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In this study, an intelligent wargaming approach is proposed to evaluate the effectiveness of

a military operation plan in terms of operational success and survivability of the assets. The

proposed application is developed based on classical military decision making and planning

(MDMP) workflow for ease of implementation into the real-world applications. Contributions

of this study are threefold; a) developing an intelligent wargaming approach to accelerate the

course of action (COA) analysis step in the MDMP which leads creating more candidate COAs

for a military operation, b) generating effective tactics against the opposite forces to increase

operational success, and c) developing an efficient, visual wargame-based MDMP framework

for future systems that require a small team of operators to supervise a network of automated

agents. Several example engagement scenarios are performed to evaluate the system capabilities

and results are given. Moreover, fleet composition issue for automated agents is investigated

and the fleet composer algorithm with hyperparameter tuning architecture is proposed.

I. Introduction

W
ith increase in the use of unmanned vehicles for complex tasks including intelligence, surveillance and

reconnaissance operations, recent applications tend to shift towards the cooperation among a heterogeneous

ŕeet of unmanned vehicles for executing these operations with high mission success rates [1]. Cooperation between

heterogeneous agents for completing the complex tasks bring the need for multi-domain operational capability where

artiőcial intelligence (AI) assisted war-game strategies play important role [2]. Speciőc goals such as using AI to

discover tactics, which might improve the operational beneőts via existing military capabilities, or might suggest

effective concepts of use for new military capabilities are under consideration. AI decision-making have recently focused

on open games, where all game states are visible to all players, or closed games, where restricted ŕexibility to wargaming

exist. However, modeling decision-making strategies at both tactical and strategic levels requires novel algorithms that

can operate within dynamic environments with changing rules, uncertainties, individual biases and randomness [3].

Wargaming is an important part of the MDMP, which is the armies’ doctrinal approach to create operation plans, to

predict counter-actions of the opposite forces and to evaluate the effectiveness of the proposed operation plan, since it

offers a safe and vicarious reŕection of some of the situational and decision-making dynamics associated with armed

conŕict. Although, there is no single deőnition for the term ‘war-gaming’, the commonly accepted one dated back

to the beginning of 19
𝑡ℎ century, which deőnes it as a simulation of a military operation, by whatever means, using

speciőc rules, data, methods and procedures [4]. Therefore, it is important to give a clear statement about wargaming

before to proceed with the deőnition and importance of MDMP. The MDMP starts with the receipt of a mission from

higher headquarters. Then, mission analysis is performed by utilizing intelligence from other sources. In the next

step, it processes commander’s intents, operational requirements and available resources to develop course of actions

(COAs) which include task organization plans. After development of the COA, COA analysis, which is focused on

action, reaction, counteraction, and the adjudication process, is performed through wargaming to reőne the COAs and

potential decision points.
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Fig. 1 Summary of military decision making process. (Reproduced from [7])

Within the MDMP, COA analysis is often referred to as wargaming which links COA development to COA

comparison and approval [5]. In the comparison step, each of the COAs is evaluated according to deőned criterion such

as simplicity, maneuvering, őres, civil control and mass which are given weights within a decision matrix for assessment.

Moreover, selected COA from the comparison step is to have minimum risk, maximum security and ŕexibility. Then,

COA approval process is completed according to the results from COA comparison and, in the last step, orders are

produced and shared with the related units [6]. From the general point of view, overall MDMP process is given in Figure

1.

In this study, it is proposed to develop intelligence, surveillance, and reconnaissance (ISR) and suppression of

enemy air defense (SEAD) operation plans that are supported by upper AI and assistive, decentralized decision-making

strategies within a war-game to evaluate generated COAs in terms of probability of success, survivability of the assets

and operational efficiency. This process is developed on the classical MDMP scheme for ease of implementation into the

real-world applications and it is able to provide fast evaluation and objective comparison of the COAs before or during

the operation. The process begins with receiving the mission analysis results from the second step of the MDMP. In the

COA development step, initial task assignment process is performed by utilizing the CBBA algorithm which is able to

solve assignment problems with decentralized communication structure, heterogeneous ŕeet and online replanning

requirement. After creating several operation plans (i.e. COAs), they are fed into the wargaming process to evaluate their

effectiveness. After that, these COAs are compared with each other in terms of success probability, survivability and

cost and the most effective one is sent for approval step. General overview of the focused framework is given in Figure 2.

Contributions of this study are three folds; a) developing an intelligent wargaming approach to accelerate the course

of action analysis step in the MDMP which leads creating more candidate COAs for a military operation, b) generating

effective tactics against the opposite forces to increase operational success and c) developing an efficient, visual and

robust war-game based MDMP framework for future systems that require a small team of operators to supervise a

network of automated agents. Remaining of this study is structured as follows; In Section II, related studies from the

literature are to be investigated. Section III deőnes the problem statement and Section IV gives the required background

to approach the solution against the problem. In Section V, the methodology followed during the creation of this work is

to be given and Section VI demonstrates the results of the simulation studies. Finally, Section VII is to conclude the

article.
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Fig. 2 Framework for COA generation.

II. Related Works
Wargame simulations are used as decision making tools in different őelds from business to military [8], from conŕict

scenarios to surveillance or crisis drills, search and rescue missions in the military perspective [9]. In Filho et al. [10],

the position of UAVs in a beyond visual range combat has optimized using the war game approach. The effectiveness of

tactical formation of a friendly swarm team was investigated considering enemy uncertainties in a war game. Chen et al.

[11] proposed an emergency rescue wargame model based the decision trees in a urban ŕooding situation. In the model,

while the enemy task is limited to road water accumulation, the friendly team consists of emergency vehicles trying to

prevent this ŕooding. Su et al. proposed geographic information system (GIS) based ŕood wargame assistance platform

in order to prevent from ŕooding in Taiwan [12]. A different approach to the use of wargame-based strategies is crisis

drills which Song et al. stated that the wargaming is an efficient way for crisis drill with low cost and in a convenient

manner [13].

An effective wargaming strategy depends on the accurate and optimal distribution/allocation of the assets to

subordinate commanders for accomplishing their missions [7]. Numerous methods have been developed for enabling

the agents to distribute the tasks amongst themselves from task list of a known operation. Main idea of these approaches

is not only increasing the mission effectiveness, but also decreasing the operational costs and risks. Centralized task

allocation, which requires communication link between agents and a central server, generates an allocation plan for

the entire ŕeet. Since the centralized systems are able to reduce the burden of processing requirements on the ground,

they are effective for making the agents smaller and cheaper to build. Moreover, it has been investigated that using

the heuristic methods such as genetic algorithms [14ś16] and particle swarm optimization methods [17ś19] in the

centralized task allocation systems provides better performance in terms of computational time [20]. On the other

hand, due to the structure of the centralized task allocation, a persistent communication should be maintained between

the agents and the operation base to provide cooperation which requires sending/receiving operational updates. This

requirement about the communication system directly affects the ŕeet capability and robustness of the ŕeets.

In the contrast of the centralized applications, performance and robustness of the ŕeet could be improved by utilizing

decentralized methods in which agent-to-agent communication is required to obtain consensus on a given task set.

This type of communication topology increases robustness of the ŕeet in the presence agent loss, communication loss

and real-time updates on the task list, i.e. adding and removing tasks [21]. In this manner, decentralized planning

methods that eliminate the need for a central base have been investigated in the literature. Most of these methods

assume perfect communication with inőnite bandwidth for ensuring that agents have the same situational awareness

before the planning. However, this can be easily violated in real world scenarios including search and rescue missions

where the agents have limited range of communication or communication channel with limited bandwidth [22]. In

the presence of inconsistencies in situational awareness, decentralized task allocation algorithms can be augmented

by utilizing consensus-based algorithms such as Consensus-Based Bundle Algorithm (CBBA) in order to converge

on a consistent solution [23ś25]. There are not only consensus algorithms which can be integrated into decentralized

frameworks but also Partially Observable Markov Decision Process (POMDP) based approaches exist in the literature

[26]. Although consensus algorithms guarantee convergence on information, i.e. reaching to a consensus, this may take

a signiőcant amount of time and often requires transmitting large amounts of data which might result in high latency

in low-bandwidth environments and increment in the processing time to őnd an optimal task assignment solution for

the unmanned ŕeet [27]. There are also several reports about an intermediate hierarchical architecture, i.e. an hybrid

architecture, between the centralized and the decentralized architectures which is used for to beneőt from the advantages

of two methods [28].
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Even though numerous attempts try to address the task allocation problem for unmanned heterogeneous ŕeets, and all

of the previously mentioned studies examined the ability of underlying automation (in the form of planning and control

algorithms) to allocate a network of heterogeneous unmanned vehicles (UxVs), there is a crucial need for integrating

an enhanced/upper AI-generated guidance and assistive decision-making support into the MDMP which generates

the COAs [29]. Several preliminary attempts such as the Defense Advanced Research Projects Agency’s (DARPA)

Broad Agency Announcement (BAA) for the Collaborative Operations in a Denied Environment (CODE) Program and

BAA for Distributed Battlespace Management (DBM) are proposed to improve humanśautomation collaboration and

decisions to assist battle managers and pilots via executing a series of automated and autonomous actions [30]. However,

such frameworks with different task allocation methods might be brittle and unable to respond to sudden events. Such

systems can be mitigated by human operators who are bringing their knowledge-based reasoning and experience [31].

Therefore, it is obvious that both task planner, and operator framework within a platform should be carefully

constructed. One of the most important platforms for modelling and analyzing such a framework is wargames, which are

used to execute decisions on future force assets, military capabilities, and to prepare for numerous operations. Wargames

are able to be executed in numerous different ways, ranging from seminar war-games, through manual board games to

complex computer-assisted war-games [32], where the computer judges the consequences of engagements [33].

Intelligent wargames have been questioned whether they are valuable for facilitating the military decision making

since the preliminary studies about the topic [34]. Roles of these systems during the decision making process have

been also discussed under four main disciplines, which are sensing, situational-awareness, plan generation and learning

[35, 36]. After those discussions, progress in AI discipline and with the developing technology, it was reported that the

application of artiőcial intelligence to the armies’ MDMP has great potential to support the command center ability to

plan for battlespaces that are becoming both hyper-competitive and more complex so that Schwartz et al. approached

to the problem with genetic algorithms (GAs) within assistive AI architecture [37]. Boron et al. approached to the

integration of AI-based wargaming to the decision making process, and they used reinforcement learning (RL) within the

different combat scenarios for assessing the performance of their algorithms [38]. Xin et al. considered the uncertainties

that are usually neglected in previous studies, so that they proposed a solution titled as hybrid-intelligence multi-branch

wargaming which accounts uncertainties via fusion of RL-based AI methods and human intelligence [39]. Recently,

Tarraf et al. proposed a wargaming framework where the rules and engagement statistics used in a commercial tabletop

wargame to enable remotely operated and fully autonomous combat agents and agents with AI/ML-enabled situational

awareness [40]. Goecks et al. discuss the past and current efforts on how games and simulators, together with the AI

algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future

battleőeld. Moreover, they investigate how advances in virtual reality (VR) and visual augmentation (VA) systems

provide new frontiers in human interfaces with gaming platforms and their military [41].

III. Problem Statement
Even though numerous attempts try to address the task allocation problem for unmanned heterogeneous ŕeets, and all

of the previously mentioned studies examined the ability of underlying automation (in the form of planning and control

algorithms) to allocate a network of heterogeneous unmanned vehicles (UxVs), there is a crucial need for integrating

an enhanced/upper AI-generated guidance and assistive decision-making support into the MDMP which generates

the COAs [29]. Several preliminary attempts such as the Defense Advanced Research Projects Agency’s (DARPA)

Broad Agency Announcement (BAA) for the Collaborative Operations in a Denied Environment (CODE) Program and

BAA for Distributed Battlespace Management (DBM) are proposed to improve humanśautomation collaboration and

decisions to assist battle managers and pilots via executing a series of automated and autonomous actions [30]. However,

such frameworks with different task allocation methods might be brittle and unable to respond to sudden events. Such

systems can be mitigated by human operators who are bringing their knowledge-based reasoning and experience [31].

Therefore, it is obvious that both task planner, and operator framework within a platform should be carefully

constructed. One of the most important platforms for modelling and analyzing such a framework is wargames, which are

used to execute decisions on future force assets, military capabilities, and to prepare for numerous operations. Wargames

are able to be executed in numerous different ways, ranging from seminar wargames, through manual board games to

complex computer-assisted war-games [32], where the computer judges the consequences of engagements [33].
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Fig. 3 Inner cycle of CBBA for each agent

IV. Background
After deőning the problem, mission requirements, assumptions and evaluation criterias in the Step-2 of the

MDMP, it is important to assign blue team military units to suitable red team tasks. This is accomplished by utilising

consensus-based bundle algorithm (CBBA) [27] which supports decentralised, heterogeneous ŕeets and dynamic

environments. In this section, details of the CBBA algorithm is given and described.

A. Consensus-Based Bundle Algorithm (CBBA)

CBBA is a decentralised market-based protocol that provides provably good approximate solutions for multi-agent

multi-task allocation problems over networks of heterogeneous agents and addresses the task allocation to coordinate a

heterogeneous ŕeet of the autonomous vehicles via using the decentralised communication approach [27]. This type of

communication topology eliminates the need for a central base, and it increases robustness of the ŕeet in the presence of

agent loss, communication loss and real-time updates on the task list, i.e., adding and removing tasks. CBBA is made

up of iterations that alternate between two phases: the őrst phase, a bundle construction phase in which each vehicle

generates an ordered bundle of jobs greedily, and the second phase, a consensus phase in which conŕicting assignments

are found and resolved by local communication among neighbouring agents. Figure 3 demonstrates the inner cycle of

CBBA, the chosen task allocation planner as follows.

1. Phase 1: The Bundle Construction

An agent internally builds up a single bundle containing all the tasks it plans to complete and updates it as the

assignment process progresses during the őrst phase. Each agent continually adds to its bundle until it is incapable of

adding any other tasks. Two lists of tasks are carried by the agents: the bundle 𝑏𝑖 and a path 𝑝𝑖 . The bundle contains all

tasks that an agent is going to complete and is grouped in the order tasks were added, and the path, but it contains an

ordered sequence of tasks that agent 𝑖 is going to execute.

𝑐𝑖 𝑗 [𝑏𝑖] =

{

0, if 𝑗 ∈ 𝑏𝑖

𝑚𝑎𝑥𝑛≤ | 𝑝𝑖 |𝑅
𝑝𝑖 𝜃𝑛 [ 𝑗 ]

𝑖
− 𝑅

𝑝𝑖
𝑖
, otherwise

(1)

where | | denotes the cardinality of the list, and ℎ𝑛 denotes the operation that inserts the second list right after the

𝑛th element of the őnal list. A new task is inserted into the current path at all possible locations to őnd the highest

increase in reward. Each agent carries őve vectors: a winning bid list 𝑦𝑖 , a winning agent list 𝑧𝑖 , an agent update time 𝑠𝑖 ,

a bundle 𝑏𝑖 and the corresponding path 𝑝𝑖 . The winning agent list 𝑧𝑖 stores the agent currently assigned to each task

such that when 𝑧𝑖 𝑗 = 𝑘 agent 𝑖 believes that agent 𝑘 is assigned to task 𝑗 . An agent needs to know not only if it is outbid

on a task it selects but who is assigned to each task as well; this enables better assignments based on more sophisticated

conŕict resolution rules.

2. Phase 2: Conflict Resolution

In CBBA, the agents make bids on tasks based on their currently assigned task set. If an agent is outbid on a task,

then the score values for all the following tasks are no longer valid. Therefore, when an agent is outbid, it must release
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Fig. 4 General view of the simulation environment.

all the tasks added after the outbid task. When agent 𝑖 receives a message from another agent, 𝑘 , 𝑧𝑖 and 𝑠𝑖 are used to

determine which agent’s information is the most up-to-date for each task. There are three possible actions agent 𝑖 can

take on task 𝑗 according to the communication table proposed by Choi et. al [27]. Using this lookup table, an agent

determines whether it should update, reset or leave the bid. Agents compare their knowledge on task 𝑗 between the

receiver 𝑖 and the sender 𝑘 along with when each agent last received communication from the agent they believe is

assigned to task 𝑗 . Agents alternate between the two phases until they converge on a conŕict-free solution.

• Update: 𝑦𝑖 𝑗 = 𝑦𝑘 𝑗 , 𝑧𝑖 𝑗 = 𝑧𝑘 𝑗 (2)

• Reset: 𝑦𝑖 𝑗 = 0, 𝑧𝑖 𝑗 = ∅ (3)

• Leave: 𝑦𝑖 𝑗 = 𝑦𝑖 𝑗 , 𝑧𝑖 𝑗 = 𝑧𝑖 𝑗 (4)

V. Methodology

A. Simulation Environment

In order to create the modular architecture which would be supportable, extensible and easily modiőable, it is

decided to split intelligent mission planner into the four sub-groups. Engine module includes the main engine script

which contains the critical methods such as task allocation, pathőnding, strategy, engagement, and some other important

methods to step forward during the simulation. Task allocation method inside the Engine script uses the Consensus-Based

Bundling Algorithm (CBBA) which is also within the Engine module. Environment module includes a World object

inside the script which is giving the boundaries for the simulation environment and also the grid representation of this

environment with the task, terrain, enemy presence costs attached. Models contain necessary information about the

agents and tasks used during the simulations. In order to create heterogeneous agents, UAV, UGV, USV and close

air-defense (CAD) agent objects are individually created, and Team object is created for setting the enemy team and

following the moves done by the teams. View module is responsible for the representation of the results in a visual

perspective. Summary of the modular architecture of intelligent mission planner is given in Figure 4.

B. Lethality Heatmap Generation

In the simulation environment, lethality heatmaps are generated on air, ground and sea layers to model the őrepower

of the opposite forces in a given area. These heatmaps are generated based on kernel density estimation (KDE) algorithm

which is used to estimate danger level (i.e. effectiveness level of an opposite force unit) of a given point on the map with

respect to the opposite force location. In this study, it is assumed that the lethality distribution of the military units
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according to the range is modeled as Quartic or Epanechnikov functions as given in Eq. 5.

𝑃1 (𝑑) =
15

16

(

1 − 𝑑2

)2

for |𝑑 | ≤ 1 (5a)

𝑃2 (𝑑) =
3

4

(

1 − 𝑑2

)

for |𝑑 | ≤ 1 (5b)

where 𝑑 is distance between the military unit and speciőed point on the map (i.e. center of the related hexagon). For

the lethality calculation at 𝑑 = 0, the maximum value of the distributions is scaled by 1. Example heatmap generation

results for air, ground and sea layers are given in Figure 5. Here, lethality heatmap of the red team units are given for a)

ground layer, b) Naval layer, and c) Air layer. On the ground layer, both UAV, UGV, USV and CAD units are effective

threats against the blue forces in given letality areas. On the naval layer, USV is the main threat but UAV, UGV and

CAD are also effective. On the air layer, in őrst look, there seems no threat for blue team because the UAV, UGV and

USV of the red team are not effective against the air force of the blue team. However, if CAD asset presence exists in the

area, it would be crucial threat against the blue and results would be fatal.

Fig. 5 Lethality heatmaps of the red team forces on a) ground, b) naval and c) air layers.

Fig. 6 Example Case: Lethality heatmap of the red team forces on the ground layer.

Another example from the simulation environment is given in Figure 6. For ease of visualization, no CAD units are

inserted into the environment. Here, lethality heatmap of the UAV, UGV and USV are given for the ground layer. In this
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case, it is shown that the lethality of the UAV and UGV are relatively high when compared to the USV on the ground

layer on which the USV has a limited range and effectiveness. This is directly modeled by utilising the effectiveness

table of the military units given in Table 1. This table gives information about damage effectiveness of each type of

assets to different layers.

Table 1 Damage effectiveness table for each type of assets.

UGV UAV USV CAD

Land 0.5 1 0.25 0.25

Air 0.05 0.05 0.05 1

Sea 0.25 0.5 0.5 0.25

C. Combat Model

Combat modeling abstracts and simpliőes the combat entities, their behaviors, activities, and interrelations to answer

defense-related research questions. There is no general model that answers all questions, and even if such a model could

be constructed it would become more complex than the reality, as it not only includes real systems but also imagined

ones. Combat models can be either stochastic or deterministic. Intuitively, a stochastic model assumes uncertain or

probabilistic inputs regarding a situation and makes an indeőnite prediction of the results. A deterministic model states

exactly what will happen, as if there were no uncertainty. More formally, a stochastic model requires the terminology of

the theory of probability for its description, whereas a deterministic model does not.

𝐹 = 𝐻𝑃 · 𝐿 · 𝑃𝐻 · 𝑃𝐷 · 𝑃𝑇 · 𝑃𝑊 · 𝐸𝐿 (6)

where 𝐹, 𝐻𝑃 , 𝐿, 𝑃𝐻 , 𝑃𝐷 , 𝑃𝑇 , 𝑃𝑊 , 𝐸𝐿 are total őrepower, őrepower health, lethality, hit probability, detection probability,

targeting system reliability, weapon reliability and layer effectiveness, respectively. Here, it is also important to model

damage matrix of the military units which deőnes their effectiveness against the enemy forces in an engagement. In

simulation environments, a damage matrix is assumed as given in Table 1. By using these deőnitions, survivability of

each asset is modeled as given in Eq. 7 and 8.

𝐹𝑘 = 𝐹𝑘−1 − 𝐹𝑜𝑘
(7)

𝑀𝑘 = 𝑀𝑘−1 − 𝐹𝑜𝑘
(8)

where 𝐹𝑘 , 𝑀𝑘 are őrepower and mobility of the related team at time 𝑘 . 𝐹𝑜𝑘
is őrepower of the opposite force at time 𝑘 .

D. Evaluation Metrics and Combat Assessment

Effective assessment incorporates both quantitative (observation-based) and qualitative (opinion-based) indicators.

Human judgement is integral to assessment. A key aspect of any assessment is the degree to which it relies on human

judgement and the degree to which it relies on direct observation and mathematical rigour. Rigour offsets the inevitable

bias, while human judgement focuses rigour and processes on intangibles that are often key to success. Verbal deőnitions

are straightforward to state, but in order to educate the overall system in a intelligent manner, it is crucial to represent

these sentences into the mathematical indicators. The transition from verbal to mathematical deőnition of the metrics is

an open-ended procedure, and it can be manually selected in a way that captures optimal decisions [42].

In order to asses the mobility and őrepower capabilities of the red and blue teams, several combat assessment metrics

are developed as given in Eq. 9 and 10.

�̄�𝑥 =

∑

𝐹𝑥𝑡

𝑛𝑥𝑡
(9)

�̄�𝑥 =

∑

𝑀𝑥𝑡

𝑛𝑥𝑡
(10)

where subscript 𝑥 ∈ {𝑏, 𝑟} denotes for blue and red teams, 𝑡 ∈ {𝑎𝑖𝑟, 𝑔𝑟𝑜𝑢𝑛𝑑, 𝑠𝑒𝑎} deőnes the level of assets, 𝐹, 𝑀 are

őrepower and mobility of the military units after engagement,¯shows mean value, 𝑛 is total number of alive assets after

the engagement.
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E. Fleet Composition

Composition of the adequate ŕeet is closely related with the scoring function of CBBA given as following.

𝐽 𝑗 (𝑎 𝑗 , 𝑡 𝑗 ) = 𝑒−𝜆.𝑡 𝑗𝑅 𝑗 (𝑎 𝑗 ) (11)

This function gives the score an agent receives from task 𝑗 when it arrives at the task at time 𝑡 𝑗 . Score is composed

of two parts that the őrst is the nominal reward for the task, 𝑅 𝑗 (𝑎 𝑗 ) which is a function of 𝑎 𝑗 , the index of the agent

assigned to task 𝑗 , and the second is the discount function, which is a function of the arrival time for task 𝑗 , 𝑡 𝑗 . 𝜆 is a

discount factor that accounts for the decrease in target value with time. This factor is included in the objective function

to better represent the real-world problems in which the value of visiting a target decreases proportional to the time in

which it is visited [43].

Since the discount factor is changing the effect of arrival time for tasks, it needs to be tuned according to the size of

the world. Therefore, following architecture, visually seen on Figure 7 is to be proposed to overcome to choose the

optimal discount factor and the ŕeet conőguration.

Fig. 7 Architecture of the fleet composer with 𝜆 search algorithm

VI. Simulation Studies
In simulation studies, asset types of the ŕeet are assumed to be heterogeneous and include unmanned aerial vehicles

(UAVs), unmanned ground vehicles (UGVs) and unmanned surface vessels (USVs). As an unmanned aerial vehicle, a

system with medium-high altitude long endurance capability, which is required for ISR missions, is modeled. For the

unmanned ground vehicle, the performance of an average armored personnel carrier vehicle is modeled. It is assumed

that this vehicle has the ability to move in any terrain. On the other hand, unmanned surfaces vessels for use in coastal

areas are modeled similar to the lightweight high-performance rigid-hull inŕatable boat (RHIB). The performance

parameters of these agents are given in Table 2. Since the fuel and fuel consumption data of the vehicles in the task

assignment algorithm are of primary importance in the distribution of tasks, these parameters are especially included in

the table.

Table 2 Performance parameters of agents.

Parameters UAV UGV USV

Cruise Speed (mph) 194 60 45

Range (miles) 1150 300 230

Fuel Capacity (lb) 4000 13200 175

Fuel mass flow rate (lb/s) 0.079 0.367 0.01
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A. Results

Following results are obtained from initial simulation studies. In this scenario, proposed methodology is tested with

different number of unmanned agents and tasks within 20𝑥20 grid-world environment where the heatmap is implemented.

The scenario contains both the terrain and enemy presence effects where the main goal for the unmanned agents is to

execute their tasks while avoiding from enemy presence areas introduced within the heatmap. In the őrst scenario, the

blue team is initiated with 2 UAVs, and the red team, enemy includes one UGV and two UAVs within different regions

of the grid-world. The result of the őrst scenario can be seen on Figure 8.

Fig. 8 The first scenario results

Clearly visible from the Figure 8, blue forces lost in the őrst scenario even with the optimal choice of 𝜆. Since the

remaining enemy presence consists aerial threat, the ŕeet conőguration is updated in a way that to increase the number

of UAV assets. Therefore, the second scenario is executed with 3 UAVs in the blue team and 2 UAVs, 1 UGV in enemy

red team as previous scenario. The result visual can be seen on Figure 9.

Fig. 9 The second scenario results

As can be seen, in this scenario, the blue team is won the repeated scenario with its extra reinforcement.

VII. Conclusion
COA analysis is one of the fundamental steps of the MDMP workŕow which is used to produce operation plans in

military domain. Due to the operational risks and time constraints, it is important to evaluate the generated COAs with

high accuracy in a limited time. In this study, an intelligent wargaming approach is proposed to accelerate the COA

analysis in the MDMP. Simulation environment includes grid-world representation of the operation area, performance

models of military units and combat model. Operational risks on the air, ground and sea levels are modelled as heat

maps in the grid-world environment to represent the criticality level of the related location on the map. Moreover, in

future studies, it is aimed to add uncertainty within battleőeld that is related with the concept of fog-of-war, uncertainty

in situational awareness faced by every component of wargame. Consistent and reliable communication between assets

within the battleőeld while completing the missions is another important aspect of this study, and it is also to be

investigated as a future study. Evaluation of the COAs is performed based on combat assessment metrics. Current

studies are focused on implementation of attack and defense tactics for military units to be selected and executed by the

RL agent. Then, training of the RL agent will be completed by utilising the proximal policy optimization algorithm.

After that, a comprehensive evaluation process will be performed to validate the effectiveness of the overall system.
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