a Newton solver. The software
can handle the wakes from each element and can also predict separation and the aerody-
namic coefficients quite accurately even near maximum lift [230] conditions. Each point
evaluation typically requires up to two minutes. As similarly observed from the use of
VGK in the RAE2822 test case, inefficient designs suggested by the optimisation proce-
dure might diverge. This is observed in the coupling procedure, amplified by the quality
of the discretisation used for the Euler solver. The information reduction due to divergence
occurring in non-promising regions of the design space, is negative in a way similar to the
findings of Chapter 5.

1In some cases, this allow a fully converged flow but it is sufficient in capturing most of the flow physics.
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6.3 Results

The multifidelity trust region (MF TR) and multifidelity expected improvement (MF EI)
methodologies are compared against a high fidelity expected improvement approach and a
gradient free optimisation, which directly calls only high fidelity analyses. For the latter,
the Tabu Search optimiser is used in the Garteur case and our inhouse implementation of
MOPSO is used in the RAE case.

6.3.1 Garteur case

Fig.6.4, 6.5 show the hypervolume indicators convergence, introduced in section 6.1.2,
as well as the Pareto front after about 125 HF CFD calls for each method2. The Tabu
Search optimiser, acting directly on the HF analyses, finds good compromise points in a
few iterations. However, as it can be seen from Fig.6.4 the Pareto front is narrow since TS
first works locally and then extends its Pareto front. In the following iterations the front
becomes wider, as implied by the hypervolume indicator convergence. This, however,
requires many more HF calls.

Following a brief initial sampling (six high-fidelity and 18 low-fidelity), MF EI is very
quick to discover the Pareto front thanks to the problem low dimensionality. In the initial
iterations, with the design space not explored extensively, the explorative attributes of the
method lead to a high infill success rate, as it is easy to find even slight improvements
throughout the whole design space. However, after only 40 CFD calls the method seems to
converge and no further improvement occurs. This is again a direct result of the method’s
behavior: with pareto points already identified, the — now multimodal EI suboptimisation
problem — becomes more challenging and the method keeps exploring the design space
for new design trends to find improvements. It is important to note that the LF tool is
robust in specific design space locations, but when used as part of an explorative optimiser,
its lack of global robustness complicates the task. The lack of pure exploitation and local
search near the current pareto points, combined with the LF tool’s inability to converge in
the entire extend of the design space, leads to this early convergence. The former is an
inherent attribute of the methodology, but the latter is a problem already observed in other
applications of this method [200], and it is briefly discussed below.

It is important to discuss the effect that a LF tool has on the convergence of exploration-
oriented MF methodologies, especially in the presence of a wide design space. The general
effect of MSES is not beneficial for the widening of the pareto front. This is mostly ob-
served in extreme operational regions like high Cl regions, that include interactions between
wakes and large flow separation, complicating the coupling procedure between Euler in-
viscid and viscous boundary later solutions. Hence, the initial global sampling does not
provide information on an extensive design space region, and the MF EI method fails to

2Depending on optimiser implementation.
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exploit its exploration attributes. As such, the use of a tool which is a not robust in the
whole design space is not appropriate for design space exploration even in the conceptual
design stage, especially if the engineer is interested in finding novel design trends. In such
cases, using information from a more mature stage provide by higher fidelity tools is prefer-
able and a HF SBO method is definitely superior. Nevertheless, in regions where MSES
is robust and accurate, the MF optimisation process is more efficient: it provides a more
optimal pareto front. Following this, it is not a complete surprise that MF TR provides, to
a small extend, a denser and wider pareto front. The MF TR pareto front convergence is
initially slower due to the lack of sampling which limits the source of information MSES.
The LF tool provides useful design trends but a couple of iterations are required before
these are translated to dominant points. These uncorrected inaccuracies restrict the MF TR
to the same convergence behaviour as the HF Tabu Search method. Nevertheless, the con-
vergence is consistent and similar to what the HF Tabu Search performs, but with a quicker
pareto front development. MF TR is able to locate design points which are better than the
ones discovered by HF EI, in the whole range of its pareto front. Furthermore, it exhibits
a slightly wider pareto front, especially in the low drag region. The superiority of the MF
TR hypervolume indicator, compared to the TS only on HF, is explained by the extended
objective space exploration. Despite this, the points predicted by TS only on HF in the mid
Cl regime are dominating the respective ones from all other methods. MF EI provides an
improvement over the results from the rest of the methods in the high Cl region. In lower
lift design points, its performance is similar to MF TR, while it is being inferior in the
lowest Cl objective space. Despite this fact, the use of MF data in the EI method can be
considered as beneficial, since only one MF EI pareto point is dominated by HF EI. The
drawback of the former though is the reduced number of pareto front points.

The above conclusions are better supported by a parallel coordinate plot [231], shown
in Fig. 6.6 and the actual configurations displayed in Fig.6.7. These show the difference
in the design variable values and design trends behind each methods’ pareto points. As
previously, the pareto front points are displayed at the same number of HF calls. The
following information can be extracted:

• A qualitatively consistent slat movement is observed: all methods identify the impor-
tance of moving the slat forwards and down to increase wake interaction from slat to
the main airfoil element.

• Discrepancies in slat angle: there is moderate movement from all methods but MF
EI tends to deflect the slat as much as possible for increasing the lift. There is also
an agreement in the low drag region, with lower slat deflection due to lower flap
deflection.

• Low drag points have different arrangement compared to the datum: they use a lower
flap position with a reduced deflection: less energy is extracted, with flap deflection
being less affected from the main element to keep flap boundary layer attached.

• Only the MF methods explores the optimal design space extensively, due to the quick
identification and exploitation of the importance of flap deflection. With this variable
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Figure 6.4: Hypervolume indicator convergence and Pareto front after 125 CFD calls for the Gar-
teur case.

Figure 6.5: Pareto Front for the GARTUER airfoil optimisation case after 14-127 HF calls.
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Figure 6.6: Parallel-coordinate plot for the Garteur case pareto points after 125 CFD calls.

Figure 6.7: Garteur configurations resulting from all optimisation methodologies.

being the most dominant, MF EI uses the maximum allowed deflection to get maxi-
mum lift.

• The HF and MF methods’ points tend to follow the same arrangement. Therefore,
the discrepancies from the MSES LF tool are well corrected. MF approaches are
quicker in finding promising regions. TS only on HF is the most efficient method at
exploiting, that is to find the best solutions in the vicinity of datum point.

To conclude this comparison performed on the Garteur case, the TS only on HF is
efficient in exploiting locally near the datum, but requires more HF calls than the rest of
the methods to expand the pareto front. The HF EI explores the design space, but lacks
exploitation and its points are dominated by the other methods. The MF TR has a behaviour
very similar to HF EI, but shows a quicker pareto front advancement. The MF EI approach
has fewer pareto points than all the other cases, but exploits the high-lift mechanisms better
due to its initial full design space exploration. The design changes of the SBO methods are
consistent with the direct gradient free optimisation. As for the MF methods, the LF tool
inaccuracies have only a minimum effect in the final pareto front values.
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6.3.2 RAE2822 case

As shown in Fig.6.8, in the initial HF infill calls MF TR develops a pareto front faster.
However, following the end of the initial sampling MF EI quickly takes advantage of the
surrogate, creating its respective pareto front. Following this, the hypervolume indicators
show that MF EI dominates MF TR. An investigation of the pareto front reveals that this
domination originates from the high Cl region.

By comparing the MF TR to the MF EI approach in terms of final pareto front as shown
in Fig.6.9, it is evident that both methods exhibit similar objective space exploration as they
both provide a wide pareto front. The objective function values are also similar in the mid
and low Cl regions. Although in higher Cl values MF TR outperforms MF EI in a narrow
region, MF EI shows an improved performance in the high Cl objective space.

The use of variable fidelity tools within the EI method is also assessed by comparing
the HF EI method against MF EI method. There is a definite correlation between HF EI
and MF EI pareto front as the corresponding values are very close across the whole pareto
front. This shows that the LF tool provides correct design trends in a wide design space
range. Therefore, the error correction is not only accurate, but also efficient as the quick
RBF correction is sufficient in steering towards HF optimality. However, the computational
cost between the three SBO methods is similar, with only a slight exploration improvement
observed in the MF EI case. Hence, it can be concluded that there is not much benefit
associated with using MF SBO methods for this design scenario.

The direct optimisation that uses our MOPSO implementation develops a dense but
narrow pareto front. This is important since the purpose of a MO formulation is to explore
different design possibilities in a wide objective regime. Although not shown here, no sig-
nificant improvements are observed in the pareto front width or domination at later stages
of the optimisation: the swarm does not find new pareto dominant points. MOPSO HF
results are almost completely dominated by the MF and HF EI ones. Nevertheless, in the
tradeoff region, some designs identified by MOPSO are superior to the ones from HF EI
and MF EI. MF TR however is mainly dominated in MOPSO high lift anchor point region
albeit MF TR pareto front extends more in the high lift region. Overall, SBO increases the
design space exploration for a similar cost.

An example of the pareto front airfoil shapes is given in Fig. 6.10. Despite the similar
pareto points between MF EI and HF EI showing proximity on the objective space, the
respective shapes are distinctively different, exploring different points in the design space.
However, MF TR and MOPSO approaches are more similar: the former methods are global
whereas the latter ones are more local. Therefore, MF TR and HF MOPSO dominate
in area close to datum (in design space) since they perform exploitation towards a local
optimum but HF EI and MF EI explore configurations different from datum. By specifically
examining the high Cl shapes, it is evident that these are very different from the datum,
requiring global exploration to locate them. The MF EI method achieves high lift from its
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Figure 6.8: Hypervolume indicator convergence after 125 CFD calls for the RAE case.

aft camber as shown in Fig. 6.10. At the same time it is significantly thinner than the one
designed by the MF TR approach in order to compensate for the wave introduced due to
the achieved lift. In the compromise region all geometries display a big thickness reduction
with the exception of the airfoil resulting from MOPSO, since it is only slightly thinner
(mainly from the upper surface) than the datum while maintaining the original RAE2822
shape. The same is not true for the configurations by the MF TR and MF EI approaches
which introduce a positive camber in the before the mid chord area. Evidently, the MF
TR methodology retains the supercritical shape while producing the necessary lift through
an aft camber design. A corresponding configuration is also defined by MF EI with its
distinctive characteristic being the absence of an aft camber and an earlier thickening than
the one by MF TR. The low drag MF designs both feature an inverse aft camber, with the
MF TR being thinner and displaying a positive camber downstream of the LE area. It is
evident that these designs are shaped as they are because of the positive angle of attack used
in this optimisation problem (they minimise drag by reducing their thickness and creating
zero lift). For an angle of attack of zero they would obviously produce negative lift.
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Figure 6.9: Pareto front after 125 CFD calls for the RAE case.

Figure 6.10: Three representative Pareto front shapes for the MF TR and MF EI methods.
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6.4 Summary

This chapter presented the comparative study between an exploitation based multifidelity
trust region framework developed by J.Demange against the more exploration-focused
multifidelity expected improvement methodology developed during this PhD work — pre-
sented in Chapter 3. Both methods were also compared against benchmark gradient free
optimisation tools such as Tabu Search and the Multi Objective Particle Swarm Optimisa-
tion. The study used a hypervolume indicator to assist the assessement of the pareto front
convergence in two test cases: a high lift design case using the Garteur three elements
airfoil, and an airfoil shape design problem for cruise conditions, involving the RAE2822
aerofoil also used in Chapter 5. It was observed that the gradient free methods, in spite
of being reasonably efficient in improving the datum, cannot provide a wide pareto front
for the same computational cost as the other surrogate based methods. Contrariwise, the
trust region method provides a wide pareto front, dominating the expected improvement
method in the mid lift region, which is closer to the datum point. In the high lift regime, for
which more extensive exploration is required, the expected improvement method provides
dominant results. The latter takes advantage of the initial sampling, by quickly finding
global design point improvements and extending the pareto front. However, its exploration
attribute, combined with the robustness characteristics of the low fidelity tool can lead to
an early convergence plateau and to more sparse pareto points than the other methods. The
high fidelity expected improvement method showed similar cost requirements to the mul-
tifidelity one, but proved to be more robust in creating a dense and wide pareto front. The
trust region method showed similar pareto front characteristics but it was associated with
a faster pareto front development. A parallel coordinates analysis and a resulting shape
comparison showed consistency between the methods, with the multifidelity approaches
identifying better the physical mechanism in increasing the lift.
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C H A P T E R 7

Industrial Multidisciplinary Design
Optimisation Application

Knowledge will give you power, but
character respect.

Bruce Lee

Maturity in the aerodynamic design of conventional configurations has been achieved
over the past decades to a level where performance is currently reaching a plateau.

With essentially no room for ground-breaking improvements, steps forward are achieved by
small and slow disciplinary improvements. It is still a common industrial practice to use a
leading discipline based on which the rest of the disciplines will be designed. This approach
not only reduces the subsystems’ efficiency (due to the dominant discipline constraints) but
the performance of the overall system as well. To attain new levels of design performance,
redefining and improving the synergy between the disciplines is required.

There is a definite improvement when a global merit is guiding the design with the
subsystems under parallel development. A typical example is the superiority of aerostruc-
tural wing design [164] over aerodynamic wing design. Therefore, one can argue that the
supporting optimisation studies during the design process should always involve multidis-
ciplinary interaction.

The development of multidisciplinary studies raises the additional considerations dis-
cussed in section 2.10. Depending on the MDO formulation [158], interdisciplinary com-
munication is different. However, in most cases a multidisciplinary analysis (MDA) cannot
be avoided, which for aerostructural optimisation translates to a specific case of an FSI
problem.

This work uses the loosely coupled formulation in which different solvers are used for
each discipline. Each disciplinary analysis involves its own computational domain and the
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grid in the disciplinary interface is non-matching. This problem is tackled within the pre-
processing stage, by setting up an RBF-based loads-displacement mapping closed loop.
The other significant requirement arising by the aerostructural analysis is the robust grid
deformation. Again, an RBF-based method similar to the one in [179] is used. Further de-
tails regarding the application of these methods in the context of the aerostructural analysis
are provided in section 7.2.7.

When converged, the MDA provides the global quantities to be used as constraints
or objective functions, typically involving drag and weight. These can be superimposed
into a single objective using weighting parameters as in the work of Leoviriyakit [232]
where a typical transonic wing configuration was optimised using both inviscid and vis-
cous aerodynamic calculations and a simplified weight model, and can be also based on
the Breguet equation for range maximisation, as by Martins et al. [233]. Stress constraints
are mostly associated with high g maneuvers or fatigue and are usually formed into Kreis-
selmeier–Steinhauser (KS) functions.

The effect of structural considerations in an optimisation study is profound in the work
by Kenway [234] and Liem [217]. Optimising a typical transport configuration resulted
to inward loads shifting to allow lighter structural designs. This is the core of MDO’s
superiority over aerodynamic shape optimisation justifying the extensive research work
that has been performed on MDO [184–189].

Most recent design studies are using a single objective under many design parameters
which relates to an advanced design stage. However, an MDO design problem increases
the extent and multimodality of the design space as a direct result of using more design
variables and interdisciplinary interaction creating new design trends. Subsequently, to get
the maximum from an MDO study it is preferable to apply it at an early stage where the en-
gineer can identify a set of promising and diverse designs. Following this, multiple parallel
detailed optimisation studies can be launched. Therefore, this work aims in demonstrating
the benefits of performing a multidisciplinary optimisation study as a part of an early stage
design.

The Common Research Model (CRM) [235], is used as a wing design application [236],
a wing model specifically developed to approximate the design and physical features of
a typical conventional configuration transport wing. Before presenting the optimisation
problem formulation and the numerical setup of the aerodynamic and structural models,
some fundamental considerations on the wingbox structure elements are discussed.
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7.1 Wingbox Structure and Structural Considerations

7.1.1 Loads and Structural Design Conditions

The structural components of system (e.g. wingbox) are designed based on well defined
criteria and conditions. The loads assessment is responsible for identifying these critical
operating conditions for each of the structural components as well as the corresponding
aerodynamic loads. This has to be performed in the early stage of the design but with
reasonably high accuracy.

Typical high load cases involve different maneuver conditions, gusts, landing scenarios
etc, which of course depend on the mission and specifications of each aircraft and define
the ultimate loads considered. Based on these loads the structural elements are sized or the
structural philosophy is developed. The additional loads associated with such conditions
are usually represented by a load factor, as in the case of V-n diagrams.

Critical loading conditions are in the order of hundreds even when only the wing struc-
ture is considered. Of course, for the needs of a current optimisation study only a very
limited set of conditions can be considered for the structural constraints due to the high
computational cost. Therefore, in the context of multidisciplinary optimisation, the disci-
pline of loads typically reduces to defining a single maneuver condition and respective load
factor, and projecting the aerodynamic forces in the structural numerical model.

In this sense, this work neglects high load cases associated with gusts which include
dynamic phenomena, or any other scenario leading to a local increase of loads like landings.
Instead, a simple generic maneuver of 2.5g — corresponding to a high bank angle turn or
steep pitch-up maneuver — is considered as the limit load of the wing. The corresponding
ultimate load is defined by introducing a safety factor of 1.5, a value commonly used in the
aerospace industry.

Since wing design and optimisation is examined in an aeroelastic perspective, it is in-
teresting to mention how the effects of aeroelasticity affect the loads. In non-swept wings,
airloads are affected by structural deflection through torsional loads locally changing the
angle of attack. In swept wings, there is also a contribution of bending loads through the
torsion-bending coupling. The bending-induced deflections tend to decrease the bending
moment since the resulting lift distribution experiences a shift inwards, towards the root.

7.1.2 Material Considerations for Typical Wingbox Configurations

Given the conditions and the loads that function as design specifications, the structural de-
sign is performed. This does not only include the wingbox topology and the element sizing
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however; it also includes the selection of materials for each of the structural components.

Each component on a wingbox structure is subject to specific loads and as such the
materials used can differ depending on their behaviour on the given conditions. Apart from
the loading examples of the previous section, even the operational temperature can have
an effect on the design. As such, temperature can be also used as a material selection
criterion1, next to other considerations like static strength, fatigue resistance, crack growth
characteristics, corrosion etc.

In this work, flutter as well as fatigue are not explicitly taken into account. Therefore,
the material to be used in the structural model is selected based mostly on its static tensile
strength. However, fatigue considerations are still implicitly included in the material selec-
tion process and the effect of fatigue — as well as buckling — is still being qualitatively
discussed in the context of the structural model. Criteria like stress concentration and crack
propagation are neglected both in terms of material selection and constraints, since they are
associated with local design which is beyond the scope of this work. The same holds for
other detailed structural elements like bolts and joints.

Based on the criteria discussed earlier, the material being used for such structural appli-
cations belong in the family of aluminum alloys. High tensile strength applications favour
the use of the 7XXX alloy series, which however generally lack corrosion and fatigue re-
sistance. An improvement is achieved with the 7010 and 7050 alloys which sacrifice some
of the tensile strength for a more balanced structural behaviour. Some typical material
selections for aerospace applications are provided in Fig7.1.

Ideally, although fatigue is not being considered as a constraint, a material with reason-
able fatigue resistance should be used in the structural model in order to provide results of
realistic value. The structural model had to use a single material, and three possibilities
were considered:

· 2024-T3, appropriate for components under fatigue.

· 7050-T7451, high tensile strength with balanced fatigue resistance properties.

· 7075-T651, high tensile strength especially under compression.

Out of these, the 7050-T7451 alloy was considered as the most representative for this
generic application, and therefore it was used in the structural model.

1As an example, titanium alloys are preferred over aluminum alloys in high temperature applications
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Figure 7.1: Materials traditionally used in aeronautical applications [237].

7.1.3 Structural Elements

The structural design traditionally refers to the minimisation of the structural weight given
the external dimensions, fuel volume requirements — and in this case the defined material
— through the sizing of the structural elements and the design of the structural topology.
This approach corresponds to the aerodynamically dominant design in which the structural
design is constrained by the aerodynamic shape requirements. In the present multidisci-
plinary application however, the structure is designed simultaneously with the aerodynamic
shape2. Nevertheless, the goal remains the same; and that is to minimise the structural
weight so that the payload can be increased or the required power can be decreased. For a
given load scenario and material, this is achieved by a design that features the highest stress
allowed [237].

A conventional wingbox configuration involves:

· Longitudinal reinforcing members: Spar caps/stringers/stiffeners. They carry tensile

2The traditional structural design process is perhaps closer to the ASO-based multisciplinary optimisation,
since in the latter, a structural sizing is taking place given a defined wingbox shape provided by the global
variables. However, the distinction between the two is that the global variables are driven by structural
considerations as well, since weight remains still one of the objective functions.
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loads, compressive loads, bending moments and secondary bending moments3. Spar
caps are designed to have high secondary moment of inertia.

· Longitudinal reinforcing members: Spar webs. They provide the platform onto which
the stiffeners are placed. They carry shear stresses, especially near the neutral axis.
A secondary importance of their implicit stiffening action is that the deformation of
the aerodynamic shape due to large deflections near the LE region is avoided. A
large number of shear webs and spar caps reduces the stresses on the ribs and the
stiffening elements are more efficient. However, this conflicts with typical fuel tank
requirements.

· Skins: They carry loads in their planes and are subject to tension in the upper surface and
compression in the lower surface. Torsional shear stresses are also carried by skins.
The buckling resistance of the skins depend on the spacing between the ribs and the
longitudinal stiffeners which effectively increase their thickness. Near the wingtip,
the number of stringers is decreased, reducing the local effective thickness as well.
As mentioned in the problem formulation section, stiffeners are not explicitly present
in the form of spar caps in the structural model used. As such, the skin thickness of
the model is increased to emulate this exact effect of the skin/stiffener assembly.

· Transverse members: Ribs. They provide stiffness and strength in their plane alone,
transferring the airloads to the spars. Their spacing controls the aerodynamic shape
as well as the axial loads in the skins. This property is not being used in the context
of the optimisation studies, since defining rib spacing as a design variable would
significantly increase the dimensionality of the problem.

Since the spar caps and the skin elements are responsible for approximately half of
the structural weight of the wingbox, their design is critical for the success of the whole
structural design. As far as the present work is concerned, this underlines the importance of
the sizing of the skin panels effective thickness. This is especially apparent when the ASO
architectures is being used, in which case the sizing process is being efficiently handled in
a disciplinary level.

The aforementioned structural elements are illustrated in Fig.7.2.

3The upper stringers are stressed by bending and compression simultaneously. Since these are beam
columns of high length-to-width ratio, they are subject to buckling and secondary bending moments are
introduced. Buckling is in fact a driving criterion especially in areas near fuel tanks.
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Figure 7.2: Wingbox structural elements [237].

7.2 Common Research Model

7.2.1 Problem Description

The CRM configuration was developed to satisfy the needs of a general benchmark con-
figuration for CFD validation purposes [235]. Therefore, it represents the current typical
supercritical transonic wing of a widebody commercial transport aircraft and its design al-
lows reasonably good aerodynamic performance. It features an aspect ratio of 9, with a
leading edge sweep angle of 35◦. Following contemporary operating conditions, it was de-
signed for cruise on M = 0.85. The model used in the present work is an up-scaling of the
wind tunnel model, approximating real transport aircraft wing dimensions4.

The outer mold line (OML) corresponds to a cruising (1g) shape and not the jig shape.
However, in lieu of an actual jig shape CRM model, both the OML and the structural model
are used as jig shape models.

4In this study, the clean wing is considered with no fuselage and engine nacelles.
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Table 7.1: Physical conditions for CRM case

Condition Value
Mach Number 0.85
Reynolds number 2x107

Pressure 23842 Pa
Temperature 220. K

Table 7.2: CRM V.15 Wing characteristics

Parameter Value
Span 52.64m
Projected Area 167.95m2

MAC 3.19m
Spars 2
Ribs 42
Range 17185kma

Wingbox Str. mass 31000kg

aThis range corresponds to the clean wing. The
respective range of the full CRM configuration is
13000km.

Figure 7.3: CRM structural configuration. CONM2 masses represent fuel and high lift systems’
masses, connected with the structure with RBE3 elements. For clarity, shear webs are omitted.

For the structural analysis, we are using the NASA CRM V.15 wingbox model5. This
structural model has been designed based on the aerodynamic CRM model and it features
contemporary structural design elements found in a corresponding wingbox structure. Par-
ticularly, this model uses CBARs as implicit chord-spaced stiffeners and shear-webs instead
of the mid-chord spar (found in V.12) which reduces the computational cost. Furthermore,
this implicit stiffening has been shown to suppress local natural modes. In lieu of explicit
stiffeners like stringers in the geometrical description of this model, the thickness of the
skin has been increased to provide an effective structural area acting as a longitudinal stiff-

5commonresearchmodel.larc.nasa.gov/files/2014/02/CRM_wingboxFEM_description_1.
pdf

commonresearchmodel.larc.nasa.gov/files/2014/02/CRM_wingboxFEM_description_1.pdf
commonresearchmodel.larc.nasa.gov/files/2014/02/CRM_wingboxFEM_description_1.pdf
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ener for bending loads. Apart from stress relieving, this prevents excessive displacements6.

The effect of slat and flap activation systems’ mass have been included by CONM2
lump masses connected with RBE3 interpolation elements attached to the front and rear
spar cap elements respectively. Additional masses due to fuel have been similarly included
using CONM2 elements. Three CONM2 elements have been used in the center of gravity
of each fuel tank, as shown in Fig.7.3.b

Since the fuselage is not included in this wing design study, in order for the necessary
cruise trim conditions to be imposed, a fixed fuselage, empennage and additional systems’
weight had to be used along with the corresponding payload weight. The total take-off

weight of the aircraft is calculated as follows:

WTO = Ww,str + W f uel + Wr (7.2.1)

Here, Wr is the total weight that does not include fuel and wing’s structural weight. It is
based on statistical relations and the total number of passengers and it is considered fixed.
Ww,str corresponds to the weight of the structural components of the wing — provided by
the NASTRAN code — and W f uel is the weight of the fuel stored within the wingbox,
used to complete the designed range. Evidently, the structural weight is dependent on the
design point. This is also true for the fuel weight, since fuel mass is calculated based on
the internal volume of the wingbox, which is dependent on the global design variables.

This weight estimation approach is hybrid, using Class I methods for the fuselage and
the rest of the aircraft systems which are not included in the design optimisation problem.
The structural weight of the wingbox is estimated by the FEM model and as such it is a
Class III weight estimation approach [193].

7.2.2 Parameterisation Strategy

Conceptual stage studies typically examine the effect of small groups of well defined and
influential aerodynamic parameters like sweep and twist, with some level of shape design
being inserted usually by inverse airfoil design. In such an integrated design though, to
which cruise trim is provided directly from wing shape and planform characteristics, the
shape design has a role more important than simply maximizing the aerodynamic perfor-
mance. It directly affects the structural design and its efficiency through secondary moment
of inertia effects. To acomplish the above with minimum cost, in this study a combination
of shape parameterisation using Free Form Deformation (FFD) [7] is used, accompanied
by a twist and a sweep variable. These parameters are believed to be sufficient for an exten-
sive and efficient conceptual aerostructural design study without prohibitively increasing

6This also accelerates the convergence of the multidisciplinary analysis loop.
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the dimensionality of the problem. The bounds are also wide enough to satisfy typical con-
ceptual design exploration requirements7. It should be noted that such a parameterisation
approach requires care to make sure the grid is robust to geometrical changes. Since in
this implementation FFD acts directly on the nodal description of the geometry, no further
parameterisation steps are required to provide a ready-for-analysis computational model.

Table 7.3: Design variables

Parameter Count Lower bound Upper bound
Shape variables 20 -1 m 1 m
Spar thickness 3 4 mm 21.1 mm
Rib thickness 4 0.5 mm 7 mm
Skin thickness 3 4.5 mm 19.5 mm
Sweep 1 33.5◦ 36.5◦

Twist 1 -10◦ 10◦

Angle of attack 1 2.8◦ 4◦

The FFD control points act directly on the grid nodes. This approach is robust and effi-
cient as it also allows for the deformation of the volume mesh during the iterative aerostruc-
tural analysis. These function as the global design variables, altering the Outer Mold Line
(OML) and the wingbox shape at the same time8. Sweep and twist are controlled by a group
of control points moving concurrently. The angle of attack is being used as an aerodynamic
design variable and its role is to trim the configuration in cruise, since the changes in aero-
dynamic and structural design, influence the total lift and weight of the wing. Its presence
is not necessary as trim could be achieved by the rest of the variables. However, this would
lead to an inferior design since changes in the shape in order to meet lift constraints are
also translated to shock intensity increase. On the other hand, the effect of the angle of
attack on the lift is dominant and essentially linear. It is therefore preferable to separate
the two functions with distinct variables. Structural parameters include the thickness of the
wingbox elements: spars, shear-webs, ribs and skin [206]. Since this is a conceptual study,
each one of these variables is not associated with a single structural element thickness.
The structural elements are grouped, with a subset of thickness variables representing each
group. As such, in the MDF formulation the six skin panels of the upper and lower surfaces
are associated with three variables, the ribs’ thickness is described by four variables, while
three variables were used for the spars’ and shear webs’ thickness. An element thickness
not defined by a variable is provided by an interpolation between the neighbouring thick-
ness definitions9. A comprehensive overview of the described aerodynamic and structural
model parameterisation is provided in Fig.7.4.

7With the extension of sweep which is limited to three degrees to avoid bad quality or invalid grids.
8The bounds of the shape design variables represent the maximum X or Z displacement of any FFD

control point, relative to the local chord.
9In this ASO formulation case, this interpolation is avoided as the efficient structural sizing allows a

slightly more detailed structural elements thickness design.
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(a) FFD control points deforming the OML and the
wingbox.

(b) CRM skin thickness variables and datum design thickness.

(c) CRM spar and ribs thickness variables and datum design thickness.

Figure 7.4: CRM aerodynamics and structural parameterisation. Thickness is in mm.



176 7.2 Common Research Model

7.2.3 Design Constraints

As already mentioned, for the optimisation procedure on CRM to provide useful engineer-
ing feedback, it should be constrained to satisfy trim in cruising conditions. In this sense,
the trim constraints take the following inequality form.

|L(x) −WTO(x)|
WTO(x)

≤ ε (7.2.2)

CMcg(x) ≤ ε (7.2.3)

where CMcg is the moment coefficient around the center of gravity of the wing and the
tolerance is set to ε = 0.05. In order for the use of CMcg in the optimisation to be meaningful
so that the final wing design would be operational, the empennage is also required. This is
of course because the horizontal stabiliser trims the CMcg of the full configuration10. The
fuselage and the empennage are not available in use in this study. Therefore, the wing
configuration is optimised as an isolated aircraft system — without considering the effect
that the interaction between the wing, the fuselage and the empennage would have in the
final wing design and in the longitudinal trim. As such, including a strict tolerance for this
constraint is not relevant and therefore the constraint is omitted.

Another constraint considered in this optimisation problem is range. This is estimated
based on the aerodynamic performance as well as the weight characteristics of each design.
As such, apart from the structural weight it is dependent on the available fuel tank volume
inside the wingbox, which is sensitive to the global design variables. In this way, an implicit
fuel tank volume constraint is introduced, as the wingbox should be large enough to carry
the fuel required for a 7000nm/13000km mission. The mass of the fuel m f is directly
calculated for every new developed design, and it is embedded in the structural model
using CONM2 lump masses connected to spar and rib elements through RBE3 elements.
Three lump masses were used for three fuel tanks along the semi-span.

The Range (R) is calculated using Breguet equation,

R(x,m f (x)) =
V

gS FC
L
D

ln
( Wi

W f

)
(7.2.4)

where V is the flight speed, S FC is the thrust-specific fuel consumption, Wi is the initial
and W f is the final weight.

10The presence of the empennage and the fuselage also affects the aerodynamic characteristics of the wing,
altering the CMcg value.
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To avoid a too stiff or too flexible wing design11, the first bending mode frequency
is also constrained. For this modal analysis, the Nastran SOL103 is used. The use of
this modal constraint also ensures that the structural design will not be too local during
the optimisation process, since the eigenvalues are properties that depend on the whole
structural wing design.

To secure structural integrity in limit loads, each wing configuration is tested to a stress
analysis corresponding to a 2.5g maneuver. When using the maximum Von-Mises stress as
the constraint, the resulting structural design would be local. To avoid this, while keeping
the structural constraints number to the minimum of one, the KS function [238] was used in
the MDF formulation case. In this, each constraint value g associated with each structural
element, takes the form:

gi(x) = S F ∗
σi

σy
− 1 ≥ 0 (7.2.5)

where σi is the Von-Mises stress of the ith element, and σy is the yield stress of the
material, which is Aluminium 7050-T7451, with σy = 469MPa. S F is the safety factory,
set to 1.5.

As mentioned earlier, inequality constraints are enforced during the suboptimisation
process to steer the method towards feasible infill sampling points. In this case, when the
feasibility method is used, the suboptimisation process becomes,

x1
∗, x2

∗, · · · , xn
∗ = arg

(
max
x∈D

(
PFR x PFtrim x PFstress x PFmode x EICD

)
vs max

x∈D

(
PFR x PFtrim x PFstress x PFmode x EIW

)) (7.2.6)

where the probability of feasibility for an inequality constraint problem of g(x) ≤ gc is
expressed as,

PF(x) =
1
2

(
1 + er f

(gc − g(x)

ŝ(x)
√

2

))
(7.2.7)

The constraints are summarised in Table.7.4.

7.2.4 Aerodynamic Analysis

The CFD analyses are performed using the commercial solver ANSYS Fluent [208], pro-
viding the global aerodynamic coefficients. Two different numerical models have been set

11In the case of a too flexible wing, a nonlinear structural analysis is required.
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Table 7.4: Constraints

Constraint Value
Range ≥ Rdatum

Trim in Cruise -
KS ≤ 1
1st bending mode 1 ≤ f ≤ 2Hz

up in order to cover the requirements of this MF optimisation study. These feature different
physics solved, grids used and convergence tolerance. For both cases, the final result is av-
eraged using values from the last 50 iterations. This minimises noise induced from limited
oscillation present in the converged solution.

Low Fidelity Tool

The LF analyses neglect the effect of viscosity using specifically developed grids, mostly
aiming in the the minimisation of computational expenses. To reduce computational costs
even more, the concept of partial convergence [111] is employed. In this, following an a
priori investigation of the convergence [213] of the LF analysis of random points, a maxi-
mum number of iterations is set. All LF simulations executed during the optimisation are
stopped once this predefined number of iterations is reached. As a result, the error bounds
of the LF analyses are known.

High Fidelity Tool

In the HF CFD analysis, RANS equations are used solved by a Roe-FDS scheme [239]
and S -A [210] to model turbulence effects. All equations are discretised with a 2nd order
upwind scheme. These details are summarised in Table.7.5. The computational grid used
for this model was selected following a grid convergence study [209] illustrated in Figs.7.5,
?? described below.

The mesh generated is hybrid, using a structured O-grid subdomain ensuring the re-
quired near wall resolution, while the outer volume uses tetra elements, as displayed in
Fig.7.7. Four grid levels of successive refinement were examined starting from y+ = 10, to
a grid all well within the y+ = 1. In a similar fashion, two inviscid grids were examined for
the LF analysis, involving 10 and 15 structured layers respectively. For the HF analysis,
the level 2 grid was selected as the most appropriate for the purposes of this optimisation,
showing a satisfying resolution of the physics involved as well as grid converged aerody-
namic coefficients. For the LF analysis, the coarsest grid was chosen for its low cost and
insignificant accuracy penalty.
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Figure 7.5: Cp distribution grid convergence study for the HF analysis.

Figure 7.6: Global aerodynamic coefficients grid convergence study for the HF analysis.

To demonstrate the difference between the LF and HF solution, the two pressure dis-
tributions (corresponding to the EULER and RANS analysis respectively) are provided in
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Fig.7.8. It is evident that in the inner mid part of the wing, the two methods predict similar
physical field. The location of the shock in the upper part of the wing near the root is almost
identical for both cases, while in the middle of the wing it is located only slightly down-
wind of the one predicted by RANS, followed by a pressure fluctuation. In the same part
of the as expected, the inviscid solution also underestimates the pressure losses. However,
in the outer portion of the wing the models differ greatly. The inviscid analysis consistently
predicts a more gradual pressure drop in the upper section of the wing — especially very
close to the wingtip. As a result, the shock location is identified significantly further down-
stream of the one estimated by the RANS analysis. Furthermore, the effect of the increased
geometric washout near the tip is pronounced in the inviscid solution. The upper LE section
is a stagnation area from which the flow accelerates until the shock occurs in x/c ≈ 0.85.
In the lower side conversely, a sudden suction is predicted until the mid-chord location.

This behaviour suggests an underestimation in the drag force predicted by the LF tool
as well as wrong loads distribution in the outer part of the wing, effectively acting as loads
alleviation. Therefore, in the design space particularly associated with high geometric twist
or/and low bending and torsional stiffness, the LF analysis is expected to provide increas-
ingly false data.

Table 7.5: HF analysis numerical model details

Parameter Type
Scheme Roe-FDS
Discretisation 2nd order Upwind
Courant Number 10 - 20
Turbulence model S − A

Figure 7.7: High fidelity aerodynamic surface
grid. O-type grid layers are used for boundary
layer resolution.
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Figure 7.8: Comparison between low fidelity (EULER) and high fidelity (RANS) solution in terms
of pressure distribution.

7.2.5 Multidisciplinary Feasible Architecture Formulation

As discussed in Chapter 2 and 3, MDF is perhaps the simplest of the MDO architectures
both in terms of development as wells implementation either in a computational environ-
ment or even in a physical organisation as a design plan. As such, following the pattern
used in Chapter 4 for the Sellar MDO problem, MDF is used as a the basis of the MDO
implementation studies of the developed optimisation methodology. Following again the
XDSM approach of describing multidisciplinary processes, the aerostructural optimisation
is presented in full detail in Fig.7.9.
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Figure 7.9: XDSM flowchart for MDF formulation of CRM aerostructural optimisation.
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The procedure is fairly straightforward: All the elements of the optimisation method-
ology described in Chapter 3 are present (sampling, metamodel training, suboptimisation,
infill sampling etc.). The optimisation framework now simply guides a multidisciplinary
process contained within the MDA loop. This uses a Gauss-Seidel loop between the aero-
dynamics and structures until aerodynamic coefficient convergence is achieved.

Structural Analysis

For the structural analysis, MSC. Nastran is being used. Since the aspect ratio is not high,
a linear static analysis (SOL 101) is considered accurate enough for the purposes of this
study. The analysis provides the stress distribution at the nodes, used to formulate the
stress constraints in form of KS functions. Furthermore, it allows the calculation of the
structural weight of the wing similarly to how it has been used in the work by Dababneh
[193]. Apart from an objective function itself, it is necessary in order for the trimming
constraint functions to be evaluated. Under this plan, the cost of a structural and weight
analysis is significantly lower than that of the LF aerodynamic analysis. Therefore, there
would be no significant benefits in defining a lower fidelity structural analysis, due to poor
load balancing reasons. In fact, using a wingbox analysis improves the accuracy of the LF
aerostructural infill analyses, also making the weight metamodel — and the design space
exploration — more efficient. Another side benefit is that there is no additional structural
design parameterisation requirements for the LF structural configuration. Similarly to the
aerodynamic MF analyses, a single parameterisation can be used. As such, the problem of
mapping a set of design variables (corresponding to LF structural analysis) to another set
(corresponding to HF structural analysis) is non-existing.

7.2.6 Asymmetric Subspace Optimisation Architecture Formulation

The ASO architecture is well suited to problems where there is poor load balancing between
the disciplines. In this case, the structural analysis is significantly cheaper than any of the
aerodynamic analyses used in this work. Therefore, such a formulation is a promising
route towards more efficient aerostructural design exploration. The key elements behind
this expected efficiency improvement are:

· Better load balancing. Performing a disciplinary optimisation on the structures maximises
the information required to design this discipline, without significant cost increase.

· Reduction of the complexity of the system level optimisation problem. The surrogate
based optimisation framework acting in the system level is more efficient due to the
reduced dimensionality. The initial sampling costs, the metamodelling training costs,
as well as the suboptimisation exploration costs are reduced.
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· The problem of structural optimisation — in this case structural sizing — is efficiently
handled by specifically developed tools. In particular, the structural sizing is per-
formed by a dedicated and well validated Nastran SOL200 process that uses gradient
based methods, converging to a local optimum in a few iterations even for complex
sizing problems.

· The structural integrity constraint is handled directly within the disciplinary optimisa-
tion process. Hence, a surrogate model for the KS function is no longer required,
decreasing the training costs even more.

· Improvement of the synergy between aerodynamic and structures. Given a more effective
way to design the wingbox structure, the expected weight decrease is more signifi-
cant. Implicitly, the aerodynamic performance is improved since the lift required to
support the aircraft weight is also decreased, minimising the wave and induced drag
components.

The procedure followed by ASO architecture to tackle this aerostructural design prob-
lem is described in the XDSM diagram of Fig.7.10. The process is similar to MDF, with
the — easy to implement — change of a structural analysis, to a structural sizing.
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Figure 7.10: XDSM flowchart for ASO formulation of CRM aerostructural optimisation.
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Structural Sizing

The structural sizing is the disciplinary optimisation process for which the structural param-
eters, are the local variables. Therefore, the purpose of the structural sizing is to minimise
the weight of the structure with respect to the local design variables, that is the thickness
of the structural elements. The global variables associated with the wingbox design are
constant during this stage and are driven by the system level optimiser. The process is
described as:

min
xstr∈S

Wstr(xstr)

subject to σ ≥ σy/1.5
(7.2.8)

In Eq.7.2.8, S is the structural design space where S ⊂ D, where D is the design space
of both the global and structural variables. The Von-Mises stresses σ should be lower than
the yield stress σy divided by the safety factor, under a loading corresponding to a 2.5g.

The above procedure is performed by an efficient and dedicated Nastran SOL200 pro-
cess. Therefore, given a specific wingbox shape design (defined by the global variables)
the structural weight is minimised by the appropriate thickness definition of the structural
model shell elements. The SOL200 procedure is using gradient based methods (see Chap-
ter 2) as described in the work of Dababneh [240] and increasing the number of structural
variables does not affect the problem formulation in a negative way; the sizing process
remains cheaper than a aerodynamic analysis. Hence, the structural design variables are
increased. Each variable now corresponds to a different structural element shell thickness
and the structural variables grouping described in the MDF formulation is discarded.

A Note on High Loads Maneuver Structural Analysis

The high-g maneuver loading employed by the structural analysis used within the SOL200
sizing, is simply simulated by using a load factor of 2.5 in the preprocessing stage. More
specifically, the aerodynamic loads of the current Gauss-Seidel iteration are multiplied by
the factor 2.512.

A limitation of the present work is that an aerostructural loop is not performed for the
high loading conditions as done for the cruising loads. That is, following the structural
sizing which results to a deformed wing shape, no additional aerodynamic analyses are
performed to update the loads that would correspond to the high loading maneuver. The

12This is only one of the possible ways of simulating a high maneuver. Another approach would be to
perform an aerodynamic analysis with an angle of attack value that would correspond to a total lift of 2.5
times the cruising lift. This would be consistent with the load factor requirement. However, it would of
course provide a different loads distribution than the method used in this work since the latter is based on
cruising load distribution conditions simply multiplied by the load factor. Although a topic rarely discussed
in the literature, it is of great importance as it has great impact in the optimisation process.
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same limitation holds of course for the MDF formulation, in which a simple additional
aerostructural Gauss-Seidel loop would have been performed using the maneuver loads,
following the aerostructural Gauss-Seidel loop based on cruising loads. The most accurate
method to treat these structural constraints would be to use an additional aerostructural loop
under the maneuver loads which would resulting from a high angle of attack aerodynamic
analysis.

However, this approach essentially doubles the effective analysis cost of this MDO
problem which for the given computational resources and PhD timeframe would prove
prohibitive. Nevertheless, it should be noted that such an accurate constraint function anal-
ysis is expected to increase the inwards shifting of the aerodynamic loads during the high
g conditions due to structural deformation as a means of loads alleviation. Exploiting this
constraints information, the optimisation would be expected to lead towards a design which
during cruising conditions would feature an aerodynamic load distribution closer to the el-
liptic one.

7.2.7 Aerostructural loop: Mapping the Aero Loads and Structural
Displacements

The interdisciplinary communication between the aerodynamic and structural grid topolo-
gies in this loosely coupled analysis is being carried out with python scripts acting through
the CAE software ANSA [241]. These scripts guide the mapping of the aerodynamic loads
from the aerodynamic grid to the structural one. This load transfer is split into two stages;
mapping the pressure loads corresponding to the wingbox skin and mapping the rest of the
loads, associated with aerodynamic surfaces for which no structural elements are present,
such as the Leading Edge (LE) and Trailing Edge (TE) region. The pressure distribution
is interpolated between the two sets of grids using an RBF based method [178]. For the
LE and TE surfaces, the pressure loads are integrated so that a single resultant force acting
on the respective center of pressure is defined out of each surface. This force is connected
with the corresponding structural beam elements using RBE3 elements. For better accu-
racy, the LE and TE surfaces are discretised into three subsurfaces each associated with its
own forces and RBE3 elements, as shown in Fig.7.11.
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Figure 7.11: Aerodynamic loads mapping on the CRM datum. Pressure loads are interpolated with
RBF functions while the forces generated near non-structural surfaces (LE/TE) are transferred to
the beams using RBE3 elements.

During every MDA loop iteration, the structural displacements of the skin nodes should
be transferred to the nodes of the aerodynamic surface mesh. In this loosely coupled ap-
proach, these displacements are mapped directly on the jig shape aerodynamic model. This
is because the structural deformation is defined in an absolute manner, as a difference be-
tween the aerodynamically loaded and the jig shape [206]. The node displacements are
passed to the aerodynamic surface nodes using RBF functions similar to Rendall and Al-
lend’s unified method [179]. Following the deformation of the aerodynamic surface, the
aerodynamic volume mesh should also be deformed. This is performed again using an
RBF method like the one described in the work by A. de Boer et al. [47].

7.3 Multidisciplinary Feasible Architecture Results

7.3.1 Sensitivity in Constraint Models

The MF EI methodology is very effective in exploring the design space and finding dom-
inant designs. A concurrent drag and wingbox structural weight minimisation is achieved
in the first iterations, directly after the sampling process, since the effect of the global vari-
ables and the disciplinary ones (structural element thickness) to the objective functions is
significant. However, the existence of the constraints — primarily Range and cruising con-
strains — complicates the problem, making the convergence sensitive to the accuracy of
the respective surrogate models as it is discussed. The modal constraint is satisfied almost
everywhere in the design space, while the structural integrity constraint is smooth, allowing
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a reasonably accurate surrogate model prediction13. Therefore, both of these constraints are
satisfied in every infill design point even when cheap RBF models are used for them. How-
ever, the same is not true for cruising and range constraints which are very challenging.
Range is used as a more "design-related" alternative to an internal volume constraint as it
includes the effect of fuel weight, structural weight and the aero performance of the design
at the same time. The dependency on these quantities make range highly nonlinear and
multimodal, creating "islands of feasibility" within the design space. In a similar fashion,
the cruising constraint space is filled with sparse regions of feasibility.

A scheme with inherent exploration attributes requires a number of iterations before
feasible and promising solutions are identified in a high dimensional space. This prob-
lem is only intensified by the dependency on the surrogate models, which for a given
computational budget cannot be sufficiently accurate. The initial iterations only improve
the accuracy of the surrogates near the, already identified from sampling, feasible space
boundaries. Securing a pareto front convergence becomes even more challenging when
the penalty method is used to handle the constraints14, especially when it is based on RBF
models. The high dimensionality of this problem makes cheap RBF models generally in-
accurate, with the trim of shape parameters of the function and function correction, θ and
θe respectively, critical for the success of the optimisation process. When θ and θe become
lower than a certain value, the models are so flat that information from the sparse sampling
is diffused in the extrapolating regions of the design space. This creates fictitious promising
points, steering the suboptimisation process into false sampling points in the bounds. This
prevents the improvement of the knowledge of the actual promising design space regions,
stalling the optimisation process completely.

In an exploitation based approach however, such as a trust region based framework
[200], the whole process is initiated from the area near the datum point in which the con-
straint is satisfied, and its value is known locally, even cheap RBF models could be used.
Therefore, the convergence of the problem simply follows the objective function reduction
path until the constraint boundary is reached. However, such an approach would not sat-
isfy the exploration requirements specified for conceptual design studies, set prior to the
development of our methodology as well as requiring a prohibitive number of LF analyses.

Another factor having an impact on the observed problem of satisfying these constraints
is the correlation between them, through lift and structural weight. Low drag and low
weight configurations are identified through the appropriate values of the global variables
(shape parameters) which have a significant impact on these quantities15. This translates to
a reduction of the wing’s thickness/volume which reduces both drag and structural weight
at the same time (for given wingbox structural elements’ thickness). However, this also

13Of course in a high dimensional SBO problem, where computational costs constraint the number of the
available training data, by "accurate" we mean that the metamodels predict the correct trends.

14For more information on the convergence behaviour of penalty and feasibility methods, see Kontogiannis
et al. [213].

15The shape parameters have a direct effect in wave drag as well as the structural weight since they control
the size of the wingbox elements (but not their thickness).
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results to a decrease of the internal volume and the corresponding fuel mass. As such,
a higher aerodynamic efficiency is required to maintain the constrained value of Range.
Given a lower drag value however, whether or not the L/D value will increase depends on
the decrease of weight as well, since lift is trying to match the aircraft gross weight through
the cruising condition constraint L = W. Therefore, improving the L = W constraint
surrogate model accuracy is critical before the range constraint is satisfied. In the failure
of satisfying this constraint in the infill sampling, as in the case of penalty methods in
Fig.7.13, the optimisation is steered to very low weight configurations which are easy to
locate. However, due to low L = W model accuracy, lift is almost always lower than the
aircraft weight and as a result, L/D is reduced leading to non-satisfying range performance.

To tackle the above challenges, it is necessary to use the feasibility method to satisfy the
constraints, as it has proven to be more conservative. Furthermore, equally important is the
fact that in this method, Kriging has to be used to model for the constraints. As explained
earlier, the process is sensitive to θe, and as such Kriging is also preferred for modelling
of the LF tool error for all objective functions and constraints. This has proven to be an
efficient way to deal with the problem of the fictitious promising points in the extrapolating
region. The additional computational cost requirements for training these Kriging models
is fully justified by the optimisation convergence gains. Furthermore, since the points to
which LF error is defined is only a small subset of the LF training points set, the respective
training costs are very small compared to the training costs of the LF function estimators.

7.3.2 Pareto Front Results

The feasibility method, being a more conservative approach, leads to feasible infill points
which of course have significantly higher structural weight values than the infeasible ones
predicted by the penalty method — not showing here for clarity reasons.

The obvious solution to the problem described, would be to use a single objective for-
mulation with Range as an objective function. Although an efficient approach, this does
not provide the objective space exploration desired for a conceptual study to which this
is aiming. This is achieved by a multiobjective formulation. We require a wide solutions
spectrum to provide high fidelity information for various design directions early in the de-
sign space. As such, the various design possibilities are known to the engineer for given
performance requirements. Fig.7.12, shows the design directions in this MO problem and
the qualitative effect on the range.
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Figure 7.12: The satisfaction of the range constraint can be achieved through a more efficient
aerodynamic design, a more efficient structural design or a tradeoff between both.

In Fig.7.13, it is shown that points that dominate the datum do not necessarily translate
into a range increase. The inverse can be also true. Pareto front points can even lead to
reduction of range. This shows how the problem can be tailored to the design needs. High
aerodynamic performance configuration with poor structural design — and the inverse —
do not provide a unique range performance trend. This is a direct result and demonstration
of the increased effect that L/D has on range, based on Breguet equation. The impact of the
structural weight is lower, and a significant increase of the fuel tank volume with concurrent
thickness element reduction should be achieved to provide similar range values16.

16The comparison between the impact of aerodynamic performance and structural weight is also observable
through a parallel coordinates analysis that has been observed. Here it is omitted, as the dimensionality and
the number of design points make visualisation very difficult.
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Figure 7.13: Pareto front comparison between the HF and the MF methods, using "feasibility" to
handle the constraints for the MDF formulation. Balance is required between aerodynamic and
structural performance. A very efficient structural design leading to low aerodynamic performance
will not improve range. Aerodynamic efficiency is more important in that aspect. Even dominated
points can provide higher range than high drag pareto points.

Following the observations above, a pareto front composed of drag and structural weight
objectives can be generated even through a single objective setup, via range optimisation.
However, the exploration associated with such an optimisation formulation is limited and
does not cover our needs.

Comparing the MF EI method with the established HF EI approach, it is fairly evi-
dent that the former is much more efficient in all aspects. It provides a pareto front that
dominates the HF one both in terms of value as well as in terms of exploration, with sim-
ilar computational costs. The hypervolume convergence study shown in Fig.7.14 verifies
the superiority of the MF method throughout the whole optimisation process. An interest-
ing observation is that the new configurations are associated with slightly higher structural
weight than the ones from MF EI. Despite the drag and weight improvement compared to
datum, the L/D decrease of these points — combined with decreased fuel mass — lead to
the decrease of the range. Out of the points that do increase the range, a single dominant
point is identified. The conclusion that can be drawn by this comparison is that by not aug-
menting our data by using cheap LF analyses, a lot of useful information is lost. Therefore,
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extra HF calls are required to recover it, increasing the final computational expenses to at-
tain similar results. Finally, it should be clearly stated that the reason behind the success of
the MF method is the ability of the LF tool to follow the trends of the HF one. As such, the
cheap LF data are efficiently exploited, providing information that would otherwise require
costly HF analyses.

Figure 7.14: Comparison of the HF and MF pareto front convergence via the hypervolume indicator
for the MDF formulation.

Despite these encouraging results, the effect of constraints in actual industrial practice
should not be neglected. In particular, equality constraints — in the form of L = W —
are challenging to satisfy and the accepted tolerance strongly depends on the design stage.
In this work, all the presented results were of course within the predefined tolerance, with
constraint being satisfied by the optimisation framework. However, some were satisfying
the equality constraint more accurately than others. There is a consequent effect on the
objective function values as follows: a configuration that has L < W is more likely to have
less drag than another for which L = W, despite both being accepted as feasible cases in
the scope of the study17. The design engineer applying any optimisation tool — not just
this one of course — should be well aware of this potentially deceiving area, define the

17This has been also observed in the ASO formulation results where the structural weight is decreased by
the structural sizing process.
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(a) Datum, max Von Mises stress: 221 MPa (b) Minimum Drag design, max Von Mises stress:
190 MPa

(c) Compromise design, max Von Mises stress: 207
MPa

(d) Minimum Weight design, max Von Mises stress:
241 MPa

Figure 7.15: Maximum Von Mises stress in the rib-shear webs assembly during high g maneuvers,
MDF formulation.

tolerance according to his needs and of course always be careful while interpreting the
results, using his own physical understanding and experience.

7.3.3 Physical interpretation

The physics behind the structural and aerodynamic performance of the MF resulting con-
figurations, can provide information to the engineers, to support further design stages. The
stiffness of the wing is qualitatively provided through contour plots of vertical displace-
ments from the high loading maneuver. Von Mises stresses distributions are displayed
in Figs.7.15,7.16 providing a visualisation of how the structural elements take the loads.
They also imply a qualitative view on the structural design performance which is very
much dependent on local section moments of inertia, which in turn is partly dependent on
the airfoil thickness distribution. The latter, which also affects the total mass of the fuel, is
more clearly shown in Fig.7.20 in which the airfoil shapes of the various wing designs are
compared in different locations across the span.

In Fig.7.15.b, it is shown that the minimum drag design is associated with lower stresses
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(a) Datum, max Von Mises stress: 293 MPa (b) Minimum Drag design, max Von Mises stress:
244 MPa

(c) Compromise design, max Von Mises stress: 287
MPa

(d) Minimum Weight design, max Von Mises stress:
322 MPa

Figure 7.16: Maximum Von Mises stress in the skins assembly during high g maneuvers, MDF
formulation.
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(a) Datum, max displacement: 3.95 m (b) Minimum Drag design, max displacement: 3.37
m

(c) Compromise design, max displacement: 3.64 m (d) Minimum Weight design, max displacement:
4.35 m

Figure 7.17: Maximum vertical displacements during high g maneuvers, MDF formulation.

as well. This shows how the internal structure is far from optimum. It is the heaviest one,
due to this over-conservative design which is also apparent in Fig.7.18.b and Table 7.6,
through the increased thickness of its structural elements. This also leads to a more stiff
design as shown in Fig.7.17.b, which is also an important factor into keeping aerodynamic
efficiency high. The minimum weight design on the other hand, displays an opposite design
direction. It features the highest stresses, showing how the structural integrity constraints
were efficiently exploited for this design. A reduction of the skin thickness is shown in
Fig.7.18.d. This design approach provides the most flexible out of the pareto front wings,
reaching a tip vertical displacement of 4.35m. This is translated to an inferior aerodynamic
performance. The compromise configuration offers a mean between the two design ap-
proaches. It is slightly stiffer than the datum, with the maximum stress and displacements
being decreased compared to it. This structural deformation reduction — in conjunction
with a moderately improved aerodynamic shape — is the foundation behind the superiority
of its the aerodynamic performance and range increase.

Following the contours of skin thickness distribution in Fig.7.18, all the element thick-
ness values are provided in Table 7.6. It can be observed how as a general trend the thick-
ness is reduced towards the wingtip18 since the bending moment is increased towards the

18Variable groups "1" correspond to the root while variable groups "6"/"7" correspond to the tip.
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(a) Datum (b) Minimum Drag design

(c) Compromise design (d) Minimum Weight design

Figure 7.18: Skin thickness distribution, MDF formulation.

wing root. Therefore, in order to keep the stresses almost constant (close to their maximum
allowed value), an increase in the structural element thickness increases the second mo-
ment of inertia of the structural cross section for the given geometry and topology (given
wingbox design). What is of interest is also the existence of a region near the yehudi
break (group 2 and 3) in which the structural thickness is maximised. It is in fact this re-
gion where the structural loading is maximised and not the wing root area, leading to the
aforementioned increase in thickness. This is only apparent in the skin thickness however,
since the internal structural elements (ribs, spars, shear webs) all decrease their thickness
consistently towards the tip.
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Table 7.6: Shell Elements Thickness (mm) - MDF Architecture

Datum Min Drag Tradeoff Min Weight
Upper Skin 1 12.5 12.57 12.15 9.94
Upper Skin 2 10.5 10.55 10.21 8.35
Upper Skin 3 14.5 13.22 13.93 11.03
Upper Skin 4 10.44 9.51 10.03 7.94
Upper Skin 5 9.5 8.14 11.52 5.91
Upper Skin 6 6.175 5.29 7.49 3.84
Lower Skin 1 12.5 12.57 12.15 9.94
Lower Skin 2 10.5 10.55 10.21 8.35
Lower Skin 3 14.5 13.22 13.93 11.03
Lower Skin 4 10.44 9.51 10.03 7.94
Lower Skin 5 9.5 8.14 11.52 5.91
Lower Skin 6 6.175 5.29 7.49 3.84
Rib 1 6.35 6.37 6.32 5.73
Rib 2 5.33 5.35 5.31 4.81
Rib 3 4.57 4.47 4.31 3.96
Rib 4 3.29 3.22 3.1 2.85
Rib 5 2.54 2.51 2.34 2.29
Rib 6 1.65 1.63 1.52 1.49
Rib 7 1 1.13 1.19 0.92
Spars/Shear Webs 1 19.05 19.65 17.15 17.08
Spars/Shear Webs 2 15.24 15.72 13.72 13.66
Spars/Shear Webs 3 10.27 10.15 10.15 9.95
Spars/Shear Webs 4 9.52 9.41 9.41 9.22
Spars/Shear Webs 5 5.08 5.38 4.63 5.12
Spars/Shear Webs 6 2.54 2.69 2.31 2.56
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Fig.7.19 provides an insight on the aerodynamic behaviour of these configurations. It
is evident that the minimum drag design as well as the compromise design, improve their
aerodynamic efficiency by reducing the effect of wave drag. With the exception of the
mid-span region which is not efficiently designed, other areas of the wing clearly show
that the strong shock found in the upper surface of the datum design is attenuated. This
achieved by a better design of the LE section of the airfoils, as also show in Fig.7.20. As
such, the pressure in the suction region is decreased in a more gradual way as it should in
a transonic design, with the sudden pressure recovery ∆p decreasing even when the shock
occurs earlier. It also comes as no surprise that the lower section is altered towards the TE,
which is another focus of the traditional supercritical airfoil design. The different vertical as
well torsional displacements are evident here as well. For completeness, it should be stated
that the different thickness distribution, apart from its impact on local bending and torsional
stiffness of the wing (through moment of inertia), of course affects the fuel tank volume as
well. Despite the availability of such information, this cannot be properly visualised here
however, since the spar web positions and a three dimensional representation is preferred.

Figure 7.19: Pressure distribution of the datum, minimum drag, minimum weight and compromise
design in different locations across the span, MDF formulation.
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Figure 7.20: Wing sections of the datum, minimum drag, minimum weight and compromise design
in different locations across the span, MDF formulation.

The changes in (jig) sweep for all configurations (datum, minimum drag, compromise,
minimum weight) are listed in Fig.7.21. This figure also provides information regarding
the pressure distribution for all planforms, complimentary to what has been described in
Fig.7.19. Despite the limited bounds of the sweep variable, it is evident that the compro-
mise and minimum drag designs tend to slightly increase the sweep in favour of aerody-
namic efficiency. On the other hand, the minimum weight design almost minimises the
sweep-related variable.

By the above analysis it was evident that the performance of each discipline correlates
to the other and only when a good synergy is identified the performance can be further
improved. In this MO MDO study, efficient design space exploration provided a pareto
set of designs. The fact that the optimum performance, in terms of range in this case, was
achieved by the compromise point and not by any disciplinary optimum point was not a
surprise. It clearly shows and supports the necessity of MDO studies for more efficient
future aircraft.
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(a) Datum - sweep:35 deg (b) Minimum Drag design - sweep:35.33 deg

(c) Compromise design - sweep:35.43 deg (d) Minimum Weight design - sweep:33.81 deg

Figure 7.21: Pressure distributions - Planform view and sweep angle, MDF formulation.
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7.4 Asymmetric Subspace Optimisation Architecture Re-
sults

With the potential benefits of this particular architecture described in Chapter 2 as well as
in section 7.2.6, evidently the step to follow an MDF-based aerostructural design should
be an ASO-based one. This provides not only an opportunity to assess how the optimisa-
tion framework performs in the system level of a distributed architecture-based industrial
aerostructural problem, but also how the problem itself adapts to this MDO formulation.
This section follows a structure similar to the MDF-one. The final pareto front results for
a given computational budget are presented, focusing on the comparison between an HF
and an MF-based framework. The results are also discussed in a physics basis for three
different design directions: minimum drag, compromise and minimum weight design.

7.4.1 Pareto Front Results

Similarly to the MDF case in which the RBF-based penalty method failed, the problem’s
constraints were handled with the Feasibility method which requires the more accurate —
but more expensive — MF modKriging models instead. However, the reduced dimension-
ality of the system level in the ASO formulation triggered the idea that the RBF-based error
correction would be efficient, as it was proven to be in the less complicated test cases. This
could potentially provide cost savings over the Kriging-based error correction which in the
MDF case was necessary since RBF was not accurate enough.

Unfortunately, despite the successful predictions of the design trends which lead to ef-
ficient designs, the RBF error correction model could not accurately approximate the con-
straints of the problem. Particularly, the cruising constraint (L = W) was almost never sat-
isfied during the optimisation process. A part of the problem does not only lie to the limited
accuracy of RBF models, but also to the challenging nature of this constraint specifically
within the ASO formulation.

It should be reminded that structural weight is sensitive to the structural sizing, that is,
it is significantly dependent to the local variables. Therefore, with the surrogate models be-
ing trained in the system level, the effect of the local variables is not directly implemented
in them and the metamodels lose sensitivity to the structural variables. The cruising con-
straint metamodel predictor y correlates L −W with the global variables (wingbox design),
y : y(Wstr) = y

(
Wstr(x0)

)
. However, a part of the physical mechanism responsible for the

structural weight value is expressed by the local variables, y : y(Wstr) = y
(
Wstr(x0, xstr)

)
.

Thelack of the explicit description of the effect that the local variables have in the constraint
metamodel, raises an implicit mapping between the global and the local variables when es-
timating the cruising condition. This is because a global variables set corresponds to a local
one in a deterministic way, through the gradient based structural sizing process. That is,
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x0 → xstr; which makes the model y : y(Wstr) = y
(
Wstr(x0(xstr)

))
. To put it more simply19,

the constraint metamodel only sees the effect of the structural variables implicitly and not
directly because local variables are not used in the training process. As shown from their
results in Fig.7.22 however, the Kriging-based error correction and the HF EI method were
more successful in handling this challenging situation.

The same figure also provides a comparison between the HF and MF expected improve-
ment approaches within the ASO formulation. While having a similar computational cost,
the pareto front designs of the MF method dominate most of the ones predicted by the HF
approach. The latter has an advantage over the MF approach in the low weight objective
space. Also, in a manner consistent to all the cases examined so far, it succeeds in pro-
viding more pareto points. Nevertheless, the extent of both pareto fronts are very similar,
with MF dominating in the low drag objective space. What is also of interest is how both
methods propose configurations of similar structural weight. This suggests the existence of
(at least) three strong local minima in the structural weight design space, forming three (at
least) efficient design trends.

Interestingly, a reduction in the aerodynamic performance is observed when moving
from the HF set towards the dominant points of the MF pareto front. This shows that
interdisciplinary synergy is achieved through disciplinary tradeoff; pareto front sets are
generated when none of the conflicting disciplines is optimised. This implicitly stresses
the importance of an efficient structural design which should not be overlooked in favour
of aerodynamics. It is evident that once again — as in the MDF case — the maximum
performance in terms of range occurs in the tradeoff pareto point, which helps to under-
line the importance of multidisciplinary interactions-driven design processes20. Also, since
the range achieved by the MF and the HF tradeoff point are almost identical, the effect
of interdisciplinary synergy on the design trends is once again obvious. The MF design
achieves the same range performance, but with a lower drag value resulting from lower lift
requirements, which in turn are the result of a slightly lower structural weight.

However, the fact that the maximum feasible range is not a found in any of the pareto
points — as in the MDF case — indicates that a parametric study and applications of other
potential objective functions would be very useful for the design engineer, depending on his
needs. In addition to this however, it shows the great effect that the wingbox design has on
the range, through fuel tank design. Perhaps it is not explicitly referred in this PhD thesis,
but this MDO study is in reality a case of three disciplines. While the aerodynamic surface
and the structural wingbox are designed by the global variables in the system level, the
fuel systems discipline is provided with a fuel tank design (tank volume) — which clearly
affects the objective functions.

19This was indeed quite complicated.
20Implicitly, a range optimisation is a tradeoff between aerodynamics and structures.
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Figure 7.22: Pareto front comparison between the HF and the MF methods, using "feasibility"
to handle the constraints for the ASO formulation. As in MDF, a tradeoff is required between
aerodynamics and structures to achieve range performance.

The MF method shows a lack of robustness and consistency in terms of being com-
pletely superior to the HF one, especially in such complicated multiobjective problems.
This non-definite performance against the HF SBO approach was also observed in the
RAE2822/GARTEUR applications, when the work progressed from the single objective
to multiobjective cases. Therefore, the hypervolume indicator is once again employed in
order to provide information regarding the evolution of the HF and MF pareto fronts. This
is shown in Fig.7.23.
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Figure 7.23: Comparison of the HF and MF pareto front convergence via the hypervolume indicator
for the ASO formulation.

Evidently, the MF method shows superior characteristics over the HF one in the begin-
ning of the optimisation process. Such an attribute was also observed in the single objective
applications of the RAE2822 test case. Another common characteristic with these test cases
is that the MF approach features convergence plateaus which are more extended than the
ones of the HF method. The plateaus towards the end of the optimisation process suggest
that the HF EI could be more efficient following that point on in the process. As such, the
benefits of an MF methodology have been conclusively proven only in the early stage of
the process. Such an observation is consistent with the typical design process workflow,
which uses LF tools early in the design and HF tools afterwards.

As a final note in this section, the cost of the LF tool should not be neglected as a
consideration when assessing any MF methodologies. In this particular case, the cost of the
LF analysis never exceeded a 1/3 of the HF one, and the exploitation of performing LF and
HF analyses on parallel allowed an almost identical elapsed time cost between the HF and
the MF approach. However, if the need for LF data is increased, such a MF methodology
will gradually become more expensive compared to an HF one. Finally, considering that
the LF tool used in this work is accurate and robust (being an Euler CFD/SOL101-SOL200
analysis loop), only a tool of similar accuracy and robustness but of lower cost would be
able to improve the presented results in terms of multifidelity efficiency.
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(a) Datum, max Von Mises stress: 315 MPa (b) Minimum Drag design, max Von Mises stress:
319 MPa

(c) Compromise design, max Von Mises stress: 319
MPa

(d) Minimum Weight design, max Von Mises stress:
316 MPa

Figure 7.24: Maximum Von Mises stress in the rib-shear webs assembly during high g maneuvers,
ASO formulation.

7.4.2 Physical Interpretation

As for the MDF architecture, the physical and design characteristics of the pareto configu-
rations are discussed since they represent to the information that would be exploited by the
design engineers. Therefore, the structural stiffness and the structural design efficiency of
the minimum drag, compromise and minimum weight design are examined based on the
vertical displacements and Von Mises stress distribution respectively.

Figs.7.24,7.25 display the Von Mises stresses in the structural elements of the datum
and pareto configurations. Since in ASO each aerodynamic analysis (loads calculation) is
followed by a structural sizing, then for each wingbox design — controlled by the global
variables — the structural design is optimised. The structural design is most efficient when
it leads to the maximum allowed stress that provides the minimum structural weight [237].
Consequently, it is evident that in ASO where the elements are sized, the maximum stress
is common to all wingbox designs regardless of the corresponding design direction (be it
minimum drag or minimum weight). Contrariwise to the MDF cases, this maximum stress
is constant throughout the skin and is of course the maximum yield stress allowed based on
the defined safety factor, showing the efficiency of the structural sizing process.
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(a) Datum, max Von Mises stress: 315 MPa (b) Minimum Drag design, max Von Mises stress:
319 MPa

(c) Compromise design, max Von Mises stress: 319
MPa

(d) Minimum Weight design, max Von Mises stress:
316 MPa

Figure 7.25: Maximum Von Mises stress in the skins assembly during high g maneuvers, ASO
formulation.
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(a) Datum, max displacement: 5.2 m (b) Minimum Drag design, max displacement: 5.1
m

(c) Compromise design, max displacement: 4.9 m (d) Minimum Weight design, max displacement: 4.9
m

Figure 7.26: Maximum vertical displacements during high g maneuvers, ASO formulation.

The stiffness characteristics of the wingbox configuration is dependent to an extend on
the thickness of the structural elements. Therefore, since structural thickness is optimised
for all the configurations, the vertical displacements during a 2.5g maneuver are similar
in all the design approaches (as shown in Fig.7.26). This is in direct comparison with the
MDF-based results where the structural thickness design was not as efficient for all the
pareto configurations — with this structural optimisation inefficiency contributing to the
design being either aerodynamics or structural oriented. That is, the "design philosophy"
was not completely de-associated from local structural variables.

With the ASO formulation involving a higher structural sizing efficiency, all design
directions have the minimum allowed structural element thickness and the design direction
is now mainly a result of the global variables21, that is the system level optimiser. These
control the Outer Mold Line (aerodynamic performance) and the wingbox shape (fuel tanks
volume and structural mass)22.

21Of course the local variables have an effect as well since the potential of thickness/weight reduction
during the structural sizing is not constant throughout the system level design space.

22In reality, the local variables (structural element thickness) also affect the fuel tank volume, but this is
neglected since within SOL200 shell elements are not associated with a physical volume. Nevertheless, the
volume difference is not significant.
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(a) Datum (b) Minimum Drag design

(c) Compromise design (d) Minimum Weight design

Figure 7.27: Skin thickness distribution, ASO formulation.

A factor which implicitly helps to reduce the structural weight in ASO formulated prob-
lems is the dimensionality increase of the structural disciplinary optimisation. The use of
a dedicated gradient based optimisation like SOL200 allows a more detailed description of
the structural sizing problem. Therefore, higher weight savings can be achieved without
important adverse effects like cost increase.

Fig.7.27 and table 7.7, report the thickness of all structural elements of each pareto
configuration. The same observations on the thickness reduction towards the tip as well as
the local thickness increase near the yehudi break are drawn; similarly to the MDF case.
Again, the yehudi break is the most critical region, guiding the structural sizing process to
slightly higher local thickness values than in the actual wing root. Interestingly enough,
the skin panel elements are designed thicker in the ASO than in the MDF formulation.
Since the structural sizing is undoubtedly more efficient than the MDF structural design, it
is not hard to follow the physical reasoning behind this. The way the structural problem is
formulated (as described early in this chapter), the skin panels function implicitly as spar
caps as well, providing "effective spar cap area". Therefore, the second moment of inertia
is maximised, in order for the Von Mises stress constraints to be met. In turn, not critical
regions like shear webs that are closer to the neutral axis, are significantly thinner. The same
also holds for the ribs, which do not have to be as thick as the skin and the front/rear spars
— the latter (skins and front/rear spars) also taking the torsional loads. This detailed and
more effective structural design is the key advantage of the ASO over the MDF formulation.
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Table 7.7: Shell Elements Thickness (mm) - ASO Architecture

Datum Min Drag Tradeoff Min Weight
Upper Skin 1 18.47 16.18 13.24 15.02
Upper Skin 2 15.82 13.94 11.06 11.97
Upper Skin 3 13.66 11.36 7.41 7.70
Upper Skin 4 10.78 8.61 5.75 6.72
Upper Skin 5 5.34 4.10 2.63 3.26
Upper Skin 6 2.19 1.50 1.50 1.50
Lower Skin 1 17.45 14.80 11.91 13.20
Lower Skin 2 17.24 15.35 11.98 13.27
Lower Skin 3 14.23 11.83 7.69 8.12
Lower Skin 4 11.18 9.04 6.03 7.01
Lower Skin 5 5.63 4.31 2.65 3.53
Lower Skin 6 1.00 0.79 0.61 0.60
Rib 1 3.30 3.19 2.97 2.87
Rib 2 5.15 5.39 5.54 5.74
Rib 3 6.37 4.81 1.50 2.71
Rib 4 3.80 1.96 1.50 1.50
Rib 5 1.26 0.89 0.62 0.65
Rib 6 0.66 0.58 0.50 0.50
Rib 7 0.71 0.50 1.24 0.58
Front Spar 1 12.87 11.61 12.83 11.49
Front Spar 2 16.49 13.06 14.47 11.15
Front Spar 3 10.10 9.44 9.45 8.09
Front Spar 4 9.33 8.49 9.00 6.12
Front Spar 5 6.65 3.49 2.50 2.99
Front Spar 6 1.50 1.60 1.71 1.76
Rear Spar 1 11.01 11.16 17.30 15.27
Rear Spar 2 11.57 6.09 5.58 7.60
Rear Spar 3 10.41 9.67 11.30 10.43
Rear Spar 4 9.55 8.94 3.60 3.08
Rear Spar 5 4.02 3.71 2.63 3.26
Rear Spar 6 2.23 2.33 1.82 1.65
Shear Webs 1 5.79 6.42 7.42 5.50
Shear Webs 2 6.20 5.50 6.19 6.56
Shear Webs 3 5.50 5.50 5.50 5.50
Shear Webs 4 3.68 3.79 3.67 2.71
Shear Webs 5 2.50 2.50 2.50 2.50
Shear Webs 6 1.53 1.50 1.50 1.50
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Figs.7.28,7.29 display the aerodynamic characteristics of the pareto configurations. As
in the MDF case, efficiency in transonic shape design is primarily the result of trimming
the upper surface so that suction peak is slowly achieved, reducing wave drag losses. The
lower (pressure side) is similar for all the configurations, corresponding to typical super-
critical shape which is maintained especially towards the outer part of the span. In fact, as
it can be seen from Figs.7.28.d,7.29.d, any aerodynamic performance inefficiencies such
as the strong suction peak in the lower section (particularly in the compromise and min-
imum weight designs), are due to the structural deformation (especially torsional) which
increases the washout accelerating the flow locally in the lower leading edge section and not
the airfoil shape itself. The torsional deformation of the ASO formulation (7.29.d) is higher
than the MDF-based one (7.20.d), which follows the previous discussion on how the MDF
configurations were stiffer than the ASO ones. It is also evident, that even the minimum
weight configuration has a reasonably efficient airfoil shape (something not observed in the
MDF formulation), with the resulting Cp distribution not involving strong shock waves.
Furthermore, the decrease of the system level dimensionality associated with ASO, proved
beneficial for the aerodynamics discipline, with the surrogate based framework now being
more efficient in designing the aerodynamic surfaces. All the configurations offer a similar
upper section — particularly near the root which is less affected by structural displacements
(7.29.a) — as the optimisation framework has identified the main drag reduction mecha-
nism. The pressure is decreased gradually until it reaches the critical Cp value followed by
a shock wave of reduced intensity. This is not the case however for the compromise and
minimum weight design which still experience strong shocks in the inner span. Neverthe-
less, the outer span is more efficiently designed, with the compromise configuration sharing
an almost identical upper section Cp distribution with the minimum drag configuration.
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Figure 7.28: Pressure distribution of the datum, minimum drag, minimum weight and compromise
design in different locations across the span, ASO formulation.

Despite the configurations being structurally sized on a 2.5g maneuver and displaying
similar vertical displacements in these conditions, their corresponding bending deforma-
tions during cruising conditions are different. The trend observed under cruise loading is
the same as the one observed in the MDF formulation, in which the minimum drag con-
figuration was the stiffest with the minimum weight design experiencing the maximum
displacements. This suggests that the structural behaviour in conditions far from the ones
for which the structures were sized, is dependent more on the global variables than the local
ones (wingbox rather than elements’ thickness). If formulated in optimisation terms, the
above states that the global variables (through system level) are exploring the multiobjec-
tive problem, while the local variables are important for the satisfaction of the (structural)
constraints. This is why during the cruise conditions that provide the objective function val-
ues, the proposed system level optimisation framework behaves as expected and described
in Chapters 3-6, confirming its multiobjective exploration attributes (as in the MDF case).
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Figure 7.29: Wing sections of the datum, minimum drag, minimum weight and compromise design
in different locations across the span, ASO formulation.

Similarly to the MDF case, the (jig) sweep for all configurations (datum, minimum
drag, compromise, minimum weight) are provided in Fig.7.30, accompanied by surface
pressure distribution. In this particular formulation case — being characterised by the
limited number of system level variables — the sweep in all pareto front configurations is
almost identical to the one in the datum design. That is particularly true in the minimum
drag and compromise design, with the minimum weight configuration once showing the
lowest sweep angle.

7.5 Comparison between the Formulations

Although implicitly compared in the previous section, it is helpful to provide further and
more direct comparison between the results of the MDF and ASO formulated problems.
This involves the comparison of the pareto fronts generated, as well as some further physi-
cal insight in the form of the lift distribution.

Regarding the pareto fronts generated by the two architectures, a lack in terms of objec-
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(a) Datum - sweep:35 deg (b) Minimum Drag design - sweep:34.98 deg

(c) Compromise design - sweep:34.86 deg (d) Minimum Weight design - sweep:34.57 deg

Figure 7.30: Pressure distributions - Planform view and sweep angle, ASO formulation.
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tive space exploration is evident in the ASO architecture. This objective space exploration
reduction was observed in the ASO formulation case in Fig.7.22 for both the HF and the
MF formulation. It is attributed to two factors associated with the MDO architecture23:
Firstly, the global variable design space is reduced, with the objective space extent being
consequently decreased. However, more significant is the effect of the structural sizing.
The drastic weight reduction leads to drag savings through beneficial interdisciplinary cou-
pling, which was not exploited in its full potential with the MDF formulation due to the
higher dimensionality — which deteriorates the quality of the surrogate models. There-
fore, the narrower pareto front is a result of a more efficient optimisation formulation. The
pareto front convergence characteristics of the ASO case is qualitatively similar to that of
the MDF, but displaying a greater improvement with respect to its initial value. This is a
result of the reduced dimensionality of the system level in the case of the ASO, making the
metamodels more efficient, while requiring fewer HF analyses during the initial sampling.
It should be noted that since their datum points are not identical (because of the structural
sizing acting also in the datum in the ASO formulation), the curves should be compared
only in a qualitative manner — the actual hypervolume indicator values (shown in Fig.7.32)
being incomparable.

Nevertheless, from Fig.7.31 it is fairly obvious that ASO dominates over MDF in terms
of final values and range performance. What is more interesting however is to take a more
careful look to reveal some details and reasons behind this. First of all, the significant
improvement of ASO over MDF is the structural weight reduction due to the structural
sizing. Furthermore, a small drag decrease is observed in the pareto set of the ASO for-
mulation. This is the result of the reduced dimensionality of the system level optimisation
problem which allows the surrogate based framework to minimise drag more efficiently.
More importantly however, it is due to the interdisciplinary effect between aerodynamics
and structures. With the significant decrease of the weight — through the efficient disci-
plinary optimisation — and the cruise constraint L = W, the required lift is decreased as
well. As a result, the drag generated is also reduced, since lower lift requirements allow
for decreased wave drag (and induced drag as well)24. It should be mentioned though, that
the drag reduction is not sufficient to maintain the same level of L/D as in the MDF cases.
An MDO architecture that would involve aerodynamics disciplinary optimisation might be
able to maintain or even improve L/D levels. Nevertheless, despite the decrease in aerody-
namic efficiency the range is increased due to the structure weight reduction (see Breguet
equation in Eq.7.2.4). Typical range increase is in the range of 6% − 14% between analo-
gous pareto points. This shows the importance of interdisciplinary synergies for an efficient
aircraft design. In addition, the significance of MDO is supported by the fact that in the
ASO results (as in the MDF results), the highest range is achieved by a tradeoff design.
This underlines the findings of the respective literature — as well as this work’s — that to
maximise aircraft performance, the design should not be driven simply by optimising one

23Of course, the multifidelity formulation as well as the surrogate based optimisation plan being an explo-
rative one are also contributing, as discussed in previous chapters. However, here the effect of the architecture
alone is discussed.

24Remember however that airfoil lift is only a part of wave drag "sources", the other being of course the
shape and thickness of the airfoil, controlled by the global variables.
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discipline but by appropriate synergy mechanisms between the disciplines.

Figure 7.31: Comparison between the pareto front generated using the MDF and the ASO formu-
lation.
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Figure 7.32: Comparison between the convergence of pareto front generated using the MDF and
the ASO formulation using the hypervolume indicator.

Another way to view the multidisciplinary design approach and compare it against the
"conventional" aerodynamics-led approach is through spanwise lift distribution. In this
view, the elliptic lift distribution is compared against the distribution used by the tradeoff

design of each MDO approach25. The findings are in agreement with the conclusions of
other researchers [3], since the MDO-based configurations do not use an elliptic lift distri-
bution. In fact, the trend of inwards loads shifting is apparent. Shifting the aerodynamic
loads towards the root allows for a more efficient (lighter) structural design. As shown
by various researchers, as well as in this work (Figs.7.13,7.22), the efficiency of the com-
plete aircraft system (e.g. range) is maximised when both disciplines interact beneficially
and not when one of these is optimised. In this sense, the MDF/ASO lift distributions do
not correspond to an aerodynamic optimum, but the structural gains which they allow (as
explained above) make the overall design superior. In terms of comparison between the
two formulations, it was somewhat expected that ASO — being a more structure-focused
and structurally efficient approach — would point more to this inward load shifting MDO
design direction than MDF. The system level guides the multidisciplinary process in such
inner span loaded designs, so that the disciplinary optimisation (structural sizing) can max-
imise the structure weight reduction, a fact that eventually leads to the superiority of ASO
proposed configurations over the MDF ones.

25The lift distributions are normalised with the maximum sectional lift of each case. Therefore, any con-
sideration or assumptions based on the cases’ total lift should not be made as the distribution is provided in
Fig.7.33 only for a qualitative comparison. Furthermore, the total lift differs between the two MDO cases
because of the different aircraft weight.
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Figure 7.33: Comparison between the normalised lift distribution resulting from the MDF and ASO
formulations and that of the aerodynamic optimum.

7.6 Summary

Representing a typical complex and costly industrial wing design application, the Common
Research Model was used as the multidisciplinary design test case of this chapter. The
purpose of this test case was two-fold: to demonstrate how an effective methodology like
the proposed can be applied for aerostructural design in the conceptual to preliminary stage
and also to assess its performance within an multidisciplinary feasible and an asymmet-
ric subspace optimisation architectures. The problem proved to be very sensitive in the
satisfaction of the challenging range and especially cruising constraints, with cheap radial
basis functions models used with a penalty method not being accurate enough to tackle the
problem. The use of our more expensive but conservative feasibility constraint handling
approach was required as well as the use of a Kriging error correction model. The results
highlight the necessity of interdisciplinary studies and the advantage of multifidelity tools
especially in the early stage of the optimisation process. Unfortunately, the results cannot
provide a conclusive proof as to whether or not the benefits of the multifidelity formula-
tion overcome the ones of the — less complicated — high fidelity formulation. The major
drawbacks include the sensitivity of the method’s performance in the low fidelity tool it-
self, the seemingly superiority of the high fidelity results in the stages that would follow this
optimisation process and the reduced robustness, since the method fails to be consistently
superior in all the test cases examined. Following the study of the impact of the multi-
disciplinary formulation, the asymmetric subspace optimisation architecture was found to
be a noteworthy improvement over the multidisciplinary feasible approach in every aspect.
This was due to the increased efficiency of the — lower dimensionality — system level
optimisation, as well as the significant structural weight reductions achieved through the
structural sizing disciplinary optimisation process.
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C H A P T E R 8

Conclusions and Future Work

There is no trap so deadly as the trap
you set for yourself.

Raymond Chandler

Eventually, the work being conducted is summarised and compared against the aims and
objectives of the thesis as well as the contributions to knowledge as originally presented

in Chapter 1. It also provides a comprehensive summary of the findings of this research,
demonstrating its success in covering the research questions. Finally, some applications
and ideas for further development in the field are suggested. These are concepts relating
to the core of this work that are not implemented in this methodology but would provide
interesting research directions.

8.1 Summary

Following the increasing demand for air travel and the subsequent fuel emissions increase,
strict international environmental regulations and goals have been set highlighting the need
for novel and more efficient aircraft configurations.

Such new design approaches of course have to be supported by reliable and efficient de-
sign tools. One of the novel ways to get a step-like design improvement is multidisciplinary
design. In particular, designing an aircraft wing using no leading discipline — traditionally
aerodynamics served that role — but using a coupling of all the disciplines involved and
their interaction, has shown to attain a better overall performance.

Supporting research needs for a new generation of tools for multidisciplinary design,
this work suggested an optimisation methodology specifically developed for such multi-
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disciplinary applications. More specifically, an effort was put to provide an algorithm
computationally efficient in the conceptual design stage since this is associated with the
development of the much needed novel configurations. Furthermore, early development
stages provide more design freedom so that advantage of the interdisciplinary synergies
can be taken.

Therefore, the optimisation methodology specifications set in the beginning of the PhD
involved:

• Design space exploration attributes appropriate for the conceptual stage

• Maximisation of design feedback to support decision making

• Appropriate multidisciplinary formulation

• Computational efficiency for problems associated with expensive analysis

The above specifications were treated using the following concepts:

Design exploration and cost reduction through surrogate based optimisation: The
expected improvement surrogate based optimisation plan which balances global explo-
ration and exploitation has been used to guide the optimisation process within the method-
ology developed. This approach requires an estimation of the mean squared error of the
surrogate model, which can be provided in gaussian-based metamodels. As such, Kriging
was used.

Cost reduction through multifidelity approach: The reduction of computational cost
was further achieved by using multifidelity data to train the surrogate model. In particu-
lar, since in its standard formulation the ordinary Kriging method cannot exploit data of
variable fidelity, it was decided that it had to be modified accordingly. Co-Kriging was
not used as it was evident from early on in the research that it would be too costly in
realistic industrial applications that involve more objective and constraint functions, also
scaling badly with dimensionality. As a result, a lot of research effort during this PhD
thesis was put into modifying the ordinary Kriging into a multifidelity version of it. This
was achieved by using a gaussian kernel-based Radial Basis Functions or a Kriging error
correction metamodel, also correcting the formulation of the mean squared error, necessary
for the surrogate based optimisation plan.

Maximise design feedback through multiobjective formulation: This optimisation
methodology was formulated in a way that can handle multiobjective problems, so that the
maximum amount of information is provided to the engineer to support decision making.
The infill sampling criterion was specifically defined to reduce cost arising from expen-
sive analysis problems, by promoting parallel infill sampling analyses and the use of the
estimate of the low fidelity tool error.
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Multidisciplinary design optimisation: Ultimately, the developed methodology was
implemented in multidisciplinary architectures, providing an all-inclusive numerical frame-
work for complex multidisciplinary conceptual design optimisation studies.

The challenges met during the development of this tool were tackled by a step by step
development, validation and assessment of the methodology. In other words, the objectives
described in Chapter 1 (reproduced here in italics), were satisfied through the following:

• Use a surrogate based optimisation plan to reduce the analysis-related computa-
tional costs, taking advantage of the low dimensionality of the conceptual design
studies.

This was supported by the use of 1D, 2D and variable dimensionality test functions
which allowed the development and assessment of the surrogate based optimisation
plan and the quantification of the cost reductions.

• Develop a multifidelity method to further decrease computational costs while still
providing high fidelity results that correspond to a preliminary design stage.

The multifidelity plan was developed and tested in multifidelity variations of these
test cases, providing an initial estimate of the cost reduction to be expected.

• Evaluate the effect of the low fidelity analysis tool in the convergence and cost at-
tributes of the developed optimisation methodology.

The effect of the low fidelity tool approach and its respective error, as well as the
constraint handling method used were evaluated in an industrially relevant airfoil
design problem.

• Adjust the methodology into a multiobjective formulation so that it can be used for
design problems that involve conflicting objectives.

• Assess and improve the methodology using a series of analytical and aerospace-
related test cases.

The efficiency of the multiobjective formulation of the developed methodology was
assessed in aerodynamic design problems, with the tool being ultimately exploited in
a multiobjective wing aerostructural design study.

• Embed the method within a greater multidisciplinary design and optimisation formu-
lation and demonstrate the capabilities of the complete multidisciplinary optimisa-
tion methodology in the aerostructural design of a transonic wing configuration.

• Compare and assess the use of different multidisciplinary architectures that are suit-
able for aerostructural optimisation.

The aerostructural design of a transonic wing configuration (common research model)
was used as a demonstrator of the methodology’s capabilities in tackling expensive
problems as well as being effectively combined with state of the art multidisciplinary
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architectures. The efficiency of these architectures specifically for aerostructural de-
sign problems was also examined. In particular, the multidisciplinary feasible and
asymmetric subspace optimisation formulations were used.

8.2 Conclusions

The satisfaction of the original aim and objectives of this PhD work through the above de-
scribed methodology and development process, led to a series of conclusions and thoughts
regarding the scientific topics involved, as well as the attributes of the methodology in par-
ticular. These are probably best described and understood when classified in categories.
Additionally, for the reader’s convenience they follow the course of the objectives, display-
ing how the goal of the PhD has been achieved: a robust and computationally efficient
multidisciplinary design tool has been developed, able to provide a set of design directions
to support early stage decision making towards a new generation of aircraft.

8.2.1 Surrogate Modelling for Multifidelity Optimisation

The modification of the ordinary Kriging model was visually assessed in 1D and 2D cases
to ensure that its behaviour was the one originally intended prior to its development. Indeed,
these test cases show that the modification of the ordinary Kriging into its multifidelity
version succeeds in improving the design space representation in the presence of two levels
of fidelity (see section 4.1.1 and 4.1.2). The local minimum regions associated with the low
fidelity tool in the Branin test function were not present in the modified Kriging’s represent
of the design space. The latter could provide a close approximation of the high fidelity
design space (see Fig. 4.3 and 4.4).

As discussed in detail in Chapter 3, a modification of the mean squared error and the
expected improvement formulation had to be performed, to accommodate multifidelity data
when used with modified Kriging. It was achieved that low fidelity points were no longer
associated with zero expected improvement. The optimisation framework could now visit
areas near low fidelity data, which in cases might prove to be regions of improvements.

The performance of the modified Kriging was assessed using a series of comparisons
against its equivalent, Co-Kriging. In the scalable Rosenbrock problem, the modified Krig-
ing was proven more robust than Co-Kriging. It showed better improvements and the ability
to handle problems of higher dimension than Co-Kriging which failed in cases involving
more than eight design variables. The simple unconstrained aerodynamic design problem
revealed that Co-Kriging was by 3.1% more effective in terms of final results. However,
this approach was significantly more expensive, as well as not efficient in more complicated
and realistic problems like the constrained and multiobjective design cases. In these cases,
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the developed modified Kriging was superior both in terms of objective function reduc-
tion, by 8.4% and pareto front exploration, as well as cost. Cost savings become significant
when the number of required surrogate model increases, as in multiobjective or constrained
cases. Especially when a radial basis function model is used instead of Kriging as an error
correction model in the modified Kriging, the cost improvements are even larger. In these
cases, the cost of the modified Kriging is only marginally higher than that of an ordinary
Kriging but significantly lower than that of Co-Kriging. Overall, it can be concluded that
even for problems involving 16 design variables, the error correction was more efficient
when an radial basis function was used instead of kriging model — if the error space is
smooth — making modified Kriging superior to Co-Kriging.

8.2.2 Multifidelity Tools in Surrogate Based Optimisation Formula-
tion

The performance of the multifidelity approach against the equivalent high fidelity optimi-
sation methodolology was evaluated in all of the examined test cases. Simple — in terms
of dimensionality — test cases like the Branin and the Sellar function showed that equal
function value reduction can be attained, but with a decrease in the required number of high
fidelity analyses. Similar trends were observed in the aerodynamic design test cases. In the
unconstrained formulation, the multifidelity and high fidelity methods shared results of al-
most equal aerodynamic performance, with the proposed multifidelity approach achieving
a reduction of 70% in computational expenses. This pattern was also observed in the con-
strained case with a slightly more moderate cost gains of 50%. In most of the multiobjective
aerodynamic design cases (see Chapter 5 and 6), the multifidelity formulation attained sim-
ilar objective space exploration capabilities with the high fidelity approach, but requiring
a reduced computational budget. The overall gain when using a multifidelity method is
analogous to the analysis cost and was found to be dependent on the complexity of the
problem and whether or not a multiobjective formulation was used. Computational cost
reductions were significant in the unconstrained cases, but were decreased in complicated
multiobjective problems, particularly in aerodynamic shape design.

Despite all the different cases examined throughout this PhD thesis, unfortunately there
is yet to be a conclusive proof that the multifidelity is a universally superior to a high fidelity
approach, especially without the compromise of the quality of the final results in problems
of industrial complexity. It was seen that the multifidelity approach can indeed provide
design improvements earlier in the optimisation study, but the final results are not always
superior to the ones of the high fidelity approach, as the method did not provide consistent
results in all of the test cases examined in this PhD thesis. Furthermore, a superiority of
the method is secured only when the low fidelity tool is cheap, robust and can consistently
predict the trend of the high fidelity tool throughout the design space. If such conditions
are not secured, then the multifidelity approach might provide inferior results since even if
the cost is similar, the pareto front can also be less dense.
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Following this, the effect of the cost and accuracy of the low fidelity tool was investi-
gated. As such, two different low fidelity tools based on partially converged RANS simula-
tions were used as this allowed control over their cost, accuracy and induced randomness.
Furthermore, a reduced physics tool (VGK) was also employed to assess the effect of cost
and consistency of the low fidelity analysis. It was observed that even when a bad low fi-
delity tool is used — that is one that does not share trends similar to the high fidelity tool —
the methodology could still locate design improvements. However, the deliberate random-
ness introduced in the form of a completely unconverged RANS simulation was reducing
the efficiency of the multifidelity optimisation. The error space was no longer smooth and
more high fidelity calls were required to correct the error prediction model. On the other
hand, both partially converged RANS and VGK low fidelity analysis cases were following
the trends of the high fidelity tool in a consistent manner. This was the foundation of the
success of the multifidelity approach.

Furthermore, the importance of the accuracy scope of a low fidelity tool was also re-
vealed, especially in multiobjective design and objective space exploration studies. VGK
being a reduced physics tool offers a narrow operational range and as such when it limits
are exceeded the error correction process becomes more challenging. This translated to a
reduction in the exploration capabilities of the multiobjective multifidelity framework.

Finally, regarding the use of a surrogate based approach in general, it is evident that it
has its own application limitations, the most profound being its use in the conceptual stage
where the design is represented by the few and dominant design variables. Even in this
conceptual stage however, the need for consistent low fidelity and high fidelity tools might
prove to be too restricting for practical situations. What is more, the multifidelity approach
raises the issue of securing consistent geometry parameterisation (or defining a potential
mapping between a low fidelity parameterisation and a high fidelity paraemterisation) so
that the same set of design variables is kept. This might be easier towards the end of the
conceptual stage and even early preliminary stage, where the low and high fidelity analysis
might share more similarities than it does very early in the conceptual stage1.

8.2.3 Multiobjective Formulation

The multiobjective exploration attributes of the developed methodology were assessed by
a comparison against benchmark multiobjective gradient free optimisers and the currently
standard multiobjective expected improvement infill strategy. In the aerodynamic design
problems, the methodology was compared against our inhouse implementation of the mul-
tiobjective particle swarm optimisation and the multiobjective tabu search optimiser. Evi-
dently, the high fidelity and multifidelity methodologies were superior to both gradient free
optimisers in terms of objective space exploration as well as optimum values especially in
the case of the multiobjective particle swarm optimiser. A significant reduction on compu-

1As we progress in the design stage, the analysis tools increase their complexity and fidelity.



8.2 Conclusions 225

tational costs was also achieved. Similar observations were made by the comparison of the
proposed multiobjective infill method against the current multiobjective expected improve-
ment approach of section 3.3.7. The developed method could provide a wider pareto front
in a lower computation budget.

8.2.4 Surrogate Based Optimisation Plan

The success of the expected improvement surrogate based optimisation plan to provide
design space exploration as required for conceptual design, was partly evaluated by a direct
comparison against the trust region surrogate based optimisation plan. No hard conclusions
could be withdrawn as the results were case-dependent. As a trend however, it was found
that in lower dimensionality cases and in the mid-lift region of the pareto front, the trust
region performed better than the expected improvement approach. The latter however was
dominant in the high lift area especially in the higher dimensionality problem. This suggest
it indeed performs a more extended design space exploration than trust region but suffers
in locally exploiting design information.

8.2.5 Handling Constraints

Regarding the methods used to tackle the constraints, the proposed methodology was tested
with both the general method of hard penalties, as well as the probability of feasibility
which is limited to surrogate based optimisation frameworks. The penalty method of-
fered a reduction in the training costs of the constraint functions metamodels since only
the constraint value prediction was required and cheap radial basis functions could be used.
However, cost savings came in the expense of accuracy. The penalty method was not effec-
tive into steering the optimisation process towards feasible designs during its initial stages,
partly because of its nature and partly because of the cheaper metamodels. Nevertheless,
the final results — when feasible — were superior to the ones provided by the feasibility
method. The latter demanded the use of Kriging models, which made the constraint ap-
proximation more expensive but also more accurate. This was reflected in the convergence
history, with design improvements being almost always feasible. Robustness in terms of
feasibility success is also an inherent result of the formulation of the method which seeks
for a tradeoff between improvement and feasibility. Penalty method led to infill points for
which the predicted constraints were always active. Therefore, it was proved more de-
pendent on the accuracy of the constraint model but were more suitable for an aggressive
optimisation in which only the final result is of use. If feasible designs have to be ensured
during the process, the feasibility method is recommended.

To complete this section of conclusions regarding the handling of the constraints, some
more general thoughts on the constraints satisfaction should also be provided. The mul-
tifidelity surrogate model-based framework proposed, also affects the satisfaction of con-
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straints in the context of the design stage of their application. If the constraints are not
considered as "hard constraints" but allow a tolerance, then an optimisation method can
provide useful information to support the design even if a subset of the suggested config-
urations are — within a tolerance — infeasible. This forms yet an additional argument
supporting the application of the methodology to conceptual and early preliminary stage
design. In such stages the constraints are not yet hard; what is more important is extracting
design information through the optimisation study.

8.2.6 Multidisciplinary Architectures

The formulation of the optimisation tool is complete when the methodology is implemented
in a multidisciplinary optimisation architecture. This was initially performed in the Sellar
test function, followed by the industrially relevant complex transonic wing aerostructural
design problem. The purpose of these investigations was to demonstrate the performance
of the method in a multidisciplinary environment and compare two different architectures.

Multidisciplinary Feasible Formulation

The datum wing design was significantly improved both in terms of aerodynamic and struc-
tural performance using the multidisciplinary feasible architecture. An increase on the
range of the initial design was achieved by an efficient aerodynamic, structural design or
a tradeoff between the two. What was of interest was that pareto points did not necessar-
ily led to an increase on the range and the inverse. Depending on the fuel capacity of a
wingbox design — described by global variables — a "bad" aerostructural design might
display a wider range than a "good" aerostructural design with a small internal wingbox
volume. This underlined the necessity of the range constraints defined in the problem,
with the ultimate aim being the development of efficient long range aircraft of lower fuel
consumption.

Interdisciplinary synergies were easily identified through the multiobjective formula-
tion of this design study. Hence, efficient designs were either supported on aerodynamic,
structural performance or their compromise. As expected, aerodynamically inclined de-
signs (with minimum drag) were more rigid, while more flexible designs featured higher
stresses as a result of the efficient structural design minimising their weight.

The multifidelity approach proved to be more efficient than the high fidelity one with
its results being superior for a given computational budget. The improvement over the high
fidelity formulation was greater than the one earlier observed in the less expensive aerody-
namic design problems. Such a behaviour was expected however because — for a given
smoothness of error space — multifidelity optimisation increases analysis cost savings with
the increase of analysis cost.
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Asymmetric Subspace Optimisation Formulation

The asymmetric subspace optimisation architecture was selected for examination as it is
a very promising formulation particularly for aerostructural problems. This is due to the
poor load balancing between the aerodynamic analysis and the structural analysis in the
multidisciplinary feasibility approach. The structural sizing is very efficient in reducing the
structural weight of the wing through the disciplinary optimisation involving the structural
element thickness as local variables.

The conclusions drawn regarding the pareto front results were similar to the multidis-
ciplinary feasible case summarised above. Furthermore, a significant weight reduction was
achieved through the structural sizing process. The design of the structural elements was
very efficient since the maximum allowed Von Mises stress was observed in almost the
entire structural model for all the pareto configurations. Similarly, all pareto designs had
— essentially — the same vertical displacement under a 2.5g maneuver. During cruise
conditions, which were responsible for the objective function values, the same trend as in
the multidisciplinary feasible formulation was observed: the minimum drag design was the
stiffest with the minimum weight one displaying the maximum vertical displacement. As in
the multidisciplinary feasible architecture, the maximum range was achieved by a tradeoff

configuration, highlighting the necessity of interdisciplinary coupling and compromises.

8.2.7 Multidisciplinary Architecture Comparison

The Sellar function offered a computationally inexpensive comparison between the mul-
tidisciplinary feasible and the asymmetric subspace optimisation architectures. Evidently,
the decoupling of the optimisation process benefited the overall convergence rate, due to a
dimensionality reduction in each optimisation level. However, it was stressed that this is
strongly dependent on the analysis cost of the discipline under disciplinary optimisation.

This fact was verified in the aerostructural case in which both the cost and results of the
asymmetric subspace optimisation were clearly improved over the ones from the muldisci-
plinary feasible architecture. Since a structural analysis was significantly cheaper than an
aerodynamic analysis, a structural optimisation — especially by a dedicated and well de-
veloped gradient based optimisation tool — would not greatly increase the cost of a multi-
disciplinary analysis. The superiority of the asymmetric subspace optimisation formulation
was then based on the reduction of the system level dimensionality, having a positive effect
particularly in surrogate based optimisation methodologies.
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8.2.8 Summary of conclusions

The above sections provided a description of the conclusions based on each scientific topic
investigated or used in this work. Following the same order as above, a brief bullet-point
list for quick reference is provided:

• The multifidelity Kriging modification provided a robust approximation of the high
fidelity design space, avoiding the representation of low fidelity optimality regions.

• The multifidelity modification of the mean squared error of the multifidelity Kriging
model was successful in restoring a non-zero expected improvement value in low
fidelity data.

• The multifidelity Kriging modification was computationally cheaper as well as more
effective in terms of final results than Co-Kriging for all complex test cases.

• The multifidelity approach was efficient when the low fidelity tool was cheap, robust
and able to follow the trends of the high fidelity one through the entire design space.

• The multifidelity approach-related gains were reduced as case complexity increased,
especially in multiobjective problems.

• Surrogate based multiobjective optimisation led to significantly wider pareto sets
than gradient free multiobjective algorithms, but not as dense.

• The trust region surrogate based optimisation plan was superior to the expected im-
provement approach in low dimensionality problems, but the opposite was found in
high dimensionality cases where the expected improvement also performed a wider
design space exploration.

• The penalty method for handling constraints was aggressive and more effective in
terms of final results compared to feasibility method, which in turn — being more
conservative — featured a higher constraint satisfaction ratio.

• The aerostructural optimisation of the common research model showcased the multi-
disciplinary design optimisation gains through interdisciplinary synergy, particularly
in the tradeoff pareto design.

• The aerodynamic loads of the multidisciplinary optimised design were shifted in-
wards compared to the theoretical aerodynamic optimum, especially when the asym-
metric subspace optimisation formulation was used.

• The asymmetric subspace optimisation architecture was superior to the multidisci-
plinary feasible formulation in all aspects like cost and performance.
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8.3 Future Work

8.3.1 Dimensionality Reduction

Given that the proposed methodology involves Kriging models which have to be trained,
information on the significance of a design variable is available with no additional cost
through the values of the smoothness parameters. Thus, the smoothness parameters of
the objective function and constraint models can form a criterion to decide whether the
respective design variables are important for the optimisation or if they can be dropped to
reduce cost and improve the final results.

8.3.2 Kriging Training Frequency

Since the training of the Kriging models is an expensive process, a set of criteria may be
exploited to define the frequency of the hypertuning procedure. For instance, Kriging may
be trained only after high fidelity infill sampling analyses.

8.3.3 Concept for Hybrid Algorithm - 1

Surrogate based optimisation formulations like the one suggested in this work can be effi-
cient in exploring a low dimensionality design space, guiding the process towards a global
optimality region. Contrariwise, gradient based methods may be very efficient in high di-
mensionality cases (detailed design) but can only guarantee a local fine-tuning. Therefore,
a hybrid method able to exploit the best of both worlds will be very effective. A hybrid sur-
rogate based optimisation-gradient based framework to achieve a rapid global convergence
can be developed as follows: A coarse initial space filling sampling will provide coarse
design space subregions. In each subregion, a local surrogate can be used in conjunction
with a local trust region approach. Then, an adjoint-based method can perform the subopti-
misation process with the trust radius as a constraint for the line search step. Furthermore,
the surrogate accuracy may be enhanced by the use of the derivatives (potentially even in-
cluding derivatives from the hessian approximation) which are already computed. Hence,
several deterministic local optimisation procedures are executed in parallel.

Each dimension of the discretised regions should be in the order of 1/N (where N is
the number of design variables). This concept, although improving the global search char-
acteristics of both trust region and adjoint-based optimisation cannot guarantee global con-
vergence. An advantage of this however is that it also allows multiobjective optimisation
based on local subregion pareto dominance, as well as the incorporation of a multifidelity
approach within trust region. The concept is displayed in Fig.8.1.
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Figure 8.1: Brief overview of hybrid algorithm 1.

8.3.4 Concept for Hybrid Algorithm - 2

Since the developed framework focused in the efficient exploration of the design space, it
is only natural that it can be followed by a more local approach. More specifically, the
resulting pareto front can simply provide the starting points for a series of parallel more
detailed local gradient based optimisation procedures.
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8.3.5 Multipoint Optimisation

A topic of great significance in the optimisation field is uncertainty and robustness; that is
how can an optimisation process guarantee that the final result has a satisfying off-design
performance. Robustness considerations in optimisation may be taken into account through
multipoint optimisation. Typically, this is done by running parallel analyses of the addi-
tional conditions and performing a weighted summation for the objective function. This is
similar to superimposing multiple objectives into a single weighted objective. Hence, mul-
tipoint optimisation can be performed as a multiobjective optimisation to produce a pareto
front of an objective space with dimensions equal to the conditions under consideration.

8.3.6 Mesh Deformation

A problem that frequently arises in optimisation problems that involve aerodynamic anal-
yses — especially in exploration formulations — is the bad quality of the deformed mesh.
A procedure that could alleviate this problem is the following. Before the start of an opti-
misation process, a mesh validation study may be performed in space filling points of the
design space. A series of mesh deformation cases will then be compared to their mesh re-
generation equivalent. In cases where a tolerance is surpassed, the mesh deformation would
not be considered successful and the corresponding design space area will be reported (a
surrogate model of the tolerance can be even created). Therefore, if during the optimisation
an infill point close to that area has to be examined, the mesh will not be deformed but will
be regenerated. It is an approach loosely similar to how the error correction model is used
to decide whether an infill point will use a low or high fidelity analysis in the present work.

8.3.7 Low Fidelity Tool for Aerostructural Optimisation

Throughout this work, it was evident that the success of the multifidelity approach strongly
depends on the low fidelity tool characteristics. In particular, the aerostructural analysis of
Chapter 7 involved a low fidelity tool that featured the same physics as the high fidelity
one with only the computational cost being lower. It is of high interest to examine how a
cheaper reduced physics aerostructural tool — like the one from [242] — would affect the
convergence of the aerostructural optimisation described in Chapter 7. The expected effect
would be observed in total elapsed time costs, high fidelity calls required as well as pareto
front characteristics. The challenge in using such reduced physics tools in an aerostructural
problem is the necessity of design variables that correspond to both low and high fidelity
analysis tools. For instance vortex lattice methods and beam models do not explicitly in
include thickness distribution and geometrical descriptions as the tools described in Chapter
7 do. A mapping from a set of "low" to "high fidelity design variables" might be necessary.
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8.3.8 Bi-Level Multidisciplinary Formulation for Aerostructural Op-
timisation

Following the success of the asymmetric subspace optimisation architecture, due to its effi-
cient splitting of the optimisation process, a question is raised on the potential effect caused
by including an aerodynamic disciplinary optimisation [243]. Of course this should be effi-
cient enough to promote good load balancing. In an opposite case, a Bi-Level formulation
may be used for low fidelity points and an asymmetric subspace optimisation architecture
for the high fidelity one, since it includes an aerodynamic analysis and not aerodynamic
disciplinary optimisation. A particular test case for this would be the analytical one intro-
duced by Sobieski et al. [162].

8.3.9 Alternative Cruising Constraints Formulation in Asymmetric
Subspace Optimisation

Following the difficulty faced by the metamodels to faithfully represent the cruising con-
straints (L = W) in the asymmetric subspace optimisation architecture — due to the struc-
tural sizing — an alternative method could make the process more efficient. A simple
solution while handling this constraint in the system level, would be to include information
about the structural (local) variables during the training of the surrogate model; hence cre-
ating a hybrid architecture. Alternatively, the ideal solution would be to develop a structural
disciplinary suboptimisation procedure (structural sizing) that can handle cruising condi-
tions as well, in the same way it handles the structural integrity considerations. This would
have the additional benefit of dropping one surrogate model, thus saving its costs.

8.3.10 Additional Work on the Common Research Model

Since the range uses information from both the aerodynamics and structural discipline, it
can be considered as a form of composite multiojbective and multidisciplinary function,
in fact being commonly used in this way by researchers [244]. A direct comparison of
such a single objective optimisation process against the multiobjective problem provided
in Chapter 7 would reveal interesting information regarding the final design characteristics,
function values and computational cost.

In addition to this problem formulation, a multiobjective problem of interest and prac-
tical use would be the one involving the range and operational/manufacturing cost as the
objective functions, with the addition of a total fuel mass limitation as a constraint. Us-
ing the drag and the weight as objective functions indeed provided distinctive engineering
design directions, however it might be of similar industrial interest to provide a pareto
set suggestions based on predicted performance (summarised by range calculations) and



8.3 Future Work 233

financial estimations.



234 8.3 Future Work



235

Bibliography

[1] "Future of the airline industry 2035" , ATA’s Industry Affairs Committee (IAC)

[2] "Flightpath 2050 Europe’s Vision for Aviation", , Directorate-General for Research
and Innovation/Directorate General for Mobility and Transport,Report of the High
Level Group on Aviation Research

[3] Alonso, J.J., and Stanford University MDO Lab, "Multidisciplinary Design Optimiza-
tion" , Lecture notes, Stanford University, 2012

[4] Sobester, A., Forrester, A.I.J., "Aircraft Aerodynamic Design: Geometry and Opti-
mization" ISBN 978-0-470-66257-1, John Wiley & Sons Ltd, 2015

[5] D., Salomon, "Curves and Surfaces for Computer Graphics", ISBN 978-0-387-28452-
1, Springer, New York, NY, 2006

[6] J., Ferguson, "Multivariable curve interpolation", , Journal of the Association for
Computing Machinery, Vol. 11, No. 2, 1964, pp. 221–228

[7] Sederberg, T.W., Parry, S.R., "Free-Form Deformation of Solid Geometric Mod-
els" , Association for Computing Machinery, Vol. 20, No. 2, 1986, pp. 151-160,
doi:10.1145/15922.15903

[8] Lyu, Z., Martins, J.R.R.A., "Aerodynamic Design Optimization Studies of a
Blended-Wing-Body Aircraft" , 43rd AIAA Fluid Dynamics Conference and Ex-
hibit, San Diego, California, 24–27 June 2013, AIAA Paper 2013-2586, doi:
10.2514/1.C032491

[9] Yamazaki, W., Mouton, S., Carrier, G., "Efficient Design Optimisation by Physics-
Based Direct Manipulation Free-Form Deformation" , AIAA paper 2008-5953, Sep.
2008, doi:10.2514/6.2008-5953

[10] Samareh, J.A., "Geometry and Grid/Mesh Generation Issues for CFD and CSM Shape
Optimisation" , Optimisation and Engineering, Vol. 6, No. 1, 2005, pp. 21-32,
doi:10.1023/B:OPTE.0000048535.08259.a8

[11] Coquillart, S., "Extended Free-Form Deformation:A sculpturing Tool for 3D Ge-
ometric Modelling" , Computer Graphics, Vol. 24, No. 4, 1990, pp. 187 - 196,
doi:10.1145/97879.97900

235



236 BIBLIOGRAPHY

[12] Hsu, W.M., Hughes, J.F., Kaufman, H., "Direct Manipulation of Free-Form De-
formations" , Computer Graphics, Vol. 26, No. 2, 1992, pp. 177 - 184,
doi:10.1145/133994.134036

[13] Lamousin, H.J., Waggenspack, W.N., "NURBS-Based Free-Form Deformations"
, IEEE Computer Graphics and Applications, Vol. 14, No. 6, 1994, pp. 95-108,
doi:10.1109/38.329096

[14] Samareh, J.A., "Aerodynamic Shape Optimisation based on Free-Form Deformation"
, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 30 Au-
gust - 1 September 2004, AIAA Paper 2004-4630, doi:10.2514/6.2004-4630

[15] Kulfan, B.M., Bussoletti, J.E., ""Fundamental" Parametric Geometry Representations
for Aircraft Component Shapes" , , 11th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference: The Modeling and Simulation Frontier for Multidis-
ciplinary Design Optimization 6 - 8 September 2006, AIAA Paper 2006-6948

[16] Kulfan, B.M., "Universal parametric geometry representation method" , Journal of
Aircraft, Vol. 45, No. 1, 2008, pp. 142-158, doi:10.2514/1.29958

[17] Kulfan, B.M., "Modification of CST airfoil representation methodology" , unpub-
lished note, http://brendakulfan.com/docs/CST8.pdf, Accessed: 7 September 2015

[18] Samareh, J.A., "Survey of Shape Parameterization Techniques for High-Fidelity Mul-
tidisciplinary Design Optimization" , AIAA Journal, Vol. 39, No. 5, 2001, pp. 877-884,
doi:10.2514/2.1391

[19] Antunes, A.P., Azevedo, J.A.L.F., Silva, R.G.D., "A Framework for Aerodynamic
Optimisation Based On Genetic Algorithms" , 47th AIAA Aerospace Sciences Meeting
including The New Horizons Forum and Aerospace Exposition 5 - 8 January 2009,
AIAA Paper 2009-1094, doi:10.2514/6.2009-1094

[20] Castonguay, P., Nadarajah, S., "Effect of Shape Parameterisation on Aerodynamic
Shape Optimisation" , 45th, AIAA aerospace sciences meeting, Reno, Nevada, 2007,
AIAA Paper 2007-3837, AIAA Paper 2007-59, 2007

[21] Mousavi, A., Castonguay, P., and Nadarajah, S.K., "Survey of Shape Parameterisa-
tion Techniques and Its Effect on Three-dimensional Aerodynamic Shape Optimisa-
tion" , 8th AIAA Computational Fluid Dynamics Conference, Fluid Dynamics and
Co-located Conferences, Miami, Florida, 25 - 28 June 2007, AIAA Paper 2007-3837,
doi:10.2514/6.2007-3837

[22] Sripawadkul, V., Padulo, M., "A Comparison of Aerofoil Shape Parameterisa-
tion Techniques for Early Design Optimisation" , 13th AIAA/ISSMO Multidisci-
plinary Analysis Optimization Conference, Multidisciplinary Analysis Optimization
Conferences, Fort Worth, Texas, 10 -15 September 2010, AIAA Paper 2010-9050,
doi:10.2514/6.2010-9050



BIBLIOGRAPHY 237

[23] Wu, H.-Y., Yang, S., Liu, F., "Comparison of Three Geometric Representations of
Aerofoils for Aerodynamic Optimisation" , 16th AIAA Computational Fluid Dynamics
Conference, Fluid Dynamics and Co-located Conferences, Orlando, Florida, AIAA
Paper 2003-4095, doi:10.2514/6.2003-4095

[24] Samareh, J.A., "A Novel Shape Parameterization Approach" , NASA/TM 1999
209116, NASA Langley Research Center, Hampton, VA 23681

[25] Ronzheimer, A., "Prospects of Geometry Parameterisation based on Freeform Defor-
mation in MDO" , ERCOFTAC 2006: Design Optimisation: Methods and Applica-
tions, pp. 1-10, International Conference Las Palmas de Gran Canaria, Spain, ISBN
84-85650-12-3

[26] Thomson, J.F., "Handbook of grid generation" , ISBN 0849326877

[27] Samareh, J.A., "Grid Generation for Multidisciplinary Design and Optimization of
an Aerospace Vehicle – Issues and Challenges" , Technical Report, NASA Langley
Research Center, Hampton, VA, United States, January, 2000

[28] Gaitonde, A.L., Fiddes, S.P., "Three-Dimensional Moving Mesh Method for the Cal-
culation of Unsteady Transonic Flows" , Aeronautical Journal, Vol. 99, No. 984,
1995, pp. 150-160, doi:10.1017/S0001924000027135

[29] Soni, B.K., "Two and Three-Dimensional Grid Generation Internal Flow Applica-
tions" , 7th Computational Physics Conference, Meeting Paper Archive, Cincinnati,
OH, AIAA Paper, 85-1526, 1985, doi: 10.2514/6.1985-1526

[30] Jones, W.T., Samareh, J.A., "A Grid Generation System for Multidisciplinary Design
Optimization" , Surface Modeling, Grid Generation, and Related Issues in Computa-
tional Fluid Dynamic (CFD) Solutions, Lewis Research Center, NASA, pp. 657-667,
1995

[31] Hartwich, P.M., Agrawal S., "Method for perturbing Multiblock Patched Grids in
Aeroelastic and Design Optimization Applications" , 13th Computational Fluid Dy-
namics Conference, Fluid Dynamics and Co-located Conferences, AIAA Paper 97-
2038, 1997, doi: 10.2514/6.1997-2038

[32] Le Moigne, A., "A discrete Navier-Stokes adjoint method for aerodynamic optimi-
sation of Blended Wing-Body configurations" , Ph.D. thesis, Cranfield University,
2002

[33] Kenway, G.K.W., Kennedy, G.J., Martins, J.R.R.A., "A CAD-Free Approach to High
Fidelity Aerostructural Optimization" , 13th AIAA/ISSMO Multidisciplinary Analysis
Optimization Conference, Fort Worth, Texas, 10 -15 September 2010, AIAA 2010-
9231, 2010, doi:10.2514/6.2010-9231

[34] Botkin, M.E., "Three-Dimensional Shape Optimization Using Fully Automatic
Mesh Generation" , AIAA Journal, Vol. 30, No. 5, 1992, pp. 1932-1934,
doi:10.2514/3.11162



238 BIBLIOGRAPHY

[35] Farhat, C., Lin, T.Y., "Structure-attached corotational fluid grid for transient aeroe-
lastic computations" , AIAA Journal, Vol. 31, No. 5, 1993, pp. 597-599, doi:
10.2514/3.11371

[36] Batina, J.T., "Unsteady Euler airfoil solutions using unstructured dynamic meshes" ,
AIAA Journal, Vol. 28, No. 8, 1990, pp. 1381-1388, doi: 10.2514/3.25229

[37] Palmerio, B., "An attraction-repulsion mesh adaptation model for flow solution on
unstructured grids" , Comput Fluids, Vol. 23, No. 3, 1994, pp. 457-506, doi:
10.1016/0045-7930(94)90015-9

[38] Farhat, C., Degand, C., Koobus, B., Lesoinne, M., "Torsional springs for two-
dimensional dynamic unstructured fluid meshes" , Computer Methods in Applied
Mechanics and Engineering, Vol. 45, No. 1-4, 1998, pp. 163-231, doi: 10.1016/S0045-
7825(98)00016-4

[39] Degand, C., Farhat, C., "A three-dimensional torsional spring analogy method for
unstructured dynamic meshes" , Computers and Structures, Vol. 80, No. 3-4, 2002,
pp. 305-316, doi: 10.1016/S0045-7949(02)00002-0

[40] Murayama, M., Nakahashi, K., Matsushima, K., "Unstructured Dynamic Mesh for
Large Movement and Deformation" , 40th AIAA Aerospace Sciences Meeting and
Exhibit, Aerospace Sciences Meetings, Reno, Nevada, AIAA 2002-0122, 2002, doi:
10.2514/6.2002-122

[41] Xia, H., Qin, N., "Detached-eddy simulation for synthetic jets with moving
boundaries" , Modern Physics Letters B, Vol. 19, 2005, pp. 1429-1434, doi:
10.1142/S0217984905009584

[42] Nielsen, E.J., Anderson, W.K., "Recent improvements in aerodynamic design optimi-
sation on unstructured meshes" , AIAA Journal, Vol. 40, No. 6, 2002, pp. 1155-1163,
doi: 10.2514/2.1765

[43] Dwight, R.P., "Robust Mesh Deformation using the Linear Elasticity Equations" ,
Computational Fluid Dynamics 2006, H. Deconinck and E. Dick, eds. Springer Berlin
Heidelberg, 2006, pp. 401-406, doi: 10.1007/978-3-540-92779-262

[44] Crumpton, P.I., Giles, M.B., "Implicit Time-Accurate Solutions on Unstruc-
tured Dynamic Grids" , International Journal for Numerical Methods in
Fluids, Vol. 25, No. 11, 1997, pp. 1285-1300, doi: 10.1002/(SICI)1097-
0363(19971215)25:11<1285::AID-FLD607>3.0.CO;2-M

[45] Liu, X.Q., Qin, N., Xia, H., "Fast dynamic grid deformation based on Delaunay graph
mapping" , Journal of Computational Physics, Vol. 211, No. 2, 2006, pp. 405-423,
doi: 10.1016/j.jcp.2005.05.025

[46] Beckert, A., Wendland, H., "Multivariate interpolation for fluid-structure-interaction
problems using radial basis functions" , Aerospace Science and Technology, Vol. 5,
No. 2, 2001, pp. 125-134, doi: 10.1016/S1270-9638(00)01087-7



BIBLIOGRAPHY 239

[47] de Boer, A., van der Schoot, M.S., Bijl, H., "Mesh deformation based on radial basis
function interpolation" , Computers and Structures, Vol. 85, 2007, pp. 784-795, doi:
10.1016/j.compstruc.2007.01.013

[48] Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P., "Design and Analysis of com-
puter experiments" , , Statistical Science, Vol. 4 No. 4, 1989, pp. 409-423

[49] I.M. Sobol, "On the systematic search in a hypercube" , SIAM Journal of Numerical
Analysis, Vol. 16, No. 5, 1979, pp. 790-793, doi:10.1137/0716058

[50] Fang, K-T, Lin, D.K.J., Winker, P., and Zhang, Y., "Uniform Design: Theory and Ap-
plication" , Technometrics, Vol. 42, No. 3, 2000, pp. 237-248, doi: 10.2307/1271079

[51] Tang, A., "Orthogonal Array-Based Latin Hypercubes" , Journal of the American
Statistical Association, Vol. 88, No. 424, 1993, doi: 10.2307/2291282

[52] Liem, R.P., Mader, C.A., Martins, J.R.R.A., "Surrogate Models and Mixtures of Ex-
perts in Aerodynamic Performance Prediction for Mission Analysis" , Aerospace
Science and Technology, Vol. 43, 2015, pp. 126-151, doi:10.1016/j.ast.2015.02.019

[53] J.H. Halton, "On the efficiency of certain quasi-random sequences of points in evalu-
ating multi-dimensional integral" , Numerische Mathematik, Vol. 2, No. 1, 1960, pp.
84–90

[54] Halton, J., "Algorithm 247: Radical-inverse quasi-random point sequence", , ACM,
Vol. 7, No. 12, pp. 701-702, 1964, doi:10.1145/355588.365104

[55] Nair, P. B., Choudhuryt, A., Keane, A.J., "Bayesian Surrogate Modeling of Determin-
istic Simulation Codes for Probabilistic Analysis", , 19th AIAA Applied Aerodynam-
ics Conference, Fluid Dynamics and Co-located Conferences, Seattle, Washington,
AIAA-2001-1676, doi:10.2514/6.2001-1676

[56] Sasena, M., Goovaerts, P., Papalambros, P., and Reed, M., "Adaptive experimental
design applied to an ergonomics testing procedure" , , ASME 2002 International
Design Engineering Technical Conferences and Computers and Information in Engi-
neering Conference, Vol. 2, 28th Design Automation Conference, Montreal, Quebec,
September 29 – October 2, doi: 10.1115/DETC2002/DAC-34091

[57] Keane, A.J., Nair, P.B, "Computational Approaches for Aerospace Design: The Pur-
suit of Excellence" , ISBN-13 978-0-470-85540-9, John Wiley & Sons Ltd, 2005

[58] McKay, M.D., Beckman, R.J., Conover W.J., "Hypercube sampling, A comparison
of three Methods for selecting values of input variables in the analysis of output
from a computer code" , Technometrics, Vol. 21, No. 2, 1979, pp. 239-245, doi:
10.2307/1268522

[59] Johnson, M.E., Moore, L.M., Ylvisaker, D., "Minimax and maximin distance designs"
, Journal of Statistical Planning and Inference, Vol. 26, No. 2, 1990, pp. 131-148,
doi:10.1016/0378-3758(90)90122-B



240 BIBLIOGRAPHY

[60] Morris, M.D., Mitchell, T.J., "Exploratory designs for computational experiments"
, Journal of Statistical Planning and Inference, Vol. 43, 1995. pp. 381-402,
doi:10.1016/0378-3758(94)00035-T

[61] Currin, C., Mitchell, T., Morris, M., Ylvisaker, D., "Bayesian Prediction of Determin-
istic Functions With applications to the design and analysis of computer experiments"
, Journal of the American Statistical Association, Vol. 86, No. 416, 1991, pp. 953-963,
doi: 10.2307/2290511

[62] Simpson, T.W., Lin, D.K.J., Chen, W., "Sampling strategies for computer experi-
ments: design and analysis" , International Journal of Reliability and Applications,
Vol. 2, 2001, pp. 209-240

[63] Kleijnen, J.P.C., "Statistical Tools for Simulation Practitioners" , Marcel Dekker, NY,
1987

[64] Morris, M.D., "Factorial Sampling for Preliminary Computational experiments" ,
Technometrics, Vol. 33, No. 3, 1991, pp. 161-174, 1991, doi: 10.2307/1269043

[65] Campolongo, F., Cariboni, J., Saltelli, A., "An effective screening design for sensitiv-
ity analysis of large models" , Environmental Modelling & Software, Vol. 22, 2007,
pp. 1509-1518, doi: 10.1016/j.envsoft.2006.10.004

[66] Andres, T.H., Hajas, W.C., "Using iterated fractional factorial design to screen pa-
rameters in sensitivity analysis of a probabilistic risk assessment model" , Joint in-
ternational Conference on Mathematical Methods and Supercomputing in Nuclear
Applications, ed. Kusters, Stein,and Werner, 2, pp. 328-337

[67] Elster, C., Neumaier, A., "Screening by Conference Designs" , Biometrika, Vol. 82,
No. 3, 1995, pp. 589-602, doi: 10.2307/2337536

[68] Jacoby, J.E., Harrison, S., "Multi-variable experimentation and simulation mod-
els" , Naval Research Logistics Quarterly, Vol. 9, 1962, pp. 121-136, doi:
10.1002/nav.3800090206

[69] Bettonvil, B., Kleijnen, J.P.C., "Searching for important factors in simulation models
with many factors: Sequential bifurcation" , European Journal of Operation Re-
search, 1996, pp. 1080-194, doi: 10.1016/S0377-2217(96)00156-7

[70] Campolongo, F., Kleijnen J., and Andres, T., "Screening methods in sensitivity anal-
ysis" , Mathematical and statistical methods for sensitivity analysis of model output,
ed. A. Saltelli and K. Chan. Chichester, England: Wiley, 2000

[71] Schonlau, M., Welch, W.J., "Screening the Input Variables to a Computer Model Via
Analysis of Variance and Visualization" , Screening Methods for Experimentation
in Industry, Drug Discovery, and Genetics, Editors: A. Dean, S. Lewis, ISBN:978-0-
387-28013-4



BIBLIOGRAPHY 241

[72] Goldsman, D., Nelson, B.L., "Statistical Screening, Selection, and Multiple Compar-
ison Procedures in Computer Simulations" , Proceedings of the 1998 Winter Sim-
ulation Conference D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan,
eds.

[73] Kleijnen, J.P.C., "Review of random and group-screening designs" , Communications
in statistics: Part A: Theory and methods, Vol. 16, No. 10, 1987, pp. 2885-2900, doi:
10.1080/03610928708829548

[74] Trocine, L., Malone, L.C., "Finding important independent variables through screen-
ing designs: A comparison of methods" , Proceedings of the 2000 Winter Simu-
lation Conference, J.A. Joines, R.R. Barton, B. Kang, and P.A. Fishwick, eds., doi:
10.1109/WSC.2000.899789

[75] Constantine, P.G., Dow, E., Wang, Q., "Active subspace methods in theory and
practice: Applications to Kriging surfaces" , Society for Industrial and applied
Mathematics, Journal on Scientific. Computing, Vol. 36, No. 4, A1500–A152, doi:
10.1137/130916138

[76] Lukaczyk, T.W., Constantine, P., Palacios, F., Alonso, J.J., "Active Subspaces for
Shape Optimization" , 10th AIAA Multidisciplinary Design Optimization Conference,
AIAA SciTech Forum, AIAA 2014-1171, doi: 10.2514/6.2014-1171

[77] Grey, Z.J., Constantine, G., "Active Subspaces of Airfoil Shape Parameterizations"
, 10th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence, AIAA SciTech Forum, Grapevine, Texas, 9 - 13 January 2017, AIAA Paper 2017-
0507, doi: 10.2514/6.2017-0507

[78] Schmit, L.A., Farshi, B., "Some Approximation Concepts for Structural Synthesis" ,
AIAA Journal, Vol. 12, No. 5, 1974, pp. 692-699, doi: 10.2514/3.49321

[79] Balabanov, V.O., Giunta, A.A., Golovidov, O., Grossman, B., Mason, W.H., Wat-
son, L.T. and Haftka, R.T., "Reasonable design space approach to response surface
approximation" , Journal of Aircraft, Vol. 36, 1999, pp. 308–315, doi:10.2514/2.2438

[80] Kim, C., Wang, S., Choi, KK., "Efficient response surface modeling by using moving
least squares method and sensitivity" , AIAA Journal, Vol. 43, No. 11, 2005, pp.
2404-2411, doi: 10.2514/1.12366

[81] Franke, R, ."Scattered data interpolation: tests of some methods" , Mathematics of
Computation, Vol. 38, No. 157, 1982, pp. 181–200

[82] Wang, B.P., "Parameter optimization in multiquadric response surface approx-
imations" , Struct Multidisc Optim Vol. 26, No. 3-4, 2004, pp. 219–223,
doi:10.1007/s00158-003-0341-4

[83] van Keulen, F., Vervenne, K., "Gradient-enhanced response surface building" , Struc-
tural and Multidisciplinary Optimization, Vol. 27, No. 5, 2004, pp. 337-351



242 BIBLIOGRAPHY

[84] Mullur, A.A., Messac, A., "Extended Radial Basis Functions: More flexible and Ef-
fective Metamodelling" , AIAA Journal, Vol. 43, No. 6, 2005, pp. 1306-1315. doi:
10.2514/1.11292

[85] Mongillo, M., "Choosing Basis Functions and Shape Parameters for Radial Basis
Function Methods" , Society for Industrial and applied Mathematics, SIAM Under-
graduate Research Online (SIURO), Vol. 4, doi:10.1137/11S010840

[86] Fornberg, B., Larsson, E., and Flyer, N., "Stable Computations with Gaussian Ra-
dial Basis Functions" , Society for Industrial and applied Mathematics, Journal on
Scientific Computing, Vol. 33, No. 2, pp. 869–892, doi: 10.1137/09076756X

[87] Vapnik, V., "Statistical Learning Theory" , John Wiley & Sons, 1998

[88] Forrester, A.I.J., Sobester, A., and Keane, A.J., "Engineering Design via Surrogate
Modelling: A Practical Guide" , John Wiley & Sons, ISBN 978-0-470-06068-1, 2008

[89] Wackernagel, H., "Multivariate Geostatistics: An Introduction with Applications" ,
3rd ed. Heidelberg: Springer, Berlin, 2003

[90] Joseph, V.R., Hung, Y., and Sudjianto, A., "Blind Kriging: a new method for devel-
oping metamodels" , ASME, Journal of Mechanical Design, Vol. 130, No. 3, 2008,
doi: 10.1115/1.2829873

[91] Martin, J.D., Simpson, T.W., "A study On the Use Of Kriging models to approximate
deterministic computer models" , ASME 2003 Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference Chicago, Illinois
USA, 2 - 6 September, pp. 567-576, 2003, doi: 0.1115/DETC2003/DAC-48762

[92] Simpson, T.W., Mauery, T.M., Korte, J.J., and Mistree, F. "Kriging models for global
approximation in simulation-based multidisciplinary design optimization" , AIAA
Journal, Vol. 39, No. 12, 2001, pp. 2233-2241, doi: 10.2514/2.1234

[93] Toal, D.J.J., Bressloff, N.W., and Keane, A.J., "Kriging Hyperparameter Tuning
Strategies" , AIAA Journal, Vol. 46, No. 5, 2008, pp. 1240-1352, doi:10.2514/1.34822

[94] Jin, R., Chen, W., and Simpson, T.W., "Comparative studies of metamodelling tech-
niques under multiple modeling criteria" , Structural and Multidisciplinary Optimiza-
tion, Vol. 23, No. 1, 2001, pp. 1-13, doi: 10.1007/s00158-001-0160-4

[95] Haftka, R.T., "Combining global and local approximations" , AIAA Journal, Vol. 29,
No. 9, 1991, pp. 1523–1525, doi:10.2514/3.10768

[96] Kirsch, U., "Reduced basis approximation of structural displacements for optimal
design" , AIAA Journal, Vol. 29, No. 10, 1991, pp. 1751–1758, doi:10.2514/3.10799

[97] LeGresley, P.A., Alonso, J.J., "Airfoil design optimization using reduced order models
based on proper orthogonal decomposition" , Fluids 2000 Conference and Exhibit,
Fluid Dynamics and Co-located Conferences, Denver, Colorado, 2000, AIAA Paper
2000-2545



BIBLIOGRAPHY 243

[98] Jacobs, R.A., Jordan, M.I., Nowlan, S.J., and Hinton, G.E., "Adaptive Mixtures of
Local Experts" , Journal Neural Computation, Vol. 3, No. 1, 1991, pp. 79–87,
doi:10.1162/neco.1991.3.1.79

[99] Masoudnia, S., Ebrahimpour, R., "Mixture of experts: a literature survey", , Artificial
Intelligence Review, Vol. 42, No. 2, 2014, pp 275–293, doi:10.1007/s10462-012-9338-
y

[100] Tang, B., Heywood, M.I., and Shepherd, M., "Input partitioning to mixture of ex-
perts" , Proceedings of the 2002 International Joint Conference on Neural Networks,
Vol. 1, IEEE, 2002, pp. 227–232, doi: 10.1109/IJCNN.2002.1005474

[101] Meckesheimer, M., Booker, A.J., Barton, R.R., and Simpson, T.W., "Computation-
ally Inexpensive Metamodel Assessment Strategies" , AIAA Journal, Vol. 40, No. 10,
2002, pp. 2053-2060, doi: 10.2514/2.1538

[102] Jones, D.R., Schonlau, M., and Welch, W.J., "Efficient Global Optimization of Ex-
pensive Black-Box Functions" , Journal of Global Optimization, Vol. 13, No. 4, 1998.
pp. 455–498, doi:10.1023/A:1008306431147

[103] Alexandrov, N.M., Dennis, J.E., Lewis, R.M., and Torczon, V., "A trust region
framework for managing the use of approximation models in optimization" , Struc-
tural Optimization, Vol. 15, 1998, pp. 16-23, doi:10.1007/BF01197433

[104] Jones, D.R., "A Taxonomy of Global Optimization Methods Based on Response
Surfaces" , Journal of Global Optimization, Vol. 21, No. 4, 2001, pp. 345–383,
doi:10.1023/A:1012771025575

[105] Dennis Jr., J.E., and Schnabel, R.B., "Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations", , Prentice-Hall, Englewood Cliffs, NJ, 1983, doi:
10.1137/1.9781611971200

[106] Alexandrov, N.M., Lewis, R.M., Gumbert, C.R., Green, L.L., and Newman,
P.A., "Approximation and Model Management in Aerodynamic Optimization with
Variable-Fidelity models" , Journal of Aircraft Vol. 38, No. 6, 2001, pp. 1093-1101,
doi:10.2514/2.2877

[107] Forrester, A.I.J., Keane, A.J., "Recent Advances in Surrogate Based Optimiza-
tion" , Progress in Aerospace Sciences, Vol. 45, No. 1-3, 2009, pp. 50–79,
doi:10.1016/j.paerosci.2008.11.001

[108] Jarrett, J.P., Ghisu, T., "An Approach to Multi-Fidelity Optimization of Aeroengine
Compression Systems" , , 12th AIAA Aviation Technology, Integration, and Opera-
tions (ATIO) Conference and 14th AIAA/ISSM, Indianapolis, Indiana, 17-19 Septem-
ber 2012, AIAA Paper 2012-5634, doi:10.2514/6.2012-5634

[109] Choi, S., Alonso, J.J., Kroo, I.M., and Wintzer. M., "Multifidelity Design Optimiza-
tion of Low-Boom Supersonic Jets", , Journal of Aircraft, Vol. 45, No. 1, 2008, pp.
106-118, doi: 10.2514/1.28948



244 BIBLIOGRAPHY

[110] Chung, H.S. , Alonso, J.J., "Design of a Low-Boom Supersonic Business Jet Using
Cokriging Approximation Models", , 9th AIAA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, Atlanta, Georgia, 2002, AIAA 2002-5598, doi:
10.2514/6.2002-5598

[111] Forrester, A.I.J., Bressloff, N.W., Keane, A.J., "Optimization using Surrogate Mod-
els and Partially Converged Computational Fluid Dynamics Simulations" , Proceed-
ings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol.
462, No. 2071, 2006, pp. 2177-2204, doi:10.1098/rspa.2006.1679

[112] Nelson, A., Alonso, J.J., Pulliam, T.H., "Multi-Fidelity Aerodynamic Optimization
using Treed Meta-Models" , 25th AIAA Applied Aerodynamics Conference, Miami,
Florida, 25 - 28 June 2007, AIAA 2007-4057, doi: 10.2514/6.2007-4057

[113] Bandler, J.W., Biernacki, R.M., Chen, S.H., Grobelny, P.A., and Hemmers, R.H.,
"Space mapping technique for electromagnetic optimization" , IEEE Transactions
on Microwave Theory and Techniques, Vol. 42, No. 12, 1994, pp. 2536–2544,
doi:10.1109/22.339794

[114] Bandler, J., Cheng, Q., Dakroury, S., Mohamed, A., Bakr, M. and Madsen, K.,
"Space Mapping: the state of the art" , IEEE Transactions on Microwave Theory
and Techniques, Vol. 52, No. 1, 2004, pp. 337-361, doi:10.1109/TMTT.2003.820904

[115] Bandler, J.W., Biernacki, R.M., Chen, S.H., Hemmers, R.H., and Madsen, K. "Elec-
tromagnetic optimization exploiting aggressive space mapping" , IEEE Transactions
on Microwave Theory and Techniques, Vol. 43, No. 12, 1995, pp. 2874–2882

[116] Bakr, M.H., Bandler, J.W., Biernacki, R.M., Chen, S.H., and Madsen, K., "A trust
region aggressive space mapping algorithm for EM optimization" , IEEE Transactions
on Microwave Theory and Techniques, Vol. 46, No. 12, 1998, pp. 2412–2425, doi:
10.1109/22.739229

[117] Bandler, J.W., Ismail, M.A., Rayas-Sanchez, J.E., and Zhang, Q.J., "Neuromodeling
of microwave circuits exploiting space mapping technology" , IEEE Transactions
on Microwave Theory and Techniques, Vol. 47, No. 12, 1999, pp. 2417–2427, doi:
10.1109/22.808989

[118] Forrester, A.I.J., Sobester, A., Keane, A.J., "Multi-fidelity optimization via surrogate
modelling" , Proceedings of the Royal Aeronautic Society, Vol. 463, No. 2088, 2007,
pp. 3251-3269, doi:10.1098/rspa.2007.1900

[119] Chung, H.S. , Alonso, J.J., "Using Gradients to Construct Cokriging Approxima-
tion Models for High-Dimensional Design Optimization Problems" , 40th AIAA
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2002, AIAA 2002–0317,
doi: 10.2514/6.2002-317

[120] Edwards, A., "An introduction to linear regression and correlation" , A series
of books in psychology, W.H. Freeman and Comp., San Francisco, 1976, ISBN-10:
0716705613



BIBLIOGRAPHY 245

[121] Rajnarayan, D., Haas A., and Kroo, I., "A Multifidelity Gradient-Free Optimization
Method and Application to Aerodynamic Design" , 12th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference, Victoria, British Columbia, 10 - 12
September 2008, AIAA 2008-6020, doi: 10.2514/6.2008-6020

[122] Hinton, G.E., Nowlan, S.J., "How learning can guide evolution" , Complex Systems,
Vol. 1, pp. 495-502, 1987

[123] Zoutendijk, G., "Methods of Feasible Directions: A study in linear and nonlinear
programming" , Elsevier, Amsterdam, 1960

[124] Fiacco, A.V., McCormick, G.P., "Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques" , Classics in Applied Mathematics series, 1990
ISBN: 978-0-89871-254-4

[125] Nocedal, J., Wright, S.J., "Numerical Optimization" , Springer series in Operational
Research, Springer, ISBN 0-387-98793-2, 2006

[126] Boggs, P.T., Tolle, J.W., "A strategy for global convergence in a sequential quadratic
programming algorithm" , SIAM Journal of Numerical Analysis, Vol. 26, No. 3 1989,
pp. 600–623

[127] Nash, S.G., Sofer, A., "Linear and Nonlinear Programming" , McGraw-Hill, ISBN-
10: 007046065, 1996

[128] Parr, J.M, Keane, A.J., Forrester, A.I.J., and Holden, C.M.E., "Infill sampling cri-
teria for surrogate-based optimization with constraint handling Engineering Opti-
mization" , Engineering Optimization, Vol. 44, No. 10, 2012, pp. 1147-1166, doi:
10.1080/0305215X.2011.637556

[129] Marler, R.T., Aurora, J.S., "Survey of multi-objective optimization methods for en-
gineering" , Structural and Multidisciplinary Optimization, Vol. 26, No. 6, 2004. pp.
369-395, doi:10.1007/s00158-003-0368-6

[130] Drela, M., "Pros & Cons of Airfoil Optimization" , Frontiers of Computational
Fluid Dynamics 1998, edited by D. A. Caughey and M. M. Hafez, World Scientific,
Singapore, 1998, pp. 363-381, doi: 10.1142/97898128157740019

[131] Huyse, L., Lewis, R.M., "Aerodynamic Shape Optimization of Two-dimensional
Airfoils Under Uncertain Conditions" , NASA CR–2001–210648, Jan. 2001, Also
ICASE Report No. 2001-1

[132] Mastroddi, F., Gemma, S., "Analysis of Pareto frontiers for multidisciplinary design
optimization of aircraft" , Aerospace Science and Technology, Vol. 28, No. 1, 2013,
pp. 40-55, doi: 10.1016/j.ast.2012.10.003

[133] Nemec, M., Ziing, D.W., Pulliam, T.H., "Multi-Point and Multi-Objective Aerody-
namic Shape Optimization" , AIAA Journal, Vol. 42, No. 6, 2004, pp. 1057-1065, doi:
10.2514/1.10415



246 BIBLIOGRAPHY

[134] Toal D.J.J., Keane, A.J., "Efficient Multipoint Aerodynamic Design Optimiza-
tion Via Cokriging" , Journal of Aircraft, Vol. 48, No. 5, 2011, pp. 1685-1695.
doi:10.2514/1.C031342

[135] Tan, K.C., Khor, E.F., and Lee, T.H., "Multiobjective Evolutionary Algorithms and
Applications" , Springer, ISBN-1852338369, 2005

[136] Chiong, R., Weise, T., and Michalewicz, Z., "Variants of Evolutionary Algorithms
for Real-World Applications" , Springer, ISBN 978-3-642-23423-1, 2012

[137] Antoine, N.E., "Aircraft optimization for minimal environmental impact" , PhD
thesis, Stanford, 2004

[138] Eberhart, R.C., Kennedy, J.A., "New optimizer using particle swarm theory" , The 6th

international symposium on Micro Machine and Human Science, pp. 39-43, Nagoya,
Japan, 1995

[139] Alvarez-Benitez, J.E., Everson, R.M., and Fieldsend J.E., "A MOPSO Algorithm
Based Exclusively on Pareto Dominance Concepts" , International Conference on
Evolutionary Multi-Criterion Optimization EMO 2005: Evolutionary Multi-Criterion
Optimization, Vol. 3410, 2005. pp. 459-473, doi:10.1007/978-3-540-31880-432

[140] Durillo, J.J., Garcia-Nieto, J., Nebro, A.J., Coello, C.A., Luna, F., and Alba, E.,
"Multi-Objective Particle Swarm Optimizers: An Experimental Comparison" , In-
ternational Conference on Evolutionary Multi-Criterion Optimization EMO 2009:
Evolutionary Multi-Criterion Optimization, Vol. 5467, pp. 495-509, Proceedings,
doi:10.1007/978-3-642-01020-039

[141] Nelder, J.A., Mead, R., "Simplex method for function minimization" , Computer
Journal, Vol. 7, No. 4, 1965, pp. 308 - 313, doi:10.1093/comjnl/7.4.308

[142] Glover, F., "Tabu Search (Part I)" , ORSA Journal on Computing, Vol. 1, No. 3, 1989,
pp. 190-206, doi:10.1287/ijoc.1.3.190

[143] Glover, F. , "Tabu Search (Part II)" , ORSA Journal on Computing, Vol. 2, No. 1,
1990, pp. 4-32, doi:10.1287/ijoc.2.1.4

[144] Hooke, R., Jeeves, T.A., "Direct Search Solution of Numerical and Statistical Prob-
lems" , Journal for the Association of Computing Machinery, Vol. 8, No. 2, 1961, pp.
212-229

[145] Glover, F., Laguna, M., "Tabu Search" , Technical report, Kluwer Academic Pub-
lishers, Boston, MA, 1997

[146] Connor, A.M., Tilley, D.G., "A Tabu Search method for the optimisation of fluid
power circuits" , IMechE Journal of Systems and Control, Vol. 212, No. 5, 1998, pp.
373–381, 1998, doi: 10.1243/0959651981539541



BIBLIOGRAPHY 247

[147] Jaeggi, D.M., Parks, G.T., Kipouros, T., and Clarkson, P.J., "The development of
a multi-objective Tabu Search algorithm for continuous optimisation problems" ,
European Journal of Operational Research, Vol. 185, No. 3, pp. 1192–1212, 2008,
doi: 10.1016/j.ejor.2006.06.048

[148] Trapani, G. Kipouros, T., Savill, M., "The Design of Multi-Element Airfoils Through
Multi-Objective Optimization Techniques" , Computer Modelling in Engineering and
Sciences, Vol. 88, No. 2, 2012, pp. 107-140, doi: 10.3970/cmes.2012.088.107

[149] Le Tallec, P., Laporte, E., "Numerical Methods in Sensitivity Analysis and Opti-
mization" , ISBN 978-1-4612-0069-7, 2002, doi:10.1007/978-1-4612-0069-7

[150] Martins, J.R.R.A., Sturdza, P., and Alonso, J.J., "The Complex-Step Derivative Ap-
proximation" , ACM Transactions on Mathematical Software, Vol. 29, No. 3, 2003,
pp. 245-262, doi:10.1145/838250.838251

[151] Lyu, Z., Kenway, G.K.W., Paige, C., Martins, J.R.R.A., "Automatic Differentation
Adjoint of the RANS equations with a Turbulence Model" , 21st AIAA Computa-
tional Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences, San
Diego, California, AIAA 2013-2581 doi: 10.2514/6.2013-2581

[152] Giannakoglou, K.C., Papadimitriou, D.I., "Adjoint Methods for Shape Optimiza-
tion" , Optimization and Computational Fluid Dynamics, Editors: D. Thevenin, G.
Janiga, ISBN 978-3-540-72152-9, 2008, doi:10.1007/978-3-540-72153-64

[153] Mader, C.A., Martins, J.R.R.A., Alonso, J.J., van der Weide, E., "ADjoint: An Ap-
proach for the rapid development of discrete adjoint solvers" , AIAA Journal, Vol. 46,
No. 4, 2008, pp. 863-873, doi: 10.2514/1.29123

[154] Cramer, E.J., Dennis Jr., J.E., Frank, P.D., Lewis, R.M., and Shubin, G.R., "Problem
Formulation for Multidisciplinary Optimization" , SIAM Journal on Optimization,
Vol. 4, No. 4,1994, pp. 754-776, doi:10.1137/0804044

[155] Haftka, R.T., "Simultaneous Analysis and Design" , AIAA Journal, Vol. 23, No. 7,
1985, pp. 1099-1103, doi:10.2514/3.9043

[156] Kennedy, G.J., Martins, J.R.R.A., "Parallel solution methods for aerostructural anal-
ysis and design optimization" , 13th AIAA/ISSMO Multidisciplinary Analysis Opti-
mization Conference 13 - 15 September 2010, Fort Worth, Texas AIAA Paper 2010-
9308, doi:10.2514/6.2010-9308

[157] Lambe, A.B., Martins, J.R.R.A., "Extensions to the Design Structure Matrix for
the Description of Multidisciplinary Design, Analysis, and Optimization Processes"
, Structural and Multidisciplinary Optimization, Vol. 46, No. 2, 2012, pp. 273-284,
doi:/10.1007/s00158-012-0763-y

[158] Martins, J.R.R.A., Lambe, A.B., "Multidisciplinary Design Optimization: A Sur-
vey of Architectures" , AIAA Journal, Vol. 51, No. 9, 2013, pp. 2049-2075, doi:
10.2514/1.J051895



248 BIBLIOGRAPHY

[159] Bloebaum, C.L., Hajela, P., and Sobieszczanski-Sobieski, J., "Non-Hierarchic Sys-
tem Decomposition in Structural Optimization" , Engineering Optimization, Vol. 19,
No. 3, 1992, pp. 171-186, doi:10.1080/03052159208941227

[160] Sellar, R.S., Batill, S.M., and J.E. Renaud, "Response Surface Based, Concurrent
Subspace Optimization for Multidisciplinary System Design" , 34th Aerospace Sci-
ences Meeting and Exhibit, Reno, Nevada, 15 - 18 January, 1996, AIAA Paper 96-
0714, doi:10.2514/6.1996-714

[161] Huang, C.-H., Galuski, J., and C.L. Bloebaum, "Multi-Objective Pareto Concurrent
Subspace Optimization for Multidisciplinary Design" , AIAA Journal, Vol. 45, No. 8,
2007, pp. 1894-1906, doi:10.2514/1.19972

[162] Sobieszczanski-Sobieski, J., Agte, J.S., and Sandusky Jr, R.R., "Bilevel Inte-
grated System Synthesis" , AIAA Journal, Vol. 38, No. 1, 2000, pp. 164-172,
doi:10.2514/2.937

[163] Sobieszczanski-Sobieski, J., Altus, T.D., Phillips, M., and Sandusky Jr., R.R.,
"Bilevel Integrated System Synthesis for Concurrent and Distributed Processing" ,
AIAA Journal, Vol. 41, No. 10, 2003, pp. 1996-2003, doi:10.2514/2.1889

[164] Chittick, I.R., Martins, J.R.R.A., "An asymmetric suboptimization approach to
aerostructural optimization" , Optimization and Engineering, Vol. 10, No. 1, 2009,
pp. 133-152, doi: 10.1007/s11081-008-9046-2

[165] Braun, R.D., Gage, P., Kroo, I.M., and Sobieski, I.P., "Implementation and Perfor-
mance Issues in Collaborative Optimization" , 6th AIAA, NASA, and ISSMO Sympo-
sium on Multidisciplinary Analysis and Optimization, Bellevue, WA, 4 - 6 September,
1996, doi:10.2514/6.1996-4017

[166] Haftka, R.T., Watson, L.T., "Multidisciplinary Design Optimization with Quasisep-
arable Subsystems" , Optimization and Engineering, Vol. 6, No. 1, 2005, pp. 9-20,
doi:10.1023/B:OPTE.0000048534.58121.93

[167] Tosserams, S., Etman, L.F.P., and Rooda, J.E., "Augmented Lagrangian Coordina-
tion for Distributed Optimal Design in MDO" , International Journal for Numerical
Methods in Engineering, Vol. 73, No. 13, 2008, pp. 1885-1910, doi:10.1002/nme.2158

[168] Depince, P., Guedas, B., Picard, J., "Multidisciplinary and multiobjective optimiza-
tion: Comparison of several methods" , 7th World Congress on Structural and Multi-
disciplinary Optimization, Seoul, South Korea, 2007

[169] Perez, R.E., Liu H.H.T., and Behdinan, K., "Evaluation of Multidisciplinary Op-
timization Approaches for Aircraft Conceptual Design" , 10th AIAA/ISSMO Multi-
disciplinary Analysis and Optimization Conference, 30 August - 1 September 2004,
Albany, New York, AIAA Paper 2004-4537, doi: 10.2514/6.2004-4537



BIBLIOGRAPHY 249

[170] de Boer, A., van Zuijlen, A.H., Bijl, H., "Review of coupling methods for non-
matching meshes" , Computer Methods in Applied Mechanics and Engineering, Vol.
196, No. 8, 2007, pp. 1515-1525, doi: 10.1016/j.cma.2006.03.017

[171] Thevenza, P., Blu, T., Unser, M., "Interpolation revisited" , IEE Trans, Med. Imaging
Vol. 19, No. 7, 2000, pp. 739-758, doi: 10.1109/42.875199

[172] Farhat, C., Lesoinne, M., Tallec, P., "Load and motion transfer algorithms for flu-
id/structure interaction problems with non-matching discrete interfaces: Momentum
and energy conservation, optimal discretization and application to aeroelasticity" ,
Computer Methods in Applied Mechanics and Engineering, Vol. 157, No. 1-2, 1998,
pp. 95-114, doi: 10.1016/S0045-7825(97)00216-8

[173] Cebral, J.R., Lohner, R., "Conservative load projection and tracking for fluid-
structure problems" , AIAA Journal Vol. 35, No. 4, 1997, pp. 687-692, doi:
10.2514/2.158

[174] Loehner, R., Yang, C., Cebral, J., Baum, J.D., Luo, H., Pelessone, D., Charman, C.,
"Fluid-structure interaction using a loose coupling algorithm and adaptive unstruc-
tured grids" , 29th AIAA, Fluid Dynamics Conference, Fluid Dynamics and Co-located
Conferences, Albuquerque, NM, 1995, AIAA Paper 98-2419, doi: 10.2514/6.1998-
2419

[175] Brown, S.A., "Displacement Extrapolation for CFD+CSM Aeroelastic Analysis" ,
38th Structures, Structural Dynamics, and Materials Conference, Structures, Struc-
tural Dynamics, and Materials and Co-located Conferences, Kissimmee, Florida,
1997, AIAA Paper 1997-1090, doi: 10.2514/6.1997-1090

[176] Smith, M.J., Cesnik, C.E.S., Hodges, D.H., "Evaluation of some data transfer algo-
rithms for noncontiguous meshes" , Journal of Aerospace Engineering, Vol. 13, No.
2, 2000, pp. 52-58, doi: 10.1061/(ASCE)0893-1321(2000)13:2(52)

[177] Smith, M.J., Hodges, D.H., Cesnkik, C.E.S., "Evaluation of computational algo-
rithms suitable for fluid-structure interactions" , Journal of Aircraft, Vol. 37, No. 2,
2000, pp. 282-294, doi: 10.2514/2.2592

[178] Beckert, A., Wendland, H., "Multivariate interpolation for fluid-structure-interaction
using radial basis functions" , Aerospace Science and Technology, Vol. 5, No. 2, 2001,
pp. 125-134„ doi: 10.1016/S1270-9638(00)01087-7

[179] Rendall, T.C.S., Allen, C.B., "Unified fluid-structure interpolation and mesh mo-
tion using radial basis functions" , International Journal for Numerical Methods in
Engineering, Vol. 74, 2008, pp. 1519-1559, doi: 10.1002/nme.2219

[180] Goura, G., "Time Marching Analysis of Flutter using Computational Fluid Dynam-
ics" , PhD thesis, University of Glasgow, 2001



250 BIBLIOGRAPHY

[181] Chen, P. Jadic, I., "Interfacing of fluid and structural models via innovative structural
boundary element method" , AIAA Journal, Vol. 36, No. 2, 1998, pp. 282–287, doi:
10.2514/2.7513

[182] Samareh, J.A., "Discrete Data Transfer Technique for Fluid–Structure Interaction" ,
18th AIAA Computational Fluid Dynamics Conference Miami, Florida, 25 - 28 June
2007, AIAA 2007-4309, doi: 10.2514/6.2007-4309

[183] Guruswamy, G.P., "A review of numerical fluids/structures interface methods for
computations using high-fidelity equations" , Computers and Structures, Vol. 80, No.
1, 2002, pp. 31–41, doi: 10.1016/S0045-7949(01)00164-X

[184] Wunderlich, T.F., "Multidisciplinary wing optimization of commercial aircraft with
consideration of static aeroelasticity" , CEAS Aeronautical Journal, Vol. 6, No. 3,
2015, pp. 407–427, doi: 10.1007/s13272-015-151-6

[185] Liu, Q., Jrad, M., Mulani, S.B. and Kapania, R.K., "Integrated Global Wing and
Local Panel Optimization of Aircraft Wing", , 56th AIAA/ASCE/AHS/ASC Structural
Dynamics, and Materials Conference, AIAA 2015-0137, 2015, doi: 10.2514/6.2015-
0137

[186] Doyle, S., Robinson, J., Ho1, V., Ogawa, G. and Baker, M., "Aeroelastic Op-
timization of Wing Structure Using Curvilinear Spars, Ribs (SpaRibs)" , 58th

AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
AIAA 2017-1303, 2017, doi: 10.2514/1.C032249

[187] Bach, T., "Automated sizing of a composite wing for the usage within a multidis-
ciplinary process" , Aircraft Engineering and Aerospace Technology, Vol. 88 No. 2,
2016, pp.303-310, doi: 10.1108/AEAT-02-2015-0057

[188] Kennedy, G.J., Kenway, G.W., Martins, J.R.R.A., "High Aspect Ratio Wing De-
sign: Optimal Aerostructural Tradeoffs for the Next Generation of Materials" ,
52nd Aerospace Sciences Meeting, AIAA SciTech Forum, 2014, AIAA 2014-0596, doi:
10.2514/6.2014-0596

[189] Anhalt, C., Monner, H.P., Breitbach, E., "Interdisciplinary Wing Design – Struc-
tural Aspects" , 03WAC-29, German Aerospace Center (DLR), Institute of Structural
Mechanics, doi: 10.4271/2003-01-3026

[190] Drela, M., "Integrated simulation model for preliminary aerodynamic, structural and
control-law design of aircraft" , 40th Structural Dynamics, and Materials and Co-
located Conferences, 12-15 April, 1999, St. Louis, Montana, AIAA 99-1394, doi:
10.2514/6.1999-1394

[191] Drela, M., "Method for simultaneous wing aerodynamic and structural load predic-
tion" , Journal of Aircraft, Vol. 27, No. 8, 1990, pp. 692-699, doi: 10.2514/3.25342



BIBLIOGRAPHY 251

[192] Howcroft, C., Cook, R., Calderon, D., Lambert, L., Castellani, M., Cooper, J.E.,
Lowenberg, M.H., Neild S.A., and Coetzeey, E., "Aeroelastic Modelling of Highly
Flexible Wings" , 15th Dynamics Specialists Conference, AIAA SciTech, 4-8 January
2016, San Diego, California, AIAA 2016-1798, doi: 10.2514/6.2016-1798

[193] Dababneh, O., Kayran, A., "Design, analysis and optimization of thin walled semi-
monocoque wing structures using different structural idealization in the preliminary
design phase", , International Journal of Structural Integrity, Vol. 5, No. 3, 2014,
pp.214-226, doi: 10.1108/IJSI-12-2013-0050

[194] Elham, A., La Rocca, G., van Tooren„ "Development and implementation of an
advanced, design-sensitice method for wing weight estimation" , Aerospace Science
and Technology, Vol. 29, No. 1, 2013, pp. 100-113, doi: 10.1016/j.ast.2013.01.012

[195] Elham, A., van Tooren, M.J.L., "Toward Wing Aerostructural Optimization Using
Simultaneous Analysis and Design Strategy" , 58th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, AIAA SciTech Forum 9 - 13 January
2017, Grapevine, Texas, AIAA Paper 2017-0802, doi: 10.2514/6.2017-0802

[196] Clarkson, P.J., Simons, C., and Eckert, C., "Predicting Change propagation in com-
plex design" , Journal of Mechanical Design, Vol. 126, No. 5, 2004. pp. 788-797,
doi:10.1115/1.1765117

[197] Nadarajah, S., and Jameson A., "A Comparison of the Continuous and Dis-
crete Adjoint Approach to Automatic Aerodynamic Optimization" , 38th AIAA
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2000, AIAA 2000-0667,
doi:10.2514/6.2000-667

[198] Kennedy, M.C., O’Hagan, A., "Predicting the output from complex computer code
when fast approximations are available" , Biometrika Vol. 87, No. 1, 2000, pp. 1–13,
doi:10.1093/biomet/87.1.1

[199] Demange, J., Savill A.M., and Kipouros, T., "Multifidelity Optimization for High-
Lift Airfoils" , 54th AIAA Aerospace Sciences Meeting, AIAA Scitech Forum, San
Diego, California,2016, AIAA Paper 2016-0557, doi:10.2514/6.2016-0557

[200] Demange, J., Savill, A.M., and Kipouros, T., "A Multifidelity Multiobjective Op-
timization Framework for High-Lift Airfoils" , AIAA AVIATION Forum, 17th AIAA
ISSMO Multidisciplinary Analysis and Optimization Conference, Washington, DC,
2016, Paper AIAA 2016-3367, doi: 10.2514/6.2016-3367

[201] Jarrett, J.P., Ghisu, T., "Balancing Configuration and Refinement in the Design of
Two-Spool Multistage Compression Systems" , ASME Journal of Turbomachinery,
Vol. 137, No. 9, 2015, doi: 10.1115/1.4030051

[202] Leifsson, L., Koziel, S., "Multi-fidelity design optimization of transonic air-
foils using physics-based surrogate modeling and shape-preserving response pre-
diction" , Journal of Computational Science, Vol. 1, No. 1, 2010, pp. 98–106,
doi:10.1016/j.procs.2010.04.146



252 BIBLIOGRAPHY

[203] Perez, R.E., Janses, P.W., and Martins, J.R.R.A., "pyOpt: a Python-based object-
oriented framework for nonlinear constrained optimization" , Structural and Mul-
tidisciplinary Optimization, Vol. 45, No. 1, 2012, pp. 101-118, doi:10.1007/s00158-
011-0666-3

[204] Rosenbrock, H.H., "An automatic method for finding the greatest or least value of a
function" , The Computer Journal, Vol. 3, No. 3, 1960, pp. 175–184, ISSN 0010-4620,
doi:10.1093/comjnl/3.3.175

[205] Shang Y.W., Qiu Y.H., "A Note on the Extended Rosenbrock Function" , Evolution-
ary Computation, Vol. 14, No. 1, 2006, pp.119-126, 10.1162/evco.2006.14.1.119

[206] Kontogiannis, S.G., Savill, M.A., and Kipouros, T., "Multiobjective aerostructural
optimization for efficient transport wing conceptual design" , 59th AIAA/ASCE/AH-
S/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Fo-
rum, Kissimmee, Florida, 2018, AIAA Paper 2018-0104, doi:/10.2514/6.2018-0104

[207] Tedford, N.P., Martins, J.R.R.A., "Benchmarking multidisciplinary design optimiza-
tion algorithms" , Optimization and Engineering, Vol. 11, No. 1, 2010, pp.159-183,
doi:10.1007/s11081-009-9082-6

[208] ANSYS FLuent 14.5, "User’s Manual" , ANSYS Inc

[209] Roache, P.J., "Verification and validation in computational science and engineering"
, Hermosa, 1998, ISBN 0913478083, 9780913478080

[210] Wilcox, D.C., "Turbulence modeling for CFD" , La Cãnada, Calif. : DCW Indus-
tries, c2006; 3rd ed., ISBN-10: 1928729088

[211] Mitchell, D.J., "VGK method for two-dimensional aerofoil sections, Part 1: princi-
ples and results" , ESDU 96029, Issued October 1996 with Amendments A and B,
April 2004, ISBN: 9780856799938

[212] Garabedian, P.R., Korn, D.G., "Analysis of transonic aerofoils" , Commu-
nications on Pure and Applied Mathimatics, Vol. 24, 1971, pp. 841-851, doi:
10.1002/cpa.3160240608

[213] Kontogiannis, S.G., Savill, M.A., and Kipouros, T., "A Multi-Objective Multi-
Fidelity framework for global optimization" , 58th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, AIAA SciTech Forum, Grapevine,
Texas, 2017, AIAA Paper 2017-0136, doi:10.2514/6.2017-0136

[214] Wild, J., "Multi-objective constrained optimisation in aerodynamic design of high-
lift systems" , International Journal of Computational Fluid Dynamics, Vol. 22, No.
3, 2008, pp. 153-168, doi: 10.1080/10618560701868420

[215] Ali, N., Behdinan, K., "Optimal geometrical design of aircraft using genetic algo-
rithms" , Article in Transactions - Canadian Society for mechanical Engineering, Vol.
26, No. 4, 2003, pp. 373-388, doi: 10.1139/tcsme-2002-0022



BIBLIOGRAPHY 253

[216] Hilbert, R., Janiga, G., Baron, R., and Thevenin, D., "Multi-objective shape op-
timization of a heat exchanger using parallel genetic algorithms" , International
Journal of Heat and Mass Transfer, Vol. 49, No. 15-16, 2006, pp. 2567-2577, doi:
10.1016/j.ijheatmasstransfer.2005.12.015

[217] Liem, R.P., Kenway, G.K.W., Martins, J.R.R.A., "Multimission Airfraft Fuel-Burn
Minimization via Multipoint Aerostructural Optimization" , AIAA Journal, Vol. 53,
No. 1, 2015, pp. 104-122, doi:10.2514/1.J052940

[218] Kipouros, T., Molinary, M., Dawes, W.N., Parks, G.T., Savill, M., and Jenkins, K.W.,
"An investigation of the potential for enhancing the computational turbomachinery
design cycle using surrogate models and high performance parallelisation" , GT2007-
28106, Proceedings of ASME Turbo Expo 2007 Power for Land, Sea and Air, Vol. 6,
2007, pp. 1415-1424, doi:10.1115/GT2007-28106

[219] Conn, A. R., Scheinberg, K., and Vicente, L. N., "Global Convergence of Gen-
eral Derivative-Free Trust-Region Algorithms to First and Second-Order Critical
Points" , SIAM Journal on Optimization, Vol. 20, No. 1, 2009, pp.387-415, doi:
10.1137/060673424

[220] March, A. and Willcox, K., "Provably Convergent Multifidelity Optimization Algo-
rithm Not Requiring High-Fidelity Derivatives" AIAA Journal, Vol. 50, No. 5, 2012,
pp.1079-1089, doi: 10.2514/1.J051125

[221] Kontogiannis, S.G., Demange, J., Savill, M.A., and Kipouros, T., "A compar-
ison study of two multifidelity methods for aerodynamic optimization" , 59th

AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
AIAA SciTech Forum, Kissimmee, Florida, 2018, AIAA Paper 2018-0415, doi:
10.2514/6.2018-0415

[222] Thibert, J.J., "The Garteur High Lift Research Programme" High Lift System Aero-
dynamics, AGARD CP-515, Sept. 1991, pp. 16-1 - 16-21

[223] Cao, Y., Smucker, B.J., and Robinson, T.J., "On using the hypervolume indicator
to compare pareto fronts: Applications to multi-criteria optimal experimental de-
sign" , Journal of Statistical Planning and Inference, Vol. 160, 2015, pp. 60-74,
doi: 10.1016/j.jspi.2014.12.004

[224] Flaig, A. and Hilbilg, R., "High-Lift Design for Large Civil Aircraft", , High Lift
System Aerodynamics AGARD CP-515, Sept. 1991, pp.31-1 31-12

[225] Trapani, G., "The Design of High-Lift Aircraft Configurations through Muti-
Objective Optimisation" , Ph.D. thesis, Cranfield University, March 2014.

[226] "ANSYS, Fluent 14.5" , User’s Manual, Lebanon, 2013.

[227] "ANSYS, ICEM CFD 14.5" , User’s Manual, Lebanon, 2013.



254 BIBLIOGRAPHY

[228] Rumsey, C.L. and Ying, S.X., "Prediction of High Lift: Review of Present CFD
Capability" Progress in Aerospace Sciences, Vol. 38, No. 2, 2002, pp.145-180, doi:
10.1016/S0376-0421(02)00003-9

[229] Drela, M., "Newton Solution of Coupled Viscous/Inviscid Multi-element airfoil
Flows" , 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, Fluid Dy-
namics and Co-located Conferences, Seattle, Washington, doi: 10.2514/6.1990-1470
AIAA-90-1470

[230] van Dam, C.P., "The Aerodynamic Design of Multi-Element High-Lift Systems for
Transport Airplanes" Progress in Aerospace Sciences, Vol. 38, No. 2, 2002, pp.101-
144

[231] Inselberg, A. and Dimsdale, B., "Parallel Coordinates" Human-Machine Interactive
Systems, Springer, 1991, pp. 199-233, doi: 10.1016/S0376-0421(02)00002-7

[232] Leoviriyakit, K., "Wing Planform Optimization via an adjoint method" , PhD thesis,
Stanford, 2005

[233] Martins, J., Alonso, J., and Reuther, J., "High-Fidelity Aerostructural Design Opti-
mization of a Supersonic Business Jet" , Journal of Aircraft, Vol. 41, No. 3, 2004, pp.
523-530, doi: 10.2514/1.11478

[234] Kenway, G.K.W., Martins, J.R.R.A., "Multipoint High-Fidelity Aerostructural Opti-
mization of a Transport Aircraft Configuration" , Journal of Aircraft, Vol. 51, No. 1,
2014, pp. 144-160, doi: 10.2514/1.C032150

[235] Vassberg, J., Dehaan, M., Rivers, M. and Wahls, R., "Development of a Common
Research Model for Applied CFD Validation Studies" , 26th AIAA Applied Aerody-
namics Conference, Guidance, Navigation, and Control and Co-located Conferences,
18-21 August 2008, AIAA Paper 2008-6919, doi:10.2514/6.2008-6919

[236] Lyu, Z., Kenway, G.K.W., Martins, J.R.R.A., "RANS-based ASO of the CRM wing"
, AIAA Journal, Vol. 53, No. 4 ,2015, pp. 968-985, doi: 10.2514/1.J053318

[237] Niu, M. C., "Airframe Structural Design" , Hong Kong Conmilit Press limited, 1988,
ISBN: 962712804X

[238] Kreisselmeier, G., Steinhauser, R., "Systematic Control Design by Optimizing a
Vector Performance Index" , IFAC Proceedings Volumes, Vol. 12, No. 7, 1979, pp.
113-117, doi:10.1016/S1474-6670(17)65584

[239] Roe, P.L., "Approximate riemann solvers, parameter vectors and difference
schemes" , Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357-372,
doi:10.1016/0021-9991(81)90128-5

[240] O. Dababneh, "Multidisciplinary Design Optimisation for Aircraft Wing Mass Esti-
mation" , PhD Thesis, Cranfield University, April 2016



BIBLIOGRAPHY 255

[241] "ANSA v17.1.0 Theory guide" , Beta CAE Systems, 2016

[242] Portapas, V., Yusuf, S.Y., Lone, M.M., and Coetzee, E., "Modelling Framework for
Handling Qualities Analysis of Flexible Aircraft" , AIAA Modeling and Simulation
Technologies Conference, AIAA SciTech Forum, Grapevine Texas, 2017, AIAA 2017-
0577, doi: 10.2514/6.2017-0577

[243] Gazaix, A., Gallard, F., Gachelin, V., Druot, T., Grihon, S., Ambert, V., Guenot,
D., Lafage, R., Vanaret, C., Pauwels, B., Bartoli, N., Lefebvre, T., Sarouille, P., Des-
fachelles, N., Brezillon, J., Hamadi, M. and Gurol, S. , "Towards the Industrialization
of New MDO Methodologies and Tools for Aircraft Design" , 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, AIAA AVIATION Forum,
Denver, Colorado, 2017, AIAA Paper 2017-3149, doi:10.2514/6.2017-3149

[244] Liem, R.P., Mader, C.A., Lee, E. and Martins, J.R.R.A., "Aerostructural design op-
timization of a 100-passenger regional jet with surrogate-based mission analysis" ,
13th Aviation Technology, Integration, and Operations Conference, AIAA AVIATION
Forum, Los Angeles, California, 2013, AIAA Paper 2013-4372, doi:10.2514/6.2013-
4372

[245] Khurana, M.S., Winarto, H., Sinha, A.K., "Aerofoil Geometry Parameterisation
through Shape Optimizer and Computational Fluid Dynamics" , AIAA paper 2008-
295, Jan. 2008, doi:10.2514/6.2008-295

[246] Martins, J.R.R.A., Alonso, J.J., and Reuther, J.J., "A coupled-adjoint sensitivity
analysis method for high-fidelity aero-structural design" , Optimization and Engi-
neering, Vol. 6, No. 1, 2005, Page 33-62, doi:10.1023/B:OPTE.0000048536.47956.62

[247] Marriage, C.J., Martins, J.R.R.A., "Reconfigurable Semi-Analytic Sensitivity Meth-
ods and MDO Architectures within the πMDO Framework" , 12th AIAA/ISSMO Multi-
disciplinary Analysis and Optimization Conference, 10 - 12 September 2008, Victoria,
British Columbia, Canada, AIAA Paper 2008-5956

[248] Sobieszczanski-Sobieski, J., "Sensitivity of Complex, Internally Coupled Systems"
, AIAA Journal, Vol. 28, No. 1, 1990, pp. 153-160, doi:10.2514/3.10366

[249] Brown, N.F., Olds, J.R., "Evaluation of Multidisciplinary Optimization Techniques
Applied to a Reusable Launch Vehicle" , Journal of Spacecraft and Rockets, Vol. 43,
No. 6, 2006, pp. 1289-1300, doi:10.2514/1.16577

[250] Sturdza, P., "An Aerodynamic Design Method For Supersonic Natural Laminar Flow
Aircraft" , PhD thesis, Stanford, 2004, 3781-2004

[251] Makinen, R.A.E., Periaux, J., and Toivanen, J, "Multidisciplinary shape optimiza-
tion in aerodynamics and electromagnetics using genetic algorithms" , Interna-
tional Journal for Numerical Methods in Fluids, Vol. 30, No. 2, 1999, pp. 149–159,
doi:10.1002/(SICI)1097-0363(19990530)30:2<149::AID-FLD829>3.0.CO;2-B



256 BIBLIOGRAPHY

[252] Reist, T.A., Ziing, D.W., "Aerodynamic Shape Optimization of a BWB regional
transport for a short range mission" , 31st AIAA Applied Aerodynamics Conference,
San Diego, 24-27 June 2013, AIAA 2013-2414, doi: 10.2514/6.2013-2414

[253] Mader, C.A., Martins, J.R.R.A., "Stability-Constrained Aerodynamic Shape Opti-
mization of Flying Wings" , AIAA Journal, Vol. 50, No. 5, 2013, pp. 1431-1449,
doi:10.2514/1.C031956

[254] Mader, C.A., Martins, J.R.R.A., "Computing Stability Derivatives and Their Gradi-
ents for Aerodynamic Shape Optimization" , AIAA Journal, Vol. 52, No. 11, 2014,
pp. 2533-2546, doi: 10.2514/1.J052922



257

Appendix

A. List of Conference Papers

· Kontogiannis, S.G., Savill, M.A., and Kipouros, T., "A Multi-Objective Multi-Fidelity
framework for global optimization" 58th AIAA/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference, AIAA SciTech Forum, 2017, AIAA Pa-
per 2017-0136, doi:10.2514/6.2017-0136

· Kontogiannis, S.G., Demange, J., Savill, M.A., and Kipouros, T., "A comparison study
of two multifidelity methods for aerodynamic optimization", 2018 AIAA/ASCE/AH-
S/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech
Forum, 2018, AIAA 2018-0415, doi:/10.2514/6.2018-0415

· Kontogiannis, S.G., Savill, M. A., and Kipouros, T., "Multiobjective aerostructural op-
timization for efficient transport wing conceptual design", 2018 AIAA/ASCE/AH-
S/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech
Forum, 2018, AIAA 2018-0104, doi:/10.2514/6.2018-0104

· Kontogiannis, S.G., Savill, M.A., and Kipouros, T., "Global Multiobjective optimization
of a long range BWB configuration", 2018 AIAA Aviation Forum, AIAA under sub-
mission

257



258 BIBLIOGRAPHY

B. Posters

Airbus PhD Day 2016

Airbus 
PhD day 
2016 

Getafe, 20th October 2016 

Rapid Multidisciplinary Design 

Optimization 

Student name : Spyridon Kontogiannis 

Supervisors: Prof. M. Savill, Dr. T. Kipouros (Cranfield University) 

         T. Engelbrecht (AIRBUS) 

Case examined Heavy MDO  case 

HF calls for almost 
HF optimality 

Total 
Cost 

(mins) 

HF 
cost 

LF 
cost 

Total Cost 
(mins) 

CFD  
Based 

100 400 300 - 30000 

HF EI 10 40 300 10 3000 

Mod 
MF EI 

7 (+21 LF calls) 42 300 10 2310 

Figure 8.2: Poster from Airbus PhD Day 2016.



BIBLIOGRAPHY 259

Airbus PhD Day 2017

Airbus
PhD day
2017

Bristol, 6h September 2017

Rapid Multidisciplinary Design 

Optimisation

Student name : Spyros Kontogiannis

Supervisors: M. A. Savill, T. Kipouros

T. Engelbrecht

Nice and all
but… WHY

?

HEY, RAPID MDO?
..BUT,

WHY?

PhD Day
2017!

WELL, FOR STARTERS.. MDO IS MORE EFFICIENT THAN SEQUENTIAL
OPTIMISATION, EXPLORES INTERDISCIPLINARY INTERACTIONS

AND  LEADS TO SUPERIOR DESIGNS . . .

..YOU DON’T
SAY…!

YEAP! AND HERE’S

THE WHY (YOU NEED IT) & THE HOW MY METHOD

• MDO IS BETTER THAN SEQUENTIAL OPT. (FACT)

• METHOD SUPPORTS DECISION MAKING

(NOT JUST OPTIMISATION)

• ACCELERATES MDO PROCESS & IMPROVES RELIABILITY 

OF CONCEPTUAL STAGE

SAME BLACK-BOX 
METHODOLOGY ADAPTS TO 
DIFFERENT MDO ARCHITECTURES

• MULTIFIDELITY & SURROGATE TOOLS REDUCE COSTS

(VERY EFFICIENT WHEN FEW DOMINANT VARIABLES

A.K.A. CONCEPTUAL DESIGN)

Sequential
MDO

• EFFICIENT EXPLORATION

• MULTI-OBJECTIVE TRADEOFF

INFORMATION

• ADAPTABLE TO INDUSTRY

NEEDS & TOOLS

HOW WILL
YOU ACHIEVE ALL

THESE ?
SON, YOU

TALK TOO
MUCH..

NOW MOST
PEOPLE JUST DO 
GRADIENT BASED 

MDO..

WELL, IT’S SIMPLE ACTUALLY. . . 

AFTER A MULTIFIDELITY
(MF) SAMPLING, I TRAIN AN MF
KRIGING TO SEARCH FOR THE

POINTS WITH THE MAX. 
EXPECTED IMPROVEMENT.

THEN, I RUN AN MDA OR 
AN ASO LOOP FOR 

THESE POINTS.

I CALL IT
“VRADIPUS”*

[1]

[1] “An asymmetric suboptimization approach to aerostructural optimization”,
Chittick and Martins, Structural and Multidisciplinary Optimization, 2008

* Variable Reliability Aerospace Design Integration Process Using Surrogates

WOW! WAIT!!!
KRIGING ?

FOR MF?

FOR
MF??

SURE YOU DON’T MEAN
CO-KRIGING SPYROS??

YOU KNOW KRIGING IS
A VERY SPECIFIC 

THING !!!
YES, YES, SURE!!

I KINDA MODIFIED IT
TO TAKE MF DATA![2]

IT’S TRUE!

[2] “A Multi-Objective Multi-Fidelity framework for global optimization”, S. G. Kontogiannis, T. Kipouros
and A.M. Savill, 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

AND HERE’S WHAT I AM 
WORKING ON THIS PERIOD…

A BWB GEOMETRY AND THE AEROSTRUCTURAL OPTIMISATION
OF THE CRM WING

AERO 
LOADS

STRUCTURAL
DEFORMATION

HERE’S A BUNCH OF
FIGURES  FROM MY RECENT

RESULTS

A RAE 2822 AIRFOIL
CASE IN UNCONSTRAINED

AND MULTIOBJECTIVE
FORMULATION

I ALSO CHECK HOW 
THE METHOD PERFORMS 
FOR MORE DESIGN

VARIABLES

I USED THE ROSENBROCK

FUNCTION HERE

YEAH, OK! BUT WHAT ABOUT MDO?
WHAT ABOUT CONSTRAINTS?
THIS IS THE INDUSTRY 

YOU KNOW!!

DON’T WORRY!
I’VE GOT TWO DIFFERENT 
CONSTRAINT HANDLING

METHODS UP AND
RUNNING!   

I’VE TESTED THEM ON
A LIFT CONSTRAINED RAE 2822

CASE

PLUS, THE CONSTRAINED
SELLAR MDO TEST CASE WORKS

GREAT!

(a) Probability of
Feasibility

(b) Penalty on EI

OK, SO..

TO CONCLUDE . . .

• IT IS FASTER THAN ANY HIGH FIDELITY (HF) 

GRADIENT FREE CODE (THAT ‘VE TRIED..)

• REQUIRES LESS HF CALLS THAN THE 

HF EI METHOD IF THE LF ERROR TOOL 

IS SMOOTH 

• PROVIDES BALANCED EXPLORATION ATTRIBUTES

• THE METHOD IS MORE ACCURATE THAN TYPICAL

LOW FIDELITY (LF) CONCEPTUAL STUDIES AS IT

REACHES A HIGH FIDELITY OPTIMUM 

• THE KRIGING MODIFICATION WORKS!

• IT EFFICIENTLY USES TWO CONSTRAINT

HANDLING METHODS

• IT IS EXTENDED FOR DIFFERENT MDO

ARCHITECTURES

• IT ADAPTS TO ANY INDUSTRIAL PRACTICE

OR TOOL

AHH. . . THE  FUTURE . . .

• PARAMETERISE 

AEROSTRUCTURAL

PROCESS

• PARAMETERISE BWB

SHAPE OPTIMISATION

• WRITE THESIS

• WRITE PAPERS

• GO HOLIDAYS

( ? ? ? )

• GET A JOB

WORK & COMICS BY 

SPYROS 

KONTOGIANNIS

• GET THE PHD

Figure 8.3: Poster from Airbus PhD Day 2017.
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C. Modal Analysis of the Common Research Model

The aerostructural optimisation problem of Chapter 7 used the structural modes as a means
to constraint the design of the wingbox to a not too flexible or too stiff configuration. This
section provides qualitative examples of the typical first mode shape of the wingbox in the
figures that follow



BIBLIOGRAPHY 261

(a) Non-excited state.

(b) Mode 1.

(c) Mode 2.

Figure 8.4: Modal shapes of datum common research model



262 BIBLIOGRAPHY

(a) Mode 3.

(b) Mode 4.

(c) Mode 5.

Figure 8.5: Modal shapes of datum common research model
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(a) Mode 6.

(b) Mode 7.

(c) Mode 8.

Figure 8.6: Modal shapes of datum common research model
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