
1

Optimization of a Robust Reinforcement
Learning Policy

Bilkan Ince1 and Hyo-Sang Shin2
School of Aerospace, Transport and Manufacturing, Cranfield University, MK430AL, U.K.

Antonios Tsourdos3,
School of Aerospace, Transport and Manufacturing, Cranfield University, MK430AL, U.K.

 A major challenge for the integration of unmanned air vehicle (UAV) in the current civil
applications is the sense-and-avoid (SAA) capability and the consequent possibility of mid-
air collision avoidance. Although UAS have been shown to be efficient under different and
varied conditions, their safety, reliability, and compliance with aviation regulations remain
to be proven. In autonomous collision avoidance, UAS sense hazards with the sensors
equipped on them and make decisions on manoeuvres autonomously for collision avoidance
at the minimum safe time before impact. Thus, it is required for each individual UAS to have
capabilities to recognize urgent threats and undertake the evasive manoeuvres immediately.
Most of the current sense and avoid algorithms are composed of separated obstacle detection
and tracking algorithm and decision-making algorithm on avoidance manoeuvre.
Implementing artificial intelligence (AI), reinforcement learning (RL) algorithm combines
both sense and avoid functions through state and action space. An autonomous agent learns
to perform complex tasks by maximizing reward signals while interacting with its
environment. It may be infeasible to test a policy in all contexts since it is difficult to ensure it
works as broadly as intended. In these cases, it is important to trade-off between performance
and robustness while learning a policy. This work develops an optimization method for a
robust reinforcement learning policy for a nonlinear small unmanned air systems (sUAS), in
AirSim using a model-free architecture. Using an on-line trained reinforcement learning
agent, the difference of an optimized robust reinforcement learning (RRL) policy together
with a conventional RL and RRL algorithm will be reproduced.

I. INTRODUCTION
 In the current climate, unmanned air vehicles (UAV) are in growing demand due to their autonomous
capabilities to accomplish various operations such as medical deliveries, commercial package delivery, critical
infrastructure inspection, and search and rescue operations. It is required for each individual unmanned aerial system
(UAS) to have capabilities to detect urgent threats while deciding on collision avoidance manoeuvres. To enhance
the sense and avoid performance, it is required to develop an algorithm which makes decisions immediately and
directly from sensor measurements. Reliable integrated sense and avoid algorithm for UAS is in growing importance
for many autonomous applications. In particular, safety within detect and avoid (DAA) presents challenges, due to
the variety of airborne obstacles and the need to find non-cooperative detection technologies that are accurate and
have a desirable response. Combining image processing and avoidance, reinforcement learning provides a novel
method for DAA capabilities for UAS, integrating both detect and avoid scheme and eliminating the lag between
the implementation of many algorithms and integrating these into one individual algorithm.

 Reinforcement learning (RL) aims to improve the action of an agent based on the reward received from an
environment [1]. The trained RL agent performs an action to obtain reward from the environment and adjusts its
policy based on the reward. By continuously communicating with the synthetic environment, the agent can self-

1Doctoral Researcher , School of Aerospace, Transport and Manufacturing, Cranfield University, b.g.ince@cranfield.ac.uk
2Professor , School of Aerospace, Transport and Manufacturing,Cranfield University, h.shin@cranfield.ac.uk
3Professor, School of Aerospace, Transport and Manufacturing, Cranfield University, a.tsourdos@cranfield.ac.uk

mailto:b.g.ince@cranfield.ac.uk
mailto:a.tsourdos@cranfield.ac.uk
h.binning
Text Box
Published by AIAA. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0). The final published version (version of record) is available online at DOI:10.2514/6.2023-0967. Please refer to any applicable publisher terms of use.

h.binning
Text Box
In: AIAA SciTech Forum 2023, 23-27 January 2023, National Harbor, Maryland, USADOI: 10.2514/6.2023-0967

2

learn the optimal policy to obtain the maximum cumulative reward [2]. RL is based on solving the current problem
using the Markov Decision Process (MDP), and through obtaining an optimal policy for this problem [3]. MDP
determines the probability that the agent will move from one state to another, this can be defined through utilising
the concept of state-transition probabilities. In practice, the estimation of state-transition probabilities could
introduce many inaccuracies. These transition errors may limit the application of MDP in new environments and
lead to model deteriorations. Therefore, the use of finite-state and finite-action can be an important factor in decision
making aspect of the uncertainties within the state transition probability matrix[4].

 An example of the application challenge for a reinforcement learning agent includes using a drone in various
tasks. Using drones for payload operations in a windy environment, at the same time flying the drone in indoor
environment. The new environmental conditions and the possible deterioration of the drone components due to their
usage may result in a poor, if not catastrophic, performance of the learned controller [5]. Furthermore, incorporating
a reinforcement learning agent to experimental tests presents further challenges due to their sensitivity to
distributional model parameters, typically unknown, which will require estimation. All these factors mentioned
above will produce small adversarial perturbations, external disturbances, and unpredictable sensing noise which
will cause vulnerabilities and uncertainties in action-state values. Considering robustness alongside performance,
agents can limit performance degradation due to different training and testing environments.

 Contributions. This paper addresses the issue of uncertainty within MDPs’: A Markov decision problem has
been considered in which the transition probabilities themselves are uncertain and seek a robust decision for it.
While many works investigating the performance/robustness trade-off exist in both the RL and control theory
literature for the model-based setting, few results are known for the model-free scenario. There are several real-
world scenarios where models are not available, inaccurate, or too expensive to use, however robustness is
fundamental. Thus, in this paper, the first data-efficient, robust, model-free RL method-based optimization of a
robust learning policy is introduced. In particular, these are our individual contributions:

• The formulation of the robust, model-free RL as an optimization problem.
• Consideration of the Markov decision problem in which the transition probabilities themselves are uncertain

and seek a robust decision for it.
• Proposal of the uncertainty sets on existing RL frameworks for learning robust policies.
• Efficient problem solving with expected hyper-volume improvement (EHI).
• Introduction of a disturbance model for uncertain parameters within MDPs’.
• Demonstrate that the proposed non-robust policy outperforms the performance of optimization for robustness.

 Related Work. In control theory, robustness has been a widely investigated topic [6], and standard robust
control techniques for linear systems include loop transfer recovery, H∞ control. For nonlinear systems, robust
control techniques exist with some utilizing feedback linearization and backstepping control for neural networks
[7]. However, these control strategies when implemented in big nonlinear systems have not achieved better
performances due to the high nonlinear behaviour, the presence of parametric uncertainties and unmodeled
dynamics, and many assumptions that must be considered for obtaining simplified mathematical models for control
purpose design [8]. In [9], robust backstepping control for nonlinear systems using neural networks is implemented
with the need of parameter assumption by estimating certain nonlinear function for each stage of the neural net.

 The rest of the paper is as follows: Section 2, defines the nominal problem for reinforcement learning (RL) using
MDPs’ for both a conventional RL and a robust RL, and a definition of the neural network structure. Furthermore,
the robust control problem is devised by defining uncertainties and modelling these uncertainties through a
disturbance model. Section 3 expands the robust RL and a proposed optimization method on robustness is
considered, particularly implementing a protagonist and an adversarial agent. A pseudo algorithm is represented to
depict the proposed optimization methodology. Section 4 discusses the RL and robust RL simulation training
process and results for robust policy optimization. Finally in section 5, conclusions are presented regarding the
optimization and robust control results.

3

II. REINFORCEMENT LEARNING ARCHITECTURE SETUP
A. Nominal Problem
 The mathematical model of RL problems can be expressed using Markov equations, proposed by Bellman [10].
The decision-making process is constructed combining Markov reward process, Bellman equation and Markov
properties. There are 5-tuples in which derives from the relationship of the agent and the environment for an MDP
[1] S, the state that an agent can attain in a specific environment; A, the action that an agent must execute to move
from one state to another; 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), the probability of executing an action 𝑎 to move an agent from states 𝑠 to
states 𝑠′; 𝑅(𝑠, 𝑎, 𝑠′) the received reward by an agent after executing action and transition from states 𝑠; 𝛾 the
discount factor that determines the importance of current and future rewards.

 Q-Learning. After constructing the problem as an MDP model, the next step is to solve for the optimal policy.
This maximizes the value of all states at the same time. More common techniques for deriving the optimal policy
are by using on and off policies. Q-learning [11] and Sarsa [12] are the most known RL. Discrete time steps are
defined as follows: 𝑡 =1,2,3…, where at each time step 𝑡, the agent interacts with the environment to obtain the
environment state 𝑆𝑡. Given a reward function 𝑟𝑡 and the current state 𝑆𝑡, the agent selects an action 𝑎𝑡 till the next
state of 𝑆𝑡+1. This process is looped continuously until the agent reaches the terminal, supposing the episode is from
time 𝑡 to 𝑇; giving the cumulative reward below:

𝑅𝑡 = ∑ 𝛾𝑡
′−𝑡 𝑟𝑡

𝑇

𝑡′=𝑡

 (1)

where 𝛾 is a discount factor, 0 ≤ 𝛾 ≤ 1, this allows the adjustment of the weight of the future rewards to be relayed
on to the cumulative reward. Through maximizing the expected cumulative reward, the control policy, 𝜋(𝑎𝑡 | 𝑠𝑡),
can be formulated as given in Eq. (2-3), where 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, …) is the trajectory sampled using policy 𝜋.

𝜋∗ = 𝑎𝑟𝑔max
𝜋
𝐸𝜏~𝜋[𝑅(𝜏)] (2)

𝜋∗ = 𝑎𝑟𝑔max
𝜋
𝐸𝜏~𝜋 [∑𝛾𝑡

′−𝑡 𝑟𝑡

∞

𝑡=0

 | 𝜋] (3)

 The action value function represents the cumulative reward obtainable by the agent if the agent executes action
𝑎 at state 𝑠 and always follows the policy π to the end of the episode given above and it is defined as follows:

𝑄(𝑠, 𝑎) = 𝐸[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] (4)

𝑄(𝑠, 𝑎) = 𝐸 [∑ 𝛾𝑡
′−𝑡 𝑟𝑡

𝑇

𝑡′=𝑡

| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] (5)

 In a model-free setting, the use of Q-Value enables updated state estimation from the action/value function
represented as, 𝑄(𝑠, 𝑎) ← 𝑄𝜋(𝑠, 𝑎) + 𝛼[𝑅𝑡+1 + 𝛾max

a′
𝑄(𝑠′, 𝛼′) − 𝑄(𝑠, 𝑎)] . Although this architecture can

eventually achieve reasonable results, it tends to overestimate the action values and takes a long time to train.
Expanding the scope of Q-learning [2], Deep Q-Network (DQN) is shown to be directly trainable from raw images
[13], it provides a valid option for a detect and avoid (DAA) algorithm. The DQN has two networks with the same
hyperparameters. The evaluation network uses 𝑄(𝑠, 𝑎; 𝜃) as the Q function to approximate the action value function
while the target network uses 𝑄(𝑠, 𝑎; 𝜃−), where 𝜃 and 𝜃− define the parametric states for the evaluation network
and target network, respectively. DQN solves the problem of overestimation of action values, the updated Q-value
can be represented as follows:

𝑄(𝑠, 𝑎) ← 𝑄𝜋(𝑠, 𝑎) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑠
′, 𝛼′) − 𝑄(𝑠, 𝑎)] (6)

𝑎 = max
a′
𝑄(𝑠′, 𝛼′) (7)

𝑞𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑄
′(𝑠′, 𝛼) (8)

4

 𝑄 function is selecting the best action 𝑎 with a maximum 𝑄–value of the next state. 𝑄′ function is for calculating
expected 𝑄-value by using the action 𝑎. Learning rate, 𝛼, is neglected when updating the Q-values as this will be
utilized in the optimization stage of parameter updates. In traditional DQN only one stream of fully connected layers
is constructed after the convolution layers to estimate the Q-value of each action-state pair, given the current state.
However, in the duelling network, two streams of fully connected layers are built to compute the value and
advantage functions separately, [14] proposes a double DQN (DDQN) which uses two different deep neural
networks, Deep Q-Network (DQN) and target network, 𝑄𝑡𝑛𝑒𝑡.

𝑄𝑞𝑛𝑒𝑡(𝑠, 𝑎) ← 𝑅𝑡+1 + 𝛾𝑄(𝑠
′, 𝛼′) (9)

𝑎 = max
a′
𝑄𝑞𝑛𝑒𝑡(𝑠

′, 𝛼′) (10)
𝑞𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑄𝑡𝑛𝑒𝑡

′(𝑠′, 𝛼)
 (11)

 The work of [15], combines the ideas of duelling network and double deep Q-network for two streams of fully
connected layers which are finally combined for computing Q-values. Specifically, it has three convolutional layers,
specified with filter size (height, width, channel), and three fully connected layers for two streams of duelling
architecture.
 The DDQN structure for a depth image classifier can be represented as shown in Fig. 1, consisting of depth
image prediction network and Q network. Within the Q network, there are two fully connected layers, two output
layers and the action space.

8

x

1
0

x

6
4

1
6

x

2
0

x

3
2

8

x

1
0

x

6
4

Convolutional

Neural Network

Q Network

F
C

F
C

1

Value

2

A
c
t
i
o
n

S
p
a
c
e

Q
-
v
a
l
u
e

Depth Prediction

Network

Fig. 1 DDQN Model Architecture with depth prediction and Q- Network structures.

B. Robust Control Problem
 Recently, robustness has drawn attention in data-driven settings, giving rise to the field of robust model-based
RL. Robust Markov decision processes study the RL problem when the transition model is subject to known and
bounded uncertainties [5]. In [16] the use of parametric uncertainties is considered, mostly using model-based
methods. Therefore, formulating the uncertainties within a reinforcement learning agent is necessary to achieve a
more robust dynamic system. Three types of uncertainties can be modelled to create a robust architecture: Model,
Parameter and Inherent.
 Parameter uncertainty, u’parameter, arises when the model parameter values are specified under imprecise
knowledge or lack of direct measurements. States and actions are parameter dependent, and the objective is to
determine the optimal parameters along with the corresponding optimal policy. The unknown parameters that the
state and action variables depend upon are such that the cumulative cost is minimized.

max
𝜋

min
𝑃∈𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑀𝐷𝑃 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝔼𝜋,𝑃 [∑𝛾𝑡𝑟(𝑠𝑡)

∞

𝑡=0

] (12)

 Equation (12) finds the policy that maximises the performance within the worst possible model. Through
modelling a max-min problem, the defined policy, 𝜋 , and the most adverbial parameters are set to solve the
expectation parameter.

5

 Model uncertainty, u’model, in comparison, captures how well a model fits all possible observations from the
environment. This model is typically high in applications with limited training data, or with test data that is far from
the training data. Thus, the model uncertainty captures cases in which a model fails to generalize to novel test data
and hints when the network predictions are not reliable.

max
𝜋

min
𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑜𝑑𝑒𝑙𝑠

𝔼𝑚𝑜𝑑𝑒𝑙 [∑𝛾𝑡𝑟(𝑠𝑡)

∞

𝑡=0

]

(13)

 Inherent uncertainties, u’inherent, consider optimal risk sensitive action is selected by applying established risk
criteria, such as the conditional value at risk, to the learned state action return distributions.

max
𝜋

 𝜌 [∑𝛾𝑡𝑟(𝑠𝑡)

∞

𝑡=0

] (14)

𝜌 is a risk measure, Markovic risk measure, which is expectation minus a constant time the variance.

 Implementation of inherent uncertainties can be defined by utilising a probabilistic event map and creating a
consequential risk criterion. The consideration of flight envelopes and off-nominal conditions are used when there is
an emergency threat present. Table. 3 inspired by [17] shows the accumulative understanding of consequential risk
assessment:

Table. 1 Probabilistic event likelihood.

Improbable Unlikely Sporadic Frequent
0 ≤ 𝑃𝐸 < 0.01 0.01 ≤ 𝑃𝐸 < 0.2 0.2 ≤ 𝑃𝐸 < 0.6 0.6 ≤ 𝑃𝐸 < 1

Table. 2 Probabilistic likelihood obstacles.

Obstacles Probability, 𝑷𝑬
Small Foliage (Bushes,) 0.35

Trees 0.6
Buildings 0.7

Intruders (Birds, e.g.,) 0.1
Ground Vehicle 0.15

Table. 3 Risk and severity assessment.

Risk ↓
Severity→

Minimal
Index:[1]

Moderate
Index:[2]

Major
Index:[4]

Frequent
(0.6 ≤ 𝑃𝐸 < 1)

Sporadic
(0.2 ≤ 𝑃𝐸 < 0.6)

Unlikely
(0.01 ≤ 𝑃𝐸 < 0.2)

Improbable
(0 ≤ 𝑃𝐸 < 0.01)

6

𝑃𝐸 represents the probability of an event occurring, definition of the severity indexes is given as follows:

1. Minimal: Low-level damage to the environment due to collision.
2. Moderate: Non-serious or mild damage to the sUAS and the surrounding obstacle due to impact.
3. Major: Fatal damage to the sUAS and the surrounding obstacle due to impact.

 Severity indexes focus on the surrounding object damage and the potential damage to the sUAS. This concept
allows the hazard interpretation of the third party and the likelihood of the event. To understand this concept in
terms of numerical and qualitative analysis, sensor hazard assessment is utilized. Representation of the uncertainty
sets can be represented as given in Fig. 2.

P(sw

w1 w2 w3

u'model

u'inherent

u'parameter

Fig. 2 State disturbance model affecting uncertain parameters.

 The system’s sensitivity to its maximum disturbances is then minimized. Robust RL has drawn inspiration not
only from robust optimization but also from H∞-control [18], [19]. Formulations based on robust optimization are
closely related to game theory. In two-player zero-sum games, a protagonist, i.e., an agent or controller, minimizes
an objective function, while an opposing player maximizes the same objective. This competitive framework known
as a mini-max game corresponds to the worst-case design [20]. In order to be able to implement the aforementioned
uncertainties, a disturbance model is constructed as shown in Fig. 3. Using the disturbance model a disturbance
reward is derived, and the observation functions are changed.

z0

y

w0

u

Gain

K

Plant Agent

Δ
w z

z

y

w

u

Gain

K

Plant Agent

Tzw

(a) (b)

Fig. 3 (a) A plant without model uncertainty, where w is a vector signal containing external noise,
disturbances, and the reference signal. The system output is given in z. Measurements are represented by

y, while u is the control signal. (b) A plant with all possible model uncertainty expressed as ∆. Here w0
depicts external noise, disturbances, and the reference signal. Now w is a signal representing parameter

perturbations and model uncertainty.

7

 One of the common ways of implementing robustness is through using the concept of H∞ -control. Through this
concept we can describe parameter changes in the environment as disturbances or through approximation errors.
Given a disturbance, Δ, we can model the disturbance parameter, 𝑤.

 In order to model the disturbance, 𝑤(𝑡), as a parameter, the uncertainties defined in Fig. 2, will be considered.
Including the parameter, inherent and model uncertainties, we can represent the disturbance model as follows:

𝑤(𝑡) = 𝑟𝑤(𝐴𝑤(𝑥(𝑡)); 𝑣
𝑤) + 𝑛𝑤(𝑡) (15)

where 𝐴𝑤(𝑥(𝑡)); 𝑣𝑤 is the function approximator, 𝑣𝑤 is the parameter vectors and the 𝑛𝑤 is the noise disturbance
term for exploration. The noise term can be devised as given,

𝑣�̇�
𝑤 = −𝜂𝑤𝛿(𝑡)𝜂𝑖

𝑤(𝑡)
𝜕𝐴𝑤(𝑥(𝑡); 𝑣

𝑤)

𝜕𝑣𝑖
𝑤 (16)

where 𝜂𝑤 is the learning rate. Therefore, the disturbance signal can be further defined as a generic reward given as,
𝑟𝑤 = 𝛾

2𝑤𝑇𝑤. Augmented value function with the disturbance reward:

𝑉[𝑥(𝑡)] = ∫ (𝑧𝑇(𝑡)𝑧(𝑡) − 𝑟𝑤(𝑡)) 𝑑𝑡 ≤ 0
∞

𝑡

(17)

𝑉[𝑥(𝑡)] = ∫ (𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝑤𝑇(𝑡)𝑤(𝑡)) 𝑑𝑡 ≤ 0
∞

𝑡

(18)

III. OPTIMISATION DESIGN FOR A ROBUST AGENT
Most research focuses on the deployment of RL in competitive games instead of robustness. The framework,

however, is also valid for robust RL. The core difference is the formulation of the opposing player, the adversary.
Controlling uncertainty and disturbances through the adversary produces robust protagonists [20]. Through utilizing
the min-max concept we can introduce adversarial reinforcement learning.

A. Robust Policy Optimisation
 Our goal is to learn the policy of the RL agent (protagonist) denoted by, 𝜋, such that it has higher reward and
better robust (generalizes better to variations in test settings). In the standard reinforcement learning setting, for a
given transition function 𝒫 we can learn policy parameters 𝜃𝜋 such that the expected reward is maximized.

𝜌(𝜋; 𝜃𝜋, 𝒫) = 𝔼 [∑𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)|𝑠0, 𝜋, 𝒫

𝑇

𝑡=0

] (19)

 In standard-RL settings, the transition function is fixed (since the physics engine and parameters such as mass,
friction is fixed). However, in our setting, we assume that the transition function will have modelling errors and that
there will be differences between training and test conditions. Therefore, in our general setting, we should estimate
policy parameters θ such that we maximize the expected reward over different possible transition functions as well.

𝜌(𝜋; 𝜃𝜋) =
𝔼

𝒫
[𝔼 [∑𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)|𝑠0, 𝜋, 𝒫

𝑇

𝑡=0

]]

(20)

 Optimisation of the expected reward over all transition functions allows the assumption of known disturbances
over model parameters, which in turn optimizes the average performance. [20] implements the idea of optimisation
through conditional value at risk (CVaR), represented as follows:

𝜌𝑅𝐶 = 𝔼[𝜌| 𝜌 ≤ 𝑄𝑎(𝜌)] (21)

8

where 𝑄𝑎(𝜌) is the 𝑎 -value of 𝜌-values. For robust control we want the worst possible case scenario for 𝜌-values.
We can achieve the worst possible scenario by sampling the change of state/observation parameters.
Instead, an adversarial agent is implemented varying the state functions such that the reward of the original RL
agent is minimised.

RL Agent

P (st+1 | st, at, at
*)

Environment

Adversary

wdisturbance(t)
Disturber

rt s t

State, x(t)

at

Fig. 4 DDQN Model Architecture with depth prediction and Q- Network structures.

 For every step, t, the RL agent and the adversarial agent observe the state 𝑠𝑡, and take the relevant actions,
𝑎1𝑡~𝜋(𝑠𝑡), and 𝑎2𝑡~�̅�(𝑠𝑡). Reward can be formulated as such 𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑎1𝑡, 𝑎2𝑡) for the state transitions and
environment. In zero-sum game, the RL agent gets a reward 𝑟1𝑡 = 𝑟𝑡 , while the adversary gets a reward 𝑟2𝑡 =
−(𝑟𝑡 + 𝑟𝑤). Each step of the MDP can be represented as (𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡, 𝑟1𝑡, 𝑟2𝑡, 𝑠𝑡+1).

 We introduce a loss function that takes the state and value function into account for optimization of the robust
policy, the single loss function will be a superset of many common robust loss functions. [21] A single continuous-
valued parameter in our general loss function can be set such that it is equal to several traditional losses and can be
adjusted to model a wider family of functions. This allows us to generalize algorithms built around a fixed robust
loss with a new robustness hyperparameter that can be tuned or annealed to improve performance.

 For the robust policy optimization, 𝜋∗, we can further express the function, 𝑓(𝑥, 𝛼, 𝑐, 𝜋∗). Solving a term for the
optimization of the robust policy is expected to improve the efficiency and reliability of the robust reinforcement
learning agent [20], [22].

 Therefore, we introduce a robust MDP, (𝑆, 𝐴, ℂ, 𝛾, 𝑃, 𝑇𝑝, ℙ0), where 𝑇𝑝 and ℙ0 are state transition function for
𝑝 𝜖 𝑃, and an initial state distribution, respectively. 𝑆, 𝐴, ℂ, 𝛾, and 𝑃 defining states, action, cost function, discount
factor and an ambiguity set, respectively. In other ways, we can further evaluate the MDP as given:
(𝑠𝑡 , 𝑎1𝑡, 𝑎2𝑡, 𝑟1𝑡, 𝑟2𝑡, 𝑃, 𝑇𝑝, ℙ0, 𝑠𝑡+1), with the average augmented MDP (𝑠𝑡′, 𝑎1𝑡′, 𝑎2𝑡′, 𝑟1𝑡, 𝑟2𝑡, 𝑃′, 𝑇𝑝′, ℙ0′, 𝑠𝑡+1′)
[23]. We can define the cost function in the form 𝑐𝑡+1 ~ ℂ, where 𝑐𝑡+1 is a random variable, hence the sum of the
costs discounted by 𝛾 is called a loss 𝐶 = ∑ 𝛾𝑡𝑐𝑡

𝑇
𝑡=0 .

 The loss function to control the robustness of the loss where, 𝐶 > 0, is as given below.

𝑓(𝑥, 𝛼, 𝐶) =
𝛼 − 𝑘

𝛼

(

(
(
𝑥
𝐶)

2

|𝛼 − 𝑘|
+ 1)

𝛼
𝑘

− 1

)

 (22)

 As with the standard robust reinforcement learning settings [24], [25], [26], p is generated by a model parameter
distribution ℙ(𝑝) that captures our subjective belief about the parameter values of a real environment.

9

𝔼𝐶,𝑝[𝐶] =∑ℙ(𝑝)

0

𝑝

𝔼𝐶[𝐶, 𝑝] (23)

 𝔼𝐶[𝐶, 𝑝] is the expected loss on an MDP, (𝑆, 𝐴, ℂ, 𝛾, 𝑃, 𝑇𝑝, ℙ0) in which the parametrized 𝑝 is the transition
probability. In order to optimise, we can minimise the expected loss function using parameter set, 𝜃, representing
the soft robust loss.

min
𝜃
𝔼𝐶,𝑝[𝐶] (24)

B. Proposed Method
 This work aims to train and test both on simulation and experimentally, robust reinforcement learning for a
single agent. Given the Markov decision equation for reinforcement learning,

𝑅(𝜋, 𝑷) = 𝔼𝜋,𝑷[∑ 𝜆𝑡𝑟𝑠𝑡𝑎𝑡|𝑠0~𝑝0
∞
𝑡=0] (25)

where 𝑠0 and 𝑝0 the robust policy can be shown as below,
𝜋∗ = 𝑎𝑟𝑔max

𝜋
m𝑖𝑛
�̅�
𝑅(𝜋, 𝑷) (26)

where a transition kernel P gives transition probabilities 𝑃𝑠𝑎 ∈ 𝑅+
|𝕊|for all state-action pair (s, a), some rewards 𝑟𝑠𝑎

for each state-action pair (s, a) and a discount factor λ ∈ (0, 1). For estimating the unknown distributional model
parameters, we derive a confidence region that contains the unknown parameters with a prespecified probability 1-
β. By construction, this policy achieves or exceeds its worst-case performance with a confidence of at least 1-β. The
algorithm updates the protagonist through the adversarial agent using the following alternating procedure. First
phase, we learn the RL agents’ policies while the adversarial is constant. The algorithm below, depicts a pseudo
code using CVaR constraint, a DDQN structure is utilized with the option policies.

Fig. 5 Proposed Algorithm Logic.

 The initial parameters, 𝜃𝜋0 are sampled from random distribution. For each iteration, 𝑁𝑖𝑡𝑒𝑟 , we sample the
trajectories to estimate the state-action values and find parameters. We utilise the disturbance model represented in
the reward function of the adversary to update the states. Then, for each episode we sample the trajectories of the
augmented MDP parameters, this allows the optimisation of the robust MDP, following we update the states.
Finally, the robust action Q’ value is updated for each episode. Two exploration/exploitation strategies are
presented: 𝜖 -greedy method chooses between the probability 1− 𝜖, and a random probability, 𝜖 for the best action.

𝐴 ← {
𝑎𝑟𝑔max

𝑎
𝑄(𝑠, 𝑎) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝜖)

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝜖
 (26)

10

IV. SIMULATION RESULTS

Based on the simulation results, this section addresses the challenges urban environments pose for sUAS. DAA
explores practical considerations to support safer operations. The analysis is structured as DAA hazard assessment
results through sense and avoid simulation, complemented by the communications and navigations identified
challenges for DAA cooperative technologies. Finally, a set of applicable safe practices is listed based on the
reviewed literature and obtained simulation results.

A. Mission Environment
For simulation purposes Unreal Engine/AirSim (Cesium World Dynamic) are used to build a custom 3D

dynamic world map platform for the UAS, linked to Python. Utilising AirSim platform, three accurate quadcopter
models (dynamic and aero-propulsion specifications), representative urban scenes (3D OSM Buildings) including
sample urban objects (buildings, vegetation, vehicles) and airspace intruders (sUAS) can be modelled. The complex
geometry and noise of real-world environments greatly impacts DAA performance (numerous obstacles) and signal
propagation. Therefore, the dynamic real-world environment in AirSim/Unreal allows several practical
considerations. Weather and noise are a critical enabler for the definition of practical considerations within the
dynamic synthetic environment.

Fig. 6 (a) Synthetic Simulation Environment, Cranfield (AirSim/Cesium and Bing Maps) (b) DAA

simulation overview.

 The obtained results provide a study over the extension of reinforcement learning to real-life experiments
through optimization and robustness. In addition to ensure compliance with operational requirements with the
airspace legislation and support sUAS. Software in the loop tests will comprise of several different simulation
environments, including locations in AirSim/Cesium starting with Digital Aviation Research and Technology
Centre, Cranfield, UK (DARTeC). For each test mission, the flight phases will consist of take-off, cruise, and
landing. The flight phases factors define each mission’s success, which are collected and statistically processed for
major DAA events, enabling effective mitigations.

 Analysis of the findings and simulation results leads to a holistic approach to implementation of sUAS
operations, focusing on extracting critical DAA capability for safe mission completion, like minimum field-of-view
and detection probability of the sensor system, and minimum manoeuvrability of the guidance and control system.

Fig. 7 Flight phases.

11

From the obtained results in simulation, the following points are presented to be considered for practical
applications of the detect and avoid systems [27]:

1. Noise or bias on sensors to detect obstacles: The performance of the detection algorithm is dependent on
the noise and bias the sensors are subject to. As a result, the avoidance algorithm is as well affected since
the avoidance is conducted based on the target information, which is estimated by the detection algorithm
of the sUAS. Noise and external unpredicted weather parameters can have a potential to directly affect
obstacle detection, causing failure to avoid and assess risks hence, it is important to use a high-fidelity and
noisy environment to do the simulation test before hardware in the loop testing.

2. Casualty/Environmental Damage Estimation: The importance of third-party damage estimation is
essential for real-life sUAS integration. This allows an understanding of the prediction of damage, or the
casualty imposed on the obstacles as well as the sUAS. Ideally, population densities should be considered
for civil drone applications, for better integration for experimental validation.

3. Computational delay: Fast and sudden approaching obstacles detection is conditioned by the

computational capabilities from the DAA system, and therefore, performance must be assessed for delays
reduction and mitigation. For heavy computing of software in the loop systems, it is crucial to be able to
minimize the computational delay caused by complex environments. Minimization of lag will allow for
better DAA performance.

4. Weather effects: The attitude control of the sUAS is affected by wind; additionally, rain can increase the

noise on the camera image (detection). Light rain, while within tolerable flight safety conditions, can create
noise on light-based sensors, and therefore reduce the DAA system capabilities.

B. Results
 Based on the simulation results, this section addresses the RL agent training process and the relevant
comparisons between the nominal problem and the proposed optimization method. Further we express the
challenges of experimental tests and address the practical considerations stated in the previous chapter to support
safer operations.
 The analysis is structured as RL training results, RRL and RL performance metrics and the optimized RRL
metrics. RL agent was trained over 3000 episodes, considering a scenario with one UAVs with multiple targets
(dynamic and static). Fig. 8, the blue curve shows the cumulative reward gained at the end of each episode, the
orange line demonstrates the average of the last 50 cumulative rewards. We observed that the trained RL agent
converges at 600 episodes. Changing the learning rate affects the instantaneous reward as the variance rate of
exploration increases which may result in several decreased rewards. Overall, less success is achieved. Prior to
training, the hyperparameters were defined as given in Table. 4.

Table. 4 Hyperparameters of the DDQN agent.

Hyperparameter Value Description
training steps 500,000 total number of interactions with environment
minibatch size 32 stochastic gradient descent step size
replay memory 100,000 memory size of the most recent buffer

buffer size 500,000 improve sample efficiency for large buffer
target factor 𝜏 0.01 update frequency from neural network to target
learning rate 𝛼 0.00025 optimizer learning rate

discount factor 𝛾 0.98 balance rate of last reward and historical

12

Fig. 8 Reinforcement Learning Accumulative Reward Training.

Fig. 9 (a) Number of steps per episode for different trained agents within robust reinforcement learning

(RRL) and conventional reinforcement learning (RL) (b) Number of steps to reach goal for different
trained agents within robust reinforcement learning (RRL) and conventional reinforcement learning (RL).

13

 Fig. 9 represents the time steps for reaching goal and episode for RRL and RL agents. RRL agents defined in
the plots are given as: robust reinforcement learning (RRL), proposed optimised robust reinforcement learning
(RRL*) and robust reinforcement learning with a reward variation (𝑅𝑅𝐿̅̅ ̅̅ ̅̅). RL agents defined in the plots are given
as: conventional reinforcement learning (RL), reinforcement learning using loss function (RL*) and reinforcement
learning with a reward variation (𝑅𝐿̅̅̅̅). When we start in state, s, we want to take the action that gives us the best
total reward taking into account not only the current, or next state, but all possible next states until we reach the
goal. These are the time steps, i.e., each action taken is done in a time step. And when we learn the policy, we try
to consider as many time steps as possible to choose the best action.

 Over 2500 episodes were trained to show the time-steps taken for each action. 𝑅𝑅𝐿̅̅ ̅̅ ̅̅ and 𝑅𝐿̅̅̅̅ with a reward
variation are represented in Eq. 27-28. For both RL agents, the revision of the reward function was due to the length
of training and oscillation of instantaneous reward. Therefore, removing the event probability (𝑃𝐸) term proved to
be less oscillatory and more efficient. In addition, as can be observed from Fig. 9, changing the reward improves
the steps taken for episodes which reduces the convergence significantly.

𝑟𝑡1 = 1000 ∗ 𝑎 − (1000 ∗ 𝛽) ∗ 𝑃𝐸 − 𝐷𝑔𝑜𝑎𝑙 + 𝐷𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝑦 (27)
𝑟𝑡2 = 1000 ∗ 𝑎 − (1000 ∗ 𝛽) − 𝐷𝑔𝑜𝑎𝑙 + 𝐷𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝑦 (28)

Fig. 10 (a) Loss of conventional reinforcement learning (RL) (b) Loss of optimized robust reinforcement

learning (RRL*).

14

 In Fig. 11 (c), we observed that the increase of the number of intruders to ten leads to reduce the percentage of
success to arrive at the destination without collisions to 60% and 80% success rate for RL and for Robust RL,
respectively.
The reason for this is that both RL and Robust RL does not account the dynamic changes of the UAVs.
Conventional RL has higher probability of collision as it does not consider change in dynamics of the environment
setting whereas Robust RL allows the probability of unknown disturbances to be limited to a constraint to allow
better avoidance.

Fig. 11 Percentage of collision for Robust Reinforcement Learning and Conventional RL (a) Two intruders

(b) Five intruders (c) Ten intruders.

V. CONCLUSIONS AND DISCUSSION

This paper presents a comprehensive review of the state-of-the-art detect and avoid (DAA) technologies in
conjunction with the simulation of realistic urban scenarios for DAA potential challenges assessment. Different
missions are designed and executed for representative scenes accounting for the common threads for obstacles in
the sight of sUAS. Reinforcement learning training incorporated relevant factors such as noise on sensors, and
dynamic real-world environments, including obstructed regions, complete the proposed simulation environment,
complemented with DAA hazard assessment leading to effective threat identification.

The RL agents trained represent the success of collision avoidance and obstacle detection. Changes in the dynamic
environment settings and implementation of dynamic obstacles have a great impact on the manoeuvre of a
conventional RL agent. Conventional RL is impacted by 60-80% as more intruders are introduced to the
environment, Robustness reduces the impact of the changes in the environment to the UAVs by 20%. Robust RL

15

has a better collision success rate compared to conventional RL agent. Robust RL is more successful due to factoring
in the uncertainty parameters of the environmental changes within Airsim. The proposed method of the optimised
RRL proved to be effective compared to both conventional and robust RL as the loss was found to be much lower.

In the future this work can be extended including intruder dynamics and to integrate in the worst-case scenarios
regarding the intruder collision, by implementing and updating the policy hence the accumulative reward of the
UAVs. Further improvements are needed for the collision success rate of the conventional RL and robust RL aiming
for no collision. In addition, possible loss functions are needed for improvement of further uncertain parameters
regarding the environment.

VI. ACKNOWLEDGEMENT
This work is supported by Thales UK and EPSRC funding, grant number 2454266.

VII. REFERENCES

[1] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction Second edition, in progress.”
[2] Z. Hu, K. Wan, X. Gao, and Y. Zhai, “A Dynamic Adjusting Reward Function Method for Deep

Reinforcement Learning with Adjustable Parameters,” Math Probl Eng, vol. 2019, 2019, doi:
10.1155/2019/7619483.

[3] M. Marashi, A. Khalilian, and M. E. Shiri, “Automatic reward shaping in Reinforcement Learning using
graph analysis,” in 2012 2nd International eConference on Computer and Knowledge Engineering, ICCKE
2012, 2012, pp. 111–116. doi: 10.1109/ICCKE.2012.6395362.

[4] A. Nilim and L. el Ghaoui, “Robust control of Markov decision processes with uncertain transition
matrices,” Oper Res, vol. 53, no. 5, pp. 780–798, Sep. 2005, doi: 10.1287/opre.1050.0216.

[5] M. Turchetta, A. Krause, and S. Trimpe, Robust Model-free Reinforcement Learning with Multi-objective
Bayesian Optimization; Robust Model-free Reinforcement Learning with Multi-objective Bayesian
Optimization. 2020. doi: 10.0/Linux-x86_64.

[6] K. Zhou, “ESSENTIALS OF ROBUST CONTROL,” 1999.
[7] C. Kwan and F. L. Lewis, “Robust backstepping control of nonlinear systems using neural networks,” IEEE

Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans., vol. 30, no. 6, pp. 753–766,
Nov. 2000, doi: 10.1109/3468.895898.

[8] Renewable Energy Systems. Elsevier, 2021. doi: 10.1016/C2019-0-00528-6.
[9] C. Finn, S. Levine, and P. Abbeel, “Guided Cost Learning: Deep Inverse Optimal Control via Policy

Optimization,” Mar. 2016, [Online]. Available: http://arxiv.org/abs/1603.00448
[10] R. Bellman, “A Markovian decision process,” Indiana University Mathematics Journal, vol. 6, no. 4, pp.

679–684, 1957.
[11] C. J. C. H. Watkins and P. Dayan, “Q-Learning,” 1992.
[12] M. Niranjan, “On-Line Q-Learning Using Connectionist Systems,” 1994. [Online]. Available:

https://www.researchgate.net/publication/2500611
[13] L. Xie, S. Wang, A. Markham, and N. Trigoni, “Towards Monocular Vision based Obstacle Avoidance

through Deep Reinforcement Learning.”
[14] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double Q-Learning.” [Online].

Available: www.aaai.org
[15] M. U. de Haag, C. G. Bartone, and M. S. Braasch, “Flight-test evaluation of small form-factor LiDAR and

radar sensors for sUAS detect-and-avoid applications,” in AIAA/IEEE Digital Avionics Systems Conference
- Proceedings, Dec. 2016, vol. 2016-December. doi: 10.1109/DASC.2016.7778108.

[16] L. Tai, S. Li, and M. Liu, “A Deep-Network Solution Towards Model-less Obstacle Avoidance.” [Online].
Available: http://www.ros.org

[17] E. Ancel, F. M. Capristan, J. v Foster, and R. Condotta, “Real-time Risk Assessment Framework for
Unmanned Aircraft System (UAS) Traffic Management (UTM).”

[18] J. U. Morimoto and K. Doya, “Robust Reinforcement Learning.”
[19] J. Andrew Bagnell, A. Ng Y., and J. Schneider G., “Solving Uncertain Markov Decision Processes,” 2001.

16

[20] J. Moos, K. Hansel, H. Abdulsamad, S. Stark, D. Clever, and J. Peters, “Robust Reinforcement Learning: A
Review of Foundations and Recent Advances,” Mach Learn Knowl Extr, vol. 4, no. 1, pp. 276–315, Mar.
2022, doi: 10.3390/make4010013.

[21] J. T. Barron, “A General and Adaptive Robust Loss Function,” Jan. 2017, [Online]. Available:
http://arxiv.org/abs/1701.03077

[22] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust Adversarial Reinforcement Learning,” Mar.
2017, [Online]. Available: http://arxiv.org/abs/1703.02702

[23] T. Hiraoka, T. Imagawa, T. Mori, T. Onishi, and Y. Tsuruoka, “Learning Robust Options by Conditional
Value at Risk Optimization.”

[24] E. Derman, D. J. Mankowitz, T. A. Mann, and S. Mannor, “Soft-Robust Actor-Critic Policy-Gradient,” Mar.
2018, [Online]. Available: http://arxiv.org/abs/1803.04848

[25] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman, “Meta Learning Shared Hierarchies,” Oct. 2017,
[Online]. Available: http://arxiv.org/abs/1710.09767

[26] G. N. Iyengar, Robust Dynamic Programming, 2nd ed., vol. 30. INFORMS, 2005.
[27] V. C. Martinez et al., “Detect and Avoid Considerations for Safe sUAS Operations in Urban Environments,”

in AIAA/IEEE Digital Avionics Systems Conference - Proceedings, 2021, vol. 2021-October. doi:
10.1109/DASC52595.2021.9594407.

