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Abstract
With the increasingly comprehensive utilisation of Carbon Fibre-Reinforced Polymers (CFRP) in modern industry, defects

detection and characterisation of these materials have become very important and draw significant research attention.

During the past 10 years, Artificial Intelligence (AI) technologies have been attractive in this area due to their outstanding

ability in complex data analysis tasks. Most current AI-based studies on damage characterisation in this field focus on

damage segmentation and depth measurement, which also faces the bottleneck of lacking adequate experimental data for

model training. This paper proposes a new framework to understand the relationship between Barely Visible Impact

Damage features occurring in typical CFRP laminates to their corresponding controlled drop-test impact energy using a

Deep Learning approach. A parametric study consisting of one hundred CFRP laminates with known material specification

and identical geometric dimensions were subjected to drop-impact tests using five different impact energy levels. Then

Pulsed Thermography was adopted to reveal the subsurface impact damage in these specimens and recorded damage

patterns in temporal sequences of thermal images. A convolutional neural network was then employed to train models that

aim to classify captured thermal photos into different groups according to their corresponding impact energy levels. Testing

results of models trained from different time windows and lengths were evaluated, and the best classification accuracy of

99.75% was achieved. Finally, to increase the transparency of the proposed solution, a salience map is introduced to

understand the learning source of the produced models.
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1 Introduction

Composite laminates have gained tremendous popularity

due to their superior performance compared to traditional

materials in the past few decades, especially in aviation and

automotive applications. The high Strength-to-Weight ratio

is always a significant advantage in improving the product

strength and energy efficiency by widely applying them to

load bearing structures. CFRP are commonly rated as one

of the most widely used composite materials owing to their

outstanding Strength-to-Weight ratio [1]. Previous studies

have claimed that the proper use of CFRP materials in

vehicles can lead to a weight reduction of 40–65% [2].

Although the benefits of CFRP materials are overwhelm-

ing, such as high load-bearing capacity, high chemical

resistance and them being lightweight, their behaviour

when it comes to impact events results in poor mechanical

performance [3]. Impact events can cause cracking, fibre

breakage and delamination of CFRP, leading to catas-

trophic results, especially in the aerospace industry [4]. In

practical applications, bird strikes in aviation are high-risk

hazards to passengers and stakeholders.

Among the damage that CFRP can generate in an impact

event, Barely Visible Impact Damage (BVID) is a typical

type which has drawn significant attention [5]. BVIDs refer

to subsurface damage usually caused by low-velocity

impact and cannot be easily detected by regular visual
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inspections, causing structural and functional failures [6].

Under this premise, many efforts have been made to detect

and study BVIDs [7–9]. Considering most CFRP-based

structures are of high value and are costly and laborious to

be replaced, Non-Destructive Testing (NDT) is always

recommended for the inspection of BVIDs due to its

favoured nature of examining test objects without inter-

fering with their integrity [10, 11].

Thermography is evolving into a promising branch in

NDT techniques because of its robustness, capability to

inspect large areas with intuitive imagery and short asset

downtimes [12, 13]. Thermography inspection can gener-

ally be divided into passive and active modes [14]. Active

thermography techniques, such as Pulsed Thermography

and Laser Thermography have a proven track record to

inspect CFRP materials [15–17]. Pulsed Thermography has

gained tremendous popularity where it employs a homo-

geneous heat pulse as a stimulation to map the sub-surface

structure and thereby identifies BVIDs [18]. Besides, the

technique is also sensitive to the detection of delamination

in BVIDs [19].

In recent years, with the rapid development of Artificial

Intelligence (AI) technologies, researchers in various fields

made many attempts to transfer AI-based techniques to

their specialised areas. Some studies have applied AI

technologies to identify and study composite materials’

defects using thermography. Mamani et al. [20] proposed a

machine learning-based approach for defect classification

in CFRP materials. In this research, three exponential-

model-based features related to the depth of defects were

fed into the selected machine learning classifier for train-

ing. The generated decision forest model achieved more

than 99% defect classification accuracy. Additionally, two

Artificial Neuro Networks (ANN) were proposed to

implement damage severity quantification and location.

This research used simulated frequency shift data on

composite materials generated by Finite Element Analysis

(FEA) to feed the proposed ANNs and achieved a predic-

tion accuracy of up to 95% [21]. Another study from

Tavares et al. [22] employed both simulation and experi-

mental data to perform damage detection on CFRP struc-

tures. The obtained Frequency Response Functions (FRFs)

and time signals from inspections were processed with the

K-means Clustering and Multivariate Anomaly Detection

and thus created a defects detection model. Some other

research focussed on improving the automation of defect

detection in CFRP. Saeed et al. [23] combined a Convo-

lutional Neural Network (CNN) and a Deep Forward neural

network and achieved defects detection and depth mea-

surement using thermograms. A deep learning-based

impact damage segmentation method was brought forward

by Wei et al. [24]. In this research, impact damage on

curved surfaces of CFRP specimens were inspected by

Pulsed Thermography. The obtained thermal images were

then processed by Principal Component Thermography

(PCT) and Empirical Orthogonal Functions (EOF) before

being used for training in a U-Net. The trained models

achieved F1 scores of over 87% on both middle and long-

wave infrared data. Oliveira et al. [25] tested forty CFRP

impact damage samples using Lock-in thermography, and

the acquired images were used to train a U-Net model to

perform damage segmentation. Zhou et al. [19] presented a

framework to extract impact damage contours using image

processing methods and then used three features, including

area, perimeter and major axis length, for further shallow

machine learning-based damage classification according to

different impact energy levels. Another study conducted by

Fotouhi et al. [26] also achieved impact energy-oriented

classification of BVID using a biomimetic tactile whisker

and Support Vector Machine (SVM) classifier.

Based on the review above, it is noticed that most

machine learning-based damage studies related to com-

posites either use simulation data or a combination of

simulation and experimental data to train the models. In

contrast, others obtained crucial features for machine

learning by using limited experimental specimens (speci-

men number B 40 based on our review). Due to the limited

samples, feature engineering associated with shallow

machine learning is always used to understand impact

damage. However, based on our review, there is limited

research specialising in classifying experimental BVID in

CFRP materials according to different impact energy levels

using Deep Learning methods.

This research proposed a novel analytic framework,

using a tailored deep learning approach, for characterising

impact damage in CFRP laminates using only experimental

data captured from the pulsed thermographic inspection of

100 specimens. It must be noted that the variations and

uncertainties especially during the manufacture and the

artificial creation of damage have a critical impact on this

research. This study thus aims to understand the relation-

ship between thermographic patterns of BVID in CFRP

materials and their corresponding impact energy levels,

which is significant for facilitating the impact energy pre-

diction based on NDT inspections of damaged components.

Compared with previous studies on this topic, which often

employed image processing methods to extract morpho-

logical features and used shallow machine learning-based

classification processes, the proposed method aims to learn

features automatically for better classification accuracy

using a deep learning approach. Another novelty of this

work is using successive frames from the collected ther-

mogram of each specimen to expand the training datasets.

This study also explores how high classification accuracy is

achieved to improve the transparency of the produced

models. The impact of this study can be summarised as
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follows: In real-world applications, this prediction of

impact energy intensity can help infer the possible cause of

impact incidents. On this basis, targeted predictive main-

tenance can be introduced to prevent potential hazards. The

main contributions of this work can be summarised below:

(1) A new analytic framework for investigating the

relationship between impact damage patterns and

their corresponding impact energy levels in CFRP

laminates using a deep learning network purely

based on experimental data;

(2) A new data augmentation method of using succes-

sive thermal image frames from the inspection of

each specimen to constitute training datasets for the

selected deep learning network. This new approach

is also enlightening for expanding datasets in other

studies using thermographic inspection;

(3) A relatively large thermal imaging dataset from 100

CFRP specimens subject to low-velocity impact;

(4) The implementation of the Class Activation Map

improves the transparency of the introduced deep

learning method.

2 Methods

The proposed methodology is illustrated in Fig. 1. The first

step of the study is data acquisition, including impact

damage specimen preparation and implementation of

pulsed thermographic inspection. The 16-bit raw data were

then calibrated to RGB-colormap image frames and saved

as 8-bit PNG images. The second step is the deep learning

network selection. ResNet was selected due to its superior

capability in image classification, and some fine-tuning was

made for the network to fit our learning assignment [27]. In

the following stage, different datasets were generated using

saved thermal images and fed into the selected deep

learning network for model training. The performance of

the trained classification network was compared and anal-

ysed in the last section. More details for each part of the

method are discussed below.

2.1 Data acquisition

One hundred specimens of CFRP samples with the size of

150 9 100 9 3 mm were manufactured in the laboratory

before subjecting to drop-impact test. The samples were cut

from 4 larger plates (750 9 750 9 3 mm) marked with P1,

P2, P3 and P4, manufactured with the same CFRP material

specified in Table 1 in Appendix. Then, the drop-impact

experiment was conducted on each sample with pre-set

impact energy levels of 4 J, 6 J, 8 J, 10 J and 12 J. The

impact was performed by the free fall of a hemispherical

indenter with an exact weight of 2.281 kg. The precise

impact energies was achieved by subtly setting the free fall

distance and the force of impact from a force transducer.

The 100 prepared samples were equally divided into five

groups, and each group was exposed to one particular level

of impact energy. Thus 100 specimens (from S001 to S100)

were produced. Figure 2 displays the front and back sides

(only the Region of Interest) of five specimens with dif-

ferent corresponding impact energy levels. The drop-im-

pact was applied on the front side of each sample (see the

first row of Fig. 2), and no impact damage can be detected

by visual inspection from either of the sample surfaces

ranging from no visible features to barely visible features

(Fig. 2). In this investigation, pulsed thermographic

inspection was conducted on the back side of each speci-

men to reveal the subsurface impact damage.

The principle of pulsed thermography inspection is

illustrated in Fig. 3a. In this case, an artificial temperature

gradient was induced by a high-energy heat pulse produced

by flash lamps. With time elapsing, the heat propagates

within the specimen and displays unusual heat conduction

behaviour when getting through damaged areas compared

to sound regions [28]. The thermal camera records the

whole process at an appointed frame rate, and these

abnormalities can be detected and recorded in a sequence

of frames which can be eventually interpreted into damage

patterns.

For the thermography measurement, the Thermoscope II

pulsed-active thermography system was used. The excita-

tion source in the inspection is enabled by two capacitor

banks-powered Xenon flash lamps that produced the heat

Fig. 1 Structure of the proposed methodology
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pulse. The thermal camera utilised in this study is a cooled

FLIR SC7000 series IR radiometer (see Fig. 3b) with a

spatial resolution of 640 9 512 pixels. During each

inspection, the specimen was placed in front of the IR

camera at a distance of around 250 mm, and the surface of

the specimen was kept perpendicular to the camera lens.

The energy provided by the heat pulse in this inspection

was around 2 kJ, and its effective area is 200 9 250 mm,

which can cover the inspected specimen in full. The sam-

pling rate of the camera was set to 50 Hz, which was

determined after taking into account CFRPSs low thermal

diffusivity property and the specimens’ thickness into

account.

The inspection lasted 20 s for each specimen, and a

frame sequence containing 1000 thermal images was

obtained. For each inspection, the stimulation flash was set

at the 10th frame. The results showed that the 14th frame

was the first frame from which impact damage features

started to reveal themselves. Considering the facts above

and the limited valid time of the induced heat propagation,

we only employed the frames from the 14th to the 625th in

each inspection. Each captured thermal image was cropped

to 150 9 150 pixels, centred by the impacted area, to

reveal the damage pattern. Figure 4 shows the raw thermal

images at 0.3 s (the 15th frame) and 0.6 s (the 30th frame)

after the pulse for each group.

2.2 Deep learning network selection
and optimisation

Convolutional Neural Networks (CNN) constitute a crucial

part of Deep Learning and play an essential role in

Fig. 2 Digital images of both front and back sides of 5 specimens for 4 J, 6 J, 8 J, 10 J & 12 J impacts

Fig. 3 a Illustration of Pulsed Thermography set-up; b A photo of the experimental set-up
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computer vision tasks such as image segmentation and

classification [29, 30]. ResNet is essentially a type of CNN,

but its performance improved significantly due to its

unique network architecture, which resolves deep CNN’s

gradient vanishing problem [27, 31–33]. Considering our

research task is grouping thermal images into different

categories, which is a typical image classification task,

ResNet was selected as our dedicated deep learning tool.

Regarding the layers of the selected neural network,

ResNet50, which is 50 layers deep, was finally chosen as it

had the best performance when compared with ResNet18

and ResNet34. More complex versions with more layers

are not adopted after a balanced consideration of perfor-

mance requirements for our tasks and training efficiency.

Another reason for choosing ResNet50 is that transfer

learning can be utilised using its pre-trained model, which

has been trained on the ImageNet dataset [34]. Although

100 pieces of impact damage specimens are quite a large

sample capacity within its specialised domain, it is still not

enough to make up the dataset for training a deep learning

model from scratch. The pre-trained model of ResNet50

can significantly reduce the dataset size requirement,

making it feasible to train a classification model based on

our limited specimens. Figure 5 shows the customised

ResNet50 network architecture that our research used.

Some modifications were made to the structure of a classic

ResNet-50 to adapt the network to our specific research

task, such as changing the output dimension of the final

fully connected layer to 5, which means five categories of

impact energy levels in our study. This study is essentially

a multi-class classification problem. Cross Entropy is

employed as the loss function for the selected deep learning

network due to its good performance in classification

models [35]. Adam is used in this study as an optimiser, as

research confirms its strong usage in deep learning appli-

cations due to its capability of fast converging and good

performance [36]. The initial learning rate was set as 0.001.

Furthermore, the learning rate decay method has been

employed to adjust the learning rate adaptively to ensure

the optimisation process runs efficiently., After several

tests, the number of epochs was set to 100, and the training

batch size ranged from 16 to 256 according to different

dataset sizes.

3 Model training and model evaluation

3.1 Dataset generation and training design

For comparing the classification performance of models in

a sensitivity analysis, various datasets were generated with

different combinations of thermal images captured in the

pulsed thermographic inspection of the prepared impact

damage specimens. The proposed methodology is based on

two critical assumptions about the generated dataset. The

first hypothesis is that the same frame of thermal images

captured from each inspection of the specimens created by

the same impact energy should have common features that

can differentiate them from the same frame of these

specimens exposed to a different impact energy level. The

‘‘same image frame’’ mentioned here means the thermal

image was captured at the same time after the flash with an

Fig. 4 Reconstructed thermal images of different specimens with the regulated size of 150 9 150 pixels
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identical inspection set-up. The identical inspection set-up

includes the same inspecting equipment, excitation (in-

cluding the same excitation source, energy level and pulse

length for each inspection), inspection duration and capture

frame rate. The data acquisition process for this research

was manipulated to meet all the preconditions of the

hypothesis mentioned above. An example can be taken

from the data acquisition process to clarify the hypothesis.

The 50th thermal image frame from the inspection of

specimen A should have common features with the 50th

thermal image frame from specimen B, where specimens A

and B are subject to the same impact energy level, such as

8 J. Besides, these common features from the 50th frame of

inspections of specimens A and B should differ from other

common features from the 50th frame of inspections of

specimens C and D that are subject to different impact

energy. Based on this hypothesis, a dataset used for clas-

sification model training in this research can be generated

by taking the same specific thermal image frames from

each pulsed thermographic inspection of 100 specimens.

Initially, the 15th frame after the flash was selected since

the most distinct damage pattern was detected around this

frame for all 100 specimens. As a rule of thumb, more

distinct patterns improve classification accuracy in deep

learning practices. For the convenience of the follow-up

training result comparison based on different datasets, this

dataset formed from the 15th frame of each thermal image

sequence of the 100 specimens is labelled with Dataset15.

Although the utilisation of transfer learning makes it

possible for model training on small datasets such as

Dataset15, which only has 100 images, increasing the

dataset size is still the most straightforward way to improve

training performance in deep learning tasks. This research

proposes a novel method for obtaining more training data

from limited impact damage specimens. The second

hypothesis is that the series of thermal image frames

coming from one inspection of one specific specimen

should share some common features which are related to

their corresponding impact energy level, while these

common features can differentiate them from correspond-

ing frames of other specimens created by different impact

energies. An example to explain this hypothesis is that the

15th frame and the 20th frame from the same thermal

image sequence of specimen A should have some charac-

teristics in common, and these characteristics should be

different from those common features found in the 15th

and 20th frames from the inspection of specimen B with a

different impact energy level. In the light of this hypoth-

esis, the size of the datasets for our research can be

enlarged by importing more thermal image frames instead

of one single frame from each inspection. In the first

attempt, five successive frames from the 14th frame to the

18th frame were selected from the thermal images of each

specimen, and thus a new dataset containing 500 thermal

images was formed and marked with Dataset14-18. The

reason for initially choosing these five frames is that these

frames display the most noticeable damage patterns. For

finding the best five frames that can contribute to the best

classification accuracy using machine learning, instead of

the choice of 14–18 frames by intuitive feeling, a series of

datasets were generated with consecutive 5-frame windows

sliding from the 14th to the 623rd frame. These 5-frame-

based datasets are denoted as Dataset14-18, Dataset19-23,

Dataset24-28, …, and Dataset619-623.

The same strategy was applied to 10-frame windows,

20-frame windows and even 60-frame windows to study

the correlation between the classification accuracy and the

frame number constituting the dataset. The corresponding

datasets are Dataset14-23, ……, Dataset614-623, Data-

set14-33, ……, Dataset594-613 and Dataset14-73, ……,

Dataset554-613. Figure 6 illustrates the dataset generation

process in this research.

Upon understanding the process of generating various

datasets in our research, it is not difficult to notice that the

number of images correlating to each impact energy level

is the same in each dataset. In this study, thermal images in

each dataset were divided into training, testing and vali-

dation subsets with a proportion of 60%, 20% and 20%,

Fig. 5 Architecture of ResNet50 with customised input and output

Neural Computing and Applications

123



respectively. And in each subgroup, the number of images

corresponding to different impact energy levels is identical.

3.2 Deep learning network fine-tuning
and model evaluation

Considering the fact that the captured datasets are still

relatively small compared with the typical dataset used for

deep learning training, a pre-trained version of ResNet-50

was loaded for model training. The loaded network has

already been trained on more than one million images from

the ImageNet database and can classify images into one

thousand categories.

The parameters of the pre-trained network have already

been optimised on the pre-trained dataset, making it suit-

able for small datasets that cannot provide adequate data

for the deep learning network starting from nothing. In the

training process, images in each dataset were randomly

redistributed three times, and the training was performed

three times. This procedure aims to gain an average

accuracy that can genuinely reflect the model’s

performance.

In the model testing process, a Confusion Matrix was

employed to reveal detailed information about the model

performance. The model evaluation index, Accuracy was

selected to indicate the overall model performance. Accu-

racy is one of the most critical evaluation metrics in clas-

sification tasks in the deep learning domain, and it is

defined as:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
� 100% ð1Þ

where TP ¼ TruePositive; TN ¼ TrueNegative, FP ¼
FalsePositive and FN ¼ FalseNegative.

In multi-class classification tasks, the numerator TPþ
TN represents the number of elements which are correctly

classified to their respective true categories, while the

denominator TPþ TNþ FPþ FN includes both correctly

classified elements and incorrectly classified ones. Accu-

racy calculation is straightforward for multi-class classifi-

cation using the Confusion Matrix. The sum of numbers

appearing on the matrix’s main diagonal is the total number

of correctly classified elements, that is TPþ TN in Eq. (1).

The total amount of elements in the matrix forms the

denominator of the right side of Eq. (1).

In the last section of this study, the Class Activation

Map (CAM) was adopted to validate the generated models

after training. By utilising this technique on any training or

tested image, the discriminative object parts on the image

can be detected, and the predicted class scores are visu-

alised. In this way, the critical areas which contribute the

most to image classification in any image are revealed, and

thus the model’s validity was tested [37].

4 Results and discussion

4.1 Training profile

Figure 7 shows the loss and accuracy curves throughout the

training process on three different datasets. The training

loss and validation loss from each graph have a similar

tendency that decreases from the beginning and level off as

Fig. 6 Illustration of the generation of Dataset M–N
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the training epoch increases. Meanwhile, both accuracies

from each training process share the opposite pattern from

losses, which rise to the peak at the early stage and then

converge around a specific value. Observed from the loss

and accuracy charts, it is clear that models trained on

various datasets all have quick convergence at around the

40th epoch (the total epochs are 100). Both the training

accuracy and validation accuracy reached a relatively high

level, with more than 70% on Dataset15 and over 90% on

Dataset14-18 and Dataset14-33. In addition, similar accu-

racies were noticed between training and validation in each

epoch, especially after the model achieved convergence,

which suggests a high consistency between training and

validation indicating that the trained models have neither

underfitting nor overfitting problems. In brief, the loss and

accuracy curves suggest that ResNet50 is suitable for our

research task, and the network parameters for the model

training are appropriate.

4.2 Classification performance

The test accuracy can represent whether the network

effectively learns the relationship between the damage

pattern and its class (impact energy level). Starting from

the result from the single frame dataset Dataset15, which

contains the 15th frame from each specimen’s inspection

and 100 thermal images included, an average accuracy of

70% was achieved. For Dataset14-18, which consists of 5

adjacent frames from the 14th to the 18th and has a dataset

size of 500, the accuracy increased dramatically to 94.67%.

With the dataset size expanding, higher classification per-

formance was achieved on Dataset14-23, Dataset14-33 and

Dataset14-73, with average accuracies of 98.67%, 99.25%

and 99.75%, respectively.

The result based on a single frame dataset (Dataset15)

proved the first hypothesis of this research. The test accu-

racy of 70% means that more than two third thermal

images in this dataset can be correctly classified according

to their corresponding impact energy level. This result

proved that thermal images from the same frame of dif-

ferent specimens have some impact energy-related features

that can be extracted and utilised by deep learning net-

works to perform impact energy-oriented classification.

The second hypothesis of our study is also proved by the

classification performance on datasets with multi-frame

windows like Dataset14-18 and Dataset14-24. The

achieved high accuracies on these datasets confirm that

common features exist in each image frame of the same

inspection, which is associated with the impact energy the

Fig. 7 Training loss and accuracy profiles of 3 different datasets
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specimen was subjected to. ResNet50 can learn these fea-

tures and use them for classification.

In order to identify the 5-frame window for generating a

dataset on which the best classification accuracy can be

achieved, the deep learning training was conducted on a

series of temporal-shifting window datasets through the

whole thermal sequence (Dataset14-18, Dataset19-23,

Dataset24-28, …, Dataset619-623). The classification

accuracies of different time-window datasets are shown in

Fig. 8. It can be observed that the average test accuracy

keeps declining from more than 95% (with a peak of

99.33%) and converges around 78%. The turning point of

the curve from declining emerges at the frame window

around Dataset214-218, which suggests that the crucial

features that can contribute most to the classification

accuracy can only be found on the images before this

turning point. There are some impact energy-related fea-

tures for those images after the turning point, but the net-

work cannot build high-performance models only based on

these images. The best accuracy (99.33%) can be observed

on the frame window from 19th to 23rd (on Dataset19-23),

which indicates that the thermal images within this period

in inspection sequences contain the most prominent defect

features and representation of damage severity.

Then, to figure out the most appropriate duration of the

time-window abovementioned, the same training program

was implemented for a 10-frame dataset, a 20-frame

dataset and a 60-frame dataset. The accuracy shifting curve

for each of them can be found in Figs. 13, 14, 15 in

Appendix. Figure 9 is a joint illustration of these shifting

curves of accuracy. If the length of the frame window for

generating the dataset is fixed, the window starting from

the 14th frame would be the best one for sourcing training

data. Moreover, a dataset using images from earlier frame

windows leads to better classification accuracy. This

observation can help select proper thermal data from

thermography inspections for deep learning training.

Apart from the similar variation trend of each curve,

another significant pattern was observed. In any specific

frame window, such as 164th to 264th, the accuracy of the

model trained from the 60-frame dataset ranked at the top,

followed by the model trained from the 20-frame datasets.

The models trained from the 10-frame dataset took the

third position, outperforming the models trained from the

5-frame dataset. The observed ranking indicates that within

a specific frame window of a thermographic inspection,

more successive frames of thermal images are employed to

constitute the dataset, and better classification accuracy

will be achieved. This conclusion is confirmed by analys-

ing the results on different datasets. Figure 10 lists the test

accuracies of trained models on ten different datasets. On

the top row, an accuracy of 96.33% is displayed, which is

achieved on the 60-frame dataset Dataset254-313. Another

three model accuracies are placed on the middle row,

which is gained by the models trained on three 20-frame

datasets (Dataset254-273, Dataset274-293 and Dataset294-

313). The test accuracies based on the 10-frame datasets

from Dataset254-263 to Dataset304-313 occupied the

bottom line. Essentially, all the images from Dataset254-

273, Dataset274-293 and Dataset294-313 are identical to

all the images from Dataset254-313. The average model

accuracy trained on Dataset254-273 is 89.92%, while

89.83% for Dataset274-293 and 89.92% for Dataset294-

313. These three accuracies are much lower than the

accuracy of 96.33% achieved on Dataset254-313. This

phenomenon can also be interpreted as the model accuracy

will increase if thermal images from successive frames are

added to either Dataset254-273, Dataset274-293 or

Fig. 8 The curve of classification accuracy with a temporal-shifting window of 5-frame datasets
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Dataset294-313. The same conclusion can be drawn by

comparing the data between the figure’s middle and bottom

rows. Since the deep learning model training is only con-

ducted on datasets sourcing from no more than 60 suc-

cessive frames in this study, this inference can only be

valid within this scope.

4.3 Confusion matrix

Apart from the overall test accuracy, the Confusion Matrix

from the test process was also provided to reveal the

models’ classification performance for each class/impact

energy. Six confusion matrixes are displayed in Fig. 11, in

which the results of the first row are generated from the

20-frame datasets, and the results of the second row are

obtained from the 60-frame datasets. Except for individual

test accuracy for each class of impact damage with dif-

ferent impact energy levels, some other interesting char-

acteristics can also be found in the confusion matrixes.

Impact damage generated with 4 J’s impact energy are

inclined to confuse with damage from 6 J, and the same

phenomenon is also observed between 8 and 10 J. For

example, four elements in the first column which should

belong to class 6 J, are classified into class 4 J, which

results in the most significant proportion of misprediction

for class 4 J. In the third and fourth columns, seven ele-

ments from class 8 J are classified as class 10 J, and

another seven elements from class 10 J are classified as

class 8 J, almost occupying all the wrong predictions in

these two categories. Similar behaviours have been

observed in the other five confusion matrixes in Fig. 11.

The observed confusion tendency between damage patterns

Fig. 9 The curves of classification accuracy with a temporal-shifting window of datasets with different frame numbers

Fig. 10 Classification accuracy comparison of different datasets generated using thermal images on the window from 254 to 313th frame
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caused by adjacent impacts energy levels such as 4 J and

6 J, 8 J and 10 J may be explained by the minor impact

energy differences leading to similar damage patterns.

4.4 Class activation map (CAM)

This study employed Class Activation Map (CAM) to

better understand how the trained models work. This

technique can visualise the model’s learning process on

one specific image. More specifically, a class activation

map can reveal the critical areas of the tested image from

where the model learns discriminative features that con-

tribute to the classification. Figure 12 shows class activa-

tion maps based on 24 tested thermal images from

Dataset14-33. A translucent heat map is generated by CAM

and overlaps with the original image. In the map, the

regions in red play more critical roles than those in blue

regions in identifying a specific class of the original image.

Looking into each picture in Fig. 12, almost all the red

areas are centred on or around the impact damage areas

enclosed with the dotted line. This observation suggests

that the models learned features from damage patterns

instead of other parts of the images. The classification was

based on features closely related to impact damage

patterns.

5 Conclusions

This paper presents a study to understand the relationship

between barely visible impact damage in CFRP materials

and the corresponding impact energy level using a deep

learning-based classification method. Thermal imaging of

impact damage was collected using Pulsed Thermography,

and the revealed damage patterns were then utilised to

construct datasets for the training of classification models.

The conclusions below are drawn by comparing classifi-

cation accuracies trained on different datasets.

(1) For impact damage patterns captured in the same

specific frame (e.g. the 15th frame) of inspections for

all specimens, impact energy-related common fea-

tures exist among these images and can distinguish

them from any other damage patterns caused by

different impact energy levels.

(2) For impact damage patterns captured in different

image frames of an inspection of one specific

specimen, impact energy-related common features

Fig. 11 Confusion Matrixes of testing results on six different datasets
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exist among these images and can distinguish them

from any other damage patterns caused by different

impact energy levels.

(3) If the number of successive image frames constitut-

ing the training dataset is fixed (e.g. 5-frame dataset:

Dataset14-18), the window on which the trained

model achieves the highest classification accuracy

was found at an early period of the inspection

process of the specimens. This observation is subject

to the depth of the damage.

(4) Within a particular frame window of a thermography

inspection, datasets consisting of more successive

frames of thermal images can lead to higher classi-

fication accuracy.

(5) Damage patterns introduced by 4 J’s impact energy

can be more easily confused with those created by

6 J’s energy, the same is found to be true in the case

of 8 J and 10 J samples as well. The possible reason

is that slight energy differences between adjacent

impact energy levels cause similar damage patterns.

This study potentially inspires the analysis of possible

causes of impact damage in composite components by

investigating the impact energy level they are subject to.

Extended studies can contribute to the predictive mainte-

nance of composite structures in certain areas, especially in

the aerospace industry.

Appendix

See Figs. 13,14,15 and Table 1.

Fig. 12 Class Activation Maps of 20 testing images of different impact energies on Dataset14-33
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Fig. 14 The classification accuracy shifting curves with temporal-shifting window of 20-frame datasets

Fig. 15 The classification accuracy shifting curves with temporal-shifting window of 60-frame datasets

Fig. 13 The classification accuracy shifting curves with temporal-shifting window of 10-frame datasets
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