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Urban air mobility is a growing market, which will bring new ways to travel and to deliver items covering 

urban and suburban areas, at relatively low altitudes. To guarantee a safe and robust navigation, Unmanned 

Aerial Vehicles should be able to overcome all the navigational constraints. The paper is analyzing a novel 

sensor fusion framework with the aim to obtain a stable flight in a degraded GNSS environment. The sensor 

fusion framework is combining data coming from a GNSS receiver, an IMU and an optical camera under a 

loosely coupled scheme. A Federated Filter approach is implemented with the integration of two GRUs blocks. 

The first GRU is used to increase the accuracy in time of the INS, giving as output a more reliable position that 

it is fused, with the position information coming from, the GNSS receiver, and the developed Visual Odometry 

algorithm. Further, a master GRU block is used to select the best position information. The data is collected 

using a hardware in the loop setup, using AirSim, Pixhawk and Spirent GSS7000 hardware. As validation, the 

framework is tested, on a virtual UAV, performing a delivery mission on Cranfield university campus. Results 

showed that the developed fusion framework, can be used for short GNSS outages.  

I. Nomenclature

AI = Artificial intelligence 

EKF = Extended Kalman Filter 

FF = Federated Filter 

FO = Field of View 

GNSS = Global Navigation Satellite System 

GRU = Gated Recurrent Unit  

HIL = Hardware in the loop 

IMU = Inertial Measurement Unit 

INS = Inertial Navigation Unit 

KF = Kalman Filter 

LC = Loosely Coupled 

LLA = Latitude, Longitude and Altitude 

LSTM = Long Short-Term Memory 

MEMS = Micro Electromechanical System 

MSKCF = Multi State Constrain Kalman Filter 

NED = North, East and Down 

NLOS = Non-Line of Sight 

OKVIS = Open Keyframe based Visual Inertial SLAM 

PNT = Position navigation and Timing 

RMSE = Root Mean Squared Error 
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RNN = Recurrent Neural Network 

ROVIO = Robust Visual Inertial Odometry 

SLAM = Simultaneous Localization and Mapping 

UAM = Urban Air Mobility 

UAV = Unmanned Air Vehicle 

VO = Visual Odometry 

VPS = Visual Positioning System 

II. Introduction 

The future autonomous systems that will be implemented in urban environments have to rely on a stable navigation 

solution facing all the challenges encountered. Due to the nature of urban and suburban environments[1], Non-Line 

of Sight multipath signal propagation, can quickly degrade the quality of the GNSS-based positioning, leading to an 

erroneous localization (see Figure 1). Jamming and spoofing, are other types of signals, that can further affect GNSS-

based position, navigation, and timing. Because of the low power of the GNSS receiver, a jammer device can easily 

induce interferences over the same frequencies used by the GNSS, resulting in an unreliable PNT solution. On the 

other hand, a spoofer device is capable to emulate a GNSS signal, modifying the actual ground truth[2].  

 

 

Figure 1 NLOS multipath environment  

To mitigate all this errors a robust solution is required, to achieve the best navigation performances, even when the 

GNSS is not able to provide a PNT solution. Consequently, other sensors can be integrated along the GNSS receiver.  

A key sensor that can be found on each UAV is the IMU formed typically by a MEMS accelerometer and a MEMS 

gyroscope. It can measure the linear acceleration and the angular velocity of the UAV. To obtain the position and the 

velocity from the IMU, an INS[3,4] is used, giving in addition, the aerial vehicle attitude. Unfortunately, the two 

MEMSs sensors, accumulates errors in time, producing a substantial drift[5]. Further, during the INS mechanization 

process, the integrator factor is increasing more the errors.  

 

Thus, to minimize further these errors, additional sensors and methods can be used, to extract alternative navigation 

solutions. Optical based techniques can be used to extract the motion of a UAV in a known or unknown environment. 

The motion estimation can be relative or absolute, depending on the method used. Relative motion estimation consists 

of VO[6,7] and SLAM algorithms[8,9]. VO methods involve the analysis of frames, captured by an optical sensor, to 

estimate its motion through the environment. Instead, the SLAM approach is a more complex navigation algorithm 

that can be used to estimate the relative motion of the UAV, building at the same time a map. Thus, VO can be 

considered a subset of a SLAM based navigation method. Although, a motion estimation can be obtained from SLAM 

and VO, challenging environments with low light conditions or poor in features, can lead the algorithm to diverge. On 

the other hand, VPS[10,11] is another algorithm that can be used, to extract the absolute user position while moving 

in a known environment. A proper dataset, formed by different georeferenced aerial images, should be provided, 

covering the area of interest. Secondly, the optical camera view, while flying, should match the dataset available, to 

extract the UAV’s position as specified in.  
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Hence, to guarantee a good navigation and continuity, a fusion approach should be used. The sensor fusion framework 

should guarantee an adequate navigation output even if one sensor is suffering substantial degradation, combining the 

advantages and disadvantages of each sensor. Consequently, a VIO[12] can be implemented, using an IMU MEMS 

sensor along an optical camera. A tightly coupled or a loosely coupled approach can be implemented. The first method 

uses raw IMU, and VO data to compute the drone’s ego-motion solution. Instead, the loosely coupled method, uses 

the solution measured independently from each sensor. In addition, different VIO algorithms are already developed 

as the MSKCF[13], OKVIS[14], ROVIO[15] or VINS-Mono[16].  

 

Another fusion approach vastly spread along autonomous systems, is fusing INS and GNSS where a KF is used to 

track the changes of the system. The linearization of the system decreases the precision of the estimated INS errors, 

when GNSS signal outage occurs for long periods of time. Considering that the INS sensor accumulates errors in time, 

it is difficult to model the system dynamics and to tune the KF filter parameters optimally. 

 

Besides all the advantages, that KFs can bring, AI techniques can be used to increase the performances of fusion 

frameworks. Usually, in a real environment, UAVs tend to face many issues and challenges, from meteorological, 

mechanical to electrical problems. This tends to change the UAV dynamics, and for that, KFs have some limitations. 

AI instead can bring new horizons if proper training data is provided. RNNs have been used in fusion frameworks as 

described in[17,18], combing INS and GNSS data. Some of the disadvantages in using such framework, is its high 

computational cost and its difficulty in storing data for long term[19]. This may cause different errors if used for long 

term missions. Considering the internal structure of an RNN cell, if the weights are too small the learning rate will be 

slow and consequently, handling data, in time, may be difficult, leading to the so called ‘vanishing gradient’ effect. 
On the other hand, if the weights are too large, the output can diverge, obtaining an unreliable result, leading to an 

‘exploding gradient’ effect. Considering all the advantages and disadvantages of the RNN framework, LSTM[20,21] 

and GRUs, are valid alternatives in solving the losing memory of the RNN. Although, LSTMs presents good 

performances against RNNs, GRUs can achieve even better performances. The GRU cell has only two gates, a reset 

gate, and an update gate, having a less complex structure in comparison with a LSTM cell. This allows the GRU, to 

be more efficient during the training phase, having fewer gates and parameters to update. GRUs can be used also for 

navigation as stated in[22,23]. 

 

Thus, in this paper a novel federated filter approach using GRUs and EKFs, combining data in a loosely coupled 

scheme, from an IMU MEMS sensor, a GNSS receiver and an optical camera. To test the novel sensor fusion 

framework, a custom Unreal Engine world is set-up with AirSim and linked with a Spirent SimGEN 7000 hardware 

to get more realistic IMU and GNSS data. The paper is organized as follow: in section III the fusion framework is 

presented, in section IV the experimental set-up, in section V the experimental results with the relevant metrics, and 

finally in section VI the conclusions. 

III. Proposed fusion architecture 

Taking into account all the navigation challenges that a UAV may face in an urban environment, a novel fusion 

framework betweeen IMU, GNSS and an optical sensor can be achived with the integration of two GRU blocks along 

EKFs, in a FF (Federated Filter)[24] approach as shown in Figure 2. An advantage in using a federated fusion 

configuration, is the possibility to add different sensors more easily in the future, as subsystems, and to split the 

computational cost. In this way it is possible to obtain a more robust, sensor fusion architecture, if GNSS outage occurs 

or the VO diverges. The core module of the sensor fusion framework,  is represented by a first GRU block, used to 

correct and to increase the INS output accuracy. To correct in time the INS errors during the training phase, the GRU 

block is using GNSS data every 5 s, simulating GNSS outages. Further, during the testing phase, when GNSS outage 

occurs, the GRU block is predicting the errors, obtaining a more reliable output. From Figure 3 – Left, it is possible 

to see the IMU/GRU correction architecture, along the diagram with all inputs and outputs.  
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Figure 2 Proposed fusion architecture 

 

                                

Figure 3 GRU input-output scheme for INS correction (Left) and respectively NE position correction (Right) 

Where a is the linear acceleration, 𝜔 the angular velocity, 𝑃𝐼𝑁𝑆𝑁𝐸 , 𝑉𝐼𝑁𝑆𝑁𝐸 , 𝐴𝐼𝑁𝑆 the position, velocity, and acceleration 

from the INS mechanization block, and 𝛿𝑃𝐼𝑁𝑆/𝐺𝑁𝑆𝑆𝑁𝐸 , 𝛿𝑉𝐼𝑁𝑆/𝐺𝑁𝑆𝑆𝑁𝐸 , 𝛿𝐴𝐼𝑁𝑆/𝐺𝑁𝑆𝑆 the position, velocity and attitude error 

between the INS and GNSS. For this application only the position is used from the INS block, being able to obtain a 

final output, defined as: 

 𝑃𝐼𝑁𝑆/𝐺𝑅𝑈𝑁𝐸 =  𝑃𝐼𝑁𝑆𝑁𝐸  −  𝛿𝑃𝐼𝑁𝑆/𝐺𝑁𝑆𝑆𝑁𝐸     (1) 

The first EKF, is fusing data from the GRU block, and GNSS, that is converted from LLA to a NED coordinated 

frame. Instead, the second EKF uses the output from the GRU block and the VO, that is generated from a monocular 

camera placed on the UAV, pointing downwards. To correctly use the VO data, a conversion is done from the camera 

frame to the navigation frame as specified in[25]. The final section of the fusion framework, is represented by two 

GRUs, used to correct the output from the two EKFs as it can be seen from Figure 2 and 3-Right. Since only N and E 

positions are considered, the first GRU is used to process only the N position data, meanwhile the second GRU is 

processing only the E position data. This split was done do decrease the computation load, required by the framework, 

thus increasing the overall efficiency. Finally, the 552233 data units that represents each dataset for each coordinate, 

is used as input, for the corresponding GRU. Each dataset is divided in 80% for training and 20% for testing. The final 

output of the framework, can be defined as: 𝑃𝑁𝐸 = 𝑃̂𝑁 + 𝑃̂𝐸 (2) 

Where 𝑃𝑁𝐸  is the final position output of the fusion framework, represented by the sum of 𝑃̂𝑁 (estimated North 

position) and 𝑃̂𝐸 (estimated East position). 
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IV. Experimental set-up 

To simulate a more realistic mission and to test the proposed fusion framework, a HIL simulation is set-up. For the 

testing purpose, a Pixhawk 2.4.8 board is used, along QGroundControl, Unreal Engine, Cesium and AirSim. It is 

possible in this way to develop a custom environment where to visualize the UAV trajectory and the visual data, 

coming from the monocular camera.  

 

 

Figure 4 HIL set-up 

Using the predefined trajectory from AirSim, it is possible to create a link with SimGEN and the Spirent GSS7000 

platform. In this way, it is possible to generate GNSS RF signals, that are processed by the F9P GNSS receiver, 

obtaining more reliable GNSS data, to be used by the fusion framework. At the same time more realistic IMU data is 

generated by the SimGEN platform. All the parameters used to setup the accelerometer, gyroscope and GNSS in 

SimGEN, can be viewed in table below. 

 

Table 1 Accelerometer, Gyroscope and GNSS parameter settings 

Accelerometer Gyroscope 

Scaling Factor (ppm) 500 Scaling Factor (ppm) 500 

Bias (m/s2) 5e-5 Bias (rad/s) 1.212e-4 

ARW (m/s2/√𝑠) 3.7e-4 ARW (rad/s/√𝑠) 7.33e-5 

Update rate (Hz) 100 Update rate (Hz)  100 

GNSS 

Pseudorange accuracy (m) 3 

Pseudorange rate accuracy (rad/s) 0.5 

Update rate (Hz)  10 

V. Evaluation 

To start the mission, and to evaluate in time, the algorithm performances, a standard trajectory pseudocode is defined, 

as it can be seen below. The UAV starts from the local base, reaching firstly the cruise altitude for then, flying for a 

predefined distance, until it reaches the delivery location where it descends again to deliver the package. Once the 

package is delivered, it reaches again the cruise altitude, coming back to the base station. During every step, a message 

is sent to the base to confirm the UAV flying status. 
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Figure 5 Trajectory pseudocode 

Where ℎ𝑐 is the cruise altitude, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑈𝐴𝑉  is the distance covered by the UAV, ℎ𝑑 the delivery altitude, 𝑈𝑈𝐴𝑉 the 

UAV speed and, 𝑡𝑑 the delivering time.  

 

Figure 6 UAV mission trajectory  

A. Local Filters evaluation 
 

The first local filter, formed by the IMU/GNSS EKF, provides position information, that cannot be used in a standalone 

mode, for a UAV navigation as it can be seen from Figure 6. This is due the GNSS outages that are introduced into 

the system because of the GNSS degraded environment. On the other hand, the output from the second filter provides 

an alternative navigation solution. It can be seen clearly that the horizontal error in time, of the second local filter, 

increases during the first part of the mission. Considering that a feature-based algorithm is used, to estimate the ego-

motion of the monocular camera during the mission, external features are directly affecting the output of algorithm, 

and this may introduce errors, if an environment portion if not rich in features. In fact, during the first part of the 

mission, because the UAV takes off from a green area, and due to the lack of features, the errors are increasing, only 

to decrease when it approaches a richer area in terms of features as it can be seen from Figure 7 -d. An additional 

source of error is the scale factor estimation, needed by the VO algorithm, along the entire mission, especially during 

altitude variations as the take-off and delivery phase. Although, errors are introduced into the fusion framework by 
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the sensors used, the first GRU block helps, in increasing the robustness of the output from the two EKF local filters, 

as it can be seen from the figure below and from Table 2.  

           

                  

                      

Figure 7 Local filters performance comparison with and without the GRU aid 

Table 2 Local filters metrics 

Filter Mean horizontal 

RMSE [m] 

RMSE N 

[m] 

RMSE E 

[m] 

Horizontal RMSE 

(95th percentile) [m] 

EKF1 IMU/GRU/GNSS 3.4637 0.4069 3.4397 5.3880 

EKF1 IMU/GNSS (no INS GRU aid) 6.2089 0.9065 6.1423 9.4749 

EKF2 IMU/VO/GRU 4.2668 0.5152 4.2356 8.3203 

EKF2 IMU/VO (no INS GRU aid) 7.3183 1.2043 7.2185 12.9876 

B. Master filter Evaluation 

 

Further, the output of the two local filters is processed by a master GRU block, that decreases consistently the errors 

introduced into the system as it can be seen from Table 3 and Figure 8 - a. In addition, it can be observed that an EKF 

block as master filter without the any GRU correction in the framework (see Figure 8 -b), does not increase the 

robustness of the fusion framework, achieving almost the same performances as the first local filter. Instead, if an 

EKF is used as master filter, including a GRU block, to predict the INS errors used by the local filters, the errors 

decrease. In comparison to the two master EKFs situations, slightly better results are obtained if a master GRU is used 

without the GRU INS correction block. On the other hand, the best performance can be achieved if a GRU block is 

used to predict the INS errors, and at the same time a master GRU block is used to predict the N and E errors coming 
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from the two local filters (see Table 3). Thus, the GRU is efficient, having a RMSE lower than the output from the 

two local filters.  Overall, the E errors are higher in comparison to the N errors. This is due to all the errors introduced 

into the fusion architecture by the GNSS, IMU and the monocular camera. 

 

              

Figure 8 Comparison of performance for master filter based on GRU and EKF.   

To evaluate further the performances of the fusion framework, the horizontal accuracy is calculated and evaluated in 

time along the 95% percentile. Again, the master GRU has the best performances as it can be seen from Table 3.  

 

Table 3 Master filter performances 

Filter Mean horizontal 

RMSE 

 [m] 

RMSE N 

[m] 

RMSE E 

[m] 

Horizontal RMSE 

(95th percentile)  

[m] 

Master EKF (no INS GRU aid) 6.2036 0.8943 6.1388 9.4665 

Master EKF  2.1428 0.1356 2.1385 3.3980 

Master GRU (no INS GRU aid) 1.0865 0.018 1.0865 2.1478 

Master GRU 0.8035 0.0173 0.8033 1.4608 

 

Conclusion 
In the work the authors have presented and demonstrated the following:  

- A novel sensor fusion framework based on an FF approach was developed and tested in a LC scheme, fusing 

data from a GNSS receiver, an IMU MEMS sensor and a monocular camera, performing a delivery mission 

with GNSS outages of 5 seconds.  

- From the performances obtained, the novel fusion framework can provide a good mean horizontal accuracy 

of 0.8035 m with the aid of the two GRUs blocks and EKFs in comparison to other configurations (see Table 

2 and 3). The VIO relies on the first GRU block, thus even if the VO degrades by external factors, a solution 

can still be provided. The dependency of the VO algorithm, for scale estimation, by the GRU, decreases the 

integrity of the system.  

- A HIL simulation was successfully established between a Pixhawk board and a GSS7000 hardware provided 

by Spirent, through a UDP connection. Thus, the realism of GNSS and IMU are increased substantially. 

- A virtual simulation environment was developed based on Unreal Engine, AirSim and Cesium. Therefore, 

the UAV can be deployed easily, in urban, sub urban and rural areas, by specifying the initial position in 

LLA frame. Small perturbances were observed during flights, due to the link between Unreal Engine, AirSim 

and Cesium, degrading the IMU data recorded. In addition, the Bing map introduced by Cesium, has different 

blurry parts, that affects the VO algorithm, during some stages of the mission.  



9 

 

References  

 

[1]  Castelli, T., Sharghi, A., Harper, D., Tremeau, A., and Shah, M. “Autonomous Navigation for Low-Altitude 

UAVs in Urban Areas.” 2016. 
[2]  Zhu, N., Marais, J., Betaille, D., Berbineau, M., Gnss, M. B., and Bétaille, D. “Position Integrity in Urban 

Envi-Ronments: A Review of Literature.” IEEE Transactions on Intelligent Transportation Systems, 2018. 

https://doi.org/10.1109/TITS.2017.2766768ï. 

[3]  Falco, G., Pini, M., and Marucco, G. “Loose and Tight GNSS/INS Integrations: Comparison of Performance 
Assessed in Real Urban Scenarios.” Sensors (Switzerland), Vol. 17, No. 2, 2017. 

https://doi.org/10.3390/s17020255. 

[4]  Parthenope, ", and Angrisano, A. UNIVERSITA’ DEGLI STUDI DI NAPOLI GNSS/INS Integration Methods. 

[5]  Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems Second Edition. 

[6]  Scaramuzza, D., and Fraundorfer, F. “Tutorial: Visual Odometry.” IEEE Robotics and Automation Magazine, 

Vol. 18, No. 4, 2011, pp. 80–92. https://doi.org/10.1109/MRA.2011.943233. 

[7]  Aqel, M. O. A., Marhaban, M. H., Saripan, M. I., and Ismail, N. B. Review of Visual Odometry: Types, 

Approaches, Challenges, and Applications. SpringerPlus. 1. Volume 5. 

[8]  Hening, S., Ippolito, C., Krishnakumar, K., Stepanyan, V., and Teodorescu, M. 3D LiDAR SLAM Integration 

with GPS/INS for UAVs in Urban GPS-Degraded Environments. 2017. 

[9]  Servières, M., Renaudin, V., Dupuis, A., and Antigny, N. “Visual and Visual-Inertial SLAM: State of the Art, 

Classification, and Experimental Benchmarking.” Journal of Sensors, Vol. 2021, 2021. 

https://doi.org/10.1155/2021/2054828. 

[10]  Jiang, W., Liu, D., Cai, B., Rizos, C., Wang, J., and Shangguan, W. “A Fault-Tolerant Tightly Coupled 

GNSS/INS/OVS Integration Vehicle Navigation System Based on an FDP Algorithm.” IEEE Transactions 

on Vehicular Technology, Vol. 68, No. 7, 2019, pp. 6365–6378. https://doi.org/10.1109/TVT.2019.2916852. 

[11]  Shan, M., Wang, F., Lin, F., Gao, Z., Tang, Y. Z., and Chen, B. M. “Google Map Aided Visual Navigation 
for UAVs in GPS-Denied Environment.” 2017. 

[12]  Scaramuzza, D., and Zhang, Z. Visual-Inertial Odometry of Aerial Robots. 

[13]  Mourikis, A. I., and Roumeliotis, S. I. A Multi-State Constraint Kalman Filter for Vision-Aided Inertial 

Navigation. 2007. 

[14]  Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and Furgale, P. Keyframe-Based Visual-Inertial 

Odometry Using Nonlinear Optimization. 

[15]  Bloesch, M. ;, Omari, S. ;, Hutter, M. ;, Siegwart, R., Bloesch, M., Omari, S., and Hutter, M. “ETH Library 
Robust Visual Inertial Odometry Using a Direct EKF-Based Approach Conference Paper Robust Visual 

Inertial Odometry Using a Direct EKF-Based Approach.” https://doi.org/10.3929/ethz-a-010566547. 

[16]  Qin, T., Li, P., and Shen, S. “VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator.” 
2017. https://doi.org/10.1109/TRO.2018.2853729. 

[17]  Dai, H. fa, Bian, H. wei, Wang, R. ying, and Ma, H. “An INS/GNSS Integrated Navigation in GNSS Denied 

Environment Using Recurrent Neural Network.” Defence Technology, Vol. 16, No. 2, 2020, pp. 334–340. 

https://doi.org/10.1016/j.dt.2019.08.011. 

[18]  Jeon, B. J., Petrunin, I., and Tsourdos, A. Recurrent Neural Network Based Sensor Fusion Algorithm for 

Alternative Position, Navigation and Timing. No. 2021-October, 2021. 

[19]  Ribeiro, A. H., Tiels, K., Aguirre, L. A., and Schön, T. B. Beyond Exploding and Vanishing Gradients: 

Analysing RNN Training Using Attractors and Smoothness. 2020. 

[20]  Staudemeyer, R. C., and Morris, E. R. “Understanding LSTM -- a Tutorial into Long Short-Term Memory 

Recurrent Neural Networks.” 2019. 
[21]  Lopez, A., Lapata, M., and Keller, F. Natural Language Understanding Lecture 12: Recurrent Neural 

Networks and LSTMs Recap: Probability, Language Models, and Feedforward Networks Simple Recurrent 

Networks Backpropagation Through Time. 2018. 

[22]  Xu, S., Petrunin, I., and Tsourdos, A. Experimental Evaluation of GNSS and IMU Fusion Using Gated 

Recurrent Unit. 2022. 

[23]  Geragersian, P., Petrunin, I., Guo, W., and Grech, R. An INS/GNSS Fusion Architecture in GNSS Denied 

Environments Using Gated Recurrent Units. 2022. 

[24]  Carlson, N. A. “Federated Square Root Filter for Decentralized Parallel Processes.” IEEE Transactions on 

Aerospace and Electronic Systems, Vol. 26, No. 3, 1990, pp. 517–525. https://doi.org/10.1109/7.106130. 



10 

 

[25]  Xiang, H., and Tian, L. “Method for Automatic Georeferencing Aerial Remote Sensing (RS) Images from an 

Unmanned Aerial Vehicle (UAV) Platform.” Biosystems Engineering, Vol. 108, No. 2, 2011, pp. 104–113. 

https://doi.org/10.1016/j.biosystemseng.2010.11.003. 

  


