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Abstract: The residual biogas potential (RBP) test is a procedure to ensure the anaerobic digestion 

process performance and digestate stability. Standard protocols for RBP require a significant time 

for sample preparation, characterisation and testing of the rig setup followed by batch experiments 

of a minimum of 28 days. To reduce the experimental time to obtain the RBP result, four biogas 

kinetic models were evaluated for their strength of fit for biogas production data from RBP tests. It 

was found that the pseudo-parallel first-order model and the first-order autoregressive (AR (1)) 

model provide a high strength of fit and can predict the RBP result with good accuracy (absolute 

percentage errors < 10%) using experimental biogas production data of 15 days. Multivariate regres-

sion with decision trees (DTs) was adopted in this study to predict model parameters for the AR (1) 

model from substrate physicochemical parameters. The mean absolute percentage error (MAPE) of 

the predicted AR (1) model coefficients, the constants and the RBP test results at day 28 across DTs 

with 20 training set samples are 4.76%, 72.04% and 52.13%, respectively. Using five additional data 

points to perform the leave-one-out cross-validation method, the MAPEs decreased to 4.31%, 

59.29% and 45.62%. This indicates that the prediction accuracy of DTs can be further improved with 

a larger training dataset. A Gaussian Process Regressor was guided by the DT-predicted AR (1) 

model to provide probability distribution information for the biogas yield prediction. 
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1. Introduction 

Digestate is a by-product from the anaerobic digestion (AD) process. Due to its high 

nutrient value, it can be used as soil improver or fertiliser if the digestate is proved to be 

valorised and can meet relevant quality standards [1]. The digestate stability can be eval-

uated with a residual biogas potential (RBP) test. The test typically is required to be car-

ried out under mesophilic conditions for at least 28 days with an appropriate inoculum-

to-substrate ratio and micro- and macronutrients supplemented to avoid the inhibition of 

biogas production [2]. The digestate is considered to have consistent quality if the RBP 

test biogas yield is below 0.25 L/g volatile solids (VS), as recommended in the Publicly 

Available Specification 110 (PAS110), which is a key element of the UK Government’s 

anaerobic digestion quality protocol [3]. 

The 28-day continuous monitoring of biogas production in an RBP test is time-con-

suming and onerous for commercial AD operators. This limits the adoption of RBP tests 

and regulated markets for digestate. There have been many attempts to find alternative 

approaches to RBP that offer rapid tests result. These include assessing acid production 

after the inhibition of methanogenesis [4–6] and assessing the digestion of the organic 

fraction of the digestate after separation of the microbial cell component [7]. Nevertheless, 

both approaches are of great complexity and further research is needed [7]. 
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Additionally, some researchers have attempted to relate the RBP test results to diges-

tate physicochemical characteristics. For example, the theoretical biogas potential calcu-

lated based on the stoichiometric methane conversion from volatile fatty acid (VFA) con-

centrations and the soluble chemical oxygen demand (sCOD) in the digestate sample were 

suggested in PAS110 as preliminary pass/fail indicators for the RBP tests [8]. Although 

these preliminary indicators provide useful information about digestate stability, they 

cannot be correlated with RBP values or provide reaction kinetics that can be used to re-

veal further digestion performance information including inhibition. In a previous work 

reviewing the application of the RBP test for PAS110 [9], correlations between RBP values 

and various characteristics, including VFA and sCOD, were investigated. Although some 

low to moderate levels of correlations were found for total VFA, total solids and volatile 

solids, which account for 40%, 36% and 29% of variation in RBP values, respectively, none 

of the indicators are sufficiently reliable to predict the RBP values accurately [9]. 

Other researchers have evaluated using empirical biogas production models, includ-

ing first-order kinetic and Gompertz models, and experimental biogas yield data from the 

initial stage of the RBP tests to fit specific accumulative biogas production data from RBP 

tests [10–12]. This has led to a promising experimental and modelling ‘hybrid’ approach 

using experimental data collected from a shorter RBP duration (3–7 days instead of 28 

days) to calculate model parameters, and then predict the ultimate biogas production. 

However, the accuracy of prediction is not sufficient to warrant the replacement of RBP 

with this hybrid approach [12]; therefore, further improvement of the modelling process 

is required. 

In this research, we evaluated the strength of fit for four biogas yield kinetic models 

including first-order kinetic, modified Gompertz, pseudo-parallel first-order kinetic and 

autoregressive (AR) time-series to describe the RBP test biogas production process. The 

models are then calibrated using experimental data collected from shorter RBP tests (5, 

10, 15, 20 and 25 days) to calculate model parameters that are then used to predict ultimate 

biogas production. 

In a previous work [9], although using conventional statistical methods, no signifi-

cant correlations were found between key physicochemical parameters of digestate sam-

ples with RBP results. Due to the potential interplay of these parameters, which can influ-

ence the RBP results and reaction kinetics, the correlations may be deeply hidden. 

Machine learning techniques including multivariate nonlinear regression analysis 

with decision trees (DT) were applied to predict the parameters of the biogas production 

model from the physicochemical characteristics of digestate samples. Compared with 

other multivariate nonlinear regression methods, the DT method is particularly suitable 

for a training dataset with limited sample size in this study [13]. The uncertainties of the 

predicted biogas yield were then assessed using a Gaussian process regressor (GPR). 

The data processing framework described in this work can potentially have a wider 

application for other complex biochemical processes that are influenced by multiple phys-

icochemical parameters of the reaction system. 

2. Materials and Methods 

2.1. Digestate Samples and RBP Test 

The sampling point of the 25 digestate samples was the outlet of the final tank from 

which the biogas was collected. The AD plants involved in the study are anonymised and 

coded as ADP1–25. The inoculum was from the anaerobic digester at Millbrook 

Wastewater (WW) Treatment Plant at Southampton, UK. The RBP test followed the stand-

ard procedure described in the PAS110 [3]. Samples were tested in triplicate against two 

positive controls and three inoculum-only controls. 
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2.2. Analytical Methods 

Twenty physicochemical characteristics were analysed for each digestate, including 

VFAs (total VFA and acetate), total ammoniacal nitrogen (TAN), total Kjeldahl nitrogen 

(TKN), alkalinity (total alkalinity (TA), partial alkalinity (PA) and intermediate alkalinity 

(IA)), TS, VS, pH, COD (total COD and sCOD), trace element (TE) concentrations (cobalt 

(Co), iron (Fe), molybdenum (Mo) and nickel (Ni)), calorific value (CV) and elemental 

compositions (C, H, N). TAN/TKN and IA/PA were calculated as two extra metrics. 

TAN/TKN represents the relative contents of ammonia nitrogen and organically bonded 

nitrogen and thus how ready the substrate is for microorganism degradation [14]. IA/PA 

is an indicator of VFA accumulation in the AD process. Ripley et al. (1986) [15] suggest 

IA/PA < 0.3 indicates a stable state of the anaerobic process. 

Determination of VFAs is based on the SCA (1979) [16] method Determination of 

Volatile Fatty Acids in Sewage Sludge. Supernatant layer from digestate centrifugation 

with 10% formic acid were quantified in a Shimadzu GC-2010 gas chromatograph with a 

flame ionisation detector and a capillary column type SGE BP-21. TAN and TKN were 

determined using a Kjeltech digestion block and steam distillation unit, according to the 

manufacturer’s instructions (Foss Ltd., Warrington, UK). Alkalinity was measured by ti-

tration with 0.25 N H2SO4 to endpoints of pH 5.75 and 4.3 in order to allow calculation of 

TA, PA and IA [15]. TS and VS were determined with Standard Method 2540 G (APHA, 

2005). Total COD and sCOD were analysed by adapting the closed reflux titrimetric 

method of 5220C, APHA [17]. TE concentrations were determined using ICP-MS or ICP-

OES at a UKAS-accredited commercial laboratory (Severn Trent Services, Coventry, UK) 

after in-house hydrochloric–nitric acid digestion [18]. CV was measured with a CAL2k-

ECO bomb calorimeter (CAL2k, Digital Data Systems, Gauteng, South Africa). Elemental 

C, H, and N analysis was performed using a Flash EA-1112 elemental analyser (Thermo 

Finnigan, Cheshire, UK). 

2.3. Assessing the Strength of Fit for Biogas Production Kinetic Models 

Four biogas-production kinetic models commonly used to estimate the kinetic con-

stants of the AD process were compared for their abilities to fit the biogas production of 

RBP tests. These models include three empirical models (first-order kinetic, modified 

Gomperz and pseudo-parallel first-order models) and a time-series model (first-order au-

toregressive). The strength of a kinetic model to accurately fit the experimental biogas 

production data was measured using R2 values, which indicate the percentage of the var-

iance in the responses explained by a model. 

Additionally, these models were used to predict the 28-day RBP test results by fitting 

the models with initial 5, 10, 15, 20 and 25 days’ experimental data using the Matlab 

R2021b Curve Fitting Toolbox. Based on the absolute percentage error (APE) between the 

experimental data and model-predicted results, the accuracy of prediction and duration 

of experimental data required to obtain a sufficiently accurate prediction were investi-

gated for the following four models: 

(1) First-order model (FO): The FO model (Equation (1)) is derived from the assump-

tions that the substrate degradation is a first-order reaction with hydrolysis as the speed-

limiting step and the cumulative biogas yield is proportional to the amount of substrate 

degraded (Equation (2)) [19,20]. 

�(�) =  ���1 − �����  (1)

��

��
=  −�� 

�� − �

��
=  

�

��
  (2)

where y(t) is the cumulative biogas yield at time t, k is the first-order rate constant, ym is 

the maximum cumulative gas production, c is the concentrate of the substrate and c0 is the 

initial substrate concentration. 
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(2) Modified Gomperz model (MG): The modified Gomperz model (Equation (3)) is 

derived from the Gomperz model, which is used to describe the microbial activity and has 

a signature sigmoid shape [21,22]. It describes the biogas production in terms of the expo-

nential growth rates and lag phase duration of anaerobic degradation microorganisms 

[11]. 

�(�) = �� × exp �− ��� �
�

��
× � × (� − �) + 1�� (3)

where y(t) is the cumulative gas production at time t, ym is the maximum cumulative gas 

production (mL CH4/gVS), R is the maximum gas production rate (mL CH4/gVS/d) and λ 

is the lag phase period or minimum time to produce biogas (days). 

(3) Pseudo-parallel first-order model (PP): The pseudo-parallel first-order model 

(Equation (4)) is considered to be more suitable for describing the biogas yield of mixtures 

of substrates with different kinetic rates (rapid and slow) [23]. 

�(�) = ��(1 − ������ − (1 − �)�����)  (4)

where y(t) is the cumulative gas production at time t, ym is the maximum cumulative gas 

production (mL CH4/g VS), P is the the proportion of the readily degradable material, k1 

is the first-order rate constant for readily degradable material, and k2 is the first-order rate 

constant for less readily degradable material. 

(4) First-order autoregressive model (AR (1)): AR (1) is a time-series model that pre-

dicts the present timestep based on the observations from previous timesteps. The auto-

correlation function (ACF) (autocorrelation between timesteps) plots for all the RBP test 

biogas yield samples gradually trail off (Figure 1a, using ADP20 as an example). There-

fore, the biogas production process is an AR process. Many time-series models that essen-

tially model the randomness of the time series data need the trends in the data to be re-

moved, in other words, to ensure the stationarity of the data. However, the application of 

the AR model does not intrinsically require transforming the data into stationary data. 

Thus, the biogas yield data were not converted to a stationary process in this study. 

 

Figure 1. The ACF (a) and PACF (b) of sample ADP20 biogas production time series from day 4. 

The blue lines are the confidence bounds for a significant correlation. The red lines are the autocor-

relation and partial autocorrelation between the current time step and the time steps of different 

lags. 

For most of the RBP test data, the cumulative biogas production curves typically ex-

hibit a rapid gas-production stage in the initial three days followed by a noticeable reduc-

tion in biogas production rate. This means one set of AR model parameters generally will 

result in a poor fitting for both the rapid-production stage and the later stage after the 

initial three days. In this study, to simplify the modelling process, the AR (1) model was 

only used to model biogas production from day 4 of the RBP tests. The partial autocorre-

lation function (PACF) (partial autocorrelation between timesteps) plots of data from day 
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four for most of the biogas time series samples were cut off after one lag (Figure 1b, taking 

ADP20 as an example). Therefore, the biogas production from day four was an AR (1) 

process (Equation (5)). 

The upper asymptote of an AR (1) process is determined by its unconditional mean 

μ = c/(1 − β), which corresponds to the ultimate biogas yield of a substrate. 

�� =  ����� + � + �� (5)

where Xt is the response of the present timestep, the Xt−1 is the response of the previous 

one timestep, β is the coefficient, c is the constant and εt is the white noise. 

2.4. Prediction of Biogas Kinetic Model Coefficients and Constants Using Decision Tree 

Multivariate Regression Method 

2.4.1. Decision Tree Multivariate Regression Method 

The best-performing model out of the four kinetic models was further studied using 

decision tree (DT) multivariate regression analysis. DT is a non-parametric supervised 

learning technique that can be applied for both regression analysis and classification, 

providing piecewise constant approximations as prediction results [24]. 

DTs were trained using all physicochemical characteristics listed in Tables 1 and 2 as 

predictors to predict the coefficients and constants of the best-performing biogas produc-

tion kinetic model. First, RBP results of 20 digestate samples (out of the 25-sample dataset) 

were used to train the DT model with the five remaining samples as the test dataset for 

model validation. The training process generated 53,130 groups of different combinations 

of 20 samples when choosing out of the 25. For practical reasons, a subset of 5000 groups 

were selected randomly to evaluate the absolute percentage error (APE) and mean abso-

lute percentage error (MAPE) (Equation (6)) of the predicted biogas production model 

parameters and the APE of the calculated ultimate biogas yield. Then, the DT model was 

trained and validated using the leave-one-out (LOO) cross-validation method, which ap-

ply four additional set of data to the training data to verify if the prediction accuracy 

would improve. 

 ���� = �
������

��
�  ���� =  

�

�
∑ �

������

��
��

���   (6)

where yi is the model parameter derived by fitting the model to the entire 28-day RBP test 

data, yi�  is the model parameter inferred from the physicochemical characteristics by DT 

and n is the number of training set samples. 

Table 1. RBP test results on day 28 (d-28) and the physicochemical characteristics of 25 samples (Part 

1). 

ADP 

No. 

d-28 Acetate 
Total-

VFA 
TAN TKN 

TAN/TK

N 
TA PA IA IA/PA TS VS 

L/g VS mg/L g N/kg  kg/kg CaCO3 g/kg  

1 0.13 178.18 193.57 1.70 3.53 0.48 12.52 9.03 3.49 0.39 49.84 37.12 

2 0.18 29.08 37.35 0.62 3.28 0.19 7.97 6.42 1.55 0.24 49.11 30.39 

3 0.13 846.78 1016.41 7.98 12.37 0.64 33.38 25.87 7.51 0.29 93.28 67.65 

4 0.24 684.05 775.99 4.04 6.48 0.62 17.52 12.42 5.10 0.41 46.43 32.59 

5 0.12 247.38 332.57 5.12 7.48 0.69 24.50 16.62 7.88 0.47 56.57 37.49 

6 0.06 111.56 115.64 2.80 4.91 0.57 46.43 28.12 18.31 0.65 178.34 50.05 

7 0.07 183.61 187.39 2.69 4.44 0.61 58.20 20.92 37.27 1.78 137.43 40.44 

8 0.26 14.42 324.32 0.40 1.29 0.31 3.31 2.20 1.11 0.50 17.16 12.11 

9 0.36 2633.79 9262.76 6.54 9.23 0.71 23.99 15.62 8.36 0.54 47.79 34.51 

10 0.17 134.49 204.90 3.32 5.21 0.64 17.64 13.10 4.54 0.35 46.53 29.51 

11 0.30 2662.15 3963.27 2.22 3.14 0.71 9.45 5.22 4.23 0.81 20.38 12.74 

12 0.17 23.29 36.68 2.71 4.64 0.58 12.22 8.98 3.24 0.36 36.91 26.50 
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13 0.16 335.54 364.46 2.80 5.29 0.53 15.73 12.14 3.59 0.30 43.59 29.98 

14 0.13 19.25 19.25 0.44 2.25 0.20 3.97 1.85 2.11 1.14 35.04 21.47 

15 0.09 250.28 259.05 3.58 6.12 0.58 17.20 13.66 3.54 0.26 58.00 43.56 

16 0.38 2706.80 3871.62 3.00 4.87 0.62 11.91 7.76 4.14 0.53 36.65 26.88 

17 0.26 36.69 50.29 1.49 2.85 0.52 7.71 5.79 1.91 0.33 29.82 16.42 

18 0.25 832.24 1440.64 2.42 4.27 0.57 13.70 9.98 3.72 0.37 59.04 44.97 

19 0.14 39.82 53.93 4.62 6.85 0.68 21.13 16.31 4.82 0.30 52.92 38.76 

20 0.19 184.69 218.06 5.76 8.55 0.67 23.56 18.34 5.23 0.29 64.64 44.93 

21 0.33 89.69 260.15 3.00 5.61 0.54 24.85 14.70 10.14 0.69 211.53 106.18 

22 0.22 299.39 353.29 2.25 3.11 0.72 12.78 10.07 2.71 0.27 20.86 9.85 

23 0.29 270.61 411.15 4.24 6.56 0.65 17.23 13.24 3.99 0.30 52.49 32.30 

24 0.28 215.32 250.62 4.47 6.98 0.64 18.19 13.87 4.33 0.31 50.25 34.87 

25 0.29 241.71 272.53 4.77 7.01 0.68 19.52 15.15 4.38 0.29 46.84 31.96 

Table 2. RBP test results on day 28 (d-28) and the physicochemical characteristics of 25 samples (Part 

2). 

ADP 

No. 

d-28 

pH 

CV C H N Co Fe Mo Ni 
Total-

COD 
sCOD 

L/g VS 
MJ/kg 

TS 
% mg/L g O2/L 

1 0.13 8.30 16.38 39.20 4.48 5.61 0.85 130.53 0.29 1.20 42.77 6.67 

2 0.18 7.41 14.89 37.44 4.57 5.53 0.08 1144.15 0.30 0.50 40.35 2.73 

3 0.13 8.35 18.61 34.80 4.52 7.34 0.24 1020.82 0.43 1.75 88.64 21.56 

4 0.24 8.17 17.53 40.13 4.89 6.61 0.28 2031.83 0.19 0.60 44.04 12.14 

5 0.12 8.45 16.13 38.32 4.20 6.05 0.21 90.76 0.18 0.39 40.69 15.16 

6 0.06 8.14 3.29 17.08 1.71 2.20 1.08 2326.91 0.94 7.74 57.29 11.19 

7 0.07 8.16 4.41 12.51 1.59 2.25 0.98 1923.48 0.69 5.06 39.32 8.45 

8 0.26 7.33 20.26 46.25 5.58 6.11 0.03 87.36 0.07 0.24 28.62 3.16 

9 0.36 8.35 22.26 47.75 5.32 8.51 0.09 539.07 0.14 0.50 75.39 35.94 

10 0.17 8.04 14.78 36.85 4.00 5.74 0.42 174.88 0.30 0.71 36.12 7.82 

11 0.30 7.62 17.02 38.87 4.43 6.30 0.04 210.67 0.08 0.19 28.69 10.00 

12 0.17 8.10 18.26 42.43 4.88 6.13 0.25 234.07 0.08 0.28 31.68 10.17 

13 0.16 8.37 16.21 38.47 4.47 6.65 1.04 111.12 0.30 1.02 46.88 9.53 

14 0.13 7.50 15.25 32.94 4.50 5.78 0.45 1166.46 1.46 1.67 19.63 4.50 

15 0.09 8.90 19.86 44.13 5.28 5.22 0.09 151.82 0.25 1.08 65.63 11.87 

16 0.38 7.92 19.22 43.49 5.62 6.54 0.09 64.01 0.18 0.26 39.18 18.84 

17 0.26 7.92 13.35 30.67 3.82 5.67 0.19 348.02 0.28 0.56 26.51 6.39 

18 0.25 8.16 17.76 42.16 4.76 4.34 9.06 227.30 5.68 30.37 55.74 17.00 

19 0.14 8.42 17.90 44.56 4.67 6.87 1.42 293.85 0.50 1.33 58.58 14.74 

20 0.19 8.15 16.41 38.55 4.55 6.40 1.21 1056.09 0.45 1.55 68.52 15.57 

21 0.33 8.07 12.24 33.21 2.64 2.35 2.58 4249.89 1.17 13.79 82.92 12.59 

22 0.22 8.32 10.74 24.93 2.88 5.27 0.89 36.94 0.26 0.82 17.76 9.52 

23 0.29 8.54 13.84 32.93 4.06 5.59 0.18 649.78 0.16 0.46 54.33 16.54 

24 0.28 8.54 16.82 38.59 4.82 6.65 0.38 679.62 0.16 0.58 67.39 15.86 

25 0.29 8.67 16.50 36.82 4.71 5.90 0.37 797.93 0.15 0.53 61.56 16.83 

2.4.2. Assessing Prediction Uncertainty Using a Gaussian Process Regressor (GPR) 

To quantify the uncertainty in the calculated biogas yield using the kinetic model 

predicted by DT, a Gaussian process regressor (GPR) method was applied in this study. 

GPR is a kernel-based Bayesian tool to perform nonlinear regression. The process is spec-
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ified by a mean function m(x) and a covariance function k (x, x’|θ) which defines the co-

variances between the responses at any two input locations x and x’. θ represents the hy-

perparameters of the covariance function and their values are learned from the training 

data by maximising the log marginal likelihood. Once the hyperparameters are decided, 

the prediction for new input is performed by computing the marginal posterior distribu-

tion conditioning on the dimensions with known inputs [25]. 

The principle of GPR is to predict one timestep further each time by fitting one more 

datum provided by the biogas-yield kinetic model and the prediction uncertainty bands 

were also returned. The predictions of the GPR with zero mean and squared exponential 

kernel and the GPR with linear basis function and squared exponential kernel were com-

pared. 

3. Results and Discussion 

3.1. Digestate Characterisation and RBP Test Results 

The 28-day RBP test results for each set of RBP samples together with the physico-

chemical characteristics of each digestate are shown in Tables 1 and 2. Specific cumulative 

biogas yield data collected during the 28-day testing period were reported elsewhere [9] 

and were used in the model fitting and training process in this study. 

3.2. Assessing Strength of Fit for Biogas Production Models 

Within the 28 days of the RBP test, it was noticeable that biogas yields of some sam-

ples in this study had reached a plateau, whilst others still were showing an upward trend 

close to the end of the 28-day test. This is clearly due to the different concentrations of 

readily degradable materials in the digestate samples. To distinguish these two types of 

digestate samples, the 25 digestate samples were classified into two types based on the 

absolute average of the daily biogas production change percentages in the last four days: 

(1) Type I: less than 0.5%; (2) Type II: more than 0.5% (Table 3). 

Table 3. The classification of two types of RBP test biogas-production time series according to the 

absolute average of the daily biogas production change percentages in the last four days. 

Type I 

ADP 3 4 5 11 12 13 16 19 20 21      

Increase 

(%) 
0.38 0.04 0.26 0.27 0.36 0.31 0.18 0.36 0.4 0.50      

Type II 

ADP 1 2 6 7 8 9 10 14 15 17 18 22 23 24 25 

Increase 

(%) 
1.07 1.13 1.23 1.56 0.70 0.58 0.58 0.94 0.95 1.13 1.00 0.92 0.77 0.86 0.80 

Table 4 shows the R2 values for the fits of the three empirical biogas production mod-

els to RBP test data. Overall, the modified Gomperz model achieved lower R2 values 

across the majority of the samples, indicating poorer fitting performance. In contrast, the 

PP first-order model could describe the biogas production of almost all samples with an 

R2 value between 97–99%. The FO model performed better at describing Type I samples, 

whereas the PP first-order model was more suitable for substrates mixed with materials 

with different reaction-rate constants, and therefore performed better with Type II sam-

ples. However, it is worth noting that there are usually multiple sets of optimal solutions 

of the estimates of the PP first-order model’s parameters (Ym, P, k1 and k2). This is because 

the nonlinear least-square error function of this model when fitting a particular set of bi-

ogas yield data is not always convex. Therefore, it was not chosen for the study of training 

DTs to predict the model parameters from the digestate physicochemical characteristics 

in the following section. 
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Table 4. R2 values of the fits of three empirical models (FO, MP and PP) to the Type I and Type II 

RBP test biogas-production time series (R2 values larger than 97% are in bold). 

Type I 

 Fitting R2 Values (%) 

ADP 3 4 5 11 12 13 16 19 20 21      

FO 98.5 98.4 97.9 86.8 99.0 98.2 99.5 97.7 96.4 97.2      

MG 97.6 94.0 96.6 80.7 96.1 91.8 96.0 94.9 88.3 61.6      

PP 98.5 98.7 97.9 94.6 99.1 99.5 99.6 97.8 98.7 97.6      

Type II 

 Fitting R2 Values (%) 

ADP 1 2 6 7 8 9 10 14 15 17 18 22 23 24 25 

FO 97.1 98.6 86.5 77.2 83.2 97.3 98.4 97.6 97.5 97.5 95.5 96.0 98.8 99.1 99.5 

MG 88.8 93.9 78.6 85.8 68.2 99.1 93.0 90.8 74.9 88.4 85.6 85.9 96.7 97.3 99.0 

PP 99.9 99.6 92.8 92.6 98.0 97.4 98.9 99.5 98.9 97.8 99.1 98.9 98.8 99.1 99.5 

In addition, when fitting the PP first-order model in Matlab using the least-square 

algorithm, the initial value set for the parameter P should avoid 0.5 and k1 and k2 should 

not be the same. Otherwise, the partial derivatives of the error function with respect to k1 

and k2 are the same, which means the moving direction of these two dimensions are the 

same and the nonlinear search for the minimum value of the error function value will 

settle at a local minimum point. 

The fitting of the AR (1) model after the initial 3-day rapid biogas production stage 

was comparable to the PP first-order model, with R2 values of 99% for the majority of 

samples (Table 5), regardless of Type I or Type II data. Figure 2 shows the fits of three 

empirical models and the AR (1) model to the cumulative biogas yield in RBP tests. 

Table 5. R2 values of the fits of the AR (1) model to the Type I and Type II RBP test biogas-production 

time series from day 4 (R2 values larger than 97% are in bold). 

Type I 

 Fitting R2 Values (%) 

ADP 3 4 5 11 12 13 16 19 20 21      

AR (1) 98.2 99.4 97.4 97.0 98.6 99.3 99.8 99.7 98.9 90.1      

Type II 

 Fitting R2 Values (%) 

ADP 1 2 6 7 8 9 10 14 15 17 18 22 23 24 25 

AR (1) 99.2 99.8 85.4 80.9 95.9 99.1 99.5 99.7 98.9 99.1 99.6 99.5 98.7 99.1 99.9 

 

Figure 2. The fits of the three empirical models and the AR (1) model to the entire RBP test process 

for Type I (a) and Type II (b) data. 
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When using these four models to predict the final RBP results based on experimental 

data collected from a shorter test duration (5, 10, 15, 20 and 25 days), none of the three 

empirical models and the AR (1) model could achieve a sufficient level of accuracy to 

replace full-length RBP tests. This conclusion is in agreement with previous studies 

[12,26]. When using the first-order model, typically the level of prediction accuracy in-

creases when more experimental data points are provided. FO performed moderately bet-

ter than the MG model at predicting the RBP test result. This result was in agreement with 

the result of Nielfa et al. (2015) [26] for biomethane potential test biogas production pre-

diction for the organic fraction of municipal solid waste and biological sludge co-diges-

tion. However, both FO and MG models were proved to be unsuitable to predict the RBP 

result of Type II data. 

Using 15 days of experimental data, the PP model could predict the RBP result with 

APE < 10% in nearly all the samples (both Type I and II). Therefore, the PP model is a 

preferred option for RBP test-result-prediction when the experiment is half-way through. 

For the AR (1) model, RBP data fitting and modelling starts from day 4, thus 10, 15, 20 and 

25 days of experimental data were used for model fitting. The prediction ability of the AR 

(1) model was comparable to that of the PP model. Table 6 shows the predictions of RBP 

test results when fitting an increasing amount of experimental data to four biogas produc-

tion models (due to the large sample numbers, only seven samples were randomly se-

lected from each group of Type I and II data). 

Table 6. The level of accuracy (expressed in APE%) of predicted 28-day RBP test result from fitting 

the mathematical models to an increasing number of experimental observations from 5 days to 25 

days. APE less than 10% indicates accurate predication (in bold). 

Type I Days FO MG PP AR (1) Type II Days FO MG PP AR (1) 

ADP 3 

5  77.16 24.23 35.08 / 

ADP 2 

5 46.46 51.94 28.00 / 

10 4.98 9.62 7.26 1.15 10 24.34 37.77 24.65 12.20 

15 1.01 5.14 2.70 0.47 15 17.34 24.48 6.86 4.52 

20 2.10 1.55 0.88 1.71 20 10.98 14.87 2.02 1.63 

25 2.29 0.07 3.23 1.81 25 6.40 6.25 0.43 0.27 

ADP 4 

5 57.99 26.65 52.67 / 

ADP 8 

5 3.65. 27.78 3.8080 // 

10 7.50 15.32 7.19 3.97 10 15.24 17.56 15.13 12.57 

15 5.00 5.53 4.65 6.00 15 12.03 12.02 8.31 8.62 

20 1.84 1.71 4.26 2.63 20 9.62 9.62 5.23 8.20 

25 0.40 0.22 1.97 1.91 25 3.48 3.44 2.76 5.74 

ADP 5 

5 159.25 17.17 105.36 / 

ADP 10 

5 163.39 37.62 29.58 / 

10 1.21 11.80 1.04 8.22 10 7.63 25.74 19.18 2.99 

15 1.49 1.72 1.54 1.83 15 7.73 16.41 12.75 0.03 

20 0.80 0.86 1.51 2.33 20 5.40 10.20 21.58 0.83 

25 1.30 1.29 1.69 2.08 25 3.49 6.22 4.85 1.02 

ADP 13 

5 23.12 43.08 25.98 / 

ADP 14 

5 0.16 44.20 5.68 / 

10 21.74 27.40 7.71 0.56 10 27.04 32.57 27.06 44.65 

15 11.85 12.96 22.50 8.86 15 17.04 19.33 1.20 8.78 

20 4.95 4.19 10.03 3.70 20 10.67 10.33 5.62 3.70 

25 2.50 1.87 2.91 2.58 25 6.58 4.85 1.92 2.04 

ADP 16 

5 19.90 37.71 17.89. / 

ADP 17 

5 1.6464 45.200 11.25 / 

10 4.66 18.19 4.76 5.69 10 11.99 26.91 5.02 47.42 

15 3.38 8.20 3.05 0.57 15 13.86 17.95 0.84 0.25 

20 1.09 2.65 3.70 1.37 20 10.90 11.12 4.12 3.06 

25 0.61 0.95 1.00 0.89 25 6.00 4.61 1.53 1.94 

ADP 19 5 183.89 24.27 146.92 / ADP 18 5 2.98 45.76 3.74 / 
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10 2.33 13.07 2.33 8.62 10 30.94 34.05 30.93 5.6969 

15 3.13 7.29 3.41 1.31 15 22.36 22.19 7.51 0.57 

20 2.78 3.23 2.79 0.36 20 12.64 11.80 4.16 1.37 

25 1.96 1.79 1.91 0.66 25 6.29 4.44 2.96 0.89 

ADP 20 

5 24.11 31.62 27.78  

ADP 25 

5 81.36 54.33 28.59 / 

10 11.16 21.66 8.64 48.84 10 36.33 23.98 2.24 14.84 

15 8.93 13.72 4.54 0.62 15 8.52 14.08 1.09 1.92 

20 7.15 9.66 0.06 1.15 20 3.26 7.75 7.05 0.48 

25 5.32 6.69 1.12 0.51 25 1.06 4.50 1.34 0.11 

3.3. Biogas Yield Prediction from Digestate Physicochemical Characteristics by DT 

DTs were first trained with the physicochemical characteristics of 20 digestate sam-

ples as predictors and the fitted coefficients and constants of AR (1) models as responses. 

A total of 5000 groups of splits between the training set and test set were randomly chosen 

to evaluate the prediction accuracy. The average MAPEs of the predicted AR (1) model 

coefficients and constants for among 5000 groups of test sets were 4.58% and 72.04%, re-

spectively. The MAPE of the calculated RBP test result at day 28 from the predicted AR 

(1) model parameters was 52.125%. 

With four more samples provided for the training set, the MAPEs of the predictions 

for the AR (1) model coefficient and constant with the LOO cross-validation method were 

4.31% and 59.29%, respectively (Table 7). The MAPE of the calculated RBP test result at 

day 28 was 45.620%. With four more data provided, the prediction accuracy of the RBP 

test result of the DTs improved 12.48%. Additionally, among 25 LOO cross-validation 

groups, the APEs of predicted RBP test results of five groups were smaller than 10%. 

Table 7. The APEs for the AR (1) model coefficient and constant prediction and the biogas yield at 

28th day prediction from the LOO cross-validation method. 

Test Sam-

ple No. 

Fitted AR 

(1) Coeffi-

cient 

Predicted 

AR (1) Co-

efficient 

AR (1) Co-

efficient 

APE 

Fitted AR 

(1) Con-

stant 

Predicted 

AR (1) 

Constant 

AR (1) 

Constant 

APE 

Real RBP 

Test Result 

Predicted 

RBP Test 

Result 

RBP Test 

Result APE 

ADP1 0.932 0.937 0.5% 0.010 0.010 1.1% 0.132 0.137 4% 

ADP2 0.949 0.934 1.6% 0.011 0.019 65.6% 0.182 0.243 33.5% 

ADP3 0.789 0.884 12% 0.028 0.017 40.2% 0.132 0.141 6.9% 

ADP4 0.876 0.896 2.2% 0.030 0.035 17.5% 0.236 0.321 36% 

ADP5 0.834 0.850 1.9% 0.020 0.036 84% 0.117 0.236 101.9% 

ADP6 0.946 0.813 14% 0.004 0.011 174.7% 0.062 0.057 7.9% 

ADP7 0.969 0.932 3.8% 0.003 0.011 293% 0.066 0.137 107.4% 

ADP8 0.929 0.937 0.9% 0.019 0.036 84.6% 0.261 0.490 88% 

ADP9 0.853 0.893 4.8% 0.055 0.032 41.2% 0.361 0.291 19.5% 

ADP10 0.890 0.894 0.4% 0.020 0.023 16.1% 0.174 0.206 18.6% 

ADP11 0.900 0.941 4.6% 0.030 0.035 14.6% 0.301 0.506 68.4% 

ADP12 0.832 0.950 14.1% 0.028 0.035 23.5% 0.171 0.523 205.7% 

ADP13 0.906 0.892 1.5% 0.016 0.009 43% 0.164 0.086 47.6% 

ADP14 0.941 0.936 0.6% 0.009 0.010 14.6% 0.129 0.138 7.1% 

ADP15 0.901 0.847 6.1% 0.009 0.020 123% 0.086 0.126 46.5% 

ADP16 0.864 0.842 2.5% 0.053 0.032 38.7% 0.379 0.205 46% 

ADP17 0.934 0.936 0.2% 0.019 0.009 52.8% 0.257 0.139 45.9% 

ADP18 0.961 0.870 9.4% 0.013 0.041 211.6% 0.254 0.307 21% 

ADP19 0.861 0.898 4.2% 0.020 0.023 16.5% 0.139 0.212 52.5% 

ADP20 0.887 0.894 0.8% 0.022 0.022 1.8% 0.194 0.202 4.3% 

ADP21 0.818 0.892 9.2% 0.006 0.010 75.2% 0.325 0.092 71.6% 
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ADP22 0.910 0.939 3.2% 0.021 0.022 7% 0.222 0.315 41.9% 

ADP23 0.850 0.846 0.5% 0.043 0.033 21.4% 0.286 0.215 24.7% 

ADP24 0.872 0.896 2.7% 0.036 0.034 5.2% 0.280 0.313 12% 

ADP25 0.901 0.847 6.0% 0.030 0.035 15.3% 0.287 0.224 21.7% 

MAPE   4.3%   59.3%   45.6% 

3.4. AR (1) Model Prediction Guide GPR 

When training the DTs with LOO cross-validation and ADP3 as the test set, the APE 

of the predicted biogas yield on day 28 using the inferred AR (1) model was 6.87%. This 

is used as an example for illustration in Figure 3. By accepting one more input each time 

from the inferred AR (1) model together with the experimental observations of the first 

three days, the predictions of every one timestep further of the GPR with zero mean and 

squared exponential kernel were smaller than AR (1)’s predictions for the first few 

timesteps and then gradually closer to the predictions of the AR (1) model. This was ex-

plained by the increased fitted GPR model length scale and vertical scale when receiving 

more training data. The smaller the length scale, the curvier the underlying function is, 

and the smaller the vertical scale, the more concentrated the underlying function is around 

the mean. In contrast, for the GPR with a linear basis function, the predictions surged for 

the first few timesteps and then approached the AR (1) model predictions. This corre-

sponded to the decreased slope of the fitted linear mean function. In general, given that 

only one more timestep is predicted at a time, the selection of zero or linear mean function 

is not of much concern. The 95% confidence interval of the prediction of GPR narrowed 

when more data were provided. 

 

Figure 3. The prediction and its probability distribution of the GRP guided by the prediction of the 

inferred AR (1) model. (a) Zero mean and squared exponential kernel. (b) Linear basis function and 

squared exponential kernel. 

4. Conclusions 

This study has demonstrated that it is possible to use RBP experimental data collected 

in the initial stage of the test to predict the 28-day RBP result in a kinetic model fitting 

exercise. By fitting 15 days of experimental data from RBP tests to kinetic models, the PP 

first-order model and the AR (1) model achieved a promising accuracy with APE < 10%. 

Further study demonstrated using the decision tree (DT) method that AR (1) model 

parameters can be predicted from the physicochemical characteristics of the digestate 

samples. This provides potential to further reduce the data requirement to four days of 

RBP experimental data and thereby significantly reduce the resting time of a standard 28-

day RBP test to around four days. It was observed that when more training data were 
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included in the DT machine learning model (from 20 to 24 samples), the prediction accu-

racy of the RBP result increased by 12.48%. This indicates that collecting more data to 

include in the model-training process can further improve the prediction outcome. 

The framework of predicting kinetic model parameters from the physicochemical 

characteristics of the substrate can potentially be applied to the yield prediction of the 

product from other biochemical reaction processes. 
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