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Abstract: Aircraft systems are designed to perform functions that will aid the various missions of 
the aircraft. Their performance, when subjected to an unfamiliar condition of operation, imposes 
stress on them. The system components experience degradation due to fault which ultimately re-
sults in failure. Maintenance and monitoring mechanisms are put in place to ensure these systems 
are readily available when required. Thus, the sensing of parameters assists in providing conditions 
under which healthy and faulty scenarios can be indicated. To obtain parameter values, sensor data 
is processed, and the results are displayed so that the presence of faults may be known. Some faults 
are intermittent and incipient in nature. These are not discovered easily and can only be known 
through a display of unusual system performance by error code indication. Therefore, the assessed 
faults are transmitted to a maintenance crew by error codes. The results may be fault found (FF), no 
fault found (NFF), or cannot display (CND). However, the main classification of the faults and their 
origins may not be known in the system. This continues throughout the life cycle of the system or 
equipment. This paper reviews the diagnostic methods used for the hydraulically powered flight 
control actuation system (HPFCAS) of an aircraft and its interaction with other aircraft systems. The 
complexities of the subsystem’s integration are discussed, and different subsystems are identified. 
Approaches used for the diagnostics of faults, such as model-based, statistical mapping and classi-
fication, the use of algorithms, as well as parity checks are reviewed. These are integrated vehicle 
health management (IVHM) tools for systems diagnostics. The review shows that when a system is 
made up of several subsystems on the aircraft with dissimilar functions, the probability of fault 
existing in the system increases, as the subsystems are interconnected for resource sharing, space, 
and weight savings. Additionally, this review demonstrates that data-driven approaches for the 
fault diagnostics of components are good. However, they require large amounts of data for feature 
extraction. For a system such as the HPFCAS, flight-management data or aircraft maintenance rec-
ords hold information on performance, health monitoring, diagnostics, and time scales during op-
eration. These are needed for analysis. Here, a knowledge of training algorithms is used to interpret 
different fault scenarios from the record. Thus, such specific data are not readily available for use 
in a data-driven approach, since manufacturers, producers, and the end users of the system compo-
nents or equipment do not readily distribute these verifiable data. This makes it difficult to perform 
diagnostics using a data-driven approach. In conclusion, this paper exposes the areas of interest, 
which constitute opportunities and challenges in the diagnostics and health monitoring of flight-
control actuation systems on aircraft. 

Keywords: aircraft systems; fault detection; diagnostics; flight control system; IVHM; algorithm; 
classifier 

1. Introduction
The aircraft flight-control actuation system (FCAS) is a major system used on aircraft 

for overall piloting and control, whether the aircraft is used in a military or civil role. The 
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system performs multi-functional duties to provide the aircraft with control, the capability 
for flight navigation, communication, surveillance, and manoeuvrability [1]. In both mil-
itary and conventional aircraft designs, the FCAS also contributes significantly towards 
alleviating the extensive workload of pilots [2]. Thus, the efficient and safe operation of 
the system is of paramount importance to support safe, reliable, and proper use of aircraft. 

An FCAS is composed of multiple, highly integrated subsystems. Each subsystem 
has specific duties intended for the same goal (control) under different conditions and 
times of flight. The subsystems are linked through the complex interconnections of com-
ponents, in which the feedback or input of one subsystem is the output of another. Some-
times, feedback and control loops make fault detection and isolation in these systems ex-
tremely challenging [3]. Furthermore, the subsystems can be aligned in an integrated for-
mat for their dependency functions, in which faults can cascade from one subsystem to 
another, increasing the challenge of fault diagnostics [4]. In most cases, the degradation of 
components and subsystems begins as soon as they are used. If abnormalities can be 
traced at this time, faults will be easy to identify; however, this would not show the extent 
to which faults are traced unless the fault attributes are known. If the fault attributes are 
not known, deterioration continues progressively. Therefore, finding faults in the system 
becomes more difficult [5]. To mitigate, such that when failure occurs it is not a major 
event, diagnosis of the system components is required. This diagnosis is based on condi-
tion monitoring, which is the examination of symptoms, attributes, or characteristics. This 
can take time to achieve, so the resulting maintenance can be costly and disruptive. It leads 
to unscheduled maintenance activities that can be avoided through the continuous moni-
toring of the overall system health status. 

With respect to health monitoring from the design perspective, if built-in test sensors 
are integrated within the overall system design for features extraction, the required con-
tinuous monitoring throughout the life cycle of the system or its components will be 
achieved [4]. However, while the sensors may provide information, they do not achieve 
the acquisition of a complete suite of technical information that would enable the imple-
mentation of a robust and proactive, condition-based maintenance (CBM) approach [6]. 
This is made worse if the reliability of the sensors themselves is distorted due to the pres-
ence of an unwanted noise in sensor signal. This is also true if there are not enough sensors 
to capture important data. However, the sensors themselves do appreciably add to the 
weight and cost of the aircraft [7]. Furthermore, the sensors are normally implemented at 
the component level or system level and are not sufficient to account for the subsystem 
level interdependencies as well as changes in the system’s operational environments. 
Keeping these challenges in mind, how are the diagnostics of components or systems sup-
ported under a robust, CBM process? 

To support a robust, CBM approach to the FCAS, it is vital to systematically explore 
the required technologies that allow for the real-time monitoring of the system and its 
health status at system, subsystem, and component levels [8]. To underpin the overall 
exploration, an in-depth literature review of the types of FCA subsystem diagnostics has 
been carried out as a first step. This review focuses on the different types of flight controls 
and their actuation system diagnostics, their failure modes and effects, existing CBM strat-
egies, fault-diagnostic methodologies, and the effects of single or multiple faults for inter-
acting components. 

1.1. Motivation 
The health monitoring of an entire system is achieved if the diagnostics and prognos-

tics of the individual subsystems are approached as a system of systems (SOS) [9]. As a 
first step, a diagnostic of the components is performed using either a failure-modes anal-
ysis of the components or a time-to-failure prediction. This is to identify a faulty compo-
nent that is affecting the system and track the propagation of that fault to other interacting 
components of the system. 

Diagnostic analyses are therefore, performed to identify faults; in this way, different 
faults with similar fault signatures and characteristics will be known. This is not always 
easy in a HPFCAS with complex, nonlinear, and strong fault concealment. Additionally, 
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individual components such as pumps, actuators, fluids, filters, and valves experience 
degradations, producing faults that add to the multiple faults affecting the system. These 
cause the delay of flights and increases in cost and maintenance downtime. Also, compo-
nents are designed to account for the functions they perform. However, as soon as com-
ponents are integrated into a system or subsystems, their roles are modified. These 
changes in role may also be due to the conditions under which they are intended to oper-
ate. Hence, a system with multiple faults makes it difficult to trace the origins of each fault. 
The faults associated with one subsystem may mistakenly link to another subsystem with 
attendance effect. 

Fault diagnosis and isolation are required to ensure that the number of fleets in an 
organization is constantly monitored so that they may be available. To underscore this 
initiative, a thorough review of the diagnostics for FCASs is performed to identify the 
available methods used for the diagnosis of FCASs and observe their merits and demerits. 
Thereafter, this review will examine the possible areas of improvement and select or de-
velop a suitable method that can be used to robustly, model the faults in an FCAS. This is 
intended to account for the devolution of FCASs as SOSs and to develop diagnostics to 
detect multiple faults in hydraulically powered FCASs. 

1.2. Background to FCAS 
FCASs are normally mechanical/electrical, mechanical/hydraulic and mechanical/hy-

draulic/electrical systems that transmit the control signals needed to drive the primary or 
secondary control surfaces [2,4]. They provide the required assistance that enables the re-
sponse of the aircraft according to the pilot’s command. FCASs include the components 
required to transmit flight-control commands from the pilot or other sources, such as the 
autopilot or trim systems, to the appropriate actuators, generating forces, and torques. 
These forces and torques are used to control the aircraft’s flight path, altitude, airspeed, 
aerodynamic configuration, ride, and structural modes [3]. The performance of the FCAS 
directly influences aircraft performance and reliability; this makes it one of the most im-
portant systems in an aircraft. 

1.3. Outline of the Paper 
This review considered articles published in peer-reviewed journals and publications 

from various sources by experts in the industry, institutions, and stakeholders that ad-
dressed diagnostics or fault detection and propagation in aircraft FCASs, as is shown in 
Figure 1. These sources were searched, collated, and assessed. Thus, this study relied on 
a systematic review of the published scientific literature on fault detection and isolation. 

Accordingly, the preferred reporting items for systematic reviews and meta-analyses 
(PRISMA) guidelines was adopted where published articles were included in the current 
study, if they were published in peer-reviewed journals with the main purpose of the ar-
ticle being directly related to diagnostics in aircraft FCASs [10]. Studies that were repeti-
tive or did not meet all conditions were excluded. Electronic databases were searched for 
this purpose: namely, Science Direct, Scopus, IEEE, and ELSEVIER. Search keywords in-
cluded aircraft system diagnostics, fault detection, and flight control system diagnostics. 
An initial screening was performed to collect all potential studies, relying on their titles 
and abstracts. These studies were then filtered after a full review of the article text to re-
move duplications. 

In another parallel activity, researchers who have an interest in the fields of health 
monitoring, diagnostics, and prognostics were consulted to share their opinions. Relevant 
documentations on the subject area were simply contextualized to address the under-
standing of diagnostics in aircraft systems. This, together with the identified peer-re-
viewed articles, formed the collective source of information shown in Figure 1. 

The resulting collection of one hundred documents included seventy peer-reviewed 
journal articles (70%), nineteen industrial reports and regulations (19%), nine conference 
and other symposia papers (9%), and two books (2%).  
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Figure 1. Guidelines for the review methodology. 

2. Flight Control Actuation Systems 
The FCAS of an aircraft consists of many different, complex subsystems to provide 

control to the aircraft according to how the FCAS is powered or energized. The following 
subsections present the background of elements or components and explain how they fit 
together in different FCAS topologies. 

2.1. Mechanical Flight Control Actuation System  
For a mechanical flight-control actuation system (MFCAS), shown in Figure 2, the 

system is a collection of mechanical parts such as pushrods, tension cables, pulleys, coun-
terweights, and sometimes chains which directly transmit the forces applied at the cockpit 
controls to the control surfaces. References [1,2,4] show descriptions and different ways 
by which the MFCAS are installed in the aircraft. In this type of FCAS, the diagnosis fo-
cuses on the wear-out of components due to friction, clearance, and the elastic defor-
mation of the transmission system to achieve good performance. With an increase in the 
size, weight, and flight speed of aircraft, it became increasingly difficult for mechanical 
control surfaces to overcome the aircraft aerodynamic forces. The main issues associated 
with the wear-out of components are vibrations, friction, and elastic deformation. These 
issues cause degradations, which result in mechanical system faults that propagate to fail-
ure. 
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Figure 2. Mechanical flight-control actuation system showing structural parts [1]. 

Diagnostics of this type of FCAS focus on the attributes or characteristics of the indi-
vidual components in terms of the fault attributes associated with ageing components and 
the impact they have on the entire system. The most suitable methods are diagnostics as-
sociated with mechanical systems that use verified safety-assessment tools, such as a fail-
ure modes, effects, and criticality analysis (FMECA), to compute failure rates and failure 
criticalities of the individual components and systems by considering all failure modes 
[11–13]. A fault tree analysis (FTA) of component failure rates and probabilities of various 
combinations of failure modes can then be employed. In a FMECA, a breakdown of the 
system into its subsystems and components is performed by working in a bottom-up ap-
proach. It begins with the failure modes each component can present and propagates these 
effects upwards to the higher system levels. A system’s FMECA answers the questions as: 
“what are the problems that could arise?”, “how are these problems likely going to oc-
cur?”, “how serious are they if they happen?”, and “how can these problems be ad-
dressed?” [13]. To add to this, techniques such as the Markov analysis, which computes 
the failure rates and criticality of various chains of events, can be utilized. 

Regarding an FTA, decisions are taken in accordance with the fault tree model of the 
system in the same way as a FMECA, in which higher-level, major subsystems are de-
volved into lower-level components in a descending order of complexity in the chain of 
failures. A diagnostic analysis is conducted by traversing the tree in a top-down approach. 
Thus, higher-level nodes relating to major subsystems and nodes corresponding to com-
ponents or different failure modes are at a lower level. Usually, at every node of the tree, 
a system’s parameter is compared to a baseline value and, depending on the result of the 
comparison, lower branches of the tree can be excluded. This algorithm terminates when 
it reaches the lowest nodes of the tree. Depending on the fault modes that the analysis 
aims to capture, different architectures of FCASs or their diagnostics can be developed.  

In most cases, a common cause analysis, which evaluates failures that can affect mul-
tiple components and systems, is expected to be used for a robust diagnostic of the FCAS. 
Examining the component functions and a knowledge of the critical failure modes, based 
on data availability, is required for an easy diagnosis of the system. 

2.2. Mechanical/Hydraulic Flight Control Actuation System 
Aircraft designers recognized that the hydraulic system could divide the control-sur-

face forces between the pilot and the hydraulic boosting mechanism [2]. This is because 
hydraulic power drives the aircraft surfaces according to the pilot’s command using high 
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pressure, exerting an increased force on the aircraft surface, as is shown in Figure 3. The 
diagnostics for the system, therefore, involve both mechanical and hydraulic components, 
with faults from both systems being considered. Here, cases of any single system or com-
ponent failure (such as actuators, control spool housing, and valves), in a hydraulic sys-
tem—or any combination of mechanical or hydraulic system failures, such as dual fail-
ure—are of diagnostic concern [9]. Dormant failures of components or subsystems that 
only operate intermittently, as well as common mode failures/single failures that can af-
fect multiple systems, are considered part of the diagnostics process. 

 
Figure 3. A mechanical/hydraulic FCAS [2]. 

2.3. Mechanical/Hydraulic/Electrical FCAS 
A hydraulic power supply actuation system in combination with mechanical compo-

nents and electrical systems forms the overall fault areas for diagnostics in this class of 
FCAS. The FCAS could be mechanical, electrical, hydraulic, or any combination of these 
systems. These provide the motive force necessary to move the flight control surfaces. 
Thus, actuation systems are intermediaries between all the flight control system needs and 
the force that drives the flight-control-surface motion [14]. To provide some force for mov-
ing the surfaces in hydraulic power systems, hydraulic actuators are used to convert hy-
draulic pressure into control-surface movements. The performance of the actuation sys-
tem significantly influences the overall aircraft performance, and faults associated with 
the aircraft will dictate some requirements in the actuation system design and diagnostics. 

Figure 4 shows a primary flight-control actuation system (PFCAS) unit, manufac-
tured by Liebherr-aerospace, Germany, for aircraft use [15]. In this unit, the mechanical 
system, the electrical system, and the hydraulic system are all integrated and built into the 
actuation system. The integration shows that the core parts of these systems are mechan-
ical parts, hydraulic parts, and electrical/electronic hardware with embedded software. A 
robust diagnostic of this system would be complex, as all the faults associated with the 
individual systems must be known. Hence, a diagnosis for the mechanical system, electri-
cal system, and hydraulic system, respectively, as well as the actuator, will produce a re-
sult for the entire actuation system [16]. This implies that, for the best result, the diagnostic 
of the actuation system should be approached as a SOS [8,17]. 
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Figure 4. A power-control unit (PCU) as an integral part of the FCAS. 

Given that the actuator performance directly influences the performance of the air-
craft under all operating conditions, one method for diagnosis would be to focus on the 
actuator, which is the link between the flight control and the hydraulic system, assuming 
no fault is related to the mechanical system. For systems such as this, a data-driven meth-
odology can be used to show how both novel and established diagnostic technologies can 
achieve an overall prognostic health monitoring (PHM) architecture [18]. Their approach 
does not require the physical modelling of the target system, so faster algorithms and 
lower development times can be achieved. However, the system health state is implicitly 
“modelled” through the monitoring of specific data characteristics (or “features”) that are 
used within a classification environment. To assess the true health state of the monitored 
system, specific data must be known and used within a defined environment [11,19,20]. 
Hence, for a system that has not been used, or for a system whose classification environ-
ment is not known in terms of available data on its operation, diagnostics would be a 
challenge. 

2.4. Summary 
The various design structures of the three different types of FCASs have been de-

scribed above. The different subcomponents of the FCASs were examined, with a view to 
bringing out the merits and demerits of the types of diagnostics that can be used. It was 
observed that the parameters defined for use in sensing data, that could be analysed for 
fault finding, varies depending on the type of FCAS.  

In the case of an MFCAS, mechanical properties, such as the wear-out of components, 
vibrations, friction, and elastic deformation, are established as the sources of degradations 
that produce fault attributes. In a mechanical/hydraulic FCAS, the dormant failures of 
components or subsystems that only operate intermittently, as well as common mode fail-
ures/single failures that can affect multiple systems, are considered as part of the diagnos-
tics process [4]. This is because the causes of faults can be described by sensing mechanical 
and hydraulic parameters, sometimes in combination, to evaluate fault attributes. Finally, 
in a mechanical/hydraulic/electrical FCAS, a triple combination of sensing parameters as-
sociated with the three subsystems—mechanical, hydraulic, and electrical—are used to 
measure fault characteristics. Hence, a good diagnostic for an FCAS is one that focuses on 
treating the entire FCAS as an SOS. 

3. Experimental and Simulation Work associated with FCAS 
3.1. Existing Experimental Work 

Experimental work on the health management systems for electro-mechanical actu-
ators (EMA) has been conducted in which a model-based approach to the prognostics and 
health management of flight control actuators was used. This approach foretold the time-
to-failure for each of the two critical, competitive failure modes: gear slipping and bearing 
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seizures within the system [21]. These failures were at the component level. Only two 
features could be extracted from the fault parameters measured for the fault modes. How-
ever, a modern approach—one that can extract more than two fault parameter features 
under any situation—could improve the accuracy of the predictions for the entire system 
and not just the component. 

In [22], the validation of a prognostic health management system for electro-mechan-
ical actuators (EMAs) was performed to increase reliability. The work began with reviews 
of EMAs, using the FMECA in consultations with EMA manufacturers. Nominal outputs 
and less-nominal outputs of the physical models were selected. Prognostic health man-
agement algorithms were developed. These enabled diagnostic and prognostic experi-
ments to be carried out, using the output values in tracking fault progression and predict-
ing the remaining useful life of the actuator. Using the current drawn by the actuator, 
the angular velocity, the torque, and motor constants, to represent the physics-based 
nominal model of the EMA, the actuator was modelled as a DC motor, considering 
input voltage, winding inductance, resistance, and damping against the opposing 
torque. The nominal data required were collected by running the model under dif-
ferent load conditions to estimate the parameter changes in the motion profile of the 
actuator. A run-to-failure experiment was observed due to excessive heat, which 
caused damage to the winding insulation, a short circuit, and the failure of the motor 
due to an actuator jam, which had been injected as the fault.  

Figure 5 shows a plot of motor temperature against time. The actuator jam was 
injected into the healthy actuator, and sensor measurements of the generated data 
were obtained. A region in which the healthy actuator can operate continuously for 
a specified period was selected from the manufacturer’s design-performance specifi-
cation, known as the 100% duty cycle. Motion and load profiles were designed to stay 
within this region. Thus, in [22] it was shown that as the motion profile was a sine 
wave of 8 cm peak-to-peak with a frequency of 0.5 Hz and the load was kept constant 
throughout at -50, +40, or +50 lb, increased friction from the jam resulted in additional 
current delivered into the test actuator motor. This was to perform the same load 
profile under different loading conditions from the nominal actuator. 

 
Figure 5. Plot of motor temperature against time showing run-to-failure data. 

The entire experiment was performed on an EMA but did not take into account the 
faults associated with the individual systems that form an EMA. In addition to this, no 
new fault types were considered, and there was no execution of prognostic experiments 
in the flight environment. Therefore, the validation procedure required more experiments 
to be executed under the same conditions and faults of individual systems considered. 
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As an experiment, a comparison of data-driven fault-detection methods with appli-
cations in aerospace EMAs was reported in [23]. A model-free framework to equip electro-
mechanical actuators was proposed and deployed in aerospace applications with health-
monitoring capabilities. Many experiments were performed to acquire data, using both 
healthy and faulty components, with considerations for the standard regulations for the 
environmental testing of hardware. Various types of classification algorithms, such as lo-
gistic regression (LR), support vector machine (SVM), naive Bayesian (NB), and gradient 
tree boosting (GTB) algorithms were used. The choice of any of the algorithms was dic-
tated by the classification result and is of the most interest with respect to understanding 
the type of data-generating process. The results showed that all chosen classifiers were 
discriminative: the algorithms developed for one classifier did not provide the same re-
sults when another classifier was used, despite using the same data values. 

Based on these results, the application of the framework to other fault types was not 
investigated; nor were conditions that could not be deduced from the data, generated. 
Thus, it can be suggested that the combination of the proposed approach with a model-
based methodology would provide a more robust and comprehensive fault-detection ca-
pability. 

3.2. Existing Simulation Work for FCAS  
Simulation work for an FCAS for diagnostics purposes should account for the total 

operation of the system, which involves the components of the entire system and the in-
dividual control processes. These include the way faulty scenarios can be injected into the 
system models. Simulation work for an FCAS associated with a MFCAS will be different 
from simulation work for a HPCAS because the components used in the processes are not 
the same. The different diagnostics employed will depend on the defined parameter esti-
mation obtained during data acquisition [19,20,24]. This is substantiated by work in which 
a simulation model was developed and proposed for EMA-health-condition monitoring 
techniques [25]. This model was based on a simplified and complete Simulink approach. 
In this approach, an electro-mechanical actuator (EMA) using Simulink block sets for sim-
ulation, was implemented and tested. The simulation used a pilot input as a step signal to 
a PID controller. The controller sent signals to a brushless direct-current motor, coupled 
to a ball or roller screwed, through a reduction gearbox. This produced a linear motion 
output that drove the control surfaces to an angular displacement, depicted as the actuator 
response. Thus, as faults were injected into the system model, some measurement errors 
were observed in the actuator response, corresponding to the behaviour of a typical elec-
tro-mechanical FCAS. 

The identified errors were related to faults due to the inertia of the mechanical parts, 
such as control surfaces, motors, gear, and leadscrews. Although these errors can be cor-
rected using the PID controller parameters, the initial transient responses were included 
in the EMA performance responses. Hence, these showed the differences observed be-
tween the reference input signal and the control-surface responses as faults. Thus, consid-
ering the main input parameters of the system such as, the current to the motor and the 
speed, failure modes were built around the speed of the motor, sensor measurements, 
torque, and current. 

In Figure 6, a controlled Simulink system model was used to illustrate an experi-
mental information flow diagram of an electro-mechanical FCAS using a step pilot input 
function. The expected response is the outcome of the actuator response as measured. The 
output is obtained by the sensor measurements after suitable parameters for the PID po-
sition controller are selected. Errors are usually observed with different PID position con-
troller values, but other faults due to components are also present in the system and can 
be diagnosed. Fault scenarios, such as a phase current that reduces the speed of the motor, 
sensor measurements, which depend on the sensor calibration, and torque values due to 
loadings on the control surfaces, are some of the possible fault attributes experienced due 
to the changing values of these parameters. 
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Figure 6. Control Simulink model of the electromechanical FCAS. 

3.3. Simulation Modelling Coupled with Experimental Work  
One study developed an accurate model and simulation of the mechanical power 

transmission within a roller-screw for EMAs, with special attention paid to friction com-
pliance and inertia effects [26]. It proposed non-intrusive experiments for the identifica-
tion of model parameters with an integrator- or system-oriented view. The actuation mod-
els in the work were the type that would reproduce the energy losses and the main dy-
namic effects, meaning they could withstand noise and disturbances. 

The control handle was supplanted by an electric motor, while the models were sub-
jected to sudden loads and disturbances and a precise actuation was obtained within the 
specified settling time. The study was built on control theories in which the model expe-
rienced the effects of parameter variations on the system’s stability and performance. 
These were analysed and showed prospects for diagnostics if performance and stability 
are used as the matrix. However, the researchers could not trace the sources from which 
these parameters were changed such as the power supply, torque, motor current, screw 
displacement per revolution, or the PID values. The values of these parameters were to be 
evaluated in quantifiably for fault measurements and prediction. 

In Figure 7a, the EMA system model was built in Simulink and simulated. Thereafter, 
the numerous blocks were reduced to a subsystem for clarity and simplification, as it is 
shown in Figure 7b. 

The model was able to handle disturbances and non-linearities but could not account 
for the causes of the disturbances. It also annulled the effect of a sudden load on the motor. 
While the model could achieve the desired actuation within a very short settling time, this 
was at the limit of the PID controller. These effects are shown as the EMA response in 
Figures 8–10 [26]. 

 
(a) 
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(b) 

Figure 7. (a) EMA system model blocks built for individual components. (b) EMA system model 
blocks were reduced to a subsystem showing input and output responses from built-in blocks. 

 
Figure 8. Motor and actuator response for a sudden load at 0.5 sec, depicting speed and final posi-
tion plots against time. 

 
Figure 9. Responses of the actuator for different PID values. 
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Figure 10. No effect of parameter changes on the demanded speed by the motor. 

The EMA model was simulated with changes in the motor speed due to different 
loads on the actuator. The results were collected by plotting the motor speed vs. time due 
to loadings at 0.5 s, shown in Figure 8. Also shown in Figure 8 (lower line) is a plot of the 
actuator position vs. time. The effects of other parameters, such as the changing values of 
the controller, are shown in Figure 9. 

If parameters do not change rapidly and do not produce disturbing effects, such as 
causing fault or instability to be introduced to the model, they do not affect the EMA sys-
tem response. This is as shown in Figure 10. 

In a related study, the actuator model was first structured with respect to the bond-
graph theory [12]. A formalism that enables a clear identification of the considered effects 
or model requirements and associated causalities for model implementation was enacted. 
This required a clear physical understanding of the entire actuator model. This research 
work provided a system-level model of the mechanical power transmission in an inverted, 
roller-screw EMA. They proposed a generic modelling and testing procedure to identify 
and validate the EMA model without need for intrusive measurements or detailed design 
data. 

The EMA model development focused on important effects which are often ne-
glected such as transmission compliance, which is aided by gear/shaft couplings and 
roller-screw friction. The results showed that the EMA efficiency can reduce significantly 
with operating conditions. In fact, as the rotating body movement provided the input, the 
resulting translational output was measured. The limit of rolling movement in the circular 
manner was divided into four quadrants of operation, with the period in each quadrant 
noted. With a strong effect from transmitted loads at different periods during operation, 
the quadrants of operation were considered, which agrees with [26] with respect to trans-
mission compliance due to friction. In this modelling and simulation approach, position 
control was applied to a low-dynamic state variable (position being the second time inte-
gral of acceleration). The simulated and experimental positions could be quite similar, 
even if the upper state variables were badly predicted by the model due to the filtering 
effect of a double integration of the position distance to provide acceleration. 

However, the required force control was applied to the high-dynamic state variables 
(acceleration) and, for this reason, the performance prediction accuracy was much more 
sensitive to modelling errors. Therefore, the identification of inertias and compliances to 
develop transmission models that are capable of reproducing effort losses and poor 
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reversibility with confidence are needed. For the study in [12], the model was particularly 
important for sizing the electrical motor and its inverter, as their thermal load would be 
highly impacted by the actuator output force and velocity, reflected through the mechan-
ical transmissions at motor and power electronics levels. This model approach may not be 
suitable for a HPFCAS. 

An EMA-system-level model was proposed to reproduce these effects with confi-
dence; it was validated with mixing time and frequency domain experiments under 
torque or velocity disturbances. According to the study, the proposed generic friction 
model proved valuable as no significant parameter variations were detected in more than 
one year of use. 

For the HPFCAS, the sizing of the electrical motor and its accessories needs to be 
monitored with a laser sensor, as their thermal load would be highly impacted by the 
actuator output force and velocity. This is intended to limit the operation of the motor 
within tolerance. However, the limiting factors would affect the capacity of the motor 
speed.  This is reflected through the hydraulic transmission power at various compo-
nents’ levels, with effects on pressure gain/losses versus the mass flow in the hydraulic 
system. Adopting this model would not work, but a model that accounts for the peculiar-
ities of the hydraulic system properties would help in achieving better diagnostics results. 

3.4. Summary 
In reviewing the experimental and simulation research work regarding the diagnos-

tics of FCASs, it can be observed that most of the works were performed on MFCASs. The 
most relevant works studied FCASs that utilized EMA systems for their actuation. Diag-
nostic work on HPFCASs is not well covered; this provides opportunities for ongoing 
studies. The few experimental and simulation works considered in this review analyse the 
modelling and simulation of FCASs using defined parameters according to the design and 
requirements of the FCAS model created. Attempts are made to propose diagnostic capa-
bilities based on their results; however, clear cut diagnostic procedures are still ambigu-
ous. For MFCAS models that involve an EMA, mechanical and electrical parameters such 
as inertia motor speed, current, torque, friction, and loading were chosen as some of the 
parameters whose changes in value could trigger measurable quantities for faults diag-
nostics. In a HPFCAS, for which the measured properties consist of hydraulic compo-
nents, a change in hydraulic parameters such as pressure, temperature, quantity of flow, 
are relevant. These are in addition to those parameters relevant for an MFCAS, which are 
also included in parameter estimations for diagnostics. This was not fully captured in 
most of the simulated works and, even where it is considered, only a classical control ap-
proach is used. 

4. Integrated Vehicle Health Management (IVHM) and Diagnostics for FCAS 
4.1. Overview of IVHM 

An integrated vehicle health management (IVHM) system normally uses sensor data 
to detect faults in components and subsystems (i.e., diagnostics), to predict the remaining 
useful life (i.e., prognostics) and assist maintenance engineers and operators. Many dis-
coveries on diagnosis, prognosis, and the mitigation of faults in different aircraft systems 
are achieved through the model-based [27] and signal-based fault detection and isolation 
techniques. For example, as a signal-based method for diagnosis, [17,28,29] used signal 
processing to provide promising tools in the form of decomposition algorithms, benefiting 
from their low computation cost, empirical mode decomposition, and variational mode 
decomposition. These qualities allowed the researchers to undertake a real-time diagnosis 
with an on-line, electrical signal time-series data analysis. Thus, the input variables were 
the current and voltage collected, and weather data simulated by a regional climate 
model. Decomposition algorithms, such as the fast Fourier transform and wavelet trans-
form algorithms, were used to extract additional features from time series. The infor-
mation collected comprised the gain and the phase of the signal for each frequency value. 
These characteristics carried information that was not available for the data in the time 
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domain. However, the scope of the research was limited to stationary or periodic signals. 
Although the wavelet transform (WT) tool, which is applicable to non-stationary and tran-
sient signals was used, its usage is highly dependent on the time series characteristics and 
cannot be easily deployed for a HFCAS. 

The use of a signal-based fault diagnosis for system models evolves from the need to 
condition sensor measurements and real-time domain analyses to identify measured var-
iables that are sensitive to faults and features extraction [30]. Here, time series signal pro-
cessing, such as a fast Fourier transform, that changes data into a frequency domain, —
which carries characteristics that are not found in the time domain for fault diagnosis—is 
analysed [31]. This enables the selection of the most suitable tool for highlighting the 
symptoms (data processing) and interpreting the symptoms to make a diagnosis. There-
fore, [31] uses signal-based methods for extracting features and further inputs these fea-
tures into a classifier for fault recognition. 

In a research study, [32] the diagnosis of a faulty ignition system due to degradation 
was discussed. The researchers evaluated the possible fault effects caused by the starter 
motor or fuel-igniter system in a feasibility study. The methodology used involved the 
signal processing of acoustic data, for which microphones were used as the sensing ele-
ments. It was suggested that the derived parameters could be compared to find healthy 
limits in detecting fault and degradation in systems. This technique was used on an aux-
iliary power unit of an aircraft; however, as the sensor data used was acoustic, the tech-
nique’s possible application in evaluating a HPFCAS diagnosis remains to be investi-
gated. 

One disadvantage is that, in the case of signal processing, the features are manually 
designed and thus may have a lack of objectivity. Secondly, feature extraction and pattern 
recognition are conducted using independent models, which cannot be jointly optimized 
globally for all systems. Machine-learning algorithms could therefore be adopted by these 
methods, which would enhance their capacity to deeply mine the essential features of a 
fault. A breakthrough in artificial intelligent (AI), shows that deep learning, a component 
of the AI, holds the potentials to overcome such deficiencies. 

Based on deep learning, deep neural networks can automatically learn the complex, 
nonlinear relations implied in a signal, which can then be globally optimized. This will 
achieve the high-level features of multi-dimensional data in a complex system such as a 
HPFCAS, whose characteristics of strong fault concealment, powerful, nonlinear time-
varying signals, and a complex vibration transmission mechanism for fault diagnosis ex-
ist. These qualities have spurred a substantial research interest and efforts in the IVHM 
approach to systems. Thus, IVHM has become diverse across many investigations, so that 
it can be applied to different systems such as the FCAS. Consequently, different model-
based methods have been identified, amongst which are mathematical or physics models, 
data-driven models, and combinations of the two methods, known as hybrid models [22]. 

In model-based fault diagnosis methods, models are developed and deployed based 
on some fundamental understanding of the physics of the plant or process [33]. These 
methods can further be classified as qualitative or quantitative. The role of a specialist 
with expert knowledge is extremely valuable. Thus, the model hypotheses and goals must 
be clearly stated. The characteristics of the target engineering application will determine 
the type of modelling and its degree of sophistication [22,26,34]. In the quest for model-
based diagnosis methods, questions, such as: how complex is the system? Is the physics 
well understood? What kind of data are available, and what is the acquisition rate? Is it a 
real time application? What is the level of uncertainty (of inputs, parameters, models, and 
outputs)? Come to mind [12]. Thus, [30] used these approaches, which required many 
technical aspects, such as data, mathematical expressions, equations, and algorithms to 
combine with signal processing in the diagnosis of a hydraulic system. Hydraulic state 
parameters, such as the state of the hydraulic actuator and hydraulic system leakage, were 
measured and used to extract corresponding features using a mathematical model. Other 
parameters included: the change in flow of a hydraulic system, the vibrations and noises 
occurring in hydraulic system components (such as the hydraulic pump), and the pressure 
signal of the hydraulic cylinder, valves, and the hydraulic actuator. 
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Thus, the corresponding relationship between the measured signals and faults to 
achieve a diagnosis is described. This type of fault diagnosis compensates for the ineffi-
ciency of using manual data statistics for applying an objective parameter measurement 
and the advantage of signal processing. However, these are not sufficient for a model-
based approach to be totally useful. Hydraulic FCASs are non-linear, time-varying sys-
tems with shortcomings, such as their difficulties with feature extraction. Therefore, un-
less the knowledge of the model creation establishes a complex mathematical model, other 
factors are known for subsequent application. 

It is important that a model-based fault-diagnosis approach deals with the correct 
issue and help to solve the correct problem. Hence, a high-quality model will not be help-
ful if it relates to an issue that is not the main concern of the approach. [22] Conversely, 
asking a model to answer increasingly detailed questions can be counterproductive, be-
cause this would require even more features of the real system to be included in the model. 

Thus, since the model-based approach adopts mathematical or physics modelling, 
models need to be “requisite;” that is, they must have an identified context and purpose, 
with a well-understood knowledge base. They must also be supervised by users and au-
diences, and possibly developed within a particular time constraint. Today, this is solved 
by the application of some machine-learning techniques if historic data is available; the 
models are otherwise tested on required physics assets [35]. In modern-day research ac-
tivities, the application of AI in the field of machine learning under unsupervised learning 
can be used for such model-based approaches to diagnostics. 

In the data-driven diagnosis and prognostics method, which usually uses a large 
amount of data to learn the degradation pattern (nominal model), a learning model that 
can utilize historic data and predict future health [33,36–38] is required. Usually, this run-
to-failure data is typically accelerated data produced in a laboratory environment, from 
which healthy and degraded data are collected under emulated operational conditions. In 
[13], it was shown that understanding a system’s fault modes can provide feedback for 
the design of new products. This can easily be achieved by working with required data, 
which can then be made more robust to faults. These data will enable intelligent fault-
detection features to be embedded in the system. This is corroborated by [22], in which a 
data-driven model was chosen based on machine learning and statistical algorithms to 
identify and evaluate system faults. Data was collected, extracted, and analysed from a 
real system—the auxiliary power unit of an aircraft. Recognized patterns were detected 
in the data, and these were correlated with known fault modes, after which statistical 
methods were used to assigned probabilities to components being either healthy or faulty. 

Data-driven diagnosis models are purely statistical and AI-based; however, the ex-
pert system methods, which involve rule- or case-based reasoning, can also infiltrate the 
data-driven approach, since their application is only on available data [13,35,39,40]. In [41–
44], this was proven by using machine-learning intelligent classification algorithms to 
classify a dataset used in data driven models. Specifically, [45] evaluated the performance 
of three kinds of damage samples. Namely, the inner ring damage, outer ring damage, 
and the healthy condition of the mechanical equipment (bearing). These artificial damages 
were injected manually by three different methods: electric discharge machining, drilling, 
and manual electric engraving. These samples were obtained from data collected for real 
bearing damage samples caused by accelerated lifetime tests using scientific test rigs [46]. 
The experiments conducted using the dataset demonstrated an intelligent fault-diagnosis 
method based on training that utilized one feature extractor and one classifier for classifi-
cation accuracy. 

However, one gain associated with the data-driven model approach for diagnosis is 
the important use of machine learning techniques. These are of two types: supervised 
learning, which trains a model on known input and output data so that it can predict 
future outputs; and unsupervised learning, which finds hidden patterns or intrinsic struc-
tures in input data [34,22]. These correlate with system-observed measurements for a 
health state and solve regression and classification problems [35,44].  

Considering healthy or faulty scenarios, values are assigned for the probability of a 
system or component being healthy or faulty (statistical analysis). These techniques have 
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been proven to be successful in isolating both component and sensor faults. Apart from 
this, other AI with variations in algorithms used in data-driven model approaches for di-
agnosis exist [47,46]. Examples of these include, neural networks, artificial neural net-
works (probabilistic and dynamic), principal component analysis (or different dimension-
ality reduction algorithms), non-linear principal component analysis, and the partial least 
squares. These and many others are not explicitly discussed in this paper. However, their 
fundamental characteristics and their main objectives fall into the methods described un-
der data-driven models. 

For an improved diagnosis using data-driven methods, specifically, more feature ex-
tractors concerning features and the training of more classifiers for fault pattern recogni-
tion will enhance fault diagnosis capability, since separate classifiers are trained for fea-
ture extractor algorithms than for fault pattern recognition. Real-life conditions can some-
times be hard to mimic; therefore, a combination of both mathematical and data-driven 
models to form a hybrid model for analysis has been shown to be more useful [20,35,48]. 

It is worthy to note that the mathematical models of model-based fault diagnostic 
approaches comprise statistical models or physical models to account for system condi-
tions, diagnostics, and the tracking of degradation. Usually in a physical-model-based di-
agnostic approach, the simulation is based on the identification of potential failure mech-
anisms and failure modes for the physical system; that is, the effect by which a failure is 
observed to occur in the system. One research study conducted [11] used a model to mon-
itor physically meaningful parameters that offer excellent early fault-detection capabilities 
even when the system operation meets or exceeds the minimum requirements. This was 
because small parameter shifts exist which potentially indicate the early stages of fault 
progression [38]. These can still be detected or traced. Therefore, if health classifications 
are performed using these physical parameters, multiple competitive failure modes can 
be monitored [11,41]. 

The challenge here is that some attributes of the physics-based models are con-
structed using first principles or mathematical laws. They are also combined with phe-
nomenological closure models (e.g., constitutive models such as friction models, damping 
models, boundary conditions, and joints), whose parameters have a clear physical inter-
pretation. This makes it difficult to build high-fidelity, time-consuming computational 
models of complex engineering systems for diagnostic analysis. Therefore, combinations 
of models can be made to achieve better results. If models are homogeneously combined, 
they remain the same as the parent models. For instance, combining either two physics 
models or two data-driven models will still produce physics or data-driven models re-
spectively; however, in combination, they can produce more accurate results or achieve a 
faster response [13,35,49–51]. Hybrid models are produced for heterogeneous combina-
tions. They are a combination of physics-based and data-driven models for diagnosis ap-
proaches. In one research study, [46] authors tested a methodology on two engineering 
datasets—one for crack growth and the other for filter-clogging—to prove the efficacy of 
a hybrid model. The performance of the methodology showed that hybrid models im-
prove accuracy, robustness, and applicability, especially in the case of where minimal data 
are available. Hence, because data-driven models employ historical data to construct a 
statistical or AI-based model aimed at capturing the degradation process, they involve a 
large amount of failure degradation data, which may be difficult to obtain. On the other 
hand, physics or mathematical models require expertise in the application field and tend 
to be computationally excessive to apply. The hybrid model tends to be better in analysing 
the forecast of failure degradation in a system. 

In summary, IVHM activities have, for many years now, focused on a wide range of 
diagnostic methods. These have been proposed for either the system or component level. 
Currently, the most rapidly emerging concept within the diagnostic community is that of 
system-level diagnostics. This is targeted at accurately detecting faults and establishing 
the timely replacement of the faulty components to effectively restore the system to a 
healthy state. System-level diagnostics is of great value for faults that are complex in na-
ture. These faults have a prominent impact at system-level functionality. A prominent 
outcome of systems-level diagnostics is that it enables a comprehensive understanding of 
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the overall system’s fault modes, causes, and effects. These are used as feedback to im-
prove the design life cycle of new products, offering robust diagnostics capability. This 
underscores the relevance of IVHM diagnostic tools for different model-based ap-
proaches. However, machine learning and AI should comprise the key tools to be em-
ployed for robust fault-diagnosis approaches. 

4.2. Diagnostics  
Diagnosis is defined in this paper as the practice of identifying the nature of a prob-

lem (fault) through the examination of its symptoms, conditions, and signs. It is an act 
that recognizes attributes or characteristics which signify a malfunction or failure in a sys-
tem or components due to the presence of faults. Hence, diagnostic methodologies are the 
techniques or methods of identifying or creating conditions for distinctive symptoms and 
characteristics. These would distinguish healthy and degraded scenarios in a component 
or system. Ongoing research shows many ways by which diagnostics are carried out [16]. 
Some techniques depend on imaging or image tests, others rely on pulse signals, while 
many depend on parametric conditions, such as temperature, pressure, volume, power, 
speed, voltage, and current [19]. Hence, diagnostics would depend on the data or sensor 
set that is employed to generate the data. These come with procedures associated with the 
different diagnostics tools used. Model-based methods use a physics model of the system 
or component under examination to conduct the analysis. Physical parameters calculated 
by the model are compared with system observations and, by using various techniques, 
faults can be detected, and their root cause can be isolated. Model-based methods can be 
further separated into two major categories. One category is found in an approach devel-
oped by the Control Engineering community: fault detection and isolation (FDI) [52]. An-
other category, which is also relevant, is an approach developed by the diagnostic AI com-
munity. Both approaches depend on the knowledge of how the physics models of the 
systems are created or formed 

Diagnostics in aircraft systems transform raw sensor data into useful information re-
garding the present condition of aircraft systems and their components for the purpose of 
addressing likely causes of failure. It is reasoned that diagnostics, prognostics, and the 
mitigation of systems are applications of different knowledge-based reasoning in the 
IVHM approach to solving system problems. 

Diagnostics for Mechanical and Hydraulic FCAS 
Diagnostic work on an electromechanical actuation system has been carried out, us-

ing robust modelling for actuator fault detection and failure prediction, following a 
model-based approach [11,42,43,53]. The physical modelling of the system and identified 
parameters, such as command signals, friction, damping coefficient, and step change in 
actuator position, were used to develop a model with responses that were focused on the 
bearing friction. These advanced parameters were used to create the simulation model, 
the techniques, and a suitable algorithm to predict the time-to-failure for each failure 
mode in the system [18,20–22]. The simulation of bearing failure was created using a sin-
gle model parameter, such as the friction coefficient, and the results were compared with 
the normal system response, as shown in Figure 11. 
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Figure 11. Actuator position against time for changing values of actuator bearing friction coefficient 

In Figure 11, the normal operation of the actuator is shown in blue for a known value 
of friction coefficient and depicts the actual response when provided with the step input 
command in black. The green, pink, and red curves show the responses due to changing 
values of the friction coefficient due to degradation in terms of moderate, high, and severe 
quantities, respectively. It is an approach to condition-based maintenance which provides 
an early detection of developing faults. However, the algorithm operated only on flight-
control command or response data. The approach employs a mathematical, dynamic 
model of the actuation system that was directly tied to the physical processes associated 
with the health of the components—in this case, the actuator and its bearing. According 
to [47,50,51], this resulted in an intelligent monitoring system that often works well under 
any load profile, including steady-state and transient performance. It also works with un-
anticipated conditions of loading and operational regimes, as the only selected parametric 
factor is friction. However, what if the selected parametric factors were more than one? 
This would mean that the model configuration would change along with its mathematical 
derivations. Consequently, more analyses would be involved to address the contributions 
of the sensor sets from the additional parameters.  

The approach was corroborated in [23,35,54], which agreed on using a model, whose 
physical meaningful parameters are monitored, to offer excellent early fault-detection ca-
pabilities. Such that, a set of values for these parameters are taken as dataset values, under 
which normal operating conditions are defined. A temporal variation of extreme values 
from these datasets is obtained by measuring the sensor outputs of two sensors, with the 
actuator responses due to command inputs. If these two sets of values are represented by 
plotted points whose x-coordinates represent their minimum values and y-coordinates 
represents their maximum values within a time response, the plot forms a cell. 

For different conditions of operation and changing values of parameters chosen for 
measurement, the different measurement values from the sensors can be observed and 
plotted. Cells produced in this way have multiple values with corresponding points—
especially in a time-varying field such as actuator response—creating a span in a space so 
that a point represents the extreme values at one time-step. For analysis, a cell’s scalar 
variation over time is characterized as residues so that the area over which corresponding 
points spread in the span space provides a good measure. This means that the wider these 
points spread, the higher the cell’s temporal variation is. This is called the parity space for 
the actuator system response. 
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The residuals that are created come from pairing all the functional relationships be-
tween components at a specific time step or over a specific time range that is observed 
between the inputs and outputs of a system. It represents the divergence between the ex-
pected behaviour and the observed sensor outputs when degradation affects components. 
A quantitative measure of the achievable level of the residuals implies the presence of 
fault attributes. 

However, parity space must be optimized to narrow the divergence for actuator fault 
detection and isolation. It is observed that there are small parameter shifts when the sys-
tem performance falls short of the requirements. These indicate the stages of fault pro-
gression. Thus, if these are detected and tracked, health classification and prognostics can 
be performed using the values of the physical parameters measured and a suitably de-
signed algorithm. 

The approach may be applicable to the isolation of the most advanced failure mode, 
but it can also be used to identify the fastest progressing ones. These could be failure 
modes that ultimately have the shortest time-to-failure. For this reason, if multiple, com-
petitive failure modes are monitored, it could be difficult to separate and identify them 
distinctively. 

In [20], a model-based fault-detection and diagnostic method was applied using in-
put and output signals to dynamic-process models. These methods agreed with 
[21,30,45,55], not only on parameter estimation and parity space equations, but also on 
state observers. In this case, signal-modelling approaches were developed that generated 
several symptoms indicating the difference between the nominal and faulty status for a 
mechanical system. Model-based methods of fault-detection were developed by using in-
put and output signals and the application of dynamic-process models. The signal ap-
proaches were processed to generate several symptoms indicating the difference between 
nominal and faulty statuses. Based on different symptoms, fault diagnostic procedures 
were followed, in which the different symptoms observed determine the fault by applying 
classification or inference methods.  

These approaches, involving model-based techniques, are complex and time-con-
suming because the knowledge of the basic attributes, such as the model parameters (both 
old and current) if such a system is already in used, is not necessarily available. The con-
trol model itself, the diagnostic classifiers for fault identifications, and scalars all must be 
known for all the components of the model. 

The diagnostic methods currently available are mainly for different components and 
systems in the aircraft. In each of the methods, the knowledge and techniques applied 
depend on engineering and computer skills, especially in manipulating data attributes to 
determine healthy and faulty systems. One of these components’ diagnostics analysis [31] 
used a layered clustering algorithm to propose the diagnosis of multiple faults in a hy-
draulic system, but with emphasis on an aircraft hydraulic pump. These faults occur sim-
ultaneously; thus, the failure analyses of these types of faults are carried out based on 
diagnostic sensors designed according to the faults’ risk priority numbers and the charac-
teristics of different fault-feature-extraction methods. If most serious failures are distin-
guished with the individual signal processing, the clustering diagnosis algorithm will be 
based on the statistical average presence of the fault features calculated from vibration 
signals. 

However, if the different faults follow different probability distributions, when com-
pared to the fast Fourier transform-based signal processing diagnosis method, the faults 
will require pattern recognition. A combination of the signal-processing method and a 
classification algorithm can diagnose the multiple faults, occurring synchronously, with a 
higher precision and reliability. According to [56,45], two of the most typical classifiers for 
pattern recognition are an artificial neural network (ANN), an intelligent algorithm with 
an input layer, hidden layer and output layer. Another is a support vector machine (SVM), 
a computational learning method for the classification of small samples. These are ma-
chine learning (ML) algorithms, but the construction and training of both the SVM and 
ANN, respectively, are dependent on the experience of the user. For the SVM, a super-
vised ML algorithm that can be used for both classification or regression challenges, [30] 
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stated that the usage of the SVM for fault diagnosis of a hydraulic system is complex and 
deficient because training an SVM for large-scale samples is hard to achieve. Secondly, 
SVM is not ideal for a multi-classification problem.  

However, in data-driven models of HPFCASs, there are large numbers of samples 
required and with an increase in system components, fault propagation together with de-
gree of damage; the number of fault modes will significantly increase. 

If the systems are made up of other subsystems, the faults generated by these sub-
systems, also add up to the diagnostic analysis. More knowledge, skills, and techniques 
in algorithm development are required. 

Thus, in the current diagnosis method, emphasis is placed on consolidating on the 
knowledge of past efforts by involving the typical model approaches of physics/mathe-
matical, data-driven, and hybrid. Also, to leverage on the intelligent techniques employed 
through signal processing, vibration analysis, and the use of algorithms such as fuzzy 
logic, neural networks, ANN, and SVM [57]. These are now building blocks for the use of 
AI and ML in modern diagnosis. Although, several machine-learning- and deep-learning-
based modules are used to explore good results in fault detection and diagnosis, never-
theless, users and human experts must be knowledgeable in understanding the insights 
of the modules. 

Another reason is related to the lack of availability of labelled historical data; this 
deficiency, makes the use of supervised models unfeasible. For example, [46] used ex-
plainable AI to investigate faults in rotating machinery (mechanical) using feature extrac-
tion, fault detection, and fault diagnosis. This still involved signal processing for vibration 
features in the time and frequency domains for extraction. Additionally, the verification 
of a fault presence in an unsupervised manner is based on algorithms used to detect anom-
alies. The explanation to interpret models through unsupervised classification and root 
cause analysis was intensive. These effectively showed different mechanical faults in the 
three datasets generated and used for the research work. 

However, in most cases, AI algorithms for fault diagnosis, such as the= k-nearest 
neighbour approach (k-NN), which is defined as an instance-based learning algorithm is 
on the principle that the instances within a dataset will, generally, exist near other in-
stances; that is, with similar properties for a given training set of classified instances [58]. 
For Naive Bayes classifier, classification method based on Bayes’ Theorem, and the con-
ditional independence assumption for a given training set, SVM and ANN, all these four 
have become popular due to their robustness and adaptation capabilities. Also, they do 
not require full prior physical knowledge (which may be difficult to obtain in practice) 
and are among the various algorithms applied most in fault diagnoses. Although they are 
used to classify faults, they are usually intended to be trained with labelled data (super-
vised training) and examples of conditions under which faults may occur. These are not 
always available or known in the industry. In addition, most AI technologies still require 
large volumes of data labelled for both normal and fault conditions, dramatically limiting 
their industry application. This is motivated by recent advances in deep learning. 

In the evaluation of hydraulic system diagnosis as a class of typical, complex, non-
linear systems, [59] proposed a deep learning model with multirate data samples to ex-
tract features from multirate sampling data automatically without expertise. It was 
demonstrated that high diagnostic and fault-pattern recognition accuracy could be 
achieved even when the imbalance degree of the sample data was large. 

Figure 12 shows a representation of a multirate data sample structure in which grey 
squares represent uncollected data. The multirate data samples have the characteristics of 
inadequacy, consistency, and information asymmetry. Inadequacy reflects in the missing 
values of the variables with a low sampling rate, which are represented by the grey 
squares in Figure 12. Consistency refers to the variables at each sampling rate which are 
uniform and complete, as can be seen in the green squares. Information asymmetry indi-
cates that variables with different sampling rates contain disproportionate information. In 
a functional process, high-sampling-rate variables are usually mostly process variables 
which do contain limited process information, whereas low-sampling-rate variables are 
more quality-related variables; hence, they contain more valuable information. Therefore, 
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in an analysis, down-sampling methods subsample variables with higher sampling rates 
so that all variables obey the same sampling rate. On the other hand, up-sampling meth-
ods use high-sampling-rate variables to predict the missing values of the low-sampling-
rate variables. 

 
Figure 12. An example of multirate sample data [59]. 

Generally, the fault diagnosis of hydraulic systems is still challenging because data 
samples collected from the hydraulic system are always in different sampling rates, and 
the coupling relationship between the components, brings difficulties to accurate data ac-
quisition. In addition to hydraulic systems having features of multiple sampling rates, 
different components of hydraulic systems may fail individually or simultaneously, and 
it will be more difficult to diagnose multiple components. The effect, components have on 
the health status of systems can be described in two ways. Therefore, the diagnosis of a 
system is better achieved, as suggested by researchers, if the two ways are considered. In 
one of the ways, [60] in his work on the diagnosis of ECS, stated that focusing on the 
degradation of components would mask component-level analysis. Hence, the necessary 
and best way to identify the health status of a system is for a system-level diagnosis to be 
performed. In this way, the effects of more than one fault affecting the system at the same 
time can be investigated. This is regarded as the second way. 

Of course, earlier diagnostic tools such as the Bayesian network, expert knowledge, 
or other techniques were used on maintenance data to demonstrate this approach. For 
many diagnostics capabilities, this brand of AI, in its simplest form as first principles, was 
adopted, and a set of multiple neural networks were trained to recognize different faults 
in systems. The conclusion reached was that if each set of neural networks is trained to 
recognize the fault occurring in each component, or the health status, a degraded compo-
nent will be known. This helps the system-level diagnosis, which is at multiple levels. 
Again, these approaches would depend on how good classifiers are generated and trained 
for the different faults observed from the components. The authors demonstrated this by 
proposing a diagnostic methodology which was used and applied to two systems: the 
environmental control system and the auxiliary power unit of an aircraft [60]. A dedicated 
classifier was assigned for each examined component and the training strategy for multi-
ple scenarios (considering multiple component faults simultaneously) that could occur in 
a system. The authors concluded that the classifiers identified non-linearities in the train-
ing data very accurately, and therefore defined correct decision boundaries to be taken. A 
limitation of this approach was in the sparse data availability for classification; severity 
needs to be established for different components with same fault signature or contribu-
tions to the fault scenario [61]. Therefore, the classification of large number of components 
is difficult to manage. Additionally, for a system such as the HPFCAS, which has some of 
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its system faults as dynamic faults, ways in which the proposed methodology could be 
used are still not yet implemented, as the examples of fault modes that were considered 
were not dynamic.  

Therefore, by separating a HPFCAS into subsystems and applying the hybrid model 
approach with AI and ML techniques, a robust diagnosis to address the degradation in 
the system will be achieved. 

4.3. Challenges 
For a multisystem such as the FCAS on an aircraft, a principal understanding of the 

physics of the system for a model-based diagnostic method is crucial. The system must be 
separated into different systems, and the physics-based knowledge of the separated sys-
tems must be well understood. 

Another potential issue is the availability of historic data sets: obtaining data from 
sensors or from historical usage of the system is challenging. An appropriate sensor tech-
nology must be used to obtain the right data. Second, the right algorithm must be selected 
for the diagnostics tool. In this review, it was found that accessibility to historic data was 
problematic, since sufficient data and algorithm development to match the different diag-
nostic models was lacking. Further observations are included as follows: 
• In the hydraulic system, any single system or component failure, e.g., actuator or 

valve leakage, is a principal failure mode. 
• Any combination of failures, e.g., dual electrical or hydraulic system failures, or any 

single failure in combination with any probable hydraulic or electrical failure, are 
principal failure modes. 

• Common mode failures/single failures (e.g., leakage) that can affect multiple systems 
are principal failure modes. 

• The increased pressure delivered to the actuation system is a function of the increase 
in rpm of the pump and percentage openings of the valves; thus, faults in these com-
ponents affect the pressure response of the entire system. 

• The actuator should be able to hold the control surface at a required position with a 
load applied in either direction up to a defined maximum load magnitude. 

• The effect of the actuator frequency-response characteristics (gain and phase lag) on 
low- or high-frequency vibration modes that should be minimized constitutes fault 
on the system that requires diagnosis. 

4.4. Opportunities 
The diagnosis and health monitoring of complex systems is an ongoing study. Efforts 

made by the diagnostic community to achieve success have been considerable, but more 
efforts are still required. 

In hydraulic systems, most diagnosis methods proposed or used are based on the 
individual components. There is a huge gap in examining the entire system because, apart 
from the component faults, multiple faults occur in the system and their origins cannot be 
traced to any single component easily. 

Diagnostic methods used for individual components may vary from one component 
fault to the other, which necessitates the use of different algorithms for multiple faults. 
How can these known faults in the system be organized to fall under a comprehensive 
diagnosis? 

With the different techniques and the advancement of learning, it is hoped that the 
diagnosis of complex systems, such as hydraulic systems, with their nonlinear nature and 
concealment of fault characteristics, will be addressed using different modern techniques 
of fault detection and isolation. 

The diagnostic methods available for aircraft FCASs were reviewed, and it was found 
that there are multiple faults that affect the system. If the system can be broken down into 
smaller subsystem units, more robust diagnostic capabilities will be achieved. 

Hence, a strong knowledge of AI and its applications will provide good opportuni-
ties for research in these areas. By separating a system into subsystems and applying 
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hybrid model approaches, AI technology promises to provide a robust diagnosis for the 
system. Lastly, having known the diagnosis of the individual subsystems, it will be pos-
sible to create a digital twin of the FCAS which can be utilized for the real-time diagnosis 
of the entire system. 

5. Conclusions 
In this review paper, diagnostic methods available for aircraft FCASs were reviewed. 

Their pros and cons were identified for the different types of FCAS. 
Diagnostic methods for systems that consist of many subsystems are complicated, as 

an analysis must include the contributions of faults to a system either directly or by prop-
agation from another system. 

The past efforts towards the diagnosis of systems and components using the three 
different types of diagnostics model approaches (physics or mathematical model, data-
driven model, and hybrid model) were discussed. 

It was established that the possible diagnostic methods available for fault detection 
and isolation in FCASs depended greatly on the type of the FCAS and the data required 
for diagnostic tools. 

A single diagnostic model with its algorithm is not sufficient due to multiple faults 
in the system; hence, a hybrid method involving model-based (physics-based knowledge 
of the system), and data-driven methods combined is proposed for diagnostics of the hy-
draulically powered FCASs.  

It is proposed that breaking down a system into individual subsystems which con-
tribute to faults in the entire system will be easier. Additionally, the type of algorithm to 
be used for diagnosis should include the modern AI and ML techniques. 

The performance indicators or condition indicators (indices or variables) for identi-
fying the healthy and faulty scenarios applicable to systems can be harmonized if the sys-
tem is broken down into SOS. 

Based on their functions and the complexities of their subsystems used on the aircraft, 
the HPFCAS was chosen for detailed consideration in modelling faults and proposing a 
diagnostic method. 

6. Future Work 
The data-driven methods appear to provide rich data sets for diagnosis, but their 

combination with other methods provide better results. Therefore, obtaining large exper-
imental or historic datasets for diagnosis is required. 

Efforts should be intensified through the creation and simulation of models for these 
systems that could serve as sources of data for analysis and robust diagnostics for aircraft 
systems. 

Additionally, the use of modern techniques, such as artificial intelligence and ma-
chine learning, for the development of diagnostics algorithms promises to be a revolution 
in diagnosis. 

Future work is required in which system models will be created, possible faults are 
introduced and injected into these models to create better opportunities for system diag-
nosis. 

Therefore, HPFCAS models should be created, and fault injection mechanisms on the 
models be developed so that datasets will be obtained, and diagnostic algorithms will be 
used to propose diagnostic methods. 
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Nomenclature 
AP Autopilot 
AI Artificial Intelligence 
BLDC Brushless Direct Current  
CBM Condition Based Maintenance 
CND Cannot Display 
EMA Electromechanical Actuation 
FC Flight Controls 
FCAS Flight-Control Actuation System 
FCS Flight Control System 
FDI Fault Detection and Isolation 
FF  Fault Found 
FMECA Failure Modes Effects and Criticality Analysis 
FTA Fault Tree Analysis 
HPFCAS Hydraulic Primary Flight-Control Actuation System 
IVHM Integrated Vehicle Health Monitoring 
KF Kalman Filter 
MFCAS Mechanical Flight-control actuation System 
ML Machine Learning 
NFF No Fault Found 
PFCAS Primary Flight-control actuation System 
PHM Prognostics Health Monitoring 
SOS System of systems 
RPM Revolution Per Minute 
RUF Remaining Useful Life 
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